ISL8841AABZ-T [RENESAS]

1A SWITCHING REGULATOR, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-012AA, SOIC-8;
ISL8841AABZ-T
型号: ISL8841AABZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1A SWITCHING REGULATOR, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-012AA, SOIC-8

开关 光电二极管
文件: 总15页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
High Performance Industry Standard Single-Ended Current Mode PWM Controller  
FN6320  
Rev 3.00  
April 18, 2007  
The ISL884xA is a high performance drop-in replacement for  
the popular 28C4x and 18C4x PWM controllers suitable for a  
wide range of power conversion applications including  
Features  
• 1A MOSFET gate driver  
boost, flyback, and isolated output configurations. Its fast  
signal propagation and output switching characteristics  
make this an ideal product for existing and new designs.  
• 90A start-up current, 125A maximum  
• 35ns propagation delay current sense to output  
• Fast transient response with peak current mode control  
• 30V operation  
Features include 30V operation, low operating current, 90A  
start-up current, adjustable operating frequency to 2MHz,  
and high peak current drive capability with 20ns rise and fall  
times.  
• Adjustable switching frequency to 2MHz  
• 20ns rise and fall times with 1nF output load  
PART NUMBER  
ISL8840A  
ISL8841A  
ISL8842A  
ISL8843A  
ISL8844A  
ISL8845A  
RISING UVLO  
7.0  
MAX. DUTY CYCLE  
• Trimmed timing capacitor discharge current for accurate  
deadtime/maximum duty cycle control  
100%  
50%  
7.0  
• 1.5MHz bandwidth error amplifier  
14.4V  
8.4V  
100%  
100%  
50%  
• Tight tolerance voltage reference over line, load and  
temperature  
• ±3% current limit threshold  
14.4V  
8.4V  
• Pb-free plus anneal available and ELV, WEEE, RoHS  
50%  
Compliant  
Pinout  
Applications  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Telecom and datacom power  
• Wireless base station power  
• File server power  
(8 LD SOIC, MSOP)  
TOP VIEW  
COMP  
FB  
1
2
3
4
8
7
VREF  
VDD  
OUT  
GND  
• Industrial power systems  
• PC power supplies  
CS  
6
5
• Isolated buck and flyback regulators  
• Boost regulators  
RTCT  
FN6320 Rev 3.00  
April 18, 2007  
Page 1 of 15  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Ordering Information (Continued)  
Ordering Information  
PART  
NUMBER*  
PART  
TEMP.  
PACKAGE PKG.  
PART  
NUMBER*  
PART  
TEMP.  
PACKAGE PKG.  
MARKING RANGE (°C) (Pb-free) DWG. #  
MARKING RANGE (°C) (Pb-free) DWG. #  
ISL8843AMBZ 8843 AMBZ  
(See Note)  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
ISL8840AABZ 8840 AABZ  
(See Note)  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
ISL8843AMUZ 43AMZ  
(See Note)  
ISL8840AAUZ 40AAZ  
(See Note)  
ISL8844AABZ 8844 AABZ  
(See Note)  
ISL8840AMBZ 8840 AMBZ  
(See Note)  
ISL8844AAUZ 44AAZ  
(See Note)  
ISL8840AMUZ 40AMZ  
(See Note)  
ISL8844AMBZ 8844 AMBZ  
(See Note)  
ISL8841AABZ 8841 AABZ  
(See Note)  
ISL8844AMUZ 44AMZ  
(See Note)  
ISL8841AAUZ 41AAZ  
(See Note)  
ISL8845AABZ 8845 AABZ  
(See Note)  
ISL8841AMBZ 8841 AMBZ  
(See Note)  
ISL8845AAUZ 45AAZ  
(See Note)  
ISL8841AMUZ 41AMZ  
(See Note)  
ISL8845AMBZ 8845 AMBZ  
(See Note)  
ISL8842AABZ 8842 AABZ  
(See Note)  
ISL8845AMUZ 45AMZ  
(See Note)  
ISL8842AAUZ 42AAZ  
(See Note)  
*Add “-T” suffix for tape and reel.  
ISL8842AMBZ 8842 AMBZ  
(See Note)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
ISL8842AMUZ 42AMZ  
(See Note)  
ISL8843AABZ 8843 AABZ  
(See Note)  
ISL8843AAUZ 43AAZ  
(See Note)  
FN6320 Rev 3.00  
April 18, 2007  
Page 2 of 15  
Functional Block Diagram  
V
VREF  
V
DD  
REF  
5.00V  
START/STOP  
UV COMPARATOR  
ENABLE  
V
OK  
DD  
+
-
VREF FAULT  
VREF  
-
+
+
-
UV COMPARATOR  
GND  
A
4.65V 4.80V  
2.5V  
A = 0.5  
PWM  
COMPARATOR  
CS  
+
-
100mV  
ONLY  
ISL8841A/  
ISL8844A/  
ISL8845A  
2R  
1.1V  
CLAMP  
+
-
FB  
VF TOTAL = 1.15V  
ERROR  
R
Q
T
AMPLIFIER  
COMP  
Q
OUT  
S
R
Q
Q
36k  
RESET  
DOMINANT  
VREF  
100k  
2.9V  
1.0V  
ON  
150k  
OSCILLATOR  
COMPARATOR  
<10ns  
-
RTCT  
+
CLOCK  
8.4mA  
ON  
 
Typical Application - 48V Input Dual Output Flyback  
CR5  
+3.3V  
+1.8V  
C21  
+ C15  
+ C16  
T1  
R21  
V
+
IN  
C4  
R3  
CR4  
+
C22  
+
C17  
C6  
C20  
C2  
C19  
CR2  
C5  
RETURN  
CR6  
Q1  
R1  
36V TO 75V  
R16  
U2  
R17  
R18  
C1  
C3  
R19  
C14  
R4  
R22  
R15  
C13  
U3  
V
-
IN  
R27  
R20  
U4  
COMP  
R26  
VREF  
V
CS  
FB  
DD  
OUT  
RTCT  
GND  
ISL884xA  
R6  
R10  
CR1  
Q3  
C12  
C8  
VR1  
C11  
R13  
 
Typical Application - Boost Converter  
R8  
C10  
CR1  
L1  
VIN+  
+VOUT  
+
C2  
C3  
RETURN  
R4  
Q1  
R5  
C9  
C1  
R1  
R2  
U1  
R7  
VIN+  
VREF  
VDD  
OUT  
COMP  
FB  
C8  
R6  
CS  
C4  
RTCT  
GND  
R3  
C5  
C6  
C7  
VIN-  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Absolute Maximum Ratings Thermal Information  
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . GND -0.3V to +30V  
Thermal Resistance (Typical, Note 1)  
(°C/W)  
JA  
DD  
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to V  
+ 0.3V  
DD  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . .-55°C to +150°C  
Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300°C  
(SOIC, MSOP - Lead Tips Only)  
100  
130  
Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to 6.0V  
Peak GATE Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A  
ESD Classification  
Human Body Model (Per JESD22-A114C.01) . . . . . . . . . . .2000V  
Machine Model (Per EIA/JESD22-A115-A) . . . . . . . . . . . . . .200V  
Charged Device Model (Per JESD22-C191-A) . . . . . . . . . .1000V  
Operating Conditions  
Temperature Range  
ISL884xAAxZ . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
ISL884xAMxZ. . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage Range (Typical, Note 2)  
ISL884xA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9V to 30V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
+150°C max junction temperature is intended for short periods of time to prevent shortening the lifetime. Constantly operated at +150°C may shorten the life of the part.  
NOTES:  
1. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Technical Brief TB379 for details.  
JA  
2. All voltages are with respect to GND.  
Electrical Specifications ISL884xAA - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic onpage 3 and page 4. V  
= 15V, R = 10k, C = 3.3nF, T = -40 to +105°C  
DD  
T
T
A
(Note 3). Typical values are at T = +25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT  
START Threshold (ISL8840A, ISL8841A)  
START Threshold (ISL8843A, ISL8845A)  
START Threshold (ISL8842A, ISL8844A)  
STOP Threshold (ISL8840A, ISL8841A)  
STOP Threshold (ISL8843A, ISL8845A)  
STOP Threshold (ISL8842A, ISL8844A)  
Hysteresis (ISL8840A, ISL8841A)  
6.5  
7.0  
8.4  
7.5  
9.0  
15.3  
6.9  
8.0  
9.6  
-
V
V
8.0  
(Note 6)  
13.3  
14.3  
6.6  
7.6  
8.8  
0.4  
0.8  
5.4  
90  
V
6.1  
V
7.3  
V
8.0  
V
-
-
-
-
-
-
V
Hysteresis (ISL8843A, ISL8845A)  
-
V
Hysteresis (ISL8842A, ISL8844A)  
-
V
Startup Current, I  
DD  
V
< START Threshold  
125  
4.0  
5.5  
A  
mA  
mA  
DD  
Operating Current, I  
(Note 4)  
2.9  
4.75  
DD  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V  
= 12V to 30V), load,  
4.925  
5.000  
5.050  
V
DD  
temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
Input Bias Current  
CS Offset Voltage  
T
= +125°C, 1000 hours (Note 5)  
-
-20  
5
5
-
-
-
-
mV  
mA  
mA  
A
-
V
V
V
= 1V  
-1.0  
95  
-
1.0  
105  
1.30  
A  
mV  
V
CS  
CS  
CS  
= 0V (Note 5)  
= 0V (Note 5)  
100  
1.15  
COMP to PWM Comparator Offset Voltage  
0.80  
FN6320 Rev 3.00  
April 18, 2007  
Page 6 of 15  
 
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAA - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic onpage 3 and page 4. V  
= 15V, R = 10k, C = 3.3nF, T = -40 to +105°C  
DD  
T
T
A
(Note 3). Typical values are at T = +25°C (Continued)  
A
PARAMETER  
Input Signal, Maximum  
Gain, A = V /V  
TEST CONDITIONS  
MIN  
0.97  
2.5  
-
TYP  
MAX  
1.03  
3.5  
UNITS  
V
1.00  
3.0  
35  
0 < V < 910mV, V = 0V  
CS FB  
V/V  
ns  
CS  
COMP  
CS  
CS to OUT Delay  
55  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
Reference Voltage  
FB Input Bias Current  
COMP Sink Current  
COMP Source Current  
COMP VOH  
(Note 5)  
(Note 5)  
60  
1.0  
90  
-
dB  
MHz  
V
1.5  
-
V
V
V
V
V
V
= V  
2.475  
-1.0  
1.0  
2.500  
2.530  
FB  
COMP  
= 0V  
-0.2  
1.0  
A  
mA  
mA  
V
FB  
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-0.4  
4.80  
0.4  
-
VREF  
1.0  
-
= 2.3V  
-
FB  
FB  
COMP VOL  
= 2.7V  
-
V
PSRR  
Frequency = 120Hz, V  
30V (Note 5)  
= 12V to  
60  
80  
dB  
DD  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
51  
0.2  
-
53  
1.0  
5
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T = +25°C, (f  
- f  
)/f  
-
DD  
A
30V 10V 30V  
(Note 5)  
-
-
%
Amplitude, Peak to Peak  
Static Test  
Static Test  
RTCT = 2.0V  
1.75  
1.0  
7.8  
-
V
RTCT Discharge Voltage (Valley Voltage)  
-
-
V
Discharge Current  
OUTPUT  
6.5  
8.5  
mA  
Gate VOH  
V
to OUT, I  
OUT  
= -200mA  
= 200mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
20  
20  
-
2.0  
2.0  
-
V
V
DD  
Gate VOL  
OUT to GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
= 1nF (Note 5)  
= 1nF (Note 5)  
= 1nF (Note 5)  
A
OUT  
OUT  
OUT  
40  
40  
1.2  
ns  
ns  
V
Fall Time  
GATE VOL UVLO Clamp Voltage  
PWM  
VDD = 5V, I  
= 1mA  
LOAD  
Maximum Duty Cycle  
(ISL8840A, ISL8842A, ISL8843A)  
COMP = VREF  
COMP = VREF  
COMP = GND  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
Maximum Duty Cycle  
(ISL8841A, ISL8844A, ISL8845A)  
Minimum Duty Cycle  
NOTES:  
0
3. Specifications at -40°C and +105°C are guaranteed by +25°C test with margin limits.  
4. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
5. These parameters, although guaranteed, are not 100% tested in production.  
6. Adjust V above the start threshold and then lower to 15V.  
DD  
FN6320 Rev 3.00  
April 18, 2007  
Page 7 of 15  
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAM - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic. V  
= 15V, RT = 10k, CT = 3.3nF, T = -55 to +125°C (Note 7), Typical values  
A
DD  
are at T = +25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT  
START Threshold (ISL8840A, ISL8841A)  
START Threshold (ISL8843A, ISL8845A)  
START Threshold (ISL8842A, ISL8844A)  
STOP Threshold (ISL8840A, ISL8841A)  
STOP Threshold (ISL8843A, ISL8845A)  
STOP Threshold (ISL8842A, ISL8844A)  
Hysteresis (ISL8840A, ISL8841A)  
6.5  
7.0  
8.4  
14.3  
6.6  
7.6  
8.8  
0.4  
0.8  
5.4  
90  
7.5  
9.0  
15.3  
6.9  
8.0  
9.6  
-
V
V
8.0  
(Note 10)  
13.3  
V
6.1  
V
7.3  
V
8.0  
V
-
-
-
-
-
-
V
Hysteresis (ISL8843A, ISL8845A)  
-
V
Hysteresis (ISL8842A, ISL8844A)  
-
V
Startup Current, I  
DD  
V
< START Threshold  
125  
4.0  
5.5  
A  
mA  
mA  
DD  
Operating Current, I  
(Note 8)  
2.9  
4.75  
DD  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V  
= 12V to 30V), load,  
4.900  
5.000  
5.050  
V
DD  
temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
Input Bias Current  
CS Offset Voltage  
T
= +125°C, 1000 hours (Note 9)  
-
-20  
5
5
-
-
-
-
mV  
mA  
mA  
A
-
V
V
V
= 1V  
-1.0  
95  
-
1.0  
105  
1.30  
1.03  
3.5  
A  
mV  
V
CS  
CS  
CS  
= 0V (Note 9)  
= 0V (Note 9)  
100  
1.15  
1.00  
3.0  
COMP to PWM Comparator Offset Voltage  
Input Signal, Maximum  
0.80  
0.97  
2.5  
-
V
Gain, A  
= V  
/V  
0 < V < 910mV, V = 0V  
CS FB  
V/V  
ns  
CS  
COMP  
CS  
CS to OUT Delay  
35  
60  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
Reference Voltage  
FB Input Bias Current  
COMP Sink Current  
COMP Source Current  
COMP VOH  
(Note 9)  
(Note 9)  
60  
1.0  
90  
-
dB  
MHz  
V
1.5  
-
V
V
V
V
V
V
= V  
2.460  
-1.0  
1.0  
2.500  
2.535  
FB  
FB  
COMP  
= 0V  
-0.2  
1.0  
A  
mA  
mA  
V
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-0.4  
4.80  
0.4  
-
VREF  
1.0  
-
= 2.3V  
-
FB  
FB  
COMP VOL  
= 2.7V  
-
V
PSRR  
Frequency = 120Hz, V  
30V (Note 9)  
= 12V to  
60  
80  
dB  
DD  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
-
51  
0.2  
-
53  
1.0  
5
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T
= +25°C, (f  
- f  
)/f  
DD  
A 30V 10V 30V  
(Note 9)  
-
%
FN6320 Rev 3.00  
April 18, 2007  
Page 8 of 15  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAM - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic. V  
= 15V, RT = 10k, CT = 3.3nF, T = -55 to +125°C (Note 7), Typical values  
A
DD  
are at T = +25°C (Continued)  
A
PARAMETER  
Amplitude, Peak to Peak  
TEST CONDITIONS  
Static Test  
MIN  
TYP  
1.75  
1.0  
MAX  
UNITS  
-
-
-
-
V
V
RTCT Discharge Voltage (Valley Voltage)  
Static Test  
Discharge Current  
OUTPUT  
RTCT = 2.0V  
6.2  
8.0  
8.5  
mA  
Gate VOH  
V
- OUT, I  
= -200mA  
= 200mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
20  
20  
-
2.0  
2.0  
-
V
V
DD  
OUT  
Gate VOL  
OUT - GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
= 1nF (Note 9)  
= 1nF (Note 9)  
= 1nF (Note 9)  
A
OUT  
OUT  
OUT  
40  
40  
1.2  
ns  
ns  
V
Fall Time  
GATE VOL UVLO Clamp Voltage  
PWM  
V
= 5V, I = 1mA  
LOAD  
DD  
Maximum Duty Cycle  
(ISL8840A, ISL8842A, ISL8843A)  
COMP = VREF  
COMP = VREF  
COMP = GND  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
Maximum Duty Cycle  
(ISL8841A, ISL8844A, ISL8845A)  
Minimum Duty Cycle  
NOTES:  
0
7. Specifications at -55°C and +125°C are guaranteed by +25°C test with margin limits.  
8. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
9. These parameters, although guaranteed, are not 100% tested in production.  
10. Adjust V above the start threshold and then lower to 15V.  
DD  
Typical Performance Curves  
1.01  
1.001  
1.000  
0.999  
1.00  
0.99  
0.98  
0.998  
0.997  
0.996  
0.995  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 1. FREQUENCY vs TEMPERATURE  
FIGURE 2. REFERENCE VOLTAGE vs TEMPERATURE  
FN6320 Rev 3.00  
April 18, 2007  
Page 9 of 15  
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Typical Performance Curves (Continued)  
3
1.001  
1.000  
0.998  
0.997  
0.996  
10  
100pF  
100  
10  
1
220pF  
330pF  
470pF  
1.0nF  
2.2nF  
3.3nF  
4.7nF  
6.8nF  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
10  
RT (k)  
100  
TEMPERATURE (°C)  
FIGURE 3. EA REFERENCE vs TEMPERATURE  
FIGURE 4. RESISTANCE FOR CT CAPACITOR VALUES GIVEN  
MOSFET with peak currents of 1.0A. This GATE output is  
Pin Descriptions  
actively held low when V  
is below the UVLO threshold.  
DD  
RTCT - This is the oscillator timing control pin. The operational  
frequency and maximum duty cycle are set by connecting a  
resistor, RT, between VREF and this pin and a timing capacitor,  
CT, from this pin to GND. The oscillator produces a sawtooth  
waveform with a programmable frequency range up to  
2.0MHz. The charge time, t , the discharge time, t , the  
V
- V  
DD  
is the power connection for the device. The total  
DD  
supply current will depend on the load applied to OUT. Total  
current is the sum of the operating current and the average  
I
DD  
output current. Knowing the operating frequency, f, and the  
MOSFET gate charge, Qg, the average output current can be  
calculated from:  
C
D
switching frequency, f, and the maximum duty cycle, Dmax,  
can be approximated from the following equations:  
(EQ. 5)  
I
= Qg f  
OUT  
(EQ. 1)  
t
0.533 RT CT  
C
To optimize noise immunity, bypass V  
to GND with a  
and GND pins as  
DD  
ceramic capacitor as close to the V  
possible.  
DD  
0.008 RT 3.83  
0.008 RT 1.71  
(EQ. 2)  
---------------------------------------------  
t
RT CT In  
D
VREF - The 5.00V reference voltage output. +1.0/-1.5%  
tolerance over line, load and operating temperature. Bypass to  
GND with a 0.1F to 3.3F capacitor to filter this output as  
needed.  
f = 1  t + t  
(EQ. 3)  
(EQ. 4)  
C
D
D = t f  
C
The formulae have increased error at higher frequencies due  
to propagation delays. Figure 4 may be used as a guideline in  
selecting the capacitor and resistor values required for a given  
frequency.  
Functional Description  
Features  
The ISL884xA current mode PWM makes an ideal choice for  
low-cost flyback and forward topology applications. With its  
greatly improved performance over industry standard parts, it  
is the obvious choice for new designs or existing designs which  
require updating.  
COMP - COMP is the output of the error amplifier and the input  
of the PWM comparator. The control loop frequency  
compensation network is connected between the COMP and  
FB pins.  
FB - The output voltage feedback is connected to the inverting  
input of the error amplifier through this pin. The non-inverting  
input of the error amplifier is internally tied to a reference  
voltage.  
Oscillator  
The ISL884xA has a sawtooth oscillator with a programmable  
frequency range to 2MHz, which can be programmed with a  
resistor from VREF and a capacitor to GND on the RTCT pin.  
(Please refer to Figure 4 for the resistor and capacitance  
required for a given frequency.)  
CS - This is the current sense input to the PWM comparator.  
The range of the input signal is nominally 0V to 1.0V and has  
an internal offset of 100mV.  
GND - GND is the power and small signal reference ground for  
all functions.  
OUT - This is the drive output to the power switching device. It  
is a high current output capable of driving the gate of a power  
FN6320 Rev 3.00  
April 18, 2007  
Page 10 of 15  
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
From the small signal current-mode model [1] it can be shown  
Soft-Start Operation  
that the naturally-sampled modulator gain, Fm, without slope  
compensation, is in Equation 6.  
Soft-start must be implemented externally. One method,  
illustrated below, clamps the voltage on COMP.  
1
-------------------  
Fm =  
(EQ. 6)  
SnTsw  
where Sn is the slope of the sawtooth signal and Tsw is the  
duration of the half-cycle. When an external ramp is added, the  
modulator gain becomes:  
VREF  
D1  
C1  
R1  
COMP  
GND  
1
1
(EQ. 7)  
--------------------------------------  
---------------------------  
Fm =  
=
Q1  
Sn + SeTsw  
m SnTsw  
c
where Se is slope of the external ramp and  
Se  
-------  
= 1 +  
m
(EQ. 8)  
c
Sn  
FIGURE 5. SOFT-START  
The criteria for determining the correct amount of external  
ramp can be determined by appropriately setting the damping  
factor of the double-pole located at the switching frequency.  
The double-pole will be critically damped if the Q-factor is set  
to 1, over-damped for Q < 1, and under-damped for Q > 1. An  
under-damped condition may result in current loop instability.  
The COMP pin is clamped to the voltage on capacitor C1 plus  
a base-emitter junction by transistor Q1. C1 is charged from  
VREF through resistor R1 and the base current of Q1. At  
power-up C1 is fully discharged, COMP is at ~0.7V, and the  
duty cycle is zero. As C1 charges, the voltage on COMP  
increases, and the duty cycle increases in proportion to the  
voltage on C1. When COMP reaches the steady state  
operating point, the control loop takes over and soft start is  
complete. C1 continues to charge up to VREF and no longer  
affects COMP. During power down, diode D1 quickly  
discharges C1 so that the soft start circuit is properly initialized  
prior to the next power on sequence.  
1
(EQ. 9)  
-------------------------------------------------  
Q =  
m 1 D0.5  
c
where D is the percent of on time during a switching cycle.  
Setting Q = 1 and solving for Se yields  
1
1
  
  
1  
(EQ. 10)  
--  
-------------  
S
= S  
+ 0.5  
e
n
1 D  
Gate Drive  
Since Sn and Se are the on time slopes of the current ramp  
and the external ramp, respectively, they can be multiplied by  
The ISL884xA is capable of sourcing and sinking 1A peak  
current. To limit the peak current through the IC, an optional  
external resistor may be placed between the totem-pole output  
of the IC (OUT pin) and the gate of the MOSFET. This small  
series resistor also damps any oscillations caused by the  
resonant tank of the parasitic inductances in the traces of the  
board and the FET’s input capacitance.  
t
to obtain the voltage change that occurs during t  
.
ON  
ON  
1
1
  
  
1  
--  
-------------  
V
= V  
+ 0.5  
(EQ. 11)  
e
n
1 D  
where Vn is the change in the current feedback signal (I)  
during the on time and Ve is the voltage that must be added by  
the external ramp.  
Slope Compensation  
For applications where the maximum duty cycle is less than  
50%, slope compensation may be used to improve noise  
immunity, particularly at lighter loads. The amount of slope  
compensation required for noise immunity is determined  
empirically, but is generally about 10% of the full scale current  
feedback signal. For applications where the duty cycle is  
greater than 50%, slope compensation is required to prevent  
instability.  
For a flyback converter, Vn can be solved for in terms of input  
voltage, current transducer components, and primary  
inductance, yielding  
D T  
V R  
IN CS  
1
1
SW  
  
1  
---------------------------------------------------- --  
-------------  
V
=
+ 0.5  
V
e
  
L
1 D  
p
(EQ. 12)  
Slope compensation may be accomplished by summing an  
external ramp with the current feedback signal or by  
subtracting the external ramp from the voltage feedback error  
signal. Adding the external ramp to the current feedback signal  
is the more popular method.  
where R  
CS  
is the current sense resistor, f is the switching  
sw  
frequency, L is the primary inductance, V is the minimum  
input voltage, and D is the maximum duty cycle.  
p
IN  
FN6320 Rev 3.00  
April 18, 2007  
Page 11 of 15  
 
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
The current sense signal at the end of the ON time for CCM  
operation is:  
1 D  V f  
sw  
N
R  
CS  
N
P
O
S
------------------------  
-------------------------------------------  
V
=
I
+
O
V
(EQ. 13)  
CS  
2L  
s
VREF  
R9  
R6  
where V  
CS  
is the voltage across the current sense resistor, L  
s
is the secondary winding inductance, and I is the output  
current at current limit. Equation 13 assumes the voltage drop  
CS  
O
across the output rectifier is negligible.  
RTCT  
C4  
Since the peak current limit threshold is 1.00V, the total current  
feedback signal plus the external ramp voltage must sum to  
this value when the output load is at the current limit threshold.  
FIGURE 6. SLOPE COMPENSATION  
V
+ V  
= 1  
CS  
(EQ. 14)  
e
Assuming the designer has selected values for the RC filter  
(R and C ) placed on the CS pin, the value of R required to  
add the appropriate external ramp can be found by  
superposition.  
6
4
9
Substituting Equations 12 and 13 into Equation 14 and solving  
for R  
yields  
CS  
1
----------------------------------------------------------------------------------------------------------------------------------------------------  
R
=
2.05D R  
CS  
6
1
---------------------------  
(EQ. 16)  
V
=
V
--  
+ 0.5  
e
D f V  
N
1 D  V f  
O sw  
R
+ R  
9
sw  
IN  
s
6
------------------------------- -----------------  
------  
-------------------------------------------  
1  
+
I  
+
O
L
1 D  
N
p
2L  
s
p
The factor of 2.05 in Equation 16 arises from the peak  
amplitude of the sawtooth waveform on RTCT minus a  
base-emitter junction drop. That voltage multiplied by the  
maximum duty cycle is the voltage source for the slope  
(EQ. 15)  
Adding slope compensation is accomplished in the ISL884xA  
using an external buffer transistor and the RTCT signal. A  
typical application sums the buffered RTCT signal with the  
current sense feedback and applies the result to the CS pin as  
shown in Figure 6.  
compensation. Rearranging to solve for R yields:  
9
2.05D V   R  
e
6
---------------------------------------------  
R
=
(EQ. 17)  
9
V
e
The value of R  
determined in Equation 15 must be rescaled  
so that the current sense signal presented at the CS pin is that  
CS  
predicted by Equation 13. The divider created by R and R  
6
9
makes this necessary.  
R
+ R  
9
R
9
6
--------------------  
R  
=
R  
(EQ. 18)  
CS  
CS  
FN6320 Rev 3.00  
April 18, 2007  
Page 12 of 15  
 
 
 
 
 
 
 
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Example:  
Fault Conditions  
A Fault condition occurs if VREF falls below 4.65V. When a  
Fault is detected OUT is disabled. When VREF exceeds 4.80V,  
the Fault condition clears, and OUT is enabled.  
V
V
= 12V  
= 48V  
IN  
O
L = 800H  
s
Ground Plane Requirements  
Ns/Np = 10  
Careful layout is essential for satisfactory operation of the  
device. A good ground plane must be employed. A unique  
section of the ground plane must be designated for high di/dt  
Lp = 8.0H  
I
= 200mA  
currents associated with the output stage. V  
should be  
O
DD  
bypassed directly to GND with good high frequency capacitors.  
Switching Frequency, f = 200kHz  
sw  
References  
Duty Cycle, D = 28.6%  
[1] Ridley, R., “A New Continuous-Time Model for Current  
Mode Control”, IEEE Transactions on Power Electronics,  
Vol. 6, No. 2, April 1991.  
R = 499  
6
Solve for the current sense resistor, R , using Equation 15.  
CS  
R
= 295m  
CS  
Determine the amount of voltage, Ve, that must be added to  
the current feedback signal using Equation 12.  
Ve = 92.4mV  
Using Equation 17, solve for the summing resistor, R , from CT  
9
to CS.  
R = 2.67k  
9
Determine the new value of R (R’ ) using Equation 18.  
CS CS  
R’  
CS  
= 350m  
Additional slope compensation may be considered for design  
margin. The above discussion determines the minimum  
external ramp that is required. The buffer transistor used to  
create the external ramp from RTCT should have a sufficiently  
high gain (>200) so as to minimize the required base current.  
Whatever base current is required reduces the charging  
current into RTCT and will reduce the oscillator frequency.  
© Copyright Intersil Americas LLC 2005-2007. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6320 Rev 3.00  
April 18, 2007  
Page 13 of 15  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
L
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
FN6320 Rev 3.00  
April 18, 2007  
Page 14 of 15  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Mini Small Outline Plastic Packages (MSOP)  
N
M8.118 (JEDEC MO-187AA)  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.25  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.36  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.010  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.014  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X   
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.026 BSC  
0.65 BSC  
-
-C-  
4X   
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
0.95 REF  
-
0.10 (0.004)  
-A-  
C
C
b
8
8
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
0
-
o
o
o
o
5
15  
5
15  
-
a
SIDE VIEW  
C
L
o
o
o
o
0
6
0
6
-
E
1
-B-  
Rev. 2 01/03  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (0.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
to be determined at Datum plane  
-A -  
10. Datums  
and  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
FN6320 Rev 3.00  
April 18, 2007  
Page 15 of 15  

相关型号:

ISL8841AAUZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMBEP

Enhanced Plastic (EP) High Performance Industry Standard Single-Ended Current Mode PWM Controllers
INTERSIL

ISL8841AMBEP-TK

1A SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBEPZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMBEPZ

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBEPZ-TK

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMUZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMUZ

1 A SWITCHING REGULATOR, 2000 kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
ROCHESTER

ISL8841AMUZ-T

1A SWITCHING REGULATOR, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL8842A

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8842AABZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL