ISL9012IRNNZ-T [RENESAS]

Dual LDO with Low Noise, Low IQ, and High PSRR; DFN10; Temp Range: -40° to 85°C;
ISL9012IRNNZ-T
型号: ISL9012IRNNZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual LDO with Low Noise, Low IQ, and High PSRR; DFN10; Temp Range: -40° to 85°C

光电二极管 输出元件 调节器
文件: 总12页 (文件大小:643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL9012  
FN9220  
Rev 4.00  
December 10, 2015  
Dual LDO with Low Noise, Low I , and High PSRR  
Q
ISL9012 is a high performance dual LDO capable of  
sourcing 150mA current from Channel 1, and 300mA from  
Channel 2. The device has a low standby current and  
high-PSRR and is stable with output capacitance of 1µF to  
10µF with ESR of up to 200m.  
Features  
• Integrates two high performance LDOs  
- VO1 - 150mA output  
- VO2 - 300mA output  
• Excellent transient response to large current steps  
The device integrates a Power-On-Reset (POR) function for  
the VO2 output. The POR delay for VO2 can be externally  
programmed by connecting a timing capacitor to the CPOR  
pin. A reference bypass pin is also provided for connecting a  
noise-filtering capacitor for low noise and high PSRR  
applications.  
• Excellent load regulation:  
1% voltage change across full range of load current  
• High PSRR: 70dB @ 1kHz  
• Wide input voltage capability: 2.3V to 6.5V  
• Extremely low quiescent current: 45µA (both LDOs on)  
• Low dropout voltage: typically 120mV @ 150mA  
The quiescent current is typically only 45µA with both LDO’s  
enabled and active. Separate enable pins control each  
individual LDO output. When both enable pins are low, the  
device is in shutdown, typically drawing less than 0.1µA.  
• Low output noise: typically 30µV  
@ 100µA (1.5V)  
RMS  
• Stable with 1 to10µF ceramic capacitors  
• Separate enable pins for each LDO  
Several combinations of voltage outputs are standard.  
Output voltage options for each LDO range from 1.5V to  
3.3V. Other output voltage options are available on request.  
• POR output, with adjustable delay time indicates when the  
VO2 output is good  
Pinout  
• Soft-start to limit input current surge during enable  
• Current limit and overheat protection  
• ±1.8% accuracy over all operating conditions  
• Tiny 10 Ld 3x3mm DFN package  
ISL9012  
(10 LD 3X3 DFN)  
TOP VIEW  
VIN  
EN1  
VO1  
VO2  
POR  
NC  
1
2
3
4
5
10  
9
• -40°C to +85°C operating temperature range  
• Pin compatible with Micrel MIC2212  
• Pb-free (RoHS compliant)  
EN2  
8
CBYP  
CPOR  
7
GND  
6
Applications  
• PDAs, Cell Phones and Smart Phones  
• Portable Instruments, MP3 Players  
• Handheld Devices including Medical Handhelds  
FN9220 Rev 4.00  
Page 1 of 12  
December 10, 2015  
ISL9012  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
VO1 VOLTAGE VO2 VOLTAGE  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PART MARKING  
(V)  
3.3  
3.3  
(V)  
3.3  
2.8  
PKG. DWG. #  
L10.3x3C  
ISL9012IRNNZ  
DCTA  
DAPA  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
ISL9012IRNJZ (No  
longer available,  
recommended  
replacement:  
L10.3x3C  
ISL9000AIRNJZ)  
ISL9012IRNFZ (No  
longer available,  
recommended  
replacement:  
DARA  
DCYA  
3.3  
2.5  
-40 to +85  
10 Ld 3x3 DFN  
L10.3x3C  
ISL9000AIRNFZ)  
ISL9012IRMNZ  
3.0  
3.0  
3.3  
3.0  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3C  
L10.3x3C  
ISL9012IRMMZ (No DAAK  
longer available,  
recommended  
replacement:  
ISL9000AIRMGZ-T)  
ISL9012IRMGZ  
ISL9012IRJNZ  
DCBC  
DCBD  
DAAH  
3.0  
2.8  
2.8  
2.7  
3.3  
3.0  
-40 to +85  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3C  
L10.3x3C  
L10.3x3C  
ISL9012IRJMZ (No  
longer available,  
recommended  
replacement:  
ISL9000AIRJBZ-T)  
ISL9012IRJRZ (No  
longer available,  
recommended  
replacement:  
ISL9000AIRJNZ-T)  
DAAG  
DAAF  
2.8  
2.8  
2.6  
1.8  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3C  
L10.3x3C  
ISL9012IRJCZ (No  
longer available,  
recommended  
replacement:  
ISL9000AIRJBZ-T)  
ISL9012IRFDZ  
ISL9012IRFCZ  
ISL9012IRCJZ  
ISL9012IRCCZ  
NOTES:  
DCBK  
DCBL  
DCBN  
DCBP  
2.5  
2.5  
1.8  
1.8  
2.0  
2.0  
2.8  
1.8  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3C  
L10.3x3C  
L10.3x3C  
L10.3x3C  
1. Add “-T” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. For other output voltages, contact Intersil Marketing.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte  
tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC  
J STD-020.  
FN9220 Rev 4.00  
December 10, 2015  
Page 2 of 12  
ISL9012  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7.1V  
Thermal Resistance (Notes 4, 5)  
(°C/W)  
50  
(°C/W)  
10  
JA  
JC  
V
V
Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3.6V  
O1, O2  
3x3 DFN Package . . . . . . . . . . . . . . . .  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (V + 0.3)V  
IN  
Junction Temperature Range . . . . . . . . . . . . . . . . .-40°C to +125°C  
Operating Temperature Range . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
Ambient Temperature Range (T ) . . . . . . . . . . . . . . .-40°C to +85°C  
A
Supply Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3V to 6.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
5. , “case temperature” location is at the center of the exposed metal pad on the package underside. See Tech Brief TB379.  
JC  
Electrical Specifications Unless otherwise noted, all parameters are guaranteed over the operational supply voltage and temperature  
range of the device as follows:  
T
= -40°C to +85°C; V = (V + 0.5V) to 6.5V with a minimum V of 2.3V; C = 1µF; C = 1µF;  
A
IN  
O
IN  
IN  
O
C
= 0.01µF; C  
POR  
= 0.01µF  
BYP  
MIN  
MAX  
PARAMETER  
DC CHARACTERISTICS  
Supply Voltage  
SYMBOL  
TEST CONDITIONS  
(Note 8) TYP (Note 8) UNITS  
V
2.3  
6.5  
V
IN  
Ground Current  
Quiescent condition: I = 0µA; I = 0µA  
O1 O2  
I
One LDO active  
Both LDO active  
@+25°C  
25  
45  
40  
60  
µA  
µA  
µA  
V
DD1  
DD2  
DDS  
I
Shutdown Current  
UVLO Threshold  
I
0.1  
2.1  
1.8  
1.0  
2.3  
2.0  
+1.8  
V
1.9  
1.6  
UV+  
V
V
UV-  
Regulation Voltage Accuracy  
Variation from nominal voltage output, V = V + 0.5 to 5.5V,  
IN  
-1.8  
%
O
T = -40°C to +125°C  
J
Line Regulation  
Load Regulation  
V
= (V  
+ 1.0V relative to highest output voltage) to 5.5V  
OUT  
-0.2  
0
0.2  
0.7  
1.0  
%/V  
%
IN  
I
I
= 100µA to 150mA (VO1 and VO2)  
= 100µA to 300mA (VO2)  
0.1  
OUT  
OUT  
%
Maximum Output Current  
I
VO1: Continuous  
VO2: Continuous  
150  
300  
350  
mA  
mA  
mA  
mV  
mV  
mV  
mV  
°C  
MAX  
Internal Current Limit  
I
V
V
V
V
T
475  
125  
300  
250  
200  
145  
110  
600  
200  
500  
400  
325  
LIM  
Dropout Voltage (Note 7)  
I
I
I
I
= 150mA; V 2.1V (VO1)  
O
DO1  
DO2  
DO3  
DO4  
SD+  
O
O
O
O
= 300mA; V < 2.5V (VO2)  
O
= 300mA; 2.5V V 2.8V (VO2)  
O
= 300mA; V > 2.8V (VO2)  
O
Thermal Shutdown Temperature  
T
°C  
SD-  
AC CHARACTERISTICS  
Ripple Rejection  
I
= 10mA, V = 2.8V(min), V = 1.8V, C = 0.1µF  
IN BYP  
O
O
@ 1kHz  
70  
55  
40  
dB  
dB  
dB  
@ 10kHz  
@ 100kHz  
FN9220 Rev 4.00  
December 10, 2015  
Page 3 of 12  
ISL9012  
Electrical Specifications Unless otherwise noted, all parameters are guaranteed over the operational supply voltage and temperature  
range of the device as follows:  
T
= -40°C to +85°C; V = (V + 0.5V) to 6.5V with a minimum V of 2.3V; C = 1µF; C = 1µF;  
A
IN  
O
IN  
IN  
O
C
= 0.01µF; C  
POR  
= 0.01µF (Continued)  
BYP  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 100µA, V = 1.5V, T = +25°C, C = 0.1µF  
BYP  
(Note 8) TYP (Note 8) UNITS  
Output Noise Voltage  
I
30  
µVrms  
O
O
A
BW = 10Hz to 100kHz (Note 6)  
DEVICE START-UP CHARACTERISTICS  
Device Enable TIme  
t
Time from assertion of the ENx pin to when the output voltage  
reaches 95% of the VO(nom)  
250  
30  
500  
60  
µs  
EN  
LDO Soft-start Ramp Rate  
t
Slope of linear portion of LDO output voltage ramp during start-  
up  
µs/V  
SSR  
EN1, EN2 PIN CHARACTERISTICS  
Input Low Voltage  
V
-0.3  
1.4  
0.5  
V
V
IL  
Input High Voltage  
V
V +0.3  
IN  
IH  
Input Leakage Current  
Pin Capacitance  
I , I  
IL IH  
0.1  
µA  
pF  
C
Informative  
5
PIN  
POR PIN CHARACTERISTICS  
POR Thresholds  
V
As a percentage of nominal output voltage  
CPOR = 0.01µF  
91  
87  
94  
90  
97  
93  
%
%
POR+  
V
POR-  
POR Delay  
t
t
100  
200  
25  
300  
ms  
µs  
V
PLH  
PHL  
POR Pin Output Low Voltage  
V
@I = 1.0mA  
OL  
0.2  
OL  
POR Pin Internal Pull-Up  
Resistance  
R
78  
100  
180  
k  
POR  
NOTES:  
6. Limits established by characterization and are not production tested.  
7. VOx = 0.98*VOx(NOM); Valid for VOx greater than 1.85V.  
8. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
EN2  
t
EN  
V
POR+  
V
POR+  
V
V
POR-  
POR-  
<t  
PHL  
VO2  
POR  
t
t
PLH  
PHL  
FIGURE 1. TIMING PARAMETER DEFINITION  
FN9220 Rev 4.00  
December 10, 2015  
Page 4 of 12  
ISL9012  
Typical Performance Curves  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0.8  
0.6  
0.4  
VIN = 3.8V  
VO = 3.3V  
VO = 3.3V  
= 0mA  
I
LOAD  
0.2  
-40C  
-40C  
+25C  
0.0  
+25C  
-0.2  
+85C  
-0.4  
-0.6  
-0.8  
+85C  
0
50  
100  
150  
200  
250  
300  
350  
400  
3.4  
3.8  
4.2  
4.6  
5.0  
5.4  
5.8  
6.2  
6.6  
LOAD CURRENT - I (mA)  
O
INPUT VOLTAGE (V)  
FIGURE 2. OUTPUT VOLTAGE vs INPUT VOLTAGE (3.3V  
OUTPUT)  
FIGURE 3. OUTPUT VOLTAGE CHANGE vs LOAD CURRENT  
3.4  
0.10  
VIN = 3.8V  
VO = 3.3V  
VO1 = 3.3V  
0.08  
I
= 0mA  
O
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
I
= 0mA  
LOAD  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
I
= 150mA  
O
-0.08  
-0.10  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
6.1  
6.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (C)  
FIGURE 4. OUTPUT VOLTAGE CHANGE vs TEMPERATURE  
FIGURE 5. OUTPUT VOLTAGE vs INPUT VOLTAGE  
(VO1 = 3.3V)  
2.9  
350  
300  
VO2 = 2.8V  
I
= 0mA  
O
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
250  
VO2 = 2.8V  
I
= 150mA  
O
200  
150  
100  
I
= 300mA  
O
VO1 = 3.3V  
50  
0
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
6.1 6.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
INPUT VOLTAGE (V)  
OUTPUT LOAD (mA)  
FIGURE 6. OUTPUT VOLTAGE vs INPUT VOLTAGE  
(VO2 = 2.8V)  
FIGURE 7. VO1 DROPOUT VOLTAGE vs LOAD CURRENT  
FN9220 Rev 4.00  
December 10, 2015  
Page 5 of 12  
ISL9012  
Typical Performance Curves (Continued)  
55  
50  
45  
40  
35  
30  
25  
175  
VO1 = 3.3V  
150  
125  
+125C  
+25C  
+85C  
+25C  
-40C  
100  
75  
50  
25  
0
-40C  
VO1 = 3.3V  
VO2 = 2.8V  
I
(BOTH CHANNELS) = 0µA  
O
3.0  
3.5  
4.0  
4.58  
5.0  
5.5  
6.0  
6.5  
0
25  
50  
75  
100  
125  
150  
175  
200  
OUTPUT LOAD (mA)  
INPUT VOLTAGE (V)  
FIGURE 8. VO1 DROPOUT VOLTAGE vs LOAD CURRENT  
FIGURE 9. GROUND CURRENT vs INPUT VOLTAGE  
200  
180  
160  
55  
50  
45  
40  
140  
+25C  
+85C  
120  
-40C  
100  
80  
35  
60  
VIN = 3.8V  
40  
VIN = 3.8V  
VO1 = 3.3V  
VO2 = 2.8V  
VO = 3.3V  
= 0µA  
30  
I
20  
LOAD  
BOTH OUTPUTS ON  
0
25  
-40 -25 -10  
0
50  
100  
150  
200  
250  
300  
350  
400  
5
20 35 50 65 80 95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (C)  
FIGURE 10. GROUND CURRENT vs LOAD  
FIGURE 11. GROUND CURRENT vs TEMPERATURE  
3.5  
VO1 = 3.3V  
VO2 = 2.8V  
VO1 = 3.3V  
VO2 = 2.8V  
I 1 = 150mA  
L
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I 1 = 150mA  
L
I 2 = 300mA  
L
VIN  
VO1  
I 2 = 300mA  
L
POR  
CPOR = 0.1µF  
VO-1  
VO-2  
VO2  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (s)  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (s)  
FIGURE 13. POWER-UP/POWER-DOWN WITH POR SIGNALS  
FIGURE 12. POWER-UP/POWER-DOWN  
FN9220 Rev 4.00  
December 10, 2015  
Page 6 of 12  
ISL9012  
Typical Performance Curves (Continued)  
VO2 (10mV/DIV)  
VO = 3.3V  
= 150mA  
I
LOAD  
C
C
= 1µF  
LOAD  
= 0.01µF  
BYP  
VIN = 5.0V  
VO1 = 3.3V  
VO2 = 2.8V  
3
2
1
0
5
0
4.3V  
3.6V  
I 1 = 150mA  
L
I 2 = 300mA  
L
C 1, C 2 = 1µF  
L
L
C
= 0.01µF  
BYP  
10mV/DIV  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
400µs/DIV  
FIGURE 14. TURN ON/TURN OFF RESPONSE  
FIGURE 15. LINE TRANSIENT RESPONSE, 3.3V OUTPUT  
VO = 2.8V  
I
= 300mA  
LOAD  
C
C
= 1µF  
LOAD  
= 0.01µF  
VO (25mV/DIV)  
BYP  
4.2V  
3.5V  
VO = 1.8V  
VIN = 2.8V  
300mA  
10mV/DIV  
I
LOAD  
10µA  
100µs/DIV  
400µs/DIV  
FIGURE 17. LOAD TRANSIENT RESPONSE  
FIGURE 16. LINE TRANSIENT RESPONSE, 2.8V OUTPUT  
100  
1000  
100  
10  
VIN = 3.6V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 1.8V  
= 10mA  
I
O
C
C
= 0.01µF  
BYP  
= 1µF  
LOAD  
VIN = 3.6V  
VO = 1.8V  
I
= 10mA  
LOAD  
C
C
C
= 0.01µF  
BYP  
1
= 1µF  
IN  
= 1µF  
LOAD  
0.1  
10  
0.1k  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. PSRR vs FREQUENCY  
FIGURE 19. SPECTRAL NOISE DENSITY vs FREQUENCY  
FN9220 Rev 4.00  
December 10, 2015  
Page 7 of 12  
ISL9012  
Pin Description  
PIN  
PIN  
NUMBER  
NAME  
TYPE  
DESCRIPTION  
1
2
3
4
VIN  
Analog I/O  
Supply Voltage/LDO Input:  
Connect a 1µF capacitor to GND.  
EN1  
Low Voltage Compatible  
CMOS Input  
LDO-1 Enable.  
EN2  
Low Voltage Compatible  
CMOS Input  
LDO-2 Enable.  
CBYP  
Analog I/O  
Reference Bypass Capacitor Pin:  
Optionally connect capacitor of value 0.01µF to 1µF between this pin and GND to tune in the  
desired noise and PSRR performance.  
5
CPOR  
Analog I/O  
POR Delay Setting Capacitor Pin:  
Connect a capacitor between this pin and GND to delay the POR output release after LDO-2  
output reaches 94% of its specified voltage level (200ms delay per 0.01µF).  
6
7
8
9
GND  
NC  
Ground  
GND is the connection to system ground. Connect to PCB Ground plane.  
No Connection.  
NC  
POR  
VO2  
Open Drain Output (1mA)  
Analog I/O  
Open-drain POR Output for LDO-2 (active-low).  
LDO-2 Output:  
Connect capacitor of value 1µF to 10µF to GND (1µF recommended).  
10  
VO1  
Analog I/O  
LDO-1 Output:  
Connect capacitor of value 1µF to 10µF to GND (1µF recommended).  
Typical Application  
R1  
ISL9012  
10  
9
1
2
VIN (2.3V TO 6.5V)  
ON  
V
V
1
VIN  
VO1  
VO2  
OUT  
OUT  
EN1  
2
ENABLE 1  
V
2 OK  
ON  
OUT  
OFF  
8
7
3
4
EN2  
POR  
NC  
RESET  
ENABLE 2  
OFF  
V
2 TOO LOW  
(200ms DELAY, C3 = 0.01µF)  
OUT  
CBYP  
6
5
CPOR  
GND  
C1  
C2  
C3  
C4  
C5  
C1, C4, C5: 1µF X5R CERAMIC CAPACITOR  
C2: 0.01µF X5R CERAMIC CAPACITOR  
C3: 0.01µF X5R CERAMIC CAPACITOR  
R1: 100kRESISTOR, 5%  
FN9220 Rev 4.00  
December 10, 2015  
Page 8 of 12  
ISL9012  
Block Diagram  
VIN  
IS2  
LDO  
VREF  
TRIM  
ERROR  
1V  
VO1  
VO2  
VO2  
AMPLIFIER  
QEN2  
~1.0V  
POR  
COMPARATOR  
VOK2  
POR  
LDO-2  
LDO-1  
EN1  
EN2  
POR  
CONTROL  
LOGIC  
POR  
DELAY  
VOK2  
1.00V  
BANDGAP AND  
TEMPERATURE  
SENSOR  
VOLTAGE  
REFERENCE  
GENERATOR  
0.94V  
0.90V  
UVLO  
GND  
CBYP  
CPOR  
mode. During this condition, all on-chip circuits are off, and  
the device draws minimum current, typically less than 0.1µA.  
When one or both of the enable pins are asserted, the  
device first polls the output of the UVLO detector to ensure  
that VIN voltage is at least about 2.1V. Once verified, the  
device initiates a start-up sequence. During the start-up  
sequence, trim settings are first read and latched. Then,  
sequentially, the bandgap, reference voltage and current  
generation circuitry power up. Once the references are  
stable, a fast-start circuit quickly charges the external  
reference bypass capacitor (connected to the CBYP pin) to  
the proper operating voltage. After the bypass capacitor has  
been charged, the LDO’s power up.  
Functional Description  
The ISL9012 contains all circuitry required to implement two  
high performance LDO’s. High performance is achieved  
through a circuit that delivers fast transient response to  
varying load conditions. In a quiescent condition, the  
ISL9012 adjusts its biasing to achieve the lowest standby  
current consumption.  
The device also integrates current limit protection, smart  
thermal shutdown protection, staged turn-on and soft-start.  
Smart Thermal shutdown protects the device against  
overheating. Staged turn-on and soft-start minimize start-up  
input current surges without causing excessive device  
turn-on time.  
If EN1 is brought high, and EN2 goes high before the VO1  
output stabilizes, the ISL9012 delays the VO2 turn-on until  
the VO1 output reaches its target level.  
Power Control  
The ISL9012 has two separate enable pins, EN1 and EN2,  
to individually control power to each of the LDO outputs.  
When both EN1 and EN2 are low, the device is in shutdown  
If EN2 is brought high, and EN1 goes high before VO2 starts  
its output ramp, then VO1 turns on first and the ISL9012  
FN9220 Rev 4.00  
December 10, 2015  
Page 9 of 12  
ISL9012  
delays the VO2 turn-on until the VO1 output reaches its target  
level.  
following output voltages: 1.5V, 1.8V, 1.85V, 2.5V, 2.6V, 2.7V,  
2.8V, 2.85V, 2.9V, 3.0V, and 3.3V.  
If EN2 is brought high, and EN1 goes high after VO2 starts its  
output ramp, then the ISL9012 immediately starts to ramp up  
the VO1 output.  
Power-On Reset Generation  
LDO-2 has a Power-on Reset signal generation circuit which  
outputs to the POR pin. The POR signal is generated as  
follows:  
If both EN1 and EN2 are high, the VO1 output has priority, and  
is always powered up first.  
A POR comparator continuously monitors the voltage of the  
LDO-2 output. The LDO enters a power-good state when the  
output voltage is above 94% of the expected output voltage for  
a period exceeding the LDO PGOOD entry delay time. In the  
power-good state, the open-drain POR output is in a high-  
impedance state. An external resistor can be added between  
the POR output and either LDO output or the input voltage,  
VIN.  
During operation, whenever the VIN voltage drops below about  
1.8V, the ISL9012 immediately disables both LDO outputs.  
When VIN rises back above 2.1V, the device re-initiates its  
start-up sequence and LDO operation will resume  
automatically.  
Reference Generation  
The reference generation circuitry includes a trimmed  
bandgap, a trimmed voltage reference divider, a trimmed  
current reference generator, and an RC noise filter. The filter  
includes the external capacitor connected to the CBYP pin. A  
0.01µF capacitor connected CBYP implements a 100Hz  
lowpass filter, and is recommended for most high performance  
applications. For the lowest noise application, a 0.1µF or  
greater CBYP capacitor should be used. This filters the  
reference noise to below the 10Hz to1kHz frequency band,  
which is crucial in many noise-sensitive applications.  
The power-good state is exited when the LDO-2 output falls  
below 90% of the expected output voltage for a period longer  
than the PGOOD exit delay time. While power-good is false,  
the ISL9012 pulls the respective POR pin low.  
The PGOOD entry and exit delays are determined by the value  
of the external capacitor connected to the CPOR pin. For a  
0.01µF capacitor, the entry and exit delays are 200ms and  
25µs respectively. Larger or smaller capacitor values will yield  
proportionately longer or shorter delay times. The POR exit  
delay should never be allowed to be less than 10µs to ensure  
sufficient immunity against transient induced false POR  
triggering.  
The bandgap generates a zero temperature coefficient (TC)  
voltage for the reference divider. The reference divider  
provides the regulation reference, POR detection thresholds,  
and other voltage references required for current generation  
and over-temperature detection.  
Overheat Detection  
The bandgap outputs a proportional-to-temperature current  
that is indicative of the temperature of the silicon. This current  
is compared with references to determine if the device is in  
danger of damage due to overheating. When the die  
The current generator outputs references required for adaptive  
biasing as well as references for LDO output current limit and  
thermal shutdown determination.  
temperature reaches about +145°C, one or both of the LDO’s  
momentarily shut down until the die cools sufficiently. In the  
overheat condition, only the LDO sourcing more than 50mA  
will be shut off. This does not affect the operation of the other  
LDO. If both LDOs source more than 50mA and an overheat  
condition occurs, both LDO outputs are disabled. Once the die  
temperature falls back below about +110°C, the disabled  
LDO(s) are re-enabled and soft-start automatically takes place.  
LDO Regulation and Programmable Output Divider  
The LDO Regulator is implemented with a high-gain  
operational amplifier driving a PMOS pass transistor. The  
design of the ISL9012 provides a regulator that has low  
quiescent current, fast transient response, and overall stability  
across all operating and load current conditions. LDO stability  
is guaranteed for a 1µF to 10µF output capacitor that has a  
tolerance better than 20% and ESR less than 200m. The  
design is performance-optimized for a 1µF capacitor. Unless  
limited by the application, use of an output capacitor value  
above 4.7µF is not recommended as LDO performance  
improvement is minimal.  
Soft-start circuitry integrated into each LDO limits the initial  
ramp-up rate to about 30µs/V to minimize current surge. The  
ISL9012 provides short-circuit protection by limiting the output  
current to about 475mA.  
Each LDO uses an independently trimmed 1V reference. An  
internal resistor divider drops the LDO output voltage down to  
1V. This is compared to the 1V reference for regulation. The  
resistor division ratio is programmed in the factory to one of the  
FN9220 Rev 4.00  
December 10, 2015  
Page 10 of 12  
ISL9012  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make  
sure that you have the latest revision.  
DATE  
REVISION  
CHANGE  
December 10, 2015  
FN9220.4  
Added Rev History beginning with Rev 4.  
Added About Intersil. Verbiage.  
Updated Ordering Information table on page 2  
Updated POD L10.3x3C to most current version. Revision changes are as follows:  
Updated Format to new standard  
Removed package outline and included center to center distance between lands on recommended land  
pattern.  
Removed Note 4 "Dimension b applies to the metallized terminal and is measured between 0.18mm and  
0.30mm from the terminal tip." since it is not applicable to this package. Renumbered notes accordingly.  
Tiebar Note 4 updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2005-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN9220 Rev 4.00  
December 10, 2015  
Page 11 of 12  
ISL9012  
Package Outline Drawing  
L10.3x3C  
10 LEAD DUAL FLAT PACKAGE (DFN)  
Rev 4, 3/15  
5
3.00  
A
B
PIN #1 INDEX AREA  
10  
1
2
5
PIN 1  
INDEX AREA  
10 x 0.25  
6
C B  
0.10  
(4X)  
1.64  
10x 0.40  
TOP VIEW  
BOTTOM VIEW  
M C B  
(4X)  
0.10  
SEE DETAIL "X"  
(10 x 0.60)  
(10x 0.25)  
0.10  
C
C
BASE PLANE  
0.20  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(8x 0.50)  
1.64  
2.80 TYP  
4
0.20 REF  
0.05  
C
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
5.  
6. Compliant to JEDEC MO-229-WEED-3 except for E-PAD  
dimensions.  
FN9220 Rev 4.00  
December 10, 2015  
Page 12 of 12  

相关型号:

ISL9012IRNNZT

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEED-3, DFN-10, Fixed Positive Multiple Output LDO Regulator
RENESAS

ISL9012IRPLZ

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9012IRPLZ

Dual LDO with Low Noise, Low IQ, and High PSRR; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9012IRPLZ-T

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9012IRPLZ-T

Dual LDO with Low Noise, Low IQ, and High PSRR; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9012IRPLZT

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEED-3, DFN-10, Fixed Positive Multiple Output LDO Regulator
RENESAS

ISL9012_06

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9014

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9014A

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9014AIRBBZ

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL

ISL9014AIRBBZ

Dual LDO with Low Noise, Low IQ, and High PSRR; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9014AIRBCZ

Dual LDO with Low Noise, Low IQ, and High PSRR
INTERSIL