ISL9110IRTNZ-T [RENESAS]

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40° to 85°C;
ISL9110IRTNZ-T
型号: ISL9110IRTNZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40° to 85°C

开关 光电二极管
文件: 总21页 (文件大小:1374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL9110, ISL9112  
1.2A High Efficiency Buck-Boost Regulators  
FN7649  
Rev.3.00  
Jul 26, 2018  
The ISL9110 and ISL9112 are highly-integrated buck-boost  
switching regulators that accept input voltages either above or  
below the regulated output voltage. Unlike other Buck-Boost  
regulators, these regulators automatically transition between  
operating modes without significant output disturbance.  
Features  
• Accepts input voltages above or below regulated output  
voltage  
• Automatic and seamless transitions between Buck and  
Boost modes  
Both parts are capable of delivering up to 1.2A output current,  
and provide excellent efficiency due to their fully synchronous  
4-switch architecture. No-load quiescent current of only 35µA  
also optimizes efficiency under light-load conditions. Forced  
PWM and/or synchronization to an external clock may also be  
selected for noise sensitive applications.  
• Input voltage range: 1.8V to 5.5V  
• Output current: Up to 1.2A  
• High efficiency: Up to 95%  
• 35µA quiescent current maximizes light-load efficiency  
• 2.5MHz switching frequency minimizes external component  
size  
The ISL9110 is designed for standalone applications and  
supports 3.3V and 5V fixed output voltages or variable output  
voltages with an external resistor divider. Output voltages as  
low as 1V, or as high as 5.2V are supported using an external  
resistor divider.  
• Selectable Forced PWM mode and external synchronization  
2
• I C Interface (ISL9112)  
• Fully protected for overcurrent, over-temperature, and  
undervoltage  
The ISL9112 supports a broader set of programmable features  
that may be accessed using an I C bus interface. With a  
2
• Small 3mmx3mm TDFN Package  
programmable output voltage range of 1.9V to 5V, the  
ISL9112 is ideal for applications requiring dynamically  
changing supply voltages. A programmable slew rate can be  
selected to provide smooth transitions between output voltage  
settings.  
Applications  
• Regulated 3.3V from a single Li-ion battery  
• Smart phones and tablet computers  
• Handheld devices  
The ISL9110 and ISL9112 require only a single inductor and  
very few external components. Power supply solution size is  
minimized by a tiny 3mmx3mm package and a 2.5MHz  
switching frequency, which further reduces the size of external  
components.  
• Point-of-load regulators  
Related Literature  
For a full list of related documents, visit our website  
ISL9110, ISL9112 product pages  
V
=
100  
95  
IN  
ISL9110IRTNZ  
1.8V TO 5.5V  
5
PVIN  
LX1  
C
10µF  
1
L1  
2.2µH  
90  
6
10  
9
V
= 5V  
V
VIN  
LX2  
IN  
1
V
=
OUT  
85  
80  
75  
70  
MODE  
EN  
VOUT  
3.3V/1A  
8
V
= 3V  
C
BAT  
PG  
12  
2
IN  
= 2.5V  
STATUS  
OUTPUTS  
IN  
FB  
7
10µF  
V
= 3.3V  
GND PGND  
11  
OUT  
0.01  
0.05  
0.25  
1.25  
3
I
(A)  
OUT  
FIGURE 2. EFFICIENCY  
FIGURE 1. TYPICAL APPLICATION  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 1 of 21  
ISL9110, ISL9112  
Table of Contents  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
I C Interface Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Internal Supply and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
POR Sequence and Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PG Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
BAT Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ultrasonic Mode (ISL9112 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Buck-Boost Conversion Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operation With VIN Close to VOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Digital Slew Rate Control (ISL9112 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Description (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
I C Serial Interface (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protocol Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Voltage Programming, Adj. Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Non-Adjustable Version FB Pin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PVIN and VOUT Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
The TDFN Package Requires Additional PCB Layout Rules for the Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General PowerPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 2 of 21  
ISL9110, ISL9112  
Block Diagram  
LX1  
4
LX2  
2
PVIN  
VOUT  
PGND  
5
1
3
SOFT  
DISCHARGE  
EN  
VREF  
GATE  
EN  
9
6
DRIVERS  
AND ANTI-  
SHOOT THRU  
EN  
VIN  
EN  
BAT  
8
PVIN  
MONITOR  
VOUT  
CLAMP  
THERMAL  
SHUTDOWN  
PWM  
CURRENT  
DETECT  
CONTROL  
MODE/SYNC  
SCL  
10  
7
EN  
EN  
PG  
FB  
7
2
I C  
VOUT  
SDA  
8
MONITOR  
EN  
12  
OSC  
EN  
REF  
ERROR  
AMP  
VOLTAGE  
PROG.  
11  
GND  
Pin Configurations  
ISL9110  
(12 LD TDFN)  
TOP VIEW  
Pin Descriptions  
PIN # ISL9110 ISL9112  
DESCRIPTION  
FB  
VOUT  
LX2  
12  
11  
1
2
3
4
5
6
1
VOUT  
VOUT  
Buck/boost output. Connect a 10µF  
capacitor to PGND.  
GND  
2
3
4
5
LX2  
PGND  
LX1  
LX2  
Inductor connection, output side.  
10 MODE/SYNC  
9 EN  
PGND  
LX1  
ISL9110  
PAD  
PGND Power ground for high switching current.  
PVIN  
VIN  
8 BAT  
LX1  
Inductor connection, input side.  
PG  
7
PVIN  
PVIN  
Power input. Range: 1.8V to 5.5V. Connect a  
10µF capacitor to PGND.  
6
7
VIN  
PG  
VIN  
-
Supply input. Range: 1.8V to 5.5V.  
ISL9112  
(12 LD TDFN)  
TOP VIEW  
Open-drain output.  
Provides output power-good status.  
2
-
SCL  
-
Logic input, I C clock.  
1
2
3
4
5
6
FB  
12  
11  
VOUT  
LX2  
GND  
8
BAT  
Open drain output.  
Provides input-power-good status.  
PGND  
LX1  
10 MODE/SYNC  
ISL9112  
PAD  
2
EN  
9
8
7
-
SDA  
EN  
Logic I/O, open drain, I C data.  
PVIN  
VIN  
SDA  
SCL  
9
EN  
Logic input, drive high to enable device.  
10  
MODE / MODE / Logic input, high for auto PFM mode. Low for  
SYNC  
SYNC forced PWM operation.  
External clock sync input. Range: 2.75MHz  
to 3.25MHz.  
11  
12  
GND  
FB  
GND  
FB  
Analog ground pin.  
Voltage feedback pin.  
Exposed pad; connect to PGND.  
PAD  
PAD  
PAD  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 3 of 21  
ISL9110, ISL9112  
Ordering Information  
PART NUMBER  
PART  
V
HICCUP TEMP RANGE  
TAPE AND REEL  
(UNITS) (Note 1)  
PKG.  
DWG. #  
OUT  
(Notes 2, 3, 4)  
MARKING  
(V)  
3.3  
3.3  
3.3  
5.0  
5.0  
5.0  
ADJ.  
ADJ.  
ADJ.  
3.3  
3.3  
3.3  
5.0  
5.0  
5.0  
ADJ.  
ADJ.  
MODE  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
(°C)  
PACKAGE  
ISL9110IRTNZ  
GASA  
GASA  
GASA  
GATA  
GATA  
GATA  
GAUA  
GAUA  
GAUA  
GAVA  
GAVA  
GAVA  
GAWA  
GAWA  
GAWA  
GBAF  
GBAF  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-
6k  
250  
-
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
12 Ld Exposed Pad 3x3 TDFN L12.3x3C  
ISL9110IRTNZ-T  
ISL9110IRTNZ-T7A  
ISL9110IRT7Z  
ISL9110IRT7Z-T  
ISL9110IRT7Z-T7A  
ISL9110IRTAZ  
6k  
250  
-
ISL9110IRTAZ-T  
ISL9110IRTAZ-T7A  
ISL9112IRTNZ  
6k  
250  
-
ISL9112IRTNZ-T  
ISL9112IRTNZ-T7A  
ISL9112IRT7Z  
6k  
250  
-
ISL9112IRT7Z-T  
ISL9112IRT7Z-T7A  
ISL9110BIRTAZ  
ISL9110BIRTAZ-T  
NOTES:  
6k  
250  
-
6k  
1. Refer to TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL9110, ISL9112 product information pages. For more information about MSL, see TB363.  
4. The ISL9110 and ISL9112 can be special ordered with any output voltage between 1.9V and 5.0V in 100mV steps.  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 4 of 21  
ISL9110, ISL9112  
Absolute Maximum Ratings  
Thermal Information  
PVIN, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
LX1, LX2 (Note 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
FB (Adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
Thermal Resistance (Typical)  
12 Ld TDFN Package (Notes 5, 6) . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
JA (°C/W)  
42  
JC (°C/W)  
5.5  
FB (Fixed V  
versions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
OUT  
GND, PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 3kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 250V  
Latch-Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 1.2A  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379  
JA  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
7. LX1 and LX2 pins can withstand switching transients of -1.5V for 100ns, and 7V for 20ms.  
Analog Specifications V = V  
= V = 3.6V, V  
EN OUT  
= 3.3V, L1 = 2.2µH, C = C = 10µF, T = +25°C. Boldface limits apply over the  
VIN  
PVIN  
1
2
A
operating temperature range, -40°C to +85°C.  
MIN  
TYP  
MAX  
PARAMETER  
POWER SUPPLY  
Input Voltage Range  
SYMBOL  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNIT  
V
1.8  
5.5  
V
V
IN  
V
Undervoltage Lockout Threshold  
V
Rising  
Falling  
PFM mode, no external load on Vout (Note 10)  
EN = GND, V = 3.6V  
1.725  
1.650  
35  
1.775  
IN  
UVLO  
1.550  
V
V
V
Supply Current  
I
60  
µA  
µA  
IN  
IN  
VIN  
Supply Current, Shutdown  
I
0.05  
1.0  
SD  
IN  
OUTPUT VOLTAGE REGULATION  
Output Voltage Range  
V
ISL9110IRTAZ, I  
= 100mA  
= 100mA  
1.00  
1.90  
-2  
5.20  
5.00  
+2  
V
OUT  
OUT  
ISL9112, I  
V
OUT  
Output Voltage Accuracy  
V
V
= 3.7V, V  
= 3.3V, I  
= 0mA, PWM mode  
= 1mA, PFM mode  
%
%
IN  
IN  
OUT  
OUT  
OUT  
= 3.7V, V  
= 3.3V, I  
-3  
+4  
OUT  
FB Pin Voltage Regulation  
FB Pin Bias Current  
V
For adjustable output version  
For adjustable output version  
0.79  
0.80  
0.81  
1
V
FB  
I
µA  
FB  
Line Regulation, PWM Mode  
V  
/ V  
I = 500mA, V  
OUT OUT  
= 3.3V, MODE = GND, V step  
IN  
±0.005  
±0.005  
±12.5  
±0.4  
mV/mV  
OUT  
IN  
from 2.3V to 5.5V  
= 3.7V, V = 3.3V, MODE = GND, I step from  
OUT  
Load Regulation, PWM Mode  
Line Regulation, PFM Mode  
Load Regulation, PFM Mode  
V  
/ I  
V
mV/mA  
mV/V  
OUT  
OUT  
IN  
OUT  
0mA to 500mA  
V  
/ V  
I = 100mA, V  
OUT OUT  
= 3.3V, MODE = VIN, V step  
IN  
OUT  
I
from 2.3V to 5.5V  
=3.7V, V = 3.3V, MODE = VIN, I step from  
OUT  
V  
/ I  
V
mV/mA  
OUT  
OUT  
IN OUT  
0mA to 100mA  
Output Voltage Clamp  
V
Rising, V = 3.6V  
5.25  
2.25  
5.95  
2.75  
V
CLAMP  
IN  
Output Voltage Clamp Hysteresis  
DC/DC SWITCHING SPECIFICATIONS  
Oscillator Frequency  
V
= 3.6V  
400  
mV  
IN  
f
2.50  
MHz  
SW  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 5 of 21  
ISL9110, ISL9112  
Analog Specifications V = V  
= V = 3.6V, V  
EN OUT  
operating temperature range, -40°C to +85°C. (Continued)  
= 3.3V, L1 = 2.2µH, C = C = 10µF, T = +25°C. Boldface limits apply over the  
VIN  
PVIN  
1
2
A
MIN  
TYP  
MAX  
PARAMETER  
Minimum On Time  
SYMBOL  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNIT  
t
80  
ns  
µA  
µA  
ONMIN  
IPFETLEAK  
INFETLEAK  
LX1 Pin Leakage Current  
LX2 Pin Leakage Current  
SOFT-START and SOFT DISCHARGE  
Soft-Start Time  
-1  
-1  
1
1
t
Time from when EN signal asserts to when output  
voltage ramp starts.  
1
1
ms  
ms  
SS  
Time from when output voltage ramp starts to when  
output voltage reaches 95% of its nominal value  
with device operating in Buck mode.  
V
= 4V, V = 3.3V, I = 200mA  
IN  
OUT O  
Time from when output voltage ramp starts to when  
output voltage reaches 95% of its nominal value  
with device operating in Boost mode.  
2
ms  
V
= 2V, V = 3.3V, I = 200mA  
IN  
OUT O  
VOUT Soft-Discharge ON-Resistance  
POWER MOSFET  
R
V
= 3.6V, EN < VIL  
120  
Ω
DISCHG  
DSON_P  
DSON_N  
PK_LMT  
IN  
P-Channel MOSFET ON-Resistance  
R
R
V
V
V
V
V
= 3.6V, I = 200mA  
0.12  
0.15  
0.10  
0.13  
2.4  
0.17  
0.23  
0.15  
0.23  
2.8  
Ω
Ω
Ω
Ω
A
IN  
IN  
IN  
IN  
IN  
O
= 2.5V, I = 200mA  
O
N-Channel MOSFET ON-Resistance  
= 3.6V, I = 200mA  
O
= 2.5V, I = 200mA  
O
P-Channel MOSFET Peak Current Limit  
PFM/PWM TRANSITION  
I
= 3.6V  
2.0  
Load Current Threshold, PFM to PWM  
Load Current Threshold, PWM to PFM  
V
V
= 3.6V, V  
= 3.6V, V  
= 3.3V  
= 3.3V  
200  
75  
mA  
mA  
IN  
IN  
OUT  
OUT  
External Synchronization Frequency  
Range  
2.75  
3.25  
2.15  
MHz  
Thermal Shutdown  
155  
30  
°C  
°C  
Thermal Shutdown Hysteresis  
BATTERY MONITOR AND POWER GOOD COMPARATORS  
Battery Monitor Voltage Threshold  
Battery Monitor Voltage Hysteresis  
Battery Monitor Debounce Time  
PG Delay Time (Rising)  
VT  
1.85  
2.0  
100  
25  
1
V
mV  
µs  
ms  
µs  
V
BMON  
BMON  
BMON  
VH  
t
PG Delay Time (Falling)  
20  
Minimum Supply Voltage for Valid PG  
Signal  
EN = V  
1.2  
IN  
PG Range - Lower (Rising)  
PG Range - Lower (Falling)  
PG Range - Upper (Rising)  
PG Range - Upper (Falling)  
Compliance Voltage - PG, BAT  
PG  
PG  
Percentage of programmed voltage  
Percentage of programmed voltage  
Percentage of programmed voltage  
Percentage of programmed voltage  
90  
87  
%
%
%
%
V
RNGLR  
RNGLF  
RNGUR  
RNGUF  
PG  
PG  
112  
110  
V
= 3.6V, I  
= 1µ  
SINK  
0.3  
IN  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 6 of 21  
ISL9110, ISL9112  
Analog Specifications V = V  
= V = 3.6V, V  
EN OUT  
operating temperature range, -40°C to +85°C. (Continued)  
= 3.3V, L1 = 2.2µH, C = C = 10µF, T = +25°C. Boldface limits apply over the  
VIN  
PVIN  
1
2
A
MIN  
TYP  
MAX  
PARAMETER  
LOGIC INPUTS  
SYMBOL  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNIT  
Input Leakage  
I
0.05  
1
µA  
V
LEAK  
Input HIGH Voltage  
Input LOW Voltage  
V
IH  
1.4  
V
0.4  
V
IL  
2
I C Interface Timing Specification For SCL, and SDA pins, unless otherwise noted.  
MIN  
TYP  
MAX  
PARAMETER  
Pin Capacitance  
SYMBOL  
TEST CONDITIONS (Note 11)  
(Note 8)  
(Note 9) (Note 8) UNIT  
C
15  
400  
50  
pF  
kHz  
ns  
pin  
SCL Frequency  
f
SCL  
Pulse Width Suppression Time at SDA  
and SCL Inputs  
t
Any pulse narrower than the max spec is  
suppressed  
sp  
SCL Falling Edge to SDA Output Data Valid  
t
SCL falling edge crossing V , until SDA exits the  
IL  
900  
ns  
ns  
AA  
V
to V window  
IL  
IH  
Time the Bus Must be Free Before the  
Start of a New Transmission  
t
SDA crossing V during a STOP condition, to SDA  
IH  
1300  
BUF  
crossing V during the following START  
IH  
condition  
Clock LOW Time  
t
Measured at the V crossings  
IL  
1300  
600  
ns  
ns  
ns  
LOW  
Clock HIGH Time  
t
Measured at the V crossings  
IH  
HIGH  
START Condition Set-Up Time  
t
SCL rising edge to SDA falling edge; both  
600  
SU:STA  
crossing V  
IH  
START Condition Hold Time  
Input Data Set-Up Time  
Input Data Hold Time  
t
From SDA falling edge crossing V to SCL falling  
IL  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
HD:STA  
edge crossing V  
IH  
t
From SDA exiting the V to V window, to SCL  
IL IH  
SU:DAT  
rising edge crossing V  
IL  
t
From SCL rising edge crossing V to SDA  
IH  
HD:DAT  
entering the V to V window  
IL IH  
STOP Condition Set-Up Time  
t
From SCL rising edge crossing V , to SDA rising  
IH  
600  
1300  
0
SU:STO  
edge crossing V  
IL  
STOP Condition Hold Time for Read, or  
Volatile Only Write  
t
From SDA rising edge to SCL falling edge; both  
crossing V  
HD:STO  
IH  
From SCL falling edge crossing V , until SDA  
Output Data Hold Time  
t
DH  
IL  
enters the V to V window  
IL IH  
SDA and SCL Rise Time  
t
From V to V  
IL  
20 + 0.1 x Cb  
250  
250  
400  
ns  
ns  
pF  
kΩ  
R
IH  
SDA and SCL Fall Time  
t
From V to V  
IH  
20 + 0.1 x Cb  
F
IL  
Capacitive Loading of SDA or SCL  
SDA and SCL Bus Pull-Up Resistor Off-Chip  
Cb  
Total on-chip and off-chip  
10  
1
Rpu  
Maximum is determined by t and t  
R
F
For Cb = 400pF, max is about 2kΩ~2.5kΩ  
For Cb = 40pF, max is about 15kΩ~20kΩ  
NOTES:  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
9. Typical values are for T = +25°C and V = 3.6V.  
IN  
A
10. Quiescent current measurements are taken when the output is not switching.  
11. ISL9112 only. Limits established by characterization and are not production tested.  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 7 of 21  
ISL9110, ISL9112  
Typical Performance Curves  
100  
100  
95  
90  
85  
80  
75  
70  
V
= 4.5V  
IN  
95  
90  
85  
80  
75  
70  
V
= 4V  
IN  
V
= 3V  
IN  
V
= 4.5V  
IN  
V
= 5V  
IN  
V
= 4V  
IN  
V
= 2V  
V
= 2V  
IN  
IN  
V
= 3V  
IN  
V
= 2.5V  
IN  
V
= 5V  
IN  
V
= 2.5V  
IN  
V
= 3.3V  
V
= 2.0V  
OUT  
OUT  
0.01  
0.05  
0.25  
1.25  
0.01  
0.05  
0.25  
1.25  
I
(A)  
I
(A)  
OUT  
OUT  
FIGURE 3. EFFICIENCY vs OUTPUT CURRENT, V  
= 2V  
FIGURE 4. EFFICIENCY vs OUTPUT CURRENT, V  
= 3.3V  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 4V  
IN  
V
= 2V  
OUT  
V
= 5V  
IN  
V
= 4.5V  
IN  
V
= 3.3V  
OUT  
V
= 2V  
IN  
V
= 5V  
OUT  
V
= 2.5V  
0.05  
IN  
V
= 3V  
IN  
V
= 4.0V  
OUT  
0.01  
0.25  
1.25  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
V
IN  
I
(A)  
OUT  
FIGURE 5. EFFICIENCY vs OUTPUT CURRENT, V  
= 4V  
FIGURE 6. MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE  
OUT  
9
8
7
6
5
4
60  
55  
+85°C  
50  
+85°C  
+25°C  
+25°C  
45  
40  
0°C  
0°C  
-40°C  
35  
-40°C  
2.5  
V
= 3.3V  
OUT  
V
= 3.3V  
OUT  
30  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
1.5  
3.5  
(V)  
4.5  
5.5  
V
V
IN  
IN  
FIGURE 7. PWM MODE QUIESCENT CURRENT, V  
NO LOAD  
= 3.3V,  
FIGURE 8. PFM MODE QUIESCENT CURRENT, V  
NO LOAD  
= 3.3V,  
OUT  
OUT  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 8 of 21  
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
V
= 4.5V 2.5V  
V
= 2.5V 4.5V  
IN  
IN  
V
= 3.3V  
V
= 3.3V  
OUT  
OUT  
I
= 500mA  
I
= 500mA  
OUT  
OUT  
LX1  
5V/DIV  
LX1  
5V/DIV  
LX2  
5V/DIV  
LX2  
5V/DIV  
V
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
400µs/DIV  
400µs/DIV  
FIGURE 9. STEADY STATE TRANSITION FROM BUCK TO BOOST  
FIGURE 10. STEADY STATE TRANSITION FROM BOOST TO BUCK  
LX1  
2V/DIV  
V
OUT  
LX2  
2V/DIV  
50mV/DIV  
VIN  
2V/DIV  
V
OUT  
50mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 4.5V 2.5V 4.5V  
IN  
V
OUT  
OUT  
= 3.6V  
= 3.3V  
= 0.6A  
IN  
V
= 3.3V  
OUT  
V
I
I
= 400mA  
OUT  
50µs/DIV  
400ns/DIV  
FIGURE 11. STEADY STATE V NEAR V  
IN  
FIGURE 12. INPUT TRANSIENT  
OUT  
LX1  
5V/DIV  
LX1  
5V/DIV  
LX2  
5V/DIV  
LX2  
5V/DIV  
V
V
OUT  
OUT  
0.1V/DIV  
0.1V/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 3.6V  
= 3.3V  
V
= 2V  
IN  
OUT  
IN  
= 3.3V  
V
V
OUT  
= 0A TO 0.4A  
I
= 0A TO 1A  
I
OUT  
OUT  
100µs/DIV  
100µs/DIV  
FIGURE 13. TRANSIENT LOAD RESPONSE  
FIGURE 14. TRANSIENT LOAD RESPONSE  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 9 of 21  
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
LX1  
2V/DIV  
LX1  
5V/DIV  
LX2  
2V/DIV  
LX2  
5V/DIV  
V
OUT  
V
OUT  
10mV/DIV  
10mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 4.5V  
= 3.3V  
= 1A  
IN  
OUT  
V
= 2.5V  
= 3.3V  
IN  
OUT  
V
V
I
OUT  
I
= 500mA  
OUT  
400ns/DIV  
400ns/DIV  
FIGURE 15. SWITCHING WAVEFORMS, BOOST MODE  
FIGURE 16. SWITCHING WAVEFORMS, BUCK MODE  
0.25  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
0.05  
0.00  
+40°C  
+40°C  
-40°C  
+85°C  
+85°C  
0°C  
-40°C  
0°C  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 17. NFET R  
vs INPUT VOLTAGE  
FIGURE 18. PFET R  
vs INPUT VOLTAGE  
DS(ON)  
DS(ON)  
3.290  
3.285  
3.280  
3.275  
3.270  
0.810  
0.805  
0.800  
0.795  
0.790  
NO LOAD  
(PFM)  
I
= 0.1A  
(PFM)  
OUT  
I
= 0.8A (PWM)  
OUT  
I
= 1.2A  
(PWM)  
OUT  
I
= 0.4A (PWM)  
2.5  
OUT  
1.5  
3.5  
(V)  
4.5  
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
V
IN  
FIGURE 19. V  
vs TEMPERATURE, T = -40°C TO +85°C  
FIGURE 20. OUTPUT VOLTAGE vs V VOLTAGE (V  
IN  
= 3.3V)  
REF  
A
OUT  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 10 of 21  
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
V
V
I
= 4V  
= 3.3V  
V
V
I
= 2V  
= 3.3V  
IN  
OUT  
= 200mA  
IN  
OUT  
= 200mA  
LX1  
2V/DIV  
LX1  
2V/DIV  
OUT  
OUT  
LX2  
2V/DIV  
LX2  
2V/DIV  
V
V
OUT  
OUT  
2V/DIV  
2V/DIV  
EN  
2V/DIV  
EN  
2V/DIV  
400µs/DIV  
400µs/DIV  
FIGURE 21. SOFT-START, V = 4V, V  
IN  
= 3.3V  
FIGURE 22. SOFT-START, V = 2V, V  
IN  
= 3.3V  
OUT  
OUT  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
LOAD CURRENT FALLING  
LOAD CURRENT RISING  
LOAD CURRENT RISING  
LOAD CURRENT FALLING  
3.280  
0.0  
0.0  
0.1  
0.2  
I
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
I
(mA)  
(mA)  
OUT  
OUT  
FIGURE 23. OUTPUT VOLTAGE vs LOAD CURRENT  
(V = 2.5V, V = 3.3V, AUTO PFM/PWM MODE)  
FIGURE 24. OUTPUT VOLTAGE vs LOAD CURRENT  
(V = 4.5V, V = 3.3V, AUTO PFM/PWM MODE)  
IN  
OUT  
IN OUT  
V
= 3.7V  
= 3.3V  
SCL  
2V/DIV  
IN  
OUT  
V
SDA  
2V/DIV  
EN  
1V/DIV  
V
OUT  
1V/DIV  
V
V
= 5V  
IN  
OUT  
V
= 3.0V 4.0V 3.0V  
200mV/DIV  
OUT  
SLEWRATE = 0b111  
4ms/DIV  
1ms/DIV  
FIGURE 25. OUTPUT SOFT-DISCHARGE  
FIGURE 26. DIGITAL SLEW OPERATION (ISL9112)  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 11 of 21  
ISL9110, ISL9112  
The V  
OUT  
ramp time is not constant for all operating conditions.  
Functional Description  
Functional Overview  
Refer to the “Block Diagram” on page 3. The ISL9110 and  
ISL9112 implement a complete buck boost switching regulator,  
with PWM controller, internal switches, references, protection  
circuitry, and control inputs.  
Soft-start into Boost mode takes longer than soft-start into Buck  
mode. The total soft-start time into Buck mode is typically 2ms,  
whereas the typical soft-start time into Boost mode is typically  
3ms. Increasing the load current increases these typical  
soft-start times.  
Overcurrent Protection  
The PWM controller automatically switches between Buck and  
Boost modes as necessary to maintain a steady output voltage,  
with changing input voltages and dynamic external loads.  
When the current in the P-channel MOSFET is sensed to reach  
the current limit for 16 consecutive switching cycles, the internal  
protection circuit is triggered, and switching is stopped for  
approximately 20ms. The device then performs a soft-start cycle.  
If the external output overcurrent condition exists after the  
soft-start cycle, the device detects 16 consecutive switching  
cycles reaching the peak current threshold. The process repeats  
as long as the external overcurrent condition is present. This  
behavior is called ‘Hiccup mode’.  
The ISL9110 provides output power-good and input power-good  
open-drain status outputs on Pins 7 and 8. In the ISL9112, these  
2
pins are used for an I C interface, allowing programmable output  
voltage and access to the ultrasonic mode and slew rate limit  
control bits.  
Internal Supply and References  
Referring to the “Block Diagram” on page 3, the ISL9110 and  
ISL9112 provide two power input pins. The PVIN pin supplies input  
power to the DC/DC converter, while the VIN pin provides operating  
Short-Circuit Protection  
The ISL9110 and ISL9112 provides short-circuit protection by  
monitoring the feedback voltage. When feedback voltage is  
sensed to be lower than a certain threshold, the PWM oscillator  
frequency is reduced in order to protect the device from damage.  
The P-channel MOSFET peak current limit remains active during  
this state.  
voltage source required for stable V  
generation. Separate ground  
REF  
pins (GND and PGND) are provided to avoid problems caused by  
ground shift due to the high switching currents.  
Enable Input  
Undervoltage Lockout  
The Undervoltage Lockout (UVLO) feature prevents abnormal  
operation in the event that the supply voltage is too low to ensure  
A master enable pin EN allows the device to be enabled. Driving  
EN low invokes a power-down mode, where most internal device  
functions, including input and output power good detection, are  
disabled.  
proper operation. When the V voltage falls below the UVLO  
IN  
threshold, the regulator is disabled.  
Soft Discharge  
When the device is disabled by driving EN low, an internal resistor  
between VOUT and GND is activated. This internal resistor has  
typical 120Ω resistance.  
PG Status Output (ISL9110 only)  
An open-drain output power-good signal is provided in the  
ISL9110. An internal window comparator detects when V  
is  
OUT  
significantly higher or lower than the target output voltage. The  
PG output is driven low when sensed V voltage is outside of  
OUT  
voltage is inside the  
POR Sequence and Soft-Start  
this ‘power-good’ window. When V  
OUT  
Bringing the EN pin high allows the device to power-up. A number  
of events occur during the start-up sequence. The internal voltage  
reference powers up, and stabilizes. The device then starts  
operating. There is a typical 1ms delay between assertion of the  
EN pin and the start of switching regulator soft-start ramp.  
‘power-good’ window, the PG pin goes Hi-Z.  
The PG detection circuit detects this condition by monitoring  
voltage on the FB pin. Hysteresis is provided for the upper and  
lower PG thresholds to avoid oscillation of the PG output.  
The soft-start feature minimizes output voltage overshoot and  
input inrush currents. During soft-start, the reference voltage is  
BAT Status Output (ISL9110 only)  
The ISL9110 provides an open-drain input power-good status  
ramped to provide a ramping V  
voltage. While output voltage  
OUT  
output. The BAT status pin is driven low when V rises above the  
IN  
is lower than approximately 20% of the target output voltage,  
switching frequency is reduced to a fraction of the normal  
switching frequency to aid in producing low duty cycles necessary  
to avoid input inrush current spikes. When the output voltage  
exceeds 20% of the target voltage, switching frequency is  
increased to its nominal value.  
VT  
threshold. The BAT status output goes Hi-Z when V  
BMON  
BAT  
threshold. Hysteresis is provided for the  
falls below the VT  
VT  
BMON  
threshold to avoid oscillation of the BAT output.  
BMON  
Ultrasonic Mode (ISL9112 only)  
The ISL9112 provides an ultrasonic mode that can be enabled  
2
When the target output voltage is higher than the input voltage,  
there is a transition from Buck mode to Boost mode during the  
soft-start sequence. At the time of this transition, the ramp rate  
of the reference voltage is decreased, such that the output  
voltage slew rate is decreased. This provides a slower output  
voltage slew rate.  
through I C control by setting the ULTRA bit in the control register.  
In ultrasonic mode, the PFM switching frequency is forced to be  
above the audio frequency range.  
This ultrasonic mode applies only to PFM mode operation. With  
the ULTRA bit set to ‘1’, PFM mode switching frequency is forced  
well above the audio frequency range (f  
becomes typically  
SW  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 12 of 21  
ISL9110, ISL9112  
60kHz). This mode of operation, however, reduces the efficiency  
at light load.  
With Switches B and D closed, output voltage increases as the  
inductor current ramps down.  
In most operating conditions, there are multiple PFM pulses to  
Thermal Shutdown  
charge up the output capacitor. These pulses continue until V  
has achieved the upper threshold of the PFM hysteretic  
OUT  
A built-in thermal protection feature protects the ISL9110 and  
ISL9112 if the die temperature reaches +155°C (typical). At this  
die temperature, the regulator is completely shut down. The die  
temperature continues to be monitored in this thermal-shutdown  
mode. When the die temperature falls to +125°C (typical), the  
device resumes normal operation.  
controller. Switching then stops, and remains stopped until V  
OUT  
decays to the lower threshold of the hysteretic PFM controller.  
Operation With VIN Close to VOUT  
When the output voltage is close to the input voltage, the  
ISL9110 and ISL9112 rapidly and smoothly switches from Boost  
to Buck mode as needed to maintain the regulated output  
voltage. This behavior provides excellent efficiency and very low  
output voltage ripple.  
When exiting thermal shutdown, the ISL9110 and ISL9112  
execute their soft-start sequence.  
External Synchronization  
An external sync feature is provided. Applying a clock signal with  
a frequency between 2.75MHz and 3.25MHz at the MODE/SYNC  
input forces the ISL9110 and ISL9112 to synchronize to this  
external clock. The MODE/SYNC input supports standard logic  
levels.  
Output Voltage Programming  
The ISL9110 is available in fixed and adjustable output voltage  
versions. To use the fixed output version, the VOUT pin must be  
connected directly to FB.  
In the adjustable output voltage version (ISL9110IRTAZ), an  
external resistor divider is required to program the output  
voltage. The FB pin has very low input leakage current, so it is  
Buck-Boost Conversion Topology  
The ISL9110 and ISL9112 operate in either Buck or Boost mode.  
When operating in conditions where V is close to V , the  
IN OUT  
possible to use large value resistors (for example, R = 1MΩ and  
1
ISL9110 alternates between Buck and Boost mode as necessary  
to provide a regulated output voltage.  
R = 324kΩ) in the resistor divider connected to the FB input.  
2
The ISL9112 is available in a fixed output version only. The  
factory programmed output voltage can be changed using the  
Figure 27 shows a simplified diagram of the internal switches  
and external inductor.  
2
I C interface. Details about the ISL9112 programmable VOUT  
voltage can be found in “Register Description (ISL9112)” on  
page 14.  
L1  
LX1  
LX2  
Digital Slew Rate Control (ISL9112 only)  
When changing voltages using the I C interface, the ISL9110 can  
be programmed to control the rate of voltage increase or  
decrease as it transitions from one voltage setting to the next.  
4
2
SWITCH A  
SWITCH D  
2
PVIN  
5
1
VOUT  
SWITCH B  
SWITCH C  
The default configuration disables this digital slew rate feature.  
To enable the slew rate feature, an I C command is sent to the  
2
ISL9112, changing the value of the SLEWRATE bit field to a value  
other than 0b000. Details about the digital slew rate settings can  
be found in Table 1.  
FIGURE 27. BUCK BOOST TOPOLOGY  
PWM Operation  
TABLE 1. REGISTER ADDRESS 0x01: SLEW RATE CONTROL  
In buck PWM mode, Switch D is continuously closed, and  
Switch C is continuously open. Switches A and B operate as a  
synchronous buck converter when in this mode.  
BIT  
NAME  
TYPE  
R/W  
RESET  
000  
DESCRIPTION  
2:0 SLEWRATE  
Slew rate control (typ),  
expressed as µs per LSB  
change in DCDOUT value:  
0b000 = 0µs/LSB  
0b001 = 1.5µs/LSB  
0b010 = 3.1µs/LSB  
0b011 = 6.3µs/LSB  
0b100 = 12.5µs/LSB  
0b101 = 25µs/LSB  
0b110 = 50µs/LSB  
0b111 = 100µs /LSB  
In boost PWM mode, Switch A remains closed and Switch B  
remains open. Switches C and D operate as a synchronous boost  
converter when in this mode.  
PFM Operation  
During PFM operation in Buck mode, Switch D is continuously  
closed, and Switch C is continuously open. Switches A and B  
operate in discontinuous mode during PFM operation.  
During PFM operation in Boost mode, the ISL9110 and ISL9112  
closes Switch A and Switch C to ramp up the current in the  
inductor. When inductor current reaches a certain threshold, the  
device turns off Switches A and C, then turns on Switches B and D.  
7:3  
Reserved  
R/W  
00000  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 13 of 21  
ISL9110, ISL9112  
TABLE 3. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE (Continued)  
OUTPUT VOLTAGE  
Register Description (ISL9112)  
The ISL9112 has a two I C accessible control registers that are  
2
DCDOUT[4:0]  
0b01101  
0b01110  
0b01111  
0b10000  
0b10001  
0b10010  
0b10011  
0b10100  
0b10101  
0b10110  
0b10111  
0b11000  
0b11001  
0b11010  
0b11011  
0b11100  
0b11101  
0b11110  
0b11111  
(V)  
used to set output voltage, operating mode, and digital slew rate.  
These registers can be read and written to at any time that the  
ISL9112 is enabled. Attempts to communicate with the ISL9112  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
2
using its I C interface when the ISL9112 is disabled (EN = Low)  
are not supported.  
TABLE 2. REGISTER ADDRESS 0x00: VOLTAGE CONTROL  
BIT NAME TYPE RESET  
4:0 DCDOUT R/W 00000 V  
DESCRIPTION  
programming. See Table 3.  
OUT  
5
ULTRA R/W  
0
Ultrasonic mode select. Not applicable in  
forced PWM mode:  
0: Ultrasonic feature disabled  
1: Ultrasonic feature enabled  
6
7
Reserved R/W  
I2CEN R/W  
0
0
2
I C programming enable bit:  
2
0: Device ignores I C command, and uses  
last programmed DCDOUT and ULTRA  
2
settings; or if no I C communication has  
occurred since POR, the factory  
programmed default DCDOUT and ULTRA  
settings are used.  
1: Device uses the I C programmed  
DCDOUT and ULTRA settings.  
2
Bits DCDOUT[4:0] set the output voltage, as shown in Equation 1  
and Table 3. The ISL9112 output voltage range is 1.9V to 5.0V.  
(EQ. 1)  
V
= 1.9V + n 0.1V where n = 0 to 31  
OUT  
The power-up output voltage is at 3.3V for ISL9112IRTNZ and 5V  
for ISL9112IRT7Z. To change to other voltages after power-up,  
first write the DCDOUT register to match the power-up voltage  
while keeping the I2CEN bit = 0, then set the I2CEN bit to 1 and  
set the new desired DCDOUT register value.  
2
I C Serial Interface (ISL9112)  
The ISL9112 supports a bi-directional bus oriented protocol. The  
protocol defines any device that sends data onto the bus as a  
transmitter and the receiving device as the receiver. The device  
controlling the transfer is the master and the device being  
controlled is the slave. The master always initiates data transfers  
and provides the clock for both transmit and receive operations.  
Therefore, the ISL9112 operates as a slave device in all  
applications.  
TABLE 3. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
DCDOUT[4:0]  
0b00000  
0b00001  
0b00010  
0b00011  
0b00100  
0b00101  
0b00110  
0b00111  
0b01000  
0b01001  
0b01010  
0b01011  
0b01100  
(V)  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
2
All communication over the I C interface is conducted by sending  
the MSB of each byte of data first.  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 14 of 21  
ISL9110, ISL9112  
The ISL9112 responds with an ACK after recognition of a START  
condition followed by a valid Identification Byte, and again after  
successful receipt of a Register Address Byte. The ISL9112 also  
responds with an ACK after receiving a Data Byte of a write  
operation. The master must respond with an ACK after receiving  
a Data Byte of a read operation.  
Protocol Conventions  
Data states on the SDA line can change only during SCL LOW  
periods. SDA state changes during SCL HIGH are reserved for  
indicating START and STOP conditions (see Figure 28). Upon  
power-up of the ISL9112, the SDA pin is in the input mode.  
2
All I C interface operations must begin with a START condition,  
A valid Identification Byte contains 0b0011100 as the seven  
which is a HIGH to LOW transition of SDA while SCL is HIGH. The  
ISL9112 continuously monitors the SDA and SCL lines for the  
START condition and does not respond to any command until this  
condition is met (see Figure 28). A START condition is ignored  
during the power-up sequence and when EN input is low.  
2
MSBs, corresponding to the ISL9112 I C Slave Address. The LSB  
of the Identification byte is the Read/Write bit. Its value is “1” for  
a Read operation, and “0” for a Write operations (see Table 4).  
TABLE 4. IDENTIFICATION BYTE FORMAT  
2
All I C interface operations must be terminated by a STOP  
0
0
1
1
1
0
0
R/W  
condition, which is a LOW to HIGH transition of SDA while SCL is  
HIGH (see Figure 28). A STOP condition at the end of a write  
operation initiates the reconfiguration of the ISL9112’s voltage  
feedback loop as necessary to provide the programmed output  
voltage.  
(MSB)  
(LSB)  
An Acknowledge (ACK) is a software convention used to indicate  
a successful data transfer. The transmitting device, either master  
or slave, releases the SDA bus after transmitting eight bits.  
During the ninth clock cycle, the receiver pulls the SDA line LOW  
to acknowledge the reception of the eight bits of data (see  
Figure 29).  
SCL  
SDA  
START  
DATA  
STABLE  
DATA  
CHANGE  
DATA  
STABLE  
STOP  
FIGURE 28. VALID DATA CHANGES, START AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT  
FROM RECEIVER  
START  
ACK  
FIGURE 29. ACKNOWLEDGE RESPONSE FROM RECEIVER  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 15 of 21  
ISL9110, ISL9112  
transmits the Register Address byte, and the ISL9112 responds  
with another ACK.  
Write Operation  
A Write operation requires a START condition, followed by a valid  
Identification Byte (containing the Slave Address with the R/W  
bit set to 0), a valid Register Address Byte, a Data Byte, and a  
STOP condition. After each of the three bytes, the ISL9112  
responds with an ACK. The master then sends a STOP to  
complete the command.  
The host generates a Repeat START condition, or a STOP  
condition followed by a START condition. It then transmits an  
Identification byte (containing the Slave Address with the R/W bit  
set to 1). The ISL9112 responds with an ACK, indicating it is  
ready to begin providing the requested data.  
STOP conditions that terminate write operations must be sent by  
the master after sending at least 1 full data byte and its  
associated ACK signal. If a STOP condition is issued in the middle  
of a data byte, or before 1 full data byte + ACK is sent, then the  
ISL9112 ignores the command, and does not change the output  
voltage or other settings.  
The ISL9112 then transmits the data byte by asserting control of  
the SDA pin while the host generates clock pulses on the SCL pin.  
When transmission of the data byte is complete, the host  
generates a NACK condition followed by a STOP condition. This  
2
completes the I C Read operation.  
The ISL9112 register map supports only one register, at register  
address 0x00. Attempts to read other register addresses are not  
Read Operation  
2
supported, and should not be attempted. Similarly, I C block reads  
A Read operation is shown in Figure 31. It consists of 4 bytes.  
The host generates a START condition, then transmits an  
Identification byte (containing the Slave Address with the R/W bit  
set to 0). The ISL9112 responds with an ACK. The host then  
and writes are not supported by the ISL9112. The ISL9112 has only  
one register to read or write, therefore block reads and writes are  
not necessary.  
ISL9112 I2C W RITE PRO TOCO L  
SYSTEM HO ST  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
DATA BYTE  
A
P
ISL9112  
A – ACKNO W LEDGE  
N – NO T  
ACKNO W LEDG E  
S – START  
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
DCDV1  
(5 BITS)  
R/W  
P – STOP  
2
FIGURE 30. I C REGISTER WRITE PROTOCOL  
ISL9112 I2C READ PROTOCOL #1  
SYSTEM  
HOST  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
S
0
0
1
1
1
0
0
1
A
DATA BYTE  
N
P
ISL9112  
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
I2C SLAVE  
7-BIT ADDRESS  
DCDV1  
(5 BITS)  
A – ACKNOWLEDGE  
N – NOT  
ACKNOWLEDGE  
S – START  
R/W  
R/W  
P – STOP  
ISL9112 I2C READ PROTOCOL #2  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
P
S
0
0
1
1
1
0
0
1
A
DATA BYTE  
N
P
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
I2C SLAVE  
7-BIT ADDRESS  
DCDV1  
(5 BITS)  
R/W  
R/W  
2
FIGURE 31. I C REGISTER READ PROTOCOL  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 16 of 21  
ISL9110, ISL9112  
VIN  
=
Applications Information  
Component Selection  
ISL9112  
1.8V TO 5.5V  
5
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
6
10  
9
8
7
The ISL9112 and the fixed-output versions of the ISL9110  
require only three external power components to implement the  
buck boost converter: an inductor, an input capacitor, and an  
output capacitor.  
LX2  
VIN  
C3  
0.1µF  
1
VOUT  
=
MODE VOUT  
EN  
3.3V/1A  
I2C  
BUS  
C2  
10µF  
SDA  
SCL  
12  
FB  
The adjustable ISL9110 versions require three additional  
components to program the output voltage. Two external  
resistors program the output voltage, and a small capacitor is  
added to improve stability and response.  
GND PGND  
11  
3
FIGURE 33. TYPICAL ISL9110IRTNZ APPLICATION  
An optional input supply filtering capacitor (“C ” in Figure 32)  
3
can be used to reduce the supply noise on the VIN pin, which  
provides power to the internal reference. In most applications,  
this capacitor is not needed.  
Inductor Selection  
Use an inductor with high frequency core material (for example,  
ferrite core) to minimize core losses and provide good efficiency.  
The inductor must be able to handle the peak switching currents  
without saturating.  
VIN  
=
ISL9110  
PVIN  
1.8V TO 5.5V  
5
LX1  
C1  
L1  
A 2.2µH inductor with 2.4A saturation current rating is  
recommended. Select an inductor with low DCR to provide good  
efficiency. In applications where radiated noise must be  
minimized, a toroidal or shielded inductor can be used.  
10µF  
2.2µH  
6
10  
9
8
7
VIN  
MODE  
EN  
BAT  
PG  
LX2  
VOUT  
C3  
0.1µF  
VOUT  
3.3V/1A  
C2  
10µF  
=
1
C4  
56pF  
R1  
1M  
12  
STATUS  
OUTPUTS  
FB  
R2  
324k  
TABLE 5. INDUCTOR VENDOR INFORMATION  
GND PGND  
11  
3
MANUFACTURER  
Coilcraft  
SERIES  
LPS4018  
WEBSITE  
www.coilcraft.com  
www.murata.com  
www.t-yuden.com  
Murata  
LQH44P  
FIGURE 32. TYPICAL ISL9110IRTAZ APPLICATION  
Taiyo Yuden  
NRS4018  
NRS5012  
Output Voltage Programming, Adjustable  
Version  
Setting and controlling the output voltage of the ISL9110IRTAZ  
(adjustable output version) can be accomplished by selecting the  
external resistor values.  
Sumida  
Toko  
CDRH3D23/HP www.sumida.com  
CDRH4D22/HP  
DEM3518C  
www.toko.co.jp  
PVIN and VOUT Capacitor Selection  
Equation 2 can be used to derive the R and R resistor values:  
1
2
R
The input and output capacitors should be ceramic X5R type with  
low ESL and ESR. The recommended input capacitor value is  
1
(EQ. 2)  
------  
V
= 0.8V 1 +  
OUT  
R
2
10µF. The recommended V  
capacitor value is 10µF to 22µF.  
OUT  
When designing a PCB, include a GND guard band around the  
feedback resistor network to reduce noise and improve accuracy  
TABLE 6. CAPACITOR VENDOR INFORMATION  
MANUFACTURER SERIES WEBSITE  
AVX www.avx.com  
and stability. Place the resistors R and R close to the FB pin.  
1
2
Feed-Forward Capacitor Selection  
X5R  
X5R  
X5R  
X5R  
A small capacitor in parallel with resistor R is required to  
Murata  
Taiyo Yuden  
TDK  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
1
provide the specified load and line regulation. The suggested  
value of this capacitor is 56pF for R = 1MΩ. An NPO type  
1
capacitor is recommended.  
Non-Adjustable Version FB Pin Connection  
2
The fixed output versions of the ISL9110 and the I C-adjustable  
ISL9112 do not require external resistors or a capacitor on the FB  
pin. Simply connect VOUT to FB, as shown in Figure 33.  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 17 of 21  
ISL9110, ISL9112  
Application Example 1.  
Recommended PCB Layout  
An application using the fixed-output ISL9110IRTNZ is shown in  
Figure 34. This application requires only three external  
components.  
Correct PCB layout is critical for proper operation of the ISL9110.  
Place the input and output capacitors as close to the IC as  
possible. Keep the ground connections of the input and output  
capacitors as short as possible, and on the component layer to  
avoid problems that are caused by high switching currents  
flowing through PCB vias.  
VIN  
=
ISL9110IRTNZ  
1.8V TO 5.5V  
5
PVIN  
LX1  
C1  
L1  
2.2µH  
10µF  
6
10  
9
8
7
VIN  
LX2  
1
VOUT  
=
MODE VOUT  
EN  
3.3V/1A  
C2  
10µF  
BAT  
PG  
12  
STATUS  
OUTPUTS  
FB  
GND PGND  
11  
3
FIGURE 34. TYPICAL ISL9110IRTNZ APPLICATION  
Application Example 2.  
An application requiring V  
= 3.0V, using the adjustable-output  
OUT  
ISL9110IRTAZ is shown in Figure 35. This application requires six  
external components.  
VIN  
=
ISL9110IRTAZ  
1.8V TO 5.5V  
5
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
6
10  
9
8
7
VIN  
LX2  
1
VOUT  
=
MODE VOUT  
EN  
BAT  
3.0V/1A  
C4  
56pF  
R1  
1M  
C2  
10µF  
12  
STATUS  
OUTPUTS  
FB  
FIGURE 37. RECOMMENDED PCB LAYOUT  
PG  
R2  
365k  
GND PGND  
The TDFN Package Requires Additional PCB  
Layout Rules for the Thermal Pad  
11  
3
The thermal pad is electrically connected to the PGND supply. Its  
primary function is to provide heat sinking for the IC. However,  
because of the connection to PGND, the thermal pad must be  
tied to the GND supply to prevent unwanted current flow to the  
thermal pad. Maximum AC performance is achieved if the  
thermal pad is attached to a dedicated ground layer in a  
multi-layered PC board.  
FIGURE 35. TYPICAL ISL9110IRTAZ APPLICATION  
Application Example 3.  
2
An application requiring V  
= 3.3V, using the I C-controllable  
OUT  
ISL9112IRTNZ is shown in Figure 36. This application requires  
three external components. Output voltage can be changed using  
I C control.  
2
The thermal pad requirements are proportional to power  
dissipation and ambient temperature. A dedicated layer  
eliminates the need for individual thermal pad area. When a  
dedicated layer is not possible, an isolated thermal pad on  
another layer should be used. Pad area requirements should be  
evaluated on a case by case basis.  
VIN  
=
ISL9112IRTNZ  
1.8V TO 5.5V  
5
PVIN  
LX1  
C1  
L1  
2.2µH  
10µF  
6
10  
9
8
7
LX2  
VIN  
1
VOUT  
=
MODE VOUT  
EN  
3.3V/1A  
I2C  
C2  
10µF  
SDA  
SCL  
12  
FB  
BUS  
GND PGND  
11  
3
FIGURE 36. TYPICAL ISL9112IRTNZ APPLICATION  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 18 of 21  
ISL9110, ISL9112  
Renesas recommends that the thermal pad area is filled with  
vias. Fill the thermal pad area with vias that are spaced three  
times their radius (typically), center-to-center, from each other.  
Keep the vias small but not so small that their inside diameter  
prevents solder wicking through the holes during reflow.  
General PowerPAD Design Considerations  
The following is an example of how to use vias to remove heat  
from the IC.  
It is important that the vias have a low thermal resistance for  
efficient heat transfer. Do not use “thermal relief” patterns to  
connect the vias to the ground plane. Instead use a solid  
connection with no gaps for improved thermal performance.  
FIGURE 38. PCB VIA PATTERN  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure  
you have the latest revision.  
DATE  
REVISION  
FN7649.3  
CHANGE  
Aug 3, 2018  
Updated Related Literature section.  
Moved TOC to page 2.  
Updated Ordering information table by adding tape and reel parts, adding unit column, removing evaluation  
board part numbers, and updating Note 1.  
In “Register Description (ISL9112)” on page 14 updated paragraph under Equation 1.  
Removed Products section.  
Updated POD L12.3x3C to the latest revision changes are as follows:  
Tiebar Note updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
Updated Disclaimer.  
Jul 13, 2012  
FN7649.2  
FN7649.1  
Corrected Application Note titles in “” on page 1.  
On page 3, pin configuration diagrams, changed "MODE" to "MODE/SYNC".  
On page 4, added ISL9110BIRTAZ to ordering table.  
On page 4, added "Hiccup Mode" column in ordering table.  
On page 4, corrected Evaluation Board numbers.  
On page 13, corrected "EN/SYNC", to "MODE/SYNC" in “External Synchronization”  
August 30, 2011  
Page 4:  
Removed "ISL9110EVAL1Z" from “Ordering Information” table  
Added "ISL9110IRTAZ-EVAL1Z" to “Ordering Information” table  
Added "ISL9110IRTNZ-EVAL1Z" to “Ordering Information” table  
Added "ISL9110IRT7Z-EVAL1Z" to “Ordering Information” table  
Added "ISL9112IRT7Z-EVAL1Z" to “Ordering Information” table  
“Inductor Selection” on page 17:  
Corrected "A 10µH inductor.." to "A 2.2µH inductor.."  
Initial release.  
June 16, 2011  
FN7649.0  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 19 of 21  
ISL9110, ISL9112  
For the most recent package outline drawing, see L12.3x3C.  
Package Outline Drawing  
L12.3x3C  
12 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE (0.4mm PITCH)  
Rev 1, 4/15  
3.00  
6
A
PIN #1  
INDEX AREA  
B
6
PIN 1  
INDEX AREA  
0.40  
2.45±0.1  
0.15  
(4X)  
12x 0.20  
0.10M C A B  
1.70±0.1  
4
0.20 ±0.05  
TOP VIEW  
12x 0.40  
BOTTOM VIEW  
PACKAGE  
OUTLINE  
SEE DETAIL "X"  
0.10 C  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
0 . 75  
(12 x0.20)  
SIDE VIEW  
2.45  
(10 x0.40)  
5
C
0 . 2 REF  
(12 x0.20)  
(12 x0.40)  
1.70  
0 . 00 MIN.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature and may  
be located on any of the 4 sides (or ends).  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN7649 Rev.3.00  
Jul 26, 2018  
Page 20 of 21  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
California Eastern Laboratories, Inc.  
4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A.  
Tel: +1-408-919-2500, Fax: +1-408-988-0279  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-651-700  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2018 Renesas Electronics Corporation. All rights reserved.  
Colophon 7.1  

相关型号:

ISL9110IRTNZ-T13

SWITCHING REGULATOR
RENESAS

ISL9110IRTNZ-T7

SWITCHING REGULATOR
RENESAS

ISL9110IRTNZ-T7A

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9111

Low Input Voltage, High Efficiency Synchronous Boost Converter with 1A Switch
INTERSIL

ISL9111

Low Input Voltage, High Efficiency Synchronous Boost Converter with 1A Switch
RENESAS

ISL91110

Small 2.33mmx2.07mm WLCSP
INTERSIL

ISL91110

High Efficiency Buck-Boost Regulator with 4.5A Switches
RENESAS

ISL91110II2AZ-T

Small 2.33mmx2.07mm WLCSP
INTERSIL

ISL91110II2AZ-T

High Efficiency Buck-Boost Regulator with 4.5A Switches
RENESAS

ISL91110II2AZ-T7A

Small 2.33mmx2.07mm WLCSP
INTERSIL

ISL91110II2AZ-T7A

High Efficiency Buck-Boost Regulator with 4.5A Switches
RENESAS

ISL91110IIA-EVZ

Small 2.33mmx2.07mm WLCSP
INTERSIL