ISL9237 [RENESAS]

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG;
ISL9237
型号: ISL9237
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG

电池
文件: 总40页 (文件大小:1606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL9237  
FN8723  
Rev.5.00  
Nov 29, 2017  
Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG  
The ISL9237 is a buck-boost Narrow Output Voltage DC (NVDC)  
Features  
charger utilizing Intersil’s advanced R3™ Technology to provide  
• Buck-boost NVDC charger for 1-, 2- or 3-cell Li-ion batteries  
• Input voltage range 3.2V to 23.4V (no dead zone)  
• System output voltage 2.4V to 13.824V  
• System power monitor PSYS output, IMVP-8 compliant  
• Up to 1MHz switching frequency  
high light-load efficiency, fast transient response and  
seamless DCM/CCM transitions for a variety of mobile and  
industrial applications.  
In Charge mode, the ISL9237 takes input power from a wide  
range of DC power sources (conventional AC/DC charger  
adapters, USB PD ports, travel adapters, etc.) and safely  
charges battery packs with up to 3 cells in a series  
configuration.  
• LDO output for charger VDD  
• Adapter current monitor (AMON)  
ISL9237 supports On-the-Go (OTG) function for 2- and 3-cell  
battery applications. When OTG function is enabled, the  
ISL9237 operates in the reverse Buck mode to provide 5V at  
the USB port.  
• Battery discharging current monitor (BMON)  
• PROCHOT# open-drain output, IMVP-8 compliant  
• Allows trickle charging of depleted battery  
• Optional ASGATE FET control  
As a NVDC topology charger, it also regulates the system  
output to a narrow DC range for stable system bus voltage. The  
system power can be provided from the adapter, battery or a  
combination of both. The ISL9237 can operate with only a  
battery, only an adapter or both connected. For Intel IMVP8  
compliant systems, the ISL9237 includes PSYS functionality,  
which provides an analog signal representing total platform  
power. The PSYS output will connect to a wide range of Intersil  
IMVP8 core regulators to provide an IMVP8 compliant power  
domain function.  
• Ideal diode control in Turbo mode  
• Supports OTG function for 2- and 3-cell batteries  
2
• SMBus and auto-increment I C compatible  
• Two-level adapter current limit available  
• Pb-free (RoHS compliant)  
• Package 4x4 32 Ld QFN  
Applications  
2
The ISL9237 has serial communication via SMBus/I C that  
• Mobile devices with rechargeable batteries  
allows programming of many critical parameters to deliver a  
customized solution. These programming parameters include,  
but are not limited to: Adapter current limit, charger current  
limit, system voltage setting and trickle charging current limit.  
• Industrial devices with rechargeable batteries  
Related Literature  
• For a full list of related documents please visit our web page  
- ISL9237 product page  
OPTIONAL  
VADP  
R
s1  
VSYS  
Q1  
Q2  
Q4  
L1  
Q3  
VSYS  
CSOP  
CSIN  
CSIP  
R
s2  
ASGATE  
CSON  
ADP  
ACIN  
ISL9237  
GND  
ACOK  
PROCHOT#  
AMON/BMON  
BATGONE  
BGATE  
V
BAT  
VBAT  
OTGPG/CMOUT  
OTGEN/CMIN  
FIGURE 1. TYPICAL APPLICATION CIRCUIT  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 1 of 40  
ISL9237  
Table of Contents  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SMBUS Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SMBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Byte Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2
SMBus and I C Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ISL9237 SMBus Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Setting Charging Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Setting Adapter Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Setting Two-Level Adapter Current Limit Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Setting Maximum Charging Voltage or System Regulating Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setting Minimum System Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setting PROCHOT# Threshold for Adapter Overcurrent Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setting PROCHOT# Threshold for Battery Over Discharging Current Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Setting PROCHOT# Debounce Time and Duration Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
OTGVoltage Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
OTGCurrent Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Information Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
R3™ Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ISL9237 Buck-Boost Charger with USB OTG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Programming Charger Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Power Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Battery Learn Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Turbo Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Two-Level Adapter Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Current Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
PSYS Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Trickle Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Charger Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
USB OTG (On-the-Go) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Stand-Alone Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Way Overcurrent Protection (WOCP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Over-Temperature Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Switching Power MOSFET Gate Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Adapter Input Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Select the LC Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Select the Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 2 of 40  
ISL9237  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
PART MARKING  
ISL9237HRZ  
923 7HRZ  
-10 to +100  
32 Ld 4x4 QFN  
L32.4x4A  
ISL9237EVAL2Z  
NOTES:  
Evaluation Board  
1. Add “-T” suffix for 6k unit, “-TK” suffix for 1k unit, or “-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel  
specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL9237. For more information on MSL, please see tech brief TB363.  
Pin Configuration  
ISL9237  
(32 LD 4x4 QFN)  
TOP VIEW  
32 31 30 29 28 27 26 25  
CSON  
CSOP  
ACOK  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PROCHOT#  
SCL  
VSYS  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
VDDP  
SDA  
GND  
(BOTTOM PAD)  
OTGEN/CMIN  
ACIN  
VDD  
DCIN  
9
10 11  
12 13 14 15 16  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
BOTTOM PAD  
GND  
Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin. It should also be used as the  
thermal pad for heat dissipation.  
1
2
3
CSON  
CSOP  
VSYS  
Battery current sense “–” input. Connect to battery current resistor negative input. Place a 0.1µF ceramic capacitor  
between CSOP to CSON to provide differential mode filtering.  
Battery current sense “+” input. Connect to battery current resistor positive input. Place a 0.1µF ceramic capacitor  
between CSOP to CSON to provide differential mode filtering.  
Provides feedback voltage for MaxSystemVoltage regulation.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 3 of 40  
ISL9237  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
4
BOOT2  
High-side MOSFET Q4 gate driver supply. Connect an MLCC capacitor across the BOOT2 pin and the PHASE2 pin. The  
boot capacitor is charged through an internal boot diode connected from the VDDP pin to the BOOT2 pin when the  
PHASE2 pin drops below VDDP minus the voltage drop across the internal boot diode.  
5
6
UGATE2  
PHASE2  
High-side MOSFET Q4 gate drive.  
Current return path for the high-side MOSFET Q4 gate drive. Connect this pin to the node consisting of the high-side  
MOSFET Q4 source, the low-side MOSFET Q3 drain and the one terminal of the inductor.  
7
8
LGATE2  
VDDP  
Low-side MOSFET Q3 gate drive.  
Power supply for the gate drivers. Connect to VDD pin through a 4.7Ω resistor and connect a 1µF ceramic capacitor to  
GND.  
9
LGATE1  
PHASE1  
Low-side MOSFET Q2 gate drive.  
10  
Current return path for the high side MOSFET Q1 gate drive. Connect this pin to the node consisting of the high-side  
MOSFET Q1 source, the low-side MOSFET Q2 drain and the input terminal of the inductor.  
11  
12  
UGATE1  
BOOT1  
High-side MOSFET Q1 gate drive.  
High-side MOSFET Q1 gate driver supply. Connect an MLCC capacitor across the BOOT1 pin and the PHASE1 pin. The  
boot capacitor is charged through an internal boot diode connected from the VDDP pin to the BOOT1 pin when the  
PHASE1 pin drops below VDDP minus the voltage drop across the internal boot diode.  
13  
ASGATE  
Gate drive output to the P-channel adapter FET. The use of ASGATE FETs is optional, if not used, leave ASGATE pin  
floating.  
When ASGATE turns on, it is clamped 10V below ADP pin voltage.  
14  
15  
CSIN  
CSIP  
Adapter current sense “-” input.  
Adapter current sense “+” input. The modulator also uses this for sensing input voltage in forward mode and output  
voltage in reverse mode.  
16  
17  
18  
ADP  
DCIN  
VDD  
Adapter input. Used to sense adapter voltage. When adapter voltage is higher than 3.2V, AGATE is turned on.  
ADP pin is also one of the two internal low power LDO inputs.  
Input of an internal LDO; provides power to the IC. Connect a diode OR from adapter and system outputs. Bypass this  
pin with an MLCC capacitor.  
Output of the internal LDO; provides the bias power for the internal analog and digital circuit. Connect a 1µF ceramic  
capacitor to GND.  
If VDD is pulled below 2V for more than 1ms, ISL9237 will reset all the SMBus register values to the default.  
19  
20  
ACIN  
Adapter voltage sense. Use a resistor divider externally to detect adapter voltage. The adapter voltage is valid if the ACIN  
pin voltage is greater than 0.8V.  
OTGEN/  
CMIN  
OTG function enable pin or stand-alone comparator input pin.  
Pull high to enable OTG function. The OTG function is enabled when the control register is written to select OTG mode  
and when the battery voltage is above 5.8V.  
When OTG function is not selected, this pin is the general purpose stand-alone comparator input.  
21  
22  
SDA  
SCL  
SMBus data I/O. Connect to the data line from the host controller or smart battery. Connect a 10k pull-up resistor  
according to SMBus specification.  
SMBus clock I/O. Connect to the clock line from the host controller or smart battery. Connect a 10k pull-up resistor  
according to SMBus specification.  
23  
24  
25  
PROCHOT# Open-drain output. Pulled low when ACProchot#, DCProchot# or Low_VSYS event is detected. IMVP-8 compliant.  
ACOK  
Adapter presence indicator output to indicate the adapter is ready.  
BATGONE  
Input pin to the IC. Logic high on this pin indicates the battery has been removed. Logic low on this pin indicates the  
battery is present.  
BATGONE pin logic high will force BGATE FET to turn off in any circumstance.  
26  
OTGPG/  
CMOUT  
Open-drain output. OTG function output power-good indicator or the stand-alone comparator output.  
When OTG function is enabled, low if OTG output voltage is not within regulation window.  
When OTG function is not used, it is the general purpose comparator output.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 4 of 40  
ISL9237  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
27  
PROG  
A resistor from PROG pin to GND sets the following configurations:  
1. Default number of the battery cells in series, 1-, 2- or 3-cell.  
2. Default switching frequency 733kHz or 1MHz.  
3. Default adapter current limit value 0.476A or 1.5A.  
Refer to Table 18 for programming options.  
28  
29  
COMP  
Error amplifier output. Connect a compensation network externally from COMP to GND.  
Adapter current monitor output or battery discharging current monitor output.  
AMON/  
BMON  
V
= 18 x (V  
- V  
); V  
= 18 x (V )  
- V  
AMON  
CSIP CSIN BMON  
CSON CSOP  
30  
31  
PSYS  
VBAT  
Current source output that indicates the whole platform power consumption.  
Battery voltage sensing. Used for trickle charging detection and ideal diode mode control. The VBAT pin is also one of  
the two internal low power LDO inputs.  
32  
BGATE  
Gate drive output to the P-channel FET connecting the system and the battery. This pin can go high to disconnect the  
battery, low to connect the battery or operate in a linear mode to regulate trickle charge current during trickle charge.  
ISL9237 pulls down BGATE to GND to turn on BGATE PFET. Therefore, BGATE PFET gate-to-source voltage rating should  
be higher than the battery voltage.  
Simplified Application Circuit  
OPTIONAL  
Rs1  
VSYS  
VADP  
20m  
Q1  
Q2  
Q4  
Q3  
L1  
VSYS  
CSOP  
CSIN  
CSIP  
Rs2  
10m  
ASGATE  
CSON  
ADP  
ACIN  
ISL9237  
GND  
ACOK  
BGATE  
PROCHOT#  
AMON/BMON  
BATGONE  
VBAT  
VBAT  
OTGPG/CMOUT  
PSYS  
OTGEN/CMIN  
VADP  
VSYS  
FIGURE 2. SIMPLIFIED APPLICATION DIAGRAM  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 5 of 40  
ISL9237  
Absolute Maximum Ratings  
Thermal Information  
CSIP, CSIN, DCIN, ADP, ASGATE . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +28V  
PHASE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(GND - 0.3V) to +28V  
PHASE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GND-2V(<20ns) to +28V  
BOOT1, UGATE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(GND - 0.3V) to +33V  
PHASE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(GND - 0.3V) to +15V  
PHASE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GND - 2V(<20ns) to +15V  
BOOT2, UGATE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(GND - 0.3V) to +20V  
LGATE1, LGATE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GND - 0.3V) to +6.5V  
LGATE1, LGATE2 . . . . . . . . . . . . . . . . . . . . . . . . . . GND - 2V(<20ns) to +6.5V  
VBAT, VSYS, CSOP, CSON, BGATE . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +15V  
VDD, VDDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
AMON/BMON, PSYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
OTGEN, BATGONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
ACIN, ACOK, PROCHOT#, OTGPG . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
CLK, DAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
BOOT1-PHASE1, BOOT2-PHASE2 . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
CSIP-CSIN, CSOP-CSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +0.5V  
VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70mA  
ACIN, SDA, SCL, DCIN, ACOK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA  
ESD Rating  
Thermal Resistance (Typical)  
32 Ld QFN Package (Notes 4, 5) . . . . . . . .  
Ambient Temperature Range (T ) . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
Junction Temperature Range (T ) . . . . . . . . . . . . . . . . . . . .-10°C to +150°C  
Storage Temperature Range (T ) . . . . . . . . . . . . . . . . . . . .-65°C to +175°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
38  
(°C/W)  
3.5  
JA  
JC  
A
J
S
Recommended Operating Conditions  
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +125°C  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101A) . . . . . . . . . . . . . 1kV  
Latch-Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , the "case temp" location is the center of the ceramic on the package underside.  
JC  
Electrical Specifications Operating conditions: ADP = CSIP = CSIN = 5V and 20V, VSYS = V  
= CSOP = CSON = 8V, unless otherwise  
noted. Boldface limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified.  
BAT  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6) UNIT  
UVLO/ACOK  
VADP UVLO Rising (Note 7)  
VADP_UVLO_r  
VADP_UVLO_h  
VBAT_UVLO_r  
VBAT_UVLO_h  
VBAT_5P8_r  
VBAT_5P8_h  
VDD_2P7_r  
3.1  
3.2  
600  
2.45  
350  
5.95  
600  
2.70  
3.4  
V
mV  
V
VADP UVLO Hysteresis (Note 7)  
V
V
V
V
UVLO Rising  
2.30  
5.50  
2.55  
2.60  
6.45  
2.85  
BAT  
BAT  
BAT  
BAT  
UVLO Hysteresis  
5P8V Rising  
mV  
V
5P8V Hysteresis  
mV  
V
VDD 2P7 POR Rising, SMBus and  
BGATE/BMON Active Threshold  
VDD 2P7 POR Hysteresis (Note 7)  
VDD_2P7_h  
VDD_3P8_r  
150  
3.8  
mV  
V
VDD 3P8 POR Rising, Modulator and  
Gate Driver Active (Note 7)  
VDD 3P8 POR Hysteresis (Note 7)  
ACIN Rising  
VDD_3P8_h  
ACIN_r  
150  
0.8  
50  
mV  
V
0.775  
0.825  
ACIN Hysteresis  
ACIN_h  
mV  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 6 of 40  
ISL9237  
Electrical Specifications Operating conditions: ADP = CSIP = CSIN = 5V and 20V, VSYS = V  
= CSOP = CSON = 8V, unless otherwise  
noted. Boldface limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
BAT  
MIN  
MAX  
PARAMETER  
LINEAR REGULATOR  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
4.5  
TYP  
(Note 6) UNIT  
VDD Output Voltage  
VDD Dropout Voltage  
VDD Overcurrent Threshold  
Battery Current  
VDD  
6V < V  
< 23V, no load  
5.0  
110  
70  
5.5  
V
DCIN  
30mA, V  
VDD_dp  
VDD_OC  
= 4V  
mV  
mA  
µA  
DCIN  
40  
110  
I
I
I
Battery only, BGATE on, PSYS OFF, BMON OFF,  
= 12V, DCIN current comes from battery,  
12  
30  
BAT1  
BAT2  
BAT3  
V
I
BAT  
= I  
+ I  
+ I  
+ I + I  
BAT VBAT CSOP  
Battery only, BGATE on, PSYS OFF, BMON ON,  
= 12V, DCIN current comes from battery,  
CSON DCIN VSYS  
74  
µA  
µA  
V
I
BAT  
= I  
+ I  
+ I  
+ I + I  
BAT VBAT CSOP  
Battery only, BGATE on, PSYS ON, BMON OFF,  
= 12V, DCIN current comes from battery,  
CSON DCIN VSYS  
940  
1025  
V
I
BAT  
= I  
+ I  
+ I  
+ I + I  
BAT VBAT CSOP  
CSON DCIN VSYS  
INPUT CURRENT REGULATION, R = 20mΩ  
s1  
Input Current Accuracy  
CSIP - CSIN = 80mV  
CSIP - CSIN = 40mV  
CSIP - CSIN = 10mV  
4
2
A
%
-2  
2
A
-2.5  
-10  
2.5  
10  
%
0.5  
A
%
Adapter Current PROCHOT# Threshold  
= 20mΩ  
I
ACProchot = 0x0A80H (2688mA)  
ACProchot = 0x0400H (1024mA)  
2688  
1027  
mA  
%
ADP_HOT_TH10  
R
s1  
-3.0  
-6.0  
3.0  
6.0  
mA  
%
VOLTAGE REGULATION  
Maximum System Voltage Regulation  
Accuracy  
MaxSystemVoltage for 1-cell, (4.2V)  
-0.75  
-0.50  
-3  
0.75  
0.50  
3
%
%
%
MaxSystemVoltage for 2-cell and 3-cell  
Minimum System Voltage Regulation  
Accuracy  
Input Voltage Regulation Accuracy  
-3  
3
%
CHARGE CURRENT REGULATION, R = 10mΩ  
s2  
Charge Current Accuracy  
CSOP - CSON = 60mV  
CSOP - CSON = 20mV  
CSOP - CSON = 10mV  
CSOP - CSON = 5mV  
6
2
A
%
A
-2.5  
-5  
2.5  
5
%
A
1
-10  
-20  
10  
20  
%
A
0.5  
%
FN8723 Rev.5.00  
Nov 29, 2017  
Page 7 of 40  
ISL9237  
Electrical Specifications Operating conditions: ADP = CSIP = CSIN = 5V and 20V, VSYS = V  
= CSOP = CSON = 8V, unless otherwise  
noted. Boldface limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
BAT  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6) UNIT  
TRICKLE CHARGING CURRENT REGULATION, R = 10mΩ  
s2  
Trickle Charge Current Accuracy  
Trickle, options 256mA and 512mA  
Trickle, option 128mA  
-20  
-30  
1.5  
20  
30  
%
%
V
Fast Charge to Trickle Charge  
Threshold  
V
rising  
1.7  
92  
1.9  
BGATE  
Trickle Charge to Fast Charge  
Threshold Hysteresis  
65  
125  
mV  
IDEAL DIODE MODE  
Entering Ideal Diode Mode VSYS  
Voltage Threshold  
BGATE off, VSYS falling  
- V  
150  
150  
mV  
mA  
V
VBAT VSYS  
R = 10mΩ  
s2  
Exiting Ideal Diode Mode Battery  
Current Threshold  
BGATE Source  
BGATE Sink  
VSYS - BGATE = 2V  
BGATE - GND = 2V  
12  
4
17  
6
20  
10  
mA  
mA  
AMON/BMON  
INPUT CURRENT SENSE AMPLIFIER, R = 20mΩ  
s1  
AMON Gain  
17.91  
0.4  
V/V  
%
AMON Accuracy  
V
- V  
CSIP CSIN  
= 100mV (5A), CSIP = 5V, 20V  
= 20mV (1A), CSIP = 5V, 20V  
-2  
2
V
= 17.91 (CSIP - CSIN)  
AMON  
V - V  
CSIP CSIN  
-5.0  
5.0  
%
V
V
V
- V  
= 10mV (0.5A), CSIP = 5V, 20V  
= 2mV (0.1A), CSIP = 5V, 20V  
= 0V  
-10  
-40  
1
4
10  
40  
30  
%
%
CSIP CSIN  
- V  
CSIP CSIN  
AMON Minimum Output Voltage  
- V  
CSIP CSIN  
mV  
DISCHARGE CURRENT SENSE AMPLIFIER, R = 10mΩ  
s2  
BMON Gain  
17.95  
-0.15  
-0.68  
V/V  
%
BMON Accuracy  
V
- V  
CSON CSOP  
= 100mV (10A), V  
= 8V  
= 8V  
-2.00  
-5.00  
2.00  
5.00  
CSON  
V
= 17.95 (V )  
- V  
BMON  
CSON CSOP  
V - V  
CSON CSOP  
= 20mV (2A), V  
= 10mV (1A), V  
%
CSON  
V
V
V
- V  
= 8V  
= 8V  
-10.0  
-20.0  
-1.3  
-2.2  
10.0  
20.0  
30  
%
%
CSON CSOP  
CSON  
- V  
CSON CSOP  
= 6mV (0.6A), V  
= 0V  
CSON  
BMON Minimum Output Voltage  
Discharging Current PROCHOT#  
- V  
CSON CSOP  
mV  
mA  
%
I
DCProchot = 0x1000H (4096mA)  
DCProchot = 0x0C00H (3072mA)  
4096  
3072  
DIS_HOT_TH5  
Threshold, R = 10mΩ  
s2  
-3  
-5  
3
mA  
%
5
5
5
AMON/BMON Source Resistance  
AMON/BMON Sink Resistance  
Ω
Ω
ACOK, PROCHOT#, OTGPG/CMOUT (OPEN-DRAIN)  
Open-Drain Current  
1
µA  
BATGONE AND OTGEN  
High-Level Input Voltage  
Low-Level Input Voltage  
0.9  
V
V
0.4  
1
Input Leakage Current  
V
= 3.3V, 5V; V  
OTGEN  
= 3.3V, 5V  
µA  
BATGONE  
PROCHOT#  
PROCHOT# Debounce Time (Note 7)  
Prochot# Debounce register Bit<1:0> = 11  
Prochot# Debounce register Bit<1:0> = 10  
1
ms  
µs  
500  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 8 of 40  
ISL9237  
Electrical Specifications Operating conditions: ADP = CSIP = CSIN = 5V and 20V, VSYS = V  
= CSOP = CSON = 8V, unless otherwise  
noted. Boldface limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
BAT  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Prochot# Duration register Bit<2:0> = 011  
Prochot# Duration register Bit<2:0> = 001  
Control1 register Bit<9:8> = 00  
(Note 6)  
TYP  
10  
(Note 6) UNIT  
PROCHOT# Duration Time (Note 7)  
ms  
ms  
20  
Low VSYS PROCHOT# Trip Threshold  
V
5.8  
6.1  
6.4  
6.7  
6.0  
6.3  
6.6  
6.9  
6.2  
6.5  
6.8  
7.1  
V
V
V
V
LOW_VSYS_HOT  
Control1 register Bit<9:8> = 01  
Control1 register Bit<9:8> = 10  
Control1 register Bit<9:8> = 11  
PSYS  
PSYS Output Current  
I
V
V
= 19V, V  
= 80mV,  
= 0mV  
109  
36  
24  
12  
2
µA  
%
PSYS  
CSIP  
BAT  
CSIP-CSIN  
R
R
= 20mΩ  
= 10mΩ  
= 12V, V  
s1  
s2  
CSOP-CSON  
-5  
-6  
5
6
V
V
= 19V, V  
= 0mV,  
= 20mV  
µA  
%
CSIP  
BAT  
CSIP-CSIN  
= 12V, V  
CSOP-CSON  
V
V
= 19V, V  
= 8.4V, V  
= 0mV,  
= -20mV  
µA  
%
CSIP  
BAT  
CSIP-CSIN  
CSOP-CSON  
-7  
7
V
V
= 0V, V  
CSIP-CSIN  
= 0mV,  
= -10mV  
µA  
%
CSIP  
BAT  
= 8.4V, V  
CSOP-CSON  
-8.5  
8.5  
Maximum PSYS Output Voltage  
V
I
= 200µA  
V
PSYS_MAX  
PSYS  
OTG  
OTG Voltage  
OTG Current  
OTGVoltage register = 5.12V  
OTGCurrent register = 512mA  
OTGCurrent register = 1024mA  
OTGCurrent register = 4096mA  
5.04  
435  
5.11  
512  
5.18  
589  
V
mA  
mA  
mA  
922  
1024  
4096  
1126  
4220  
3975  
GENERAL PURPOSE COMPARATOR  
General Purpose Comparator Rising  
Threshold  
Reference = 1.2V  
Reference = 2V  
Reference = 1.2V  
Reference = 2V  
1.15  
1.95  
25  
1.20  
2.00  
40  
1.25  
2.05  
65  
V
V
General Purpose Comparator  
Hysteresis  
mV  
mV  
25  
40  
65  
PROTECTION  
VSYS Overvoltage Rising Threshold  
VSYS Overvoltage Hysteresis  
MaxSystemVoltage register value = 8.4V  
8.79  
185  
8
8.96  
280  
12  
9.18  
380  
18  
V
mV  
A
Adapter Way Overcurrent Rising  
Threshold  
Adapter Way Overcurrent Hysteresis  
2.8  
10  
3.5  
15  
4.2  
24  
A
A
Battery Discharge Way Overcurrent  
Rising Threshold (Note 7)  
R
R
= 20mΩ  
= 10mΩ  
s1  
s2  
Battery Discharge Way Overcurrent  
Hysteresis (Note 7)  
2.56  
3.20  
3.84  
A
Over-Temperature Threshold (Note 7)  
Adapter Overvoltage Rising Threshold  
Adapter Overvoltage Hysteresis  
MISCELLANEOUS  
140  
22.5  
200  
150  
23.4  
400  
160  
24  
°C  
V
600  
mV  
Switching Frequency Accuracy  
1MHz Oscillator  
All programmed fSW settings  
-15  
0.85  
-15  
15  
1.15  
15  
%
MHz  
%
1.00  
0
Digital Debounce Time Accuracy  
(Note 7)  
BGATE_Low Voltage  
VSYS = 8V  
-10  
10  
mV  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 9 of 40  
ISL9237  
Electrical Specifications Operating conditions: ADP = CSIP = CSIN = 5V and 20V, VSYS = V  
= CSOP = CSON = 8V, unless otherwise  
noted. Boldface limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
BAT  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VADP = 23V, VADP - ASGATE  
(Note 6)  
8
TYP  
11  
(Note 6) UNIT  
ASGATE_Low Voltage Clamp  
12  
V
V
Battery Learn Mode Auto-Exit  
Threshold  
MinSystemVoltage = 5.376V  
Control1 register Bit<13> = 1  
5.05  
5.70  
Battery Learn Mode Auto-Exit  
Hysteresis (Note 7)  
80  
160  
320  
mV  
SMBus  
SDA/SCL Input Low Voltage  
SDA/SCL Input High Voltage  
SDA/SCL Input Bias Current  
SDA, Output Sink Current  
GATE DRIVER (Note 7)  
0.8  
1
V
V
2
4
µA  
mA  
SDA = 0.4V, on  
UGATE1 Pull-Up Resistance  
UGATE1 Source Current  
UGATE1 Pull-Down Resistance  
UGATE1 Sink Current  
UG1  
UG1  
UG1  
UG1  
LG1  
LG1  
100mA source current  
UGATE1 - PHASE1 = 2.5V  
100mA sink current  
800  
2
1200  
475  
mΩ  
A
RPU  
SRC  
RPD  
SNK  
RPU  
SRC  
RPD  
SNK  
RPU  
SRC  
RPD  
SNK  
RPU  
1.3  
1.9  
1.3  
2.3  
1.3  
2.3  
1.3  
350  
2.8  
800  
2
mΩ  
A
UGATE1 - PHASE1 = 2.5V  
100mA source current  
LGATE1 - GND = 2.5V  
100mA sink current  
LGATE1 Pull-Up Resistance  
LGATE1 Source Current  
LGATE1 Pull-Down Resistance  
LGATE1 Sink Current  
1200  
450  
mΩ  
A
LG1  
LG1  
LG2  
LG2  
LG2  
LG2  
UG2  
300  
3.5  
800  
2
mΩ  
A  
LGATE1 - GND = 2.5V  
100mA source current  
LGATE2 - GND = 2.5V  
100mA sink current  
LGATE2 Pull-Up Resistance  
LGATE2 Source Current  
LGATE2 Pull-Down Resistance  
LGATE2 Sink Current  
1200  
450  
mΩ  
A
300  
3.5  
800  
2
mΩ  
A
LGATE2 - GND = 2.5V  
100mA source current  
UGATE2 - PHASE2 = 2.5V  
100mA sink current  
UGATE2 Pull-Up Resistance  
UGATE2 Source Current  
UGATE2 Pull-Down Resistance  
UGATE2 Sink Current  
1200  
475  
mΩ  
A
UG2  
UG2  
UG2  
SRC  
RPD  
SNK  
350  
2.8  
20  
mΩ  
A  
UGATE2 - PHASE2 = 2.5V  
1.9  
10  
15  
15  
10  
UGATE1 to LGATE1 Dead Time  
LGATE1 to UGATE1 Dead Time  
LGATE2 to UGATE2 Dead Time  
UGATE2 to LGATE2 Dead Time  
t
t
t
t
40  
45  
40  
40  
ns  
UG1LG1DEAD  
LG1UG1DEAD  
LG2UG2DEAD  
UG2LG2DEAD  
25  
ns  
22  
ns  
20  
ns  
SMBUS Timing Specification (Note 7)  
MIN  
MAX  
PARAMETERS  
SMBus Frequency  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6) UNIT  
f
10  
4.7  
4
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
SMB  
Bus Free Time  
t
BUF  
Start Condition Hold Time from SCL  
Start Condition Set-Up Time from SCL  
Stop Condition Set-Up Time from SCL  
SDA Hold Time from SCL  
SDA Set-up Time from SCL  
SCL Low Period  
t
HD:STA  
t
4.7  
4
SU:STA  
SU:STO  
HD:DAT  
t
t
300  
250  
4.7  
4
t
SU:DAT  
t
LOW  
SCL High Period  
t
HIGH  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 10 of 40  
ISL9237  
SMBUS Timing Specification (Note 7)  
MIN  
MAX  
PARAMETERS  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
175  
(Note 6) UNIT  
SMBus Inactivity Timeout  
Maximum charging period without a SMBus  
Write to MaxSystemVoltage or ChargeCurrent  
register  
s
NOTES:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
7. Limits established by characterization and are not production tested.  
Buck Mode Gate Driver Timing Diagram  
PWM  
tLGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
tUGFLGR  
t
t
= t  
= t  
LGFUGR  
UGFLGR  
LG1UG1DEAD  
UG1LG1DEAD  
FIGURE 3. BUCK MODE GATE DRIVER TIMING DIAGRAM  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 11 of 40  
ISL9237  
Typical Performance  
FIGURE 4. ADAPTER INSERTION, V  
ADP  
= 2OV, V  
= 7.5V,  
FIGURE 5. ADAPTER INSERTION, V  
ADP  
= 2OV, V  
= 7.5V,  
BAT  
BAT  
CHARGECURRENT = 0A, ADAPTER INSERTION  
CHARGECURRENT = 0A  
DEBOUNCE = 1.3s  
FIGURE 6. ADAPTER INSERTION, V  
ADP  
= 2OV, V  
= 7.5V,  
BAT  
FIGURE 7. ADAPTER REMOVAL, V  
= 2OV, V = 7.5V,  
BAT  
ADP  
CHARGECURRENT = 0A, ADAPTER INSERTION  
CHARGECURRENT = 0A  
DEBOUNCE = 1.3s  
FIGURE 8. ADAPTER VOLTAGE RAMPS UP, BOOST ->  
BUCK-BOOST -> BUCK OPERATION MODE TRANSITION  
FIGURE 9. ADAPTER VOLTAGE RAMPS DOWN, BUCK ->  
BUCK-BOOST -> BOOST OPERATION MODE TRANSITION  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 12 of 40  
ISL9237  
Typical Performance(Continued)  
FIGURE 11. BOOST MODE, CHARGING CURRENT LOOP TO ADAPTER  
CURRENT LOOP TRANSITION. V = 5V,  
FIGURE 10. BOOST MODE, OUTPUT VOLTAGE LOOP TO ADAPTER  
CURRENT LOOP TRANSITION. V  
MAXSYSTEMVOLTAGE = 8.496V, V  
= 5V,  
= 7V, SYSTEM  
ADP  
MAXSYSTEMVOLTAGE = 8.496V, V  
ADP  
= 7V, SYSTEM  
BAT  
BAT  
LOAD 0.5A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 1A  
LOAD 0.5A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 0A  
FIGURE 12. BUCK-BOOST MODE, OUTPUT VOLTAGE LOOP TO  
FIGURE 13. BUCK-BOOST MODE, CHARGING CURRENT LOOP TO  
ADAPTER CURRENT LOOP TRANSITION. V  
= 12V,  
= 11V, SYSTEM  
ADAPTER CURRENT LOOP TRANSITION. V  
MAXSYSTEMVOLTAGE = 12.6V, V  
BAT  
LOAD 1A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 1A  
= 12V,  
= 11V, SYSTEM  
ADP  
ADP  
MAXSYSTEMVOLTAGE = 12.6V, V  
BAT  
LOAD 1A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 0A  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 13 of 40  
ISL9237  
Typical Performance(Continued)  
FIGURE 14. BUCK MODE, OUTPUT VOLTAGE LOOP TO ADAPTER  
FIGURE 15. BUCK MODE, CHARGING CURRENT LOOP TO ADAPTER  
CURRENT LOOP TRANSITION. V = 20V,  
CURRENT LOOP TRANSITION. V  
MAXSYSTEMVOLTAGE = 8.496V, V  
= 20V,  
= 7V, SYSTEM  
ADP  
ADP  
MAXSYSTEMVOLTAGE = 8.496V, V  
= 7V, SYSTEM  
BAT  
BAT  
LOAD 2A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 0A  
LOAD 2A TO 10A STEP, ADAPTERCURRENTLIMIT = 3A,  
CHARGECURRENT = 2A  
FIGURE 16. BOOST MODE, OUTPUT VOLTAGE LOOP TO INPUT  
FIGURE 17. BOOST MODE, CHARGING CURRENT LOOP TO INPUT  
VOLTAGE LOOP TRANSITION. V  
MAXSYSTEMVOLTAGE = 8.496V, V  
= 5V,  
= 7V,  
VOLTAGE LOOP TRANSITION. V  
= 5V,  
MAXSYSTEMVOLTAGE = 8.496V, V = 7V,  
BAT  
ADP  
ADP  
BAT  
VINDAC = 4.5V, SYSTEM LOAD 0.5A TO 10A STEP,  
VINDAC = 4.5V, SYSTEM LOAD 0.5A TO 10A STEP,  
CHARGECURRENT = 0A  
CHARGECURRENT = 1A  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 14 of 40  
ISL9237  
Typical Performance(Continued)  
FIGURE 18. OTG MODE ENABLE, OTG ENABLE 150ms DEBOUNCE TIME  
FIGURE 19. OTG MODE 0.5A TO 2A TRANSIENT LOAD,  
OTG VOLTAGE = 5.12V  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 15 of 40  
ISL9237  
Acknowledge  
General SMBus Architecture  
Each address and data transmission uses 9 clock pulses. The  
ninth pulse is the acknowledge bit (ACK). After the start  
condition, the master sends 7 slave address bits and a R/W bit  
during the next 8 clock pulses. During the 9 clock pulse, the  
device that recognizes its own address holds the data line low to  
acknowledge (Refer to Figure 23). The acknowledge bit is also  
used by both the master and the slave to acknowledge receipt of  
register addresses and data.  
VDD SMB  
SMBUS SLAVE  
INPUT  
SCL  
CONTROL  
OUTPUT  
INPUT  
STATE  
MACHINE  
REGISTERS  
MEMORY  
etc...  
SMBUS MASTER  
INPUT  
SCL  
CONTROL  
SDA  
CONTROL  
OUTPUT  
INPUT  
OUTPUT  
INPUT  
CPU  
SDA  
CONTROL  
SMBUS SLAVE  
OUTPUT  
SCL  
CONTROL  
MSB  
OUTPUT  
INPUT  
STATE  
MACHINE  
REGISTERS  
MEMORY  
etc...  
SDA  
SDA  
CONTROL  
SCL SDA  
OUTPUT  
SCL  
1
2
8
9
TO OTHER  
SLAVE DEVICES  
START  
ACKNOWLEDGE  
FROM SLAVE  
FIGURE 20. GENERAL SMBus ARCHITECTURE  
FIGURE 23. ACKNOWLEDGE ON THE SMBus  
Data Validity  
The data on the SDA line must be stable during the HIGH period  
of the SCL, unless generating a START or STOP condition. The  
HIGH or LOW state of the data line can only change when the  
clock signal on the SCL line is LOW. Refer to Figure 21.  
SMBus Transactions  
All transactions start with a control byte sent from the SMBus  
master device. The control byte begins with a Start condition,  
followed by 7 bits of slave address (0001001 for the ISL9237)  
and the R/W bit. The R/W bit is 0 for a WRITE or 1 for a READ. If  
any slave device on the SMBus bus recognizes its address, it will  
acknowledge by pulling the serial data (SDA) line low for the last  
clock cycle in the control byte. If no slave exists at that address or  
it is not ready to communicate, the data line will be one,  
indicating a Not Acknowledge condition.  
SDA  
SCL  
DATA LINE  
STABLE  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
Once the control byte is sent and the ISL9237 acknowledges it,  
the second byte sent by the master must be a register address  
byte such as 0x14 for the ChargeCurrent register. The register  
address byte tells the ISL9237 which register the master will  
write or read. See Table 1 on page 17 for details of the registers.  
Once the ISL9237 receives a register address byte, it will respond  
with an acknowledge.  
FIGURE 21. DATA VALIDITY  
START and STOP Conditions  
Figure 22 START condition is a HIGH to LOW transition of the SDA  
line while SCL is HIGH.  
Byte Format  
The STOP condition is a LOW to HIGH transition on the SDA line  
while SCL is HIGH. A STOP condition must be sent before each  
START condition.  
Every byte put on the SDA line must be 8 bits long and must be  
followed by an acknowledge bit. Data is transferred with the  
Most Significant Bit first (MSB) and the Least Significant Bit (LSB)  
last. The LO BYTE data is transferred before the HI BYTE data. For  
example, when writing 0x41A0, 0xA0 is written first and 0x41 is  
written second.  
SDA  
SCL  
WRITE TO A REGISTER  
SLAVE  
ADDR + W  
REGISTER  
ADDR  
LO BYTE  
DATA  
HI BYTE  
DATA  
S
A
A
A
A P  
S
P
READ FROM A REGISTER  
SLAVE  
ADDR + W  
REGISTER  
ADDR  
SLAVE  
ADDR + R  
LO BYTE  
DATA  
HI BYTE  
DATA  
S
A
A
P
S
A
A
N P  
START  
STOP  
CONDITION  
CONDITION  
DRIVEN BY THE  
MASTER  
S
P
A
N
START  
STOP  
ACKNOWLEDGE  
FIGURE 22. START AND STOP WAVEFORMS  
NO  
P
DRIVEN BY THE IC  
ACKNOWLEDGE  
FIGURE 24. SMBus READ AND WRITE PROTOCOL  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 16 of 40  
ISL9237  
2
The data (SDA) and clock (SCL) pins have Schmitt-trigger inputs  
that can accommodate slow edges. Choose pull-up resistors for  
SDA and SCL to achieve rise times according to the SMBus  
specifications.  
SMBus and I C Compatibility  
The ISL9237 SMBus minimum input logic high voltage is 2V, so it  
is compatible with an I C with higher than 2V pull-up power supply.  
2
The ISL9237 SMBus registers are 16 bits, so it is compatible with  
a 16-bit I C or an 8-bit I C with auto-increment capability.  
The illustration in this datasheet is based on current sensing  
2
2
resistors R = 20mΩand R = 10mΩ unless otherwise  
s1 s2  
specified.  
ISL9237 SMBus Commands  
The ISL9237 receives control inputs from the SMBus interface after  
Power-On Reset (POR). The serial interface complies with the  
System Management Bus Specification, which can be downloaded  
from www.smbus.org. The ISL9237 uses the SMBus Read-word and  
Write-word protocols (see Figure 24 on page 16) to communicate  
with the host system and a smart battery. The ISL9237 is an SMBus  
slave device and does not initiate communication on the bus. It  
responds to the 7-bit address 0b0001001_:  
Read address = 0b00010011 (0x13H) and  
Write address = 0b00010010 (0x12H).  
TABLE 1. REGISTER SUMMARY  
NUMBER OF  
REGISTER  
NAMES  
REGISTER  
ADDRESS  
READ/  
WRITE  
BITS  
DESCRIPTION  
DEFAULT  
ChargeCurrentLimit  
AdapterCurrentLimit1  
AdapterCurrentLimit2  
MaxSystemVoltage  
0x14  
0x3F  
0x3B  
0x15  
R/W  
R/W  
R/W  
R/W  
11  
[12:2] 11-bit, LSB size 4mA, maximum range 6080mA for 0A  
10mΩ R  
.
s2  
[12:2] 11-bit, LSB size 4mA, maximum range 6080mA for Set by PROG pin  
20mΩ R  
11  
11  
11  
.
s1  
[12:2] 11-bit, LSB size 4mA, maximum range 6080mA for 1500mA  
20mΩ R  
.
s1  
[13:3] 11-bit, LSB size 8mV, maximum range 13.824V.  
4.192V for 1-cell  
8.384V for 2-cell  
12.576V for 3-cell  
2.688V for 1-cell  
5.376V for 2-cell  
8.064V for 3-cell  
3.072A  
MinSystemVoltage  
0x3E  
R/W  
11  
[13:3] 11-bit, LSB size 8mV, maximum range 13.824V.  
ACProchot#  
DCProchot#  
0x47  
0x48  
R/W  
R/W  
6
6
[12:7] adapter current Prochot# threshold.  
LSB size 128mA, maximum 6.4A for 20mΩ Rs1.  
[13:8] Battery discharging current Prochot# threshold.  
4.096A  
LSB size 256mA, maximum 12.8A for 10mΩ R  
.
s2  
T1 and T2  
Control0  
0x38  
0x39  
0x3C  
0x3D  
0x3A  
0x49  
R/W  
R/W  
R/W  
R/W  
R
6
8
Configure two-level adapter current limit duration  
Configure various charger options  
Configure various charger options  
Configure various charger options  
Indicate various charger status  
0x000h  
0x0000h  
0x0000h  
0x0000h  
0x0000h  
5.12V  
Control1  
16  
16  
16  
6
Control2  
Information  
OTGVoltage  
R/W  
[12:7] 6-bit, OTG mode output voltage reference.  
LSB size 128mV, maximum 5.376V and minimum  
4.864V.  
OTGCurrent  
0x4A  
R/W  
6
[12:7] 6-bit, OTG mode output current limit.  
512mA  
LSB size 128mA, maximum 4.096A for 20mΩ R  
Manufacturers ID register – 0x49 - Read only  
Device ID register - 0x0A- Read only  
.
s1  
ManufacturerID  
DeviceID  
0xFE  
0xFF  
R
R
8
8
0x0049h  
0x000Ah  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 17 of 40  
ISL9237  
TABLE 3. ChargeCurrentLimit REGISTER 0x14H (11-BIT, 8mA STEP,  
Setting Charging Current Limit  
5mΩ SENSE RESISTOR, x36)  
To set the charging current limit, write a 16-bit ChargeCurrentLimit  
command (0x14H or 0b00010100) using the Write-word protocol  
shown in Figure 24 on page 16 and the data format shown in  
BIT  
<1:0>  
<2>  
DESCRIPTION  
Not used  
Table 2 for a 10mΩ R or Table 3 for a 5mΩ R  
.
s2 s2  
0 = Add 0mA of charge current limit.  
1 = Add 8mA of charge current limit.  
The ISL9237 limits the charging current by limiting the  
CSOP-CSON voltage. By using the recommended current sense  
<3>  
<4>  
0 = Add 0mA of charge current limit.  
1 = Add 16mA of charge current limit.  
resistor values R = 20mΩand R = 10mΩ, the register’s LSB  
s1  
s2  
always translates to 1mA of charging current. The  
0 = Add 0mA of charge current limit.  
1 = Add 32mA of charge current limit.  
ChargeCurrentLimit register accepts any charging current  
command but only the valid register bits will be written to the  
register and the maximum value is clamped at 6080mA for  
<5>  
0 = Add 0mA of charge current limit.  
1 = Add 64mA of charge current limit.  
R
= 10mΩ.  
s2  
<6>  
0 = Add 0mA of charge current limit.  
1 = Add 128mA of charge current limit.  
After POR, the ChargeCurrentLimit register is reset to 0x0000H. To  
set the battery charging current value, write a non-zero number to  
the ChargeCurrentLimit register. The ChargeCurrentLimit register  
can be read back to verify its content.  
<7>  
0 = Add 0mA of charge current limit.  
1 = Add 256mA of charge current limit.  
<8>  
0 = Add 0mA of charge current limit.  
1 = Add 512mA of charge current limit.  
Table 2 shows the conditions to enable fast charging according to  
the ChargeCurrentLimit register setting.  
<9>  
0 = Add 0mA of charge current limit.  
1 = Add 1024mA of charge current limit.  
TABLE 2. ChargeCurrentLimit REGISTER 0x14H (11-BIT, 4mA STEP,  
10mΩ SENSE RESISTOR, x36)  
<10>  
<11>  
<12>  
0 = Add 0mA of charge current limit.  
1 = Add 2048mA of charge current limit.  
BIT  
<1:0>  
<2>  
DESCRIPTION  
Not used  
0 = Add 0mA of charge current limit.  
1 = Add 4096mA of charge current limit.  
0 = Add 0mA of charge current limit.  
1 = Add 4mA of charge current limit.  
0 = Add 0mA of charge current limit.  
1 = Add 8192mA of charge current limit.  
<3>  
<4>  
0 = Add 0mA of charge current limit.  
1 = Add 8mA of charge current limit.  
<13:15>  
Not used  
0 = Add 0mA of charge current limit.  
1 = Add 16mA of charge current limit.  
Maximum  
<12:2> = 10111110000, 12160mA  
<5>  
0 = Add 0mA of charge current limit.  
1 = Add 32mA of charge current limit.  
Setting Adapter Current Limit  
To set the adapter current limit, write a 16-bit  
<6>  
0 = Add 0mA of charge current limit.  
1 = Add 64mA of charge current limit.  
AdapterCurrentLimit1 command (0x3FH or 0b00111111) and/or  
AdapterCurrentLimit2 command (0x3BH or 0b00111011) using  
the Write-word protocol shown in Figure 24 and the data format  
<7>  
0 = Add 0mA of charge current limit.  
1 = Add 128mA of charge current limit.  
<8>  
0 = Add 0mA of charge current limit.  
1 = Add 256mA of charge current limit.  
shown in Table 4 for a 20mΩ R or Table 5 for a 10mΩ R  
.
s1 s1  
The ISL9237 limits the adapter current by limiting the CSIP-CSIN  
voltage. By using the recommended current sense resistor values,  
the register’s LSB always translates to 1mA of adapter current. Any  
adapter current limit command will be accepted but only the valid  
register bits will be written to the AdapterCurrentLimit1 and  
AdapterCurrentLimit2 registers, and the maximum value is  
<9>  
0 = Add 0mA of charge current limit.  
1 = Add 512mA of charge current limit.  
<10>  
<11>  
<12>  
0 = Add 0mA of charge current limit.  
1 = Add 1024mA of charge current limit.  
0 = Add 0mA of charge current limit.  
1 = Add 2048mA of charge current limit.  
clamped at 6080mA for R = 20mΩ.  
s1  
0 = Add 0mA of charge current limit.  
1 = Add 4096mA of charge current limit.  
After adapter POR, the AdapterCurrentLimit1 register is reset to  
the value programmed through the PROG pin resistor. The  
AdapterCurrentLimit2 register is set to its default value of 1.5A or  
keep the value that is written to it previously if battery is present  
first. The AdapterCurrentLimit1 and AdapterCurrentLimit2  
registers can be read back to verify their content.  
<13:15> Not used  
Maximum <12:2> = 10111110000, 6080mA  
To set a second level adapter current limit, write a 16-bit  
AdapterCurrentLimit2 (0x3BH or 0b00111011) command using  
the Write-word protocol shown in Figure 24 and the data format as  
shown in Table 4 for a 20mΩ R or Table 5 for a 10mΩ R  
.
s1 s1  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 18 of 40  
ISL9237  
TABLE 5. AdapterCurrentLimit1 REGISTER 0x3FH AND  
AdapterCurrentLimit2 REGISTER 0x3BH (11-BIT, 8mA  
STEP, 10mΩ SENSE RESISTOR, x16) (Continued)  
The AdapterCurrentLimit2 register has the same specification as  
the AdapterCurrentLimit1 register. Refer to “Two-Level Adapter  
Current Limit” on page 30 for detailed operation.  
BIT  
DESCRIPTION  
TABLE 4. AdapterCurrentLimit1 REGISTER 0x3FH AND  
AdapterCurrentLimit2 REGISTER 0x3BH (11-BIT,  
4mA STEP, 20mΩ SENSE RESISTOR, x16)  
<8>  
0 = Add 0mA of adapter current limit.  
1 = Add 512mA of adapter current limit.  
BIT  
<1:0>  
<2>  
DESCRIPTION  
<9>  
0 = Add 0mA of adapter current limit.  
1 = Add 1024mA of adapter current limit.  
Not used  
<10>  
<11>  
<12>  
0 = Add 0mA of adapter current limit.  
1 = Add 2048mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 4mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 4096mA of adapter current limit.  
<3>  
<4>  
0 = Add 0mA of adapter current limit.  
1 = Add 8mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 16mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 8192mA of adapter current limit.  
<5>  
0 = Add 0mA of adapter current limit.  
1 = Add 32mA of adapter current limit.  
<13:15>  
Not used  
Maximum  
<12:4> = 10111110000, 12160mA  
<6>  
0 = Add 0mA of adapter current limit.  
1 = Add 64mA of adapter current limit.  
Setting Two-Level Adapter Current Limit  
Duration  
<7>  
0 = Add 0mA of adapter current limit.  
1 = Add 128mA of adapter current limit.  
For a two-level adapter current limit, write a 16-bit T1 and T2  
command (0x38H or 0b00111000) using the Write-word protocol  
shown in Figure 24 and the data format as shown in Table 6 to set  
the AdapterCurrentLimit1 duration T1. Write a 16-bit T2  
command (0x38H or 0b00111000) to set AdapterCurrentLimit2  
duration T2. T1 and T2 register accepts any command, however,  
only the valid register bits will be written. Refer to “Two-Level  
Adapter Current Limit” on page 30 for detailed operation.  
<8>  
0 = Add 0mA of adapter current limit.  
1 = Add 256mA of adapter current limit.  
<9>  
0 = Add 0mA of adapter current limit.  
1 = Add 512mA of adapter current limit.  
<10>  
<11>  
<12>  
0 = Add 0mA of adapter current limit.  
1 = Add 1024mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 2048mA of adapter current limit.  
TABLE 6. T1 AND T2 REGISTER 0x38H  
0 = Add 0mA of adapter current limit.  
1 = Add 4096mA of adapter current limit.  
BIT  
DESCRIPTION  
T1  
<2:0>  
000 = 10ms  
001 = 20ms  
010 = 15ms  
011 = 5ms  
100 = 1ms  
101 = 0.5ms  
110 = 0.1ms  
111 = 0ms  
<13:15>  
Not used  
Maximum  
<12:4> = 10111110000, 6080mA  
TABLE 5. AdapterCurrentLimit1 REGISTER 0x3FH AND  
AdapterCurrentLimit2 REGISTER 0x3BH (11-BIT, 8mA  
STEP, 10mΩ SENSE RESISTOR, x16)  
T2  
<10:8>  
000 = 10µs (default)  
001 = 100µs  
010 = 500µs  
011 = 1ms  
100 = 300µs  
101 = 750µs  
110 = 2ms  
BIT  
<1:0>  
<2>  
DESCRIPTION  
Not used.  
0 = Add 0mA of adapter current limit.  
1 = Add 8mA of adapter current limit.  
<3>  
<4>  
<5>  
<6>  
<7>  
0 = Add 0mA of adapter current limit.  
1 = Add 16mA of adapter current limit.  
111 = 10ms  
0 = Add 0mA of adapter current limit.  
1 = Add 32mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 64mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 128mA of adapter current limit.  
0 = Add 0mA of adapter current limit.  
1 = Add 256mA of adapter current limit.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 19 of 40  
ISL9237  
and the maximum value is clamped at 13.824V. The  
MinSystemVoltage register value should be set lower than the  
MaxSystemVoltage register value.  
Setting Maximum Charging Voltage or  
System Regulating Voltage  
To set the maximum charging voltage or the system regulating  
voltage, write a 16-bit MaxSystemVoltage command (0x15H or  
0b00010101) using the Write-word protocol shown in Figure 24  
and the data format as shown in Table 7.  
The MinSystemVoltage register sets the battery voltage threshold  
for entry and exit of the trickle charging mode and for entry and  
exit of the Learn mode. The VBAT pin is used to sense the battery  
voltage to compare with the MinSystemVoltage register setting.  
Refer to “Trickle Charging” on page 31 and “Battery Learn Mode”  
on page 29 for details.  
The MaxSystemVoltage register accepts any voltage command  
however, only the valid register bits will be written to the register  
and the maximum value is clamped at 13.824V.  
The MinSystemVoltage register setting also is the system voltage  
regulation point when it is in trickle charging mode. The CSON  
pin is the system voltage regulation sense point in trickle  
charging mode. Refer to “System Voltage Regulation” on page 31”  
for details.  
The MaxSystemVoltage register sets the battery full charging  
voltage limit. The MaxSystemVoltage register setting also is the  
system bus voltage regulation point when battery is absent or  
battery is present, however, is not in charging mode. See “System  
Voltage Regulation” on page 31 for details.  
TABLE 8. MinSystemVoltage REGISTER 0x3EH  
The VSYS pin is used to sense the battery voltage for maximum  
charging voltage regulation. VSYS pin is also the system bus  
voltage regulation sense point.  
BIT  
<2:0>  
<3>  
DESCRIPTION  
Not used  
0 = Add 0mV of charge voltage.  
1 = Add 8mV of charge voltage.  
TABLE 7. MaxSystemVoltage REGISTER 0x15H (8mV STEP)  
BIT  
<2:0>  
<3>  
DESCRIPTION  
<4>  
<5>  
0 = Add 0mV of charge voltage.  
1 = Add 16mV of charge voltage.  
Not used  
0 = Add 0mV of charge voltage.  
1 = Add 8mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 32mV of charge voltage.  
<4>  
<5>  
0 = Add 0mV of charge voltage.  
1 = Add 16mV of charge voltage.  
<6>  
0 = Add 0mV of charge voltage.  
1 = Add 64mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 32mV of charge voltage.  
<7>  
0 = Add 0mV of charge voltage.  
1 = Add 128mV of charge voltage.  
<6>  
0 = Add 0mV of charge voltage.  
1 = Add 64mV of charge voltage.  
<8>  
0 = Add 0mV of charge voltage.  
1 = Add 256mV of charge voltage.  
<7>  
0 = Add 0mV of charge voltage.  
1 = Add 128mV of charge voltage.  
<9>  
0 = Add 0mV of charge voltage.  
1 = Add 512mV of charge voltage.  
<8>  
0 = Add 0mV of charge voltage.  
1 = Add 256mV of charge voltage.  
<10>  
<11>  
<12>  
<13>  
<15:14>  
0 = Add 0mV of charge voltage.  
1 = Add 1024mV of charge voltage.  
<9>  
0 = Add 0mV of charge voltage.  
1 = Add 512mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 2046mV of charge voltage.  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mV of charge voltage.  
1 = Add 1024mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 4096mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 2046mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 8192mV of charge voltage.  
0 = Add 0mV of charge voltage.  
1 = Add 4096mV of charge voltage.  
Not used  
Maximum <13:3> = 11011000000, 13824mV  
0 = Add 0mV of charge voltage.  
1 = Add 8192mV of charge voltage.  
Setting PROCHOT# Threshold for Adapter  
Overcurrent Condition  
<15:14> Not used  
Maximum <13:3> = 11011000000, 13824mV  
To set the PROCHOT# assertion threshold for adapter overcurrent  
condition, write a 16-bit ACProchot# command (0x47H or  
0b01000111) using the Write-word protocol shown in Figure 24  
and the data format shown in Table 9 on page 21. By using the  
recommended current sense resistor values, the register’s LSB  
always translates to 1mA of adapter current. The ACProchot#  
register accepts any current command, however, only the valid  
register bits will be written to the register, and the maximum value  
Setting Minimum System Voltage  
To set the minimum system voltage, write a 16-bit  
MinSystemVoltage command (0x3EH or 0b00111110) using the  
Write-word protocol shown in Figure 24 and the data format as  
shown in Table 8.  
The MinSystemVoltage register accepts any voltage command,  
however, only the valid register bits will be written to the register,  
is clamped at 6400mA for R = 20mΩ.  
s1  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 20 of 40  
ISL9237  
After POR, the ACProchot# register is reset to 0x0C00H. The  
ACProchot# register can be read back to verify its content.  
TABLE 10. DCPROCHOT# REGISTER 0x48H (10mΩ SENSING  
RESISTOR, 256mA STEP, x18 GAIN)  
BIT  
<7:0>  
<8>  
DESCRIPTION  
If the adapter current exceeds the ACProchot# register setting,  
PROCHOT# signal will assert after the debounce time programmed  
by the Control2 register Bit<10:9> and latch on for a minimum time  
programmed by Control2 register Bit<8:6>.  
Not used  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 256mA of DCProchot# threshold.  
TABLE 9. ACProchot# REGISTER 0x47H (20mΩ SENSING RESISTOR,  
<9>  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 512mA of DCProchot# threshold.  
128mA STEP, x18 GAIN)  
BIT  
<6:0>  
<7>  
DESCRIPTION  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 1024mA of DCProchot# threshold.  
Not used  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 2048mA of DCProchot# threshold.  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 128mA of ACProchot# threshold.  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 4096mA of DCProchot# threshold.  
<8>  
<9>  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 256mA of ACProchot# threshold.  
0 = Add 0mA of DCProchot# threshold.  
1 = Add 8192mA of DCProchot# threshold.  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 512mA of ACProchot# threshold.  
<15:14>  
Not used  
<10>  
<11>  
<12>  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 1024mA of ACProchot# threshold.  
Maximum  
<13:8> = 110010, 12800mA  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 2048mA of ACProchot# threshold.  
Setting PROCHOT# Debounce Time and  
Duration Time  
Control2 register Bit<10:9> configures the PROCHOT# signal  
debounce time before its assertion for ACProchot# and  
DCProchot#. The low system voltage Prochot# has a fixed  
debounce time of 10µs.  
0 = Add 0mA of ACProchot# threshold.  
1 = Add 4096mA of ACProchot# threshold.  
<15:13>  
Not used  
Maximum  
<12:7> = 110010, 6400mA  
Setting PROCHOT# Threshold for Battery  
Over Discharging Current Condition  
Control2 register Bit<8:6> configures the minimum duration of  
Prochot# signal once asserted.  
To set the PROCHOT# signal assertion threshold for battery over  
discharging current condition, write a 16-bit DCProchot#  
command (0x48H or 0b01001000) using the Write-word protocol  
shown in Figure 24 and the data format shown in Table 10. By  
using the recommended current sense resistor values, the  
register’s LSB always translates to 1mA of adapter current. The  
DCProchot# register accepts any current command, however, only  
the valid register bits will be written to the register and the  
Control Registers  
Control0, Control1 and Control2 registers configure the operation of  
the ISL9237. To change certain functions or options after POR, write  
an 8-bit control command to Control0 register (0x39H or  
0b00111001) or a 16-bit control command to Control1 register  
(0x3CH or 0b00111100) or Control2 register (0x3DH or  
0b00111101) using the Write-word protocol shown in Figure 24  
and the data format shown in Tables 11, 12 and 13, respectively.  
maximum value is clamped at 12.8A for R = 10mΩ.  
s2  
After POR, the DCProchot# register is reset to 0x1000H. The  
DCProchot# register can be read back to verify its content.  
If the battery discharging current exceeds the DCProchot# register  
setting, the PROCHOT# signal will assert after the debounce time  
programmed by the Control2 register Bit<10:9> and latch on for a  
minimum time programmed by Control2 register Bit<8:6>.  
In battery only and Low Power mode, the DCProchot# threshold  
is set by Control0 register Bit<4:3>.  
In battery only mode, DCProchot# function works only when  
PSYS is enabled, since enabling PSYS will activate the internal  
comparator reference. The Information register Bit<15>  
indicates if the internal comparator reference is active or not.  
When adapter is present, the internal comparator reference is  
always active.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 21 of 40  
ISL9237  
TABLE 11. CONTROL0 REGISTER 0x39H  
DESCRIPTION  
BIT  
<15:8>  
<7>  
BIT NAME  
Not used  
SMBus Timeout  
The ISL9237 includes a timer to insure the SMBus master is active and to prevent overcharging the battery.  
If the adapter is present and if the ISL9237 does not receive a write to the MaxChargeVoltage or  
ChargeCurrentLimit register within 175s, ISL9237 will terminate charging. If a timeout occurs, writing the  
MaxChargeVoltage or ChargeCurrentLimit register will re-enable charging.  
0 = Enable the SMBus timeout function (default).  
1 = Disable the SMBus timeout function.  
<6:5>  
<4:3>  
High-Side FET Short  
Detection Threshold  
Bit<6:5> configures the high-side FET short detection PHASE node voltage threshold during low-side FET  
turning on.  
00 = 400mV (default)  
01 = 500mV  
10 = 600mV  
11 = 800mV  
DCProchot# Threshold in  
Battery Only Low Power  
Mode  
Bit<4:3> only configures the battery discharging current DCProchot# threshold in battery only Low Power  
mode indicated by the Information register 0x3A Bit<15>. If PSYS is enabled, battery discharge current  
DCProchot# threshold is set by the DCProchot# register 0x48 setting.  
R
= 10mΩ  
R
= 20mΩ  
R = 5mΩ  
s2  
s2  
s2  
BIT<4:3>  
00  
(A)  
(A)  
(A)  
12 (Default)  
6
5
4
3
24  
20  
16  
12  
01  
10  
8
10  
11  
6
<2>  
Input Voltage Regulation  
Loop  
Bit<2> disables or enables the input voltage regulation loop.  
0 = Enable (default)  
1 = Disable  
<1:0>  
Input Voltage Regulation  
Reference  
Bit<1:0> configures the input voltage loop regulation reference.  
00 = 3.9V (default)  
01 = 4.2V  
10 = 4.5V  
11 = 4.8V  
TABLE 12. CONTROL1 REGISTER 0x3CH  
DESCRIPTION  
BIT  
BIT NAME  
<15:14> General Purpose  
Comparator Assertion  
Debounce Time  
Bit<15:14> configures the general purpose comparator assertion debounce time.  
00 = 2µs (default)  
01 = 12µs  
10 = 2ms  
11 = 5s  
13  
12  
Exit Learn Mode Option  
Learn Mode  
Bit<12> provides the option to exit Learn mode when battery voltage is lower than MinSystemVoltage  
register setting.  
0 = Stay in Learn mode even if V  
< MinSystemVoltage register setting (default)  
BAT  
< MinSystemVoltage register setting  
1 = Exit Learn mode if V  
BAT  
Bit<13> enables or disables the Battery Learn mode.  
0 = Disable (default)  
1 = Enable  
To enter Learn mode, BATGONE pin needs to be low, i.e., battery must be present.  
11  
10  
OTG Function  
Audio Filter  
Bit<11> enables or disables OTG function.  
0 = Disable (default)  
1 = Enable  
Bit<10> enables or disables the audio filter function.  
0 = Disable (default)  
1 = Enable  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 22 of 40  
ISL9237  
TABLE 12. CONTROL1 REGISTER 0x3CH  
DESCRIPTION  
BIT  
BIT NAME  
<9:7>  
Switching Frequency  
Bit<9:7> configures the switching frequency and overrides the switching frequency set by PROG pin.  
000 = Switching frequency set by PROG pin (default)  
001 = 913kHz  
010 = 839kHz  
011 = 777kHz  
100 = 723kHz  
101 = 676kHz  
110 = 635kHz  
111 = 599kHz  
To keep the switching frequency set by PROG pin resistor, leave Bit<9:7> as it is or write code 000, which  
sets the same frequency as the PROG pin resistor.  
6
5
Turbo  
Bit<6> enables or disables Turbo mode. When the turbo function is enabled, BGATE FET turns on in Turbo  
mode. Refer to Table 19 on page 30 for BGATE ON/OFF truth table.  
0 = Enable (default)  
1 = Disable  
AMON/BMON Function  
Bit<5> enables or disables the current monitor function AMON and BMON.  
0 = Enable AMON/BMON (default)  
1 = Disable AMON/BMON  
Bit<5> is only valid in battery only mode. When adapter is present, AMON/BMON is automatically enabled  
and Bit<5> becomes invalid.  
4
3
2
AMON or BMON  
PSYS  
Bit<4> selects AMON or BMON as the output of AMON/BMON pin.  
0 = AMON (default)  
1 = BMON  
Bit<3> enables or disable system power monitor PSYS function.  
0 = Disable (default)  
1 = Enable  
VSYS  
Bit<2> enables or disables the buck-boost charger switching VSYS output. When disabled, ISL9237 stops  
switching and forces BGATE FET on.  
0 = Enable (default)  
1 = Disable  
<1:0>  
Low_VSYS_Prochot#  
Reference  
Bit<1:0> configures the Low_VSYS_Prochot# assertion threshold.  
00 = 6.0V (default)  
01 = 6.3V  
10 = 6.6V  
11 = 6.9V  
For 1-cell configuration, the Low_VSYS_Prochot# assertion threshold is fixed 2.4V.  
TABLE 13. CONTROL2 REGISTER 0x3DH  
DESCRIPTION  
BIT  
BIT NAME  
<15:14> Trickle Charging Current  
Bit<15:14> configures the charging current in trickle charging mode.  
00 = 256mA (default)  
01 = 128mA  
10 = 64mA  
11 = 512mA  
13  
12  
OTG Function Enable  
Debounce Time  
Bit<13> configures the OTG function debounce time from when ISL9237 receives the OTG enable command.  
0 = 1.3s (default)  
1 = 150ms  
Two-Level Adapter Current Bit<12> enables or disables the two-level adapter current limit function.  
Limit Function  
0 = Disable (default)  
1 = Enable  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 23 of 40  
ISL9237  
TABLE 13. CONTROL2 REGISTER 0x3DH (Continued)  
DESCRIPTION  
BIT  
11  
BIT NAME  
Adapter Insertion to  
ASGATE Turning On  
Debounce  
Bit<11> configures the debounce time from adapter insertion to ASGATE turning on.  
0 = 1.3s (default)  
1 = 150ms  
After VDD POR, for the first time adapter is plugged in, the ASGATE turn-on delay is always 150ms, regardless  
of the Bit<11> setting. This bit only sets the ASGATE turn-on delay after ASGATE turns off at least one time  
when VDD is above the POR value and Bit<11> default is 0 for 1.3s.  
<10:9>  
<8:6>  
Prochot# Debounce  
Prochot# Duration  
Bit<10:9> configures the Prochot# debounce time before its assertion for ACProchot# and DCProchot#.  
00: 10µs (default)  
01: 100µs  
10: 500µs  
11: 1ms  
The Low_VSYS_Prochot# has fixed 10µs debounce time.  
Bit<8:6> configures the minimum duration of Prochot# signal once asserted.  
000 = 10ms (default)  
001 = 20ms  
010 = 15ms  
011 = 5ms  
100 = 1ms  
101 = 500µs  
110 = 100µs  
111 = 0s  
5
4
3
2
ASGATE in OTG Mode  
CMIN Reference  
Bit<5> turns on or off the ASGATE FET in OTG mode.  
0 = Turn ON ASGATE in OTG mode (default)  
1 = Turn OFF ASGATE in OTG mode  
Bit<4> configures the general purpose comparator reference voltage.  
0 = 1.2V (default)  
1 = 2V  
General Purpose  
Comparator  
Bit<3> enables or disabled the general purpose comparator.  
0 = Enable (default)  
1 = Disable  
CMOUT Polarity  
Bit<2> configures the general purpose comparator output polarity once asserted. The comparator reference  
voltage is connected at the inverting input node.  
0 = CMOUT is high when CMIN is higher than reference (default)  
1 = CMOUT is low when CMIN is higher than reference  
1
0
WOCP Function  
PSYS Gain  
Bit<1> enables or disables the WOC (Way Overcurrent) fault protection function.  
0 = Enable WOCP (default)  
1 = Disable WOCP  
Bit<0> configures the system power monitor PSYS output gain.  
0 = 1.44µA/W (default)  
1 = 0.36µA/W  
OTGVoltage Register  
TABLE 14. OTGVOLTAGE REGISTER 0x49H  
To set the OTG mode output regulation voltage, write a 16-bit  
OTGVoltage command (0x49H or 0b01001001) using the  
Write-word protocol shown in Figure 24 on page 16 and the data  
format as shown in Table 14.  
BIT  
<6:0>  
<7>  
DESCRIPTION  
Not used  
0 = Add 0mV of OTG voltage  
1 = Add 128mV of OTG voltage  
The OTGVoltage register accepts any voltage command, however,  
only the valid register bits will be written to the register, and the  
maximum value is clamped at 5.376V and the minimum value is  
clamped at 4.864V.  
<8>  
<9>  
0 = Add 0mV of OTG voltage  
1 = Add 256mV of OTG voltage  
0 = Add 0mV of OTG voltage  
1 = Add 512mV of OTG voltage  
<10>  
0 = Add 0mV of OTG voltage  
1 = Add 1024mV of OTG voltage  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 24 of 40  
ISL9237  
TABLE 14. OTGVOLTAGE REGISTER 0x49H (Continued)  
BIT DESCRIPTION  
0 = Add 0mV of OTG voltage  
Information Register  
The Information Register contains SMBus readable information  
about manufacturing and operating modes. Table 16 identifies  
the bit locations of the information available.  
<11>  
<12>  
1 = Add 2048mV of OTG voltage  
TABLE 16. INFORMATION REGISTER 0x3AH  
0 = Add 0mV of OTG voltage  
1 = Add 4096mV of OTG voltage  
BIT  
DESCRIPTION  
<15:13>  
Range  
Not used  
<3:0>  
Bit<3:0> indicates the configuration set by PROG pin  
resistor.  
<12:7> = 101010, maximum 5.376V  
<12:7> = 100110, minimum 4.864V  
In battery only mode, Bit<3:0> shows the PROG pin  
programmed configuration only after PROG pin  
resistor is read by enabling PSYS.  
OTGCurrent Register  
To set the OTG mode output current limit threshold, write a 16-bit  
OTGVoltage command (0x4AH or 0b01001010) using the  
Write-word protocol shown in Figure 24 on page 16 and the data  
format as shown in Table 15.  
<3:0> = Cell number, Default f , default  
SW  
AdapterCurrentLimit1 register setting.  
0000 = 3-cell, 1MHz, 1.5A,  
0001 = 3-cell, 1MHz, 0.476A,  
0010 = 3-cell, 723kHz, 1.5A  
0011 = 3-cell, 723kHz, 0.476A  
0100 = 3-cell, 723kHz, 0.1A  
The OTGCurrent register accepts any current command, however,  
only the valid register bits will be written to the register, and the  
maximum value is clamped at 4096mA for R = 20mΩ.  
s1  
0101 = 2-cell, 1MHz, 1.5A  
0110 = 2-cell, 1MHz, 0.476A  
0111 = 2-cell, 723kHz, 1.5A  
1000 = 2-cell, 723kHz, 0.476A  
1001 = 2-cell, 723kHz, 0.1A  
TABLE 15. OTGCURRENT 0x4AH  
BIT  
<6:0>  
<7>  
DESCRIPTION  
Not used  
0 = Add 0mA of OTG current  
1 = Add 128mA of OTG current  
1010 = 1-cell, 1MHz, 0.1A  
1011 = 1-cell, 1MHz, 1.5A  
1100 = 1-cell, 1MHz, 0.476A  
1101 = 1-cell, 723kHz, 1.5A  
1110 = 1-cell, 723kHz, 0.476A  
1111 = 1-cell, 723kHz, 0.1A  
<8>  
<9>  
0 = Add 0mA of OTG current  
1 = Add 256mA of OTG current  
0 = Add 0mV of OTG current  
1 = Add 512mA of OTG current  
<4>  
Bit<4> indicates if the trickle charging mode is active  
or not.  
0 = Trickle charging mode is not active  
1 = Trickle charging mode is active  
<10>  
<11>  
<12>  
0 = Add 0mV of OTG current  
1 = Add 1024mA of OTG current  
0 = Add 0mV of OTG current  
1 = Add 2048mA of OTG current  
<6:5>  
Bit<6:5> indicates the ISL9237 operation mode.  
00 = Buck mode  
01 = Boost mode  
0 = Add 0mV of OTG current  
1 = Add 4096mA of OTG current  
10 = Buck-boost mode  
11 = OTG mode  
<15:13>  
Not used  
Maximum  
<12:7> = 100000, 4096mA  
<9:7>  
Bit<9:7> indicates the ISL9237 state machine status  
000 = OFF  
001 = BATTERY  
010 = ADAPTER  
011 = ACOK  
100 = VSYS  
101 = CHARGE  
110 = ENOTG  
111 = OTG  
<10>  
<11>  
Bit<10> indicates if the Low_VSYS_Prochot# is  
tripped or not.  
0 = Low_VSYS Prochot# is not tripped  
1 = Low_VSYS Prochot# is tripped  
Bit<11> indicates if the battery discharging Prochot#  
signal DCProchot# is tripped or not.  
0 = DCProchot# is not tripped  
1 = DCProchot# is tripped  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 25 of 40  
ISL9237  
TABLE 16. INFORMATION REGISTER 0x3AH (Continued)  
BIT  
DESCRIPTION  
PWM  
<12>  
Bit<12> indicates if the adapter current Prochot#  
signal ACProchot# is tripped or not.  
0 = ACProchot# is not tripped  
VW  
1 = ACProchot# is tripped  
<14:13>  
<15>  
Bit<14:13> indicates the active control loop.  
00 = MaxSystemVoltage control loop is active  
01 = Charging current loop is active  
10 = Adapter current limit loop is active  
11 = Input voltage loop is active  
COMP  
VCR  
Bit<15> indicates if the internal reference circuit is  
active or not. Bit<15> = 0 indicates that ISL9237 is in  
Low Power mode.  
FIGURE 27. R3™ MODULATOR OPERATION PRINCIPLES IN DYNAMIC  
RESPONSE  
0 = Reference is not active  
1 = Reference is active  
Application Information  
PHASE  
R3™ Modulator  
UGATE  
LGATE  
COMP  
+
-
S
R
V
CR  
PWM  
Q
L
V
O
IL  
+
-
PHASE  
V
W
I
L
C
O
FIGURE 28. DIODE EMULATION  
+
GM  
-
C
R
CCM/DCM BOUNDARY  
VW  
VCR  
FIGURE 25. R3™ MODULATOR  
CCM  
IL  
PWM  
LIGHT DCM  
VW  
VW  
VCR  
HYSTERETIC  
WINDOW  
V
CR  
IL  
COMP  
DEEP DCM  
VW  
FIGURE 26. R3™ MODULATOR OPERATION PRINCIPLES IN STEADY  
STATE  
VCR  
IL  
FIGURE 29. PERIOD STRETCHING  
The ISL9237 uses the Intersil patented R3™ (Robust Ripple  
Regulator) modulation scheme. The R3™ modulator combines  
the best features of fixed frequency PWM and hysteretic PWM  
while eliminating many of their shortcomings. Figure 25  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 26 of 40  
ISL9237  
conceptually shows the R3™ modulator circuit and Figure 26  
shows the operation principles in steady state.  
connected to the same inductor’s “output” as is the case with a  
boost converter. This arrangement supports bucking from a  
voltage input higher than the battery and also boosting from a  
voltage input lower than the battery.  
There is a fixed voltage window between VW and COMP. This  
voltage window is called the VW window in the following  
discussion. The modulator charges the ripple capacitor C with a  
In Buck mode, Q1 and Q2 turn on and off alternatively, while Q3  
remains off and Q4 remains on.  
R
current source equal to g (V - V ) during PWM on-time and  
m
IN  
O
discharges the ripple capacitor C with a current source equal to  
R
In Boost mode, Q3 and Q4 turn on and off alternatively, while Q1  
remains on and Q2 remains off.  
g V , during PWM off-time, where g is a gain factor. The C  
m O  
m
r
voltage V therefore emulates the inductor current waveform.  
CR  
The modulator turns off the PWM pulse when V reaches VW  
CR  
and turns on the PWM pulse when it reaches COMP.  
In Buck-boost mode, Q1 and Q3 is turned on and off at the same  
time and alternatively with Q2 and Q4, which turned off and on at  
the same time.  
Since the modulator works with V , which is a large amplitude  
cr  
and noise free synthesized signal, it achieves lower phase jitter  
than conventional hysteretic mode modulator.  
In OTG mode, Q3 and Q4 turn on and off alternatively as a buck  
regulator with V  
as the input, while Q1 remains on and Q2  
BAT  
remains off with the CSIP pin as the output sensing point.  
Figure 27 shows the operation principles during dynamic  
response. The COMP voltage rises during dynamic response,  
turning on PWM pulses earlier and more frequently temporarily,  
which allows for higher control loop bandwidth than conventional  
fixed frequency PWM modulator at the same steady state  
switching frequency.  
TABLE 17. OPERATION MODE  
MODE  
Buck  
Q1  
Control FET  
ON  
Q2  
Sync. FET  
OFF  
Q3  
Q4  
OFF  
ON  
Boost  
Control FET  
Control FET  
Sync. FET  
Sync. FET  
Sync. FET  
Control FET  
The R3™ modulator can operate in Diode Emulation (DE) mode  
to increase light-load efficiency. In DE mode the low-side MOSFET  
conducts when the current is flowing from source-to-drain and  
does not allow reverse current, emulating a diode. As shown in  
Figure 28, when LGATE is on, the low-side MOSFET carries  
current, creating negative voltage on the phase node due to the  
voltage drop across the ON-resistance. The IC monitors the  
current by monitoring the phase node voltage. It turns off LGATE  
when the phase node voltage reaches zero to prevent the  
inductor current from reversing the direction and creating  
unnecessary power loss.  
Buck-Boost  
OTG  
Control FET  
ON  
Sync. FET  
OFF  
RS1  
VSYS  
VADP  
CSOP  
SYSTEM  
LOAD  
Q4  
Q3  
CSIP  
CSIN  
Q1  
Q2  
RS2  
L1  
CSON  
BGATE  
FET  
V
BAT  
BATTERY  
If the load current is light enough, as Figure 28 shows, the  
inductor current will reach and stay at zero before the next phase  
node pulse and the regulator is in Discontinuous Conduction  
Mode (DCM). If the load current is heavy enough, the inductor  
current will never reach 0A and the regulator is in CCM although  
the controller is in DE mode.  
FIGURE 30. BUCK-BOOST CHARGER TOPOLOGY  
The ISL9237 optimizes the operation mode transition algorithm  
by considering the input and output voltage ratio and the load  
condition. When adapter voltage V  
is rising and is higher than  
ADP  
Figure 29 shows the operation principle in diode emulation  
mode at light load. The load gets incrementally lighter in the  
three cases from top to bottom. The PWM on-time is determined  
by the VW window size, therefore is the same, making the  
inductor current triangle the same in the three cases. The R3™  
94% of the system bus voltage VSYS, ISL9237 will transit from  
Boost mode to Buck-boost mode; if V is higher than 120% of  
VSYS, ISL9237 will forcedly transit from Buck-boost mode to  
Buck mode at any circumstance. At heavier load, the mode  
transition point changes accordingly to accommodate the duty  
cycle change due to the power loss on the charger circuit.  
ADP  
modulator clamps the ripple capacitor voltage V in DE mode to  
CR  
make it mimic the inductor current. It takes the COMP voltage  
When the adapter voltage V  
ADP  
is falling and is lower than 106%  
longer to hit V , naturally stretching the switching period. The  
CR  
of the system bus voltage VSYS, ISL9237 will transit from Buck  
mode to Buck-boost mode; if V is lower than 80% of VSYS,  
inductor current triangles move further apart from each other,  
such that the inductor current average value is equal to the load  
current. The reduced switching frequency helps increase  
light-load efficiency.  
ADP  
ISL9237 will transit from Buck-boost mode to Boost mode.  
ISL9237 Buck-Boost Charger with USB OTG  
The ISL9237 buck-boost charger drives an external N-channel  
MOSFET bridge comprised of two transistor pairs as shown in  
Figure 30. The first pair, Q1 and Q2, is a buck arrangement with  
the transistor center tap connected to an inductor “input” as is  
the case with a buck converter. The second transistor pair, Q3  
and Q4, is a boost arrangement with the transistor center tap  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 27 of 40  
ISL9237  
ACOK is an open-drain output pin indicating the presence of the  
adapter and readiness of the adapter to supply power to the  
system bus. The ISL9237 actively pulls ACOK low in the absence of  
the adapter.  
V A D P  
B U C K  
B U C K  
120%  
B U C K -B O O S T  
Before ASGATE turns ON, the ISL9237 will source 10µA of current  
out of the PROG pin and read the pin voltage to determine the  
PROG resistor value. The PROG resistor programs the  
configurations of the ISL9237.  
106%  
V S Y S  
94%  
B U C K -B O O S T  
In battery only mode, ISL9237 enters Low Power mode if only  
battery is present. VDD is 4V from the low power LDO to minimize  
the power consumption. VDD becomes 5V once it exits the Low  
Power mode such as when PSYS is enabled.  
B O O S T  
80%  
B O O S T  
Programming Charger Option  
V A D P  
The resistor from the PROG pin to GND programs the configuration  
of the ISL9237 for the default number of battery cells in series, the  
default switching frequency and the default AdapterCurrentLimit1  
register value. AdapterCurrentLimit2 register default value is 1.5A.  
Table 18 shows the programing options.  
FIGURE 31. OPERATION MODE  
When the OTG function is enabled with SMBus command and  
OTGEN pin, and if battery voltage V is higher than 5.8V,  
BAT  
ISL9237 operates in the reverse Buck mode, Q4, Q3 and L1  
consists of the reverse buck regulator, Q1 is turned on and Q2 is  
turned off. For reverse buck, there is one digital bit to control  
ASGATE. OTG mode is not available for 1-cell battery systems.  
TABLE 18. PROG PIN PROGRAMMING OPTIONS  
PROG-PIN  
DEFAULT  
The ISL9237 connects the system voltage rail to either the  
output of the buck-boost switcher or the battery. In Turbo event,  
the ISL9237 will turn on the BGATE FET to discharge the battery  
so the battery works with the adapter together to supply the  
system power.  
RESISTOR (kΩ)  
BATTERY  
CELL  
DEFAULT AdapterCurrent  
SWITCHING Limit1 Register  
VALUE  
1%  
MIN  
MAX NUMBER FREQUENCY  
(A)  
0
1-cell  
733kHz  
0.1  
16.6  
31.1  
16.9  
31.6  
44.2  
59  
17.2  
32.1  
0.476  
1.5  
Soft-Start  
The ISL9237 includes a low power LDO with nominal 4V output,  
which input is OR-ed from pins VBAT and ADP. The ISL9237 also  
includes a high power LDO with nominal 5V output, which input is  
from the DCIN pin connected to the adapter and the system bus  
through an external OR-ing diode circuit. Both LDO outputs are tied  
to the VDD pin to provide the bias power and gate drive power for  
ISL9237. VDDP pin is the ISL9237 gate drive power supply input.  
Use an R-C filter to generate the VDDP pin voltage from the VDD  
pin voltage.  
43.5  
44.9  
1MHz  
0.476  
1.5  
58.1  
59.9  
72.1  
73.2  
86.6  
102  
115  
130  
143  
158  
174  
187  
74.3  
0.1  
85.3  
87.9  
2-cell  
3-cell  
733kHz  
0.1  
101  
103  
0.476  
1.5  
113.9  
128.7  
141.6  
156.4  
172.3  
185.1  
201  
116.2  
131.3  
144.4  
159.6  
175.7  
188.9  
205  
When VDD > 2.7V, the ISL9237 digital block is activated and the  
SMBus register is ready to communicate with the master  
controller.  
1MHz  
0.476  
1.5  
733kHz  
0.1  
When VADP > 3.2V, after 1.3s or 150ms debounce time set by  
Control2 register Bit<11> (after VDD POR, for the first time  
adapter plugged in, the ASGATE turn on delay is always 150ms),  
ASGATE starts turning on with 10µA sink current. During the 1.3s  
or 150ms debounce time, ISL9237 uses ‘Intersil’s patent pending  
technique to check if the input bus is short or not; if CSIP < 2V or  
ACIN < 0.8V, ASGATE will not turn on. The soft-start scheme will  
carefully bias up the input capacitors and protect the back-to-back  
ASGATE FETs against potential damage caused by the inrush  
current.  
0.476  
1.5  
203  
(Note 8)  
1MHz  
0.476  
218.8  
221  
223.2  
1.5  
NOTE:  
8. 203kΩ is not standard resistor; use two resistors in series or in parallel  
to get the closest value.  
Use a voltage divider from the adapter voltage to set the ACIN pin  
voltage. The ISL9237 monitors the ACIN pin voltage to determine  
the presence of the adapter. Once VDD > 3.8V, the ACIN pin  
voltage exceeds 0.8V and ASGATE is fully turned on, the ISL9237  
will allow the external circuit to pull up the ACOK pin. Once ACOK is  
asserted, ISL9237 will start switching.  
ISL9237 will use the default number of cells in series as Table 18  
shows and sets the default MaxSystemVoltage register value and  
default MinSystemVoltage register value accordingly.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 28 of 40  
ISL9237  
The switching frequency can be changed through SMBus  
Control1 register Bit<9:7> after POR. Refer to the SMBus  
Control1 register programming table for detailed description.  
Power Source Selection  
The ISL9237 automatically selects the adapter and/or the  
battery as the source for system power.  
Before ASGATE turns on, ISL9237 will source 10µA current out of  
the PROG pin and read the PROG pin voltage to determine the  
resistor value. However, application environmental noise may  
pollute the PROG pin voltage and cause incorrect reading. If noise  
is a concern, it is recommended to connect a capacitor from the  
PROG pin to GND to provide filtering. The resistor and the capacitor  
RC time constant should be less than 40µs so the PROG pin  
voltage can rise to steady state before the ISL9237 reads it.  
The BGATE pin drives a P-channel MOSFET gate that  
connects/disconnects the battery from the system and the  
switcher.  
The ASGATE pin drives a pair of back-to-back common source  
PFETs to connect/disconnect the adapter from the system and  
the battery. Use of the ASGATE pin is optional.  
When battery voltage V  
is higher than 2.4V and adapter  
BAT  
is less than 3.2V, ISL9237 operates in battery only  
If ISL9237 is powered up from battery, it will not read the PROG  
resistor unless PSYS is enabled through SMBus Control1 register  
Bit<3>. In battery only mode, whenever PSYS is enabled,  
ISL9237 will read the PROG pin resistor and reset the  
configuration to the default.  
voltage V  
ADP  
mode. During the battery only mode, ISL9237 turns on the  
BGATE FET to connect the battery to the system. In battery only  
mode, the ISL9237 consumes very low power, less than 20µA  
during this mode. The battery discharging current monitor BMON  
can be turned on during this mode to monitor the battery  
Whenever the adapter is plugged in, ISL9237 will reset the  
AdapterCurrentLimit1 register to the default by reading PROG pin  
resistor if it is not read before or by loading the previous reading  
result.  
discharging current. If the battery voltage V  
is higher than  
BAT  
5.8V, the system power monitor PSYS function also can be  
turned on during this mode to monitor system power.  
In battery only mode, the USB OTG function can be enabled, see  
“USB OTG (On-the-Go)” on page 31 for details.  
If PSYS is not enabled, ISL9237 will reset MaxSystemVoltage  
register and MinSystemVoltage register to their default values  
according to the PROG pin cell number setting. If PSYS is  
enabled, ISL9237 will keep the values in these two registers.  
When adapter voltage, V  
, is more than 3.2V, ISL9237 turns  
ADP  
on ASGATE. If V is higher than 3.8V, ISL9237 enters in the  
DD  
forward buck, forward boost or forward Buck-boost mode  
depending upon the adapter and system voltage, VSYS, duty  
cycle ratio. The system bus voltage is regulated at the voltage set  
on the MaxSystemVoltage register. If the charge current register  
is programmed (non-zero), ISL9237 charges the battery either in  
trickle charging mode or fast charging mode, as long as  
BATGONE is low.  
By default, the adapter current sensing resistor, R , is 20mΩ  
s1  
and the battery current sensing resistor, R , is 10mΩ. Using this  
s2  
R
= 20mΩand R = 10mΩ option would result in 1mA/LSB  
s2  
s1  
correlation in the SMBus current commands.  
If R and R values are different from this R = 20mΩand  
s1 s2 s1  
R
= 10mΩ option, the SMBus command needs to be scaled  
s2  
accordingly to obtain the correct current. Smaller current sense  
resistor values reduce the power loss while larger current sense  
resistor values give better accuracy.  
Battery Learn Mode  
The ISL9237 supports battery Learn mode. The ISL9237 enters  
Battery Learn mode when it receives SMBus Control command.  
If different current sensing resistors are used, the R :R ratio  
s1 s2  
should be kept as 2:1, then PSYS output can be scaled  
accordingly to reflect the total system power correctly.  
This mode of operation is used when it is desired to supply the  
system power from the battery even when the adapter is plugged  
in, such as calibration of the battery fuel gauge, hence the name  
“Battery Learn mode”.  
The illustration in this datasheet is based on current sensing  
resistors R = 20mΩ and R = 10mΩ unless specified  
s1 s2  
otherwise.  
Upon entering Battery Learn mode the ISL9237 will turn on the  
BGATE FET when the system bus voltage decays to the battery  
voltage in order to avoid inrush current from the system bus to  
the battery.  
DE Operation  
In DE mode of operation, the ISL9237 employs a phase  
comparator to monitor the PHASE node voltage during the  
low-side switching FET on-time in order to detect the inductor  
current zero crossing. The phase comparator needs a minimum  
on-time of the low-side switching FET for it to recognize inductor  
current zero crossing. If the low-side switching FET on-time is too  
short for the phase comparator to successfully recognize the  
inductor zero crossing, the ISL9237 may lose diode emulation  
ability. To prevent such a scenario, the ISL9237 employs a  
minimum low-side switching FET on-time. When the intended  
low-side switching FET on-time is shorter than the minimum  
value, the ISL9237 stretches the switching period in order to  
keep the low-side switching FET on-time at the minimum value,  
which causes the CCM switching frequency to drop below the set  
point.  
In Battery Learn mode, the ISL9237 turns on BGATE, keeps  
ASGATE on, however, turns off the buck-boost switcher  
regardless of whether the adapter is present or not.  
There are three ways of exiting Battery Learn mode:  
1. Receive Battery Learn mode exit command through SMBus.  
2. Battery voltage is less than MinSystemVoltage register setting  
(according to Control1 register Bit<12> setting).  
3. BATGONE pin voltage goes from logic LOW to HIGH.  
In all these cases, the ISL9237 resumes switching immediately  
to supply power to the system bus from the adapter in order to  
prevent system voltage collapse.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 29 of 40  
ISL9237  
output surge current without requiring the charger to enter Turbo  
mode. Such operation maximizes battery life.  
Turbo Mode Support  
Turbo mode refers to the scenario when the system draws more  
power than the adapter’s power rating.  
AdapterCurrentLimit1 register value can be higher or lower than  
AdapterCurrentLimit2 value.  
If the adapter current reaches the AdapterCurrentLimit1 register  
set value (or AdapterCurrentLimit2 register set value, if two-level  
adapter current limit function is enabled), or the adapter input  
voltage drops to the input voltage regulation reference set by  
Control0 register 0x39H Bit<1:0>, the ISL9237 will limit the  
input power by regulating the adapter current at  
The two-level adapter current limit function can be enabled and  
disabled through SMBus Control2 register Bit<12>. When the  
two-level adapter current limit function is disabled, only  
AdapterCurrentLimit1 value is used as the adapter current limit  
and AdapterCurrentLimit2 value is ignored.  
AdapterCurrentLimit1/2 register set value, or by regulating the  
adapter voltage at the input voltage regulation reference point.  
I
t2  
t2  
t1  
t1  
In Turbo mode, the system bus voltage VSYS will drop  
automatically or the charging current will drop automatically to  
limit the adapter input power. If the VSYS pin voltage is 150mV  
lower than the VBAT pin voltage, BGATE FET will turn on, such  
that the battery supplies the rest of the power required by the  
system.  
AdapterCurrentLimit2  
AdapterCurrentLimit1  
I_Adapter  
I
T
T
If the ISL9237 detects 150mA charging current or if the battery  
discharging current is less than 300mA for longer than 20ms, it  
will turn off BGATE to exit Turbo mode. Refer to Table 19 for  
BGATE control logic.  
I_System  
I_Battery  
FIGURE 32. TWO LEVEL ADAPTER CURRENT LIMIT  
TABLE 19. BGATE ON/OFF TRUTH TABLE  
Current Monitor  
TURBO  
(CONTROL CHARGECURRENT  
The ISL9237 provides an adapter current monitor or a battery  
BIT)  
REGISTER  
BGATE ON/OFF  
discharging current monitor through the AMON/BMON pin. The  
AMON output voltage is 18x the (CSIP-CSIN) voltage and the BMON  
output voltage is 18x the (CSON-CSOP) voltage.  
SYSTEM  
LOAD IN  
TURBO  
MODE  
SYSTEM LOAD NOT  
IN TURBO MODE  
RANGE  
AMON and BMON function can be enabled or disabled through  
SMBus Control1 register Bit<5> and Bit<4> as Table 12 on  
page 22 shows.  
0 = ENABLE  
1 = DISABLE  
0 = ZERO  
1 = NONZERO  
RANGE  
0
0
0
1
OFF  
ON  
ON  
PSYS Monitor  
The ISL9237 PSYS pin provides a measure of the instantaneous  
power consumption of the entire platform. The PSYS pin outputs a  
current source described by Equation 1.  
ON for fast charge;  
Trickle charge is  
enabled  
1
1
0
1
OFF  
OFF  
ON  
ON for fast charge;  
Trickle charge is  
enabled  
(EQ. 1)  
I
= K  
 V  
I  
+ V  
I  
BAT  
PSYS  
PSYS  
ADP  
ADP  
BAT  
K
R
is based on current sensing resistor R = 20mΩ and  
s1  
PSYS  
s2  
= 10mΩ. V  
is the adapter voltage in volts, I  
is the  
is the battery voltage and I  
ADP  
ADP  
Two-Level Adapter Current Limit  
adapter current in amperes, V  
BAT  
BAT  
In a real system, Turbo event usually does not last very long. It is  
often no longer than milliseconds, a time length during which the  
adapter can supply current higher than its DC rating. The  
ISL9237 employs two-level adapter current limit in order to fully  
take advantage of adapter’s surge capability and minimize the  
power drawn from the battery.  
is the battery discharging current. When the battery is  
discharging, I is a positive value; when the battery is being  
BAT  
is a negative value. The battery voltage V  
charged, I  
is  
BAT  
BAT  
detected through the CSON pin to maximize the power monitor  
accuracy in NVDC configuration trickle charge mode.  
The R to R ratio must be 2:1 for a valid power calculation to  
s1 s2  
Figure 32 shows the two SMBus programmable adapter current  
limit levels, AdapterCurrentLimit1 and AdapterCurrentLimit2, as  
well as the durations t1 and t2. The two-level adapter current  
limit function is initiated when the adapter current is less than  
100mA lower than the AdapterCurrentLimit1 register setting and  
it starts at AdapterCurrentLimit2 for t2 duration and then  
changes to AdapterCurrentLimit1 for t1 duration before  
occur. If the resistance values are higher (or lower) than the  
suggested values above, K will be proportionally higher (or  
PSYS  
lower). As an example, if R = 10mΩ and R = 5mΩ, then the  
s1 s2  
output current will be half the value for the same power. If the  
PSYS information is not needed then any R :R ratio is  
s1 s2  
acceptable.  
The PSYS information includes the power loss of the charger  
circuit and the actual power delivered to the system. Resistor  
repeating the pattern. These parameters can set adapter current  
limit with an envelope that allows the adapter to temporarily  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 30 of 40  
ISL9237  
connected between the PSYS pin and GND converts the  
R
its value instead of resetting to zero. If a timeout occurs,  
MaxSystemVoltage or ChargeCurrent register must be written to  
re-enable charging.  
PSYS  
PSYS information from current to voltage.  
PSYS accuracy limits and a typical accuracy scan are shown in  
Figure 33 on page 31.  
The ISL9237 allows users to disable the charger timeout function  
through SMBus Control0 register Bit<7> as Table 11 on page 22  
shows.  
USB OTG (On-the-Go)  
When the OTG function is enabled with SMBus command and  
OTGEN pin, and if battery voltage V  
is higher than 5.8V,  
BAT  
ISL9237 operates in the reverse Buck mode, Q4, Q3 and L1  
consists of the reverse buck regulator and Q1 remains on and Q2  
remains off.  
Once ISL9237 receives the command to enable the OTG  
function, it will start switching after the 1.3s or 150ms debounce  
time set by Control2 register Bit<13>. Once the OTG output  
voltage is between 4.2V and 6V, OTG power-good OTGPG will  
assert to High. Moreover, Control2 register Bit<5> can be used to  
turn ASGATE FET off to cut off the OTG output.  
FIGURE 33. PSYS ACCURACY AND LIMITS  
The PSYS function can be enabled or disabled through SMBus  
Control1 register Bit<3> as shown in Table 12 on page 22.  
In battery only mode, the PSYS function cannot work if the  
battery voltage is less than 5.8V.  
Before OTG mode starts switching, the CSIP pin voltage needs to  
drop below the OTG output overvoltage protection threshold of  
6V first.  
Trickle Charging  
The default OTG output voltage is 5.12V. The OTGVoltage register  
0x49H can be used to configure the OTG output voltage.  
The ISL9237 supports trickle charging to an overly discharged  
battery. It can activate the trickle charging function when the  
battery voltage is lower than MinSystemVoltage setting. VBAT pin  
is the battery voltage sense point for trickle charge mode.  
The default OTG output current is limited at 512mA through R  
.
s1  
The OTGCurrent register 0x4AH can be used to adjust the OTG  
output current limit.  
To enable trickle charging, set ChargeCurrent register to a  
non-zero value. To disable trickle charging, set ChargeCurrent  
register to 0. Refer to Table 19 for trickle charging control logic.  
ISL9237 includes the OTG output undervoltage and overvoltage  
protection functions. The UVP threshold is 4.2V and the OVP  
threshold is 6V.  
The trickle charging current can be programmed to be 256mA,  
128mA or 64mA through SMBus Control2 register Bit<15:14> in  
Table 13 on page 23.  
Once UV is detected, ISL9237 will stop switching and turn off  
ASGATE and deassert OTGPG. Once OTG output increases above  
4.5V, after 1.3s or 150ms debounce time set by Control2 register  
Bit<13>, it will resume switching.  
In trickle charging mode, the ISL9237 regulates the trickle  
charging current through the buck-boost switcher. Another  
independent control loop controls the BGATE FET such that the  
system voltage is maintained at the voltage set in the  
MinSystemVoltage register. The VSYS pin is the system voltage  
sensing point in trickle charging mode.  
Once OV is detected, ISL9237 will stop switching and deassert  
OTGPG. It will resume switching after 100µs once OTG voltage  
drops below 5.7V.  
BATGONE needs to be low to enable OTG mode. OTG mode is not  
available for 1-cell battery systems.  
Once the battery voltage is charged the MinSystemVoltage register  
value, the ISL9237 enters fast charging mode by limiting the  
charging current at the ChargeCurrentLimit register setting.  
Stand-Alone Comparator  
The ISL9237 includes a general purpose stand-alone  
System Voltage Regulation  
comparator. OTGEN/CMIN pin is the comparator input. The  
internal comparator reference is connected to the inverting input  
of the comparator and can be configured as 1.2V or 2V through  
SMBus Control2 register Bit<4>. The comparator output is the  
OTGPG/CMOUT pin and the output polarity when the comparator  
is tripped can be configured through SMBus register bit.  
If the battery is absent, or if a battery is present, however, BGATE  
is turned off, the ISL9237 will regulate the system bus voltage at  
the MaxSystemVoltage register setting. The VSYS pin is used to  
sense the system bus voltage.  
Charger Timeout  
When Control2 register Bit<2> = 0 for normal comparator output  
polarity, if CMIN > Reference then CMOUT = High; if  
CMIN < Reference then CMOUT = Low.  
The ISL9237 includes a timer to insure the SMBus master is active  
and to prevent overcharging the battery. The ISL9237 will  
terminate charging by turning off BGATE FET if the charger has not  
received a write command to the MaxSystemVoltage or  
ChargeCurrent register within 175s. When the charging is  
terminated by the timeout, the ChargeCurrent register will retain  
When Control2 register Bit<2> = 1 for inversed comparator  
output polarity, if CMIN > Reference then CMOUT = Low; if  
CMIN < Reference then CMOUT = High.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 31 of 40  
ISL9237  
In battery only mode, the stand-alone comparator is disabled  
unless PSYS is enabled through SMBus Control1 register Bit<3>  
to enable the internal reference, which is indicated through  
Information register Bit<15>.  
Table 20 shows the OTG mode and the stand-alone comparator  
truth table.  
TABLE 20. OTG AND COMPARATOR TRUTH TABLE  
CONTROL1  
CONTROL2  
REGISTER 0x3C  
REGISTER 0x3D  
PIN-2O  
PIN-26  
BIT<11>  
BIT<3>  
OTG FUNCTION  
COMPARATOR  
ENABLE/DISABLE ENABLE/DISABLE OTGEN/CMIN  
OTGPG/CMOUT  
DESCRIPTION  
0
0
Comparator  
Comparator output OTG function is disabled.  
input pin CMIN pin CMOUT  
Comparator is enabled.  
Both OTG function and comparator are disabled.  
Comparator output Both OTG function and comparator are enabled.  
0
1
1
0
X
X
Comparator  
input pin CMIN pin CMOUT  
OTG function is enabled when V > 5.8V and Control1 register  
BAT  
Bit<11> = 1 without OTG power-good pin indication. While the  
Information register 0x3A Bit<6:5> = 11 indicates it is in OTG mode.  
1
1
OTG enable  
OTG power-good  
Comparator is disabled.  
input pin OTGEN indication pin  
OTGPG  
OTG function is enabled when V  
Control1 register Bit<11> = 1  
> 5.8V and ENOTG pin = High and  
BAT  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 32 of 40  
ISL9237  
Adapter Overvoltage Protection  
Switching Power MOSFET Gate Capacitance  
If the ADP pin voltage exceeds 23.4V for more than 10µs, the  
ISL9237 will consider an adapter overvoltage condition has  
occurred. It will turn off the ASGATE MOSFETs to isolate the  
adapter from the system, deassert the ACOK signal by pulling it  
low and stop switching. BGATE will turn on for the battery to  
support the system load. Once ADP voltage drops below 23.04V  
from more than 100µs, it will start to turn on ASGATE and start  
switching.  
The ISL9237 includes an internal 5V LDO output at VDD pin,  
which can be used to provide the switching MOSFET gate driver  
power through VDDP pin with an R-C filter. The 5V LDO output  
overcurrent protection threshold is 70mA nominal. When  
selecting the switching power MOSFET, the MOSFET gate  
capacitance should be considered carefully to avoid overloading  
the 5V LDO, specially in Buck-boost mode when four MOSFETs  
switching at the same time. For one MOSFET, the gate drive  
current can be estimated by Equation 2:  
System Overvoltage Protection  
(EQ. 2)  
I
= Q f  
g
SW  
driver  
The ISL9237 provides system rail overvoltage protection. If the  
system voltage VSYS is 600mV higher than MaxSystemVoltage  
register set value, it will declare the system overvoltage and stop  
switching. It will resume switching without the 1.3s or 150ms  
debounce once VSYS drops 300mV below the system  
overvoltage threshold.  
Where:  
• Q is the total gate charge, which can be found in the MOSFET  
g
datasheet  
• f  
SW  
is switching frequency  
Way Overcurrent Protection (WOCP)  
Adapter Input Filter  
In the case that the system bus is shorted, either a MOSFET short  
or an inductor short, the input current could be high. ISL9237  
includes input overcurrent protection to turn off the ASGATE and  
stop switching.  
The adapter cable parasitic inductance and capacitance could  
cause some voltage ringing or an overshoot spike at the adapter  
connector node when the adapter is hot plugged in. This voltage  
spike could damage the ASGATE MOSFET or the ISL9237 pins  
connecting to the adapter connector node. One low cost solution  
is to add an RC snubber circuit at the adapter connector node to  
clamp the voltage spike as shown in Figure 34. A practical value  
of the RC snubber is 2.2Ω to 2.2µF while the appropriate values  
and power rating should be carefully characterized based on the  
actual design. Meanwhile, it is not recommended to add a pure  
capacitor at the adapter connector node, which can cause an  
even bigger voltage spike due to the adapter cable or the adapter  
current path parasitic inductance.  
The ISL9237 provides adapter current and battery discharging  
current WOCP (Way Overcurrent Protection) function against the  
MOSFET short, system bus short and inductor short scenarios.  
ISL9237 monitors the CSIP-CSIN voltage and CSON-CSOP  
voltage, compares them with the WOCP threshold 12A for  
adapter current and 16A for battery discharge current.  
When the WOC comparator is tripped, ISL9237 counts one time  
within each 20µs. Whenever ISL9237 counts WOC to 7 times in  
656ms, it turns off ASGATE, deasserts ACOK and stops switching  
immediately. After the 1.3s or 150ms debounce time set by  
Control2 register Bit<11>, it goes through the start-up sequence  
to retry.  
ADAPTER  
CONNECTOR  
The WOCP function can be disabled through Control2 register  
Bit<1>.  
Ri  
2.2  
ASGATE  
Over-Temperature Protection  
The ISL9237 turns off the internal LDO for self protection when  
the junction temperature exceeds +140°C. The internal LDO  
stays off until the junction temperature falls below +120°C.  
Ci  
2.2µF  
ACIN  
RC SNUBBER  
ISL9237  
The ISL9237 stops switching after declaring over-temperature  
protection.  
Once the temperature falls below +120°C, and after a 100µs  
delay, the ISL9237 will enable the internal LDO and the ISL9237  
will resume operation.  
FIGURE 34. ADAPTER INPUT RC SNUBBER CIRCUIT  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 33 of 40  
ISL9237  
capacitor can fade as much as 50% as the DC voltage across it  
increases.  
General Application Information  
This design guide is intended to provide a high-level explanation of  
the steps necessary to design a single-phase power converter. It is  
assumed that the reader is familiar with many of the basic skills  
and techniques referenced in the following section. In addition to  
this guide, Intersil provides complete reference designs that  
include schematics, bill of materials and example board layouts.  
Select the Input Capacitor  
The important parameters for the input capacitance are the  
voltage rating and the RMS current rating. For reliable operation,  
select capacitors with voltage and current ratings above the  
maximum input voltage and capable of supplying the RMS  
current required by the switching circuit. Their voltage rating  
should be at least 1.25x greater than the maximum input  
voltage, while a voltage rating of 1.5x is a preferred rating.  
Figure 35 is a graph of the input capacitor RMS ripple current,  
normalized relative to output load current, as a function of duty  
cycle and is adjusted for converter efficiency. The normalized RMS  
ripple current calculation is written as Equation 8:  
Select the LC Output Filter  
The duty cycle of an ideal buck converter in CCM is a function of  
the input and the output voltage. This relationship is written by  
Equation 3:  
V
OUT  
(EQ. 3)  
---------------  
D =  
V
IN  
2
D k  
12  
--------------  
D  1 D+  
-----------------------------------------------------------------------  
I
The output inductor peak-to-peak ripple current is written by  
Equation 4:  
MAX  
I
=
RMS,NORMALIZED  
C
(EQ. 8)  
I
IN  
MAX  
V
OUT 1 D  
(EQ. 4)  
-------------------------------------  
=
I
P-P  
Where:  
• I  
SW L  
f
is the maximum continuous I  
of the converter  
LOAD  
MAX  
A typical step-down DC/DC converter will have an I  
P-P  
of 20% to  
40% of the maximum DC output load current for a practical  
design. The value of I is selected based upon several criteria  
such as MOSFET switching loss, inductor core loss and the  
resistive loss of the inductor winding.  
• k is a multiplier (0 to 1) corresponding to the inductor  
peak-to peak ripple amplitude expressed as a ratio of I  
(0 to 1)  
P-P  
MAX  
• D is the duty cycle that is adjusted to take into account the  
efficiency of the converter, which is written as Equation 9:  
The DC copper loss of the inductor can be estimated by  
Equation 5:  
V
OUT  
EFF  
--------------------------  
D =  
2
V
(EQ. 9)  
(EQ. 5)  
P
= I  
DCR  
IN  
COPPER  
LOAD  
In addition to the capacitance, some low ESL ceramic  
capacitance is recommended to decouple between the drain of  
the high-side MOSFET and the source of the low-side MOSFET.  
Where I  
LOAD  
is the converter output DC current.  
The copper loss can be significant so attention has to be given to the  
DCR selection. Another factor to consider when choosing the  
inductor is its saturation characteristics at elevated temperatures. A  
saturated inductor could cause destruction of circuit components.  
0.60  
A DC/DC buck regulator must have output capacitance C into  
O
0.48  
k = 0.25  
which ripple current I  
can flow. Current I  
develops a  
P-P  
P-P  
across C which is the sum of  
corresponding ripple voltage V  
P-P  
O,  
k = 0.5  
the voltage drop across the capacitor ESR and of the voltage  
change stemming from charge moved in and out of the  
capacitor. These two voltages are written by Equations 6 and 7:  
k = 0  
0.36  
k = 1  
k = 0.75  
(EQ. 6)  
0.24  
V  
= I  
P-P ESR  
ESR  
V
= ±2.5V  
S
I
P-P  
0.12  
0
-----------------------------  
(EQ. 7)  
V  
=
C
8C  
O f  
SW  
If the output of the converter has to support a load with high  
pulsating current, several capacitors will need to be paralleled to  
0
0.1  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.2  
reduce the total ESR until the required V is achieved. The  
DUTY CYCLE  
P-P  
inductance of the capacitor can cause a brief voltage dip if the  
load transient has an extremely high slew rate. Low inductance  
capacitors should be considered in this scenario. A capacitor  
dissipates heat as a function of RMS current and frequency. Be  
FIGURE 35. NORMALIZED RMS INPUT CURRENT AT EFF = 1  
sure that I  
is shared by a sufficient quantity of paralleled  
capacitors so that they operate below the maximum rated RMS  
P-P  
current at f . Take into account that the rated value of a  
SW  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 34 of 40  
ISL9237  
Select the Switching Power MOSFET  
Select the Bootstrap Capacitor  
Typically, a MOSFET cannot tolerate even brief excursions beyond  
their maximum drain-to-source voltage rating. The MOSFETs used  
in the power stage of the converter should have a maximum VDS  
rating that exceeds the sum of the upper voltage tolerance of the  
input power source and the voltage spike that occurs when the  
MOSFET switches off.  
The selection of the bootstrap capacitor is written by  
Equation 13:  
Q
g
-----------------------  
(EQ. 13)  
C
=
BOOT  
V  
BOOT  
Where:  
There are several power MOSFETs readily available that are  
optimized for DC/DC converter applications. The preferred  
high-side MOSFET emphasizes low gate charge so that the device  
spends the least amount of time dissipating power in the linear  
region. Unlike the low-side MOSFET which has the drain-to-source  
voltage clamped by its body diode during turn off, the high-side  
• Q is the total gate charge required to turn on the high-side  
g
MOSFET.  
V  
, is the maximum allowed voltage decay across the  
BOOT  
boot capacitor each time the high-side MOSFET is switched on.  
As an example, suppose the high-side MOSFET has a total gate  
MOSFET turns off with a VDS of approximately V - V  
, plus  
IN OUT  
charge Q , of 25nC at V = 5V and a V  
GS BOOT  
of 200mV. The  
g
the spike across it. The preferred low-side MOSFET emphasizes  
low r when fully saturated to minimize conduction loss. It  
calculated bootstrap capacitance is 0.125µF; for a comfortable  
margin, select a capacitor that is double the calculated  
capacitance. In this example, 0.22µF will suffice. Use an X7R or  
X5R ceramic capacitor.  
DS(ON)  
should be noted that this is an optimal configuration of MOSFET  
selection for low duty cycle applications (D < 50%). For higher  
output, low input voltage solutions, a more balanced MOSFET  
selection for high- and low-side devices may be warranted.  
For the low-side (LS) MOSFET, the power loss can be assumed to  
be conductive only and is written as Equation 10:  
2
P
I  
r  
DSON_LS 1 D  
(EQ. 10)  
CON_LS  
LOAD  
For the high-side (HS) MOSFET, or conduction loss is written by  
Equation 11:  
2
P
= I  
r  
DSON_HS D  
(EQ. 11)  
CON_HS  
LOAD  
For the high-side MOSFET, the switching loss is written as  
Equation 12:  
V
V
IN IPEAK tSWOFF f  
IN IVALLEY tSWON f  
SW  
SW  
-------------------------------------------------------------------------- ----------------------------------------------------------------------  
P
=
+
SW_HS  
2
2
(EQ. 12)  
Where:  
• I  
is the difference of the DC component of the inductor  
VALLEY  
current minus 1/2 of the inductor ripple current.  
• I  
is the sum of the DC component of the inductor current  
PEAK  
plus 1/2 of the inductor ripple current.  
• t  
• t  
is the time required to drive the device into saturation.  
is the time required to drive the device into cut-off.  
SW(ON)  
SW(OFF)  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 35 of 40  
Q6 is for:  
Q7 is for:  
OTG mode output ON/OFF control;  
Input voltage polarity reverse protection.  
Adapter plug in inrush current control;  
Input OVP control.  
Components in dot line frame are optional  
4ꢋ  
4ꢇ  
56ꢄ  
9$'3  
'
'
'
'
6
6
6
*
$'3  
6
6
6
*
'
'
'
'
&6,3ꢄ  
&6,1ꢄ  
96<6  
&ꢂ  
&ꢃ  
&ꢁ  
ꢈꢊꢈꢃ  
&ꢇ &ꢉ &ꢍ &ꢄꢈ &ꢄꢄ &ꢄꢃ &ꢄꢂ &ꢄꢁ &ꢄꢀ &ꢄꢋ  
&ꢋ  
&ꢃꢄ &ꢃꢃ &ꢃꢂ &ꢃꢁ  
ꢄꢈX) ꢄꢈX) ꢄꢈX) ꢄꢈX)  
&ꢄꢉ  
1&  
ꢋꢉX) ꢋꢉX) ꢋꢉX)  
5ꢂ  
ꢃꢊꢃ  
ꢄX) ꢄꢈX) ꢄꢈX)ꢈX) ꢄꢈX) ꢄꢈX)ꢈX)ꢈX) ꢄꢈX) ꢄꢈX)  
ꢄꢈX)  
6,ꢇꢋꢃꢀ'1  
6,ꢇꢋꢃꢀ'1  
&ꢃꢀ  
1&  
4ꢁ  
4ꢄ  
16TQC68MYF  
16V, 68uF  
ESR=50mohm  
Total lump sum of the  
system rail capacitance  
&ꢃꢇ  
ꢃꢊꢃX)  
6L6$ꢄꢁ'1  
6L6$ꢄꢁ'1  
8*ꢄ  
8*ꢃ  
5ꢄ  
5ꢃ  
5ꢁ  
3,0%ꢈꢋꢂ7ꢌꢃ5ꢃ06ꢌꢈꢄ  
ꢃꢊꢃX+  
5ꢀ  
ꢄX)  
&ꢃꢋ  
/ꢃ  
3+ꢄ  
3+ꢃ  
&ꢃꢉ  
&ꢃꢍ  
1&  
ꢄꢈQ)  
4ꢃ  
6L6$ꢄꢁ'1  
4ꢂ  
5ꢋ  
6L6$ꢄꢁ'1  
&6,1  
&6,3  
&ꢂꢈ  
ꢈꢊꢃꢃX)  
$6*$7(  
'ꢄ  
%$7ꢀꢁ&  
9$'3  
96<6  
5ꢇ  
'&,1  
9''  
&ꢂꢄ  
ꢄX)  
ꢄꢇ  
9''3  
'&,1  
9''3  
5ꢉ ꢁꢊꢇ  
9''3  
ꢄꢉ  
ꢄꢍ  
ꢃꢈ  
ꢃꢄ  
ꢃꢃ  
ꢃꢂ  
ꢃꢁ  
/*ꢃ  
9''  
/*$7(ꢃ  
3+$6(ꢃ  
8*$7(ꢃ  
%227ꢃ  
96<6  
&ꢂꢃ  
ꢁꢊꢇX)  
&ꢂꢂ  
ꢁꢊꢇX)  
,6/ꢍꢃꢂꢇ  
8ꢄ  
3+ꢃ  
1&  
&ꢂꢁ  
5ꢍ  
ꢁꢈꢃ.  
$&,1  
27*(1ꢅ&0,1  
8*ꢃ  
5ꢄꢈ  
$&,1  
27*(1ꢅ&0,1  
6'$  
&ꢂꢋ  
5ꢄꢄ  
&ꢂꢍ 1&  
6'$  
6&/  
%7ꢃ  
ꢈꢊꢃꢃX)  
96<6ꢄ  
&623  
&621  
56ꢃ  
ꢈꢊꢈꢄ  
6&/  
&ꢂꢇ  
ꢄX)  
5ꢄꢃ  
&ꢂꢉ  
5ꢄꢂ  
ꢄꢈꢈ.  
4ꢀ  
352&+27ꢆ  
$&2.  
ꢈꢊꢄX)  
352&+27ꢆ  
$&2.  
&623  
&621ꢄ  
6
6
6
*
'
9%$7  
&621  
'
'
'
5ꢄꢁ  
&ꢁꢈ  
ꢂꢂ  
3*1'  
ꢄꢈX)  
&ꢂꢀ  
1&  
6,ꢇꢋꢃꢀ'1  
&ꢁꢃ  
ꢁꢇꢈꢈS)  
%*$7(  
9%$7ꢄ  
5ꢃꢄ  
ꢄꢈꢈ.  
%$7*21(  
5ꢃꢃ  
36<6  
5ꢃꢁ  
&ꢁꢁ  
1&  
$021ꢅ%021  
&ꢁꢀ  
ꢄꢈꢈꢈS)  
5ꢃꢂ  
&ꢁꢂ  
ꢄꢈS)  
5ꢃꢀ  
ꢋꢊꢈꢁ.  
ꢄꢁꢇ.  
5ꢃꢇ  
ꢄ.  
&ꢉꢇ  
1&  
27*3*ꢅ&0287  
&ꢁꢋ  
ꢁꢇQ)  
FIGURE 38. ISL9237 REFERENCE DESIGN  
ISL9237  
Layout Guidelines  
PIN NUMBER  
PIN NAME  
LAYOUT GUIDELINES  
BOTTOM PAD  
33  
GND  
Connect this ground pad to the ground plane through low impedance path. Recommend use of at least 5 vias to  
connect to ground planes in PCB to ensure there is sufficient thermal dissipation directly under the IC.  
1
2
CSON  
CSOP  
Run two dedicated traces with decent width in parallel (close to each other to minimize the loop area) from the two  
terminals of the battery current sensing resistor to the IC. Place the differential mode and common-mode RC filter  
components in general proximity of the controller.  
Route the current sensing traces through vias to connect the center of the pads; or route the traces into the pads from  
the inside of the current sensing resistor. The following drawings show the two preferred ways of routing current  
sensing traces.  
VIAS  
CURRENT-SENSING TRACES CURRENT-SENSING TRACES  
3
4
VSYS  
Signal pin. Provides feedback for the system bus voltage. Place the optional RC filter in general proximity of the  
controller. Run a dedicated trace from system bus to the pin and do not route near the switching traces. Do not share  
the same trace with the signal routing to the DCIN pin OR diodes.  
BOOT2  
Switching pin. Place the bootstrap capacitor in general proximity of the controller. Use decent wide trace. Avoid any  
sensitive analog signal trace from crossing over or getting close.  
5
6
UGATE2  
PHASE2  
Run these two traces in parallel fashion with decent width. Avoid any sensitive analog signal trace from crossing over  
or getting close. Recommend routing PHASE2 trace to high-side MOSFET source pin instead of general copper.  
The IC should be placed close to the switching MOSFET’s gate terminals and keep the gate drive signal traces short  
for a clean MOSFET drive. The IC can be placed on the opposite side of the switching MOSFETs.  
Place the output capacitors as close as possible to the switching high-side MOSFET drain and the low-side MOSFET  
source; and use shortest PCB trace connection. Place these capacitors on the same PCB layer with the MOSFETs  
instead of on different layers and using vias to make the connection.  
Place the inductor terminal to the switching high-side MOSFET drain and low-side MOSFET source terminal as close  
as possible. Minimize this phase node area to lower the electrical and magnetic field radiation, however, make this  
phase node area big enough to carry the current. Place the inductor and the switching MOSFETs on the same layer of  
the PCB.  
7
8
9
LGATE2  
VDDP  
Switching pin. Run LGATE2 trace in parallel with UGATE2 and PHASE2 traces on the same PCB layer. Use decent  
width. Avoid any sensitive analog signal trace from crossing over or getting close.  
Place the decoupling capacitor in general proximity of the controller. Run the trace connecting to VDD pin with decent  
width.  
LGATE1  
Switching pin. Run LGATE1 trace in parallel with UGATE1 and PHASE1 traces on the same PCB layer. Use decent  
width. Avoid any sensitive analog signal trace from crossing over or getting close.  
10  
11  
PHASE1  
UGATE1  
Run these two traces in parallel fashion with decent width. Avoid any sensitive analog signal trace from crossing over  
or getting close. Recommend routing PHASE1 trace to high-side MOSFET source pin instead of general copper.  
The IC should be placed close to the switching MOSFET’s gate terminals and keep the gate drive signal traces short  
for a clean MOSFET drive. The IC can be placed on the opposite side of the switching MOSFETs.  
Place the input capacitors as close as possible to the switching high-side MOSFET drain and the low-side MOSFET  
source; and use shortest PCB trace connection. Place these capacitors on the same PCB layer with the MOSFETs  
instead of on different layers and using vias to make the connection.  
Place the inductor terminal to the switching high-side MOSFET drain and low-side MOSFET source terminal as close  
as possible. Minimize this phase node area to lower the electrical and magnetic field radiation, however, make this  
phase node area big enough to carry the current. Place the inductor and the switching MOSFETs on the same layer of  
the PCB.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 37 of 40  
ISL9237  
Layout Guidelines(Continued)  
PIN NUMBER  
PIN NAME  
LAYOUT GUIDELINES  
12  
BOOT1  
Switching pin. Place the bootstrap capacitor in general proximity of the controller. Use decent wide trace. Avoid any  
sensitive analog signal trace from crossing over or getting close.  
13  
14  
15  
ASGATE  
CSIN  
Run this trace with decent width in parallel fashion with the ADP pin trace.  
Run two dedicated traces with decent width in parallel (close to each other to minimize the loop area) from the two  
terminals of the adapter current sensing resistor to the IC. Place the differential mode and common-mode RC filter  
components in general proximity of the controller.  
CSIP  
Route the current sensing traces through vias to connect the center of the pads; or route the traces into the pads from  
the inside of the current sensing resistor. The following drawings show the two preferred ways of routing current  
sensing traces.  
VIAS  
CURRENT-SENSING TRACES CURRENT-SENSING TRACES  
16  
17  
ADP  
Run this trace with decent width in parallel fashion with the ASGATE pin trace.  
DCIN  
Place the OR diodes and the RC filter in general proximity of the controller. Run the VADP trace and VSYS trace to the  
OR diodes with decent width.  
18  
VDD  
Place the RC filter connecting with VDDP pin in general proximity of the controller. Run the trace connecting to VDDP  
pin with decent width.  
19  
20  
21  
22  
23  
24  
25  
ACIN  
Place the voltage divider resistors and the optional decoupling capacitor in general proximity of the controller.  
OTGEN/CMIN No special consideration.  
SDA  
SCL  
Digital pins. No special consideration. Run SDA and SCL traces in parallel.  
PROCHOT#  
ACOK  
Digital pin, open-drain output. No special consideration.  
BATGONE  
Digital pin. Place the 100kΩ resistor series in the BATGONE signal trace and the optional decoupling capacitor in  
general proximity of the controller.  
26  
27  
28  
OTGPG/CMOUT Digital pin, open-drain output. No special consideration.  
PROG  
COMP  
Signal pin. Place the PROG programming resistor in general proximity of the controller.  
Place the compensation components in general proximity of the controller. Avoid any switching signal from crossing  
over or getting close.  
29  
30  
31  
AMON/BMON No special consideration. Place the optional RC filter in general proximity of the controller.  
PSYS  
VBAT  
Signal pin, current source output. No special consideration.  
Place the optional RC filter in general proximity of the controller. Run a dedicated trace from the battery positive  
connection point to the IC.  
32  
BGATE  
Use decent width trace from the IC to the BGATE MOSFET gate. Place the capacitor from BGATE to ground close to the  
MOSFET.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 38 of 40  
ISL9237  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, however, not  
warranted. Please go to the web to make sure that you have the latest revision.  
DATE  
REVISION  
FN7823.5  
FN7823.4  
CHANGE  
Nov 29, 2017  
October 4, 2017  
Added Way Overcurrent Protection (WOCP) function to datasheet.  
Applied new header/footer and formatting.  
Updated Related Literature Removed Way Overcurrent Protection (WOCP) feature from datasheet. Made  
Bit 1 on page 24 “Not used”.  
July 7, 2016  
June 7, 2016  
FN8723.3  
FN8723.2  
Removed confidential information to make the datasheet publicly available on the web.  
Added Related Literature section.  
Updated the Ordering Information table by adding the Evaluation board part number.  
Fixed typo on Figure 2 on page 5.  
Updated “Power Source Selection” on page 29.  
Updated “Stand-Alone Comparator” on page 31.  
May 12, 2016  
FN8723.1  
Updated Note 1 by adding “-T7A” option.  
Removed Evaluation Board from ordering information table.  
-Table 13 on page 23 updated Bit 11 from "Bit<11> configures the debounce time from ACOK assertion  
to switching" to "Bit<11> configures the debounce time from adapter insertion to ASGATE turning on" and  
changed the Bit name from “Adapter Insertion to Switching Debounce” to “Adapter Insertion to ASGATE  
Turning ON Debounce”.  
-Table 18 on page 28 added Min and Max column to the table and updated Typ 1% values. Changed the  
note from "207kΩ is not standard resistor" to "203kΩ is not standard resistor”.  
February 10, 2016  
FN8723.0  
Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
For a listing of definitions and abbreviations of common terms used in our documents, visit: www.intersil.com/glossary.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2016-2017. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 39 of 40  
ISL9237  
For the most recent package outline drawing, see L32.4x4A.  
Package Outline Drawing  
L32.4x4A  
32 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 2/16  
8X 0.36  
8X 0.179  
6
4.00 ±0.05  
2.80  
6
A
B
PIN 1  
PIN #1  
28X 0.40  
INDEX AREA  
INDEX AREA  
8X 0.179  
(4X)  
0.15  
24X 0.40  
32X 0.20  
4
0.10  
M
C
A B  
TOP VIEW  
BOTTOM VIEW  
(3.80)  
(2.80)  
SEE DETAIL “X”  
0.90 ±0.10  
// 0.10C  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(28X 0.40)  
5
C
0.2 REF  
(32X 0.20)  
(32X 0.60)  
0.00 MIN  
0.05 MAX  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL “X”  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance: Decimal ±0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8723 Rev.5.00  
Nov 29, 2017  
Page 40 of 40  

相关型号:

ISL9237EVAL2Z

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG
RENESAS

ISL9237HRZ

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG; QFN32; Temp Range: -10&deg; to 100&deg;C
RENESAS

ISL9237HRZ-T

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG; QFN32; Temp Range: -10&deg; to 100&deg;C
RENESAS

ISL9237HRZ-T7A

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG; QFN32; Temp Range: -10&deg; to 100&deg;C
RENESAS

ISL9237HRZ-TK

Buck-Boost Narrow VDC Battery Charger with SMBus Interface and USB OTG; QFN32; Temp Range: -10&deg; to 100&deg;C
RENESAS

ISL9301

High Input Voltage Charger With Power Path Management
INTERSIL

ISL9301IRZ

High Input Voltage Charger With Power Path Management
INTERSIL

ISL9301IRZ-T

High Input Voltage Charger With Power Path Management
INTERSIL

ISL9305

3MHz Dual Step-Down Converters and Dual Low-Input LDOs
INTERSIL

ISL9305

3MHz Dual Step-Down Converters and Dual Low-Input LDOs with I2C Compatible Interface
RENESAS

ISL9305H

3MHz Dual 1.5A Step-Down Converters and Dual Low-Input LDOs with I2C Compatible
INTERSIL

ISL9305H

3MHz Dual 1.5A Step-Down Converters and Dual Low-Input LDOs with I2C Compatible Interface
RENESAS