ISL95712HRZ [RENESAS]

Multiphase PWM Regulator for AMD Fusion™ Desktop CPUs Using SVI 2.0;
ISL95712HRZ
型号: ISL95712HRZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Multiphase PWM Regulator for AMD Fusion™ Desktop CPUs Using SVI 2.0

开关
文件: 总35页 (文件大小:1616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL95712  
FN8566  
Rev 1.00  
November 2, 2015  
Multiphase PWM Regulator for AMD Fusion™ Desktop CPUs Using SVI 2.0  
The ISL95712 is fully compliant with AMD Fusion™ SVI 2.0 and  
Features  
provides a complete solution for microprocessor and graphics  
• Supports AMD SVI 2.0 serial data bus interface and PMBus  
- Serial VID clock frequency range 100kHz to 25MHz  
• Dual output controller with 12V integrated core gate drivers  
• Precision voltage regulation  
processor core power. The ISL95712 controller supports two  
Voltage Regulators (VRs) for Core and Northbridge outputs. The  
Core VR can be configured for 4-, 3-, 2-, or 1-phase operation while  
the Northbridge VR supports 3-, 2- or 1-phase configurations for  
maximum flexibility. The two VRs share a serial control bus to  
communicate with the AMD CPU and achieve lower cost and  
smaller board area compared with two-chip solutions.  
- 0.5% system accuracy over-temperature  
- 0.5V to 1.55V in 6.25mV steps  
- Enhanced load line accuracy  
The PWM modulator is based on Intersil’s Robust Ripple  
Regulator R3™ Technology. Compared to traditional modulators,  
the R3™ modulator can automatically change switching  
frequency for faster transient settling time during load transients  
and improved light load efficiency.  
• Supports multiple current sensing methods  
- Lossless inductor DCR current sensing  
- Precision resistor current sensing  
• Programmable 1-, 2-, 3- or 4-phase for the core output and  
1- , 2- or 3-phase for the Northbridge output  
The ISL95712 has several other key features. Both outputs  
support DCR current sensing with a single NTC thermistor for  
DCR temperature compensation or accurate resistor current  
sensing. They also utilize remote voltage sense, adjustable  
switching frequency, OC protection and power-good indicators.  
• Adaptive body diode conduction time reduction  
• Superior noise immunity and transient response  
• Output current and voltage telemetry  
• Differential remote voltage sensing  
Applications  
• AMD Fusion CPU/GPU core power  
• High efficiency across entire load range  
• Programmable slew rate  
• Desktop computers  
• Programmable VID offset and droop on both outputs  
• Programmable switching frequency for both outputs  
• Excellent dynamic current balance between phases  
• Protection: OCP/WOC, OVP, PGOOD and thermal monitor  
• Small footprint 52 Ld 6x6 QFN package  
- Pb-free (RoHS compliant)  
Performance  
100  
1.6  
CORE  
90  
1.5  
NORTHBRIDGE  
80  
70  
60  
50  
40  
30  
20  
10  
0
CORE  
1.4  
CORE  
(PSI1)  
1.3  
NORTHBRIDGE  
1.2  
1.1  
DAC = 1.500V  
DAC = 1.500V  
80 90 100 110  
1.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
0
10  
20  
30  
40  
50  
60  
70  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 1. EFFICIENCY vs LOAD  
FIGURE 2. V vs LOAD  
OUT  
FN8566 Rev 1.00  
November 2, 2015  
Page 1 of 35  
ISL95712  
Table of Contents  
Simplified Application Circuit for High Power CPU Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Multiphase R3™ Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Start-Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Diode Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Differential Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adaptive Body Diode Conduction Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Resistor Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VR Offset Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VID-on-the-Fly Slew Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
AMD Serial VID Interface 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pre-PWROK Metal VID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SVI Interface Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
VID-on-the-Fly Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SVI Data Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SVI Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Dynamic Load Line Slope Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Dynamic Offset Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Telemetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PMBus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overcurrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Current-Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Overvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Thermal Monitor [NTC, NTC_NB] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Interface Pin Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Load Line Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Thermal Monitor Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FN8566 Rev 1.00  
November 2, 2015  
Page 2 of 35  
ISL95712  
Simplified Application Circuit for High Power CPU Core  
+12V  
BOOT_NB  
NB_PH1  
NB_PH2  
ISEN1_NB  
ISEN2_NB  
UGATE_NB  
Ri  
VNB1  
VNB2  
ISUMN_NB  
PHASE_NB  
LGATE_NB  
Cn  
NTC  
NB_PH1  
VNB1  
NB_PH1  
NB_PH2  
ISUMP_NB  
COMP_NB  
FB_NB  
VNB  
PROG  
+12V  
*
*
PWM2_NB  
*OPTIONAL  
VNB_SENSE  
VSEN_NB  
IMON_NB  
NB_PH2  
VNB2  
NTC_NB  
I2DATA  
+12V  
I2CLK  
THERMAL INDICATOR  
VR_HOT_L  
PWM4  
PWROK  
SVT  
VO4  
PH4  
µP  
SVD  
SVC  
VDDIO  
IMON  
+12V  
NTC  
PWM3  
COMP  
ISL95712  
VO3  
PH3  
FB  
*
*
+12V  
BOOT2  
*OPTIONAL  
VSEN  
RTN  
UGATE2  
PHASE2  
VCORE  
VCORE_SENSE  
PH1  
PH2  
ISEN1  
ISEN2  
ISEN3  
LGATE2  
PH2  
VO2  
PH3  
PH4  
ISEN4  
ISUMN  
ISUMP  
+12V  
BOOT1  
Ri  
UGATE1  
PHASE1  
VO1  
VO2  
Cn  
NTC  
VO3  
VO4  
LGATE1  
PH1  
VO1  
FIGURE 3. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING  
FN8566 Rev 1.00  
November 2, 2015  
Page 3 of 35  
ISL95712  
Pin Configuration  
ISL95712  
(52 LD QFN)  
TOP VIEW  
47  
52 51 50 49 48  
46 45 44 43 42 41 40  
1
39 PWM4  
38  
ISEN3_NB  
NTC_NB  
IMON_NB  
SVC  
PWM3  
37 BOOT1_NB  
2
3
4
36  
35  
34  
33  
32  
UGATE1_NB  
5
VR_HOT_L  
SVD  
PHASE1_NB  
LGATE1_NB  
LGATE2  
GND  
(BOTTOM PAD)  
6
VDDIO  
SVT  
7
8
VDDP  
ENABLE  
PWROK  
IMON  
9
31 UGATE2  
PHASE2  
30  
10  
11  
12  
13  
29  
28  
27  
BOOT2  
LGATE1  
UGATE1  
NTC  
ISEN4  
15 16  
24 25  
26  
17 18 19 20 21  
14  
22 23  
Pin Descriptions  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
1
ISEN3_NB  
Individual current sensing for Channel 3 of the Northbridge VR. When ISEN3_NB is pulled to +5V, the  
controller will disable Channel 3 and the Northbridge VR will run 2-phase.  
2
3
NTC_NB  
Thermistor input to VR_HOT_L circuit to monitor Northbridge VR temperature.  
IMON_NB  
Northbridge output current monitor. A current proportional to the Northbridge VR output current is  
sourced from this pin.  
4
5
6
7
SVC  
VR_HOT_L  
SVD  
Serial VID clock input from the CPU processor master device.  
Thermal indicator signal to AMD CPU. Thermal overload open-drain output indicator active LOW.  
Serial VID data bidirectional signal from the CPU processor master device to the VR.  
VDDIO  
VDDIO is the processor memory interface power rail and this pin serves as the reference to the controller  
IC for this processor I/O signal level.  
8
SVT  
Serial VID Telemetry (SVT) data line input to the CPU from the controller IC. Telemetry and VID-on-the-fly  
complete signal provided from this pin.  
9
ENABLE  
PWROK  
Enable input. A high level logic on this pin enables both VRs.  
2
10  
System power-good input. When this pin is high, the SVI 2 interface is active and the I C protocol is  
running. While this pin is low, the SVC and SVD input states determine the pre-PWROK metal VID. This  
pin must be low prior to the ISL95712 PGOOD output going high per the AMD SVI 2.0 Controller  
Guidelines.  
11  
12  
13  
IMON  
NTC  
Core output current monitor. A current proportional to the Core VR output current is sourced from this pin.  
Thermistor input to VR_HOT_L circuit to monitor Core VR temperature.  
ISEN4  
ISEN4 is the individual current sensing for Channel 4 of the Core VR. When ISEN4 is pulled to +5V, the  
controller disables Channel 4, and the Core VR runs in three-phase mode.  
FN8566 Rev 1.00  
November 2, 2015  
Page 4 of 35  
ISL95712  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
14  
ISEN3  
ISEN3 is the individual current sensing for Channel 3 of the Core VR. When ISEN3 is pulled to +5V, the  
controller disables Channel 3, and the Core VR runs in two-phase mode.  
15  
16  
ISEN2  
ISEN1  
Individual current sensing for Channel 2 of the Core VR. When ISEN2 is pulled to +5V, the controller  
disables Channel 2, and the Core VR runs in single-phase mode.  
Individual current sensing for Channel 1 of the Core VR. If ISEN2 is tied to +5V, this pin cannot be left  
open and must be tied to GND with a 10kΩ resistor. If ISEN1 is tied to +5V, the Core portion of the IC is  
shut down.  
17  
18  
19  
20  
ISUMP  
ISUMN  
VSEN  
RTN  
Noninverting input of the transconductance amplifier for current monitor and load line of Core output.  
Inverting input of the transconductance amplifier for current monitor and load line of Core output.  
Output voltage sense pin for the Core controller. Connect to the +sense pin of the microprocessor die.  
Output voltage sense return pin for both Core VR and Northbridge VR. Connect to the -sense pin of the  
microprocessor die.  
21  
22  
FB  
Output voltage feedback to the inverting input of the Core controller error amplifier.  
VDD  
5V bias power. A resistor [2Ω] and a decoupling capacitor should be used from the +5V supply. A high  
quality, X7R dielectric MLCC capacitor is recommended.  
23  
PGOOD  
Open-drain output to indicate the Core output is ready to supply regulated voltage. Pull-up externally to  
VDD or 3.3V through a resistor.  
24  
25  
COMP  
Core controller error amplifier output. A resistor from COMP to GND sets the Core VR offset voltage.  
BOOT1  
Connect an MLCC capacitor across the BOOT1 and PHASE1 pins. The boot capacitor is charged, through  
an internal boot diode connected from the VDDP pin to the BOOT1 pin, each time the PHASE1 pin drops  
below VDDP minus the voltage dropped across the internal boot diode.  
26  
PHASE1  
Current return path for the Phase 1 high-side MOSFET gate driver of VR1. Connect the PHASE1 pin to the  
node consisting of the high-side MOSFET source, the low-side MOSFET drain and the output inductor of  
Phase 1.  
27  
28  
29  
UGATE1  
LGATE1  
BOOT2  
Output of the Phase 1 high-side MOSFET gate driver of the Core VR. Connect the UGATE1 pin to the gate  
of the Phase 1 high-side MOSFET(s).  
Output of the Phase 1 low-side MOSFET gate driver of the Core VR. Connect the LGATE1 pin to the gate  
of the Phase 1 low-side MOSFET(s).  
Connect an MLCC capacitor across the BOOT2 and PHASE2 pins. The boot capacitor is charged, through  
an internal boot diode connected from the VDDP pin to the BOOT2 pin, each time the PHASE2 pin drops  
below VDDP minus the voltage dropped across the internal boot diode.  
30  
PHASE2  
Current return path for the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the PHASE2  
pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain and the output  
inductor of Phase 2.  
31  
32  
33  
34  
35  
UGATE2  
VDDP  
Output of the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the UGATE2 pin to the gate  
of the Phase 2 high-side MOSFET(s).  
Input voltage bias for the internal gate drivers. Connect +12V to the VDDP pin. Decouple with at least 1µF  
of capacitance to GND. A high quality, X7R dielectric MLCC capacitor is recommended.  
LGATE2  
Output of the Phase 2 low-side MOSFET gate driver of the Core VR. Connect the LGATE2 pin to the gate  
of the Phase 2 low-side MOSFET(s).  
LGATE1_NB  
PHASE1_NB  
Output of Northbridge Phase 1 low-side MOSFET gate driver. Connect the LGATE1_NB pin to the gate of  
the Northbridge VR Phase 1 low-side MOSFET(s).  
Current return path for Northbridge VR Phase 1 high-side MOSFET gate driver. Connect the PHASE1_NB  
pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain and the output  
inductor of Northbridge Phase 1.  
36  
UGATE1_NB  
Output of the Phase 1 high-side MOSFET gate driver of the Northbridge VR. Connect the UGATE1_NB pin  
to the gate of the Northbridge VR Phase 1 high-side MOSFET(s).  
FN8566 Rev 1.00  
November 2, 2015  
Page 5 of 35  
ISL95712  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
37  
BOOT1_NB  
Connect an MLCC capacitor across the BOOT1_NB and PHASE1_NB pins. The boot capacitor is charged,  
through an internal boot diode connected from the VDDP pin to the BOOT1_NB pin, each time the  
PHASE1_NB pin drops below VDDP minus the voltage dropped across the internal boot diode.  
38  
39  
PWM3  
PWM4  
PWM output of Channel 3 of the Core VR. Disabled if ISEN3 is tied to +5V.  
PWM output of Channel 4 of the Core VR. Disabled if ISEN4 is tied to +5V.  
40  
PWM2_NB  
PWM3_NB  
I2CLK, I2DATA  
PWM output for Channel 2 of the Northbridge VR. Disabled when ISEN2_NB is tied to +5V.  
PWM output for Channel 3 of the Northbridge VR. Disabled when ISEN3_NB is tied to +5V.  
41  
2
42, 43  
SMBus/PMBus/I C interface used for additional communication with the controller outside of the SVI2  
pins. Tie to VCC with 4.7kΩ pull-up resistor when not used.  
44  
45  
PROG  
A resistor from the PROG pin to GND programs the switching frequency.  
PGOOD_NB  
Open-drain output to indicate the Northbridge output is ready to supply regulated voltage. Pull-up  
externally to VDD or 3.3V through a resistor.  
46  
COMP_NB  
Northbridge VR error amplifier output. A resistor from COMP_NB to GND sets the Northbridge VR offset  
voltage and is used to set the switching frequency for the Core VR and Northbridge VR.  
47  
48  
FB_NB  
Output voltage feedback to the inverting input of the Northbridge controller error amplifier.  
VSEN_NB  
Output voltage sense pin for the Northbridge controller. Connect to the +sense pin of the microprocessor  
die.  
49  
50  
ISUMN_NB  
ISUMP_NB  
Inverting input of the transconductance amplifier for current monitor and load line of the Northbridge VR.  
Noninverting input of the transconductance amplifier for current monitor and load line of the Northbridge  
VR.  
51  
52  
ISEN1_NB  
Individual current sensing for Channel 1 of the Northbridge VR. If ISEN1_NB is tied to +5V, this pin cannot  
be left open and must be tied to GND with a 10kΩ resistor. If ISEN1_NB is tied to +5V, the Northbridge  
portion of the IC is shutdown.  
ISEN2_NB  
Individual current sensing for Channel 2 of the Northbridge VR. When ISEN2_NB is pulled to +5V, the  
controller will disable Channels 2 and 3 and the Northbridge VR will run 1-phase.  
GND (Bottom Pad)  
Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin.  
Ordering Information  
PART NUMBER  
PART  
TEMP.  
PACKAGE  
PKG.  
(Notes 1, 2, 3)  
MARKING  
RANGE (°C)  
(RoHS Compliant)  
DWG. #  
ISL95712HRZ  
95712 HRZ  
95712 IRZ  
-10 to +100  
-40 to +100  
52 Ld 6x6 QFN  
52 Ld 6x6 QFN  
L52.6x6A  
L52.6x6A  
ISL95712IRZ  
NOTES:  
1. Add “-T” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL95712. For more information on MSL please see tech brief TB363.  
FN8566 Rev 1.00  
November 2, 2015  
Page 6 of 35  
ISL95712  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
Input Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15V  
Thermal Resistance (Typical)  
52 Ld QFN Package (Notes 4, 5) . . . . . . . .  
JA (°C/W)  
28  
JC (°C/W)  
DD  
2.5  
Gate Driver Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . -0.3V to + 15V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
DDP  
Boot Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to V  
+ 15V  
+ 0.3V  
+ 0.3V  
+ 0.3V  
+ 0.3V  
BOOT  
DDP  
BOOT  
BOOT  
DDP  
DDP  
UGATE Voltage (V  
). . . . . . . . . . . . . . V  
- 0.3V to V  
UGATE  
PHASE  
- 3.5V (<100ns Pulse Width, 2µJ) to V  
DC  
V
PHASE  
LGATE Voltage (V  
) . . . . . . . . . . . . . . . . . GND - 0.3V to V  
LGATE  
GND - 5V (<100ns Pulse Width, 2µJ) to V  
DC  
Recommended Operating Conditions  
PHASE Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . GND - 0.3V to 25V  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5V ±5%  
PHASE DC  
DC  
GND - 8V (>400ns Pulse Width, 20µ) to 30V (<200ns)  
DD  
Input Supply and Gate Drive Voltages, V  
Ambient Temperature  
. . . . . . . . . . . . . . . +12V ±5%  
DDP  
Open-Drain Outputs, PGOOD, PGOOD_NB, VR_HOT_L. . . . . . . -0.3V to +7V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD + 0.3V  
HRZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
IRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +100°C  
Junction Temperature  
HRZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +125°C  
IRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C (HRZ), f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply across the operating temperature range, -40°C to +100°C.  
MIN  
MAX  
PARAMETER  
INPUT POWER SUPPLY  
+5V Supply Current  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
I
ENABLE = 1V  
ENABLE = 0V  
12.5  
14.0  
125  
mA  
µA  
VDD  
POWER-ON-RESET THRESHOLDS  
VDD POR Threshold  
VDD_POR  
VDD_POR  
V
V
rising  
4.35  
4.15  
4.50  
V
V
r
DD  
DD  
falling  
4.00  
f
SYSTEM AND REFERENCES  
System Accuracy  
HRZ  
%Error (V  
No load; closed loop, active mode range,  
VID = 0.75V to 1.55V  
-0.5  
-10  
+0.5  
+10  
%
OUT)  
VID = 0.25V to 0.74375V  
mV  
IRZ  
%Error (V  
No load; closed loop, active mode range,  
VID = 0.75V to 1.55V  
-0.8  
+0.8  
)
%
mV  
V
OUT  
VID = 0.25V to 0.74375V  
VID = [00000000]  
-12  
+12  
Maximum Output Voltage  
Minimum Output Voltage  
CHANNEL FREQUENCY  
Nominal Channel Frequency  
Adjustment Range  
V
1.55  
0
OUT(max)  
V
VID = [11111111]  
V
OUT(min)  
f
280  
300  
300  
320  
450  
kHz  
kHz  
SW(nom)  
AMPLIFIERS  
Current-Sense Amplifier Input Offset  
HRZ  
IRZ  
I
I
= 0A  
= 0A  
-0.15  
+0.15  
mV  
mV  
dB  
FB  
FB  
-0.20  
+0.20  
Error Amp DC Gain  
Error Amp Gain-Bandwidth Product  
ISEN  
A
119  
17  
v0  
GBW  
C = 20pF  
MHz  
L
Input Bias Current  
20  
nA  
FN8566 Rev 1.00  
November 2, 2015  
Page 7 of 35  
ISL95712  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C (HRZ), f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply across the operating temperature range, -40°C to +100°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
POWER-GOOD (PGOOD AND PGOOD_NB) AND PROTECTION MONITORS  
PGOOD Low Voltage  
V
I
= 4mA  
PGOOD  
0.4  
1
V
OL  
PGOOD Leakage Current  
PWROK High Threshold  
VR_HOT_L Pull-Down  
PWROK Leakage Current  
VR_HOT_L Leakage Current  
GATE DRIVER  
I
PGOOD = 3.3V  
-1  
µA  
mV  
Ω
OH  
750  
11  
1
1
µA  
µA  
UGATE Pull-Up Resistance  
UGATE Source Current  
UGATE Sink Resistance  
UGATE Sink Current  
R
200mA source current  
UGATE - PHASE = 2.5V  
250mA sink current  
1.0  
2
1.5  
1.5  
1.5  
0.9  
Ω
A
UGPU  
I
UGSRC  
R
1.0  
2
Ω
A
UGPD  
I
UGATE - PHASE = 2.5V  
250mA source current  
LGATE - VSSP = 2.5V  
UGSNK  
LGATE Pull-Up Resistance  
LGATE Source Current  
LGATE Sink Resistance  
LGATE Sink Current  
R
1.0  
2
Ω
A
LGPU  
I
LGSRC  
R
250mA sink current  
0.5  
4
Ω
A
LGPD  
I
LGATE - VSSP = 2.5V  
LGSNK  
UGATE to LGATE Dead Time  
LGATE to UGATE Dead Time  
PROTECTION  
t
UGATE falling to LGATE rising, no load  
LGATE falling to UGATE rising, no load  
59  
37  
ns  
ns  
UGFLGR  
LGFUGR  
t
Overvoltage Threshold  
Undervoltage Threshold  
Current Imbalance Threshold  
OV  
UV  
VSEN rising above setpoint for >1µs  
VSEN falls below setpoint for >1µs  
One ISEN above another ISEN for >1.2ms  
275  
275  
325  
325  
9
375  
375  
mV  
mV  
mV  
µA  
TH  
TH  
Way Overcurrent Trip Threshold  
[IMONx Current Based Detection]  
IMONx  
All states, I  
= 60µA, R  
= 135kΩ  
IMON  
15  
WOC  
DROOP  
Overcurrent Trip Threshold  
[IMONx Voltage Based Detection]  
V
All states, I  
= 45µA,  
= 135kΩ  
IMON  
1.485  
1.510  
1.535  
1
V
IMONx_OCP  
DROOP  
I
= 11.25µA, R  
IMONx  
LOGIC THRESHOLDS  
ENABLE Input Low  
ENABLE Input High  
V
V
V
IL  
V
V
HRZ  
IRZ  
1.6  
1.65  
-1  
IH  
IH  
V
ENABLE Leakage Current  
I
ENABLE = 0V  
ENABLE = 1V  
0
1
µA  
µA  
Ω
ENABLE  
1
SVT Impedance  
50  
SVC, SVD Input Low  
SVC, SVD Input High  
SVC, SVD Leakage  
V
% of VDDIO  
% of VDDIO  
30  
%
IL  
V
70  
-1  
%
IH  
ENABLE = 0V, SVC, SVD = 0V and 1V  
ENABLE = 1V, SVC, SVD = 1V  
ENABLE = 1V, SVC, SVD = 0V  
1
1
µA  
µA  
µA  
-5  
-35  
-20  
-5  
PWM  
PWM Output Low  
PWM Output High  
PWM Tri-State Leakage  
THERMAL MONITOR  
NTC Source Current  
NTC Thermal Warning Voltage  
V
Sinking 5mA  
Sourcing 5mA  
PWM = 2.5V  
1
V
V
0L  
V
3.5  
0H  
0.5  
µA  
NTC = 0.6V  
27  
30  
33  
µA  
600  
640  
680  
mV  
FN8566 Rev 1.00  
November 2, 2015  
Page 8 of 35  
ISL95712  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C (HRZ), f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply across the operating temperature range, -40°C to +100°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
20  
(Note 6)  
UNIT  
mV  
NTC Thermal Warning Voltage  
Hysteresis  
NTC Thermal Shutdown Voltage  
SLEW RATE  
530  
580  
630  
mV  
VID-on-the-Fly Slew Rate  
Maximum Programmed  
Minimum Programmed  
16  
8
20  
10  
24  
12  
mV/µs  
mV/µs  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
Gate Driver Timing Diagram  
PWM  
t
LGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
t
UGFLGR  
FIGURE 4. GATE DRIVER TIMING DIAGRAM  
FN8566 Rev 1.00  
November 2, 2015  
Page 9 of 35  
ISL95712  
1-phase mode, the master clock signal will be distributed to  
Phase 1 only and will be the Clock1 signal.  
Theory of Operation  
Multiphase R3™ Modulator  
VW  
The ISL95712 is a multiphase regulator implementing two voltage  
regulators, CORE VR and Northbridge (NB) VR, on one chip  
controlled by AMD’s™ SVI2™ protocol. The CORE VR can be  
programmed for 1-, 2-, 3- or 4-phase operation. The Northbridge VR  
can be configured for 1-, 2-, or 3-phase operation. Both regulators  
use the Intersil patented R3™ (Robust Ripple Regulator) modulator.  
The R3™ modulator combines the best features of fixed frequency  
PWM and hysteretic PWM while eliminating many of their  
shortcomings. Figure 5 conceptually shows the multiphase R3™  
modulator circuit, and Figure 6 shows the operation principles.  
HYSTERETIC  
VCRM  
WINDOW  
COMP  
MASTER  
CLOCK  
CLOCK1  
PWM1  
MASTER CLOCK CIRCUIT  
VW  
CLOCK2  
PWM2  
MASTER  
CLOCK  
CLOCK1  
CLOCK2  
CLOCK3  
COMP  
VCRM  
MASTER  
CLOCK  
PHASE  
SEQUENCER  
CLOCK3  
GMVO  
CRM  
PWM3  
SLAVE CIRCUIT 1  
L1  
IL1  
PHASE1  
PHASE2  
PHASE3  
VW  
CLOCK1  
PWM1  
VO  
S
R
VW  
Q
CO  
VCRS1  
GM  
VCRS2  
VCRS3 VCRS1  
CRS1  
CRS2  
CRS3  
FIGURE 6. R3MODULATOR OPERATION PRINCIPLES IN  
STEADY STATE  
SLAVE CIRCUIT 2  
L2  
IL2  
CLOCK2  
GM  
PWM2  
S
R
VW  
Q
Each slave circuit has its own ripple capacitor C , whose voltage  
RS  
mimics the inductor ripple current. A g amplifier converts the  
inductor voltage into a current source to charge and discharge  
. The slave circuit turns on its PWM pulse upon receiving the  
clock signal, and the current source charges C . When C  
hits VW, the slave circuit turns off the PWM pulse,  
and the current source discharges C  
m
VCRS2  
C
RS  
RS RS  
voltage V  
CRS  
SLAVE CIRCUIT 3  
.
L3  
IL3  
RS  
CLOCK3  
GM  
PWM3  
S
R
VW  
Q
Since the controller works with V  
, which are large amplitude  
CRS  
and noise-free synthesized signals, it achieves lower phase jitter  
than conventional hysteretic mode and fixed PWM mode  
controllers. Unlike conventional hysteretic mode converters, the  
error amplifier allows the ISL95712 to maintain a 0.5% output  
voltage accuracy.  
VCRS3  
FIGURE 5. R3MODULATOR CIRCUIT  
Figure 7 shows the operation principles during load insertion  
response. The COMP voltage rises during load insertion,  
generating the master clock signal more quickly, so the PWM  
pulses turn on earlier, increasing the effective switching  
frequency. This allows for higher control loop bandwidth than  
conventional fixed frequency PWM controllers. The VW voltage  
rises as the COMP voltage rises, making the PWM pulses wider.  
During load release response, the COMP voltage falls. It takes  
the master clock circuit longer to generate the next master clock  
signal so the PWM pulse is held off until needed. The VW voltage  
falls as the COMP voltage falls, reducing the current PWM pulse  
width. This kind of behavior gives the ISL95712 excellent  
response speed.  
Inside the IC, the modulator uses the master clock circuit to  
generate the clocks for the slave circuits. The modulator  
discharges the ripple capacitor C with a current source equal  
rm  
to g V , where g is a gain factor. C voltage V  
m o rm CRM  
is a  
m
sawtooth waveform traversing between the VW and COMP  
voltages. It resets to VW when it hits COMP, and generates a  
one-shot master clock signal. A phase sequencer distributes the  
master clock signal to the slave circuits. If the Core VR is in  
4-phase mode, the master clock signal is distributed to the four  
phases, and the Clock 1~4 signals will be 90° out-of-phase. If the  
Core VR is in 3-phase mode, the master clock signal is  
distributed to the three phases, and the Clock 1~3 signals will be  
120° out-of-phase. If the Core VR is in 2-phase mode, the master  
clock signal is distributed to Phases 1 and 2, and the Clock1 and  
Clock2 signals will be 180° out-of-phase. If the Core VR is in  
The fact that all the phases share the same VW window voltage  
also ensures excellent dynamic current balance among phases.  
FN8566 Rev 1.00  
November 2, 2015  
Page 10 of 35  
ISL95712  
Figure 9 shows the operation principle in diode emulation mode at  
light load. The load gets incrementally lighter in each of the three  
cases from top to bottom. The PWM on-time is determined by the  
VW window size and therefore is the same, making the inductor  
current triangle the same in each of the three cases. The ISL95712  
VW  
COMP  
VCRM  
clamps the ripple capacitor voltage V  
in DE mode to make it  
CRS  
mimic the inductor current. It takes the COMP voltage longer to hit  
, naturally stretching the switching period. The inductor  
current triangles move farther apart, such that the inductor current  
average value is equal to the load current. The reduced switching  
frequency helps increase light-load efficiency.  
V
CRS  
MASTER  
CLOCK  
CLOCK1  
PWM1  
CCM/DCM BOUNDARY  
VW  
CLOCK2  
PWM2  
PWM  
VCRS  
CLOCK3  
PWM3  
IL  
VW  
LIGHT DCM  
VW  
VCRS  
VCRS1  
VCRS3  
VCRS2  
IL  
DEEP DCM  
VW  
FIGURE 7. R3MODULATOR OPERATION PRINCIPLES IN LOAD  
INSERTION RESPONSE  
VCRS  
Diode Emulation and Period Stretching  
IL  
The ISL95712 can operate in Diode Emulation (DE) mode to  
improve light-load efficiency. In DE mode, the low-side MOSFET  
conducts when the current is flowing from source-to-drain and  
does not allow reverse current, thus emulating a diode. Figure 8  
shows when LGATE is on, the low-side MOSFET carries current,  
creating negative voltage on the phase node due to the voltage  
drop across the ON-resistance. The ISL95712 monitors the current  
by monitoring the phase node voltage. It turns off LGATE when the  
phase node voltage reaches zero to prevent the inductor current  
from reversing the direction and creating unnecessary power loss.  
FIGURE 9. PERIOD STRETCHING  
Channel Configuration  
Individual PWM channels of either VR can be disabled by  
connecting the ISENx pin of the channel not required to +5V. For  
example, placing the controller in a 3+1 configuration, requires  
ISEN4 of the Core VR and ISEN2_NB and ISEN3_NB of the  
Northbridge VR to be tied to +5V. This disables Channel 4 of the  
Core VR and Channels 2 and 3 of the Northbridge VR. ISEN1_NB  
must be tied through a 10kΩ resistor to GND to prevent this pin  
from pulling high and disabling the channel. Similarly, if the Core  
VR is set to single phase mode, ISEN4, ISEN3 and ISEN2 will be  
tied to +5V while ISEN1 is tied to GND through a 10kΩ resistor.  
PHASE  
Connecting ISEN1 or ISEN1_NB to +5V will disable the  
corresponding VR output. This feature allows debugging of  
individual VR outputs.  
UG A TE  
LG ATE  
Power-On Reset  
IL  
Before the controller has sufficient bias to guarantee proper  
operation, the ISL95712 requires a +5V input supply tied to VDD  
to exceed the VDD rising Power-On Reset (POR) threshold. Once  
this threshold is reached or exceeded, the ISL95712 has enough  
bias to check the state of the SVI inputs once ENABLE is taken  
high. Hysteresis between the rising and the falling thresholds  
assure the ISL95712 does not inadvertently turn off unless the  
bias voltage drops substantially (see “Electrical Specifications”  
FIGURE 8. DIODE EMULATION  
If the load current is light enough, as Figure 8 shows, the inductor  
current reaches and stays at zero before the next phase node  
pulse, and the regulator is in Discontinuous Conduction Mode  
(DCM). If the load current is heavy enough, the inductor current  
will never reach 0A, and the regulator is in CCM, although the  
controller is in DE mode.  
on page 7). Note that V must be present for the controller to  
IN  
drive the output voltage.  
FN8566 Rev 1.00  
November 2, 2015  
Page 11 of 35  
ISL95712  
1
4
5
6
2
3
7
8
VDD  
SVC  
SVD  
VOTF  
SVT  
TELEMETRY  
TELEMETRY  
ENABLE  
PWROK  
METAL_VID  
V
/ V  
CORE CORE_NB  
V_SVI  
PGOOD AND PGOOD_NB  
Interval 1 to 2: ISL95712 waits to POR.  
Interval 2 to 3: SVC and SVD are externally set to pre-Metal VID code.  
Interval 3 to 4: ENABLE locks pre-Metal VID code. Both outputs soft-start to this level.  
Interval 4 to 5: PGOOD signal goes HIGH, indicating proper operation.  
Interval 5 to 6: PGOOD and PGOOD_NB high is detected and PWROK is taken high. The ISL95712 is prepared for SVI commands.  
Interval 6 to 7: SVC and SVD data lines communicate change in VID code.  
Interval 7 to 8: ISL95712 responds to VID-ON-THE-FLY code change and issues a VOTF for positive VID changes.  
Post 8: Telemetry is clocked out of the ISL95712.  
FIGURE 10. SVI INTERFACE TIMING DIAGRAM: TYPICAL PRE-PWROK METAL VID START-UP  
Start-Up Timing  
VDD  
With VDD above the POR threshold, the controller start-up  
SLEW RATE  
MetalVID  
ENABLE  
sequence begins when ENABLE exceeds the logic high threshold.  
Figure 11 shows the typical soft-start timing of the Core and  
Northbridge VRs. Once the controller registers ENABLE as a high,  
the controller checks the state of a few programming pins during  
the typical 8ms delay prior to beginning soft-starting the Core  
and Northbridge outputs. The pre-PWROK Metal VID is read from  
the state of the SVC and SVD pins and programs the DAC, the  
programming resistors on the COMP, COMP_NB and PROG pins  
are read to configure switching frequency, slew rate and output  
offsets. These programming resistors are discussed in  
subsequent sections. The ISL95712 use a digital soft-start to  
ramp up the DAC to the Metal VID level programmed. The  
soft-start slew rate is programmed by the PROG resistor, which is  
used to set the VID-on-the-fly slew rate as well. See the  
“VID-on-the-Fly Slew Rate Selection” on page 17 for more details  
on selecting the PROG resistor. PGOOD is asserted high at the  
end of the soft-start ramp.  
VID COMMAND  
VOLTAGE  
8ms  
DAC  
PGOOD  
PWROK  
VIN  
FIGURE 11. TYPICAL SOFT-START WAVEFORMS  
Voltage Regulation and Load Line  
Implementation  
After the soft-start sequence, the ISL95712 regulates the output  
voltages to the pre-PWROK metal VID programmed, see Table 6  
on page 17. The ISL95712 controls the no-load output voltage to  
an accuracy of ±0.5% over the range of 0.75V to 1.55V. A  
differential amplifier allows voltage sensing for precise voltage  
regulation at the microprocessor die.  
Diode Throttling  
During the soft-start ramp-up, the ISL95712 operates in Diode  
Throttling mode until the output has exceeded 400mV. In Diode  
Throttling mode, the lower MOSFET is kept OFF so that the  
MOSFET body diode conducts, similar to a standard buck  
regulator.  
FN8566 Rev 1.00  
November 2, 2015  
Page 12 of 35  
ISL95712  
amplifier regulates the inverting and noninverting input voltages to  
be equal as shown in Equation 4:  
Rdroop  
VCC  
+ V  
= V  
+ VSS  
DAC SENSE  
VCCSENSE  
(EQ. 4)  
SENSE  
+
-
droop  
Vdroop  
FB  
VR LOCAL VO  
“CATCH” RESISTOR  
Rewriting Equation 4 and substituting Equation 3 gives Equation 5  
the exact equation required for load line implementation.  
Idroop  
+
-
SVC  
VCC  
VSS  
= V  
R  
I  
droop droop  
(EQ. 5)  
E/A  
SENSE  
SENSE  
DAC  
SVID[7:0]  
VSSSENSE  
COMP  
DAC  
X 1  
SVD  
RTN  
VSS  
VDAC  
+
The VCC  
SENSE  
and VSS signals come from the processor die.  
SENSE  
+
The feedback is open circuit in the absence of the processor. As  
Figure 12 shows, it is recommended to add a “catch” resistor to  
feed the VR local output voltage back to the compensator, and to  
add another “catch” resistor to connect the VR local output ground  
to the RTN pin. These resistors, typically 10Ω, provide voltage  
feedback if the system is powered up without a processor installed.  
INTERNAL TO IC  
-
“CATCH” RESISTOR  
FIGURE 12. DIFFERENTIAL SENSING AND LOAD LINE  
IMPLEMENTATION  
Phase Current Balancing  
As the load current increases from zero, the output voltage  
droops from the VID programmed value by an amount  
proportional to the load current, to achieve the load line. The  
ISL95712 can sense the inductor current through the intrinsic DC  
Resistance (DCR) of the inductors, as shown in Figures 13 and  
14, or through resistors in series with the inductors, as shown in  
Rdcr4  
L4  
Rpcb4  
PHASE4  
Risen  
IL4  
ISEN4  
ISEN3  
Rdcr3  
Cisen  
L3  
Rpcb3  
Figure 25 on page 28. In both methods, capacitor C voltage  
n
PHASE3  
Risen  
represents the total inductor current. An internal amplifier  
IL3  
converts C voltage into an internal current source, I  
, with the  
n
sum  
gain set by resistor R , see Equation 1.  
Cisen  
i
Rdcr2  
L2  
L1  
Rpcb2  
VO  
V
Cn  
PHASE2  
Risen  
----------  
I
=
(EQ. 1)  
sum  
R
i
IL2  
ISEN2  
ISEN1  
Cisen  
The I  
current is used for load line implementation, current  
sum  
Rdcr1  
Rpcb1  
monitoring on the IMON pins and overcurrent protection.  
PHASE1  
Risen  
Figure 12 shows the load line implementation. The ISL95712  
IL1  
drives a current source (I  
droop  
) out of the FB pin, which is a ratio  
Cisen  
of the I  
current, as described by Equation 2.  
sum  
V
5
4
5
4
Cn  
--  
=
-- ----------  
(EQ. 2)  
I
I  
=
sum  
FIGURE 13. CURRENT BALANCING CIRCUIT  
droop  
R
i
The ISL95712 monitors individual phase average current by  
monitoring the ISEN1, ISEN2, ISEN3 and ISEN4 voltages.  
Figure 13 shows the recommended current balancing circuit for  
DCR sensing. Each phase node voltage is averaged by a low-pass  
When using inductor DCR current sensing, a single NTC element  
is used to compensate the positive temperature coefficient of the  
copper winding, thus sustaining the load line accuracy with  
reduced cost.  
filter consisting of R  
corresponding ISEN pin. R  
and C  
, and is presented to the  
isen  
isen  
should be routed to the inductor  
I
flows through resistor R  
droop  
and creates a voltage drop as  
isen  
droop  
shown in Equation 3.  
phase-node pad in order to eliminate the effect of phase node  
parasitic PCB DCR. Equations 6 through 9 give the ISEN pin  
voltages:  
V
= R  
I  
droop droop  
(EQ. 3)  
droop  
(EQ. 6)  
(EQ. 7)  
(EQ. 8)  
V
V
V
= R  
= R  
= R  
+ R  
+ R  
+ R  
  I  
  I  
  I  
ISEN1  
ISEN2  
ISEN3  
dcr1  
dcr2  
dcr3  
pcb1  
pcb2  
pcb3  
L1  
L2  
L3  
V
is the droop voltage required to implement load line.  
droop  
Changing R  
Since I  
recommended to first scale I  
then select an appropriate R  
load line slope.  
or scaling I  
can change the load line slope.  
droop  
sets the overcurrent protection level, it is  
droop  
sum  
based on OCP requirement,  
value to obtain the desired  
sum  
droop  
(EQ. 9)  
,
V
= R  
+ R  
  I  
ISEN4  
dcr4  
pcb4  
L4  
Differential Sensing  
Figure 12 also shows the differential voltage sensing scheme.  
Where R  
, R  
pcb2 pcb3  
inductor output side pad and the output voltage rail; and I , I  
, R  
and R  
are inductor DCR; R  
dcr1 dcr2 dcr3  
dcr4  
pcb1  
R
, R  
and R are parasitic PCB DCR between the  
VCC  
and VSS are the remote voltage sensing signals  
pcb4  
SENSE  
SENSE  
,
from the processor die. A unity gain differential amplifier senses  
the VSS voltage and adds it to the DAC output. The error  
L1 L2  
I
and I are inductor average currents.  
L3  
L4  
SENSE  
FN8566 Rev 1.00  
November 2, 2015  
Page 13 of 35  
ISL95712  
The ISL95712 will adjust the phase pulse-width relative to the  
The ISL95712 will make V  
ISEN1  
= V  
ISEN2  
= V  
ISEN3  
= V as  
ISEN4  
other phases to make V  
= V  
= V  
= R  
= V  
, thus to  
= R  
shown in Equations 14 and 16:  
ISEN1  
ISEN2  
ISEN3  
ISEN4  
achieve I = I = I = I , when R  
= R  
dcr3  
L1 L2 L3 L4 dcr1  
dcr2  
dcr4  
V
+ V + V + V  
= V + V + V + V  
1n 2p 3n 4n  
(EQ. 14)  
(EQ. 15)  
(EQ. 16)  
1p  
2n  
3n  
and R  
= R  
= R  
= R  
.
pcb4  
4n  
pcb1  
pcb2 pcb3  
Using the same components for L1, L2, L3 and L4 provides a  
good match of R , R , R and R . Board layout  
V
V
+ V + V + V  
= V + V + V + V  
1n 2n 3p  
1n  
1n  
2p  
3n  
4n  
4p  
4n  
4n  
dcr1 dcr2 dcr3 dcr4  
determines R  
, R , R and R . It is recommended  
pcb1 pcb2 pcb3 pcb4  
+ V + V + V  
= V + V + V + V  
1n 2n 3n  
to have a symmetrical layout for the power delivery path between  
each inductor and the output voltage rail, such that  
2n  
3p  
R
= R  
= R  
= R .  
Rewriting Equation 14 gives Equation 17:  
pcb1  
pcb2  
pcb3  
pcb4  
Rdcr4  
L4  
Rpcb4  
V
V  
= V V  
1n 2p 2n  
PHASE4 V4p  
Risen  
(EQ. 17)  
(EQ. 18)  
(EQ. 19)  
(EQ. 20)  
1p  
Cisen  
ISEN4  
IL4  
V4n  
Rewriting Equation 15 gives Equation 18:  
Risen  
Risen  
Risen  
V
V  
= V V  
2n 3p 3n  
2p  
Rewriting Equation 16 gives Equation 19:  
Rdcr3  
L3  
Rpcb3  
V3p  
PHASE3  
Risen  
V
V  
= V V  
3n 4p 4n  
3p  
Cisen  
ISEN3  
IL3  
V3n  
Risen  
Risen  
Risen  
Combining Equations 17 through 19 give:  
V
V  
= V V  
= V V  
= V V  
3n 4p 4n  
1p  
1n  
2p  
2n  
3p  
INTERNAL  
TO IC  
Rdcr2  
L2  
V
Rpcb2  
o
V2p  
Therefore:  
PHASE2  
Risen  
Risen  
Risen  
Risen  
Cisen  
R
I  
= R  
I  
= R  
I  
= R  
I  
dcr4 L4  
(EQ. 21)  
pcb4  
dcr1  
L1  
dcr2  
L2  
dcr3  
L3  
ISEN2  
IL2  
V2n  
Current balancing (I = I = I = I ) is achieved when  
L1 L2 L3 L4  
R
= R  
= R = R . R , R  
, R and R  
dcr1  
dcr2  
dcr3  
dcr4 pcb1 pcb2 pcb3  
Rdcr1  
L1  
do not have any effect.  
Rpcb1  
V1p  
PHASE1  
Risen  
Risen  
Risen  
Cisen  
Since the slave ripple capacitor voltages mimic the inductor  
currents, the R3™ modulator can naturally achieve excellent  
current balancing during steady state and dynamic operations.  
Figure 15 shows the current balancing performance of a  
three-phase evaluation board with load transient of 12A/51A at  
different rep rates. The inductor currents follow the load current  
dynamic change with the output capacitors supplying the  
difference. The inductor currents can track the load current well  
at a low repetition rate, but cannot keep up when the repetition  
rate gets into the hundred-kHz range, where it is out of the  
control loop bandwidth. The controller achieves excellent current  
balancing in all cases installed.  
ISEN1  
IL1  
V1n  
Risen  
FIGURE 14. DIFFERENTIAL-SENSING CURRENT BALANCING CIRCUIT  
Sometimes, it is difficult to implement symmetrical layout. For  
the circuit shown in Figure 13, asymmetric layout causes  
different R  
, R  
, R  
and R values, thus creating a  
pcb1 pcb2 pcb3  
pcb4  
current imbalance. Figure 14 shows a differential sensing current  
balancing circuit recommended for ISL95712. The current  
sensing traces should be routed to the inductor pads so they only  
pick up the inductor DCR voltage. Each ISEN pin sees the average  
voltage of three sources: its own, phase inductor phase-node  
pad, and the other two phase inductor output side pads.  
Equations 10 through 13 give the ISEN pin voltages:  
V
= V + V + V + V  
1p 2n 3n  
(EQ. 10)  
ISEN1  
ISEN2  
4n  
4n  
V
= V + V + V + V  
(EQ. 11)  
1n  
2p  
3n  
V
V
= V + V + V + V  
1n 2n 3p  
(EQ. 12)  
(EQ. 13)  
ISEN3  
ISEN4  
4n  
4p  
= V + V + V + V  
1n  
2n  
3n  
FN8566 Rev 1.00  
November 2, 2015  
Page 14 of 35  
ISL95712  
Modes of Operation  
REP RATE = 10kHz  
TABLE 1. CORE VR MODES OF OPERATION  
PSI0_L  
AND  
CONFIG.  
4-phase  
Core VR  
Configuration  
ISEN4  
ISEN3  
ISEN2  
PSI1_L  
MODE  
To Power To Power To Power  
Stage Stage Stage  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
4-phase CCM  
2-phase CCM  
1-phase DE  
3-phase CCM  
2-phase CCM  
1-phase DE  
2-phase CCM  
1-phase CCM  
1-phase DE  
1-phase CCM  
1-phase CCM  
1-phase DE  
3-phase  
Core VR  
Configuration  
Tied to 5V To Power To Power  
Stage Stage  
REP RATE = 25kHz  
2-phase  
Core VR  
Configuration  
Tied to 5V Tied to 5V To Power  
Stage  
1-phase  
Core VR  
Configuration  
Tied to 5V Tied to 5V Tied to 5V  
REP RATE = 50kHz  
The Core VR can be configured for 4-, 3-, 2- or 1-phase operation.  
Table 1 shows Core VR configurations and operational modes,  
programmed by the ISEN4, ISEN3 and ISEN2 pin status and the  
PSI0_L and PSI1_L commands via the SVI 2 interface. The SVI 2  
interface description of these bits is outlined in Table 9.  
The ISENx pins disable the channel which they are related to. For  
example, to setup a 3-phase configuration the ISEN4 pin is tied to  
5V. This disables Channel 4 of the controller on the Core side.  
In a 3-phase configuration, the Core VR operates in 3-phase CCM,  
with PSI0_L and PSI_L both high. If PSI0_L is taken low via the  
SVI 2 interface, the Core VR sheds Phase 3. The Core VR then  
operates 2-phase and remains in CCM. When both PSI0_L and  
PSI1_L are taken low, the Core VR sheds Phase 2 and the Core  
VR enters 1-phase Diode Emulation (DE) mode.  
REP RATE = 100kHz  
For 2-phase configurations, the Core VR operates in 2-phase CCM  
with PSI0_L and PSI_L both high. If PSI0_L is taken low via the  
SVI 2 interface, the Core VR sheds Phase 2 and the Core VR  
operates in 1-phase and remains in CCM. When both PSI0_L and  
PSI1_L are taken low, the Core VR operates in 1-phase DE mode.  
In a 1-phase configuration, the Core VR operates in 1-phase CCM  
and remains in this mode when PSI0_L is taken low. When both  
PSI0_L and PSI1_L are taken low, the controller enters DE mode.  
REP RATE = 200kHz  
When the Core VR is taken into PSI1 mode, where both PSI0_L  
and PSI1_L are taken low, the ISL95712 will shed any additional  
phases in excess of Phase 1. If there is a VID change as well, the  
regulator will then slew the output to the new VID level in CCM  
mode. Once the output has reached the new VID level, the Core  
VR is then placed into DE mode. The Core VR can be disabled  
completely by connecting ISEN1 to +5V.  
FIGURE 15. CURRENT BALANCING DURING DYNAMIC OPERATION.  
CH1: I , CH2: I , CH3: I , CH4: I  
L1 L2  
LOAD  
L3  
FN8566 Rev 1.00  
November 2, 2015  
Page 15 of 35  
ISL95712  
The ISL95712 Northbridge VR can be configured for 3-, 2-, or 1-  
phase operation. Table 2 shows the Northbridge VR  
configurations and operational modes, which are programmed  
by the ISEN3_NB and ISEN2_NB pin status and the PSI0_L and  
PSI1_L bits of the SVI 2 command.  
not reached zero when the low-side MOSFET turns off, it will flow  
through the low-side MOSFET body diode, causing the phase  
node to have a larger voltage drop until it decays to zero. If the  
inductor current has crossed zero and reversed the direction  
when the low-side MOSFET turns off, it will flow through the  
high-side MOSFET body diode, causing the phase node to have a  
spike until it decays to zero. The controller continues monitoring  
the phase voltage after turning off the low-side MOSFET. To  
minimize the body diode-related loss, the controller also adjusts  
the phase comparator threshold voltage accordingly in iterative  
steps such that the low-side MOSFET body diode conducts for  
approximately 40ns.  
TABLE 2. NORTHBRIDGE VR MODES OF OPERATION  
PSI0_L AND  
CONFIG.  
ISEN3_NB  
ISEN2_NB  
PSI1_L  
MODE  
3-phase  
NB VR  
Configuration  
To Power  
Stage  
To Power  
Stage  
11  
2-phase CCM  
1-phase CCM  
1-phase DE  
2-phase CCM  
1-phase CCM  
1-phase DE  
1-phase CCM  
1-phase CCM  
1-phase DE  
01  
00  
Resistor Configuration Options  
2-phase  
NB VR  
Configuration  
Tied to 5V  
Tied to 5V  
To Power  
Stage  
11  
The ISL95712 uses the COMP, COMP_NB and PROG pins to  
configure some functionality within the IC. Resistors from these  
pins to GND are read during the first portion of the soft-start  
sequence. The following sections outline how to select the  
resistor values for each of these pins to correctly program the  
output voltage offset of each output, VID-on-the-fly slew rate and  
switching frequency used for both VRs.  
01  
00  
1-phase  
NB VR  
Configuration  
Tied to 5V  
11  
01  
00  
VR Offset Programming  
In a 1-phase configuration, the ISEN2_NB pin is tied to +5V. The  
Northbridge VR operates in 1-phase CCM when both PSI0_L and  
PSI1_L are high and continues in this mode when PSI0_L is  
taken low. The controller enters 1-phase DE mode when both  
PSI0_L and PSI1_L are low.  
A positive or negative offset is programmed for the Core VR using  
a resistor to ground from the COMP pin and the Northbridge in a  
similar manner from the COMP_NB pin. Table 3 provides the  
resistor value to select the desired output voltage offset. The 1%  
tolerance resistor value shown in Table 3 must be used to program  
the corresponding Core or NB output voltage offset. The MIN and  
MAX tolerance values provide margin to insure the 1% tolerance  
resistor will be read correctly.  
When the Northbridge VR is taken into PSI1 mode, where both  
PSI0_L and PSI1_L are taken low, the ISL95712 will shed any  
additional phases in excess of Phase 1. If there is a VID change  
as well, the regulator will then slew the output to the new VID  
level in CCM mode. Once the output has reached the new VID  
level, the Northbridge VR is then placed into DE mode.  
TABLE 3. COMP AND COMP_NB OUTPUT VOLTAGE OFFSET SELECTION  
RESISTOR VALUE [kΩ]  
COMP  
COMP_NB  
OFFSET  
[mV]  
The Northbridge VR can be disabled completely by tying  
ISEN1_NB to 5V.  
MIN  
TOLERANCE  
1% TOLERANCE  
VALUE  
MAX  
TOLERANCE  
V
CORE OFFSET  
[mV]  
3.96  
7.76  
4.02  
7.87  
11.5  
16.9  
19.6  
24.9  
34.0  
41.2  
52.3  
73.2  
95.3  
121  
4.07  
7.98  
-43.75  
-37.5  
-31.25  
-25  
18.75  
31.25  
43.76  
50  
Dynamic Operation  
Core and Northbridge VRs behave the same during dynamic  
operation. The controller responds to VID-on-the-fly changes by  
slewing to the new voltage at the slew rate programmed, see  
Table 4. During negative VID transitions, the output voltage  
decays to the lower VID value at the slew rate determined by the  
load.  
11.33  
16.65  
19.3  
11.67  
17.15  
19.89  
25.27  
34.51  
41.81  
53.08  
74.29  
96.72  
112.81  
156.31  
184.73  
213.15  
-18.75  
-12.5  
-6.25  
6.25  
18.75  
31.25  
43.76  
50  
37.5  
25  
24.53  
33.49  
40.58  
51.52  
72.10  
93.87  
119.19  
151.69  
179.27  
206.85  
The R3™ modulator intrinsically has voltage feed-forward. The  
output voltage is insensitive to a fast slew rate input voltage  
change.  
12.5  
0
18.75  
31.25  
43.76  
50  
Adaptive Body Diode Conduction Time  
Reduction  
In DCM, the controller turns off the low-side MOSFET when the  
inductor current approaches zero. During on-time of the low-side  
MOSFET, phase voltage is negative and the amount is the  
154  
37.5  
25  
37.5  
25  
MOSFET r  
voltage drop, which is proportional to the  
DS(ON)  
inductor current. A phase comparator inside the controller  
monitors the phase voltage during on-time of the low-side  
MOSFET and compares it with a threshold to determine the zero  
crossing point of the inductor current. If the inductor current has  
182  
210  
12.5  
0
12.5  
0
OPEN  
FN8566 Rev 1.00  
November 2, 2015  
Page 16 of 35  
ISL95712  
TABLE 4. PROG RESISTOR SELECTION  
TABLE 5. SWITCHING FREQUENCY SELECTION  
FREQUENCY  
COMP_NB RANGE  
PROG RANGE  
RESISTOR VALUE  
SLEW RATE FOR CORE AND  
NORTHBRIDGE [mV/µs]  
[kHz]  
[kΩ]  
[kΩ]  
[kΩ]  
4.02  
7.87  
11.5  
16.9  
19.6  
24.9  
34.0  
41.2  
52.3  
73.2  
95.3  
121  
300  
57.6 to OPEN  
4.02 to 41.2  
57.6 to OPEN  
4.02 to 41.2  
19.1 to 41.2  
or  
154 to OPEN  
20  
15  
350  
400  
450  
19.1 to 41.2  
or  
154 to OPEN  
12.5  
10  
5.62 to 16.9  
or  
57.6 to 121  
20  
15  
5.62 to 16.9  
or  
57.6 to 121  
12.5  
10  
20  
The controller monitors SVI commands to determine when to  
enter power-saving mode, implement dynamic VID changes and  
shut down individual outputs.  
15  
12.5  
10  
AMD Serial VID Interface 2.0  
154  
20  
The on-board Serial VID Interface 2.0 (SVI 2) circuitry allows the  
AMD processor to directly control the Core and Northbridge  
voltage reference levels within the ISL95712. Once the PWROK  
signal goes high, the IC begins monitoring the SVC and SVD pins  
for instructions. The ISL95712 uses a Digital-to-Analog Converter  
(DAC) to generate a reference voltage based on the decoded SVI  
value. See Figure 10 on page 12 for a simple SVI interface timing  
diagram.  
182  
15  
210  
12.5  
10  
OPEN  
VID-on-the-Fly Slew Rate Selection  
The PROG resistor is used to select the slew rate for VID changes  
commanded by the processor. Once selected, the slew rate is  
locked in during soft-start and is not adjustable during operation.  
The lowest slew rate that can be selected is 10mV/µs, which is  
above the minimum of 7.5mV/µs required by the SVI2  
specification. The slew rate selected sets the slew rate for both  
Core and Northbridge VRs. The controller does not allow for  
independent selection of slew rate.  
Pre-PWROK Metal VID  
Typical motherboard start-up begins with the controller decoding  
the SVC and SVD inputs to determine the pre-PWROK Metal VID  
setting (see Table 6). Once the ENABLE input exceeds the rising  
threshold, the ISL95712 decodes and locks the decoded value  
into an on-board hold register.  
TABLE 6. PRE-PWROK METAL VID CODES  
CCM Switching Frequency  
SVC  
0
SVD  
0
OUTPUT VOLTAGE (V)  
The Core and Northbridge VR switching frequency is set by the  
programming resistors on COMP_NB and PROG. When the  
ISL95712 is in Continuous Conduction Mode (CCM), the  
switching frequency is not absolutely constant due to the nature  
of the R3™ modulator. As explained in “Multiphase R3™  
Modulator” on page 10, the effective switching frequency  
increases during load insertion and decreases during load  
release to achieve fast response. Thus, the switching frequency is  
relatively constant at steady state. Variation is expected when  
the power stage condition, such as input voltage, output voltage,  
load, etc. changes. The variation is usually less than 10% and  
does not have any significant effect on output voltage ripple  
magnitude. Table 5 defines the switching frequency based on the  
resistor values used to program the COMP_NB and PROG pins.  
Use the previous tables related to COMP_NB and PROG to  
determine the correct resistor value in these ranges to program  
the desired output offset and slew rate.  
1.1  
1.0  
0.9  
0.8  
0
1
1
0
1
1
Once the programming pins are read, the internal DAC circuitry  
begins to ramp Core and Northbridge VRs to the decoded  
pre-PWROK Metal VID output level. The digital soft-start circuitry  
ramps the internal reference to the target gradually at a fixed  
rate of approximately 5mV/µs until the output voltage reaches  
~250mV and then at the programmed slew rate. The controlled  
ramp of all output voltage planes reduces inrush current during  
the soft-start interval. At the end of the soft-start interval, the  
PGOOD and PGOOD_NB outputs transition high, indicating both  
output planes are within regulation limits.  
If the ENABLE input falls below the enable falling threshold, the  
ISL95712 tri-states both outputs. PGOOD and PGOOD_NB are  
pulled low with the loss of ENABLE. The Core and Northbridge VR  
output voltages decay, based on output capacitance and load  
FN8566 Rev 1.00  
November 2, 2015  
Page 17 of 35  
ISL95712  
leakage resistance. If bias to VDD falls below the POR level, the  
The ISL95712 responds in the manner previously described.  
Once VDD and ENABLE rise above their respective rising  
thresholds, the internal DAC circuitry reacquires a pre-PWROK  
metal VID code, and the controller soft-starts.  
VID-on-the-Fly Transition  
Once PWROK is high, the ISL95712 detects this flag and begins  
monitoring the SVC and SVD pins for SVI instructions. The  
microprocessor follows the protocol outlined in the following  
sections to send instructions for VID-on-the-fly transitions. The  
ISL95712 decodes the instruction and acknowledges the new  
VID code. For VID codes higher than the current VID level, the  
ISL95712 begins stepping the commanded VR outputs to the  
new VID target at the fixed slew rate of 10mV/µs. Once the DAC  
ramps to the new VID code, a VID-on-the-Fly Complete (VOTFC)  
request is sent on the SVI lines.  
SVI Interface Active  
Once the Core and Northbridge VRs have successfully soft-started  
and PGOOD and PGOOD_NB signals transition high, PWROK can  
be asserted externally to the ISL95712. Once PWROK is asserted  
to the IC, SVI instructions can begin as the controller actively  
monitors the SVI interface. Details of the SVI Bus protocol are  
provided in the “AMD Serial VID Interface 2.0 (SVI2)  
When the VID codes are lower than the current VID level, the  
ISL95712 checks the state of power state bits in the SVI  
command. If power state bits are not active, the controller begins  
stepping the regulator output to the new VID target. If the power  
state bits are active, the controller allows the output voltage to  
decay and slowly steps the DAC down with the natural decay of  
the output. This allows the controller to quickly recover and move  
to a high VID code if commanded. The controller issues a VOTFC  
request on the SVI lines once the SVI command is decoded and  
prior to reaching the final output voltage.  
Specification”. See AMD publication #48022.  
Once a VID change command is received, the ISL95712 decodes  
the information to determine which VR is affected and the VID  
target is determined by the byte combinations in Table 7. The  
internal DAC circuitry steps the output voltage of the VR  
commanded to the new VID level. During this time, one or more  
of the VR outputs could be targeted. In the event either VR is  
commanded to power-off by serial VID commands, the PGOOD  
signal remains asserted.  
VOTFC requests do not take priority over telemetry per the AMD  
SVI 2 specification.  
If the PWROK input is deasserted, then the controller steps both  
the Core and the Northbridge VRs back to the stored pre-PWROK  
metal VID level in the holding register from initial soft-start. No  
attempt is made to read the SVC and SVD inputs during this time.  
If PWROK is reasserted, then the ISL95712 SVI interface waits  
for instructions.  
SVI Data Communication Protocol  
The SVI WIRE protocol is based on the I C bus concept. Two wires  
2
[serial clock (SVC) and serial data (SVD)], carry information  
between the AMD processor (master) and VR controller (slave) on  
the bus. The master initiates and terminates SVI transactions  
and drives the clock, SVC, during a transaction. The AMD  
processor is always the master and the voltage regulators are the  
slaves. The slave receives the SVI transactions and acts  
accordingly. Mobile SVI WIRE protocol timing is based on  
If ENABLE goes low during normal operation, all external  
MOSFETs are tri-stated and both PGOOD and PGOOD_NB are  
pulled low. This event clears the pre-PWROK metal VID code and  
forces the controller to check SVC and SVD upon restart, storing  
the pre-PWROK metal VID code found on restart.  
2
high-speed mode I C. See AMD publication #48022 for  
A POR event on VCC during normal operation shuts down both  
regulators, and both PGOOD outputs are pulled low. The  
pre-PWROK metal VID code is not retained. Loss of VIN during  
operation will typically cause the controller to enter a fault  
condition on one or both outputs as the output voltage collapses.  
The controller will shut down both Core and Northbridge VRs and  
latch off. The pre-PWROK metal VID code is not retained during  
the process of cycling ENABLE to reset the fault latch and restart  
the controller.  
additional details.  
FN8566 Rev 1.00  
November 2, 2015  
Page 18 of 35  
ISL95712  
TABLE 7. SERIAL VID CODES  
SVID[7:0]  
VOLTAGE (V)  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
SVID[6:0]  
VOLTAGE (V)  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
0.55000*  
0.54375*  
0.53750*  
0.53125*  
0.52500*  
0.51875*  
0.51250*  
0.50625*  
SVID[6:0]  
VOLTAGE (V)  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.35000*  
0.34375*  
0.33750*  
0.33125*  
0.32500*  
0.31875*  
0.31250*  
0.30625*  
SVID[6:0]  
VOLTAGE (V)  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.15000*  
0.14375*  
0.13750*  
0.13125*  
0.12500*  
0.11875*  
0.11250*  
0.10625*  
0000_0000  
0000_0001  
0000_0010  
0000_0011  
0000_0100  
0000_0101  
0000_0110  
0000_0111  
0000_1000  
0000_1001  
0000_1010  
0000_1011  
0000_1100  
0000_1101  
0000_1110  
0000_1111  
0001_0000  
0001_0001  
0001_0010  
0001_0011  
0001_0100  
0001_0101  
0001_0110  
0001_0111  
0001_1000  
0001_1001  
0001_1010  
0001_1011  
0001_1100  
0001_1101  
0001_1110  
0001_1111  
1000_0000  
1000_0001  
1000_0010  
1000_0011  
1000_0100  
1000_0101  
1000_0110  
1000_0111  
0010_0000  
0010_0001  
0010_0010  
0010_0011  
0010_0100  
0010_0101  
0010_0110  
0010_0111  
0010_1000  
0010_1001  
0010_1010  
0010_1011  
0010_1100  
0010_1101  
0010_1110  
0010_1111  
0011_0000  
0011_0001  
0011_0010  
0011_0011  
0011_0100  
0011_0101  
0011_0110  
0011_0111  
0011_1000  
0011_1001  
0011_1010  
0011_1011  
0011_1100  
0011_1101  
0011_1110  
0011_1111  
1010_0000  
1010_0001  
1010_0010  
1010_0011  
1010_0100  
1010_0101  
1010_0110  
1010_0111  
0100_0000  
0100_0001  
0100_0010  
0100_0011  
0100_0100  
0100_0101  
0100_0110  
0100_0111  
0100_1000  
0100_1001  
0100_1010  
0100_1011  
0100_1100  
0100_1101  
0100_1110  
0100_1111  
0101_0000  
0101_0001  
0101_0010  
0101_0011  
0101_0100  
0101_0101  
0101_0110  
0101_0111  
0101_1000  
0101_1001  
0101_1010  
0101_1011  
0101_1100  
0101_1101  
0101_1110  
0101_1111  
1100_0000  
1100_0001  
1100_0010  
1100_0011  
1100_0100  
1100_0101  
1100_0110  
1100_0111  
0110_0000  
0110_0001  
0110_0010  
0110_0011  
0110_0100  
0110_0101  
0110_0110  
0110_0111  
0110_1000  
0110_1001  
0110_1010  
0110_1011  
0110_1100  
0110_1101  
0110_1110  
0110_1111  
0111_0000  
0111_0001  
0111_0010  
0111_0011  
0111_0100  
0111_0101  
0111_0110  
0111_0111  
0111_1000  
0111_1001  
0111_1010  
0111_1011  
0111_1100  
0111_1101  
0111_1110  
0111_1111  
1110_0000  
1110_0001  
1110_0010  
1110_0011  
1110_0100  
1110_0101  
1110_0110  
1110_0111  
FN8566 Rev 1.00  
November 2, 2015  
Page 19 of 35  
ISL95712  
TABLE 7. SERIAL VID CODES (Continued)  
SVID[7:0]  
VOLTAGE (V)  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000*  
0.59375*  
0.58750*  
0.58125*  
0.57500*  
0.56875*  
0.56250*  
0.55625*  
SVID[6:0]  
VOLTAGE (V)  
0.50000*  
0.49375*  
0.48750*  
0.48125*  
0.47500*  
0.46875*  
0.46250*  
0.45625*  
0.45000*  
0.44375*  
0.43750*  
0.43125*  
0.42500*  
0.41875*  
0.41250*  
0.40625*  
0.40000*  
0.39375*  
0.38750*  
0.38125*  
0.37500*  
0.36875*  
0.36250*  
0.35625*  
SVID[6:0]  
1100_1000  
1100_1001  
1100_1010  
1100_1011  
1100_1100  
1100_1101  
1100_1110  
1100_1111  
1101_0000  
1101_0001  
1101_0010  
1101_0011  
1101_0100  
1101_0101  
1101_0110  
1101_0111*  
1101_1000  
1101_1001  
1101_1010  
1101_1011  
1101_1100  
1101_1101  
1101_1110  
1101_1111  
VOLTAGE (V)  
0.30000*  
0.29375*  
0.28750*  
0.28125*  
0.27500*  
0.26875*  
0.26250*  
0.25625*  
0.25000*  
0.24375*  
0.23750*  
0.23125*  
0.22500*  
0.21875*  
0.21250*  
0.20625*  
0.20000*  
0.19375*  
0.18750*  
0.18125*  
0.17500*  
0.16875*  
0.16250*  
0.15625*  
SVID[6:0]  
VOLTAGE (V)  
0.10000*  
0.09375*  
0.08750*  
0.08125*  
0.07500*  
0.06875*  
0.06250*  
0.05625*  
0.05000*  
0.04375*  
0.03750*  
0.03125*  
0.02500*  
0.01875*  
0.01250*  
0.00625*  
OFF*  
1000_1000  
1000_1001  
1000_1010  
1000_1011  
1000_1100  
1000_1101  
1000_1110  
1000_1111  
1001_0000  
1001_0001  
1001_0010  
1001_0011  
1001_0100  
1001_0101  
1001_0110  
1001_0111  
1001_1000  
1001_1001  
1001_1010  
1001_1011  
1001_1100  
1001_1101  
1001_1110  
1001_1111  
1010_1000  
1010_1001  
1010_1010  
1010_1011  
1010_1100  
1010_1101  
1010_1110  
1010_1111  
1011_0000  
1011_0001  
1011_0010  
1011_0011  
1011_0100  
1011_0101  
1011_0110  
1011_0111  
1011_1000  
1011_1001  
1011_1010  
1011_1011  
1011_1100  
1011_1101  
1011_1110  
1011_1111  
1110_1000  
1110_1001  
1110_1010  
1110_1011  
1110_1100  
1110_1101  
1110_1110  
1110_1111  
1111_0000  
1111_0001  
1111_0010  
1111_0011  
1111_0100  
1111_0101  
1111_0110  
1111_0111  
1111_1000  
1111_1001  
1111_1010  
1111_1011  
1111_1100  
1111_1101  
1111_1110  
1111_1111  
OFF*  
OFF*  
OFF*  
OFF*  
OFF*  
OFF*  
OFF*  
NOTE: * Indicates a VID not required for AMD Family 10h processors. Loosened AMD requirements at these levels.  
FN8566 Rev 1.00  
November 2, 2015  
Page 20 of 35  
ISL95712  
VID  
Bit [0]  
VID Bits [7:1]  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
SVC  
SVD  
ACK  
ACK  
ACK  
FIGURE 16. SVD PACKET STRUCTURE  
SVI Bus Protocol  
Power States  
The AMD processor bus protocol is similar to SMBus send byte  
protocol for VID transactions. The AMD SVD packet structure is  
shown in Figure 16. The description of each bit of the three bytes  
that make up the SVI command are shown in Table 8. During a  
transaction, the processor sends the start sequence followed by  
each of the three bytes, which end with an optional acknowledge  
bit. The ISL95712 does not drive the SVD line during the ACK bit.  
Finally, the processor sends the stop sequence. After the  
ISL95712 has detected the stop, it can then proceed with the  
commanded action from the transaction.  
SVI2 defines two power state indicator levels, see Tables 1, 2,  
and 9. As processor current consumption is reduced, the power  
state indicator level changes to improve VR efficiency under low  
power conditions.  
For the Core VR operating in 4-phase mode (when PSI0_L is  
asserted) Channels 3 and 4 are tri-stated. The controller  
continues to operate in 2-phase CCM. The shedding of phases  
improves the efficiency of the VR at the light to moderate load  
levels of the CPU in this power state. When PSI1_L is asserted  
the Core VR sheds Channel 2. If there is a corresponding VID  
change, then the output is moved to the new VID level while in  
single phase DE mode. Once the output is at the proper VID level,  
Channel 1 enters diode emulation mode to further boost  
light-load efficiency in this power state.  
TABLE 8. SVD DATA PACKET  
BITS  
1:5  
6
DESCRIPTION  
Always 11000b  
Core domain selector bit, if set then the following data byte  
contains VID, power state, telemetry control, load line trim  
and offset trim apply to the Core VR.  
For the Northbridge VR operating in 3-phase mode, when PSI0_L  
is asserted, Channels 2 and 3 are tri-stated while Channel 1  
continues in continuous conduction mode. When PSI1_L is  
asserted, the output is moved to the new VID level if one is  
commanded and Channel 1 then enters diode emulation mode  
to conserve power.  
7
Northbridge domain selector bit, if set then the following data  
byte contains VID, power state, telemetry control, load line  
trim and offset trim apply to the Northbridge VR.  
8
9
Always 0b  
It is possible for the processor to assert or deassert PSI0_L and  
PSI1_L out of order. PSI0_L takes priority over PSI1_L. If PSI0_L  
is deasserted while PSI1_L is still asserted, the ISL95712 will  
return the selected VR back full channel CCM operation. For  
example, if the Core VR is configured for 4-Phase operation and  
both PSI0_L and PSI1_L are asserted low during a command, the  
VR will shed three phases and operate in 1-Phase DE mode. If an  
SVI command follows which takes PSI0_L high, but leaves  
PSI1_L low, the VR will exit power savings mode and being  
operation in 4-Phase CCM mode.  
Acknowledge bit  
PSI0_L  
10  
11:17 VID code bits [7:1]  
18  
19  
20  
21  
Acknowledge bit  
VID code bit [0]  
PSI1_L  
TFN (Telemetry Functionality)  
TABLE 9. PSI0_L AND PSI1_L DEFINITION  
22:24 Load line slope trim  
25:26 Offset Trim [1:0]  
FUNCTION BIT  
DESCRIPTION  
PSI0_L  
PSI1_L  
10 Power State Indicate level 0. When this signal is  
asserted (active Low), the processor is in a low  
enough power state for the ISL95712 to take action  
to boost efficiency by dropping phases.  
27  
Acknowledge bit  
20 Power State Indicate level 1. When this signal is  
asserted (active Low), the processor is in a low  
enough power state for the ISL95712 to take action  
to boost efficiency by dropping phases and entering  
1-Phase DE.  
FN8566 Rev 1.00  
November 2, 2015  
Page 21 of 35  
ISL95712  
Dynamic Load Line Slope Trim  
Telemetry  
The ISL95712 supports the SVI2 ability for the processor to  
manipulate the load line slope of the Core and Northbridge VRs  
independently using the serial VID interface. The slope  
manipulation applies to the initial load line slope. A load line  
slope trim will typically coincide with a VOTF change. See  
Table 10 for more information about the load line slope trim  
feature of the ISL95712. The Disable LL selection is not  
recommended unless operation without a LL is required and  
considered during the compensation of the VR.  
The ISL95712 can provide voltage and current information to the  
AMD CPU through the telemetry system outlined by the AMD  
SVI2 specification. The telemetry data is transmitted through the  
SVC and SVT lines of the SVI2 interface.  
Current telemetry is based on a voltage generated across a  
133kΩ resistor placed from the IMON pin to GND. The current  
flowing out of the IMON pin is proportional to the load current in  
the VR. The I  
current defined in “Voltage Regulation and Load  
sum  
Line Implementation” on page 12, provides the base conversion  
from the load current to the internal amplifier created I  
TABLE 10. LOAD LINE SLOPE TRIM DEFINITION  
sum  
current. The I  
sum  
current is then divided down by a factor of 4 to  
LOAD LINE SLOPE TRIM [2:0]  
DESCRIPTION  
create the IMON current, which flows out of the IMON pin. The  
current will measure 36µA when the load current is at full  
000  
001  
010  
011  
100  
101  
110  
111  
Disable LL  
I
sum  
load based on a droop current designed for 45µA at the same  
load current. The difference between the I current and the  
-40% mΩ Change  
-20% mΩ Change  
No Change  
sum  
droop current is provided in Equation 2. The IMON current will  
measure 11.25µA at full load current for the VR and the IMON  
voltage will be 1.2V. The load percentage, which is reported by  
the IC is based on the this voltage. When the load is 25% of the  
full load, the voltage on the IMON pin will be 25% of 1.2V or 0.3V.  
+20% mΩ Change  
+40% mΩ Change  
+60% mΩ Change  
+80% mΩ Change  
The SVI interface allows the selection of no telemetry, voltage  
only, or voltage and current telemetry on either or both of the VR  
outputs. The TFN bit along with the Core and Northbridge domain  
selector bits are used by the processor to change the  
Dynamic Offset Trim  
functionality of telemetry, see Table 12 for more information.  
The ISL95712 supports the SVI2 ability for the processor to  
manipulate the output voltage offset of the Core and Northbridge  
VRs. This offset is in addition to any output voltage offset set via  
the COMP resistor reader. The dynamic offset trim can disable  
the COMP resistor programmed offset of either output when  
Disable All Offset is selected.  
TABLE 12. TFN TRUTH TABLE  
TFN, CORE, NB  
BITS [21, 6, 7]  
1,0,1  
DESCRIPTION  
Telemetry is in voltage and current mode. Therefore,  
voltage and current are sent for VDD and VDDNB  
domains by the controller.  
TABLE 11. OFFSET TRIM DEFINITION  
1,0,0  
Telemetry is in voltage mode only. Only the voltage of  
VDD and VDDNB domains is sent by the controller.  
OFFSET TRIM [1:0]  
DESCRIPTION  
Disable All Offset  
-25mV Change  
0mV Change  
00  
01  
10  
11  
1,1,0  
1,1,1  
Telemetry is disabled.  
Reserved  
+25mV Change  
FN8566 Rev 1.00  
November 2, 2015  
Page 22 of 35  
ISL95712  
PMBus Interface  
The ISL95712 includes a PMBus interface, which allows for user  
programmability of numerous operating parameters and for  
monitoring various parameters of the Core and NB regulators.  
The PMBus address for the ISL95712 is 1001111.  
TABLE 13. PMBus READ AND WRITE REGISTERS  
COMMAND  
CODE  
ACCESS  
R
DEFAULT  
01h  
COMMAND NAME  
DESCRIPTION  
9Bh  
D0h  
D1h  
D2h  
MANUFACTURER REVISION  
Silicon revision starts at 01h  
Reserved  
Reserved  
R/W  
00h  
FAULT_STATUS_2  
BIT VALUE  
BIT  
0
1
5 (Read Only)  
ISL95712 Enabled  
ISL95712 Fault  
Disabled  
4
3
2
1
0
No Fault  
Core OV  
NB OV  
Core OCP  
NB OCP  
CML. Indicates that an  
unsupported command  
is received or a write  
commandtoaread-only  
register or PEC does not  
match  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
R
R
xxh  
xxh  
READ_VOUT_CORE  
READ_IOUT_CORE  
Read the Core Voltage in ADC format. Each LSB is 6.25mV  
Read Core Current in ADC format. FFh = 100% (7.5µA on IMON)  
Reserved  
R
R
xxh  
xxh  
READ_VOUT_NB  
READ_IOUT_NB  
Read the NB voltage in ADC format. Each LSB is 6.25mV  
Read NB load current in ADC format. FFh = 100% (7.5µA on IMON)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
00h  
LOCK_SVID  
BIT[0] VALUE  
0
FUNCTIONALITY  
Execute SVI2 Commands. PMBus commands DFh  
through E4h are not executed. These registers can  
still be read and written to.  
1
Execute PMBus commands DFh through E4h  
while ignoring SVI2 commands.  
DFh  
E0h  
R/W  
R/W  
08h  
00h  
SET_VID_CORE  
OFFSET_CORE  
Set Core VID, default set to 800mV. Each LSB is 6.25mV. Metal VID  
level is determined by SVC/SVD logic levels at power-up.  
Set Core offset. The offset range is from -250mV to +200mV. This is a  
2’s complement number. Bit[7] is the sign bit.  
FN8566 Rev 1.00  
November 2, 2015  
Page 23 of 35  
ISL95712  
TABLE 13. PMBus READ AND WRITE REGISTERS (Continued)  
COMMAND NAME  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
0fh  
DESCRIPTION  
FUNCTIONALITY  
E1h  
LOADLINE_PWRSTATE_CORE  
BIT  
[4:2]  
Load line slope trim. Refer to Table 10 for proper  
usage.  
1
0
Sets PSI0 power state. Refer to Table 9 for proper  
usage.  
Sets PSI1 power state. Refer to Table 9 for proper  
usage.  
E2h  
E3h  
E4h  
R/W  
R/W  
R/W  
08h  
00h  
0fh  
SET_VID_NB  
OFFSET_NB  
Set NB VID, default set to 800mV. Each LSB is 6.25mV. Metal VID level  
is determined by SVC/SVD logic levels at power-up.  
Set NB offset. The offset range is from -250mV to +200mV. This is a  
2’s complement number. Bit[7] is the sign bit.  
LOADLINE_PWRSTATE_NB  
BIT  
FUNCTIONALITY  
[4:2]  
Load line slope trim. Refer to Table 10 for proper  
usage.  
1
0
Sets PSI0 power state. Refer to Table 9 for proper  
usage.  
Sets PSI1 power state. Refer to Table 9 for proper  
usage.  
When the voltage on the IMON pin meets the overcurrent  
threshold of 1.5V, this triggers an OCP event. Within 2µs of  
detecting an OCP event, the controller asserts VR_HOT_L low to  
communicate to the AMD CPU to throttle back. A fault timer  
begins counting while IMON is at or above the 1.5V threshold. The  
fault timer lasts 7.5µs to 11µs and then the controller takes action  
by tri-stating the active channels. This provides the CPU time to  
recover and reduce the load current. If the OCP conditions are  
relieved, then the fault timer is cleared and VR_HOT_L is taken  
high clearing the fault condition. If the load current is not reduced  
and the OCP condition is maintained, the output voltage will fall  
below the undervoltage threshold due to the lack of switching or a  
way-overcurrent fault could occur. Either of these fault conditions  
will cause the controller to drop PGOOD of that output. When  
PGOOD is taken low, a fault flag from this VR is sent to the other  
VR and it is shut down within 10µs and PGOOD of the other output  
is taken low.  
Protection Features  
Core VR and Northbridge VR both provide overcurrent,  
current-balance, undervoltage and overvoltage fault protections.  
The controller also provides over-temperature protection. The  
following discussion is based on Core VR and also applies to the  
Northbridge VR.  
Overcurrent  
The IMON voltage provides a means of determining the load  
current at any moment in time. The Overcurrent Protection (OCP)  
circuitry monitors the IMON voltage to determine when a fault  
occurs. Based on the previous description in “Voltage Regulation  
and Load Line Implementation” on page 12, the current which  
flows out of the IMON pin is proportional to the I  
current. The  
current is created from the sensed voltage across C , which is  
sum  
I
sum  
n
a measure of the load current based upon the sensing element  
selected. The IMON current is generated internally and is 1/4 of  
The ISL95712 also features a Way-Overcurrent [WOC] feature,  
which immediately takes the controller into shutdown. This  
protection is also referred to as fast overcurrent protection for  
short-circuit protection. If the IMON current reaches 15µA, WOC is  
triggered. Active channels are tri-stated and the controller is  
placed in shutdown and PGOOD is pulled low. There is no fault  
timer on the WOC fault, the controller takes immediate action. The  
other controller output is also shut down within 10µs.  
the I  
current. The EDC or IDDspike current value for the AMD  
sum  
CPU load is used to set the maximum current level for droop and  
the IMON voltage of 1.2V, which indicates 100% loading for  
telemetry. The I  
current level at maximum load, or IDDspike, is  
sum  
36µA and this translates to an IMON current level of 9µA. The  
IMON resistor is 133kΩ and the 9µA flowing through the IMON  
resistor results in a 1.2V level at maximum loading of the VR.  
The overcurrent threshold is 1.5V on the IMON pin. Based on a  
1.2V IMON voltage equating to 100% loading, the additional 0.3V  
provided above this level equates to a 25% increase in load current  
before an OCP fault is detected. The EDC or IDDspike current is  
used to set the 1.2V on IMON for full load current. Thus the OCP  
level is 1.25 times the EDC or IDDspike current level. This  
additional margin above the EDC or IDDspike current allows the  
AMD CPU to enter and exit the IDDspike performance mode  
without issue unless the load current is out of line with the  
IDDspike expectation, thus the need for overcurrent protection.  
Current-Balance  
The controller monitors the ISENx pin voltages to determine  
current-balance protection. If the ISENx pin voltage difference is  
greater than 9mV for 1ms, the controller will declare a fault and  
latch off.  
FN8566 Rev 1.00  
November 2, 2015  
Page 24 of 35  
ISL95712  
Undervoltage  
If the VSEN voltage falls below the output voltage VID value plus  
any programmed offsets by -325mV, the controller declares an  
undervoltage fault. The controller deasserts PGOOD and  
tri-states the power MOSFETs.  
INTERNAL TO  
ISL95712  
+V  
VR_HOT_L  
30µA  
R
Overvoltage  
If the VSEN voltage exceeds the output voltage VID value plus any  
programmed offsets by +325mV, the controller declares an  
overvoltage fault. The controller deasserts PGOOD and turns on  
the low-side power MOSFETs. The low-side power MOSFETs  
remain on until the output voltage is pulled down below the VID  
set value. Once the output voltage is below this level, the lower  
gate is tri-stated. If the output voltage rises above the overvoltage  
threshold again, the protection process is repeated. This behavior  
provides the maximum amount of protection against shorted  
high-side power MOSFETs while preventing output ringing below  
ground.  
NTC  
MONITOR  
R
p
+
NTC  
V
R
NTC  
-
WARNING SHUTDOWN  
640mV 580mV  
R
s
FIGURE 17. CIRCUITRY ASSOCIATED WITH THE THERMAL MONITOR  
FEATURE OF THE ISL95712  
As the board temperature rises, the NTC thermistor resistance  
decreases and the voltage at the NTC pin drops. When the  
voltage on the NTC pin drops below the over-temperature trip  
threshold, then VR_HOT is pulled low. The VR_HOT signal is used  
to change the CPU operation and decrease power consumption.  
With the reduction in power consumption by the CPU, the board  
temperature decreases and the NTC thermistor voltage rises.  
Once the over-temperature threshold is tripped and VR_HOT is  
taken low, the over-temperature threshold changes to the reset  
level. The addition of hysteresis to the over-temperature  
threshold prevents nuisance trips. Once both pin voltages exceed  
the over-temperature reset threshold, the pull-down on VR_HOT  
is released. The signal changes state and the CPU resumes  
normal operation. The over-temperature threshold returns to the  
trip level.  
Thermal Monitor [NTC, NTC_NB]  
The ISL95712 features two thermal monitors using an external  
resistor network, which includes an NTC thermistor to monitor  
motherboard temperature and alert the AMD CPU of a thermal  
issue. Figure 17 shows the basic thermal monitor circuit on the  
Core VR NTC pin. The Northbridge VR features the same thermal  
monitor. The controller drives a 30µA current out of the NTC pin  
and monitors the voltage at the pin. The current flowing out of  
the NTC pin creates a voltage that is compared to a warning  
threshold of 640mV. When the voltage at the NTC pin falls to this  
warning threshold or below, the controller asserts VR_HOT_L to  
alert the AMD CPU to throttle back load current to stabilize the  
motherboard temperature. A thermal fault counter begins  
counting toward a minimum shutdown time of 100µs. The  
thermal fault counter is an up/down counter, so if the voltage at  
the NTC pin rises above the warning threshold, it will count down  
and extend the time for a thermal fault to occur. The warning  
threshold does have 20mV of hysteresis.  
Table 14 summarizes the fault protections.  
TABLE 14. FAULT PROTECTION SUMMARY  
FAULT DURATION  
BEFORE  
PROTECTION  
FAULT  
RESET  
If the voltage at the NTC pin continues to fall down to the  
shutdown threshold of 580mV or below, the controller goes into  
shutdown and triggers a thermal fault. The PGOOD pin is pulled  
low and tri-states the power MOSFETs. A fault on either side will  
shutdown both VRs.  
FAULT TYPE  
Overcurrent  
PROTECTION ACTION  
7.5µs to 11.5µs PWM tri-state  
1ms  
Phase Current  
Unbalance  
PWM tri-state, PGOOD  
latched low  
Way-Overcurrent  
(1.5xOC)  
ENABLE  
toggle or  
VDD  
Undervoltage  
-325mV  
PGOOD latched low.  
PWM tri-state.  
Immediately  
100µs min  
toggle  
Overvoltage  
+325mV  
PGOOD latched low.  
Actively pulls the output  
voltage to below VID  
value, then tri-state.  
NTC Thermal  
PGOOD latched low.  
PWM tri-state.  
FN8566 Rev 1.00  
November 2, 2015  
Page 25 of 35  
ISL95712  
and R connected to the pads to accurately sense the inductor  
Fault Recovery  
o
current by sensing the DCR voltage drop. The R  
and R  
sum  
o
All of the previously described fault conditions can be reset by  
bringing ENABLE low or by bringing VDD below the POR  
threshold. When ENABLE and VDD return to their high operating  
levels, the controller resets the faults and soft-start occurs.  
resistors are connected in a summing network as shown and  
feed the total current information to the NTC network (consisting  
of R  
, R and R ) and capacitor C . R is a negative  
ntcs ntc  
p
n
ntc  
temperature coefficient (NTC) thermistor, used to temperature  
compensate the inductor DCR change.  
Interface Pin Protection  
The inductor output side pads are electrically shorted in the  
schematic but have some parasitic impedance in actual board  
layout, which is why one cannot simply short them together for  
the current-sensing summing network. It is recommended to use  
The SVC and SVD pins feature protection diodes, which must be  
considered when removing power to VDD and VDDIO, but leaving  
it applied to these pins. Figure 18 shows the basic protection on  
the pins. If SVC and/or SVD are powered but VDD is not, leakage  
current will flow from these pins to VDD.  
1Ω~10ΩR to create quality signals. Since R value is much  
o
o
smaller than the rest of the current sensing circuit, the following  
analysis ignores it.  
The summed inductor current information is presented to the  
INTERNAL TO  
ISL95712  
capacitor C . Equations 22 through 26 describe the frequency  
n
domain relationship between inductor total current I (s) and C  
o
n
VDD  
voltage V (s):  
Cn  
R
DCR  
------------------------------------------ -------------  
ntcnet  
V
R
s=  
I s  A s  
SVC, SVD  
(EQ. 22)  
Cn  
o
cs  
R
N
sum  
N
--------------  
+
R
ntcnet  
R  
+ R   R  
ntc p  
ntcs  
----------------------------------------------------  
=
(EQ. 23)  
(EQ. 24)  
GND  
ntcnet  
R
+ R  
+ R  
ntc p  
ntcs  
s
------  
1 +  
L
FIGURE 18. PROTECTION DEVICES ON THE SVC AND SVD PINS  
----------------------  
1 +  
A
s=  
cs  
L
s
------------  
sns  
Key Component Selection  
Inductor DCR Current-Sensing Network  
DCR  
-------------  
=
(EQ. 25)  
(EQ. 26)  
L
1
PHASE1 PHASE2 PHASE3 PHASE4  
RSUM  
--------------------------------------------------------  
=
sns  
R
sum  
N
--------------  
R
ntcnet  
------------------------------------------  
C  
RSUM  
RSUM  
n
R
sum  
N
--------------  
R
+
ntcnet  
ISUM+  
RSUM  
Where N is the number of phases.  
Transfer function A (s) always has unity gain at DC. The inductor  
cs  
DCR value increases as the winding temperature increases,  
RNTCS  
L
L
L
L
+
giving higher reading of the inductor DC current. The NTC R  
CNVCN  
-
ntc  
RP  
value decrease as its temperature decreases. Proper selection of  
, R , R and R parameters ensures that V  
RNTC  
RO  
DCR  
DCR  
DCR  
DCR  
R
sum ntcs ntc Cn  
p
RI  
represents the inductor total DC current over the temperature  
range of interest.  
RO  
RO  
RO  
ISUM-  
There are many sets of parameters that can properly  
temperature-compensate the DCR change. Since the NTC  
network and the R  
resistors form a voltage divider, V is  
sum  
always a fraction of the inductor DCR voltage. It is recommended  
cn  
to have a higher ratio of V to the inductor DCR voltage so the  
IO  
cn  
droop circuit has a higher signal level to work with.  
FIGURE 19. DCR CURRENT-SENSING NETWORK  
A typical set of parameters that provide good temperature  
compensation are: R  
= 3.65kΩ, R = 11kΩ, R = 2.61kΩ  
Figure 19 shows the inductor DCR current-sensing network for a  
4-phase solution. An inductor current flows through the DCR and  
sum  
p
ntcs  
and R = 10kΩ (ERT-J1VR103J). The NTC network parameters  
ntc  
may need to be fine tuned on actual boards. One can apply full  
creates a voltage drop. Each inductor has two resistors in R  
sum  
FN8566 Rev 1.00  
November 2, 2015  
Page 26 of 35  
ISL95712  
load DC current and record the output voltage reading  
i
immediately; then record the output voltage reading again when  
the board has reached the thermal steady state. A good NTC  
network can limit the output voltage drift to within 2mV. It is  
recommended to follow the Intersil evaluation board layout and  
current sensing network parameters to minimize engineering time.  
o
V
o
V
(s) also needs to represent real-time I (s) for the controller to  
Cn  
o
achieve good transient response. Transfer function A (s) has a  
cs  
FIGURE 22. LOAD TRANSIENT RESPONSE WHEN C IS TOO LARGE  
pole   
and a zero w . One needs to match and so  
sns  
n
sns  
L
L
A
(s) is unity gain at all frequencies. By forcing equal to   
cs  
L
sns  
and solving for the solution, Equation 27 gives C value.  
n
i
o
L
i
--------------------------------------------------------------  
C
=
L
n
R
sum  
N
(EQ. 27)  
--------------  
R
ntcnet  
------------------------------------------  
DCR  
R
sum  
--------------  
R
+
ntcnet  
N
V
o
For example, given N = 4, R  
sum  
= 3.65kΩ, R = 11kΩ,  
p
RING  
BACK  
R
= 2.61kΩ, R = 10kΩ, DCR = 0.88mΩ and L = 0.36µH,  
ntcs  
ntc  
Equation 27 gives C = 0.518µF.  
n
FIGURE 23. OUTPUT VOLTAGE RING-BACK PROBLEM  
Assuming the compensator design is correct, Figure 20 shows the  
expected load transient response waveforms if C is correctly  
n
selected. When the load current I  
output voltage V  
core  
has a square change, the  
also has a square response.  
core  
ISUM+  
If C value is too large or too small, V (s) does not accurately  
Cn  
n
represent real-time I (s) and worsens the transient response.  
Figure 21 shows the load transient response when C is too  
n
o
Rntcs  
+
Cn.1  
small. V  
sags excessively upon load insertion and may create  
core  
Vcn  
Cn.2  
Rp  
a system failure. Figure 22 shows the transient response when  
C is too large. V is sluggish in drooping to its final value.  
-
Rn  
Rntc  
n
core  
There is excessive overshoot if load insertion occurs during this  
time, which may negatively affect the CPU reliability.  
ISUM-  
Ri  
OPTIONAL  
i
o
Cip  
Rip  
OPTIONAL  
FIGURE 24. OPTIONAL CIRCUITS FOR RING-BACK REDUCTION  
V
o
Figure 23 shows the output voltage ring-back problem during load  
transient response. The load current i has a fast step change, but  
o
FIGURE 20. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS  
the inductor current i cannot accurately follow. Instead, i  
L
L
responds in first-order system fashion due to the nature of the  
current loop. The ESR and ESL effect of the output capacitors  
i
o
makes the output voltage V dip quickly upon load current change.  
o
However, the controller regulates V according to the droop current  
o
i
, which is a real-time representation of i ; therefore, it pulls  
droop  
L
V back to the level dictated by i , causing the ring-back problem.  
o
L
This phenomenon is not observed when the output capacitor has  
very low ESR and ESL, as is the case with all ceramic capacitors.  
V
o
Figure 24 shows two optional circuits for reduction of the  
ring-back. C is the capacitor used to match the inductor time  
constant. It usually takes the parallel of two (or more) capacitors  
to get the desired value. Figure 24 shows that two capacitors  
n
FIGURE 21. LOAD TRANSIENT RESPONSE WHEN C IS TOO SMALL  
n
(C and C ) are in parallel. Resistor R is an optional  
n.1 n.2  
n
component to reduce the V ring-back. At steady state, C  
+
o
n.1  
C
provides the desired C capacitance. At the beginning of i  
n.2  
n o  
FN8566 Rev 1.00  
November 2, 2015  
Page 27 of 35  
ISL95712  
change, the effective capacitance is less because R increases  
n
R
sen  
N
(EQ. 28)  
(EQ. 29)  
-------------  
V
A
s=  
I s  A  
s  
Rsen  
the impedance of the C branch. As Figure 21 shows, V tends  
n.1  
o
Cn  
o
to dip when C is too small, and this effect reduces the V  
n
o
1
ring-back. This effect is more pronounced when C is much  
n.1  
----------------------  
1 +  
s=  
Rsen  
Rsen  
s
larger than C . It is also more pronounced when R is bigger.  
n.2  
n
------------  
However, the presence of R increases the ripple of the V signal  
sns  
n
n
if C is too small. It is recommended to keep C greater than  
n.2 n.2  
1
----------------------------  
=
2200pF. R value usually is a few ohms. C , C and R values  
n.1 n.2  
(EQ. 30)  
n
n
R
sum  
N
should be determined through tuning the load transient response  
waveforms on an actual board.  
--------------  
C  
n
Transfer function A  
Current-sensing resistor R  
variation over-temperature, so there is no need for the NTC  
network.  
(s) always has unity gain at DC.  
Rsen  
R
and C form an R-C branch in parallel with R , providing a  
ip  
value does not have significant  
ip  
i
sen  
lower impedance path than R at the beginning of i change. R  
i
o
ip  
and C do not have any effect at steady state. Through proper  
ip  
selection of R and C values, i  
ip ip  
can resemble i rather than  
o
droop  
The recommended values are R  
sum  
= 1kΩ and C = 5600pF.  
n
i , and V will not ring back. The recommended value for R is  
L
o
ip  
100Ω. C should be determined through tuning the load  
transient response waveforms on an actual board. The  
ip  
Overcurrent Protection  
Refer to Equation 2 on page 13 and Figures 19 and 25; resistor  
R sets the I current, which is proportional to droop current  
and IMON current. The OCP threshold is 1.5V on the IMON pin,  
recommended range for C is 100pF~2000pF. However, it  
ip  
should be noted that the R - C branch may distort the i  
i
sum  
ip ip  
droop  
waveform. Instead of being triangular as the real inductor  
which equates to an IMON current of 11.25µA using a 133kΩ  
current, i  
affect i  
may have sharp spikes, which may adversely  
droop  
average value detection and therefore may affect  
IMON resistor. The corresponding I  
is 45µA, which results in  
sum  
droop  
an I  
of 56.25µA. At full load current, I  
, the I  
current  
at OCP  
sum  
OCP accuracy. User discretion is advised.  
droop  
omax  
is 45µA. The ratio of I  
sum  
is 36µA and the resulting I  
droop  
Resistor Current-Sensing Network  
relative to full load current is 1.25. Therefore, the OCP current  
trip level is 25% higher than the full load current.  
PHASE1 PHASE2 PHASE3 PHASE4  
For inductor DCR sensing, Equation 31 gives the DC relationship  
of V (s) and I (s):  
cn  
o
L
L
L
L
R
DCR  
N
ntcnet  
------------------------------------------ -------------  
V
=
I  
o
DCR  
DCR  
DCR  
DCR  
Cn  
(EQ. 31)  
R
sum  
N
--------------  
+
R
ntcnet  
RSUM  
RSUM  
RSUM  
RSUM  
Substitution of Equation 31 into Equation 2 gives Equation 32:  
R
5
4
1
R
DCR  
ntcnet  
ISUM+  
-- ----- ------------------------------------------ -------------  
I
=
I  
(EQ. 32)  
droop  
o
R
N
i
sum  
--------------  
+
R
ntcnet  
N
+
-
RSEN  
RSEN  
RSEN  
RSEN  
VCN  
CN  
Ri  
RO  
RO  
RO  
RO  
Therefore:  
R
DCR I  
o
ISUM-  
5
4
ntcnet  
-- ---------------------------------------------------------------------------------  
R
=
(EQ. 33)  
i
R
sum  
N
--------------  
N R  
+
I  
ntcnet  
droop  
Substitution of Equation 23 and application of the OCP condition  
in Equation 33 gives Equation 34:  
IO  
R  
+ R   R  
ntc p  
ntcs  
----------------------------------------------------  
DCR I  
omax  
R
+ R  
+ R  
ntc p  
5
4
FIGURE 25. RESISTOR CURRENT-SENSING NETWORK  
ntcs  
-- ----------------------------------------------------------------------------------------------------------------------------  
R
=
(EQ. 34)  
i
R  
+ R   R  
R
ntcs  
ntc  
p
sum  
---------------------------------------------------- --------------  
N   
+
I  
Figure 25 shows the resistor current-sensing network for a  
4-phase solution. Each inductor has a series current sensing  
droopmax  
R
+ R  
+ R  
p
N
ntcs  
ntc  
resistor, R . R  
accurately capture the inductor current information. The R  
and R are connected to the R  
pads to  
sen sum  
o
sen  
Where I  
is the full load current and I  
is the  
droopmax  
omax  
sum  
and C  
n
corresponding droop current. For example, given N = 4,  
= 3.65kΩ, R = 11kΩ, R = 2.61kΩ, R = 10kΩ,  
and R resistors are connected to capacitor C . R  
o
n
sum  
R
sum  
DCR = 0.88mΩ, I  
p
ntcs ntc  
form a filter for noise attenuation. Equations 28 through 30 give  
= 100A and I = 45μA.  
omax  
Equation 34 gives R = 529Ω.  
droopmax  
the V (s) expression.  
Cn  
i
FN8566 Rev 1.00  
November 2, 2015  
Page 28 of 35  
ISL95712  
For resistor sensing, Equation 35 gives the DC relationship of  
source (= VID) and output impedance Z (s). If Z (s) is equal to  
out out  
V
(s) and I (s).  
the load line slope LL, i.e., a constant output impedance, then in  
the entire frequency range, V will have a square response when  
cn  
o
o
R
sen  
-------------  
(EQ. 35)  
V
=
I  
I has a square change.  
Cn  
o
o
N
Substitution of Equation 35 into Equation 2 gives Equation 36:  
Zout(s) = LL  
i
o
R
5
4
1
R
sen  
N
-- ----- -------------  
I
=
I  
(EQ. 36)  
droop  
o
i
VR  
VID  
LOAD  
V
o
Therefore:  
R
I  
o
5
4
sen  
(EQ. 37)  
-- --------------------------  
R
=
i
N I  
droop  
FIGURE 26. VOLTAGE REGULATOR EQUIVALENT CIRCUIT  
Substitution of Equation 37 and application of the OCP condition  
in Equation 33 gives Equation 38:  
Intersil provides a Microsoft Excel-based spreadsheet to help  
design the compensator and the current sensing network so that  
VR achieves constant output impedance as a stable system.  
R
I  
omax  
5
4
sen  
-- --------------------------------------  
R
=
(EQ. 38)  
i
N I  
droopmax  
A VR with active droop function is a dual-loop system consisting of  
a voltage loop and a droop loop, which is a current loop. However,  
neither loop alone is sufficient to describe the entire system. The  
spreadsheet shows two loop gain transfer functions, T1(s) and  
T2(s), that describe the entire system. Figure 27 conceptually  
shows T1(s) measurement set-up, and Figure 28 conceptually  
shows T2(s) measurement set-up. The VR senses the inductor  
current, multiplies it by a gain of the load line slope, adds it on top  
of the sensed output voltage, and then feeds it to the  
compensator. T1 is measured after the summing node, and T2 is  
measured in the voltage loop before the summing node. The  
spreadsheet gives both T1(s) and T2(s) plots. However, only T2(s)  
can actually be measured on an ISL95712 regulator.  
Where I  
is the full load current and I  
is the  
droopmax  
omax  
corresponding droop current. For example, given N = 4,  
= 1mΩ, I = 100A and I = 45µA, Equation 38  
R
sen  
omax  
droopmax  
gives R = 694Ω.  
i
Load Line Slope  
See Figure 12 for load line implementation.  
For inductor DCR sensing, substitution of Equation 32 into  
Equation 3 gives the load line slope expression:  
V
R
R
ntcnet  
5
4
DCR  
-- ------------------ ------------------------------------------ -------------  
droop  
droop  
R
------------------  
LL =  
=
(EQ. 39)  
I
R
sum  
N
o
i
--------------  
+
R
ntcnet  
N
VO  
L
For resistor sensing, substitution of Equation 36 into Equation 3  
gives the load line slope expression:  
Q1  
iO  
VIN  
Q2  
GATE  
DRIVER  
COUT  
V
R
R  
sen droop  
N R  
i
5
4
droop  
(EQ. 40)  
------------------  
-- ---------------------------------------  
LL =  
=
I
o
Substitution of Equation 33 and rewriting Equation 39, or  
substitution of Equation 37 and rewriting Equation 40, gives the  
same result as in Equation 41:  
LOAD LINE SLOPE  
20Ω  
+
+
I
-
o
EA  
----------------  
droop  
MOD.  
R
=
LL  
(EQ. 41)  
droop  
I
COMP  
+
VID  
ISOLATION  
TRANSFORMER  
One can use the full-load condition to calculate R  
droop  
. For  
CHANNEL B  
CHANNEL A  
example, given I  
= 100A, I  
= 45µA and  
LOOP GAIN =  
omax  
droopmax  
= 4.67kΩ.  
LL = 2.1mΩ, Equation 41 gives R  
droop  
CHANNEL A  
CHANNEL B  
It is recommended to start with the R  
value calculated by  
droop  
NETWORK  
ANALYZER  
Equation 41 and fine-tune it on the actual board to get accurate  
load line slope. One should record the output voltage readings at  
no load and at full load for load line slope calculation. Reading  
the output voltage at lighter load instead of full load will increase  
the measurement error.  
EXCITATION OUTPUT  
FIGURE 27. LOOP GAIN T1(s) MEASUREMENT SET-UP  
T1(s) is the total loop gain of the voltage loop and the droop loop.  
It always has a higher crossover frequency than T2(s), therefore  
has a higher impact on system stability.  
Compensator  
Figure 20 shows the desired load transient response waveforms.  
Figure 26 shows the equivalent circuit of a Voltage Regulator  
(VR) with the droop function. A VR is equivalent to a voltage  
T2(s) is the voltage loop gain with closed droop loop, thus having  
a higher impact on output voltage response.  
FN8566 Rev 1.00  
November 2, 2015  
Page 29 of 35  
ISL95712  
Design the compensator to get stable T1(s) and T2(s) with sufficient  
phase margin and an output impedance equal to or smaller than  
the load line slope.  
INTERNAL TO  
ISL95712  
L
V
O
+V  
Q1  
VR_HOT_L  
30µA  
R
GATE  
DRIVER  
Q2  
I
O
V
IN  
C
O
NTC  
MONITOR  
R
330kΩ  
8.45kΩ  
NTC  
LOAD LINE SLOPE  
+
20  
+
SHUTDOWN  
580mV  
WARNING  
640mV  
R
s
-
EA  
MOD.  
+
COMP  
VID  
ISOLATION  
TRANSFORMER  
FIGURE 29. THERMAL MONITOR FEATURE OF THE ISL95712  
CHANNEL B  
CHANNEL A  
LOOP GAIN =  
Selection of the NTC thermistor can vary depending on how the  
resistor network is configured. The equivalent resistance at the  
typical thermal warning threshold voltage of 0.64V is defined in  
Equation 42.  
CHANNEL A  
CHANNEL B  
NETWORK  
ANALYZER  
EXCITATION OUTPUT  
FIGURE 28. LOOP GAIN T2(s) MEASUREMENT SET-UP  
0.64V  
30A  
---------------  
= 21.3k  
(EQ. 42)  
Current Balancing  
Refer to Figures 13 through 19 for information on current  
balancing. The ISL95712 achieves current balancing through  
matching the ISEN pin voltages. R  
remove the switching ripple of the phase node voltages. It is  
recommended to use a rather long R time constant,  
The equivalent resistance at the typical thermal shutdown  
threshold voltage of 0.58V required to shutdown both outputs is  
defined in Equation 43.  
and C form filters to  
isen  
isen  
0.58V  
30A  
---------------  
= 19.3k  
(EQ. 43)  
C
isen isen  
such that the ISEN voltages have minimal ripple and represent  
the DC current flowing through the inductors. Recommended  
The NTC thermistor value correlates to the resistance change  
between the warning and shutdown thresholds and the required  
temperature change. If the warning level is designed to occur at a  
board temperature of +100°C and the thermal shutdown level at  
a board temperature of +105°C, then the resistance change of  
the thermistor can be calculated. For example, a Panasonic NTC  
thermistor with B = 4700 has a resistance ratio of 0.03939 of its  
nominal value at +100°C and 0.03308 of its nominal value at  
+105°C. Taking the required resistance change between the  
thermal warning threshold and the shutdown threshold and  
dividing it by the change in resistance ratio of the NTC thermistor  
at the two temperatures of interest, the required resistance of  
the NTC is defined in Equation 44.  
values are R = 10kΩ and C = 0.22µF.  
s
s
Thermal Monitor Component Selection  
The ISL95712 features two pins, NTC and NTC_NB, which are  
used to monitor motherboard temperature and alert the AMD  
CPU if a thermal issues arises. The basic function of this circuitry  
is outlined in the “Thermal Monitor [NTC, NTC_NB]” on page 25.  
Figure 29 shows the basic configuration of the NTC resistor,  
R
, and offset resistor, R , used to generate the warning and  
NTC  
S
shutdown voltages at the NTC pin.  
As the board temperature rises, the NTC thermistor resistance  
decreases and the voltage at the NTC pin drops. When the  
voltage on the NTC pin drops below the thermal warning  
threshold of 0.640V, then VR_HOT_L is pulled low. When the  
AMD CPU detects VR_HOT_L has gone low, it will begin throttling  
back load current on both outputs to reduce the board  
temperature.  
21.3k19.3k  
0.03939 0.03308  
(EQ. 44)  
-----------------------------------------------------  
= 317k  
The closest standard thermistor to the value calculated with  
B = 4700 is 330kΩ. The NTC thermistor part number is  
ERTJ0EV334J. The actual resistance change of this standard  
thermistor value between the warning threshold and the  
shutdown threshold is calculated in Equation 45.  
If the board temperature continues to rise, the NTC thermistor  
resistance will drop further and the voltage at the NTC pin could  
drop below the thermal shutdown threshold of 0.580V. Once this  
threshold is reached, the ISL95712 shuts down both Core and  
Northbridge VRs indicating a thermal fault has occurred prior to  
the thermal fault counter triggering a fault.  
(EQ. 45)  
330k  0.03939330k  0.03308= 2.082k  
FN8566 Rev 1.00  
November 2, 2015  
Page 30 of 35  
ISL95712  
Since the NTC thermistor resistance at +105°C is less than the  
required resistance from Equation 43, additional resistance in  
series with the thermistor is required to make up the difference.  
A standard resistor, 1% tolerance, added in series with the  
thermistor will increase the voltage seen at the NTC pin. The  
additional resistance required is calculated in Equation 46.  
important to have a symmetrical layout for each power train,  
preferably with the controller located equidistant from each  
power train. Symmetrical layout allows heat to be dissipated  
equally across all power trains. Keeping the distance between  
the power train and the control IC short helps keep the gate drive  
traces short. These drive signals include the LGATE, UGATE,  
PGND, PHASE and BOOT.  
19.3k10.916k= 8.384k  
(EQ. 46)  
GND  
VIAS TO  
GROUND  
The closest, standard 1% tolerance resistor is 8.45kΩ.  
OUTPUT  
CAPACITORS  
PLANE  
The NTC thermistor is placed in a hot spot on the board, typically  
near the upper MOSFET of Channel 1 of the respective output.  
The standard resistor is placed next to the controller.  
SCHOTTKY  
DIODE  
VOUT  
PHASE  
NODE  
LOW-SIDE  
MOSFETs  
INDUCTOR  
Layout Guidelines  
PCB Layout Considerations  
HIGH-SIDE  
MOSFETs  
INPUT  
CAPACITORS  
VIN  
FIGURE 30. TYPICAL POWER COMPONENT PLACEMENT  
POWER AND SIGNAL LAYERS PLACEMENT ON THE PCB  
As a general rule, power layers should be close together, either  
on the top or bottom of the board, with the weak analog or logic  
signal layers on the opposite side of the board. The ground-plane  
layer should be adjacent to the signal layer to provide shielding.  
When placing MOSFETs, try to keep the source of the upper  
MOSFETs and the drain of the lower MOSFETs as close as  
thermally possible (see Figure 30). Input high-frequency  
capacitors should be placed close to the drain of the upper  
MOSFETs and the source of the lower MOSFETs. Place the output  
inductor and output capacitors between the MOSFETs and the  
load. High-frequency output decoupling capacitors (ceramic)  
should be placed as close as possible to the decoupling target  
(microprocessor), making use of the shortest connection paths to  
any internal planes. Place the components in such a way that the  
area under the IC has less noise traces with high dV/dt and di/dt,  
such as gate signals and phase node signals.  
COMPONENT PLACEMENT  
There are two sets of critical components in a DC/DC converter;  
the power components and the small signal components. The  
power components are the most critical because they switch  
large amounts of energy. The small signal components connect  
to sensitive nodes or supply critical bypassing current and signal  
coupling.  
The power components should be placed first and these include  
MOSFETs, input and output capacitors, and the inductor. It is  
Table 15 shows layout considerations for the ISL95712  
controller by pin.  
TABLE 15. LAYOUT CONSIDERATIONS FOR THE ISL95712 CONTROLLER  
PIN NUMBER  
BOTTOM PAD  
SYMBOL  
GND  
LAYOUT GUIDELINES  
Connect this ground pad to the ground plane through a low impedance path. A minimum of 5 vias are recommended to  
connect this pad to the internal ground plane layers of the PCB.  
1
ISEN3_NB Each ISEN pin has a capacitor (C  
) decoupling it to VSUMN_NB, then through another capacitor (C  
isen  
) to GND.  
vsumn_nb  
Place C  
capacitors as close as possible to the controller and keep the following loops small:  
isen  
1. Any ISENx_NB pin to another ISENx_NB pin  
2. Any ISENx_NB pin to GND  
2
NTC_NB  
The NTC thermistor must be placed close to the thermal source that is monitored to determine Northbridge thermal  
throttling. Placement at the hottest spot of the Northbridge VR is recommended. Additional standard resistors in the  
resistor network on this pin should be placed near the IC.  
3
4
IMON_NB Place the IMON_NB resistor close to this pin and make a tight GND connection.  
SVC Use good signal integrity practices and follow AMD recommendations.  
VR_HOT_L Follow AMD recommendations. Placement of the pull-up resistor near the IC is recommended.  
5
6
SVD  
VDDIO  
SVT  
Use good signal integrity practices and follow AMD recommendations.  
Use good signal integrity practices and follow AMD recommendations.  
Use good signal integrity practices and follow AMD recommendations.  
No special considerations.  
7
8
9
ENABLE  
PWROK  
IMON  
10  
11  
Use good signal integrity practices and follow AMD recommendations.  
Place the IMON resistor close to this pin and make a tight GND connection.  
FN8566 Rev 1.00  
November 2, 2015  
Page 31 of 35  
ISL95712  
TABLE 15. LAYOUT CONSIDERATIONS FOR THE ISL95712 CONTROLLER (Continued)  
LAYOUT GUIDELINES  
PIN NUMBER  
12  
SYMBOL  
NTC  
The NTC thermistor must be placed close to the thermal source that is monitored to determine Core thermal throttling.  
Placement at the hottest spot of the Core VR is recommended. Additional standard resistors in the resistor network on  
this pin should be placed near the IC.  
13  
14  
15  
16  
ISEN4  
ISEN3  
ISEN2  
ISEN1  
Each ISEN pin has a capacitor (C  
) decoupling it to V  
SUMN  
and then through another capacitor (C ) to GND. Place  
vsumn  
isen  
capacitors as close as possible to the controller and keep the following loops small:  
C
isen  
1. Any ISEN pin to another ISEN pin  
2. Any ISEN pin to GND  
The red traces in the following drawing show the loops to be minimized.  
P hase1  
L 3  
R isen  
R o  
IS E N 4  
IS E N 3  
IS E N 2  
C isen  
C isen  
C isen  
C isen  
P hase 1  
R isen  
L 3  
L2  
L 1  
R o  
R o  
R o  
V
P hase 2  
R isen  
P hase 3  
R isen  
IS E N 1  
G N D  
V S U M N  
C vsu m n  
17  
18  
ISUMP  
ISUMN  
Place the current sensing circuit in general proximity of the controller.  
Place capacitor C very close to the controller.  
Place the NTC thermistor next to Core VR Channel 1 inductor so it senses the inductor temperature correctly.  
n
Each phase of the power stage sends a pair of V  
in parallel fashion with decent width (>20mil).  
and V  
signals to the controller. Run these two signals traces  
SUMP  
SUMN  
IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. If possible, route the traces on  
a different layer from the inductor pad layer and use vias to connect the traces to the center of the pads. If no via is allowed  
on the pad, consider routing the traces into the pads from the inside of the inductor. The following drawings show the two  
preferred ways of routing current sensing traces.  
INDUCTOR  
INDUCTOR  
VIAS  
CURRENT-SENSING TRACES  
CURRENT-SENSING TRACES  
19  
20  
21  
22  
VSEN  
RTN  
FB  
Place the filter on these pins in close proximity to the controller for good coupling.  
Place the compensation components in general proximity of the controller.  
VDD  
A high quality, X7R dielectric MLCC capacitor is recommended to decouple this pin to GND. Place the capacitor in close  
proximity to the pin with the filter resistor nearby the IC.  
23  
24  
25  
PGOOD  
COMP  
No special consideration.  
Place the compensation components in general proximity of the controller.  
Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace.  
BOOT1  
FN8566 Rev 1.00  
November 2, 2015  
Page 32 of 35  
ISL95712  
TABLE 15. LAYOUT CONSIDERATIONS FOR THE ISL95712 CONTROLLER (Continued)  
LAYOUT GUIDELINES  
PIN NUMBER  
SYMBOL  
PHASE1  
UGATE1  
26  
27  
These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing  
these signals near sensitive analog signal traces or crossing over them. Routing PHASE1 to the Core VR Channel 1 high-side  
MOSFET source pin instead of a general connection to PHASE1 copper is recommended for better performance.  
28  
29  
30  
31  
LGATE1  
BOOT2  
Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them.  
Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace.  
PHASE2  
UGATE2  
These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing  
these signals near sensitive analog signal traces or crossing over them. Routing PHASE2 to the Core VR Channel 2 high-side  
MOSFET source pin instead of a general connection to PHASE2 copper is recommended for better performance.  
32  
VDDP  
A high quality, X7R dielectric MLCC capacitor is recommended to decouple this pin to GND. Place the capacitor in close  
proximity to the pin.  
33  
34  
35  
36  
LGATE2  
Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them.  
LGATE1_NB Use sufficient trace width (>30mil). Avoid routing this signal near any sensitive analog signal traces or crossing over them.  
PHASE1_NB These two signals should be routed together in parallel. Each trace should have sufficient width (>30mil). Avoid routing  
these signals near sensitive analog signal traces or crossing over them. Routing PHASE1_NB to the high-side MOSFET  
UGATE1_NB  
source pin instead of a general connection to the PHASE1_NB copper is recommended for better performance.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
BOOT1_NB Use a wide trace width (>30mil). Avoid routing any sensitive analog signal traces close to or crossing over this trace.  
PWM3  
PWM4  
No special considerations.  
No special considerations.  
PWM2_NB No special considerations.  
PWM3_NB No special considerations.  
I2CLK  
I2DATA  
PROG  
Use good signal integrity practices  
Use good signal integrity practices  
No special considerations.  
PGOOD_NB No special consideration.  
COMP_NB Place the compensation components in general proximity of the controller.  
FB_NB  
VSEN_NB Place the filter on this pin in close proximity to the controller for good coupling.  
ISUMN_NB Place the current sensing circuit in general proximity of the controller.  
Place capacitor C very close to the controller.  
Place the NTC thermistor next to NB VR Channel 1 inductor so it senses the inductor temperature correctly.  
n
ISUMP_NB  
Each phase of the power stage sends a pair of V  
in parallel fashion with decent width (>20mil).  
and V  
signals to the controller. Run these two signals traces  
SUMP  
SUMN  
IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. If possible, route the traces on  
a different layer from the inductor pad layer and use vias to connect the traces to the center of the pads. If no via is allowed  
on the pad, consider routing the traces into the pads from the inside of the inductor. The following drawings show the two  
preferred ways of routing current sensing traces.  
INDUCTOR  
INDUCTOR  
VIAS  
CURRENT-SENSING TRACES  
CURRENT-SENSING TRACES  
51  
52  
ISEN1_NB Each ISEN pin has a capacitor (C  
) decoupling it to VSUMN_NB, then through another capacitor (C  
) to GND.  
vsumn_nb  
isen  
Place C  
isen  
capacitors as close as possible to the controller and keep the following loops small:  
ISEN2_NB  
1. Any ISENx_NB pin to another ISENx_NB pin  
2. Any ISENx_NB pin to GND  
FN8566 Rev 1.00  
November 2, 2015  
Page 33 of 35  
ISL95712  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
CHANGE  
November 2, 2015  
FN8566.1 On page 1 under Features, added “Serial VID clock frequency range 100kHz to 25MHz” below “Supports AMD SVI  
2.0 serial data bus interface and PMBus”.  
Updated Package Outline Drawing L52.6X6A to the latest revision. Changes are as follows:  
-Added tolerance ± values.  
March 26, 2014  
FN8566.0 Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2014-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8566 Rev 1.00  
November 2, 2015  
Page 34 of 35  
ISL95712  
Package Outline Drawing  
L52.6X6A  
52 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE CHAMFERED CORNER LEADS  
Rev 1, 7/14  
4X 4.8  
48X 0.40  
6.00 ± 0.05  
A
6
B
PIN #1  
INDEX AREA  
40  
52  
1
6
39  
PIN 1  
INDEX AREA  
4.70 ± 0.10  
27  
13  
(4X)  
0.15  
14  
26  
4X SEE  
DETAIL "Y"  
0.10  
0.05  
C A B  
C
TOP VIEW  
52x0.40  
BOTTOM VIEW  
4
52x0.20  
SEE DETAIL "X"  
0.10 C  
SEATING PLANE  
0.08 C  
C
(5.80 TYP)  
0.900 ±0.10  
(
4.70)  
SIDE VIEW  
(48x0.40)  
R0.100 TYP.  
(52x0.20)  
(52x0.60)  
0.165 TYP.  
5
C
0.2 REF  
0.00 MIN.  
0.05 MAX.  
0.165 TYP  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
DETAIL "Y"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
4.  
Unless otherwise specified, tolerance: Decimal ± 0.05  
Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8566 Rev 1.00  
November 2, 2015  
Page 35 of 35  

相关型号:

ISL95712IRZ

Multiphase PWM Regulator for AMD Fusion™ Desktop CPUs Using SVI 2.0
RENESAS

ISL95808

Three-state PWM input for power stage shutdown
INTERSIL

ISL95808HRZ-T

Three-state PWM input for power stage shutdown
INTERSIL

ISL95808IRZ-T

Three-state PWM input for power stage shutdown
INTERSIL

ISL95810

Single Digitally Controlled Potentiometer (XDCP)
INTERSIL

ISL95810UIRT8

Low Noise, Low Power I2C Bus, 256 Taps
INTERSIL

ISL95810UIRT8Z

Single Digitally Controlled Potentiometer (XDCP)
INTERSIL

ISL95810UIRT8Z

Single Digitally Controlled Potentiometer (XDCP&trade;); DFN8, MSOP8; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL95810UIRT8Z-T

Single Digitally Controlled Potentiometer (XDCP)
INTERSIL

ISL95810UIRT8Z-T

Single Digitally Controlled Potentiometer (XDCP&trade;); DFN8, MSOP8; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL95810UIU8

Single Digitally Controlled Potentiometer (XDCP)
INTERSIL

ISL95810UIU8-T

Single Digitally Controlled Potentiometer (XDCP)
INTERSIL