M3021M8M8-AXXXFP [RENESAS]

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER; 单芯片16位CMOS微机
M3021M8M8-AXXXFP
型号: M3021M8M8-AXXXFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
单芯片16位CMOS微机

计算机
文件: 总179页 (文件大小:2637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
The M30218 group of single-chip microcomputers are built using the high-performance silicon gate CMOS  
process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These  
single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction  
efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They  
also feature a built-in multiplier and DMAC, making them ideal for controlling musical instruments, house-  
hold appliances and other high-speed processing applications.  
The M30218 group includes a wide range of products with different internal memory types and sizes and  
various package types.  
Features  
• Basic machine instructions .............Compatible with the M16C/60 series  
• Memory capacity ............................ROM / RAM (See figure memory expansion)  
• Shortest instruction execution time.100ns (f(XIN)=10MHz)  
• Supply voltage ................................4.0V to 5.5V (f(XIN)=10MHz)  
2.7V to 5.5V (f(XIN)=3.5MHz)(Note)  
• Interrupts ........................................19 internal and 6 external interrupt sources, 4 software  
• Multifunction 16-bit timer ................Timer A X 5, Timer B X 3  
• FLD conrtoller .................................total 56 pins  
(high-breakdown-voltage P-channel open-drain output : 52pins)  
• Serial I/O.........................................2 channels for UART or clock synchronous,  
1 channels for clock synchronous  
(max.256 bytes automatic transfer function)  
• DMAC .............................................2 channels (triggers: 15 sources)  
• A-D converter .................................10 bits X 8 channels  
• D-A converter .................................8 bits X 2 channels  
• CRC calculation circuit ...................1 circuit  
• Watchdog timer ..............................1 pin  
• Programmable I/O ..........................48 pins  
• High-breakdown-voltage output......52 pins  
• Clock generating circuit ..................2 built-in clock generation circuit  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
Note: Only mask ROM version.  
Applications  
Household appliances, office equipment, Audio etc.  
------Table of Contents------  
Central Processing Unit (CPU) ..................... 10  
Reset............................................................. 14  
Clock Generating Circuit ............................... 18  
Protection ...................................................... 26  
Interrupts ....................................................... 27  
Watchdog Timer............................................ 45  
DMAC ........................................................... 47  
FLD controller ............................................... 53  
Timer ............................................................. 70  
Serial I/O ....................................................... 87  
A-D Converter ............................................. 114  
D-A Converter ............................................. 124  
CRC Calculation Circuit .............................. 126  
Programmable I/O Ports ............................. 128  
Flash memory version................................. 152  
1
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Configuration  
Figures AA-1 show the pin configurations (top view).  
PIN CONFIGURATION (top view)  
P6  
P6  
P6  
P6  
P6  
7
6
5
4
3
/FLD7  
/FLD6  
/FLD5  
/FLD4  
/FLD3  
81  
82  
50  
49  
P2  
P2  
P2  
P2  
P3  
P3  
P3  
P3  
P3  
P3  
4
5
6
7
0
1
2
3
4
5
/FLD36  
/FLD37  
/FLD38  
/FLD39  
/FLD40  
/FLD41  
/FLD42  
/FLD43  
/FLD44  
/FLD45  
83  
84  
85  
86  
87  
48  
47  
46  
45  
44  
P6  
P6  
2
/FLD2  
/FLD1  
/FLD0  
1
P6  
0
88  
89  
43  
42  
41  
40  
39  
38  
VEE  
90  
91  
P10  
P10  
P10  
P10  
7
6
5
4
/AN7  
/AN6  
/AN5  
/AN4  
M30218MC-AXXXFP  
P3  
P3  
P4  
6/FLD46  
7/FLD47  
0/FLD48  
92  
93  
94  
95  
96  
97  
98  
99  
37  
36  
35  
34  
33  
32  
P10  
P10  
P10  
3
2
1
/AN3  
/AN2  
/AN1  
P4  
P4  
P4  
P4  
P4  
P4  
1
2
3
/FLD49  
/FLD50  
/FLD51  
AVSS  
0/AN0  
4
5
6
/T  
/R  
/CLK0/FLD54  
X
D0/FLD52  
P10  
XD0/FLD53  
V
AVCC  
REF  
100  
31  
P47/CTS0/RTS0/FLD55  
Package:100P6S-A  
FigureAA-1. Pin configuration (top view)  
2
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Block Diagram  
Figure AA-2 is a block diagram of the M30218 group.  
Block diagram of the M30218 group  
8
8
8
8
8
8
8
Port P0  
Port P1  
Port P2  
Port P3  
Port P4  
Port P5  
Port P6  
I/O ports  
Internal peripheral functions  
Timer  
System clock generator  
IN-XOUT  
CIN-XCOUT  
A-D converter  
X
X
(10 bits  
X
8 channels  
)
Timer TA0 (16 bits)  
Timer TA1 (16 bits)  
Timer TA2 (16 bits)  
Timer TA3 (16 bits)  
Timer TA4 (16 bits)  
Timer TB0 (16 bits)  
Timer TB1 (16 bits)  
Timer TB2 (16 bits)  
Serial I/O  
UART/clock synchronous SI/O  
(8 bits 2 channels)  
SI/O2 (clock synchronous  
(256 bytes automatic transfer)  
CRC arithmetic circuit (CCITT)  
16  
12  
5
(Polynomial : X +X +X +1)  
X
Fluorescent display function  
(56 contorol pins)  
(52 high-breakdown-voltage ports)  
)
M16C/60 series16-bit CPU core  
Memory  
Registers  
ROM  
(Note 1)  
Program counter  
Watchdog timer  
(15 bits)  
R0H  
R0H  
R1H  
R0L  
R0L  
R1L  
PC  
RAM (Note 2)  
(includes FLDC,ASI/O RAM)  
Vector table  
INTB  
R2  
DMAC  
(2 channels)  
R3  
Stack pointer  
A0  
A1  
FB  
ISP  
USP  
D-A converter  
Multiplier  
(8 bits X 2 channels)  
SB  
FLG  
Note 1: ROM size depends on MCU type.  
Note 2: RAM size depends on MCU type.  
FigureAA-2. Block diagram of M30218 group  
3
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Performance Outline  
Table AA-1 is a performance outline of M30218 group.  
Table AA-1. Performance outline of M30218 group  
Item  
Performance  
91 instructions  
Number of basic instructions  
Shortest instruction execution time  
100ns(f(XIN)=10MHz)  
Memory  
capacity  
I/O port  
ROM  
See figure memory expansion  
RAM  
See figure memory expansion  
P3, P4, P7 to P10  
P0 to P2, P5, P6  
8 bits x 6  
Output port  
8 bit x 5  
Multifunction TA0, TA1, TA2, TA3, TA4  
16 bits x 5  
timer  
TB0, TB1, TB2  
UART0, UART1  
SI/O2  
16 bits x 3  
Serial I/O  
(UART or clock synchronous) x 2  
(Clock synchronous) x 1 (with automatic transfer function)  
56 pins  
Fluorescent display  
A-D converter  
10 bits x 8 channels  
D-A converter  
8 bits x 2  
DMAC  
2 channels (triggers :15 sources)  
16  
12  
5
CRC calculation circuit  
Watchdog timer  
Interrupt  
1 circuit (polynomial: X + X + X + 1)  
15 bits x 1 (with prescaler)  
19 internal and 6 external sources, 4 software sources, 7 levels  
2 built-in clock generation circuits  
Clock generating circuit  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
4.0 to 5.5V (f(XIN)=10MHz)  
Supply voltage  
2.7 to 5.5V (f(XIN)=3.5MHz) (Note)  
Power consumption  
18 mW (VCC=3V, f(XIN)=5MHz)  
I/O withstand voltage  
VCC-48V (output ports : P0 to P2, P5, P6, I/O ports : P3, P40 to P43)  
I/O  
characteristics  
0 to VCC (I/O ports :P44 to P47, P7 to P10)  
- 18mA (P0 to P3, P40 to P43, P5, P6)  
Output current  
H
L
:high-breakdown-voltage, P-channel open-drain  
- 5mA (P44 to P47, P7 to P10)  
5mA (P44 to P47, P7 to P10)  
o
Operating ambient temperature  
Device configuration  
Package  
–20 to 85 C  
CMOS silicon gate  
100-pin plastic mold QFP  
Note: Only mask ROM version.  
4
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Mitsubishi plans to release the following products in the M30218 group:  
(1) Support for mask ROM version and flash memory version  
(2) Memory capacity  
(3) Package  
100P6S  
: Plastic molded QFP (mask ROM version and flash memory version)  
RAM size  
(Byte)  
M30218MC-AXXXFP  
M30218FCFP  
12K  
5K  
1K  
M30217MA-AXXXFP  
512  
ROM size  
(Byte)  
96K  
128K  
Figure AA-3. ROM expansion  
Type No.  
M 3 0 2 1 8 M C – A X X X F P  
Package type:  
FP : Package 100P6S-A  
ROM No.  
Omitted for flash memory version  
ROM capacity:  
2 : 16K bytes  
4 : 32K bytes  
6 : 48K bytes  
8 : 64K bytes  
A : 96K bytes  
C : 128K bytes  
Memory type:  
M : Mask ROM version  
F : Flash memory version  
Shows RAM capacity, pin count, etc  
(The value itself has no specific meaning)  
M16C/21 Group  
M16C Family  
Figure AA-4. Type No., memory size, and package  
5
Mitsubishi microcomputers  
M30218 Group  
Pin Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin name  
CC, VSS  
Signal name  
I/O type  
Function  
Supply 2.7V(Note1) to 5.5 V to the VCC pin. Supply 0 V to the VSS pin.  
Connect a bypass capacitor across the VCC pin and VSS pin.  
Power supply  
input  
V
CNVSS  
RESET  
CNVSS  
Input  
Connect it to the VSS pin.  
Reset input  
Input  
A “L” on this input resets the microcomputer.  
X
IN  
Clock input  
Input  
These pins are provided for the main clock generating circuit.Connect  
a ceramic resonator or crystal between the XIN and the XOUT pins. To  
use an externally derived clock, input it to the XIN pin and leave the  
X
OUT  
Clock output  
Output  
X
OUT pin open.  
AVCC  
AVSS  
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VCC  
.
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VSS  
.
Reference  
voltage input  
V
REF  
Input  
This pin is a reference voltage input for the A-D converter.  
V
EE  
pull-down  
power source  
Apply voltage supplied to pull-down resistors of ports P0 to P1,P5,P6.  
Output port P0 Output  
P0  
P0  
0
7
/FLD16 to  
/FLD23  
This is an 8-bit CMOS output port and high-breakdown-voltage P-  
channel open-drain output structure. A pull-down resistor is built in  
between port P0 and VEE pin. At reset, this port is set to VEE level. P0  
function as FLD controller output pins as selected by software.  
P1  
0
/FLD24 to  
/FLD31  
This is an 8-bit output port equivalent to P0. Pins in this port also  
function as FLD controller output pins as selected by software.  
Output port P1 Output  
Output port P2 Output  
P17  
This is an 8-bit output port equivalent to P0. A pull-down resistor is not  
built in between P2 and VEE pin. Pins in this port also function as FLD  
controller output pins as selected by software.  
P20  
/FLD32 to  
/FLD39  
P27  
This is an 8-bit I/O port. A pull-down resistor is not built in between P3  
and VEE pin. It has an input/output port direction register that allows the  
user to set each pin for input or output. This is low-voltage input level,  
and high-breakdown-voltage P-channel open-drain output structure.  
Pins in this port also function as FLD controller output pins as selected  
by software.  
P3  
P3  
0
7
/FLD40 to  
/FLD47  
I/O port P3  
I/O port P4  
Input/output  
P4  
P4  
0
7
/FLD48 to  
/FLD56  
This is an 8-bit I/O port equivalent to P3. This is low-voltage input level.  
Input/output  
P4  
structure, P4  
in between P4(P4  
as FLD controller output pins as selected by software. P4  
function as UART0 I/O pins as selected by software. When set for  
0
to P4  
3
is high-breakdown-voltage P-channel open-drain output  
to P4 is CMOS output. A pull-down resistor is not built  
to P4 ) and VEE pin. Pins in this port also function  
to P4 also  
4
7
0
3
4
7
input, the user can specify in units of four bits by software whether or  
not they are tied to a pull-up resistor.  
P5  
P5  
0
7
/FLD  
/FLD15  
8
to  
to  
This is an 8-bit output port equivalent to P0. Pins in this port also  
function as FLD controller output pins as selected by software.  
Output port P5 Output  
Output port P6 Output  
P6  
P6  
0
7
/FLD  
/FLD  
0
7
This is an 8-bit output port equivalent to P0. Pins in this port also  
function as FLD controller output pins as selected by software.  
6
Mitsubishi microcomputers  
M30218 Group  
Pin Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin name  
Signal name  
I/O type  
Function  
This is an 8-bit I/O port equivalent to P3. This is CMOS input/output.  
When set for input, the user can specify in units of four bits by software  
P7  
0
to P7  
7
I/O port P7  
Input/output  
whether or not they are tied to a pull-up resistor. P7  
TimerB0 to B2 input pins as selected by software. P7  
TimerA0 I/O pin as selected by software. P7 to P7 function as  
0
to P7  
2 function as  
3
function as  
4
7
TimerA1 to A4 I/O pins, and UART1 I/O pins as selected by software.  
P8  
0
to P8  
7
I/O port P8  
Input/output  
Input/output  
This is an 8-bit I/O port equivalent to P7. When set for input, the user  
can specify in units of four bits by software whether or not they are tied  
to a pull-up resistor. P8  
as selected by software. P8  
selected by software. In this case, connect a quarts oscillator between  
P8 (XOUT pin) and P8 (XCIN pin)  
0
to P8  
5
function as external interrupt input pins  
6
,P8  
7
function as sub-clock input pin as  
6
7
P90  
to P9  
7
I/O port P9  
This is an 8-bit I/O port equivalent to P7. When set for input, the user  
can specify in units of four bits by software whether or not they are tied  
to a pull-up resistor. P9  
output pins (same frequency of XIN/8, XIN/32 or XCIN) and DIM signal  
output pin of FLD controller as selected by software. P9 function as D-  
A converter output pins and clock I/O pin of serial I/O with automatic  
transfer as selected by software. P9 to P9 function as I/O pin of serial  
7 function as D-A converter output pins, clock  
6
0
5
I/O with automatic transfer as selected by software.  
This is an 8-bit I/O port equivalent to P7. When set for input, the user  
can specify in units of four bits by software whether or not they are tied  
to a pull-up resistor. Pins in this port also function as A-D converter  
input pins as selected by software.  
P10  
0
to P10  
7
I/O port P10  
Input/output  
Note 1: Supply 4.0V to 5.5V to the VCC pin in flash memory version.  
7
Mitsubishi microcomputers  
M30218 Group  
Memory  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Operation of Functional Blocks  
The M30218 group accommodates certain units in a single chip. These units include ROM and RAM to  
store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations.  
Also included are peripheral units such as timers, FLD controller, serial I/O, D-A converter, DMAC, CRC  
calculation circuit, A-D converter, and I/O ports.  
The following explains each unit.  
Memory  
Figure BA-1 is a memory map of the M30218 group. The address space extends the 1M bytes from ad-  
dress 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30218MC-AXXXFP, there  
is 128K bytes of internal ROM from E000016 to FFFFF16. The vector table for fixed interrupts such as the  
reset are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The  
address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB).  
See the section on interrupts for details.  
From 0040016 up is RAM. For example, in the M30218MC-AXXXFP, there is 12K bytes of internal RAM  
from 0040016 to 033FF16. In addition to storing data, the RAM also stores the stack used when calling  
subroutines and when interrupts are generated. (From 0040016 to 004FF16 is RAM for SIO2. From 0050016  
to 005DF16 is RAM for FLD.)  
The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for periph-  
eral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not  
occupied is reserved and cannot be used for other purposes.  
The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines  
or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions  
can be used as 2-byte instructions, reducing the number of program steps.  
0000016  
SFR area  
(For details, see  
Figures BA-2 and BA-3)  
FFE0016  
0040016  
RAM area for SI/O2  
0050016  
RAM area for FLD  
Special page  
(224 bytes)  
vector table  
005E016  
Internal RAM area  
FFFDC16  
YYYYY16  
Undefined instruction  
Overflow  
BRK instruction  
Address match  
Single step  
Address  
XXXXX16 YYYYY16  
Address  
Type No.  
M30218MC  
M30218FC  
Watchdog timer  
E000016  
E800016  
033FF16  
017FF16  
XXXXX16  
FFFFF16  
DBC  
Internal ROM area  
M30217MA  
Reset  
FFFFF16  
Figure BA-1. Memory map  
8
Mitsubishi microcomputers  
M30218 Group  
Memory  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
005416  
005516  
005616  
005716  
005816  
005916  
005A16  
005B16  
005C16  
005D16  
005E16  
005F16  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
Processor mode register 0 (PM0)  
Processor mode register 1(PM1)  
System clock control register 0 (CM0)  
System clock control register 1 (CM1)  
INT3 interrupt control register (INT3IC)  
INT4 interrupt control register (INT4IC)  
INT5 interrupt control register (INT5IC)  
Address match interrupt enable register (AIER)  
Protect register (PRCR)  
DMA0 interrupt control register (DM0IC)  
DMA1 interrupt control register (DM1IC)  
A-D conversion interrupt control register (ADIC)  
SI/O automatic transfer interrupt control register (ASIOIC)  
Watchdog timer start register (WDTS)  
Watchdog timer control register (WDC)  
FLD interrupt control register (FLDIC)  
UART0 transmit interrupt control register (S0TIC)  
UART0 receive interrupt control register (S0RIC)  
UART1 transmit interrupt control register (S1TIC)  
UART1 receive interrupt control register (S1RIC)  
Timer A0 interrupt control register (TA0IC)  
Timer A1 interrupt control register (TA1IC)  
Timer A2 interrupt control register (TA2IC)  
Timer A3 interrupt control register (TA3IC)  
Address match interrupt register 0 (RMAD0)  
Address match interrupt register 1 (RMAD1)  
Timer A4 interrupt control register (TA4IC)  
Timer B0 interrupt control register (TB0IC)  
Timer B1 interrupt control register (TB1IC)  
Timer B2 interrupt control register (TB2IC)  
INT0 interrupt control register (INT0IC)  
INT1 interrupt control register (INT1IC)  
INT2 interrupt control register (INT2IC)  
002016  
034016  
034116  
034216  
034316  
034416  
034516  
034616  
034716  
034816  
034916  
034A16  
034B16  
034C16  
034D16  
034E16  
034F16  
035016  
035116  
035216  
035316  
035416  
035516  
035616  
035716  
035816  
035916  
035A16  
035B16  
035C16  
035D16  
035E16  
035F16  
Serial I/O2 automatic transfer data pointer (SIO2DP)  
Serial I/O2 control register 1 (SIO2CON1)  
Serial I/O2 control register 2 (SIO2CON2)  
Serial I/O2 register / transfer counter (SIO2)  
Serial I/O2 control register 3 (SIO2CON3)  
002116 DMA0 source pointer (SAR0)  
002216  
002316  
002416  
DMA0 destination pointer (DAR0)  
002516  
002616  
002716  
002816  
DMA0 transfer counter (TCR0)  
002916  
002A16  
002B16  
002C16  
DMA0 control register (DM0CON)  
002D16  
002E16  
002F16  
003016  
FLD mode register (FLDM)  
FLD output control register (FLDCON)  
DMA1 source pointer (SAR1)  
003116  
003216  
003316  
003416  
Tdisp time set register (TDISP)  
Toff1 time set register (TOFF1)  
Toff2 time set register (TOFF2)  
DMA1 destination pointer (DAR1)  
003516  
003616  
003716  
003816  
FLD data pointer (FLDDP)  
DMA1 transfer counter (TCR1)  
003916  
P2 FLD/port switch register (P2FPR)  
P3 FLD/port switch register (P3FPR)  
P4 FLD/port switch register (P4FPR)  
P5 digit output set register (P5DOR)  
P6 digit output set register (P6DOR)  
003A16  
003B16  
003C16  
DMA1 control register (DM1CON)  
003D16  
003E16  
003F16  
Figure BA-2. Location of peripheral unit control registers (1)  
9
Mitsubishi microcomputers  
M30218 Group  
Memory  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
038016  
038116  
038216  
038316  
038416  
038516  
038616  
038716  
038816  
038916  
038A16  
038B16  
038C16  
038D16  
038E16  
038F16  
039016  
039116  
039216  
039316  
039416  
039516  
039616  
039716  
039816  
039916  
039A16  
039B16  
039C16  
039D16  
039E16  
039F16  
03A016  
03A116  
03A216  
03A316  
03A416  
03A516  
03A616  
03A716  
03A816  
03A916  
03AA16  
03AB16  
03AC16  
03AD16  
03AE16  
03AF16  
03B016  
03B116  
03B216  
03B316  
03B416  
03B516  
03B616  
03B716  
03B816  
03B916  
03BA16  
03BB16  
03BC16  
03BD16  
03BE16  
03BF16  
03C016  
03C116  
03C216  
03C316  
03C416  
03C516  
03C616  
03C716  
03C816  
03C916  
03CA16  
03CB16  
03CC16  
03CD16  
03CE16  
03CF16  
03D016  
03D116  
03D216  
03D316  
03D416  
03D516  
03D616  
03D716  
03D816  
03D916  
03DA16  
03DB16  
03DC16  
03DD16  
03DE16  
03DF16  
03E016  
03E116  
03E216  
03E316  
03E416  
03E516  
03E616  
03E716  
03E816  
03E916  
03EA16  
03EB16  
03EC16  
03ED16  
03EE16  
03EF16  
03F016  
03F116  
03F216  
03F316  
03F416  
03F516  
03F616  
03F716  
03F816  
03F916  
03FA16  
03FB16  
03FC16  
03FD16  
03FE16  
03FF16  
Count start flag (TABSR)  
A-D register 0 (AD0)  
Clock prescaler reset flag (CPSRF)  
One-shot start flag (ONSF)  
Trigger select register (TRGSR)  
Up-down flag (UDF)  
A-D register 1 (AD1)  
A-D register 2 (AD2)  
A-D register 3 (AD3)  
Timer A0 (TA0)  
Timer A1 (TA1)  
A-D register 4 (AD4)  
A-D register 5 (AD5)  
Timer A2 (TA2)  
Timer A3 (TA3)  
A-D register 6 (AD6)  
A-D register 7 (AD7)  
Timer A4 (TA4)  
Timer B0 (TB0)  
Timer B1 (TB1)  
A-D control register 2 (ADCON2)  
Timer B2 (TB2)  
A-D control register 0 (ADCON0)  
A-D control register 1 (ADCON1)  
D-A register 0 (DA0)  
Timer A0 mode register (TA0MR)  
Timer A1 mode register (TA1MR)  
Timer A2 mode register (TA2MR)  
Timer A3 mode register (TA3MR)  
Timer A4 mode register (TA4MR)  
Timer B0 mode register (TB0MR)  
Timer B1 mode register (TB1MR)  
Timer B2 mode register (TB2MR)  
D-A register 1 (DA1)  
D-A control register (DACON)  
Port P0 (P0)  
Port P1 (P1)  
UART0 transmit/receive mode register (U0MR)  
UART0 bit rate generator (U0BRG)  
UART0 transmit buffer register (U0TB)  
Port P2 (P2)  
Port P3 (P3)  
UART0 transmit/receive control register 0 (U0C0)  
UART0 transmit/receive control register 1 (U0C1)  
UART0 receive buffer register (U0RB)  
Port P3 direction register (PD3)  
Port P4 (P4)  
Port P5 (P5)  
UART1 transmit/receive mode register (U1MR)  
UART1 bit rate generator (U1BRG)  
Port P4 direction register (PD4)  
UART1 transmit buffer register (U1TB)  
Port P6 (P6)  
Port P7 (P7)  
UART1 transmit/receive control register 0 (U1C0)  
UART1 transmit/receive control register 1 (U1C1)  
UART1 receive buffer register (U1RB)  
Port P7 direction register (PD7)  
Port P8 (P8)  
Port P9 (P9)  
Port P8 direction register (PD8)  
Port P9 direction register (PD9)  
Port P10 (P10)  
UART transmit/receive control register 2 (UCON)  
Flash memory control register 0 (FCON0) (Note)  
Flash memory control register 1 (FCON1) (Note)  
Flash command register (FCMD) (Note)  
Port P10 direction register (PD10)  
DMA0 request cause select register (DM0SL)  
DMA1 request cause select register (DM1SL)  
CRC data register (CRCD)  
CRC input register (CRCIN)  
Pull-up control register 0 (PUR0)  
Pull-up control register 1 (PUR1)  
Note: This register is only exist in flash memory version.  
Figure BA-3. Location of peripheral unit control registers (2)  
10  
Mitsubishi microcomputers  
M30218 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Central Processing Unit (CPU)  
The CPU has a total of 13 registers shown in Figure CA-1. Seven of these registers (R0, R1, R2, R3, A0,  
A1, and FB) come in two sets; therefore, these have two register banks.  
b15  
b15  
b15  
b15  
b8 b7  
b8 b7  
b0  
b0  
b0  
b0  
R0(Note)  
L
L
H
H
b19  
b19  
b0  
R1(Note)  
R2(Note)  
R3(Note)  
PC  
Program counter  
Data  
registers  
b0  
b0  
Interrupt table  
register  
INTB  
H
L
b15  
b15  
b15  
b15  
User stack pointer  
USP  
ISP  
SB  
b0  
b0  
b0  
b15  
b15  
b15  
b0  
b0  
b0  
A0(Note)  
A1(Note)  
FB(Note)  
Interrupt stack  
pointer  
Address  
registers  
Static base  
register  
Frame base  
registers  
FLG  
Flag register  
IPL  
U
I O B S Z D C  
Note: These registers consist of two register banks.  
Figure CA-1. Central processing unit register  
(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)  
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and  
arithmetic/logic operations.  
Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H, R1H),  
and low-order bits as (R0L, R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can  
use as 32-bit data registers (R2R0, R3R1).  
(2) Address registers (A0 and A1)  
Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data  
registers. These registers can also be used for address register indirect addressing and address register  
relative addressing.  
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).  
11  
Mitsubishi microcomputers  
M30218 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Frame base register (FB)  
Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.  
(4) Program counter (PC)  
Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.  
(5) Interrupt table register (INTB)  
Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector  
table.  
(6) Stack pointer (USP/ISP)  
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each config-  
ured with 16 bits.  
Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag).  
This flag is located at the position of bit 7 in the flag register (FLG).  
(7) Static base register (SB)  
Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.  
(8) Flag register (FLG)  
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure CA-2 shows the flag  
register (FLG). The following explains the function of each flag:  
• Bit 0: Carry flag (C flag)  
This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.  
• Bit 1: Debug flag (D flag)  
This flag enables a single-step interrupt.  
When this flag is “1”, a single-step interrupt is generated after instruction execution. This flag is  
cleared to “0” when the interrupt is acknowledged.  
• Bit 2: Zero flag (Z flag)  
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, cleared to “0”.  
• Bit 3: Sign flag (S flag)  
This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, cleared to “0”.  
• Bit 4: Register bank select flag (B flag)  
This flag chooses a register bank. Register bank 0 is selected when this flag is “0” ; register bank 1 is  
selected when this flag is “1”.  
• Bit 5: Overflow flag (O flag)  
This flag is set to “1” when an arithmetic operation resulted in overflow; otherwise, cleared to “0”.  
• Bit 6: Interrupt enable flag (I flag)  
This flag enables a maskable interrupt.  
An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to  
“0” when the interrupt is acknowledged.  
12  
Mitsubishi microcomputers  
M30218 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
• Bit 7: Stack pointer select flag (U flag)  
Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer (USP) is selected  
when this flag is “1”.  
This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT instruction of software  
interrupt Nos. 0 to 31 is executed.  
• Bits 8 to 11: Reserved area  
• Bits 12 to 14: Processor interrupt priority level (IPL)  
Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight  
processor interrupt priority levels from level 0 to level 7.  
If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt  
is enabled.  
• Bit 15: Reserved area  
The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.  
b15  
b0  
IPL  
Flag register (FLG)  
U I O B S Z D C  
Carry flag  
Debug flag  
Zero flag  
Sign flag  
Register bank select flag  
Overflow flag  
Interrupt enable flag  
Stack pointer select flag  
Reserved area  
Processor interrupt priority level  
Reserved area  
Figure CA-2. Flag register (FLG)  
13  
Mitsubishi microcomputers  
M30218 Group  
Reset  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset.  
(See “Software Reset” for details of software resets.) This section explains on hardware resets.  
When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the  
reset pin level “L” (0.2VCC max.) for at least 20 cycles. When the reset pin level is then returned to the “H”  
level while main clock is stable, the reset status is cancelled and program execution resumes from the  
address in the reset vector table.  
Figure DA-1 shows the example reset circuit. Figure DA-2 shows the reset sequence.  
5V  
4.0V  
V
CC  
0V  
5V  
VCC  
RESET  
RESET  
0V  
0.8V  
Example when f(XIN) = 10MHz and VCC = 5V  
.
Figure DA-1. Example reset circuit  
XIN  
More than 20 cycles are needed  
BCLK 24cycles  
RESET  
BCLK  
(Internal clock)  
Content of reset vector  
FFFFC16  
FFFFE16  
Address  
(Internal address  
signal)  
Figure DA-2. Reset sequence  
14  
Mitsubishi microcomputers  
M30218 Group  
Reset  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(24)  
(25)  
(26)  
Timer A0 interrupt control register  
Timer A1 interrupt control register  
(005516)···  
(005616)···  
? 0  
0
0
(1) Processor mode register 0  
(000416)···  
(000516)···  
0
0
0
0
0
0
0
0
0
0
(2) Processor mode register 1  
?
?
?
?
0
0
0
0
0
0
0
0
0
0
0
0
0
Timer A2 interrupt control register  
Timer A3 interrupt control register  
Timer A4 interrupt control register  
(005716)···  
(005816)···  
(005916)···  
(3) System clock control register 0  
(4) System clock control register 1  
(000616)··· 0 1 0  
(000716)··· 0 0 1  
0
0
1
0
0
0
(27)  
(5)  
(28)  
(29)  
Address match interrupt enable register (000916)···  
0
0
?
0
0
?
Timer B0 interrupt control register  
Timer B1 interrupt control register  
(005A16)···  
(005B16)···  
?
?
0
0
0
0
0
0
(6) Protect register  
(000A16)···  
0
?
(30)  
(31)  
(7)  
(8)  
Watchdog timer control register  
Address match interrupt register 0  
(000F16)··· 0 0 0  
(001016)···  
?
?
Timer B2 interrupt control register  
INT0 interrupt control register  
INT1 interrupt control register  
(005C16)···  
(005D16)···  
(005E16)···  
?
?
?
?
0
0
0
0
0
0
0
0
0
0
0
0
0016  
0016  
(32)  
(001116)···  
0
0
0
0
0
0
(33)  
(34)  
(35)  
(001216)···  
(001416)···  
(001516)···  
0 0  
0016  
0
0
(9)  
Address match interrupt register 1  
INT2 interrupt control register  
Serial I/O 2 control register 1  
(005F16)···  
(034216)···  
0016  
0016  
0016  
0
(36)  
(37)  
(38)  
Serial I/O 2 control register 2  
Serial I/O 2 control register 3  
(034416)···  
(034816)···  
(001616)···  
0
?
?
0
0
0
0
0
0
0016  
0016  
0016  
(10)  
(11)  
(12)  
DMA0 control register  
DMA1 control register  
(002C16)··· 0 0 0  
(003C16)··· 0 0 0  
0
0
0
0
FLDC mode register  
(035016)···  
(39)  
FLD output control register  
(035116)···  
(035216)···  
INT3 interrupt control register  
(004416)···  
(004816)···  
0 0  
0 0  
?
?
0
0
0
0
0
0
0016  
(40)Tdisp time set register  
(41)Toff1 time set register  
(13)INT4 interrupt control register  
(14)  
(035416)···  
(035616)···  
(035916)···  
(035A16)···  
(035B16)···  
FF16  
FF16  
0
0
? 0  
0
0
0
0
INT5 interrupt control register  
(004916)···  
(004B16)···  
(42)  
Toff2 time set register  
(15)DMA0 interrupt control register  
(16)DMA1 interrupt control register  
?
?
0
0
0016  
0016  
0016  
(43)P2 FLD/port switch register  
(44) P3 FLD/port switch register  
(004C16)···  
(004E16)···  
0
0
0
0
A-D conversion interrupt control register  
(17)  
? 0  
? 0  
? 0  
P4 FLD/port switch register  
P5 digit output set register  
P6 digit output set register  
(45)  
(46)  
(47)  
(18)SI/O automatic transfer interrupt  
control register  
FLD interrupt control register  
(19)  
(004F16)···  
(005016)···  
0
0
0
0
0
0
0
0
0016  
0016  
(035C16)···  
(035D16)···  
(20)  
UART0 transmit interrupt control register  
UART0 receive interrupt control register  
?
?
0
0
(005116)···  
(005216)···  
(005316)···  
(21)  
UART1 transmit interrupt control register  
UART1 receive interrupt control register  
(22)  
? 0  
? 0  
0
0
0
0
(23)  
(005416)···  
The content of other registers and RAM is undefined when the microcomputer is reset.  
The initial values must therefore be set.  
x : Nothing is mapped to this bit  
? : Undefined  
Figure DA-3. Device's internal status after a reset is cleared  
15  
Mitsubishi microcomputers  
M30218 Group  
Reset  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(48)  
(49)  
Count start flag  
(038016)···  
(038116)···  
0016  
(77)  
(78)  
Port P3 direction register  
Port P4 direction register  
Port P7 direction register  
(03E716)···  
(03EA16)···  
(03EF16)···  
(03F216)···  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0
Clock prescaler reset flag  
(50)One-shot start flag  
(038216)··· 0  
0
0
0
0
0 0  
(79)  
(80) Port P8 direction register  
(81) Port P9 direction register  
(82) Port P10 direction register  
(51)Trigger select flag  
(52)Up-down flag  
(038316)···  
(038416)···  
0016  
0016  
(03F316)···  
(03F616)···  
(03FD16)···  
(53)Timer A0 mode register  
(54)Timer A1 mode register  
(55)Timer A2 mode register  
(039616)···  
(039716)···  
(039816)···  
0016  
0016  
0016  
(83)  
(84)  
(85)  
Pull-up control register 0  
Pull-up control register 1  
Data registers (R0/R1/R2/R3)  
(03FE16)···  
0016  
(56)Timer A3 mode register  
(57)Timer A4 mode register  
(58)Timer B0 mode register  
(039916)···  
(039A16)···  
(039B16)··· 0  
0016  
0016  
0
000016  
(86)  
(87)  
(88)  
Address registers (A0/A1)  
Frame base register (FB)  
Interrupt table register (INTB)  
000016  
000016  
0000016  
0
0
?
?
0
0
0
0
0
0
0
(59)  
(60)  
(61)  
(62)  
0
(039C16)···  
0
Timer B1 mode register  
(89)  
(90)  
(91)  
(92)  
Timer B2 mode register  
(039D16)··· 0 0 ?  
(03A016)···  
0
0 0  
User stack pointer (USP)  
Interrupt stack pointer (ISP)  
Static base register (SB)  
000016  
000016  
000016  
UART0 transmit/receive mode register  
0016  
UART0 transmit/receive control register 0 (03A416)··· 0 0 0  
UART0 transmit/receive control register 1 (03A516)··· 0 0 0  
0
0
1
0
0
0
0 0  
1 0  
(63)  
(64)  
(65)  
Flag register (FLG)  
000016  
UART1 transmit/receive mode register  
(03A816)···  
0016  
UART1 transmit/receive control register 0 (03AC16)··· 0 0 0  
UART1 transmit/receive control register 1 (03AD16)··· 0 0 0  
0
0
0
1
0
0
0
0 0  
1 0  
0 0  
(66)  
UART transmit/receive control register 2  
(03B016)···  
(03B416)··· 0  
(03B516)···  
0 0  
0
0
0
0
(67)  
(68)  
(69)  
Flash memory control register 0  
(Note )  
Flash memory control register 1  
(Note)  
0
1 0  
0
0
0
0
0016  
(03B616)···  
(70)  
(71)  
Flash command register (Note)  
DMA0 cause select register  
(03B816)···  
(03BA16)···  
0016  
0016  
DMA1 cause select register  
(72)  
(73)A-D control register 2  
(03D416)···  
0
(74)  
A-D control register 0  
A-D control register 1  
D-A control register  
(03D616)···  
(03D716)···  
(03DC16)···  
0
0 0  
0
0
?
? ?  
(75)  
(76)  
0016  
0016  
The content of other registers and RAM is undefined when the microcomputer is reset.  
The initial values must therefore be set.  
x : Nothing is mapped to this bit  
? : Undefined  
Note: This register is only exist in flash memory version.  
Figure DA-4. Device's internal status after a reset is cleared  
16  
Mitsubishi microcomputers  
M30218 Group  
Software Reset  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Reset  
Writing “1” to bit 3 of the processor mode register 0 (address 000416) applies a (software reset) reset to the  
microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal  
RAM are preserved.  
Figure DA-5 shows the processor mode register 0 and 1.  
Processor mode register 0 (Note)  
Symbol  
PM0  
Address  
000416  
When reset  
XXXX0000  
b7 b6 b5 b4 b3 b2 b1 b0  
2
0
0
0
0
R W  
Bit symbol  
Reserved bit  
Bit name  
Function  
Must always be set to 0”  
The device is reset when this bit  
is set to 1. The value of this bit  
is 0when read.  
PM03  
Software reset bit  
Nothing is assigned.  
In an attempt to write to these bits, write 0. The value, if read, turns out to be  
indeterminate.  
Note: Set bit 1 of the protect register (address 000A16) to 1when writing new  
values to this register.  
Processor mode register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PM1  
Address  
000516  
When reset  
00XXXXX0  
0
0
0
2
R W  
Bit symbol  
Reserved bit  
Bit name  
Function  
Must always be set to 0”  
Nothing is assigned.  
In an attempt to write to these bits, write 0. The value, if read, turns out to be  
indeterminate.  
Must always be set to 0”  
Reserved bit  
Note: Set bit 1 of the protect register (address 000A16) to 1when writing new values  
to this register.  
Figure DA-5. Processor mode register 0 and 1.  
17  
Mitsubishi microcomputers  
M30218 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the  
CPU and internal peripheral units.  
Table WA-1. Main clock and sub clock generating circuits  
Main clock generating circuit  
• CPU’s operating clock source  
• Internal peripheral units’  
operating clock source  
Ceramic or crystal oscillator  
XIN, XOUT  
Sub clock generating circuit  
• CPU’s operating clock source  
• Timer A/B’s count clock  
source  
Use of clock  
Usable oscillator  
Crystal oscillator  
XCIN, XCOUT  
Pins to connect oscillator  
Oscillation stop/restart function  
Available  
Available  
Oscillator status immediately after reset Oscillating  
Stopped  
Other  
Externally derived clock can be input  
Example of oscillator circuit  
Figure WA-1 shows some examples of the main clock circuit, one using an oscillator connected to the  
circuit, and the other one using an externally derived clock for input. Figure WA-2 shows some examples of  
sub clock circuits, one using an oscillator connected to the circuit, and the other one using an externally  
derived clock for input. Circuit constants in Figures WA-1 and WA-2 vary with each oscillator used. Use the  
values recommended by the manufacturer of your oscillator.  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
X
IN  
XOUT  
X
IN  
XOUT  
Open  
(Note)  
Rd  
Externally derived clock  
Vcc  
Vss  
CIN  
C
OUT  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's  
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN  
and XOUT following the instruction.  
Figure WA-1. Examples of main clock  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
X
CIN  
XCOUT  
X
CIN  
XCOUT  
Open  
(Note)  
R
Cd  
Externally derived clock  
CCIN  
CCOUT  
Vcc  
Vss  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's  
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XCIN  
and XCOUT following the instruction.  
Figure WA-2. Examples of sub clock  
18  
Mitsubishi microcomputers  
M30218 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Control  
Figure WA-3 shows the block diagram of the clock generating circuit.  
X
COUT  
X
CIN  
fC32  
1/32  
f
1
CM04  
f1SIO2  
f
AD  
fC  
f8SIO2  
Sub clock  
f
8
CM10 “1”  
Write signal  
f
32  
S
R
Q
XIN  
X
OUT  
b
c
CM07=0  
a
d
Divider  
RESET  
Software reset  
f
C
BCLK  
Main clock  
CM02  
CM07=1  
CM05  
Interrupt request  
level judgment output  
S Q  
R
WAIT instruction  
c
b
1/2  
1/2  
1/2  
1/2  
1/2  
a
CM06=0  
CM17,CM16=11  
CM06=1  
CM06=0  
CM17,CM16=10  
d
CM06=0  
CM17,CM16=01  
CM0i : Bit i at address 000616  
CM1i : Bit i at address 000716  
WDCi : Bit i at address 000F16  
CM06=0  
CM17,CM16=00  
Details of divider  
Figure WA-3. Clock generating circuit  
19  
Mitsubishi microcomputers  
M30218 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
The following paragraphs describes the clocks generated by the clock generating circuit.  
(1) Main clock  
The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to  
the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the  
clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation.  
After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock  
oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716).  
Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit  
changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is re-  
tained.  
(2) Sub-clock  
The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset.  
After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be  
selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure  
that the sub-clock oscillation has fully stabilized before switching.  
After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock  
oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616).  
Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit  
changes to “1” when shifting to stop mode and at a reset.  
(3) BCLK  
The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by  
1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can  
be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expan-  
sion and the microprocessor modes.  
The main clock division select bit 0(bit 6 at address 000616) changes to “1” when shifting from high-  
speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation  
mode to stop mode, the value before stop mode is retained.  
(4) Peripheral function clock(f1, f8, f32, fAD, f1SIO2, f8SIO2)  
The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The  
peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function  
clock stop bit (bit 2 at 000616) to “1” and then executing a WAIT instruction.  
(5) fC32  
This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.  
(6) fC  
This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.  
20  
Mitsubishi microcomputers  
M30218 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Figure WA-4 shows the system clock control registers 0 and 1.  
System clock control register 0 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM0  
Address  
000616  
When reset  
4816  
Bit symbol  
CM00  
Bit name  
Function  
R W  
b1 b0  
Clock output function  
select bit  
(Valid only in single-chip  
mode)  
0 0 : I/O port P97/DA0  
0 1 : f  
1 0 : f  
1 1 : f32 output  
C
output  
output  
8
CM01  
CM02  
CM03  
WAIT peripheral function  
clock stop bit  
0 : Do not stop peripheral function clock in wait mode  
1 : Stop peripheral function clock in wait mode (Note 8)  
X
CIN-XCOUT drive capacity 0 : LOW  
select bit (Note 2)  
1 : HIGH  
Port X  
C
select bit  
0 : I/O port  
1 : XCIN-XCOUT generation  
CM04  
CM05  
Main clock (XIN-XOUT  
stop bit (Note 3, 4, 5)  
)
0 : On  
1 : Off  
Main clock division select 0 : CM16 and CM17 valid  
CM06  
CM07  
bit 0 (Note 7)  
1 : Division by 8 mode  
System clock select bit  
(Note 6)  
0 : XIN, XOUT  
1 : XCIN, XCOUT  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: Changes to “1” when shiffing to stop mode and at a reset.  
Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and  
operating with XIN, set this bit to “0”. When main clock oscillation is operating by itself, set system clock select  
bit (CM07) to “1” before setting this bit to “1”.  
Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.  
Note 5: If this bit is set to “1”, XOUT turns “H”. The built-in feedback resistor remains being connected, so XIN turns  
pulled up to XOUT (“H”) via the feedback resistor.  
Note 6: Set port Xc select bit (CM04) to “1” and stabilize the sub-clock oscillating before setting to this bit from “0” to “1”.  
Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to “0” and stabilize the  
main clock oscillating before setting this bit from “1” to “0”.  
Note 7: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
Note 8: fC32 is not included.  
System clock control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM1  
Address  
000716  
When reset  
2016  
0
0
0
0
Bit symbol  
CM10  
Bit name  
Function  
R W  
All clock stop control bit  
(Note4)  
0 : Clock on  
1 : All clocks off (stop mode)  
Reserved bit  
Always set to “0”  
Reserved bit  
Reserved bit  
Reserved bit  
Always set to “0”  
Always set to “0”  
Always set to “0”  
X
IN-XOUT drive capacity  
0 : LOW  
1 : HIGH  
CM15  
select bit (Note 2)  
b7 b6  
Main clock division  
select bit 1 (Note 3)  
0 0 : No division mode  
0 1 : Division by 2 mode  
1 0 : Division by 4 mode  
1 1 : Division by 16 mode  
CM16  
CM17  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is “0”. If “1”, division mode is  
fixed at 8.  
Note 4: If this bit is set to “1”, XOUT turns “H”, and the built-in feedback resistor is cut off. XCIN and XCOUT turn high-  
impedance state.  
Figure WA-4. Clock control registers 0 and 1  
21  
Mitsubishi microcomputers  
M30218 Group  
Clock output  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Output  
The clock output function select bit (bit 0,1 at address 000616) allows you to choose the clock from f8, f32, or  
fc to be output from the P97/DA0/CLKOUT/DIMOUT pin. When the WAIT peripheral function clock stop bit  
(bit 2 at address 000616) is set to “1”, the output of f8 and f32 stop by executing of WAIT instruction.  
Stop Mode  
Writing “1” to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcom-  
puter enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC re-  
mains above 2V.  
Because the oscillation of BCLK, f1 to f32, fc, fC32, and fAD stops in stop mode, peripheral functions such as  
the fluorescent display function, serial I/O 2, A-D converter and watchdog timer do not function. However,  
timer A and timer B operate provided that the event counter mode is set to an external pulse, and UART0  
and UART2 functions provided an external clock is selected. Table WA-2 shows the status of the ports in  
stop mode.  
Stop mode is cancelled by a hardware reset or an interrupt. If an interrupt is to be used to cancel stop mode,  
that interrupt must first have been enabled. If returning by an interrupt, that interrupt routine is executed.  
When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division  
select bit 0 (bit 6 at address 000616) is set to “1”. When shifting from low-speed/low power dissipation mode  
to stop mode, the value before stop mode is retained.  
Table WA-2. Port status during stop mode  
Pin  
States  
Retains status before stop mode  
“H”  
Port  
CLKOUT  
When fC selected  
When f8, f32 selected  
Retains status before stop mode  
Wait Mode  
When a WAIT instruction is executed, BCLK stops and the microcomputer enters the wait mode. In this mode,  
oscillation continues but BCLK and watchdog timer stop. Writing “1” to the WAIT peripheral function clock  
stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions,  
allowing power dissipation to be reduced. Table WA-3 shows the status of the ports in wait mode.  
Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, the  
microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the  
WAIT instruction was executed.  
Table WA-3. Port status during wait mode  
Pin  
States  
Port  
Retains status before wait mode  
Does not stop  
CLKOUT  
When fC selected  
When f8, f32 selected  
Does not stop when the WAIT  
peripheral function clock stop bit is  
“0”. (Note)  
When the WAIT peripheral function clock  
stop bit is “1”, the status immediately prior  
to entering wait mode is maintained.  
Note: Attention that reducing the power dissipation is impossible.  
22  
Mitsubishi microcomputers  
M30218 Group  
Status Transition of BCLK  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Status Transition Of BCLK  
Power dissipation can be reduced and low-voltage operation achieved by changing the count source for  
BCLK. Table WA-4 shows the operating modes corresponding to the settings of system clock control  
registers 0 and 1.  
When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address  
000616) changes to “1” when shifting from high-speed/medium-speed to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
The following shows the operational modes of BCLK.  
(1) Division by 2 mode  
The main clock is divided by 2 to obtain the BCLK.  
(2) Division by 4 mode  
The main clock is divided by 4 to obtain the BCLK.  
(3) Division by 8 mode  
The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this  
mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4  
mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption  
mode, make sure the sub-clock is oscillating stably.  
(4) Division by 16 mode  
The main clock is divided by 16 to obtain the BCLK.  
(5) No-division mode  
The main clock is divided by 1 to obtain the BCLK.  
(6) Low-speed mode  
fC is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before  
transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the sub-  
clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately  
after powering up and after stop mode is cancelled.  
(7) Low power dissipation mode  
fC is the BCLK and the main clock is stopped.  
Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which  
the count source is going to be switched must be oscillating stably. Allow a wait time in software for  
the oscillation to stabilize before switching over the clock.  
Table WA-4. Operating modes dictated by settings of system clock control registers 0 and 1  
CM17  
CM16  
CM07  
CM06  
CM05  
CM04  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1
Operating mode of BCLK  
Division by 2 mode  
Division by 4 mode  
Division by 8 mode  
Division by 16 mode  
No-division mode  
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
Invalid  
1
Invalid  
1
1
0
0
0
0
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Low-speed mode  
1
Low power dissipation mode  
23  
Mitsubishi microcomputers  
M30218 Group  
Power control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power control  
The following is a description of the three available power control modes:  
Modes  
Power control is available in three modes.  
(a) Normal operation mode  
High-speed mode  
Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the internal  
clock selected. Each peripheral function operates according to its assigned clock.  
Medium-speed mode  
Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the  
BCLK. The CPU operates according to the internal clock selected. Each peripheral function oper-  
ates according to its assigned clock.  
Low-speed mode  
fC becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the  
secondary clock. Each peripheral function operates according to its assigned clock.  
Low power consumption mode  
The main clock operating in low-speed mode is stopped. The CPU operates according to the fC  
clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate  
are those with the sub-clock selected as the count source.  
(b) Wait mode  
The CPU operation is stopped. The oscillators do not stop.  
(c) Stop mode  
All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three  
modes listed here, is the most effective in decreasing power consumption.  
Figure WA-5 is the state transition diagram of the above modes.  
24  
Mitsubishi microcomputers  
M30218 Group  
Power control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Transition of stop mode, wait mode  
Reset  
All oscillators stopped  
CPU operation stopped  
WAIT  
instruction  
CM10 = “1”  
Interrupt  
Medium-speed mode  
(divided-by-8 mode)  
Stop mode  
Wait mode  
Interrupt  
Interrupt  
WAIT  
instruction  
All oscillators stopped  
CPU operation stopped  
High-speed/medium-  
speed mode  
CM10 = “1”  
Stop mode  
Wait mode  
Interrupt  
WAIT  
instruction  
All oscillators stopped  
CPU operation stopped  
CM10 = “1”  
Interrupt  
Low-speed/low power  
dissipation mode  
Stop mode  
Wait mode  
Interrupt  
Normal mode  
(Refer to the following for the transition of normal mode.)  
Transition of normal mode  
Main clock is oscillating  
Sub clock is stopped  
Medium-speed mode  
(divided-by-8 mode)  
CM06 = “1”  
BCLK : f(XIN)/8  
CM07 = “0” CM06 = “1”  
CM07 = “0” (Note 1)  
CM06 = “1”  
CM04 = “0”  
CM04 = “1”  
(Notes 1, 3)  
Main clock is oscillating  
Sub clock is oscillating  
CM04 = “0”  
Medium-speed mode  
(divided-by-2 mode)  
High-speed mode  
Main clock is oscillating  
Sub clock is oscillating  
BCLK : f(XIN  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “0”  
)
BCLK : f(XIN)/2  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “1”  
Medium-speed mode  
(divided-by-8 mode)  
Low-speed mode  
CM07 = “0”  
(Note 1, 3)  
BCLK : f(XIN)/8  
CM07 = “0”  
CM06 = “1”  
BCLK : f(XCIN  
CM07 = “1”  
)
Medium-speed mode  
(divided-by-4 mode)  
Medium-speed mode  
(divided-by-16 mode)  
CM07 = “1”  
(Note 2)  
BCLK : f(XIN)/4  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “0”  
BCLK : f(XIN)/16  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “1”  
CM05 = “0”  
CM05 = “1”  
CM04 = “0”  
CM04 = “1”  
Main clock is oscillating  
Sub clock is stopped  
Main clock is stopped  
Sub clock is oscillating  
Low power dissipation mode  
Medium-speed mode  
(divided-by-2 mode)  
High-speed mode  
CM07 = “1” (Note 2)  
CM05 = “1”  
BCLK : f(XIN  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “0”  
)
BCLK : f(XIN)/2  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “1”  
BCLK : f(XCIN  
CM07 = “1”  
)
CM07 = “0” (Note 1)  
CM06 = “0” (Note 3)  
CM04 = “1”  
Medium-speed mode  
(divided-by-4 mode)  
Medium-speed mode  
(divided-by-16 mode)  
CM06 = “0”  
(Notes 1,3)  
BCLK : f(XIN)/4  
BCLK : f(XIN)/16  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “0”  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “1”  
Note 1: Switch clock after oscillation of main clock is sufficiently stable.  
Note 2: Switch clock after oscillation of sub clock is sufficiently stable.  
Note 3: Change CM06 after changing CM17 and CM16.  
Note 4: Transit in accordance with arrow.  
Figure WA-5. State transition diagram of Power control mode  
25  
Mitsubishi microcomputers  
M30218 Group  
Protection  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Protection  
The protection function is provided so that the values in important registers cannot be changed in the event  
that the program runs out of control. Figure WA-6 shows the protect register. The values in the processor  
mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control reg-  
ister 0 (address 000616), and system clock control register 1 (address 000716) can only be changed when  
the respective bit in the protect register is set to “1”.  
The system clock control registers 0 and 1 write-enable bit (bit 0 at address 000A16) and processor mode  
register 0 and 1 write-enable bit (bit 1 at address 000A16) do not automatically return to “0” after a value has  
been written to an address. The program must therefore be written to return these bits to “0”.  
Protect register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PRCR  
Address  
000A16  
When reset  
XXXXX000  
2
Bit symbol  
PRC0  
Bit name  
Function  
R W  
Enables writing to system clock  
control registers 0 and 1 (addresses  
0 : Write-inhibited  
1 : Write-enabled  
000616 and 000716  
)
Enables writing to processor mode  
registers 0 and 1 (addresses 000416  
0 : Write-inhibited  
1 : Write-enabled  
PRC1  
and 000516  
)
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Figure WA-6. Protect register  
26  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Overview of Interrupt  
Type of Interrupts  
Figure DD-1 lists the types of interrupts.  
Undefined instruction (UND instruction)  
Overflow (INTO instruction)  
BRK instruction  
Software  
INT instruction  
Interrupt  
Reset  
________  
DBC  
Special  
Watchdog timer  
Single step  
Hardware  
Address matched  
Peripheral I/O (Note)  
Note: Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.  
Figure DD-1. Classification of interrupts  
• Maskable interrupt :  
An interrupt which can be enabled (disabled) by the interrupt enable flag  
(I flag) or whose interrupt priority can be changed by priority level.  
• Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag  
(I flag) or whose interrupt priority cannot be changed by priority level.  
27  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Interrupts  
A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable  
interrupts.  
Undefined instruction interrupt  
An undefined instruction interrupt occurs when executing the UND instruction.  
Overflow interrupt  
An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to  
“1”. The following are instructions whose O flag changes by arithmetic:  
ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB  
BRK interrupt  
A BRK interrupt occurs when executing the BRK instruction.  
INT interrupt  
An INT interrupt occurs when specifying one of software interrupt numbers 0 through 63 and execut-  
ing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O inter-  
rupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/  
O interrupt does.  
The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is  
involved.  
So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack  
pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to “0” and  
select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from  
the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt re-  
quest. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a  
shift.  
28  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Hardware Interrupts  
Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.  
(1) Special interrupts  
Special interrupts are non-maskable interrupts.  
Reset  
____________  
Reset occurs if an “L” is input to the RESET pin.  
________  
DBC interrupt  
This interrupt is exclusively for the debugger, do not use it in other circumstances.  
Watchdog timer interrupt  
Generated by the watchdog timer.  
Single-step interrupt  
This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug  
flag (D flag) set to “1”, a single-step interrupt occurs after one instruction is executed.  
Address match interrupt  
An address match interrupt occurs immediately before the instruction held in the address indicated by  
the address match interrupt register is executed with the address match interrupt enable bit set to “1”.  
If an address other than the first address of the instruction in the address match interrupt register is set,  
no address match interrupt occurs.  
(2) Peripheral I/O interrupts  
A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral func-  
tions are dependent on classes of products, so the interrupt factors too are dependent on classes of  
products. The interrupt vector table is the same as the one for software interrupt numbers 0 through  
31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.  
DMA0 interrupt, DMA1 interrupt  
These are interrupts that DMA generates.  
A-D conversion interrupt  
This is an interrupt that the A-D converter generates.  
UART0 and UART1 transmission interrupt  
These are interrupts that the serial I/O transmission generates.  
UART0 and UART1 reception interrupt  
These are interrupts that the serial I/O reception generates.  
SI/O automatic transfer interrupt  
This is an interrupt that the SI/O automatic transfer generates.  
Timer A0 interrupt through timer A4 interrupt  
These are interrupts that timer A generates  
Timer B0 interrupt through timer B2 interrupt  
These are interrupts that timer B generates.  
________  
________  
INT0 interrupt through INT5 interrupt  
______  
______  
An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin.  
29  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupts and Interrupt Vector Tables  
If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector  
table. Set the first address of the interrupt routine in each vector table. Figure DD-2 shows the format for  
specifying the address.  
Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and  
variable vector table in which addresses can be varied by the setting.  
MSB  
LSB  
Low address  
Mid address  
Vector address + 0  
Vector address + 1  
Vector address + 2  
Vector address + 3  
0 0 0 0  
0 0 0 0  
High address  
0 0 0 0  
Figure DD-2. Format for specifying interrupt vector addresses  
Fixed vector tables  
The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area  
extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of  
interrupt routine in each vector table. Table DD-1 shows the interrupts assigned to the fixed vector  
tables and addresses of vector tables.  
Table DD-1. Interrupts assigned to the fixed vector tables and addresses of vector tables  
Interrupt source  
Vector table addresses  
Address (L) to address (H)  
FFFDC16 to FFFDF16  
FFFE016 to FFFE316  
FFFE416 to FFFE716  
Remarks  
Undefined instruction  
Overflow  
Interrupt on UND instruction  
Interrupt on INTO instruction  
BRK instruction  
If the vector contains FF16, program execution starts from  
the address shown by the vector in the variable vector table  
There is an address-matching interrupt enable bit  
Do not use  
Address match  
FFFE816 to FFFEB16  
FFFEC16 to FFFEF16  
FFFF016 to FFFF316  
FFFF416 to FFFF716  
FFFF816 to FFFFB16  
FFFFC16 to FFFFF16  
Single step (Note)  
Watchdog timer  
________  
DBC (Note)  
Do not use  
-
-
Reset  
Note: Interrupts used for debugging purposes only.  
30  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Variable vector tables  
The addresses in the variable vector table can be modified, according to the user’s settings. Indicate  
the first address using the interrupt table register (INTB). The 256-byte area subsequent to the ad-  
dress the INTB indicates becomes the area for the variable vector tables. One vector table comprises  
four bytes. Set the first address of the interrupt routine in each vector table. Table DD-2 shows the  
interrupts assigned to the variable vector tables and addresses of vector tables.  
Table DD-2. Interrupts assigned to the variable vector tables and addresses of vector tables  
Vector table address  
Address (L) to address (H)  
Software interrupt number  
Software interrupt number 0  
Interrupt source  
Remarks  
+0 to +3 (Note)  
BRK instruction  
Cannot be masked I flag  
Software interrupt number 7  
Software interrupt number 8  
Software interrupt number 9  
+28 to +31 (Note)  
+32 to +35 (Note)  
+36 to +39 (Note)  
INT3  
INT4  
INT5  
Software interrupt number 11  
Software interrupt number 12  
+44 to +47 (Note)  
+48 to +51 (Note)  
DMA0  
DMA1  
Software interrupt number 14  
Software interrupt number 15  
+56 to +59 (Note)  
+60 to +63 (Note)  
A-D  
SI/O automatic transfer  
Software interrupt number 16  
Software interrupt number 17  
+64 to +67 (Note)  
+68 to +71 (Note)  
FLD  
UART0 transmit  
Software interrupt number 18  
Software interrupt number 19  
Software interrupt number 20  
Software interrupt number 21  
Software interrupt number 22  
Software interrupt number 23  
Software interrupt number 24  
Software interrupt number 25  
Software interrupt number 26  
Software interrupt number 27  
Software interrupt number 28  
Software interrupt number 29  
Software interrupt number 30  
Software interrupt number 31  
Software interrupt number 32  
+72 to +75 (Note)  
+76 to +79 (Note)  
+80 to +83 (Note)  
+84 to +87 (Note)  
+88 to +91 (Note)  
+92 to +95 (Note)  
+96 to +99 (Note)  
+100 to +103 (Note)  
+104 to +107 (Note)  
+108 to +111 (Note)  
+112 to +115 (Note)  
+116 to +119 (Note)  
+120 to +123 (Note)  
+124 to +127 (Note)  
+128 to +131 (Note)  
UART0 receive  
UART1 transmit  
UART1 receive  
Timer A0  
Timer A1  
Timer A2  
Timer A3  
Timer A4  
Timer B0  
Timer B1  
Timer B2  
INT0  
INT1  
INT2  
to  
to  
Cannot be masked I flag  
Software interrupt  
Software interrupt number 63  
+252 to +255 (Note)  
Note : Address relative to address in interrupt table register (INTB).  
31  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt Control  
Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the  
priority to be accepted. What is described here does not apply to non-maskable interrupts.  
Enable or disable a maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selec-  
tion bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is  
indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit  
are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the  
IPL are located in the flag register (FLG).  
Figure DD-3 shows the memory map of the interrupt control registers.  
32  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt control register(Note2)  
Symbol  
Address  
When reset  
DMiIC(i=0, 1)  
ADIC  
ASIOIC  
004B16 to 004C16  
004E16  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
2
2
2
2
2
2
2
2
004F16  
005016  
005116, 005316  
005216, 005416  
005516 to 005916  
005A16 to 005C16  
FLDIC  
SiTIC(i=0, 1)  
SiRIC(i=0, 1)  
TAiIC(i=0 to 4)  
TBiIC(i=0 to 2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
ILVL0  
Bit name  
Function  
R
W
Interrupt priority level  
select bit  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
0 1 0 : Level 2  
ILVL1  
0 1 1 : Level 3  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
0 : Interrupt not requested  
1 : Interrupt requested  
ILVL2  
IR  
Interrupt request bit  
(Note1)  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed  
for set (= 1).  
Note 2: To rewrite the interrupt control register, do so at a point that dose not  
generate the interrupt request for that register. For details, see the  
precautions for interrupts.  
Symbol  
Address  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
INTiIC(i=0 to 5)  
005D16 to 005F16 XX00X000  
004716 to 004916  
2
0
R
W
Bit symbol  
ILVL0  
Bit name  
Interrupt priority level  
select bit  
Function  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
ILVL1  
ILVL2  
0 1 0 : Level 2  
0 1 1 : Level 3  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
IR  
Interrupt request bit  
Polarity select bit  
0: Interrupt not requested  
1: Interrupt requested  
(Note1)  
POL  
0 : Selects falling edge  
1 : Selects rising edge  
Reserved bit  
Always set to “0”  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Note1 : This bit can only be accessed for reset (= 0), but cannot be accessed  
for set (= 1).  
Note 2: To rewrite the interrupt control register, do so at a point that dose not  
generate the interrupt request for that register. For details, see the  
precautions for interrupts.  
Figure DD-3. Interrupt control registers  
33  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt Enable Flag (I flag)  
The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this  
flag to “1” enables all maskable interrupts; setting it to “0” disables all maskable interrupts. This flag is set  
to “0” after reset.  
Interrupt Request Bit  
The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is  
accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The  
interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").  
Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)  
Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits  
of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared  
with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL.  
Therefore, setting the interrupt priority level to “0” disables the interrupt.  
Table DD-3 shows the settings of interrupt priority levels and Table DD-4 shows the interrupt levels  
enabled, according to the consist of the IPL.  
The following are conditions under which an interrupt is accepted:  
· interrupt enable flag (I flag) = 1  
· interrupt request bit = 1  
· interrupt priority level > IPL  
The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are  
independent, and they are not affected by one another.  
Table DD-4. Interrupt levels enabled according  
to the contents of the IPL  
Table DD-3. Settings of interrupt priority  
levels  
Interrupt priority  
level select bit  
Interrupt priority  
level  
Priority  
order  
IPL  
Enabled interrupt priority levels  
b2 b1 b0  
IPL  
2
IPL1  
IPL0  
Level 0 (interrupt disabled)  
0
0
0
Interrupt levels 1 and above are enabled  
Interrupt levels 2 and above are enabled  
Interrupt levels 3 and above are enabled  
Interrupt levels 4 and above are enabled  
Interrupt levels 5 and above are enabled  
Interrupt levels 6 and above are enabled  
Interrupt levels 7 and above are enabled  
All maskable interrupts are disabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
Level 7  
0
0
0
1
1
0
Low  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
High  
34  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Rewrite the interrupt control register  
To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for  
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after  
the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
;
I
; Enable interrupts.  
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
;
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions or dummy read are inserted before FSET I in Examples 1 and 2 is  
to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to  
effects of the instruction queue.  
When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the  
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-  
ated. This will depend on the instruction. If this creates problems, use the below instructions to change  
the register.  
Instructions : AND, OR, BCLR, BSET  
35  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt Sequence  
An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the  
instant the interrupt routine is executed — is described here.  
If an interrupt occurs during execution of an instruction, the processor determines its priority when the  
execution of the instruction is completed, and transfers control to the interrupt sequence from the next  
cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction,  
the processor temporarily suspends the instruction being executed, and transfers control to the interrupt  
sequence.  
In the interrupt sequence, the processor carries out the following in sequence given:  
(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading ad-  
dress 0000016.  
(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence  
in the temporary register (Note) within the CPU.  
(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to  
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32  
through 63, is executed)  
(4) Saves the content of the temporary register (Note) within the CPU in the stack area.  
(5) Saves the content of the program counter (PC) in the stack area.  
(6) Sets the interrupt priority level of the accepted instruction in the IPL.  
After the interrupt sequence is completed, the processor resumes executing instructions from the first  
address of the interrupt routine.  
Note: This register cannot be utilized by the user.  
Interrupt Response Time  
'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first  
instruction within the interrupt routine has been executed. This time comprises the period from the  
occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the  
time required for executing the interrupt sequence (b). Figure DD-4 shows the interrupt response time.  
Interrupt request generated  
Interrupt request acknowledged  
Time  
Instruction in  
interrupt routine  
Instruction  
(a)  
Interrupt sequence  
(b)  
Interrupt response time  
(a) Time from interrupt request is generated to when the instruction then under execution is completed.  
(b) Time in which the instruction sequence is executed.  
Figure DD-4. Interrupt response time  
36  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the  
DIVX instruction.  
Time (b) is as shown in Table DD-5.  
Table DD-5. Time required for executing the interrupt sequence  
Interrupt vector address Stack pointer (SP) value  
16-Bit bust  
8-Bit bus  
Even  
Even  
Odd  
18 cycles (Note 1)  
19 cycles (Note 1)  
19 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
Even  
Odd (Note 2)  
Odd (Note 2)  
Even  
Odd  
________  
Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence  
interrupt or of a single-step interrupt.  
Note 2: Locate an interrupt vector address in an even address, if possible.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
BCLK  
Address  
0000  
Address bus  
Data bus  
Indeterminate  
Indeterminate  
SP-2  
SP-4  
vec  
vec+2  
PC  
Interrupt  
information  
SP-2  
SP-4  
vec  
vec+2  
contents contents contents contents  
R
Indeterminate  
W
The indeterminate segment is dependent on the queue buffer.  
If the queue buffer is ready to take an instruction, a read cycle occurs.  
Figure DD-5. Time required for executing the interrupt sequence  
Variation of IPL when Interrupt Request is Accepted  
If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.  
If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown  
in Table DD-6 is set in the IPL.  
Table DD-6. Relationship between interrupts without interrupt priority levels and IPL  
Value set in the IPL  
Interrupt sources without priority levels  
Watchdog timer  
7
0
Reset  
Other  
Not changed  
37  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Saving Registers  
In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter  
(PC) are saved in the stack area.  
First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8  
lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the  
program counter. Figure DD-6 shows the state of the stack as it was before the acceptance of the  
interrupt request, and the state the stack after the acceptance of the interrupt request.  
Save other necessary registers at the beginning of the interrupt routine using software. Using the  
PUSHM instruction alone can save all the registers except the stack pointer (SP).  
Stack area  
Stack area  
Address  
MSB  
Address  
MSB  
LSB  
LSB  
[SP]  
New stack  
pointer value  
m – 4  
m – 3  
m – 2  
m – 1  
m
m – 4  
m – 3  
m – 2  
m – 1  
m
Program counter (PC  
Program counter (PC  
L
)
M
)
Flag register (FLG )  
L
Flag register  
(FLG  
Program  
counter (PC )  
H
)
H
[SP]  
Stack pointer  
value before  
interrupt occurs  
Content of previous stack  
Content of previous stack  
Content of previous stack  
Content of previous stack  
m + 1  
m + 1  
Stack status before interrupt request  
is acknowledged  
Stack status after interrupt request  
is acknowledged  
Figure DD-6. State of stack before and after acceptance of interrupt request  
38  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
The operation of saving registers carried out in the interrupt sequence is dependent on whether the  
content of the stack pointer, at the time of acceptance of an interrupt request, is even or oDD- If the  
content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the  
program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at  
a time. Figure DD-7 shows the operation of the saving registers.  
Note: Stack pointer indicated by U flag.  
(1) Stack pointer (SP) contains even number  
Sequence in which order  
registers are saved  
Address  
Stack area  
[SP] – 5 (Odd)  
[SP] – 4 (Even)  
[SP] – 3(Odd)  
[SP] – 2 (Even)  
[SP] – 1(Odd)  
Program counter (PC )  
L
(2) Saved simultaneously,  
all 16 bits  
Program counter (PC  
Flag register (FLG  
M
)
L
)
(1) Saved simultaneously,  
all 16 bits  
Flag register  
(FLG  
Program  
counter (PC )  
H
)
H
[SP]  
(Even)  
Finished saving registers  
in two operations.  
(2) Stack pointer (SP) contains odd number  
Address  
Stack area  
Sequence in which order  
registers are saved  
[SP] – 5 (Even)  
[SP] – 4(Odd)  
[SP] – 3 (Even)  
[SP] – 2(Odd)  
[SP] – 1 (Even)  
Program counter (PC )  
L
(3)  
(4)  
Program counter (PC  
Flag register (FLG  
M
)
Saved simultaneously,  
all 8 bits  
L
)
(1)  
(2)  
Program  
counter (PC )  
Flag register  
(FLG  
H
H
)
[SP]  
(Odd)  
Finished saving registers  
in four operations.  
Note: [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged.  
After registers are saved, the SP content is [SP] minus 4.  
Figure DD-7. Operation of saving registers  
39  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Returning from an Interrupt Routine  
Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register  
(FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter  
(PC), both of which have been saved in the stack area. Then control returns to the program that was being  
executed before the acceptance of the interrupt request, so that the suspended process resumes.  
Return the other registers saved by software within the interrupt routine using the POPM or similar instruc-  
tion before executing the REIT instruction.  
Interrupt Priority  
If there are two or more interrupt requests occurring at a point in time within a single sampling (checking  
whether interrupt requests are made), the interrupt assigned a higher priority is accepted.  
Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level  
select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware  
priority is accepted.  
Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority),  
watchdog timer interrupt, etc. are regulated by hardware.  
Figure DD-8 shows the priorities of hardware interrupts.  
Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches  
invariably to the interrupt routine.  
Reset > _D__B___C__ > Watchdog timer > Peripheral I/O > Single step > Address match  
Figure DD-8. Hardware interrupts priorities  
Interrupt resolution circuit  
When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest  
priority level. Figure DD-9 shows the circuit that judges the interrupt priority level.  
40  
Mitsubishi microcomputers  
M30218 Group  
Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Priority level of each interrupt  
Level 0 (initial value)  
INT1  
Timer B2  
Timer B0  
Timer A3  
Timer A1  
High  
INT4  
INT2  
INT0  
Timer B1  
Timer A4  
Timer A2  
INT5  
Priority of peripheral I/O  
interrupts  
INT3  
(if priority levels are same)  
UART1 reception  
UART0 reception  
FLD  
A-D conversion  
DMA1  
Timer A0  
UART1 transmission  
UART0 transmission  
SI/O2 automatic transfer  
DMA0  
Low  
Processor interrupt priority level  
(IPL)  
Interrupt request level judgment output  
Interrupt  
request  
accepted  
Interrupt enable flag (I flag)  
Address match  
Watchdog timer  
DBC  
Reset  
Figure DD-9. Maskable interrupts priorities  
41  
Mitsubishi microcomputers  
M30218 Group  
Address Match Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Address Match Interrupt  
An address match interrupt is generated when the address match interrupt address register contents match  
the program counter value. Two address match interrupts can be set, each of which can be enabled and  
disabled by an address match interrupt enable bit. Address match interrupts are not affected by the inter-  
rupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC)  
for an address match interrupt varies depending on the instruction being executed.  
Figure DD-12 shows the address match interrupt-related registers.  
Address match interrupt enable register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
AIER  
Address  
000916  
When reset  
XXXXXX00  
2
Bit symbol  
AIER0  
Bit name  
Function  
R W  
Address match interrupt 0  
enable bit  
0 : Interrupt disabled  
1 : Interrupt enabled  
Address match interrupt 1  
enable bit  
AIER1  
0 : Interrupt disabled  
1 : Interrupt enabled  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Address match interrupt register i (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
Symbol  
RMAD0  
RMAD1  
Address  
001216 to 001016  
001616 to 001416  
When reset  
X0000016  
X0000016  
b0  
Function  
Values that can be set  
R W  
Address setting register for address match interrupt  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Figure DD-12. Address match interrupt-related registers  
42  
Mitsubishi microcomputers  
M30218 Group  
Precautions for Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Precautions for Interrupts  
(1) Reading address 0000016  
• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and  
interrupt request level) in the interrupt sequence.  
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to “0”.  
Reading address 0000016 by software sets enabled highest priority interrupt source request bit to “0”.  
Though the interrupt is generated, the interrupt routine may not be executed.  
Do not read address 0000016 by software.  
(2) Setting the stack pointer  
• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt  
before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in  
the stack pointer before accepting an interrupt.  
(3) External interrupt  
________  
• Either an “L” level or an “H” level of at least 250 ns width is necessary for the signal input to pins INT0  
________  
through INT5 regardless of the CPU operation clock.  
________  
________  
• When the polarity of the INT0 through INT5 pins is changed, the interrupt request bit is sometimes set to  
“1”. After changing the polarity, set the interrupt request bit to “0”. Figure DD-13 shows the procedure  
______  
for changing the INT interrupt generate factor.  
Clear the interrupt enable flag to “0”  
(Disable interrupt)  
Set the interrupt priority level to level 0  
(Disable INTi interrupt)  
Set the polarity select bit  
Clear the interrupt request bit to “0”  
Set the interrupt priority level to level 1 to 7  
(Enable the accepting of INTi interrupt request)  
Set the interrupt enable flag to “1”  
(Enable interrupt)  
______  
Figure DD-13. Switching condition of INT interrupt request  
43  
Mitsubishi microcomputers  
M30218 Group  
Precautions for Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(5) Rewrite the interrupt control register  
• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for  
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after  
the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
;
I
; Enable interrupts.  
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
;
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions or dummy read are inserted before FSET I in Examples 1 and 2 is  
to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to  
effects of the instruction queue.  
• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the  
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-  
ated. This will depend on the instruction. If this creates problems, use the below instructions to change  
the register.  
Instructions : AND, OR, BCLR, BSET  
44  
Mitsubishi microcomputers  
M30218 Group  
Watchdog Timer  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog Timer  
The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is  
a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog  
timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the  
BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by  
16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7  
of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calcu-  
lated as given below. The watchdog timer's period is, however, subject to an error due to the prescaler.  
With XIN chosen for BCLK  
prescaler dividing ratio (16 or 128) X watchdog timer count (32768)  
Watchdog timer period =  
BCLK  
With XCIN chosen for BCLK  
prescaler dividing ratio (2) X watchdog timer count (32768)  
Watchdog timer period =  
BCLK  
For example, suppose that BCLK runs at 10 MHz and that 16 has been chosen for the dividing ratio of the  
prescaler, then the watchdog timer's period becomes approximately 52.4 ms.  
The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when  
a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is  
reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by  
writing to the watchdog timer start register (address 000E16).  
Figure FA-1 shows the block diagram of the watchdog timer. Figure FA-2 shows the watchdog timer-related  
registers.  
Prescaler  
“CM07 = 0”  
“WDC7 = 0”  
1/16  
“CM07 = 0”  
“WDC7 = 1”  
Watchdog timer  
interrupt request  
1/128  
1/2  
BCLK  
Watchdog timer  
“CM07 = 1”  
Write to the watchdog timer  
start register  
Set to  
(address 000E16)  
“7FFF16”  
RESET  
Figure FA-1. Block diagram of watchdog timer  
45  
Mitsubishi microcomputers  
M30218 Group  
Watchdog Timer  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog timer control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
WDC  
Address  
000F16  
When reset  
000XXXXX  
0
0
2
Bit symbol  
Bit name  
Function  
R W  
High-order bit of watchdog timer  
Reserved bit  
Must always be set to “0”  
Must always be set to “0”  
Reserved bit  
WDC7  
Prescaler select bit  
0 : Divided by 16  
1 : Divided by 128  
Watchdog timer start register  
b7  
b0  
Symbol  
WDTS  
Address  
000E16  
When reset  
Indeterminate  
Function  
The watchdog timer is initialized and starts counting after a write instruction to  
R W  
this register. The watchdog timer value is always initialized to “7FFF16  
regardless of whatever value is written.  
Figure FA-2. Watchdog timer control and start registers  
46  
nt  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAC  
This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to  
memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a  
higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this  
account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16-  
bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure EC-1 shows the block diagram of  
the DMAC. Table EC-1 shows the DMAC specifications. Figure EC-2 to Figure EC-3 show the registers  
used by the DMAC.  
Address bus  
DMA0 source pointer SAR0(20)  
(addresses 002216 to 002016  
DMA0 destination pointer DAR0 (20)  
(addresses 002616 to 002416  
DMA0 forward address pointer (20) (Note)  
)
)
DMA0 transfer counter reload register TCR0 (16)  
DMA1 source pointer SAR1 (20)  
(addresses 003216 to 003016  
DMA1 destination pointer DAR1 (20)  
(addresses 003616 to 003416  
DMA1 forward address pointer (20) (Note)  
(addresses 002916, 002816  
)
)
)
DMA0 transfer counter TCR0 (16)  
)
DMA1 transfer counter reload register TCR1 (16)  
(addresses 003916, 003816  
DMA latch high-order bits DMA latch low-order bits  
DMA1 transfer counter TCR1 (16)  
Data bus low-order bits  
Data bus high-order bits  
Note: Pointer is incremented by a DMA request.  
Figure EC-1. Block diagram of DMAC  
Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer  
request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the  
interrupt priority level. The DMA transfer doesn't affect any interrupts either.  
If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request  
signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA  
transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the  
number of transfers. For details, see the description of the DMA request bit.  
47  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table EC-1. DMAC specifications  
Item  
No. of channels  
Transfer memory space  
Specification  
2 (cycle steal method)  
• From any address in the 1M bytes space to a fixed address  
• From a fixed address to any address in the 1M bytes space  
• From a fixed address to a fixed address  
(Note that DMA-related registers [002016 to 003F16] cannot be accessed)  
Maximum No. of bytes transferred 128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)  
________  
________ ________  
________  
DMA request factors (Note)  
Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1)  
Timer A0 to timer A4 interrupt requests  
Timer B0 to timer B2 interrupt requests  
UART0 transmission and reception interrupt requests  
UART1 transmission and reception interrupt requests  
A-D conversion interrupt requests  
Software triggers  
Channel priority  
DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously  
8 bits or 16 bits  
Transfer unit  
Transfer address direction  
forward or fixed (forward direction cannot be specified for both source  
and destination simultaneously)  
Transfer mode  
• Single transfer mode  
After the transfer counter underflows, the DMA enable bit turns to  
“0”, and the DMAC turns inactive  
• Repeat transfer mode  
After the transfer counter underflows, the value of the transfer counter  
reload register is reloaded to the transfer counter.  
The DMAC remains active unless a “0” is written to the DMA enable bit.  
DMA interrupt request generation timing When an underflow occurs in the transfer counter  
Active  
When the DMA enable bit is set to “1”, the DMAC is active.  
When the DMAC is active, data transfer starts every time a DMA  
transfer request signal occurs.  
Inactive  
• When the DMA enable bit is set to “0”, the DMAC is inactive.  
• After the transfer counter underflows in single transfer mode  
At the time of starting data transfer immediately after turning the DMAC active, re  
the value of one of source pointer and destination pointer - the one specified for the  
forward direction - is reloaded to the forward direction address pointer,and the value  
of the transfer counter reload register is reloaded to the transfer counter.  
Registers specified for forward direction transfer are always write enabled.  
Registers specified for fixed address transfer are write-enabled when  
the DMA enable bit is “0”.  
Forward address pointer and  
load timing for transfer  
counter  
Writing to register  
Reading the register  
Can be read at any time.  
However, when the DMA enable bit is “1”, reading the register set up as the  
forward register is the same as reading the value of the forward address pointer.  
Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable  
flag (I flag) nor by the interrupt priority level.  
48  
nt  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi request cause select register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DMiSL(i=0,1)  
Address  
03B816,03BA16  
When reset  
0016  
Bit symbol  
DSEL0  
Bit name  
Function  
R
W
b3 b2 b1 b0  
DMA request cause  
select bit  
0 0 0 0 : Falling edge of INT0 / INT1  
pin (Note)  
0 0 0 1 : Software trigger  
0 0 1 0 : Timer A0  
0 0 1 1 : Timer A1  
0 1 0 0 : Timer A2  
0 1 0 1 : Timer A3  
0 1 1 0 : Timer A4  
0 1 1 1 : Timer B0  
1 0 0 0 : Timer B1  
1 0 0 1 : Timer B2  
DSEL1  
DSEL2  
1 0 1 0 : UART0 transmit  
1 0 1 1 : UART0 receive  
1 1 0 0 : UART1 transmit  
1 1 0 1 : UART1 receive  
1 1 1 0 : A-D conversion  
1 1 1 1 : Inhibited  
DSEL3  
Nothing is assigned. In an attempt to write to these bits, write “0”.  
The value, if read, turns out to be “0”.  
If software trigger is selected, a  
DMA request is generated by  
setting this bit to “1” (When read,  
the value of this bit is always “0”)  
Software DMA request bit  
DSR  
Note: Address 03B816 is for INT0; address 03BA16 is for INT1.  
DMAi control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DMiCON(i=0,1)  
Address  
002C16, 003C16  
When reset  
00000X00  
2
Bit symbol  
DMBIT  
Bit name  
Function  
R
W
Transfer unit bit select bit  
0 : 16 bits  
1 : 8 bits  
Repeat transfer mode  
select bit  
0 : Single transfer  
1 : Repeat transfer  
DMASL  
DMAS  
DMAE  
0 : DMA not requested  
1 : DMA requested  
DMA request bit (Note 1)  
DMA enable bit  
(Note 2)  
0 : Disabled  
1 : Enabled  
Source address direction  
select bit (Note 3)  
0 : Fixed  
1 : Forward  
DSD  
DAD  
Destination address  
direction select bit (Note 3)  
0 : Fixed  
1 : Forward  
Nothing is assigned. In an attempt to write to these bits, write “0”.  
The value, if read, turns out to be “0”.  
Note 1: DMA request can be cleared by resetting the bit.  
Note 2: This bit can only be set to “0”.  
Note 3: Source address direction select bit and destination address direction select bit  
cannot be set to “1” simultaneously.  
Figure EC-2. DMAC-related registers (1)  
49  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi source pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
SAR0  
SAR1  
Address  
002216 to 002016  
003216 to 003016  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Source pointer  
Stores the source address  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
DMAi destination pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
DAR0  
DAR1  
Address  
002616 to 002416  
003616 to 003416  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Destination pointer  
Stores the destination address  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
DMAi transfer counter (i = 0, 1)  
(b15)  
b7  
(b8)  
b0 b7  
b0  
Symbol  
TCR0  
TCR1  
Address  
002916, 002816  
003916, 003816  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Transfer counter  
Set a value one less than the transfer count  
000016 to FFFF16  
Figure EC-3. DMAC-related registers (2)  
50  
nt  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Transfer cycle  
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area  
(source read) and the bus cycle in which the data is written to memory or to the SFR area (destination  
write). The number of read and write bus cycles depends on the source and destination addresses.  
(a) Effect of source and destination addresses  
When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd  
addresses, there are one more source read cycle and destination write cycle than when the source  
and destination both start at even addresses.  
Figure EC-4 shows the example of the transfer cycles (a state of internal bus) for a source read. For  
convenience, the destination write cycle is shown as one cycle and the source read cycles for the differ-  
ent conditions are shown. In reality, the destination write cycle is subject to the same conditions as the  
source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle,  
remember to apply the respective conditions to both the destination write cycle and the source read cycle.  
(1) 8-bit transfers  
16-bit transfers and the source address is even.  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
(2) 16-bit transfers and the source address is odd  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1 Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source + 1  
CPU use  
Source  
Destination  
Note: The same timing changes occur with the respective conditions at the destination as at the source.  
Figure EC-4. Example of transfer cycles for a source read (the state of internal bus)  
51  
Mitsubishi microcomputers  
M30218 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) DMAC Transfer  
Any combination of even or odd transfer read and write addresses is possible. Table EC-2 shows the  
number of DMAC transfer cycles.  
The number of DMAC transfer cycles can be calculated as follows:  
No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k  
Table EC-2. No. of DMAC transfer cycles  
singelchip mode  
Transfer unit  
Access address  
No. of  
No. of  
read cycles  
write cycles  
8-bit transfers  
(DMBIT="1")  
16-bit transfers  
(DMBIT="0")  
Even  
Odd  
1
1
1
2
1
1
1
2
Even  
Odd  
Coefficient j, k  
Internal memory  
Internal ROM/RAM  
1
SFR area  
2
52  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
FLD Controller  
The M30218 group has fluorescent display (FLD) drive and control circuits.  
Table KA-0 shows the FLD controller specifications.  
Table KA-0. FLD controller specifications  
Specification  
Item  
• 52 pins ( 20 pins can switch general purpose port)  
High-breakdown-volt-  
age output port  
CMOS port  
FLD  
controller  
port  
• 4 pins ( 4 pins can switch general purpose port)  
(A driver must be installed externally)  
• Used FLD output  
Display pixel number  
28 segment X 28 digit (segment number + digit number 56)  
• Used digit output  
40 segment X 16 digit (segment number 40, digit number 16)  
• Connected to M35501  
56 segment X (connect number of M35501) digit  
(segment number 56, digit number number of M35501 X 16)  
• Used P44 to P47 expansion  
52 segment X 16 digit (segment number 52, digit number 16)  
• 3.2 µs to 819.2 µs (count source XIN/32,10MHz)  
• 12.8 µs to 3276.8 µs (count source XIN/128,10MHz)  
• 3.2 µs to 819.2 µs (count source XIN/32,10MHz)  
• 12.8 µs to 3276.8 µs (count source XIN/128,10MHz)  
• Digit interrupt  
Period  
Dimmer time  
Interrupt  
• FLD blanking interrupt  
• Key-scan used digit  
Key-scan  
• Key-scan used segment  
• Digit pulse output function  
Expand function  
This function automatically outputs digit pulse.  
• M35501 connect function  
The number of digits can be increased easily by using the output of  
DIMOUT(P97) as CLK for the M35501.  
• Toff section generate / not generate function  
This function does not generate Toff1 section when the connected outputs  
are the same.  
• Gradation display function  
This function allows each segment to be set for dark or bright display.  
• P44 to P47 expansion function  
This function provides 16 lines of digit outputs from four ports by attaching a  
4
16 decoder.  
53  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Main  
Local  
Main address bus  
Digit output set register  
data bus data bus  
P60/FLD0 DIG/FLD  
P61/FLD1 DIG/FLD  
P62/FLD2 DIG/FLD  
050016  
8
DIG/FLD  
P63/FLD3  
P64/FLD4 DIG/FLD  
P65/FLD5 DIG/FLD  
P66/FLD6  
P67/FLD7  
03EC16  
DIG/FLD  
DIG/FLD  
035D16  
Local address bus  
P50/FLD8 DIG/FLD  
P51/FLD9 DIG/FLD  
P52/FLD10  
DIG/FLD  
8
P53/FLD11 DIG/FLD  
P54/FLD12 DIG/FLD  
P55/FLD13 DIG/FLD  
P56/FLD14 DIG/FLD  
P57/FLD15 DIG/FLD  
05DF16  
03E916  
035C16  
P00/FLD16  
P01/FLD17  
P02/FLD18  
P03/FLD19  
P04/FLD20  
P05/FLD21  
P06/FLD22  
8
P07/FLD23  
03E016  
P10/FLD24  
P11/FLD25  
P12/FLD26  
P13/FLD27  
P14/FLD28  
P15/FLD29  
P16/FLD30  
8
P17/FLD31  
03E116  
FLD/P P20/FLD32  
FLD/P P21/FLD33  
FLDC mode register  
(035016)  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
035916  
P22/FLD34  
P23/FLD35  
P24/FLD36  
P25/FLD37  
P26/FLD38  
8
FLD data pointer  
reload register  
(035816)  
P27/FLD39  
03E416  
FLD/P P30/FLD40  
FLD/P P31/FLD41  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
035A16  
P32/FLD42  
P33/FLD43  
P34/FLD44  
P35/FLD45  
P36/FLD46  
Address  
decoder  
8
FLD data pointer  
(035816)  
P37/FLD47  
03E516  
FLD/P P40/FLD48  
FLD/P P41/FLD49  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
FLD/P  
035B16  
P42/FLD50  
P43/FLD51  
P44/FLD52  
P45/FLD53  
P46/FLD54  
8
P47/FLD55  
03E816  
FLD/port switch register  
FLD blanking interrupt  
FLD digit interrupt  
Timing generator  
Figure KA-1. Block Diagram for FLD Control Circuit  
54  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
FLDC mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
FLDM  
Address  
035016  
When reset  
0016  
Bit symbol  
FLDM0  
Bit name  
Function  
R W  
Automatic display  
control bit  
0 : General-purpose mode  
1 : Automatic display mode  
Display start bit  
0 : Stop display  
1 : Display  
(start to display by switching “0” to “1”)  
FLDM1  
b3b2  
Tscan control bits  
FLDM2  
FLDM3  
00 : FLD digit interrupt  
(at rising edge of each digit)  
01 : 1 X Tdisp  
10 : 2 X Tdisp  
11 : 3 X Tdisp  
FLD blanking  
interrupt (at falling  
edge of last digit)  
}
Timing number control bit  
0 : 16 timing mode  
1 : 32 timing mode  
FLDM4  
FLDM5  
FLDM6  
FLDM7  
Gradation display mode  
selection control bit  
0 : Not selecting  
1 : Selecting (Note )  
Tdisp counter  
count source selection bit  
0 : f(XIN)/32  
1 : f(XIN)/128  
High-breakdown voltage  
port drivability select bit  
0 : Drivability strong  
1 : Drivability weak  
Note : When a gradation display mode is selected, a number of timing is max. 16 timing.  
(Set the timing number control bit to “0”.)  
FLD output control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
FLDCON  
Address  
035116  
When reset  
0016  
Bit symbol  
Bit name  
to P4 FLD  
output reverse bit  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be “0”.  
Function  
0 : Output normally  
1 : Reverse output  
R W  
P44  
7
FLDCON0  
P4  
4
to P4  
7
FLD  
0 : Perform normally  
1 : Toff is invalid  
FLDCON2  
Toff is invalid bit  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be “0”.  
P9  
control bit  
7
dimmer output  
0 : Output normally  
1 : Dimmer output  
FLDCON4  
FLDCON5  
CMOS ports: section of  
Toff generate/not  
generate bit  
0 : section of Toff does NOT generate  
1 : section of Toff generates  
High-breakdown-voltage ports:  
section of Toff  
generate/not generate bit  
0 : section of Toff does NOT generate  
1 : section of Toff generates  
FLDCON6  
FLDCON7  
Toff2  
0 : gradation display data is reset at Toff2  
(set at Toff1)  
SET/RESET change bit  
1 : gradation display data is set at Toff2  
(reset at Toff1)  
Tdisp time set register  
b7  
b0  
Symbol  
TDISP  
Address  
035216  
When reset  
0016  
R W  
Function  
Values that can be set  
Counts Tdisp time. Count source is selected by Tdisp  
counter count source select bit.  
016 to FF16  
Figure KA-2. FLDC-related Register(1)  
55  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Toff1 time set register  
b7  
b0  
Symbol  
TOFF1  
Address  
035416  
When reset  
FF16  
Values that can be set  
3 to FF16  
R W  
Function  
Counts Toff1 time. Count source is selected by Tdisp counter count source  
select bit.  
Toff2 time set register  
b7  
b0  
Symbol  
TOFF2  
Address  
035616  
When reset  
FF16  
Values that can be set R W  
3 to FF16  
Function  
Counts Toff2 time. Count source is selected by Tdisp counter count source  
select bit.  
FLD data pointer  
b7  
Symbol  
FLDDP  
Address  
035816  
When reset  
indeterminate  
b0  
Values that can be set  
1 to 1F16  
Function  
R W  
Counts FLD output timing. Set this register to “FLD output data - 1 ”.  
Note: Reading the FLD data pointer takes out the count at that moment.  
Port P2 FLD / port switch register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P2FPR  
Address  
035916  
When reset  
0016  
Bit symbol  
R W  
Bit name  
0 FLD/port switch bit  
Function  
0 : Normal port  
1 : FLD output port  
Port P2  
P2FPR0  
P2FPR1  
P2FPR2  
P2FPR3  
P2FPR4  
P2FPR5  
P2FPR6  
0 : Normal port  
1 : FLD output port  
Port P21 FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P2  
2
FLD/port switch bit  
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P2  
3
0 : Normal port  
1 : FLD output port  
Port P2  
4
5
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P2  
0 : Normal port  
1 : FLD output port  
Port P2  
6
0 : Normal port  
1 : FLD output port  
Port P2  
7
P2FPR7  
Figure KA-2A. FLDC-related Register(2)  
56  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port P3 FLD / port switch register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P3FPR  
Address  
035A16  
When reset  
0016  
Bit symbol  
R W  
R W  
R W  
Bit name  
Function  
Function  
Function  
0 : Normal port  
1 : FLD output port  
Port P3  
0
FLD/port switch bit  
P3FPR0  
P3FPR1  
P3FPR2  
P3FPR3  
P3FPR4  
P3FPR5  
P3FPR6  
0 : Normal port  
1 : FLD output port  
Port P3  
1
2
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P3  
FLD/port switch bit  
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P3  
3
0 : Normal port  
1 : FLD output port  
Port P3  
4
5
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P3  
0 : Normal port  
1 : FLD output port  
Port P3  
6
0 : Normal port  
1 : FLD output port  
Port P3  
7
P3FPR7  
Port P4 FLD / port switch register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P4FPR  
Address  
035B16  
When reset  
0016  
Bit symbol  
Bit name  
0 : Normal port  
1 : FLD output port  
Port P4  
0
FLD/port switch bit  
P4FPR0  
P4FPR1  
P4FPR2  
P4FPR3  
P4FPR4  
P4FPR5  
P4FPR6  
0 : Normal port  
1 : FLD output port  
Port P4  
1
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P4  
2
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P4  
3 FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P4  
4
5
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
FLD/port switch bit  
0 : Normal port  
1 : FLD output port  
Port P4  
0 : Normal port  
1 : FLD output port  
Port P4  
6
0 : Normal port  
1 : FLD output port  
Port P4  
7
P4FPR7  
Port P5 digit output set register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P5DOR  
Address  
035C16  
When reset  
0016  
Bit symbol  
P5DOR0  
Bit name  
0 : FLD output  
1 : Digit output  
Port P5  
0
1
2
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P5  
Port P5  
FLD/digit switch bit  
P5DOR1  
P5DOR2  
P5DOR3  
P5DOR4  
P5DOR5  
P5DOR6  
0 : FLD output  
1 : Digit output  
FLD/digit switch bit  
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P5  
3
0 : FLD output  
1 : Digit output  
Port P5  
4
5
FLD/digit switch bit  
FLD/digit switch bit  
FLD/digit switch bit  
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P5  
0 : FLD output  
1 : Digit output  
Port P5  
6
0 : FLD output  
1 : Digit output  
Port P5  
7
P5DOR7  
Figure KA-2B. FLDC-related Register(3)  
57  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port P6 digit output set register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P6DOR  
Address  
035D16  
When reset  
0016  
R W  
Bit symbol  
Bit name  
Function  
0 : FLD output  
1 : Digit output  
Port P6  
0
FLD/digit switch bit  
P6DOR0  
P6DOR1  
P6DOR2  
P6DOR3  
P6DOR4  
P6DOR5  
P6DOR6  
0 : FLD output  
1 : Digit output  
Port P6  
1
2
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P6  
FLD/digit switch bit  
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P6  
3
0 : FLD output  
1 : Digit output  
Port P6  
4
5
FLD/digit switch bit  
FLD/digit switch bit  
FLD/digit switch bit  
FLD/digit switch bit  
0 : FLD output  
1 : Digit output  
Port P6  
0 : FLD output  
1 : Digit output  
Port P6  
6
0 : FLD output  
1 : Digit output  
Port P6  
7
P6DOR7  
Figure KA-2C. FLDC-related Register(4)  
58  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
FLD automatic display pins  
P0 to P6 are the pins capable of automatic display output for the FLD. The FLD start operating by setting  
the automatic display control bit (bit 0 at address 035016) to “1”. There is the FLD output function that  
outputs RAM contents from the port every timing or the digit output function that drives the port high with  
digit timing. The FLD can be displayed using the FLD output for the segments and the digit or FLD output for  
the digits. When using the FLD output for the digits, be sure to write digit display patterns to the RAM in  
advance. The remaining segment and digit lines can be used as general-purpose ports. Settings of each  
port are shown below.  
Table KA-1. Pins in FLD Automatic Display Mode  
Port Name Automatic Display Pins Setting Method  
The individual bits of the digit output set register (address 035C16,  
035D16) can set each pin either FLD port (“0”) or digit port (“1”).  
When the pins are set for the digit port, the digit pulse output func-  
tion is enabled, so the digit pulses can always be output regardless  
the value of FLD automatic display RAM.  
P5, P6  
FLD0 to FLD15  
FLD exclusive use port (automatic display control bit (bit 0 of ad-  
dress 035016)=“1”)  
P0, P1  
FLD16 to FLD31  
FLD32 to FLD51  
The individual bits of the FLD/port switch register (addresses  
035916 to 035B16) can set each pin to either FLD port (“1”) or gen-  
eral-purpose port (“0”).  
P2, P3,  
P44 to P43  
The individual bits of the FLD/port switch register (address 035B16)  
can set each pin to either FLD port (“1”) or general-purpose port  
(“0”). The digit pulse output function turns to available, and the digit  
pulse can output by setting of the FLD output set register (address  
035116). The port output format is the CMOS output. When using  
the port as a display pin, a driver must be installed externally.  
P44 to P47 FLD52 to FLD55  
Setting example 1  
Setting example 2  
Shown below is a register setup example where only FLD output is used.  
In this case, the digit display output pattern must be set in the FLD automatic  
display RAM in advance.  
Shown below is a register setup example where both FLD output and digit waveform  
output are used. In this case, because the digit display output is automatically  
generated, there is no need to set the display pattern in the FLD automatic display RAM.  
The contents of digit output set register  
(035C16, 035D16)  
The contents of digit output set register  
(035C16, 035D16)  
Number of segments  
Number of digits  
Number of segments  
Number of digits  
28  
12  
36  
16  
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
0
(DIG output  
)
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
FLD  
0
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
1
1
1
1
1
0
0
0
0
0
Port P6  
Port P6  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
(DIG output)  
FLD/port switch register  
FLD/port switch register  
0
1
(035916, 035B16)  
0
(035916, 035B16)  
1
0
1
FLD  
8
9
(DIG output)  
(DIG output)  
1
1
1
1
1
1
1
1
FLD32(SEG output)  
FLD33(SEG output)  
FLD34(SEG output)  
FLD35(SEG output)  
FLD36(SEG output)  
FLD37(SEG output)  
FLD38(SEG output)  
FLD39(SEG output)  
FLD  
FLD  
8
9
(DIG output)  
(DIG output)  
1
1
1
1
1
1
1
1
FLD32(SEG output)  
FLD33(SEG output)  
FLD34(SEG output)  
FLD35(SEG output)  
FLD36(SEG output)  
FLD37(SEG output)  
FLD38(SEG output)  
FLD39(SEG output)  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
Port P5  
Port P5  
Port P2  
Port P2  
FLD  
FLD10(DIG output)  
FLD11(DIG output)  
FLD12(DIG output)  
FLD13(DIG output)  
FLD14(DIG output)  
FLD15(DIG output)  
FLD10(DIG output)  
FLD11(DIG output)  
FLD12(SEG output)  
FLD13(SEG output)  
FLD14(SEG output)  
FLD15(SEG output)  
FLD16(SEG output)  
FLD17(SEG output)  
FLD18(SEG output)  
FLD19(SEG output)  
FLD20(SEG output)  
FLD21(SEG output)  
FLD22(SEG output)  
FLD23(SEG output)  
FLD16(SEG output)  
FLD17(SEG output)  
FLD18(SEG output)  
FLD19(SEG output)  
FLD20(SEG output)  
FLD21(SEG output)  
FLD22(SEG output)  
FLD23(SEG output)  
1
1
1
1
0
0
0
0
FLD40(SEG output)  
FLD41(SEG output)  
FLD42(SEG output)  
FLD43(SEG output)  
FLD44(port output)  
FLD45(port output)  
FLD46(port output)  
FLD47(port output)  
FLD40(SEG output)  
FLD41(SEG output)  
FLD42(SEG output)  
FLD43(SEG output)  
FLD44(SEG output)  
1
1
1
1
Port P0  
Port P0  
Port P3  
Port P3  
1
1
1
1
FLD45(SEG output)  
FLD46(SEG output)  
FLD47(SEG output)  
FLD24(SEG output)  
FLD25(SEG output)  
FLD26(SEG output)  
FLD27(SEG output)  
FLD28(SEG output)  
FLD29(SEG output)  
FLD30(SEG output)  
FLD31(SEG output)  
FLD24(SEG output)  
FLD25(SEG output)  
FLD26(SEG output)  
FLD27(SEG output)  
FLD28(SEG output)  
FLD29(SEG output)  
FLD30(SEG output)  
FLD31(SEG output)  
0
0
0
0
0
0
0
0
FLD48(port output)  
FLD49(port output)  
FLD50(port output)  
FLD51(port output)  
FLD52(port output)  
FLD53(port output)  
FLD54(port output)  
FLD55(port output)  
FLD48(SEG output)  
FLD49(SEG output)  
FLD50(SEG output)  
FLD51(SEG output)  
FLD52(port output)  
FLD53(port output)  
FLD54(port output)  
FLD55(port output)  
1
1
1
1
0
0
0
0
Port P1  
Port P1  
Port P4  
Port P4  
DIG output : This output is connected to digit of the FLD.  
SEG output : This output is connected to segment of the FLD.  
Port output : This output is general-purpose port ( used program).  
DIG output : This output is connected to digit of the FLD.  
SEG output : This output is connected to segment of the FLD.  
Port output : This output is general-purpose port ( used program).  
Figure KA-3. Segment/Digit Setting Example  
59  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
FLD automatic display RAM  
The FLD automatic display RAM uses the 224 bytes of addresses 050016 to 05DF16. For FLD, the 3 modes  
of 16-timing ordinary mode, 16-timing•gradation display mode and 32-timing mode are available depending  
on the number of timings and the use/not use of gradation display.  
The automatic display RAM in each mode is as follows:  
(1) 16-timingOrdinary Mode  
This mode is used when the display timing is 16 or less. The 112 bytes of addresses 057016 to 05DF16  
are used as a FLD display data store area. Because addresses 050016 to 056F16 are not used as the  
automatic display RAM, they can be the ordinary RAM.  
(2) 16-timingGradation Display Mode  
This mode is used when the display timing is 16 or less, in which mode each segment can be set for dark  
or bright display. The 224 bytes of addresses 050016 to 05DF16 are used. The 112 bytes of addresses  
057016 to 05DF16 are used as an FLD display data store area, while the 112 bytes of addresses 050016  
to 056F16 are used as a gradation display control data store area.  
(3) 32-timing Mode  
This mode is used when the display timing is 16 or greater. This mode can be used for up to 32-timing.  
The 224 bytes of addresses 050016 to 05DF16 are used as an FLD display data store area.  
The FLD data pointer (address 035816) is a register to count display timings. This pointer has a reload  
register and when the terminal count is reached, it starts counting over again after being reloaded with the  
initial count. Make sure the timing count – 1 is set to the FLD data pointer. When writing data to this address,  
the data is written to the FLD data pointer reload register; when reading data from this address, the value in  
the FLD data pointer is read.  
16-timing•ordinary mode 16-timing•gradation display mode  
32-timing mode  
050016  
050016  
050016  
Gradation display  
control data stored  
area  
Not used  
1 to 32 timing display  
data stored area  
057016  
05DF16  
057016  
05DF16  
1 to 16 timing display  
data stored area  
1 to 16 timing display  
data stored area  
05DF16  
Figure KA-4. FLD Automatic Display RAM Assignment  
60  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
Data setup  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) 16-timingOrdinary Mode  
The area of addresses 057016 to 05DF16 are used as a FLD automatic display RAM.  
When data is stored in the FLD automatic display RAM, the last data of FLD port P4 is stored at address 057016, the  
last data of FLD port P3 is stored at address 058016, the last data of FLD port P2 is stored at address 059016, the last  
data of FLD port P1 is stored at address 05A016, the last data of FLD port P0 is stored at address 05B016,  
the last data of FLD port P5 is stored at address 05C016  
assign in sequence from the last data respectively.  
, and the last data of FLD port P6 is stored at address 05D016, to  
The first data of the FLD port P4, P3, P2, P1, P0, P5, and P6 is stored at an address which adds the value of (the  
timing number – 1) to the corresponding address 057016, 058016, 059016, 05A016, 05B016, 05C016 and 05DF16.  
Set the FLD data pointer reload register to the value given by the number of digits – 1.  
(2) 16-timingGradation Display Mode  
Display data setting is performed in the same way as that of the 16-timing•ordinary mode. Gradation display control  
data is arranged at an address resulting from subtracting 007016 from the display data store address of each timing  
and pin. Bright display is performed by setting “0”, and dark display is performed by setting “1” .  
(3) 32-timing Mode  
The area of addresses 050016 to 05DF16 are used as a FLD automatic display RAM.  
When data is stored in the FLD automatic display RAM, the last data of FLD port P4 is stored at address 050016, the  
last data of FLD port P3 is stored at address 052016, the last data of FLD port P2 is stored at address 054016,  
the last data of FLD port P1 is stored at address 056016, the last data of FLD port P0 is stored at address 058016, the  
last data of FLD port P5 is stored at address 05A016, and the last data of FLD port P6 is stored at address 05C016  
, to  
assign in sequence from the last data respectively  
.
The first data of the FLD port P4, P3, P2, P0, P1, P5, and P6 is stored at an address which adds the value of (the  
timing number – 1) to the corresponding address 050016, 052016, 054016, 056016, 058016, 05A016 and 05C016.  
Set the FLD data pointer reload register to the value given by the number of digits - 1.  
Number of timing: 8  
(FLD data pointer reload register = 7)  
Bit  
Bit  
Address  
7
6
5
4
3
2
1
0
Address  
7
6
5
4
3
2
1
0
057016  
057116  
057216  
057316  
057416  
057516  
057616  
057716  
057816  
057916  
057A16  
057B16  
057C16  
057D16  
057E16  
057F16  
058016  
058116  
058216  
058316  
058416  
058516  
058616  
058716  
058816  
058916  
058A16  
058B16  
058C16  
058D16  
058E16  
058F16  
059016  
059116  
059216  
059316  
059416  
059516  
059616  
059716  
059816  
059916  
059A16  
059B16  
059C16  
059D16  
059E16  
059F16  
05A016  
05A116  
05A216  
05A316  
05A416  
05A516  
05A616  
05A716  
05A816  
05A916  
05AA16  
05AB16  
05AC16  
05AD16  
05AE16  
05AF16  
05B016  
05B116  
05B216  
05B316  
05B416  
05B516  
05B616  
05B716  
05B816  
05B916  
05BA16  
05BB16  
05BC16  
05BD16  
05BE16  
The last timing  
(The last data of FLDP4)  
The last timing  
(The last data of FLDP0)  
Timing for start  
(The first data of FLDP4)  
Timing for start  
(The first data of FLDP0)  
FLDP4 data area  
FLDP0 data area  
05BF16  
05C016  
The last timing  
(The last data of FLDP5)  
The last timing  
(The last data of FLDP3)  
05C116  
05C216  
05C316  
05C416  
05C516  
05C616  
05C716  
05C816  
05C916  
05CA16  
05CB16  
05CC16  
05CD16  
05CE16  
05CF16  
05D016  
05D116  
05D216  
05D316  
05D416  
05D516  
05D616  
05D716  
05D816  
05D916  
05DA16  
05DB16  
05DC16  
05DD16  
05DE16  
05DF16  
Timing for start  
(The first data of FLDP5)  
Timing for start  
(The first data of FLDP3)  
FLDP5 data area  
FLDP3 data area  
The last timing  
(The last data of FLDP6)  
The last timing  
(The last data of FLDP2)  
Timing for start  
(The first data of FLDP2)  
Timing for start  
(The first data of FLDP6)  
FLDP6 data area  
FLDP2 data area  
The last timing  
(The last data of FLDP1)  
Timing for start  
(The first data of FLDP1)  
FLDP1 data area  
Figure KA-5. Example of Using the FLD Automatic Display RAM in 16-timingOrdinary Mode  
61  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Number of timing: 15  
(FLD data pointer reload register = 14)  
Bit  
Bit  
Address  
Address  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
057016  
057116  
057216  
057316  
057416  
057516  
057616  
057716  
057816  
057916  
057A16  
057B16  
057C16  
057D16  
057E16  
057F16  
058016  
058116  
058216  
058316  
058416  
058516  
058616  
058716  
058816  
058916  
058A16  
058B16  
058C16  
058D16  
058E16  
058F16  
059016  
050016  
050116  
050216  
050316  
050416  
050516  
050616  
050716  
050816  
The last timing  
(The last data of FLDP4)  
The last timing  
(The last data of FLDP4)  
050916  
050A16  
FLDP4 data area  
FLDP4 gradation  
display data area  
050B16  
050C16  
050D16  
050E16  
050F16  
051016  
051116  
051216  
051316  
051416  
051516  
051616  
051716  
051816  
051916  
051A16  
051B16  
051C16  
051D16  
051E16  
051F16  
052016  
Timing for start  
(The first data of FLDP4)  
Timing for start  
(The first data of FLDP4)  
The last timing  
(The last data of FLDP3)  
The last timing  
(The last data of FLDP3)  
FLDP3 data area  
FLDP3 gradation  
display data area  
Timing for start  
(The first data of FLDP3)  
Timing for start  
(The first data of FLDP3)  
The last timing  
(The last data of FLDP2)  
The last timing  
(The last data of FLDP2)  
059116  
059216  
059316  
059416  
059516  
059616  
059716  
059816  
059916  
059A16  
059B16  
059C16  
059D16  
059E16  
059F16  
05A016  
05A116  
05A216  
05A316  
05A416  
05A516  
05A616  
05A716  
05A816  
05A916  
05AA16  
05AB16  
05AC16  
05AD16  
05AE16  
05AF16  
05B016  
05B116  
05B216  
05B316  
05B416  
05B516  
05B616  
05B716  
05B816  
05B916  
05BA16  
05BB16  
05BC16  
05BD16  
05BE16  
05BF16  
05C016  
05C116  
05C216  
05C316  
05C416  
05C516  
05C616  
05C716  
05C816  
05C916  
05CA16  
05CB16  
05CC16  
05CD16  
05CE16  
05CF16  
05D016  
05D116  
05D216  
05D316  
05D416  
05D516  
05D616  
05D716  
05D816  
05D916  
05DA16  
05DB16  
05DC16  
05DD16  
05DE16  
05DF16  
052116  
052216  
052316  
052416  
052516  
052616  
052716  
052816  
052916  
052A16  
052B16  
052C16  
052D16  
052E16  
052F16  
053016  
053116  
053216  
053316  
053416  
053516  
053616  
053716  
053816  
053916  
053A16  
053B16  
053C16  
053D16  
053E16  
053F16  
054016  
054116  
054216  
FLDP2 data area  
FLDP2 gradation  
display data area  
Timing for start  
(The first data of FLDP2)  
Timing for start  
(The first data of FLDP2)  
The last timing  
(The last data of FLDP1)  
The last timing  
(The last data of FLDP1)  
FLDP1 data area  
FLDP1 gradation  
display data area  
Timing for start  
(The first data of FLDP1)  
Timing for start  
(The first data of FLDP1)  
The last timing  
(The last data of FLDP0)  
The last timing  
(The last data of FLDP0)  
054316  
054416  
054516  
054616  
054716  
054816  
054916  
054A16  
054B16  
054C16  
054D16  
054E16  
054F16  
055016  
055116  
055216  
055316  
055416  
055516  
055616  
055716  
055816  
055916  
055A16  
055B16  
055C16  
055D16  
055E16  
055F16  
056016  
056116  
056216  
056316  
056416  
056516  
056616  
056716  
056816  
056916  
056A16  
056B16  
056C16  
056D16  
056E16  
056F16  
FLDP0 data area  
FLDP0 gradation  
display data area  
Timing for start  
(The first data of FLDP0)  
Timing for start  
(The first data of FLDP0)  
The last timing  
(The last data of FLDP5)  
The last timing  
(The last data of FLDP5)  
FLDP5 data area  
FLDP5 gradation  
display data area  
Timing for start  
(The first data of FLDP5)  
Timing for start  
(The first data of FLDP5)  
The last timing  
(The last data of FLDP6)  
The last timing  
(The last data of FLDP6)  
FLDP6 data area  
FLDP6 gradation  
display data area  
Timing for start  
(The first data of FLDP6)  
Timing for start  
(The first data of FLDP6)  
Figure KA-6. Example of Using the FLD Automatic Display RAM in 16-timingGradation Display Mode  
62  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Number of timing: 20  
(FLD data pointer reload register = 19)  
Bit  
Bit  
Address  
Address  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
057016  
057116  
057216  
057316  
057416  
057516  
057616  
057716  
057816  
057916  
057A16  
057B16  
057C16  
057D16  
057E16  
057F16  
058016  
058116  
058216  
058316  
058416  
058516  
058616  
058716  
058816  
058916  
058A16  
058B16  
058C16  
058D16  
058E16  
058F16  
059016  
050016  
050116  
050216  
050316  
050416  
050516  
050616  
050716  
050816  
The last timing  
(The last data of FLDP4)  
Timing for start  
(The first data of FLDP1)  
050916  
050A16  
050B16  
050C16  
050D16  
050E16  
050F16  
051016  
051116  
051216  
051316  
051416  
051516  
051616  
051716  
051816  
051916  
051A16  
051B16  
051C16  
051D16  
051E16  
051F16  
052016  
FLDP4 data area  
The last timing  
(The last data of FLDP0)  
Timing for start  
(The first data of FLDP4)  
FLDP0 data area  
The last timing  
(The last data of FLDP3)  
059116  
059216  
059316  
059416  
059516  
059616  
059716  
059816  
059916  
059A16  
059B16  
059C16  
059D16  
059E16  
059F16  
05A016  
05A116  
05A216  
05A316  
05A416  
05A516  
05A616  
05A716  
05A816  
05A916  
05AA16  
05AB16  
05AC16  
05AD16  
05AE16  
05AF16  
05B016  
05B116  
05B216  
05B316  
05B416  
05B516  
05B616  
05B716  
05B816  
05B916  
05BA16  
05BB16  
05BC16  
05BD16  
05BE16  
05BF16  
05C016  
05C116  
05C216  
05C316  
05C416  
05C516  
05C616  
05C716  
05C816  
05C916  
05CA16  
05CB16  
05CC16  
05CD16  
05CE16  
05CF16  
05D016  
05D116  
05D216  
05D316  
05D416  
05D516  
05D616  
05D716  
05D816  
05D916  
05DA16  
05DB16  
05DC16  
05DD16  
05DE16  
05DF16  
052116  
052216  
052316  
052416  
052516  
052616  
052716  
052816  
052916  
052A16  
052B16  
052C16  
052D16  
052E16  
052F16  
053016  
053116  
053216  
053316  
053416  
053516  
053616  
053716  
053816  
053916  
053A16  
053B16  
053C16  
053D16  
053E16  
053F16  
054016  
054116  
054216  
Timing for start  
(The first data of FLDP0)  
FLDP3 data area  
The last timing  
(The last data of FLDP5)  
Timing for start  
(The first data of FLDP3)  
FLDP5 data area  
The last timing  
(The last data of FLDP2)  
Timing for start  
(The first data of FLDP5)  
054316  
054416  
054516  
054616  
054716  
054816  
054916  
054A16  
054B16  
054C16  
054D16  
054E16  
054F16  
055016  
055116  
055216  
055316  
055416  
055516  
055616  
055716  
055816  
055916  
055A16  
055B16  
055C16  
055D16  
055E16  
055F16  
056016  
056116  
056216  
056316  
056416  
056516  
056616  
056716  
056816  
056916  
056A16  
056B16  
056C16  
056D16  
056E16  
056F16  
FLDP2 data area  
The last timing  
(The last data of FLDP6)  
Timing for start  
(The first data of FLDP2)  
FLDP6 data area  
The last timing  
(The last data of FLDP1)  
Timing for start  
(The first data of FLDP6)  
FLDP1 data area  
Figure KA-7. Example of Using the FLD Automatic Display RAM in 32-timing Mode  
63  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing setting  
Each timing is set by the FLDC mode register, Tdisp time set register, Toff1 time set register, and Toff2 time set register.  
Tdisp time setting  
The Tdisp time represents the length of display timing. In non-gradation display mode, it consists of a  
FLD display output period and a Toff1 time. In gradation display mode, it consists of the display output  
period and Toff1 time plus a low signal output period for dark display. Set the Tdisp time by the Tdisp  
counter count source select bit of the FLDC mode register and the Tdisp time set register. Supposing that  
the value of the Tdisp time set register is n, the Tdisp time is represented as Tdisp = (n+1) x t (t: count  
source). When the Tdisp counter count source select bit of the FLDC mode register is “0” and the value  
of the Tdisp time set register is 200 (C816), the Tdisp time is: Tdisp = (200+1) x 3.2 (at XIN= 10 MHz) =  
643 µs. When reading the Tdisp time set register, the value in the counter is read out.  
Toff1 time setting  
The Toff1 time represents a non-output (low signal output) time to prevent blurring of FLD, and to dim the  
display. Use the Toff1 time set register to set this Toff1 time. Make sure the value set to Toff1 is smaller  
than Tdisp and Toff2. Supposing that the value of the Toff1 time set register is n1, the Toff1 time is  
represented as Toff1 = n1 x t. When the Tdisp counter count source select bit of the FLDC mode register  
is “0” and the value of the Toff1 time set register is 30 (1E16), Toff1 = 30 x 3.2 (at XIN = 10 MHz) = 96 µs.  
Toff2 time setting  
The Toff2 time is provided for dark display. For bright display, the FLD display output remains effective  
until the counter that is counting Tdisp reaches the terminal count. For dark display, however, “L” (or “off”)  
signal is output when the counter that is counting Toff2 reaches the terminal count. This Toff2 time setting  
is valid only for FLD ports which are in the gradation display mode and whose gradation display control  
RAM value is “1” .  
Set the Toff2 time by the Toff2 time set register. Make sure the value set to Toff2 is smaller than Tdisp but  
larger than Toff1. Supposing that the value of the Toff2 time set register is n2, the Toff2 time is repre-  
sented as Toff2 = n2 x t. When the Tdisp counter count source select bit of the FLDC mode register is “0”  
and the value of the Toff2 time set register is 180 (B416), Toff2 = 180 x 3.2 (at XIN = 10 MHz) = 576 µs.  
Low output period for  
blurring prevention  
Display output period  
•Grayscale display mode is not selected  
(Address 035016 bit 5 = “0”)  
•Grayscale display mode is selected and set for bright display  
(Address 035016 bit 5 = “1” and the corresponding grayscale  
display control data = “0”)  
Toff1  
Tdisp  
Low output period for  
blurring prevention  
Low output period for  
dark display  
Display output  
period  
•Grayscale display mode is selected and set for dark display  
(Address 035016 bit 5 = “1” and the corresponding grayscale  
display control data = “1”)  
Toff1  
Toff2  
Tdisp  
Figure KA-11. FLDC Timing  
64  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
FLD automatic display start  
Automatic display starts by setting both the automatic display control bit (bit 0 of address 035016) and the  
display start bit (bit 1 of address 035016) to “1”. The RAM content at a location apart from the start address  
of the automatic display RAM for each port by (FLD data pointer (address 035816) – 1) is output to each  
port. The FLD data pointer (address 035816) counts down in the Tdisp interval. When the count “FF16” is  
reached, the pointer is reloaded and starts counting over again. Before setting the display start bit (bit 1 of  
address 035016) to “1”, be sure to set the FLD/port switch register, FLD/DIG switch register, FLDC mode  
register, Tdisp time set register, Toff1 time set register, Toff2 time set register, and FLD data pointer.  
During FLD automatic display, bit 1 of the FLDC mode register (address 035016) always keeps “1”, and  
FLD automatic display can be interrupted by writing “0” to bit 1.  
Key-scan and interrupt  
Either a FLD digit interrupt or FLD blanking interrupt can be selected using the Tscan control bits (bits 2, 3  
of address 035016).  
The FLD digit interrupt is generated when the Toff1 time in each timing expires (at rising edge of digit  
output). Key scanning that makes use of FLD digits can be achieved using each FLD digit interrupt. To use  
FLD digit interrupts for key scanning, follow the procedure described below.  
(1) Read the port value each time the interrupt occurs.  
(2) The key is fixed on the last digit interrupt.  
The digit positions output can be determined by reading the FLD data pointer (address 035816).  
Repeat synchronous  
Tdisp  
Toff1  
Tn Tn-1 Tn-2  
T4  
T3  
T2  
T1  
Tn  
Tn-1 Tn-2  
T4  
FLD digit output  
FLD digit interrupt generated at the rising edge of digit ( each timing)  
Figure KA-12A. Timing using digit interrupt  
65  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
The FLD blanking interrupt is generated when the FLD data pointer (address 035816) reaches “FF16”. The FLD automatic  
display output is turned off for a duration of 1 x Tdisp, 2 x Tdisp, or 3 x Tdisp depending on post-interrupt settings. During  
this time, key scanning that makes use of FLD segments can be achieved.  
When a key-scan is performed with the segment during key-scan blanking period Tscan, take the following sequence:  
1. Write “0” to bit 0 of the FLDC mode register (address 035016).  
2. Set the port corresponding to the segment for key-scan to the output port.  
3. Perform the key-scan.  
4. After the key-scan is performed, write “1” to bit 0 of FLDC mode register (address 035016).  
Note:  
When performing a key-scan according to the above steps 1 to 4, take the following points into consideration.  
1. Do not set “0” in bit 1 of the FLDC mode register (address 035016).  
2. Do not set “1” in the ports corresponding to digits.  
Repeat synchronous  
Tdisp  
Tn Tn-1 Tn-2  
Tscan  
T4  
T3  
T2  
T1  
Tn Tn-1 Tn-2  
FLD digit output  
Segment setting by software  
FLD blanking interrupt generated at the  
falling of edge of the last digit  
Figure KA-12B. Timing using FLD blanking interrupt  
66  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P44 to P47 Expansion Function  
P44 to P47 are CMOS output-type ports. FLD digit outputs can be increased as many as 16 lines by con-  
necting a 4-bit to 16-bit decoder to these ports. P44 to P47 have the function to allow for connection to a 4-  
bit to 16-bit decoder.  
(1) P44 to P47 Toff invalid Function  
This function disables the Toff1 time and Toff2 time and outputs display data for the duration of Tdisp.  
(See Figure KA-13.) This can be accomplished by setting the P44 to P47 Toff disable bit (address 035016  
bit 2) to “1”.  
Unlike the Toff section generate/not generate function, this function disables all display data.  
(2) Dimmer signal output Function  
This function allows a dimmer signal creation signal to be output from DIMOUT (P97). The dimmer function  
can be materialized by controlling the decoder with this signal. (See Figure KA-13.) This function can be  
set by writing P97 dimmer output control bit (bit 4 of address 035116) to “1”.  
(3) P44 to P47 FLD Output Reverse Bit  
P44 to P47 are provided with a function to reverse the polarity of the FLD output. This function is useful in  
adjusting the polarity when using an externally installed driver.  
The output polarity can be reversed by setting bit 0 of the FLD output control register (address 035116) to  
“1” .  
•Grayscale display mode is not selected  
•Grayscale display mode is selected and  
set for bright display  
(grayscale display control data = “0”)  
FLD output  
•Grayscale display mode is selected and  
set for dark display  
(grayscale display control data = “1”)  
•Grayscale display mode is selected and  
Toff2 SET/RESET bit is “1”  
(grayscale display control data = “1”)  
Toff1  
Toff2  
Tdisp  
Output selecting P4  
Toff invalid  
4 to P47  
For dimmer signal  
DIMOUT(P97)  
Figure KA-13. P4 to P47 FLD Output pulses  
67  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Toff section generate/not generate Function  
The function is for reduction of useless noises which generated as every switching of ports, because of the  
combined capacity of among FLD ports. In case the continuous data output to each FLD ports, the Toff1  
section of the continuous parts is not generated. (See Figure KA-15)  
If it needs Toff1 section on FLD pulses, set “CMOS ports: section of Toff generate / not generate bit” to “1”  
and set “high-breakdown-voltage ports: section of Toff generate / not generate bit” to “1”. High-breakdown-  
voltage ports (P5, P6, P3, P2, P1, P0, P4  
0 to P43, total 52 pins) generate Toff1 section, by setting “high-  
breakdown-voltage ports: section of Toff generate / not generate bit” to “1”  
.
The CMOS ports ( P44 to P47, total 4 pins ) generate Toff1 section, by setting “high-breakdown-voltage  
ports: section of Toff generate / not generate bit” to “1”.  
Tdisp  
Toff1  
“H” output  
“H” output  
“L” output  
“H” output  
“H” output  
“L” output  
“H” output  
“H” output  
P1X  
P2X  
Output waveform when “high-  
breakdown-voltage ports: section of Toff  
generate/not generate bit”(bit 6 of 0351  
1
6
) is “1”.  
“H” output  
“H” output  
“L” output  
“H” output  
“H” output  
P1X  
Output waveform when “high-  
Section of Toff1 is not generated because of output is same.  
“L” output  
breakdown-voltage ports: section of Toff  
generate/not generate bit”(bit 6 of 035116  
is “0”.  
)
“H” output  
“H” output  
P2X  
Section of Toff1 is not generated because of output is same.  
Fig. KA-15. Toff Section Generated/not generated Function  
Toff2 SET/RESET change bit  
In gradation display mode, the values set by the Toff2 time set register (TOFF2) are effective. When the  
FLD output control register (bit 7 of address 035116 ) in the initial state = “0”, RAM data is output to the FLD  
output ports (SET) at the time that is set by TOFF1 and is turned to “0” (RESET) at the time that is set by  
TOFF2. When bit 7 = “1”, RAM data is output (SET) at the time that is set by TOFF2 and is turned to “0”  
(RESET) when the Tdisp time expires.  
68  
Mitsubishi microcomputers  
M30218 Group  
FLD controller  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Digit pulses output Function  
P50 to P57 and P60 to P67 allow digit pulses to be output using the FLD/digit switch register. Set the digit  
output set register by writing as many consecutive 1s as the timing count from P60. The contents of FLD  
automatic display RAM for the ports that have been selected for digit output are disabled, and the pulse  
shown in Figure KA-16 is output automatically. In gradation display mode use, Toff2 time becomes effective  
for the port which selected digit output. Because the contents of FLD automatic display RAM are disabled,  
the segment data can be changed easily even when segment data and digit data coexist at the same  
address in the FLD automatic display RAM.  
This function is effective in 16-timing normal mode and 16-timing gradation display mode. If a value is set  
exceeding the timing count (FLD data pointer reload register's set value + 1) for any port, the output of such  
port is “L”.  
Tdisp  
Toff1  
P5  
7
P5  
P5  
P5  
6
5
4
P5  
P5  
P5  
P5  
3
2
1
0
P67  
P66  
P65  
P64  
P63  
P6  
P6  
P6  
2
1
0
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
Low-order 4bits  
of the data pointer  
Fig. KA-16. Digit Pulses Output Function  
69  
Mitsubishi microcomputers  
M30218 Group  
Timer  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer  
There are eight 16-bit timers. These timers can be classified by function into timers A (five) and timers B  
(three). All these timers function independently. Figures FB-1 show the block diagram of timers.  
Clock prescaler  
X
IN  
1/32  
Reset  
f
f
1
8
fC32  
X
CIN  
1/8  
Clock prescaler reset flag  
(bit 7 at address 038116) set to “1”  
1/4  
f
32  
f1 f8 f32 fc32  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A0 interrupt  
Timer A1 interrupt  
Timer A2 interrupt  
Timer A3 interrupt  
Timer A4 interrupt  
Timer A0  
Noise  
filter  
TA0IN  
TA3OUT  
/
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A1  
Noise  
filter  
TA1IN  
/
• Event counter mode  
TA4OUT  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A2  
Noise  
filter  
TA2IN  
/
• Event counter mode  
TA0OUT  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A3  
Noise  
filter  
TA3IN  
/
• Event counter mode  
TA1OUT  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A4  
Noise  
filter  
TA4IN  
TA2OUT  
/
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B0 interrupt  
Timer B1 interrupt  
Noise  
filter  
TB0IN  
Timer B0  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Noise  
filter  
TB1IN  
TB2IN  
Timer B1  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B2 interrupt  
Noise  
filter  
Timer B2  
• Event counter mode  
Figure FB-1. Timer block diagram  
70  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Figure FB-2 shows the block diagram of timer A. Figures FB-3 to FB-5 show the timer A-related registers.  
Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode  
register (i = 0 to 4) bits 0 and 1 to choose the desired mode.  
Timer A has the four operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
• Event counter mode: The timer counts pulses from an external source or a timer's over flow.  
• One-shot timer mode: The timer stops counting when the count reaches “000016”.  
• Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.  
Data bus high-order bits  
Clock source  
Data bus low-order bits  
selection  
• Timer  
• One shot  
• PWM  
f
f
f
1
Low-order  
8 bits  
High-order  
8 bits  
8
32  
• Timer  
(gate function)  
Reload register (16)  
f
C32  
• Event counter  
Clock selection  
Counter (16)  
Polarity  
selection  
Up count/down count  
TAiIN  
Always down count except  
in event counter mode  
(i = 0 to 4)  
Count start flag  
(Address 038016  
)
Down count  
TAi  
Addresses  
TAj  
TAk  
TAiOUT  
TB2 overflow  
Timer A0 038716 038616 Timer A4 Timer A1 Timer A3  
Timer A1 038916 038816 Timer A0 Timer A2 Timer A4  
Timer A2 038B16 038A16 Timer A1 Timer A3 Timer A0  
Timer A3 038D16 038C16 Timer A2 Timer A4 Timer A1  
Timer A4 038F16 038E16 Timer A3 Timer A0 Timer A2  
External  
trigger  
Up/down flag  
TAj overflow  
(j = i - 1. Note, however, that j = 4 when i = 0)  
(Address 038416  
)
TAk overflow  
(k = i + 1. Note, however, that k = 0 when i = 4)  
Pulse output  
TAiOUT  
(i = 0 to 4)  
Toggle flip-flop  
Figure FB-2. Block diagram of timer A  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2  
b
b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
Operation mode select  
bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : One-shot timer mode  
1 1 : Pulse width modulation  
(PWM) mode  
TMOD1  
MR0  
Function varies with each operation mode  
MR1  
MR2  
MR3  
TCK0  
TCK1  
Count source select bit  
(Function varies with each operation mode)  
Figure FB-3. Timer A-related registers (1)  
71  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Ai register (Note)  
Symbol  
TA0  
TA1  
TA2  
TA3  
Address  
When reset  
(b15)  
b7  
(b8)  
b0b7  
b0  
038716,038616  
038916,038816  
038B16,038A16  
038D16,038C16  
038F16,038E16  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
TA4  
Values that can be set  
000016 to FFFF  
Function  
R W  
• Timer mode  
Counts an internal count source  
• Event counter mode  
Counts pulses from an external source or timer overflow 000016 to FFFF16  
• One-shot timer mode  
Counts a one shot width  
000016 to FFFF16  
• Pulse width modulation mode (16-bit PWM)  
Functions as a 16-bit pulse width modulator  
000016 to FFFE16  
• Pulse width modulation mode (8-bit PWM)  
Timer low-order address functions as an 8-bit  
prescaler and high-order address functions as an 8-bit  
pulse width modulator  
0016 to FE16  
(Both high-order  
and low-order  
addresses)  
Note: Read and write data is in 16-bit units.  
Count start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
R W  
Bit symbol  
TA0S  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
Bit name  
Function  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
Up/down flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UDF  
Address  
038416  
When reset  
0016  
Bit symbol  
TA0UD  
TA1UD  
TA2UD  
TA3UD  
TA4UD  
TA2P  
Bit name  
Function  
R W  
Timer A0 up/down flag  
0 : Down count  
1 : Up count  
Timer A1 up/down flag  
Timer A2 up/down flag  
This specification becomes valid  
when the up/down flag content is  
selected for up/down switching  
cause  
Timer A3 up/down flag  
Timer A4 up/down flag  
0 : two-phase pulse signal  
processing disabled  
1 : two-phase pulse signal  
processing enabled  
Timer A2 two-phase pulse  
signal processing select bit  
TA3P  
TA4P  
Timer A3 two-phase pulse  
signal processing select bit  
When not using the two-phase  
pulse signal processing function,  
set the select bit to “0”  
Timer A4 two-phase pulse  
signal processing select bit  
Figure FB-4. Timer A-related registers (2)  
72  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
One-shot start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ONSF  
Address  
038216  
When reset  
00X00000  
2
R W  
Bit symbol  
Bit name  
Function  
Timer A0 one-shot start flag  
Timer A1 one-shot start flag  
Timer A2 one-shot start flag  
Timer A3 one-shot start flag  
Timer A4 one-shot start flag  
TA0OS  
TA1OS  
TA2OS  
TA3OS  
TA4OS  
1: Timer start  
When read, the value is “0”  
Nothing is assigned.  
This bit can neither be set nor reset. When read, the content is indeterminate.  
b7 b6  
TA0TGL  
Timer A0 event/trigger  
0 0 : Input on TA0IN is selected (Note)  
select bit  
0 1 : TB2 overflow is selected  
1 0 : TA4 overflow is selected  
1 1 : TA1 overflow is selected  
TA0TGH  
Note: Set the corresponding port direction register to “0”.  
When TAiIN is selected, TAiOUT assigned on same pin can not be used. (i=0 to 4)  
Trigger select register  
Symbol  
TRGSR  
Address  
038316  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
TA1TGL  
Bit name  
Function  
R W  
b1 b0  
Timer A1 event/trigger  
select bit  
0 0 : Input on TA1IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA0 overflow is selected  
1 1 : TA2 overflow is selected  
TA1TGH  
TA2TGL  
b3 b2  
Timer A2 event/trigger  
select bit  
0 0 : Input on TA2IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA1 overflow is selected  
1 1 : TA3 overflow is selected  
TA2TGH  
TA3TGL  
TA3TGH  
b5 b4  
Timer A3 event/trigger  
select bit  
0 0 : Input on TA3IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA2 overflow is selected  
1 1 : TA4 overflow is selected  
b7 b6  
Timer A4 event/trigger  
select bit  
TA4TGL  
TA4TGH  
0 0 : Input on TA4IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA3 overflow is selected  
1 1 : TA0 overflow is selected  
Note: Set the corresponding port direction register to “0”.  
When TAiIN is selected, TAiOUT assigned on same pin can not be used. (i=0 to 4)  
Clock prescaler reset flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
2
R W  
Bit symbol  
Bit name  
Function  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are indeterminate.  
0 : No effect  
1 : Prescaler is reset  
CPSR  
Clock prescaler reset flag  
(When read, the value is “0”)  
Figure FB-5. Timer A-related registers (3)  
73  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table FB-1.) Figure FB-6 shows  
the timer Ai mode register in timer mode.  
Table FB-1. Specifications of timer mode  
Item  
Specification  
Count source  
Count operation  
f1, f8, f32, fC32  
• Down count  
• When the timer underflows, it reloads the reload register contents before continuing countin  
g
Divide ratio  
1/(n+1)  
n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing When the timer underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or gate input  
Programmable I/O port or pulse output  
Count value can be read out by reading timer Ai register  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
• Gate function  
Select function  
Counting can be started and stopped by the TAiIN pin’s input signal  
• Pulse output function  
Each time the timer underflows, the TAiOUT pin’s polarity is reversed  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i=0 to 4) 039616 to 039A16  
0
0 0  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode  
select bit  
0 0 : Timer mode  
Pulse output function  
select bit  
0 : Pulse is not output  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
b4 b3  
Gate function select bit  
MR1  
MR2  
0 X (Note 2): Gate function not available  
(TAiIN pin is a normal port pin)  
1 0 : Timer counts only when TAiIN pin is  
held “L” (Note 3)  
1 1 : Timer counts only when TAiIN pin is  
held “H” (Note 3)  
MR3  
0 (Must always be fixed to “0” in timer mode)  
b7 b6  
0 0 : f  
TCK0  
Count source select bit  
1
8
0 1 : f  
1 0 : f32  
1 1 : fC32  
TCK1  
Note 1: The settings of the corresponding port register and port direction register  
are invalid.  
Note 2: The bit can be “0” or “1”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure FB-6. Timer Ai mode register in timer mode  
74  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer’s overflow. Timers A0 and A1 can  
count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase  
external signal. Table FB-2 lists timer specifications when counting a single-phase external signal. Fig-  
ure FB-7 shows the timer Ai mode register in event counter mode.  
Table FB-3 lists timer specifications when counting a two-phase external signal. Figure FB-8 shows the  
timer Ai mode register in event counter mode.  
Table FB-2. Timer specifications in event counter mode (when not processing two-phase pulse signal)  
Item  
Specification  
Count source  
•External signals input to TAiIN pin (effective edge can be selected by software)  
•TB2 overflow, TAj overflow  
Count operation  
Divide ratio  
•Up count or down count can be selected by external signal or software  
When the timer overflows or underflows, the reload register's content is reloaded  
and the timer starts over again.(Note)  
1/ (FFFF16 - n + 1) for up count  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing The timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or count source input  
Programmable I/O port, pulse output, or up/down count select input  
Count value can be read out by reading timer Ai register  
•When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
•When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
•Free-run count function  
Select function  
Even when the timer overflows or underflows, the reload register content is not reloaded to it  
•Pulse output function  
Each time the timer overflows or underflows, the TAiOUT pin’s polarity is reversed  
Note: This does not apply when the free-run function is selected.  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TAiMR(i = 0, 1)  
Address  
039616, 039716  
When reset  
0016  
0
0 1  
R W  
Bit symbol  
Bit name  
Function  
TMOD0  
TMOD1  
MR0  
b1 b0  
Operation mode select bit  
0 1 : Event counter mode (Note 1)  
0 : Pulse is not output  
Pulse output function  
select bit  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 2)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
Count polarity  
select bit (Note 3)  
0 : Counts external signal's falling edge  
1 : Counts external signal's rising edge  
Up/down switching  
cause select bit  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 4)  
MR3  
0 (Must always be fixed to “0” in event counter mode)  
TCK0  
Count operation type select  
bit  
0 : Reload type  
1 : Free-run type  
TCK1  
Invalid in event counter mode  
Can be “0” or “1”  
Note 1: In event counter mode, the count source is selected by the event / trigger select bit  
(addresses 038216 and 038316).  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Note 3: Valid only when counting an external signal.  
Note 4: When an “L” signal is input to the TAiOUT pin, the downcount is activated. When “H”,  
the upcount is activated. Set the corresponding port direction register to “0”.  
Figure FB-7. Timer Ai mode register in event counter mode  
75  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table FB-3. Timer specifications in event counter mode (when processing two-phase pulse signal with timer A2,A3 and A4  
Item  
Specification  
Count source  
•Two-phase pulse signals input to TAiIN or TAiOUT pin  
•Up count or down count can be selected by two-phase pulse signal  
•When the timer overflows or underflows, the reload register content is  
reloaded and the timer starts over again (Note)  
Count operation  
Divide ratio  
1/ (FFFF16 - n + 1) for up count  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing Timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Two-phase pulse input  
Two-phase pulse input  
Count value can be read out by reading timer A2, A3, or A4 register  
•When counting stopped  
When a value is written to timer A2, A3, or A4 register, it is written to both  
reload register and counter  
•When counting in progress  
When a value is written to timer A2, A3, or A4 register, it is written to only  
reload register. (Transferred to counter at next reload time.)  
•Normal processing operation  
Select function  
The timer counts up rising edges or counts down falling edges on the TAiIN  
pin when input signal on the TAiOUT pin is “H”  
TAiOUT  
TAiIN  
Up  
count  
Up  
count  
Up  
Down  
Down  
count  
Down  
count  
(i=2,3)  
count count  
•Multiply-by-4 processing operation  
If the phase relationship is such that the TAiIN pin goes “H” when the input  
signal on the TAiOUT pin is “H”, the timer counts up rising and falling edges  
on the TAiOUT and TAiIN pins. If the phase relationship is such that the  
TAiIN pin goes “L” when the input signal on the TAiOUT pin is “H”, the timer  
counts down rising and falling edges on the TAiOUT and TAiIN pins.  
TAiOUT  
Count down all edges  
Count down all edges  
Count up all edges  
Count up all edges  
TAiIN  
(i=3,4)  
Note: This does not apply when the free-run function is selected.  
76  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Ai mode register  
(When not using two-phase pulse signal processing)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i = 2 to 4) 039816 to 039A16  
0
0 1  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
0 : Pulse is not output  
Pulse output function  
select bit  
MR0  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
Count polarity  
select bit (Note 2)  
0 : Counts external signal's falling edges  
1 : Counts external signal's rising edges  
MR1  
MR2  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 3)  
Up/down switching  
cause select bit  
0 (Must always be “0” in event counter mode)  
MR3  
TCK0  
Count operation type select  
bit  
0 : Reload type  
1 : Free-run type  
Two-phase pulse signal  
processing operation  
select bit (Note 4)(Note 5)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: The settings of the corresponding port register and port direction register are invalid  
Note 2: This bit is valid when only counting an external signal.  
Note 3: Set the corresponding port direction register to “0”.  
Note 4: This bit is valid for timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0 ”or “1”.  
Note 5: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Timer Ai mode register  
(When using two-phase pulse signal processing)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
0
1 0 0 0 1  
TAiMR(i = 2 to 4) 039816 to 039A16  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
MR0  
MR1  
MR2  
MR3  
TCK0  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
1 (Must always be “1” when using two-phase pulse  
signal processing)  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
Count operation type select 0 : Reload type  
bit  
1 : Free-run type  
Two-phase pulse  
processing operation  
select bit (Note 1)(Note 2)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: This bit is valid for timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0” or “1”.  
Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Figure FB-8. Timer Ai mode register in event counter m  
77  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) One-shot timer mode  
In this mode, the timer operates only once. (See Table FB-4.) When a trigger occurs, the timer starts up and  
continues operating for a given period. Figure FB-9 shows the timer Ai mode register in one-shot timer mode.  
Table FB-4. Timer specifications in one-shot timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• The timer counts down  
• When the count reaches 000016, the timer stops counting after reloading a new count  
• If a trigger occurs when counting, the timer reloads a new count and restarts counting  
Divide ratio  
1/n  
n : Set value  
Count start condition  
• An external trigger is input  
• The timer overflows  
• The one-shot start flag is set (= 1)  
• A new count is reloaded after the count has reached 000016  
• The count start flag is reset (= 0)  
Count stop condition  
Interrupt request generation timing The count reaches 000016  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Programmable I/O port or pulse output  
When timer Ai register is read, it indicates an indeterminate value  
•When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
0
1 0  
TAiMR(i = 0 to 4) 039616 to 039A16  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
1 0 : One-shot timer mode  
0 : Pulse is not output  
Pulse output function  
select bit  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
0 : Falling edge of TAiIN pin's input signal (Note 3)  
1 : Rising edge of TAiIN pin's input signal (Note 3)  
External trigger select  
bit (Note 2)  
Trigger select bit  
0 : One-shot start flag is valid  
1 : Selected by event/trigger select  
register  
MR3  
0 (Must always be “0” in one-shot timer mode)  
b7 b6  
TCK0  
Count source select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1
8
TCK1  
1 1 : fC32  
Note 1: The settings of the corresponding port register and port direction register are invalid  
Note 2: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure FB-9. Timer Ai mode register in one-shot timer mode  
78  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) Pulse width modulation (PWM) mode  
In this mode, the timer outputs pulses of a given width in succession. (See Table FB-5.) In this mode, the counter  
functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure FB-10 shows the  
timer Ai mode register in pulse width modulation mode. Figure FB-11 shows the example of how a 16-bit pulse  
width modulator operates. Figure FB-12 shows the example of how an 8-bit pulse width modulator operates.  
Table FB-5. Timer specifications in pulse width modulation mode  
Item  
Count source  
Specification  
f1, f8, f32, fC32  
Count operation  
The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)  
The timer reloads a new count at a rising edge of PWM pulse and continues counting  
•The timer is not affected by a trigger that occurs when counting  
16-bit PWM  
•High level width  
•Cycle time  
n / fi n : Set value  
(2 -1) / fi fixed  
16  
8-bit PWM  
•High level width n X (m+1) / fi n : values set to timer Ai register’s high-order address  
•Cycle time (2 -1) X (m+1) / fi m : values set to timer Ai register’s low-order address  
8
Count start condition  
•External trigger is input  
•The timer overflows  
•The count start flag is set (= 1)  
Count stop condition  
•The count start flag is reset (= 0)  
Interrupt request generation timing PWM pulse goes “L”  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Pulse output  
When timer Ai register is read, it indicates an indeterminate value  
•When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
•When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
1
1 1  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit symbol  
Bit name  
Function  
TMOD0  
TMOD1  
MR0  
b1 b0  
Operation mode  
select bit  
1 1 : PWM mode  
1 (Must always be fixed to “1” in PWM mode)  
External trigger select  
MR1  
0: Falling edge of TAiIN pin's input signal (Note 2)  
bit (Note 1)  
1: Rising edge of TAiIN pin's input signal (Note 2)  
MR2  
Trigger select bit  
0: Count start flag is valid  
1: Selected by event/trigger select register  
0: Functions as a 16-bit pulse width modulator  
1: Functions as an 8-bit pulse width modulator  
16/8-bit PWM mode  
select bit  
MR3  
b7 b6  
TCK0  
TCK1  
Count source select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1
8
1 1 : fC32  
Note 1: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0  
Note 2: Set the corresponding port direction register to “0”.  
Figure FB-10. Timer Ai mode register in pulse width modulation mode  
79  
Mitsubishi microcomputers  
M30218 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Condition : Reload register = 000316, when external trigger  
(falling edge of TA0IN pin's input signal) is selected.  
1 / fi X  
(216 –1)  
Count source  
“H”  
“L”  
TA0IN pin's  
input signal  
Trigger is not generated by this signal  
1 / f  
i
X n  
“H”  
“L”  
PWM pulse output  
from TA0OUT pin  
“1”  
“0”  
Timer A0 interrupt  
request bit  
f
i
: Frequency of count source  
(f , f , f32, fC32  
Cleared to “0” by software, or when interrupt request is accepted.  
1
8
)
Note: n = 000016 to FFFE16  
.
Figure FB-11. Example of how a 16-bit pulse width modulator operates  
Condition : Reload register's high-order 8 bits = 0216  
Reload register's low-order bits 8 = 0216  
When external trigger (falling edge of TA0IN pin's input signal) is selected.  
8
1 / f  
i
X
(m + 1)  
X
(2 – 1)  
Count source  
(Note 1)  
“H”  
“L”  
TA0IN pin's input  
signal  
1 / fi X (m + 1)  
“H”  
Underflow signal of  
8-bit prescaler (Note 2)  
“L”  
1 / fi X (m + 1) X n  
“H”  
“L”  
PWM pulse output  
from TA0OUT pin  
“1”  
“0”  
Timer A0 interrupt  
request bit  
f
i
: Frequency of count source  
(f , f , f32, fC32  
Cleared to “0” by software, or when interrupt request is accepted.  
1
8
)
Note 1: The 8-bit prescaler counts the count source.  
Note 2: The 8-bit pulse width modulator counts the 8-bit prescaler's underflow signal.  
Note 3: m = 0016 to FE16; n = 0016 to FE16  
.
Figure FB-12. Example of how an 8-bit pulse width modulator operates  
80  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
Figure TA-1 shows the block diagram of timer B. Figures TA-2 and TA-3 show the timer B-related registers.  
Use the timer Bi mode register (i = 0 to 2) bits 0 and 1 to choose the desired mode.  
Timer B has three operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
• Event counter mode: The timer counts pulses from an external source or a timer overflow.  
Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.  
Data bus high-order bits  
Data bus low-order bits  
Clock source selection  
High-order 8 bits  
Low-order 8 bits  
f
1
• Timer  
Reload register (16)  
• Pulse period/pulse width measurement  
f8  
f
32  
fc32  
Counter (16)  
• Event counter  
Count start flag  
(address 038016  
Polarity switching  
and edge pulse  
TBiIN  
(i = 0 to 2)  
)
Counter reset circuit  
Can be selected in only  
event counter mode  
TBi  
Address  
TBj  
TBj overflow  
(j = i - 1. Note, however,  
j = 2 when i = 0)  
Timer B0 039116 039016 Timer B2  
Timer B1 039316 039216 Timer B0  
Timer B2 039516 039416 Timer B1  
Figure TA-1. Block diagram of timer B  
Timer Bi mode register  
Symbol  
Address  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
TBiMR(i = 0 to 2) 039B16 to 039D16  
00XX0000  
2
R
W
Bit symbol  
TMOD0  
Function  
Bit name  
b1 b0  
Operation mode select bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : Pulse period/pulse width  
measurement mode  
1 1 : Inhibited  
TMOD1  
MR0  
MR1  
MR2  
Function varies with each operation mode  
(Note 1)  
(Note 2)  
MR3  
TCK0  
Count source select bit  
(Function varies with each operation mode)  
TCK1  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure TA-2. Timer B-related registers (1)  
81  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Bi register (Note)  
Symbol  
TB0  
TB1  
Address  
When reset  
(b15)  
b7  
(b8)  
b0 b7  
039116, 039016  
039316, 039216  
039516, 039416  
Indeterminate  
Indeterminate  
Indeterminate  
b0  
TB2  
Values that can be set  
000016 to FFFF16  
R W  
Function  
• Timer mode  
Counts the timer's period  
• Event counter mode  
000016 to FFFF16  
Counts external pulses input or a timer overflow  
• Pulse period / pulse width measurement mode  
Measures a pulse period or width  
Note: Read and write data in 16-bit units.  
Count start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
R W  
Bit symbol  
TA0S  
Bit name  
Function  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
Clock prescaler reset flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
2
Bit symbol  
R W  
Bit name  
Function  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
0 : No effect  
CPSR  
Clock prescaler reset flag  
1 : Prescaler is reset  
(When read, the value is “0”)  
Figure TA-3. Timer B-related registers (2)  
82  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table TA-1.) Figure TA-4  
shows the timer Bi mode register in timer mode.  
Table TA-1. Timer specifications in timer mode  
Item  
Specification  
Count source  
Count operation  
f1, f8, f32, fC32  
•Counts down  
•When the timer underflows, the reload register's content is reloaded and the  
timer starts over again.  
Divide ratio  
1/(n+1) n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Programmable I/O port  
Count value is read out by reading timer Bi register  
•When counting stopped  
When a value is written to timer Bi register, it is written to both reload register  
and counter  
• When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
0
0
TBiMR(i=0 to 2) 039B16 to 039D16  
2
Bit symbol  
R
W
Bit name  
Function  
0 0 : Timer mode  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
Invalid in timer mode  
Can be “0” or “1”  
MR1  
MR2  
MR3  
0 (Fixed to “0” in timer mode ; i = 0)  
(Note 1)  
(Note 2)  
Nothing is assigned (i = 1,2). In an attempt to write to this bit, write  
“0”. The value, if read, turns out to be indeterminate.  
Invalid in timer mode.  
In an attempt to write to these bits, write “0”. The value, if read in  
timer mode, turns out to be indeterminate.  
b7 b6  
Count source select bit  
TCK0  
TCK1  
0 0 : f  
0 1 : f  
1 0 : f32  
1
8
1 1 : fC32  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure TA-4. Timer Bi mode register in timer mode  
83  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer's overflow. (See Table TA-2.) Figure  
TA-5 shows the timer Bi mode register in event counter mode.  
Table TA-2. Timer specifications in event counter mode  
Item  
Specification  
Count source  
•External signals input to TBiIN pin  
•Effective edge of count source can be a rising edge, a falling edge, or falling  
and rising edges as selected by software  
•Counts down  
Count operation  
•When the timer underflows, it reloads the reload register contents before  
continuing counting  
Divide ratio  
1/(n+1)  
n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
I
nterrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Count source input  
Count value can be read out by reading timer Bi register  
•When counting stopped  
When a value is written to timer Bi register, it is written to both reload register and counter  
•When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX00002  
TBiMR(i=0 to 2) 039B16 to 039D16  
0
1
R
W
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode  
select bit  
0 1 : Event counter mode  
b3 b2  
MR0  
Count polarity select  
bit (Note 1)  
0 0 : Counts external signal's falling edges  
0 1 : Counts external signal's rising edges  
1 0 : Counts external signal's falling and  
rising edges  
MR1  
1 1 : Inhibited  
0 (Fixed to “0” in event counter mode; i = 0)  
MR2  
MR3  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
In an attempt to write to this bit, write “0”. The value, if read,  
turns out to be indeterminate.  
Invalid in event counter mode.  
In an attempt to write to this bit, write “0”. The value, if read in event  
counter mode, turns out to be indeterminate.  
Invalid in event counter mode.  
Can be “0” or “1”.  
TCK0  
TCK1  
0: Input from TBiIN pin (Note 4)  
1: TBj overflow  
Event clock select  
(j = i-1; however, j = 2 when i = 0)  
Note 1: Valid only when input from the TBiIN pin is selected as the event clock.  
If timer's overflow is selected, this bit can be “0” or “1”.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Note 4: Set the corresponding port direction register to “0”.  
Figure TA-5. Timer Bi mode register in event counter mode  
84  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Pulse period/pulse width measurement mode  
In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table TA-3.)  
Figure TA-6 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure  
TA-7 shows the operation timing when measuring a pulse period. Figure TA-8 shows the operation  
timing when measuring a pulse width.  
Table TA-3. Timer specifications in pulse period/pulse width measurement mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
•Up count  
•Counter value “000016” is transferred to reload register at measurement  
pulse's effective edge and the timer continues counting  
Count start flag is set (= 1)  
Count start condition  
Count stop condition  
Count start flag is reset (= 0)  
Interrupt request generation timing •When measurement pulse's effective edge is input (Note 1)  
•When an overflow occurs. (Simultaneously, the timer Bi overflow flag  
changes to “1”. The timer Bi overflow flag changes to “0” when the count start  
flag is “1” and a value is written to the timer Bi mode register.)  
TBiIN pin function  
Read from timer  
Measurement pulse input  
When timer Bi register is read, it indicates the reload register’s content  
(measurement result) (Note 2)  
Write to timer  
Cannot be written to  
Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.  
Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
1
0
TBiMR (i=0 to 2) 039B16 to 039D16  
2
R
W
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode  
select bit  
1 0 : Pulse period / pulse width measurement mode  
b3 b2  
MR0  
MR1  
Measurement mode  
select bit  
0 0 : Pulse period measurement (Interval between  
measurement pulse's falling edge to falling edge)  
0 1 : Pulse period measurement (Interval between  
measurement pulse's rising edge to rising edge)  
1 0 : Pulse width measurement (Interval between  
measurement pulse's falling edge to rising edge,  
and between rising edge to falling edge)  
1 1 : Inhibited  
MR2  
0 (Fixed to “0” in pulse period/pulse width measurement mode; i = 0)  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
In an attempt to write to this bit, write “0”. The value, if read in event counter  
mode, turns out to be indeterminate.  
Timer Bi overflow  
flag ( Note 1)  
0 : Timer did not overflow  
1 : Timer has overflowed  
MR3  
TCK0  
TCK1  
b7 b6  
Count source  
select bit  
0 0 : f  
0 1 : f  
1
8
1 0 : f32  
1 1 : fC32  
Note 1: The timer Bi overflow flag changes to “0” when the count start flag is “1” and a value is written to the  
timer Bi mode register. This flag cannot be set to “1” by software.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Figure TA-6. Timer Bi mode register in pulse period/pulse width measurement mode  
85  
Mitsubishi microcomputers  
M30218 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Measurement of puls time interval from falling edge to falling edge  
Count source  
“H”  
“L”  
Measurement pulse  
Transfer  
Transfer  
(indeterminate value)  
(measured value)  
Reload register counter  
transfer timing  
(Note 2)  
(Note 1)  
(Note 1)  
Timing when counter  
reaches “000016  
“1”  
“0”  
Count start  
flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” by software, or when interrupt request is accepted.  
“1”  
“0”  
Timer Bi overflow  
flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure TA-7. Operation timing when measuring a pulse period  
Count source  
“H”  
Measurement pulse  
“L”  
Transfer (indeterminate value) Transfer (measured value)  
Reload register  
transfer timing  
counter  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 2)  
Timing when counter  
reaches 000016  
“1”  
“0”  
Count start  
flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” by software, or when interrupt request is accepted.  
“1”  
“0”  
Timer Bi overflow flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure TA-8. Operation timing when measuring a pulse width  
86  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
Serial I/O is configured as two channels: UART0 and UART1.  
UART0 and UART1 each have an exclusive timer to generate a transfer clock, so they operate independently of each other.  
Figure GA-1 shows the block diagram of UART0 and UART1. Figures GA-2 shows the block diagram of the transmit/receive unit.  
UARTi (i=0, 1) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous  
serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses  
03A016 and 03A816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART.  
Although a few function are different, UART0 and UART1 have almost same functions.  
Figures GA-3 through GA-5 show the registers related to UARTi.  
(UART0)  
TxD  
0
RxD  
0
UART reception  
Receive cl
Transmit/  
1/16  
Reception control  
circuit  
Clock source selection  
receive  
unit  
Clock synchronous type  
Bit rate generator  
f
f
1
8
Internal  
(address 03A116  
)
UART transmission  
1/16  
Transmit  
clock  
1 / (m+1)  
f32  
Transmission  
control circuit  
Clock synchronous type  
External  
Clock synchronous type  
(when internal clock is selected)  
1/2  
Clock synchronous type  
(when external clock is  
selected)  
Clock synchronous type  
(when internal clock is selected)  
Polarity  
reversing  
circuit  
CLK  
0
CTS/RTS disabled  
CTS/RTS selected  
RTS0  
CTS0  
CTS0 / RTS0  
Vcc  
CTS/RTS disabled  
(UART1)  
RxD  
1
TxD  
1
UART reception  
1/16  
Receive  
clock  
Reception control  
circuit  
Transmit/  
receive  
unit  
Clock source selection  
Clock synchronous type  
Bit rate generator  
f
1
Internal  
(address 03A916  
)
f8  
UART transmission  
Transmit  
clock  
1 / (n+1)  
f32  
1/16  
Transmission  
control circuit  
Clock synchronous type  
External  
Clock synchronous type  
(when internal clock is selected)  
1/2  
Clock synchronous type  
(when external clock is selected)  
Clock synchronous type  
(when internal clock is selected)  
Polarity  
reversing  
circuit  
CLK  
1
Clock output pin  
select switch  
CTS/RTS disabled  
RTS  
1
CTS  
1
/ RTS1  
CLKS  
1
V
CC  
CTS/RTS disabled  
CTS  
1
m: Values set to UART0 bit rate generator (U0BRG)  
n : Values set to UART1 bit rate generator (U1BRG)  
Figure GA-1. Block diagram of UARTi (i = 0, 1)  
87  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock  
synchronous type  
UART (7 bits)  
UART (8 bits)  
Clock  
synchronous  
type  
UARTi receive register  
UART (7  
bits)  
PAR  
1SP  
2SP  
disabled  
PAR  
RxDi  
SP  
SP  
PAR  
enabled  
UART  
UART (9 bits)  
Clock  
synchronous type  
UART (8 bits)  
UART (9 bits)  
UARTi receive  
buffer register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
D8  
Address 03A616  
Address 03A716  
Address 03AE16  
Address 03AF16  
MSB/LSB conversion circuit  
Data bus high-order bits  
Data bus low-order bits  
MSB/LSB conversion circuit  
UARTi transmit  
buffer register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D8  
Address 03A216  
Address 03A316  
Address 03AA16  
Address 03AB16  
UART (8 bits)  
UART (9 bits)  
Clock  
UART (9 bits)  
synchronouss  
type  
PAR  
enabled  
UART  
2SP  
1SP  
PAR  
SP  
SP  
TxDi  
PAR  
disabled  
Clock  
synchronous  
type  
UART (7 bits)  
UARTi transmit register  
SP: Stop bit  
UART (7 bits)  
UART (8 bits)  
"0"  
Clock synchronous  
type  
PAR: Parity bit  
Figure GA-2. Block diagram of transmit/receive unit  
88  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit buffer register  
(b15)  
b7  
(b8)  
b0 b7  
b0  
Symbol  
U0TB  
U1TB  
Address  
03A316, 03A216  
03AB16, 03AA16  
When reset  
Indeterminate  
Indeterminate  
Function  
R W  
Transmission data  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.  
UARTi receive buffer register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
U0RB  
U1RB  
Address  
03A716, 03A616  
03AF16, 03AE16  
When reset  
Indeterminate  
Indeterminate  
b0  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
Reception data  
Reception data  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
OER  
Overrun error flag (Note) 0 : No overrun error  
1 : Overrun error found  
0 : No overrun error  
1 : Overrun error found  
FER  
PER  
Framing error flag (Note) Invalid  
0 : No framing error  
1 : Framing error found  
Parity error flag (Note)  
Invalid  
Invalid  
0 : No parity error  
1 : Parity error found  
SUM Error sum flag (Note)  
0 : No error  
1 : Error found  
Note: Bits 15 through 12 are set to “0” when the serial I/O mode select bit (bits 2 to 0 at addresses  
03A016 and 03A816) are set to “0002” or the receive enable bit is set to “0”.  
(Bit 15 is set to “0” when bits 14 to 12 all are set to “0”.) Bits 14 and 13 are also set to “0” when  
the lower byte of the UARTi receive buffer register (addresses 03A616 and 03AE16) is read out.  
UARTi bit rate generator  
b7  
b0  
Symbol  
U0BRG  
U1BRG  
Address  
03A116  
03A916  
When reset  
Indeterminate  
Indeterminate  
Function  
Values that can be set  
0016 to FF16  
R W  
Assuming that set value = n, BRGi divides the count  
source by (n + 1)  
Figure GA-3. Serial I/O-related registers (1)  
89  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR (i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
b2 b1 b0  
SMD0  
Must be fixed to 001  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
b2 b1 b0  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 1 1 : Inhibited  
SMD1  
SMD2  
1 1 1 : Inhibited  
0 1 1 : Inhibited  
1 1 1 : Inhibited  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
0 : Internal clock  
1 : External clock  
CKDIR  
STPS  
0 : One stop bit  
1 : Two stop bits  
Stop bit length select bit  
Invalid  
Valid when bit 6 = “1”  
0 : Odd parity  
PRY  
Odd/even parity select bit Invalid  
1 : Even parity  
0 : Parity disabled  
1 : Parity enabled  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
Invalid  
0 : Sleep mode deselected  
1 : Sleep mode selected  
Must always be “0”  
UARTi transmit/receive control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC0 (i=0,1)  
Address  
03A416, 03AC16  
When reset  
0816  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
Function  
(During UART mode)  
R W  
Bit name  
symbol  
CLK0  
b1 b0  
b1 b0  
BRG count source  
select bit  
0 0 : f  
0 1 : f  
1
8
is selected  
is selected  
0 0 : f  
0 1 : f  
1
8
is selected  
is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
1 0 : f32 is selected  
1 1 : Inhibited  
CLK1  
CRS  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
CTS/RTS function  
select bit  
0 : Data present in transmit  
register (during transmission)  
1 : No data present in transmit  
register  
0 : Data present in transmit register  
(during transmission)  
1 : No data present in transmit  
register (transmission completed)  
TXEPT Transmit register empty  
flag  
(transmission completed)  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P47 and P77 function as  
CRD  
NCH  
CTS/RTS disable bit  
Data output select bit  
(P4  
7
and P7  
7
function as  
programmable I/O port)  
programmable I/O port)  
0 : TXDi pin is CMOS output  
1 : TXDi pin is N-channel  
open-drain output  
0: TXDi pin is CMOS output  
1: TXDi pin is N-channel  
open-drain output  
0 : Transmit data is output at  
falling edge of transfer clock  
and receive data is input at  
rising edge  
Must always be “0”  
CKPOL CLK polarity select bit  
1 : Transmit data is output at  
rising edge of transfer clock  
and receive data is input at  
falling edge  
0 : LSB first  
1 : MSB first  
UFORM Transfer format select bit  
Must always be “0”  
Note 1: Set the corresponding port direction register to “0”.  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Figure GA-4. Serial I/O-related registers (2)  
90  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC1(i=0,1)  
Address  
03A516 03AD16  
When reset  
0216  
,
Function  
(During clock synchronous serial  
I/O mode)  
Function  
(During UART mode)  
Bit  
symbol  
Bit name  
R W  
TE  
Transmit enable bit  
0 : Transmission disabled  
1 : Transmission enabled  
0 : Transmission disabled  
1 : Transmission enabled  
Transmit buffer empty  
flag  
0 : Data present in  
0 : Data present in  
TI  
transmit buffer register  
1 : No data present in  
transmit buffer register  
transmit buffer register  
1 : No data present in  
transmit buffer register  
RE  
RI  
Receive enable bit  
0 : Reception disabled  
1 : Reception enabled  
0 : Reception disabled  
1 : Reception enabled  
0 : No data present in  
receive buffer register  
1 : Data present in  
0 : No data present in  
receive buffer register  
1 : Data present in  
Receive complete flag  
receive buffer register  
receive buffer register  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be “0”.  
UART transmit/receive control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UCON  
Address  
03B016  
When reset  
X0000000  
0
2
Function  
(During clock synchronous serial  
I/O mode)  
Function  
(During UART mode)  
Bit  
symbol  
Bit name  
UART0 transmit  
R W  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
U0IRS  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
interrupt cause select bit  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
UART1 transmit  
interrupt cause select bit  
U1IRS  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
UART0 continuous receive  
mode enable bit  
0 : Continuous receive  
mode disabled  
U0RRM  
Invalid  
1 : Continuous receive  
mode enable  
U1RRM  
Invalid  
UART1 continuous receive  
mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enabled  
CLKMD0 CLK/CLKS select bit 0  
Valid when bit 5 = “1”  
Invalid  
0 : Clock output to CLK1  
1 : Clock output to CLKS1  
CLK/CLKS select bit 1  
(Note)  
CLKMD1  
0 : Normal mode  
Must always be “0”  
(CLK output is CLK1 only)  
1 : Transfer clock output  
from multiple pins  
function selected  
Reserved bit  
Must always be “0”  
Must always be “0”  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be indeterminate.  
Note: When using multiple pins to output the transfer clock, the following requirement must be met:  
• UART1 internal/external clock select bit (bit 3 at address 03A816) = “0”.  
Figure GA-5. Serial I/O-related registers (3)  
91  
Mitsubishi microcomputers  
M30218 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Clock synchronous serial I/O mode  
The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table GA-1  
lists the specifications of the clock synchronous serial I/O mode. Figure GA-6 shows the UARTi transmit/  
receive mode register.  
Table GA-1. Specifications of clock synchronous serial I/O mode  
Specification  
Item  
• Transfer data length: 8 bits  
Transfer data format  
Transfer clock  
When internal clock is selected (bit 3 at address 03A016, 03A816 = “0”) : fi/ 2(n+1) (Note 1) fi = f1, f8, f32  
When external clock is selected (bit 3 at address 03A016, 03A816 =“1”) : Input from CLKi pin (Note 2)  
_______  
________  
_______ ________  
• CTS function/ RTS function/ CTS,RTS function chosen to be invalid  
• To start transmission, the following requirements must be met:  
Transmission/reception control  
Transmission start condi-  
_
Transmit enable bit (bit 0 at address 03A516, 03AD16) = “1”  
tion  
_
Transmit buffer empty flag (bit 1_a__t__a__ddresses 03A516, 03AD16) = “0”  
_______  
_
When CTS function is selected, CTS input level = "L"  
Furthermore, if external clock is selected, the following requirements must also be met:  
CLKi polarity select bit (bit 6 at address 03A416, 03AC16) = “0”: CLKi input level = “H”  
CLKi polarity select bit (bit 6 at address 03A416, 03AC16) = “1”: CLKi input level = “L”  
_
_
• To start reception, the following requirements must be met:  
_
Receive enable bit (bit 2 at address 03A516, 03AD16) = “1”  
Transmit enable bit (bit 0 at address 03A516, 03AD16) = “1”  
Transmit buffer empty flag (bit 1 at address 03A516, 03AD16) = “0”  
Reception start condition  
_
_
Furthermore, if external clock is selected, the following requirements must also be met:  
CLKi polarity select bit (bit 6 at address 03A416, 03AC16) = “0”: CLKi input level = “H”  
CLKi polarity select bit (bit 6 at address 03A416, 03AC16) = “1”: CLKi input level = “L”  
_
_
• When transmitting  
_
Transmit interrupt cause select bit (bits 0,1 at address 03B016) = “0”:  
Interrupts requested when data transfer from UARTi transfer buffer register to  
UARTi transmit register is completed  
Interrupt request  
generation timing  
_
Transmit interrupt cause select bit (bits 0,1 at address 03B016) = “1”:  
Interrupts requested when data transmission from UARTi transfer register is completed  
• When receiving  
_
Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
• Overrun error (Note 3)  
This error occurs when the next data is ready before contents of UARTi re-  
ceive buffer register are read out  
• CLK polarity selection  
Whether transmit data is output/input at the rising edge or falling edge of the  
transfer clock can be selected  
Error detection  
Select function  
• LSB first/MSB first selection  
Whether transmission/reception begins with bit 0 or bit 7 can be selected  
• Continuous receive mode selection  
Reception is enabled simultaneously by a read from the receive buffer register  
• Transfer clock output from multiple pins selection  
UART1 transfer clock can be set 2 pins, and can be selected to output from  
which pin.  
Note 1: “n” denotes the value 0016 to FF16 that is set to the UART bit rate generator.  
Note 2: Maximum 5 Mbps.  
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also  
that the UARTi receive interrupt request bit is not set to “1”.  
92  
Mitsubishi microcomputers  
M30218 Group  
Clock synchronous serial I/O mode  
UARTi transmit/receive mode register  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR(i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
0
0 0 1  
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
CKDIR  
Serial I/O mode select bit  
0 0 1 : Clock synchronous serial  
I/O mode  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
STPS  
PRY  
Invalid in clock synchronous serial I/O mode  
PRYE  
SLEP  
0 (Must always be "0" in clock synchronous serial I/O mode)  
Figure GA-6. UARTi transmit/receive mode register in clock synchronous serial I/O mode (i=0,1)  
Table GA-2 lists the functions of the input/output pins during clock synchronous serial I/O mode. Note that  
for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs  
a “H”. (If the N-channel open-drain is selected, this pin is in floating state.)  
Table GA-2. Input/output pin functions in clock synchronous serial I/O mode (i=0,1)  
Pin name  
TxDi  
(P4 , P7  
RxDi  
(P4 , P7  
CLKi  
(P4 , P7  
Function  
Method of selection  
Serial data output  
(Outputs dummy data when performing reception only)  
4
4)  
Port P45, P75 direction register (bits 5 at address 03EA16 and 03EF16)= “0”  
(Can be used as an input port when performing transmission only)  
Serial data input  
5
5
)
)
Transfer clock output  
Transfer clock input  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “0”  
6
6
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”  
Port P46, P76 direction register (bits 6 at address 03EA16 and 03EF16) = “0”  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) =“0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “0”  
CTS input  
CTSi/RTSi  
(P4 , P7  
7
7)  
Port P47, P77 direction register (bits 7 address 03EA16 and 03EF16) = “0”  
RTS output  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “1”  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “1”  
Programmable I/O port  
93  
Mitsubishi microcomputers  
M30218 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Example of transmit timing (when internal clock is selected)  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit (TE)  
“0”  
“1”  
“0”  
“H”  
Data is set in UARTi transmit buffer register  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
CTSi  
CLKi  
T
CLK  
“L”  
Stopped pulsing because CTS = “H”  
Stopped pulsing because transfer enable bit = “0”  
TxDi  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Transmit  
register empty  
flag (TXEPT)  
“1”  
“0”  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Tc = TCLK = 2(n + 1) / fi  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings:  
• Internal clock is selected.  
fi: frequency of BRGi's count source (f  
1, f8, f32)  
n: value set to BRGi  
• CTS function is selected.  
• CLK polarity select bit = “0”.  
• Transmit interrupt cause select bit = “0”.  
Example of receive timing (when external clock is selected)  
“1”  
Receive enable  
bit (RE)  
“0”  
“1”  
“0”  
Transmit enable  
bit (TE)  
Dummy data is set in UARTi transmit buffer register  
“1”  
“0”  
“H”  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
RTSi  
CLKi  
RxDi  
“L”  
1 / fEXT  
Receive data is taken in  
D0  
D1  
D2  
D3  
D
4
D5  
D6  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
Transferred from UARTi receive register  
to UARTi receive buffer register  
Read out from UARTi receive buffer register  
“1”  
“0”  
Receive complete  
flag (Rl)  
“1”  
“0”  
Receive interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
f
EXT: frequency of external clock  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings.  
• External clock is selected.  
Meet the following conditions when the CLK input before  
data reception = “H”  
• Transmit enable bit  
• Receive enable bit  
“1”  
“1”  
• RTS function is selected.  
• CLK polarity select bit = “0”.  
• Dummy data write to UARTi transmit buffer register  
Figure GA-7. Typical transmit/receive timings in clock synchronous serial I/O mode  
94  
Mitsubishi microcomputers  
M30218 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(a) Polarity select function  
As shown in Figure GA-8, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16) allows  
selection of the polarity of the transfer clock.  
• When CLK polarity select bit = “0”  
CLK  
i
Note 1: The CLKi pin level when not  
transferring data is “H”.  
D0  
T
X
D
i
D
1
D
2
D
3
D
4
4
D
5
D
6
D7  
D
1
D
2
D
3
D
D
5
D
6
D7  
D0  
RXDi  
• When CLK polarity select bit = “1”  
CLK  
i
Note 2: The CLKi pin level when not  
transferring data is “L”.  
D
0
0
D
1
D
2
D
3
D
4
4
D
5
D
6
D7  
TXDi  
D
1
D
2
D
3
D
D
5
D
6
D7  
D
RXDi  
Figure GA-8. Polarity of transfer clock  
(b) LSB first/MSB first select function  
As shown in Figure GA-9, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16) =  
“0”, the transfer format is “LSB first”; when the bit = “1”, the transfer format is “MSB first”.  
• When transfer format select bit = “0”  
CLK  
i
D0  
D
1
D
2
D
3
3
D
4
D
5
5
D
6
6
D
7
7
TXDi  
LSB first  
D
1
D
2
D
D4  
D
D
D
R
XD  
i
D0  
• When transfer format select bit = “1”  
CLK  
i
D
6
D
5
D
4
D
3
3
D
2
D
1
D0  
D
7
7
TXDi  
MSB first  
D
6
D
5
D
4
D
D
2
D
1
D0  
D
RXDi  
Note: This applies when the CLK polarity select bit = “0”.  
Figure GA-9. Transfer format  
95  
Mitsubishi microcomputers  
M30218 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(c) Transfer clock output from multiple pins function  
This function allows the setting two transfer clock output pins and choosing one of the two to output a  
clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure GA-10.)  
The multiple pins function is valid only when the internal clock is selected for UART1. Note that when  
_______ _______  
this function is selected, CTS/RTS function of UART1 cannot be used.  
Microcomputer  
TXD1 (P74)  
CLKS  
1
1
(P7  
(P7  
7
)
CLK  
6)  
IN  
IN  
CLK  
CLK  
Note: This applies when the internal clock is selected and transmission is  
performed only in clock synchronous serial I/O mode.  
Figure GA-10. The transfer clock output from the multiple pins function usage  
(d) Continuous receive mode  
If the continuous receive mode enable bit (bits 2 and 3 at address 03B016) is set to “1”, the unit is  
placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit  
simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer  
register back again.  
96  
Mitsubishi microcomputers  
M30218 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Clock asynchronous serial I/O (UART) mode  
The UART allows transmitting and receiving data after setting the desired transfer rate and transfer data  
format. Tables GA-3 lists the specifications of the UART mode. Figure GA-11 shows the UARTi transmit/  
receive mode register.  
Table GA-3. Specifications of clock synchronous serial I/O mode  
Item  
Specification  
•Character bit (transfer data): 7 bits, 8 bits or 9 bits as selected  
•Start bit: 1 bit  
Transfer data format  
•Parity bit: Odd, even or nothing as selected  
•Stop bit: 1 bit or 2 bits as selected  
Transfer clock  
•When internal clock is selected (bit 3 at addresses 03A016, 03A816 = “0”) :  
fi/16(n+1) (Note 1) fi = f1, f8, f32  
•When external clock is selected (bit 3 at addresses 03A016, 03A816 =“1”) :  
fEXT/16(n+1) (Note 1) (Note 2)  
_______  
_______  
_______ _______  
Transmission/reception control •CTS function/RTS function/CTS, RTS function chosen to be invalid  
Transmission start condition •To start transmission, the following requirements must be met:  
- Transmit enable bit (bit 0 at addresses 03A516, 03AD16) = “1”  
- Transmit buffer empty flag (bit 1_a__t__a__ddresses 03A516, 03AD16) = “0”  
_______  
- When CTS function is selected, CTS input level = “L”  
Reception start condition •To start reception, the following requirements must be met:  
- Receive enable bit (bit 2 at addresses 03A516, 03AD16) = “1”  
- Start bit detection  
Interrupt request  
generation timing  
•When transmitting  
- Transmit interrupt cause select bits (bits 0,1 at address 03B016) = “0”:  
Interrupts requested when data transfer from UARTi transfer buffer register to  
UARTi transmit register is completed  
- Transmit interrupt cause select bits (bits 0, 1 at address 03B016) = “1”:  
Interrupts requested when data transmission from UARTi transfer register is completed  
•When receiving  
- Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
Error detection  
•Overrun error (Note 3)  
This error occurs when the next data is ready before contents of UARTi receive  
buffer register are read out  
•Framing error  
This error occurs when the number of stop bits set is not detected  
•Parity error  
This error occurs when if parity is enabled, the number of 1’s in parity and  
character bits does not match the number of 1’s set  
•Error sum flag  
This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered  
select function  
•Sleep mode selection  
This mode is used to transfer data to and from one of multiple slave microcomputers  
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.  
Note 2: fEXT is input from the CLKi pin.  
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also  
that the UARTi receive interrupt request bit is not set to “1”.  
97  
Mitsubishi microcomputers  
M30218 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR (i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
R W  
Bit symbol  
SMD0  
Bit name  
Function  
b2 b1 b0  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
SMD1  
SMD2  
CKDIR  
Internal/external clock  
select bit  
Stop bit length select bit  
0 : Internal clock  
1 : External clock  
0 : One stop bit  
1 : Two stop bits  
STPS  
PRY  
Odd/even parity select bit Valid when bit 6 = “1”  
0 : Odd parity  
1 : Even parity  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
0 : Parity disabled  
1 : Parity enabled  
0 : Sleep mode deselected  
1 : Sleep mode selected  
Figure GA-11. UARTi transmit/receive mode register in UART mode  
Table GA-4 lists the functions of the input/output pins during UART mode. Note that for a period from  
when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a “H”. (If the N-  
channel open-drain is selected, this pin is in floating state.)  
Table GA-4. Input/output pin functions in UART mode (i=0,1)  
Pin name  
Function  
Method of selection  
Serial data output  
(Outputs dummy data when performing reception only)  
TxDi  
(P44, P74)  
RxDi  
(P45, P75)  
Serial data input  
Port P45, P75 direction register (bits 5 at address 03EA16 and 03EF16)= “0”  
(Can be used as an input port when performing transmission only)  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “0”  
Programmable I/O port  
Transfer clock input  
CLKi  
(P46, P76)  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) =“0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “0”  
Port P47, P77 direction register (bits 7 at address 03EA16 and 03EF16) = “0”  
CTS input  
CTSi/RTSi  
(P47, P77)  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
RTS output  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “1”  
Programmable I/O port  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “1”  
98  
Mitsubishi microcomputers  
M30218 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)  
The transfer clock stops momentarily as CTS is “H” when the stop bit is checked.  
The transfer clock starts as the transfer starts immediately CTS changes to “L”.  
Tc  
Transfer clock  
“1”  
Transmit enablee  
bit(TE)  
“0”  
“1”  
“0”  
Data is set in UARTi transmit buffer register.  
Transmit buffer  
empty flag(TI)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
“H”  
“L”  
CTSi  
Stopped pulsing because transmit enable bit = “0”  
Start  
bit  
Parity Stop  
bit bit  
TxDi  
ST  
D0  
D1  
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
P
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
P
D6  
SP  
D6  
SP  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Shown in ( ) are bit symbols.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
fi : frequency of BRGi's count source (f  
The above timing applies to the following settings :  
• Parity is enabled.  
1, f8, f32)  
f
EXT : frequency of BRGi's count source (external clock)  
• One stop bit.  
n : value set to BRGi  
• CTS function is selected.  
• Transmit interrupt cause select bit = “1”.  
Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
Data is set in UARTi transmit buffer register  
“0”  
“1”  
Transmit buffer  
empty flag(TI)  
“0”  
Transferred from UARTi transmit buffer register to UARTi transmit register  
Stop Stop  
Start  
bit  
bit  
bit  
TxDi  
ST  
ST  
D0  
D1  
D2  
D3  
D4  
D7  
D8  
ST  
D0  
D1  
D2  
D3  
D4  
D7  
D8  
SPSP  
D0  
D1  
D5  
D6  
SPSP  
D5  
D6  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is disabled.  
• Two stop bits.  
fi : frequency of BRGi's count source (f  
EXT : frequency of BRGi's count source (external clock)  
n : value set to BRGi  
1, f8, f32)  
f
• CTS function is disabled.  
• Transmit interrupt causes select bit = “0”.  
Figure GA-12. Typical transmit timings in UART mode  
99  
Mitsubishi microcomputers  
M30218 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)  
BRGi's count  
source  
“1”  
“0”  
Receive  
enable bit  
Stop bit  
Start bit  
Sampled “L”  
D
7
D1  
RxDi  
D0  
Receive data taken in  
Transfer clock  
Reception triggered when  
transfer clock is genelated by  
falling edge of start bit  
Transferred from UARTi receive register to  
UARTi receive buffer register  
“1”  
Receive  
complete flag  
“0”  
“H”  
“L”  
RTSi  
Receive interrupt  
request bit  
“1”  
“0”  
Cleared to “0” by software, or when an interrupt request is accepted.  
The above timing applies to the following settings :  
• Parity is disabled.  
• One stop bit.  
• RTS function is selected.  
Figure GA-13. Typical receive timing in UART mode  
(a) Sleep mode (UART0, UART1)  
This mode is used to transfer data between specific microcomputers among multiple microcomputers  
connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses  
03A016, 03A816) is set to “1” during reception. In this mode, the unit performs receive operation when  
the MSB of the received data = “1” and does not perform receive operation when the MSB = “0”.  
100  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O2  
Serial I/O2 is used as the clock synchronous serial I/O and has an ordinary mode and an automatic transfer  
mode. In the automatic transfer mode, serial transfer is performed through the serial I/O automatic transfer  
RAM which has up to 256 bytes (addresses 0040016 to 004FF16).  
The SRDY2, SBUSY2 and SSTB2 pins each have a handshake I/O signal function and can select either “H”  
active or “L” active for active logic.  
Table GA-1. Specifications of clock synchronous serial I/O2  
Item  
Serial mode  
Specification  
• 8-bit serial I/O mode (non-automatic transfer)  
• Automatic transfer serial I/O mode  
Transfer data format  
• Transfer data length: 8 bits  
• Full duplex mode / transmit-only mode selected by bit 5 at address 034216  
Transfer clock  
Transfer rate  
When internal clock is selected (bit 2 at address 034216 = “0”) : selected by bits 5 to 7 at address 034816  
When external clock is selected (bit 2 at address 034216 = “1”) : Input from SCLK21 pin, SCLK22 pin(Note 2)  
• When internal clock is selected : f(XIN)/4, f(XIN)/8, f(XIN)/16, f(XIN)/32, f(XIN)/64, f(XIN)/128, f(XIN)/256  
• When external clock is selected : input cycle 0.95 µs or less  
Transmission/reception control  
Transmission /  
reception start condition  
• SSTB2 output / SBUSY2 input or output / SRDY2 input or output chosen  
• To start transmission / reception, the following requirements must be met:  
_
Serial I/O initialization bit (bit 4 at address 034216) = “1”  
_
When _S__B__U__S__Y__2_ input, or SRDY2 input is selected : selected input level = “H”  
_________  
_
When SBUSY2 input, or SRDY2 input is selected : selected input level = “L”  
• Furthermore, if external clock is selected, the following requirements must  
also be met:  
_
Input level of SCLK21 or SCLK22 = “H”  
Transmission and  
reception stop condition  
Interrupt request  
• To stop transmission and reception, set serial I/O initialization bit (bit 4 at  
address 034216) to “0” regardless internal clock and external clock.  
• 8-bit serial I/O mode : Interrupts requested when 8-bit data transfer is com-  
pleted  
generation timing  
• Automatic transfer serial I/O mode :Interrupts requested when last receive  
data transfer to Automatic transfer RAM  
• SOUT2 P-channel output disable function  
CMOS output or N-channel open-drain output can be selected  
• LSB first/MSB first selection  
Select function  
Whether transmission/reception begins with bit 0 or bit 7 can be selected  
• Serial I/O2 clock pin select bit  
Serial clock input/output can be selected; SCLK21 or SCLK22  
• SBUSY output, SSTB2 output select function (only automatic transfer serial  
mode)  
SBUSY output, SSTB2 output can be selected; 1-byte data transfer unit or all  
data transfer unit  
• SOUT2 pin control bit  
Either output active or high-impedance can be selected as a SOUT2 pin state at  
serial non-transfer .  
Note 1: It is necessary to set the serial I/O clock pin select bit ( bit 7 at address 034216)  
101  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Main address  
bus  
Local address  
bus  
Main  
data bus  
Local  
data bus  
Serial I/O automatic  
transfer RAM  
(0040016—004FF16  
)
Serial I/O2  
automatic transfer  
data pointer  
Address decoder  
Serial I/O2  
automatic transfer  
controller  
Serial I/O2  
control register 3  
1/4  
1/8  
XIN  
Port latch  
“0”  
1/16  
1/32  
1/64  
1/128  
1/256  
(SSTB2 pin control bit)  
SSTB2  
“1”  
Port latch  
S
RDY2•SBUSY2 pin  
Internal synchronous  
clock selection bits  
“0”  
Serial I/O2  
synchronous clock  
control bit  
S
BUSY2  
“1”  
selection bit  
Synchronous  
circuit  
“0  
Port latch  
“0”  
S
RDY2•SBUSY2 pin  
control bit  
“1”  
Serial I/O2 clock  
pin selection bit  
S
RDY2  
“1”  
“0”  
“1”  
Serial transfer  
status flag  
Serial I/O2  
interrupt request  
Port latch  
“0”  
S
CLK21  
“0”  
“1”  
“1”  
“1”  
Serial I/O2 counter  
S
CLK22  
Serial I/O2 clock  
pin selection bits  
“0”  
Port latch  
“0”  
Port latch  
S
OUT2  
“1” Serial transfer selection bits  
Serial I/O2 register (8)  
S
IN2  
Figure GA-1. Block Diagram of Serial I/O2  
102  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O2 control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SIO2CON1  
Address  
034216  
When reset  
0016  
Bit symbol  
SCON10  
Bit name  
Function  
R
W
b1 b0  
Serial transfer select bits  
00: Serial I/O disabled  
(serial I/O pins are I/O ports)  
01: 8-bits serial I/O  
10: Inhibit  
11: Automatic transfer serial I/O (8-bits)  
SCON11  
SCON12  
b3 b2  
Serial I/O2 synchronous  
clock select bits  
(SSTB2 pin control bit)  
00: Internal synchronous clock  
(SSTB2 pin is an I/O port.)  
01: External synchronous clock  
(SSTB2 pin is an I/O port.)  
10: Internal synchronous clock  
(SSTB2 pin is an SSTB2 output.)  
11: Internal synchronous clock  
(SSTB2 pin is an SSTB2 output.)  
SCON13  
0: Serial I/O initialization  
1: Serial I/O enabled  
Serial I/O initialization bit  
Transfer mode select bit  
SCON14  
SCON15  
0: Full duplex (transmit and receive) mode  
(SIN2 pin is a SIN2 input.)  
1: Transmit-only mode (SIN2 pin is an I/O port.)  
Transfer direction  
select bit  
0: LSB first  
1: MSB first  
SCON16  
SCON17  
0:SCLK21 (SCLK22 pin is an I/O port.)  
1:SCLK22 (SCLK21 pin is an I/O port.)  
Serial I/O2 clock pin  
select bit  
Serial I/O2 control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SIO2CON2  
Address  
034416  
When reset  
0016  
Bit name  
Function  
Bit symbol  
SCON20  
R
W
S
RDY2 • SBUSY2 pin  
control bits  
S
RDY2 pin  
I/O port  
Not used  
RDY2 output  
RDY2 output  
I/O port  
I/O port  
I/O port  
I/O port  
RDY2 input  
RDY2 input  
RDY2 input  
RDY2 input  
RDY2 output  
RDY2 output  
RDY2 output  
RDY2 output  
SBUSY2 pin  
I/O port  
b3b2b1b0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
S
S
I/O port  
I/O port  
SCON21  
SCON22  
SCON23  
S
S
S
S
S
S
S
S
S
S
S
S
BUSY2 input  
BUSY2 input  
BUSY2 output  
BUSY2 output  
BUSY2 output  
BUSY2 output  
BUSY2 output  
BUSY2 output  
BUSY2 input  
BUSY2 input  
BUSY2 input  
BUSY2 input  
S
S
S
S
S
S
S
S
S
BUSY2 output • SSTB2 output  
0: Functions as each 1-byte signal  
1: Functions as signal for all transfer data  
SCON24  
function select bit  
(Valid in automatic transfer mode)  
Serial transfer status flag  
0: Serial transfer completion  
1: Serial transferring  
SCON25  
SCON26  
S
OUT2 pin control bit  
(at no-transfer serial data)  
0: Output active  
1: Output high-impedance  
S
OUT2 P-channel output  
0: CMOS 3-state (P-channel output is valid.)  
1: N-channel open-drain  
(P-channel output is invalid.)  
SCON27  
disable bit  
Figure GA-2. Serial I/O2 Control Registers 1, 2  
103  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O2 automatic transfer data pointer  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SIO2DP  
Address  
034016  
When reset  
0016  
Function  
• Automatic transfer data pointer set  
R
W
Specify the low-order 8 bits of the first data store address on the serial I/O  
automatic transfer RAM.  
Data is written into the latch and read from the decrement counter.  
Serial I/O2 register/transfer counter  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SIO2  
Address  
034616  
When reset  
0016  
Function  
R
W
• Number of automatic transfer data set  
Set the number of automatic transfer data.  
Set a value one less than number of transfer data.  
Data is written into the latch and read from the decrement counter.  
Serial I/O2 control register 3  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SIO2CON3  
Address  
034816  
When reset  
00000000  
2
Bit symbol  
TTRAN0  
Bit name  
Function  
R
W
b4b3b2b1b0  
Automatic transfer  
interval set bits  
00000 :2 cycles of transfer clocks  
00001 :3 cycles of transfer clocks  
:
11110 :32 cycles of transfer clocks  
11111 :33 cycles of transfer clocks  
TTRAN1  
TTRAN2  
TTRAN3  
TTRAN4  
Data is written to a latch and read from  
a decrement counter.  
b7b6b5  
Internal synchronous  
clock selection bits  
TCLK0  
TCLK1  
TCLK2  
000:f(XIN)/4  
001:f(XIN)/8  
010:f(XIN)/16  
011:f(XIN)/32  
100:f(XIN)/64  
101:f(XIN)/128  
110:f(XIN)/256  
Figure GA-3. Serial I/O2 automatic transfer data pointer  
104  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table GA-2 lists the functions of the serial I/O2 input/output pins  
Table GA-2. Functions of the serial I/O2 input/output pins  
Pin name  
Function  
Method of selection  
direction register (bit 4 at address 03F316)= “1”  
OUT2 P-channel output disable bit (bit 7 at address 034416)= “0” , “1”  
OUT2 pin control bit (bit 6 at address 034416)= “0” , “1”  
S
OUT2  
Port P94  
S
S
Serial data output  
(P94  
)
(Outputs dummy data when performing reception only)  
SIN2  
Serial data input  
Port P9 direction register (bit 4 at address 03F316)= “0”  
3
(P93)  
Transfer mode select bit (bit 5 at address 034216)= “0”  
(Input/output port when transfer mode select bit (bit 5 at address 034216)= “1”)  
Transfer clock output  
Transfer clock input  
S
(P95)  
CLK21  
Serial I/O2 synchronous clock select bits (bits 2, 3 at address 034216) = “00” , “01”  
Serial I/O2 clock pin select bit (bit 7 at address 034216) = “0”  
Serial I/O2 synchronous clock select bits (bits 2, 3 at address 034216) = “01” , “11”  
Serial I/O2 clock pin select bit (bit 7 at address 034216) = “0”  
Port P95 direction register (bit 5 at address 03F316)= “0”  
Transfer clock output  
Transfer clock input  
S
(P96)  
CLK22  
Serial I/O2 synchronous clock select bits (bits 2, 3 at address 034216) = “00” , “01”  
Serial I/O2 clock pin select bit (bit 7 at address 034216) = “1”  
Serial I/O2 synchronous clock select bits (bits 2, 3 at address 034216) = “01” , “11”  
Serial I/O2 clock pin select bit (bit 7 at address 034216) = “1”  
Port P96 direction register (bit 6 at address 03F316)= “0”  
SRDY input / output  
SBUSY input / output  
SSTB input / output  
Set by SRDY2 • SBUSY2 pin control bits (bits 0 to 3 at address 034416  
)
S
(P90)  
RDY2  
Set by SRDY2 • SBUSY2 pin control bits (bits 0 to 3 at address 034416  
)
S
(P91)  
BUSY2  
S
BUSY2 output • SSTB2 output function select bit (bit 4 at address 034416)= “0” , “1”  
Serial I/O2 synchronous clock select bits (bits 2, 3 at address 034216) = “10” , “11”  
BUSY2 output • SSTB2 output function select bit (bit 4 at address 034416)= “0” , “1”  
S
(P92)  
STB2  
S
SOUT2 Output  
Either output active or high-impedance can be selected as a SOUT2 pin state at serial non-transfer by the  
SOUT2 pin control bit (bit 6 of address 034416).  
However, when the external synchronous clock is selected, perform the following setup to put the SOUT2  
pin into a high-impedance state.  
When the SCLK2i ( i = 1, 2) input is “H” after completion of transfer, set the SOUT2 pin control bit to “1”. When  
the SCLK2i ( i = 1, 2) input goes to “L” after the start of the next serial transfer, the SOUT2 pin control bit is  
automatically reset to “0” and put into an output active state.  
105  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O2 Mode  
There are two types of serial I/O2 modes: 8-bit serial I/O mode where automatic transfer RAM is not  
used, and an automatic transfer serial I/O mode.  
(1) 8-bit Serial I/O Mode  
Address 034616 is assigned to the serial I/O2 register. When the internal synchronous clock is  
selected, a serial transfer of the 8-bit serial I/O is started by a write signal to the serial I/O2 register  
(address 034616).  
The serial transfer status flag (bit 5 of address 034416) is set to “1” by writing into the serial I/O2  
register and reset to “0” after completion of 8-bit transfer. At the same time, a serial I/O2 interrupt  
request occurs. If the transfer is completed, the receive data is read out from serial I/O2 register.  
When the external synchronous clock is selected, the contents of the serial I/O2 register are con-  
tinuously shifted while transfer clocks are input to SCLK21 or SCLK22. Therefore, the clock needs to  
be controlled externally.  
(2) Automatic Transfer Serial I/O Mode  
Address 034616 is assigned to the transfer counter (1-byte units). The serial I/O2 automatic trans-  
fer controller controls the write and read operations of the serial I/O2 register. The serial I/O auto-  
matic transfer RAM is mapped to addresses 0040016 to 004FF16. Before starting transfer, make  
sure the 8 low-order bits of the address that contains the beginning data to be serially transferred is  
set to the automatic transfer data pointer (address 034016).  
When the internal synchronous clock is selected, the transfer interval is inserted between one data  
and another in the following cases:  
1. When using no handshake signal  
2. When using the SRDY2 output, SBUSY2 output, and SSTB2 output of the handshake signal inde  
pendently  
3. When using a combination of SRDY2 output and SSTB2 output or a combination of SBUSY2 output  
and SSTB2 output of the handshake signal  
The transfer interval can be set in the range of 2 to 23 cycles using the automatic transfer interval  
set bit (bits 0–4 of address 034816 ).  
Also, when using SBUSY2 output as a signal for each occurrence of the all transfer data, a transfer  
interval is inserted before the system starts sending or receiving the first data and after the system  
finished sending or receiving the last data, not just between one data and another.  
Furthermore, when using SSTB2 output, the transfer interval between each 1-byte data is extended  
by 2 cycles from the set value no matter how the SBUSY2 output. SSTB2 output function select bit (bit  
4 of address 034416) is set.  
When using SBUSY2 output and SSTB2 output in combination as a signal for each occurrence of the  
all transfer data, the transfer interval after the system finished sending or receiving the last data is  
extended by 2 cycles from the set value.  
When an external synchronous clock is selected, the automatic transfer interval is disabled.  
106  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
When the internal synchronous clock is selected, automatic serial transfer starts by writing 1 less than  
the number of transfer bytes to the transfer counter (address 034616). When an external sync clock is  
selected, automatic serial transfer starts by writing 1 less than the number of transfer bytes to the  
transfer counter and the transfer clock is input. In this case, allow for at least 5 cycles of internal  
system clock before the transfer clock is input after writing to the transfer counter.  
Also, for data to data transfer intervals, allow at least 5 cycles of internal system clock reckoning from  
a rise of clock at the last bit of one-byte data.  
Regardless of whether the internal or external synchronous clock is selected, the automatic transfer  
data pointer and the transfer counter are decreased after each 1-byte data is received and then written  
into the automatic transfer RAM. The serial transfer status flag (bit5 of address 034416) is set to “1” by  
writing data into the transfer counter. The serial transfer status flag is reset to “0” after the last data is  
written into the automatic transfer RAM. At the same time, a serial I/O2 interrupt request occurs.  
The values written in the automatic transfer data pointer (address 034016) and the automatic transfer  
interval set bits (bit 0 to bit 4 of address 034816) are held in the latch.  
When data is written into the transfer counter, the values latched in the automatic transfer data pointer  
(address 034016) and the automatic transfer interval set bits (bit 0 to bit 4) are transferred to the  
decrement counter.  
Automatic transfer RAM  
004FF16  
Automatic transfer  
data pointer  
5216  
0045216  
0045116  
0045016  
0044F16  
0044E16  
Transfer counter  
0416  
0040016  
S
IN2  
S
OUT2  
Serial I/O2 register  
Figure GA-5. Automatic Transfer Serial I/O Operation  
107  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Handshake Signal  
There are five types of handshake signal : SSTB2 output, SBUSY2 input/output, and SRDY2 input/output.  
(1) SSTB2 output signal  
The SSTB2 output is a signal to inform an end of transmission/reception to the serial transfer destina-  
tion. The SSTB2 output signal can be used only when the internal synchronous clock is selected. In the  
initial status [ serial I/O initialization bit (bit 4 of address 034216) = “0” ], the SSTB2 output goes to “L”  
__________  
(bits 2, 3 of address 034216=11), or the SSTB2 output goes to “H” (bits 2, 3 of address 034216=10).  
At the end of transmit/receive operation, after the all data of the serial I/O2 register (address 034616) is  
_________  
output from SOUT2, SSTB2 output is “H” (or SSTB2 output is “L”) in the period of 1 cycle of the transfer clock.  
Furthermore, after 1 cycle, the serial transfer status flag (bit 5 of address 034416) is reset to “0”.  
In the automatic transfer serial I/O mode, whether the SSTB2 output is to be output at an end of each 1-byte  
data or after completion of transfer of all data can be selected by the SBUSY2 output • SSTB2 output function  
select bit (bit 4 of address 034416).  
•Serial operation used SSTB2 output  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: Internal synchronous clock  
: Each 1-byte data  
SSTB2 output timing  
Tc  
Internal clock  
Serial transfer status flag  
"1"  
"0"  
(bit 5 at address 034416  
)
SCLK2i  
(i=1, 2)(output)  
"H"  
"L"  
S
STB2(output)  
OUT2  
S
D
0
D1  
D2  
D
3
D
4
D
5
D6  
D7  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
•Serial operation used SSTB2 output  
Operation mode  
Transfer clock  
: Automatic transfer serial I/O mode  
: Internal synchronous clock  
: Each transfer of all data  
SSTB2 output timing  
Automatic  
transfer interval  
Tc  
Internal clock  
"1"  
"0"  
Serial transfer status flag  
(bit 5 at address 034416  
)
SCLK2i  
(i=1, 2)(output)  
"H"  
"L"  
S
STB2(output)  
S
OUT2  
D
0
D
1
D2  
D3  
D
4
D
5
D
6
D7  
D
0
D
1
D2  
D3  
D
4
D
5
D
6
D7  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-6. SSTB2 Output Operation  
108  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) SBUSY2 input signal  
The SBUSY2 input is a signal requested to stop of transmission/reception from the serial transfer des-  
tination.  
When the internal synchronous clock is selected, input a “H” level signal into the SBUSY2 input (or a “L”  
___________  
level signal into the SBUSY2 input) in the initial status [serial I/O initialization bit (bit 4 of address  
____________  
034216) = “0”]. When a “L” level signal into the SBUSY2 ( or “H” on SBUSY2 ) input for 1.5 cycles or more  
of transfer clock, transfer clocks are output from SCLK2i (i = 1, 2), and transmit/receive operation is  
____________  
started. When SBUSY2 input is driven “H” (or SBUSY2 input is driven “L”) during transmit/receive  
operation, the transfer clock being output from SCLK2i (i = 1, 2) remains active until after the system  
finishes sending or receiving the designated number of bits, without stopping the transmit/receive  
operation immediately. The handshake unit of the 8-bit serial I/O is 8 bits, and that of the automatic  
transfer serial I/O is 8 bits.  
•Serial operation used SBUSY2 input  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: Internal synchronous clock  
: Each 1-byte data  
S
BUSY2 input timing  
Tc  
Internal clock  
"1"  
"0"  
Serial transfer status flag  
1.5 cycle or more  
(bit 5 at address 034416  
)
"H"  
"L"  
S
BUSY2(input)  
S
CLK2i  
(i = 1, 2)(output)  
SOUT2  
D
0
D1  
D2  
D
3
D
4
D
5
D6  
D7  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-7. SBUSY2 Input Operation (1)  
When the external synchronous clock is selected, input a “H” level signal into the SBUSY2 input (or a “L”  
___________  
level signal into the SBUSY2 input) in the initial status[serial I/O initialization bit (bit 4 of address 034216)  
= “0”]. At this time, the transfer clock become invalid. The transfer clock become valid while a “L” level  
___________  
signal is input into the SBUSY2 input (or a “H” level signal into the SBUSY2 input) and transmit/receive  
operation work.  
___________  
When changing the input values into the SBUSY2 (or SBUSY2) input at these operations, change them  
when the transfer clock input is in a “H” state. When the high-impedance of the SOUT2 output is  
selected by the SOUT2 pin control bit (bit 6 of address 034416), the SOUT2 becomes high-impedance,  
___________  
while a “H” level signal is input into the SBUSY2 input (or a “L” level signal into the SBUSY2 input.)  
•Serial operation used SBUSY2 input  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: External synchronous clock  
: Each 1-byte data  
S
BUSY2 input timing  
"1"  
Serial transfer status flag  
"0"  
(bit 5 at address 034416  
BUSY2(input  
CLK2i  
)
"H"  
S
)
"L"  
S
(i = 1, 2)(input  
)
Invalid  
SOUT2  
High-impedance  
High-impedance  
Note  
D0  
D
1
D
2
D
3
D4  
D5  
D
6
D7  
Note: The last output data  
Figure GA-8. SBUSY2 Input Operation (2)  
109  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) SBUSY2 output signal  
The SBUSY2 output is a signal which requests to stop of transmission/reception to the serial transfer  
destination. In the automatic transfer serial I/O mode, regardless of the internal or external synchro-  
nous clock, whether the SBUSY2 output is to be output at transfer of each 1-byte data or during transfer  
of all data can be selected by the SBUSY2 output • SSTB2 output function select bit (bit 4 of address  
034416). In the initial status[ serial I/O initialization bit (bit 4 of address 034216) = “0” ], the status in  
____________  
which the SBUSY2 outputs “H” (or the SBUSY2 outputs “L”).  
When the internal synchronous clock is selected, in the 8-bit serial I/O mode and the automatic trans-  
fer serial I/O mode (SBUSY2 output function: each 1-byte signal is selected), the SBUSY2 output goes to  
____________  
“L” (or the SBUSY2 output goes to “H”) before 0.5 cycle of the timing at which the transfer clock goes to  
“L” . In the automatic transfer serial I/O mode (the SBUSY2 output function: all transfer data is selected),  
____________  
the SBUSY2 output goes to “L” (or the SBUSY2 output goes to “H”) when the first transmit data is written  
into the serial I/O2 register (address 034616).  
•Serial operation used SBUSY2 output  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: Internal synchronous clock  
: Each 1-byte data  
S
BUSY2 output timing  
Tc  
Internal clock  
"1"  
"0"  
Serial transfer status flag  
(bit 5 at address 034416  
)
S
CLK2i  
(i = 1, 2)(output)  
"H"  
"L"  
S
BUSY2(output)  
S
OUT2  
D0  
D
1
D
2
D3  
D4  
D
5
D
6
D7  
TC : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-9. SBUSY2 Output Operation (1)  
____________  
When the external synchronous clock is selected, the SBUSY2 output goes to “L” (or the SBUSY2 output  
goes to “H”) when transmit data is written into the serial I/O2 register(address 034616), regardless of  
the serial I/O transfer mode.  
At termination of transmit/receive operation, in the 8-bit serial I/O mode, the SBUSY2 output goes to “H”  
____________  
(or the SBUSY2 output returns to “L”), when the serial transfer status flag is set to “0”, regardless of  
whether the internal or external synchronous clock is selected. Furthermore, in the automatic transfer  
serial I/O mode (SBUSY2 output function: each 1-byte signal is selected), the SBUSY2 output goes to “H”  
____________  
(or the SBUSY2 output goes to “L”) each time 1-byte of receive data is written into the automatic trans-  
fer RAM.  
•Serial operation used SBUSY2 output  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: External synchronous clock  
: Each 1-byte data  
SBUSY2 output timing  
"1"  
Serial transfer status flag  
(bit 5 at address 034416  
)
"0"  
SCLK2i  
(i = 1, 2)(Input)  
"H"  
S
BUSY2(output)  
"L"  
S
OUT2  
D
0
D
1
D
2
D3  
D4  
D5  
D
6
D7  
Write to serial I/O register  
(Address 034616  
)
Figure GA-10. SBUSY2 Output Operation (2)  
110  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
•Serial operation used SBUSY2 output  
Operation mode  
Transfer clock  
: Automatic transfer serial I/O mode  
: Internal synchronous clock  
: Each 1-byte data  
SBUSY2 output timing  
Automatic  
transfer interval  
Tc  
Internal clock  
"1"  
Serial transfer status flag  
(bit 5 at address 034416  
)
"0"  
Automatic transfer RAM  
Serial I/O2 register  
Serial I/O2 register  
Automatic transfer RAM  
"H"  
S
BUSY2(output)  
"L"  
SCLK2i  
(i = 1, 2)(output)  
S
OUT2  
D0  
D1  
D
2
D
3
D4  
D5  
D
6
D
7
D0  
D1  
D
2
D
3
D4  
D5  
D
6
D7  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
•Serial operation used SBUSY2 output  
Operation mode  
Transfer clock  
: Automatic transfer serial I/O mode  
: Internal synchronous clock  
: Each transfer of all data  
SBUSY2 output timing  
Automatic  
Tc  
transfer interval  
Internal clock  
"1"  
Serial transfer status flag  
(bit 5 at address 034416  
)
"0"  
Automatic transfer RAM  
Serial I/O2 register  
Serial I/O2 register  
Automatic transfer RAM  
"H"  
BUSY2(output)  
S
"L"  
SCLK2i  
(i = 1, 2)(output)  
S
OUT2  
D0  
D1  
D2  
D
3
D
4
D5  
D6  
D
7
D0  
D1  
D2  
D
3
D
4
D5  
D6  
D7  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-11. SBUSY2 Output Operation (3)  
111  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) SRDY2 output signal  
The SRDY2 output is a transmit/receive enable signal which informs the serial transfer destination that  
transmit/receive is ready. In the initial status[serial I/O initialization bit (bit 4 of address 034216) = “0” ],  
__________  
the SRDY2 output goes to “L” (or the SRDY2 output goes to “H”). When the transmitted data is written to  
__________  
the serial I/O2 register (address 034616), the SRDY2 output goes to “H” (or the SRDY2 output goes to  
“L”). When a transmit/receive operation is started and the transfer clock goes to “L”, the SRDY2 output  
__________  
goes to “L” (or the SRDY2 output goes to “H”).  
•Serial operation used SRDY2 output  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: Internal synchronous clock  
Tc  
Internal clock  
"H"  
"L"  
S
RDY2  
(output)  
S
CLK2i  
(i = 1, 2) (output)  
S
OUT2  
D
0
D
1
D2  
D3  
D
4
D
5
D6  
D7  
"1"  
Serial transfer status flag  
(bit 5 at address 034416  
)
"0"  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-12. SRDY2 Output Operation  
(5) SRDY2 input signal  
The SRDY2 input is a signal for receiving a transmit/receive ready completion signal from the serial  
transfer destination. The SRDY2 input signal becomes valid only when the SRDY2 input and the SBUSY2  
output are used.  
When the internal synchronous clock is selected, input a “L” level signal into the SRDY2 input (or a “H”  
__________  
level signal into the SRDY2 input) in the initial status[serial I/O initialization bit (bit 4 of address 034216)  
__________  
= “0” ]. When a “H” level signal is input into the SRDY2 input (or a “L” level signal is input into the SRDY2  
input) for a period of 1.5 cycles or more of transfer clock, transfer clocks are output from the SCLK2i (i =  
__________  
1, 2) output and a transmit/receive operation is started. When SRDY2 input is driven “L” (or SRDY2 input  
is driven “H”) during transmit/receive operation, the transfer clock being output from SCLK2i (i = 1, 2)  
remains active until after the system finishes sending or receiving the designated number of bits,  
without stopping the transmit/receive operation immediately.  
The handshake unit of the 8-bit serial I/O is 8 bits, and that of the automatic transfer serial I/O is 8 bits.  
When the external synchronous clock is selected, the SRDY2 input becomes one of the triggers to  
____________  
output the SBUSY2 signal. To start a transmit/receive operation (SBUSY2 output: “L”, (or SBUSY2 output:  
__________  
“H”)), input a “H” level signal into the SRDY2 input (or a “L” level signal into the SRDY2 input,) and also  
write transmit data into the serial I/O2 register (address 034616).  
•Serial operation used SRDY2 input  
Operation mode  
Transfer clock  
: 8-bit serial I/O mode  
: Internal synchronous clock  
Tc  
Internal clock  
"1"  
"0"  
Serial transfer status flag  
(bit 5 at address 034416  
)
1.5 cycle or more  
"H"  
"L"  
S
(input  
RDY2  
)
SCLK2i  
(i = 1, 2) (output)  
D
0
D1  
D2  
D
3
D
4
D5  
D6  
D7  
S
OUT2  
Tc : Internal synchronous clock is selected by bits 5 to 7 of address 034816  
Figure GA-13. SRDY2 Input Operation  
112  
Mitsubishi microcomputers  
M30218 Group  
Serial I/O2  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Write to serial  
I/O2 register  
A:  
SCLK2i  
(i = 1, 2)  
SCLK2i  
(i = 1, 2)  
SRDY2  
SRDY2  
SRDY2  
SBUSY2  
SBUSY2  
SBUSY2  
SCLK2i  
(i = 1, 2)  
A:  
B:  
Internal synchronous  
clock selection  
External synchronous  
Write to serial  
I/O2 register  
B:  
clock selection  
Figure GA-14. Handshake Operation at Serial I/O2 Mutual Connecting (1)  
Write to serial  
A:  
I/O2 register  
S
CLK2i  
S
CLK2i  
(i= 1, 2)  
(i= 1, 2)  
S
RDY2  
S
RDY2  
S
RDY2  
S
BUSY2  
S
BUSY2  
S
BUSY2  
S
(i= 1, 2)  
CLK2i  
A:  
B:  
Internal synchronous  
clock selection  
External synchronous  
clock selection  
Write to serial  
I/O2 register  
B:  
Figure GA-15. Handshake Operation at Serial I/O2 Mutual Connecting (2)  
113  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D Converter  
The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive  
coupling amplifier. Pins P100 to P107 also function as the analog signal input pins. The direction registers of  
these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716)  
can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF)  
when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from  
VREF, reducing the power dissipation. When using the A-D converter, start A-D conversion only after setting  
bit 5 of 03D716 to connect VREF.  
The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision,  
the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit  
precision, the low 8 bits are stored in the even addresses.  
Table JA-1 shows the performance of the A-D converter. Figure JA-1 shows the block diagram of the A-D  
converter, and Figures JA-2 and JA-3 show the A-D converter-related registers.  
Table JA-1. Performance of A-D converter  
Item  
Performance  
Method of A-D conversion  
Successive approximation (capacitive coupling amplifier)  
Analog input voltage (Note 1) 0V to AVCC (VCC)  
Operating clock φAD (Note 2) VCC = 5V  
fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
VCC = 3V  
divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
Resolution  
8-bit or 10-bit (selectable)  
Absolute precision  
VCC = 5V  
• Without sample and hold function  
±3LSB  
• With sample and hold function (8-bit resolution)  
±2LSB  
• Without sample and hold function (10-bit resolution)  
±3LSB  
VCC = 3V  
• Without sample and hold function (8-bit resolution)(Note 3)  
±2LSB  
Operating modes  
Analog input pins  
One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,  
and repeat sweep mode 1  
8pins (AN0 to AN7)  
A-D conversion start condition •Software trigger  
A-D conversion starts when the A-D conversion start flag changes to “1”  
•Without sample and hold function  
8-bit resolution: 49 AD cycles, 10-bit resolution: 59  
Conversion speed per pin  
φ
φAD cycles  
• With sample and hold function  
8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles  
Note 1: Does not depend on use of sample and hold function.  
Note 2: Without sample and hold function, set the  
With the sample and hold function, set the  
Note 3: Only mask ROM version.  
φ
AD frequency to 250kHz min.  
φ
AD frequency to 1MHz min.  
114  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CKS1=1  
AD  
CKS0=1  
CKS0=0  
f
AD  
1/2  
1/2  
A-D conversion  
rate selection  
CKS1=0  
VCUT=0  
VCUT=1  
AVSS  
Resistor ladder  
V
REF  
Successive conversion register  
A-D control register 1 (address 03D716  
)
)
A-D control register 0 (address 03D616  
Addresses  
(03C116, 03C016  
(03C316, 03C216  
(03C516, 03C416  
(03C716, 03C616  
(03C916, 03C816  
)
)
)
)
)
A-D register 0(16)  
A-D register 1(16)  
A-D register 2(16)  
A-D register 3(16)  
A-D register 4(16)  
A-D register 5(16)  
A-D register 6(16)  
A-D register 7(16)  
V
ref  
Decoder  
(03CB16, 03CA16  
(03CD16, 03CC16  
(03CF16, 03CE16  
)
Comparator  
V
IN  
)
)
Data bus high-order  
Data bus low-order  
CH2,CH1,CH0=000  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
0
1
2
3
4
5
6
7
CH2,CH1,CH0=001  
CH2,CH1,CH0=010  
CH2,CH1,CH0=011  
CH2,CH1,CH0=100  
CH2,CH1,CH0=101  
CH2,CH1,CH0=110  
CH2,CH1,CH0=111  
Figure JA-1. Block diagram of A-D converter  
115  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
R W  
Bit symbol  
Bit name  
Function  
0 is selected  
b2 b1 b0  
Analog input pin select bit  
CH0  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
b4 b3  
1
2
3
4
5
6
7
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
CH1  
CH2  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
0 1 : Repeat mode  
1 0 : Single sweep mode  
1 1 : Repeat sweep mode 0  
Repeat sweep mode 1  
Must always be “0”.  
A-D conversion start flag  
Frequency select bit 0  
0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
0
0
Bit symbol  
Bit name  
Function  
R W  
When single sweep and repeat sweep  
A-D sweep pin select  
bit  
mode 0 are selected  
b1 b0  
SCAN0  
SCAN1  
MD2  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
(6 pins)  
(8 pins)  
When repeat sweep mode 1 is selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pin)  
, AN  
1
(2 pins)  
to AN  
to AN  
2
3
(3 pins)  
(4 pins)  
0 : Any mode other than repeat sweep  
mode 1  
1 : Repeat sweep mode 1  
A-D operation mode  
select bit 1  
8/10-bit mode select bit  
Frequency select bit 1  
0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
Vref connect bit  
0 : Vref not connected  
1 : Vref connected  
VCUT  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
Figure JA-2. A-D converter-related registers (1)  
116  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 2 (Note)  
Symbol  
ADCON2  
Address  
03D416  
When reset  
XXXXXXX02  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
SMP  
Bit name  
Function  
R W  
0
1
Without sample and hold  
With sample and hold  
A-D conversion method  
select bit  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Symbol  
ADi (i=0 to 7)  
Address  
When reset  
A-D register i  
(b15)  
03C016 to 03CF16 Indeterminate  
(b8)  
b0 b7  
b7  
b0  
Function  
R W  
Eight low-order bits of A-D conversion result  
• During 10-bit mode  
Two high-order bits of A-D conversion result  
• During 8-bit mode  
When read, the content is indeterminate  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if  
read, turns out to be “0”.  
Figure JA-3. A-D converter-related registers (2)  
117  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) One-shot mode  
In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table  
JA-2 shows the specifications of one-shot mode. Figure JA-4 shows the A-D control register in one-shot mode.  
Table JA-2. One-shot mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for one A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
•End of A-D conversion (A-D conversion start flag changes to “0”)  
•Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
Input pin  
One of AN0 to AN7, as selected  
Reading of result of A-D converter Read A-D register corresponding to selected pin  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
0 0  
Bit symbol  
CH0  
Bit name  
Function  
R W  
b2 b1 b0  
Analog input pin  
select bit  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
0
1
2
3
4
5
6
7
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
Must always be “0”.  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
0: fAD/4 is selected  
1: fAD/2 is selected  
Frequency select bit 0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
0
0
1
0
Bit symbol  
Bit name  
A-D sweep pin  
Function  
R W  
Invalid in one-shot mode  
SCAN0  
SCAN1  
MD2  
select bit  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep  
mode 1  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
VCUT  
Frequency select bit1  
Vref connect bit  
1 : Vref connected  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Figure JA-4. A-D conversion register in one-shot mode  
118  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Repeat mode  
In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table  
JA-3 shows the specifications of repeat mode. Figure JA-5 shows the A-D control register in repeat mode.  
Table JA-3. Repeat mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for repeated A-D conversion  
Writing “1” to A-D conversion start flag  
Star condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
One of AN0 to AN7, as selected  
Reading of result of A-D converter Read A-D register corresponding to selected pin  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
0 1  
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
Analog input pin  
select bit  
CH0  
CH1  
0 0 0 : AN0 is selected  
0 0 1 : AN1 is selected  
0 1 0 : AN2 is selected  
0 1 1 : AN3 is selected  
1 0 0 : AN4 is selected  
1 0 1 : AN5 is selected  
1 1 0 : AN6 is selected  
1 1 1 : AN7 is selected  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 1 : Repeat mode  
Must always be “0”.  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
0 : fAD/4 is selected  
Frequency select bit 0  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversin  
result is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
0
0
1
0
R W  
Bit symbol  
Bit name  
Function  
A-D sweep pin select bit Invalid in repeat mode  
SCAN0  
SCAN1  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
Frequency select bit 1  
VCUT  
Vref connect bit  
1 : Vref connected  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversn  
result is indeterminate.  
Figure JA-5. A-D conversion register in repeat mode  
119  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Single sweep mode  
In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D  
conversion. Table JA-4 shows the specifications of single sweep mode. Figure JA-6 shows the A-D  
control register in single sweep mode.  
Table JA-4. Single sweep mode specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion  
Start condition  
Stop condition  
Writing “1” to A-D converter start flag  
•End of A-D conversion  
(A-D conversion start flag changes to “0”, except when external trigger is selected)  
•Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
AN and AN (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Input pin  
0
1
Reading of result of A-D converter Read A-D register corresponding to selected pin  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
0
1 0  
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin select bit Invalid in single sweep mode  
CH0  
CH1  
CH2  
b4 b3  
A-D operation mode  
select bit 0  
MD0  
MD1  
1 0 : Single sweep mode  
Must always be “0”.  
A-D conversion start flag 0 : A-D conversion disabled  
ADST  
CKS0  
1 : A-D conversion started  
0 : fAD/4 is selected  
Frequency select bit 0  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
0
0
1
0
Bit symbol  
Bit name  
Function  
R W  
A-D sweep pin select bit When single sweep and repeat sweep mode 0  
SCAN0  
are selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
SCAN1  
(6 pins)  
(8 pins)  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
VCUT  
1 : Vref connected  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Figure JA-6. A-D conversion register in single sweep mode  
120  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) Repeat sweep mode 0  
In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep  
A-D conversion. Table JA-5 shows the specifications of repeat sweep mode 0. Figure JA-7 shows the A-  
D control register in repeat sweep mode 0.  
Table JA-5. Repeat sweep mode 0 specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
AN and AN (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Input pin  
0
1
Reading of result of A-D converter Read A-D register corresponding to selected pin (at any time)  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
0
1
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin select bit Invalid in repeat sweep mode 0  
CH0  
CH1  
CH2  
b4 b3  
A-D operation mode  
select bit 0  
MD0  
MD1  
1 1 : Repeat sweep mode 0  
Must always be “0”.  
A-D conversion start flag 0 : A-D conversion disabled  
ADST  
CKS0  
1 : A-D conversion started  
0 : fAD/4 is selected  
Frequency select bit 0  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
0
0
Bit symbol  
Bit name  
Function  
R W  
A-D sweep pin select bit When repeat sweep mode 1 is selected  
SCAN0  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
SCAN1  
(6 pins)  
(8 pins)  
A-D operation mode  
select bit 1  
1 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
0 : 8-bit mode  
1 : 10-bit mode  
8/10-bit mode select bit  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
Frequency select bit 1  
Vref connect bit  
CKS1  
VCUT  
1 : Vref connected  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Figure JA-7. A-D conversion register in repeat sweep mode 0  
121  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(5) Repeat sweep mode 1  
In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected  
using the A-D sweep pin select bit. Table JA-6 shows the specifications of repeat sweep mode 1. Figure  
JA-8 shows the A-D control register in repeat sweep mode 1.  
Table JA-6. Repeat sweep mode 1 specifications  
Item  
Specification  
Function  
All pins perform repeat sweep A-D conversion, with emphasis on the pin or  
pins selected by the A-D sweep pin select bit  
Example : AN0 selected -> AN0 -> AN1 -> AN0 -> AN2 -> AN0 -> AN3, etc  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
Emphasis on the pin AN0 (1 pin), AN0 and AN1 (2 pins), AN0 to AN2 (3 pins), AN0 to AN3 (4 pins)  
Reading of result of A-D converter Read A-D register corresponding to selected pin (at any time)  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
0
1
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin select bit Invalid in repeat sweep mode 0  
CH0  
CH1  
CH2  
b4 b3  
A-D operation mode  
select bit 0  
MD0  
MD1  
1 1 : Repeat sweep mode 1  
Must always be “0”.  
A-D conversion start flag 0 : A-D conversion disabled  
ADST  
CKS0  
1 : A-D conversion started  
0 : fAD/4 is selected  
Frequency select bit 0  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
0
1
Bit symbol  
Bit name  
Function  
R W  
A-D sweep pin select bit When repeat sweep mode 1 is selected  
SCAN0  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pins)  
, AN  
1
(2 pins)  
SCAN1  
to AN  
to AN  
2
3
(3 pins)  
(4 pins)  
A-D operation mode  
select bit 1  
1 : Repeat sweep mode 1  
MD2  
BITS  
0 : 8-bit mode  
1 : 10-bit mode  
8/10-bit mode select bit  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
Frequency select bit 1  
Vref connect bit  
CKS1  
VCUT  
1 : Vref connected  
Must always be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Figure JA-8. A-D conversion register in repeat sweep mode 1  
122  
Mitsubishi microcomputers  
M30218 Group  
A-D converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(a) Sample and hold  
Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to “1”.  
When sample and hold is selected, the rate of conversion of each pin increases. As a result, 28 φ AD  
cycles are achieved with 8-bit resolution and 33 φ AD cycles with 10-bit resolution. Sample and hold  
can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion  
whether sample and hold is to be used.  
123  
Mitsubishi microcomputers  
M30218 Group  
D-A converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
D-A Converter  
This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type.  
D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A  
output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the  
target port to output mode if D-A conversion is to be performed.  
Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.  
V = VREF X n/ 256 (n = 0 to 255)  
VREF : reference voltage  
Table JB-1 lists the performance of the D-A converter. Figure JB-1 shows the block diagram of the D-A  
converter. Figure JB-2 shows the D-A control register. Figure JB-3 shows the D-A converter equivalent  
circuit.  
Table JB-1. Performance of D-A converter  
Item  
Conversion method  
Resolution  
Performance  
R-2R method  
8 bits  
Analog output pin  
2 channels  
Data bus low-order bits  
D-A register0 (8)  
(Address 03D816  
)
D-A0 output enable bit  
P97/DA0/CLKOUT/DIMOUT  
R-2R resistor ladder  
D-A register1 (8)  
(Address 03DA16  
D-A1 output enable bit  
P9 /DA1/SCLK22  
)
6
R-2R resistor ladder  
Figure JB-1. Block diagram of D-A converter  
124  
Mitsubishi microcomputers  
M30218 Group  
D-A converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
D-A control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DACON  
Address  
03DC16  
When reset  
0016  
Bit symbol  
DA0E  
Bit name  
Function  
R W  
0 : Output disabled  
1 : Output enabled  
D-A0 output enable bit  
D-A1 output enable bit  
0 : Output disabled  
1 : Output enabled  
DA1E  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
D-A register  
b7  
Symbol  
DAi (i = 0,1)  
Address  
03D816 03DA16  
When reset  
Indeterminate  
b0  
,
Function  
R W  
Output value of D-A conversion  
Figure JB-2. D-A control register  
D-A0 output enable bit  
"0"  
R
R
R
R
R
R
R
2R  
DA0  
"1"  
2R  
MSB  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
D-A0 register0  
AVSS  
REF  
V
Note 1: The above diagram shows an instance in which the D-A register is assigned 2A16  
.
Note 2: The same circuit as this is also used for D-A1.  
Note 3: To reduce the current consumption when the D-A converter is not used, set the D-A output enable bit to 0 and set the D-A register to 0016  
so that no current flows in the resistors Rs and 2Rs.  
Figure JB-3. D-A converter equivalent circuit  
125  
Mitsubishi microcomputers  
M30218 Group  
CRC Calculation Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CRC Calculation Circuit  
The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcom-  
16  
12  
5
puter uses a generator polynomial of CRC_CCITT (X + X + X + 1) to generate CRC code.  
The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC  
code is set in a CRC data register each time one byte of data is transferred to a CRC input register after  
writing an initial value into the CRC data register. Generation of CRC code for one byte of data is com-  
pleted in two machine cycles.  
Figure UC-1 shows the block diagram of the CRC circuit. Figure UC-2 shows the CRC-related registers.  
Figure UC-3 shows the calculation example using the CRC calculation circuit  
Data bus high-order bits  
Data bus low-order bits  
Eight low-order bits  
Eight high-order bits  
CRC data register (16)  
(Addresses 03BD16, 03BC16  
)
CRC code generating circt  
x
16 + x12 + x5 + 1  
CRC input register (8) (Address 03BE16  
)
Figure UC-1. Block diagram of CRC circuit  
CRC data register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
CRCD  
Address  
03BD16, 03BC16  
When reset  
Indeterminate  
b0  
Values that  
can be set  
Function  
R W  
CRC calculation result output register  
000016 to FFFF16  
CRC input register  
b7  
b0  
Symbo  
CRCIN  
Address  
03BE16  
When reset  
Indeterminate  
Values that  
can be set  
Function  
R W  
Data input register  
0016 to FF16  
Figure UC-2. CRC-related registers  
126  
Mitsubishi microcomputers  
M30218 Group  
CRC Calculation Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
b15  
b0  
b0  
CRC data register CRCD  
[03BD16, 03BC16  
(1) Setting 000016  
(2) Setting 0116  
]
b7  
CRC input register  
2 cycles  
CRCIN  
[03BE16  
]
After CRC calculation is complete  
b15  
b0  
CRC data register  
Stores CRC code  
CRCD  
[03BD16, 03BC16  
118916  
]
The code resulting from sending 0116 in LSB first mode is (1000 0000). Thus the CRC code in the generating polynomial,  
16  
12  
5
16  
(X + X + X + 1), becomes the remainder resulting from dividing (1000 0000) X by (1 0001 0000 0010 0001) in  
conformity with the modulo-2 operation.  
LSB  
MSB  
Modulo-2 operation is  
operation that complies  
with the law given below.  
1000 1000  
1 0001 0000 0010 0001  
1000 0000 0000 0000 0000 0000  
1000 1000 0001 0000 1  
1000 0001 0000 1000 0  
1000 1000 0001 0000 1  
1001 0001 1000 1000  
LSB  
0 + 0 = 0  
0 + 1 = 1  
1 + 0 = 1  
1 + 1 = 0  
-1 = 1  
MSB  
9
8
1
1
Thus the CRC code becomes (1001 0001 1000 1000). Since the operation is in LSB first mode, the (1001 0001 1000 1000)  
corresponds to 118916 in hexadecimal notation. If the CRC operation in MSB first mode is necessary in the CRC operation  
circuit built in the M16C, switch between the LSB side and the MSB side of the input-holding bits, and carry out the CRC  
operation. Also switch between the MSB and LSB of the result as stored in CRC data.  
b7  
b0  
CRC input register  
CRCIN  
[03BE16  
(3) Setting 2316  
]
After CRC calculation is complete  
b15  
b0  
CRC data register  
Stores CRC code  
CRCD  
[03BD16, 03BC16  
0A4116  
]
Figure UC-3. Calculation example using the CRC calculation circuit  
127  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Programmable I/O Ports  
There are 48 programmable I/O ports: P3, P4 and P7 to P10. Each port can be set independently for input  
or output using the direction register. A pull-up resistance for each block of 4 ports can be set.  
P3 and P40 to P43 are high-breakdown-voltage, P-channel open drain outputs, and have no built-in pull-  
down resistance.  
Figures UA-1, UA-2 show the programmable I/O ports.  
Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.  
To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input  
mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A con-  
verter), they function as outputs regardless of the contents of the direction registers. When pins are to be  
used as the outputs for the D-A converter, do not set the direction registers to output mode. See the  
descriptions of the respective functions for how to set up the built-in peripheral devices.  
(1) Direction registers  
Figure UA-3 shows the direction registers.  
These registers are used to choose the direction of the programmable I/O ports. Each bit in these regis-  
ters corresponds one for one to each I/O pin.  
(2) Port registers  
Figure UA-4 shows the port registers.  
These registers are used to write and read data for input and output to and from an external device. A  
port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit  
in port registers corresponds one for one to each I/O pin.  
(3) Pull-up control registers  
Figure UA-5 shows the pull-up control registers.  
The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports  
are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is  
set for input.  
Note: P3, P40 to P43 have no built-in pull-up resistance, because of these pin's are high-breakdown-  
voltage, P-channel open drain outputs.  
Exclusive High-breakdown-voltage Output Ports  
There are 40 exclusive output Ports: P0 to P2, P5 and P6.  
All ports have structure of high-breakdown-voltage P-channel open drain output. Exclusive output ports  
except P2 have built-in pull-down resistance.  
Figure UA-1 shows the configuration of the exclusive high-breakdown-voltage output ports.  
128  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P0  
P5  
0
0
to P0  
to P5  
7
, P1  
, P6  
0
0
to P1  
to P6  
7
,
,
7
7
Output  
(inside dotted-line included)  
P2 to P2  
(inside dotted-line not included)  
Data bus  
Port latch  
0
7
VEE  
P30 to P37, P40 to P43  
Direction register  
“1”  
output  
Data bus  
Port latch  
Pull-up selection  
P7  
(inside dotted-line included)  
P8  
(inside dotted-line not included)  
0 to P72, P80 to P85, P87, P93  
Direction register  
6
Port latch  
Data bus  
Input to respective peripheral functions  
Pull-up selection  
P44, P92,P94  
Direction register  
“1”  
output  
Data bus  
Port latch  
Figure UA-1. Programmable I/O ports (1)  
129  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up selection  
Direction register  
P4  
P9  
5
0
to P4  
7, P73 to P77  
, P9 , P9  
1
5
“1”  
output  
Data bus  
Port latch  
Input to respective peripheral functions  
Pull-up selection  
Direction register  
P100 to P107  
Data bus  
Port latch  
Analog input  
Pull-up selection  
P9  
(inside dotted-line included)  
P9  
(inside dotted-line not included)  
6
Direction register  
“1”  
7
output  
Data  
bus  
Port latch  
Analog output  
D-A output enabled  
Input to respective peripheral functions  
Figure UA-2. Programmable I/O ports (2)  
130  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port Pi direction register  
Symbol  
Address  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
PDi (i = 3 to 10, except 5, 6) 03E716, 03EA16, 03EF16  
03F216, 03F316, 03F616  
0016  
0016  
Bit symbol  
PDi_0  
Bit name  
Function  
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
R W  
Port Pi0 direction register  
Port Pi1 direction register  
Port Pi2 direction register  
Port Pi3 direction register  
Port Pi4 direction register  
Port Pi5 direction register  
Port Pi6 direction register  
Port Pi7 direction register  
PDi_1  
PDi_2  
(Functions as an output port)  
PDi_3  
PDi_4  
(i = 3 to 10 except 5, 6)  
PDi_5  
PDi_6  
PDi_7  
Figure UA-3. Direction register  
Port Pi register  
Symbol  
Pi (i = 0 to 10)  
Addres  
03E016, 03E116, 03E416, 03E516, 03E816  
When reset  
Indeterminate  
b7 b6 b5 b4 b3 b2 b1 b0  
03E916, 03EC16, 03ED16, 03F016, 03F116, 03F416 Indeterminate  
Bit symbol  
Bit name  
Function  
R W  
Pi_0  
Pi_1  
Pi_2  
Pi_3  
Pi_4  
Pi_5  
Pi_6  
Pi_7  
Port Pi0 register  
Port Pi1 register  
Port Pi2 register  
Port Pi3 register  
Port Pi4 register  
Port Pi5 register  
Port Pi6 register  
Port Pi7 register  
Data is input and output to and from  
each pin by reading and writing to and  
from each corresponding bit  
0 : “L” level data  
1 : “H” level data  
(i = 0 to 10)  
Figure UA-4. Port register  
131  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR0  
Address  
03FD16  
When rese  
0016  
t
Bit symbol  
Bit name  
Function  
R W  
Nothing is assigned. In an attempt to write to this bit, write “0”. The value, if  
read, turns out to be indeterminate.  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU01  
P44 to P47 pull-up  
1 : Pulled high  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU06  
P7  
0
to P7  
3
pull-up  
PU07  
P7  
4
to P7  
7
pull-up  
1 : Pulled high  
Pull-up control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR1  
Address  
03FE16  
When rese  
0016  
t
R
W
Bit symbol  
PU10  
Bit name  
Function  
P8  
0
to P8  
3
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU11  
P8  
4
to P8  
7
pull-up  
PU12  
PU13  
P9  
P9  
0
4
to P9  
to P9  
3
7
pull-up  
pull-up  
1 : Pulled high  
PU14  
PU15  
P10  
P10  
0
4
to P10  
to P10  
3
7
pull-up  
pull-up  
Nothing is assigned. In an attempt to write to these bits, write “0”. The value, if  
read, turns out to be indeterminate.  
Figure UA-5. Pull-up control register  
132  
Mitsubishi microcomputers  
M30218 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table UA-1. Example connection of unused pins  
Pin name  
Connection  
Specify output mode, and leave these pins open;  
Ports P3, P4, P7 to P10  
or specify input mode, and connect to VSS via resistor (pull-down)  
Ports P0 to P2, P5, P6  
Leave these pins open  
Open  
X
OUT (Note 1), VEE  
Connect to VCC (Note 2)  
AVCC  
AVSS, VREF  
Connect to VSS (Note 2)  
Connect to VSS via resistor  
CNVSS  
Note 1: With external clock input to XIN pin.  
Note 2: Connect a bypass capacitor.  
Microcomputer  
Port P3, P4, P7 to P10  
(Input mode)  
(Output mode)  
Open  
Open  
Port P0 to P2, P5, P6  
(Output mode)  
X
OUT  
Open  
Open  
VEE  
V
CC  
AVCC(Note)  
CNVSS  
AVSS(Note)  
V
REF(Note)  
V
SS  
Note: Connect a bypass capacitor.  
Figure UA-6. Example connection of unused pins  
133  
Mitsubishi microcomputers  
M30218 Group  
Pull-down  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power Dissipation Calculating Method  
(Fixed number depending on microcomputer’s standard)  
• VOH output fall voltage of high-breakdown port  
2 V (max.); | Current value | = at 18 mA  
• Resistor value = 68 k(min.)  
• Power dissipation of internal circuit (CPU, ROM, RAM etc.) = 5 V X 38 mA = 190 mW  
(Fixed number depending on use condition)  
• Apply voltage to VEE pin: Vcc – 50 V  
• Timing number a; digit number b; segment number c  
• Ratio of Toff time corresponding Tdisp time: 1/16  
• Turn ON segment number during repeat cycle: d  
• All segment number during repeat cycle: e (= a X c)  
• Total number of built-in resistor: for digit; f, for segment; g  
• Digit pin current value h (mA)  
• Segment pin current value i (mA)  
(1) Digit pin power dissipation  
{h X b X (1–Toff / Tdisp) X voltage} / a  
(2) Segment pin power dissipation  
{i X d X (1–Toff / Tdisp) X voltage} / a  
(3) Pull-down resistor power dissipation (digit)  
{power dissipation per 1 digit X (b X f / b) X (1–Toff / Tdisp) } / a  
(4) Pull-down resistor power dissipation (segment)  
{power dissipation per 1 segment X (d X g / c) X (1–Toff / Tdisp) } / a  
(5) Internal circuit power dissipation (CPU, ROM, RAM etc.) = 190 mW  
(1) + (2)+ (3) + (4) + (5) = X mW  
134  
Mitsubishi microcomputers  
M30218 Group  
Pull-down  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power Dissipation Calculating example 1  
Fixed number depending on microcomputers standard  
VOH output fall voltage of high-breakdown port  
2 V (max.); | Current value | = at 18 mA  
Resistor value 68 k(min.)  
Power dissipation of internal circuit (CPU, ROM, RAM etc.) = 5 V X 38 mA = 190 mW  
Fixed number depending on use condition  
Apply voltage to VEE pin: Vcc 50 V  
Timing number 17; digit number 16; segment number 20  
Ratio of Toff time corresponding Tdisp time: 1/16  
Turn ON segment number during repeat cycle: 31  
All segment number during repeat cycle: 340 (= 17 X 20)  
Total number of built-in resistor: for digit; 16, for segment; 20  
Digit pin current value: 18 (mA)  
Segment pin current value: 3 (mA)  
(1) Digit pin power dissipation  
{18 X 16 X (11/16) X 2} / 17 = 31.77 mW  
(2) Segment pin power dissipation  
{3 X 31 X (11/16) X 2} / 17 = 10.26 mW  
(3) Pull-down resistor power dissipation (digit)  
2
(50 2) /68 X (16 X 16/16) X (1 1/16) / 17 = 29.90 mW  
(4) Pull-down resistor power dissipation (segment)  
2
(50 2) /68 X (31 X 20/20) X (1 1/16) / 17 = 57.93 mW  
(5) Internal circuit power dissipation (CPU, ROM, RAM etc.) = 190.00 mW  
(1) + (2)+ (3) + (4) + (5) = 319.86 mW  
DIG0  
DIG1  
DIG2  
DIG3  
DIG13  
DIG14  
DIG15  
1
2
3
14  
15  
16  
17  
Timing  
number  
Repeat cycle  
Tscan  
Figure S-1. Digit timing waveform (1)  
135  
Mitsubishi microcomputers  
M30218 Group  
Pull-down  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power Dissipation Calculating example 2(when 2 or more digit is turned ON at same time)  
Fixed number depending on microcomputers standard  
VOH output fall voltage of high-breakdown port  
2 V (max.); | Current value | = at 18 mA  
Resistor value 68 k(min.)  
Power dissipation of internal circuit (CPU, ROM, RAM etc.) = 5 V X 38 mA = 190 mW  
Fixed number depending on use condition  
Apply voltage to VEE pin: Vcc 50 V  
Timing number 11; digit number 12; segment number 24  
Ratio of Toff time corresponding Tdisp time: 1/16  
Turn ON segment number during repeat cycle: 114  
All segment number during repeat cycle: 264 (= 11 X 24)  
Total number of built-in resistor: for digit; 10, for segment; 22  
Digit pin current value: 18 (mA)  
Segment pin current value: 3 (mA)  
(1) Digit pin power dissipation  
{18 X 12 X (11 / 16) X 2} / 11 = 36.82 mW  
(2) Segment pin power dissipation  
{3 X 114 X (11 / 16) X 2} / 11 = 58.30 mW  
(3) Pull-down resistor power dissipation (digit)  
2
(502) / 68 X (12 X 10 / 12) X (1 1 / 16) / 11 = 28.88 mW  
(4) Pull-down resistor power dissipation (segment)  
2
(50 2) / 68 X (114 X 22 / 24) X (1 1 / 16) / 11 = 301.77 mW  
(5) Internal circuit power dissipation (CPU, ROM, RAM etc.) = 190.00 mW  
(1) + (2)+ (3) + (4) + (5) = 615.77 mW (There is a limit of use temperature)  
DIG0  
DIG1  
DIG2  
DIG3  
DIG4  
DIG5  
DIG6  
DIG7  
DIG8  
DIG9  
1
2
3
4
5
6
7
8
9
10  
11  
Timing  
number  
Repeat cycle  
Tscan  
Figure S-2. Digit timing waveform (2)  
136  
Mitsubishi microcomputers  
M30218 Group  
Pull-down  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power Dissipation Calculating example 3  
(when 2 or more digit is turned ON at same time, and used Toff invalid function)  
Fixed number depending on microcomputers standard  
VOH output fall voltage of high-breakdown port 2 V (max.); | Current value | = at 18 mA  
Resistor value 68 k(min.)  
Power dissipation of internal circuit (CPU, ROM, RAM etc.) = 5 V X 38 mA = 190 mW  
Fixed number depending on use condition  
Apply voltage to VEE pin: Vcc 50 V  
Timing number 11; digit number 12; segment number 24  
Ratio of Toff time corresponding Tdisp time: 1/16  
Turn ON segment number during repeat cycle: 114 ( for Toff invalid waveform;50)  
All segment number during repeat cycle: 264 (= 11 X 24)  
Total number of built-in resistor: for digit; 10, for segment; 22  
Digit pin current value: 18 (mA)  
Segment pin current value: 3 (mA)  
(1) Digit pin power dissipation  
[{18 X 10 X (11/16) X 2} + {18 X 2 X 2}] / 11 = 37.23 mW  
(2) Segment pin power dissipation  
[{3 X 64 X (11/16) X 2} + {3 X 50 X 2}] / 11 = 60.00 mW  
(3) Pull-down resistor power dissipation (digit)  
2
2
[{(502) / 68 X (10 X 10 / 12) X (1 1 / 16)} + {(502) / 68 X (2 X 10 / 12) } ] /11 = 29.20 mW  
(4) Pull-down resistor power dissipation (segment)  
2
2
[{(502) / 68 X (64 X 22 / 24) X (1 1 / 16)} + {(502) / 68 X (50 X 22 / 24) } ] / 11 = 310.59 mW  
(5) Internal circuit power dissipation (CPU, ROM, RAM etc.) = 190.00 mW  
(1) + (2)+ (3) + (4) + (5) = 627.02 mW (There is a limit of use temperature)  
DIG0  
DIG1  
DIG2  
DIG3  
DIG4  
DIG5  
DIG6  
DIG7  
DIG8  
DIG9  
1
2
3
4
5
6
7
8
9
10  
11  
Timing  
number  
Repeat cycle  
Tscan  
Figure S-3. Digit timing waveform (3)  
137  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table Z-1. Absolute maximum ratings  
Symbol  
Vcc  
Parameter  
Condition  
Standard  
Unit  
V
- 0.3 to 6.5  
Supply voltage  
AVcc  
V
V
Analog supply voltage  
- 0.3 to 6.5  
V
EE  
Pull-down supply voltage  
Vcc - 50 to Vcc+0.3V  
V
I
RESET  
P4 to P47, P7  
P9 to P97, P10  
, CNVss,  
Input voltage  
- 0.3 to Vcc+0.3  
(Note)  
4
0
to P77, P8  
0 to P107,  
0
0
to P87,  
V
0
V
REF, XIN  
Input voltage  
V
I
P30  
to P37, P4  
0
to P4  
3
Vcc - 50 to Vcc+0.3  
Vcc - 50 to Vcc+0.3  
V
V
Output voltage  
V
V
O
O
P0  
P3  
P6  
0
to P07, P1  
0
to P17, P2  
to P27,  
to P57,  
0
to P37, P4  
0
to P43, P5  
0
0
to P6  
7
Output voltage  
P4  
P9  
4
to P47, P7  
0
to P77, P8  
0
to P87,  
V
0
to P97, P10  
0
to P107,  
-0.3 to Vcc+0.3  
750  
XOUT  
P
d
Ta=-20 to 60  
Ta=60 to 85  
C
C
Power  
mW  
dissipation  
mW  
C
750-12 X (Ta-60)  
-20 to 85  
T
opr  
Operating ambient temperature  
Storage temperature  
T
stg  
C
-40 to 150  
Note 1: When writing to flash ,only CNVss is 0.3 to 13 (V) .  
Table Z-2. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Ta = – 20 to  
85oC unless otherwise specified) (Note)  
Standard  
Typ.  
Unit  
Parameter  
Symbol  
Min  
2.7(Note1)  
Max.  
Supply voltage  
5.5  
5.0  
Vcc  
V
V
V
V
Analog supply voltage  
Supply voltage  
Vcc  
0
AVcc  
Vss  
AVss  
0
Analog supply voltage  
Pull-down supply voltage  
HIGH input voltage  
Vcc-48  
0.8Vcc  
V
EE  
Vcc  
Vcc  
V
V
P7  
X
0
to P77, P8  
0
to P87, P9  
0
to P97, P10  
0
to P107,  
to P107,  
V
IH  
IN, RESET  
,
CNVSS  
0.50Vcc  
0.52Vcc  
V
V
IH  
IH  
Vcc  
Vcc  
V
V
HIGH input voltage  
HIGH input voltage  
P4  
P3  
P7  
IN, RESET  
P3 to P37, P4  
P4 to P4  
4
to P4  
to P37, P4  
to P77, P8  
CNVSS  
to P4  
7
0
0
to P4  
3
0
0
to P87, P9  
0
to P97, P10  
0
0
0.2Vcc  
LOW input voltage  
V IL  
V
X
,
V IL  
V IL  
LOW input voltage  
LOW input voltage  
0
0
3
V
V
0
0
0.16Vcc  
0.16Vcc  
4
7
Note: VCC = 4.0V to 5.5V in flash memory version.  
138  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table Z-3. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Ta = – 20 to  
85oC unless otherwise specified) (Note 6)  
Standard  
Typ.  
Symbol  
IOH (peak)  
Parameter  
Unit  
mA  
Min  
Max.  
-240  
HIGH total peak output  
current (Note 1)  
P0  
P1  
P4  
P8  
P4  
P8  
P0  
P1  
P4  
P8  
P4  
P8  
0
0
4
6
4
to P0  
to P1  
to P4  
7
7
7
, P5  
, P2  
, P7  
0
0
0
to P5  
to P2  
to P7  
7
7
7
, P6  
, P3  
, P8  
0
0
0
to P6  
to P3  
to P8  
7
7
5
IOH (peak)  
IOH (peak)  
IOH (peak)  
IOL (peak)  
IOL (peak)  
IOH (avg)  
IOH (avg)  
IOH (avg)  
IOH (avg)  
IOL (avg)  
IOL (avg)  
HIGH total peak output  
current (Note 1)  
, P40 to P43  
-240  
-80  
-80  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
HIGH total peak output  
current (Note 1)  
HIGH total peak output  
current (Note 1)  
, P87, P90 to P97, P100 to P107  
LOW total peak output  
current (Note 1)  
to P4  
7
, P7  
0
to P7  
7
, P8  
0
to P85  
LOW total peak output  
current (Note 1)  
6
0
, P8  
7
, P9  
0
to P9  
7
, P10  
0
to P107  
80  
HIGH total average  
output current (Note 1)  
to P0  
to P1  
to P4  
7
7
7
, P5  
, P2  
, P7  
0
0
0
to P5  
to P2  
to P7  
7
7
7
, P6  
0
to P6  
to P3  
to P8  
7
-120  
-120  
-40  
-40  
40  
HIGH total average  
output current (Note 1)  
0
4
6
4
6
, P3  
0
0
7, P40 to P43  
HIGH total average  
output current (Note 1)  
, P8  
5
HIGH total average  
output current (Note 1)  
, P87, P90 to P97, P100 to P107  
LOW total average  
output current (Note 1)  
to P4  
7
, P7  
0
to P7  
7
, P8  
0
to P85  
LOW total average  
output current (Note 1)  
, P8  
7
, P9  
0
to P9  
7
, P10  
0
to P107  
40  
P0  
0
to P0  
7
, P1  
0
to P1  
to P5  
to P7  
to P10  
7
, P2  
, P6  
, P8  
0
to P2  
7
,P3  
0
to P3  
7
,
,
HIGH peak output  
current (Note 2)  
IOH (peak)  
IOH (peak)  
-40  
-10  
10  
mA  
mA  
mA  
P4  
0
to P4  
3
, P5  
, P7  
, P10  
, P7  
, P10  
, P1  
, P5  
, P7  
, P10  
, P7  
, P10  
0
7
0
to P6  
7
P4  
P9  
4
0
to P4  
to P9  
7
7
0
7
0
0
0
to P8  
to P8  
to P2  
7
7
7
HIGH peak output  
current (Note 2)  
0
7
P4  
P9  
4
0
to P4  
to P9  
7
7
0
to P7  
7
, P8  
LOW peak output  
current (Note 2)  
IOL (peak)  
IOH (avg)  
0
to P10  
7
HIGH average output  
current (Note 3)  
P0  
0
to P0  
7
0
to P1  
7
, P2  
,P30 to P37  
-18  
-5  
mA  
mA  
P4  
0
to P4  
3
0
to P5  
to P7  
to P10  
to P7 , P8  
to P10  
7, P6  
0
to P6  
7
HIGH average output  
current (Note 3)  
P4  
P9  
P4  
P9  
4
to P4  
to P9  
to P4  
to P9  
7
0
7
, P8  
0
to P8  
7
IOH (avg)  
IOL (avg)  
0
4
7
7
0
7
LOW average output  
current (Note 3)  
0
7
0
to P8  
7
5
10  
mA  
0
7
0
7
Vcc=4.0V to 5.5V  
Vcc=2.7V to 4.0V  
0
0
MHz  
MHz  
Main clock input oscillation frequency (Note 4, 7)  
Sub clock oscillation frequency (Note 4, 5)  
f (XIN  
)
5 X Vcc-10  
50  
kHz  
32.768  
f (XcIN  
)
Note 1: The total output current is the sum of all the currents through the applicable ports. The total  
average value measured over 100ms. The total peak current is the peak of all the currents.  
Note 2: The peak output current is the peak current flowing in each port.  
Note 3: The average output current in an average value measured over 100ms.  
Note 4: When the oscillating frequency has a duty cycle of 50 %.  
Note 5: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency  
on condition that f(XCIN) < f(XIN) / 3.  
Note 6: VCC=4.0V to 5.5V in flash memory version.  
Note 7: Relationship between main clock oscillation frequency and supply voltage.  
Main clock input oscillation frequency  
(No wait)  
10.0  
5 X VCC-10.000MH  
Z
3.5  
0.0  
2.7  
4.0  
5.5  
Flash memory version  
(BCLK: no division)  
Supply voltage[V]  
139  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=5V  
Table Z-4. Electrical characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC,  
f(XIN) =10MH  
Z
unless otherwise specified)  
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
P0  
0
to P0  
to P3  
7
,P1  
0
to P1  
7
,P2  
0
to P2  
to P5  
7
,
HIGH output  
voltage  
3.5  
4.5  
3.0  
I
I
OH= - 18mA  
OH= - 5mA  
P3  
P6  
P4  
P9  
0
7,P4  
0
to P4  
3
,P5  
0
7,  
VOH  
V
0
to P6  
7
4
to P4  
7
,P7  
0
to P7  
7,P80 to P87,  
HIGH output  
voltage  
V
V
V
OH  
IOH= - 5mA  
0
to P9  
7
,P10  
0
to P107  
I
I
OH= - 1mA  
HIGH POWER  
LOW POWER  
3.0  
3.0  
HIGH output  
voltage  
X
OUT  
V
OH  
OL  
OH= - 0.5mA  
LOW output  
voltage  
P4  
P9  
4
to P4  
to P9  
7
,P7  
0
to P77,P80 to P87,  
V
I
OL=5mA  
2.0  
V
V
0
7,P10  
0
to P107  
HIGH POWER  
LOW POWER  
I
I
OL=1mA  
2.0  
2.0  
VOL  
LOW output  
voltage  
XOUT  
OL=0.5mA  
Hysteresis  
TA0IN to TA4IN,TB0IN to TB2IN  
INT to INT , CTS , CTS  
CLK ,CLK ,SRDY2IN,SBSY2IN,  
,
0
5
0
1,  
V
T+-  
V
T-  
T-  
0.2  
0.2  
0.8  
V
0
1
SIN2,SCLK21,SCLK22,RxD0,  
RxD1  
VT+-  
V
Hysteresis  
1.8  
5.0  
V
RESET  
HIGH input  
current  
P4  
P9  
IN, RESET, CNVss  
4
to P4  
7
,P7  
0
to P7  
7
,P8  
0
to P8  
7
,
,
I
IH  
VI=5V  
0
to P9  
7
,P10  
0
to P107,  
µA  
µA  
X
P3 to P3 ,P4 to P43(Note 1)  
0
7
0
I
IH  
5.0  
VI=5V  
P4  
P9  
IN, RESET, CNVss  
4
to P4  
7
,P7  
0
to P7  
7,P80 to P8  
7
LOW input  
current  
I
IL  
V
I
=0V  
=0V  
=0V  
- 5.0  
µA  
µA  
0
to P9  
7
,P10  
0
to P107,  
X
P3 to P3 ,P4 to P4  
0
7
0
3(Note1)  
- 5.0  
I
IL  
VI  
RPULLUP  
Pull-up  
resistance  
P4  
P8  
4
0
to P4  
to P8  
7
,P7  
0
0
to P7  
7
,
7,P9  
to P9  
7
,
VI  
30.0 50.0 167.0  
kΩ  
kΩ  
P100 to P107  
RPULLD  
Pull-down  
resistance  
P0  
P5  
0
0
to P0  
to P5  
7
,P1  
0
0
to P1  
7
,
VEE=VCC - 48V,VOL=VCC  
68  
80  
120  
- 10  
7,P6  
to P6  
7
Output transistors off”  
Output leak  
current  
I
LEAK  
P0  
P2  
P4  
P6  
0
0
0
0
to P0  
to P2  
to P4  
to P6  
7,P1  
7,P3  
4,P5  
7
0
0
0
to P1  
to P3  
to P5  
7
,
,
,
VEE=VCC - 48V,VOL=VCC - 48V  
7
7
Output transistors off”  
µA  
R
fXIN  
Feedback resistance XIN  
1.0  
6.0  
MΩ  
MΩ  
V
RfXCIN  
Feedback resistance XCIN  
RAM retention voltage  
VRAM  
When clock is stopped  
2.0  
The output  
pins are open  
and other  
f(XIN)=10MHz  
19.0  
4.2  
38.0  
mA  
mA  
Square wave, no division  
f(XIN)=10MHz  
Square wave, 8 division  
pins are VSS  
f(XCIN)=32kHz  
90.0  
4.0  
µA  
µA  
Square wave (Note2)  
Icc  
Power supply current (Note 3)  
f(XCIN)=32kHz  
When a WAIT instruction is executed  
(Note2)  
C
Ta=25  
when clock is stopped  
1.0  
µA  
C
20.0  
Ta=85  
when clock is stopped  
Note 1: Except when reading ports P3, P40 to P43.  
Note 2: Fixed XCIN-XCOUT drive capacity select bit to HIGHand XIN pin to Hlevel.  
Note 3: This contains an electric current to flow into AVCC pin.  
140  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=5V  
Table Z-5. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, Vss = AVSS = 0V  
at Ta = 25oC, f(XIN) = 10MH  
unless otherwise specified)  
Z
Standard  
Min. Typ. Max.  
10 Bits  
Symbol  
Parameter  
Resolution  
Measuring condition  
Unit  
V
REF  
=
V
CC  
Sample & hold function not available  
Absolute  
accuracy  
V
REF = VCC = 5V  
REF =VCC  
AN0 to AN7 input  
LSB  
LSB  
LSB  
±3  
Sample & hold function available(10bit)  
V
= 5V  
±3  
Sample & hold function available(8bit)  
V
REF = VCC = 5V  
REF CC  
±2  
R
LADDER  
Ladder resistance  
Conversion time(10bit)  
Conversion time(8bit)  
Sampling time  
V
=
V
10  
3.3  
2.8  
0.3  
40  
kΩ  
µs  
t
t
t
CONV  
CONV  
µs  
µs  
V
SAMP  
V
V
REF  
IA  
2
0
V
CC  
Reference voltage  
V
REF  
V
Analog input voltage  
Table Z-6. D-A conversion characteristics (referenced to VCC = 5V, VSS = AVSS = 0V, VREF = 5V  
at Ta = 25oC, f(XIN) = 10MH  
Z
unless otherwise specified)  
Standard  
Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
Min.  
Bits  
%
Resolution  
Absolute accuracy  
Setup time  
Output resistance  
Reference power supply input current  
8
1.0  
3
t
su  
µs  
kΩ  
mA  
R
O
4
10  
20  
1.5  
I
VREF  
(
Note)  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to  
0016.  
The A-D converter's ladder resistance is not included.  
Also, when the Vref is unconnected at the A-D control register, IVREF is sent.  
141  
Mitsubishi microcomputers  
M30218 Group  
Timing (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=5V  
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-7. External clock input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
tc  
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
tw(H)  
tw(L)  
tr  
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
40  
15  
15  
tf  
External clock fall time  
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise  
specified)  
Table Z-8. High-breakdown voltage p-channel open-drain output port  
Standard  
Typ.  
Measuring condition  
Parameter  
Unit  
ns  
Symbol  
Min.  
Max.  
t
r(Pch-strg)  
C
L
=100pF  
P-channel high-breakdown  
voltage output rising time  
(Note 1)  
VEE=VCC - 43V  
55  
t
r(Pch-weak)  
P-channel high-breakdown  
voltage output rising time  
(Note 2)  
C
L
=100pF  
1.8  
µs  
VEE=VCC - 43V  
Note 1: When bit 7 of the FLDC mode register (address 035016) is at 0.  
Note 2: When bit 7 of the FLDC mode register (address 035016) is at 1.  
P0, P1, P2, P3,  
P40 to P43, P5, P6  
P-channel high-  
breakdown  
voltage output  
port (Note)  
C
L
V
EE  
Note: Ports P2, P3, and P40 to P43 need external resistors.  
Figure Z-2. Circuit for measuring output switching characteristics  
142  
Mitsubishi microcomputers  
M30218 Group  
Timing (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=5V  
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-9. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
40  
Table Z-10. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
200  
200  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table Z-11. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Min. Max.  
200  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
100  
100  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table Z-12. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
100  
Max.  
t
w(TAH)  
ns  
ns  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table Z-13. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
2000  
1000  
1000  
400  
Max.  
t
c(UP)  
ns  
ns  
ns  
ns  
ns  
TAiOUT input cycle time  
t
w(UPH)  
w(UPL)  
TAiOUT input HIGH pulse width  
t
TAiOUT input LOW pulse width  
TAiOUT input setup time  
TAiOUT input hold time  
t
su(UP-TIN)  
t
h(TIN-UP)  
400  
143  
Mitsubishi microcomputers  
M30218 Group  
Timing (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=5V  
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-14. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
tc(TB)  
Parameter  
Unit  
Min.  
100  
Max.  
ns  
ns  
ns  
ns  
ns  
ns  
TBiIN input cycle time (counted on one edge)  
tw(TBH)  
tw(TBL)  
tc(TB)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
40  
40  
200  
80  
tw(TBH)  
tw(TBL)  
80  
Table Z-15. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
tc(TB)  
Parameter  
Unit  
Min.  
400  
200  
200  
Max.  
TBiIN input cycle time  
ns  
ns  
ns  
tw(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
tw(TBL)  
Table Z-16. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
200  
200  
Max.  
tc(TB)  
tw(TBH)  
tw(TBL)  
ns  
ns  
ns  
TBiIN input cycle time  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
Table Z-17. Serial I/O  
Standard  
Symbol  
tc(CK)  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKi input cycle time  
tw(CKH)  
tw(CKL)  
td(C-Q)  
th(C-Q)  
tsu(D-C)  
th(C-D)  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
80  
0
30  
90  
RxDi input setup time  
RxDi input hold time  
_______  
Table Z-18. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
250  
250  
Max.  
tw(INH)  
tw(INL)  
ns  
ns  
INTi input HIGH pulse width  
INTi input LOW pulse width  
Table Z-19. Automatic transfer serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
0.95  
400  
Max.  
tc(SCLK)  
µs  
ns  
ns  
ns  
ns  
Serial I/O clock input cycle time  
Serial I/O clock input HIGH pulse width  
Serial I/O clock input LOW pulse width  
Serial I/O input setup time  
twH(SCLK)  
twL(SCLK)  
tsu(SCLK-SIN)  
th(SCLK-SIN)  
400  
200  
200  
Serial I/O input hold time  
144  
Mitsubishi microcomputers  
M30218 Group  
Timing (VCC=5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
tc(TA)  
VCC=5V  
tw(TAH)  
TAiIN input  
tw(TAL)  
tc(UP)  
tw(UPH)  
TAiOUT input  
tw(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
t
h(TIN-UP)  
tsu(UP-TIN)  
(When count on falling edge is selected)  
TAiIN input  
(When count on rising edge is selected)  
tc(TB)  
tw(TBH)  
TBiIN input  
tw(TBL)  
tc(CK)  
tw(CKH)  
CLK  
i
tw(CKL)  
th(C-Q)  
TxD  
i
td(C-Q)  
tsu(D-C)  
th(C-D)  
RxD  
i
t
w(INL)  
INTi input  
t
w(INH)  
t
C(SCLK)  
tf(SCLK)  
t
r
tWL(SCLK)  
tWH(SCLK)  
S
CLK  
0.8VCC  
0.2VCC  
t
SU(SiN-SCLK)  
t
h(SCLK-SiN)  
0.8VCC  
0.2VCC  
S
IN  
td(SCLK-SOUT)  
tV(SCLK-SOUT)  
S
OUT  
145  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
Table Z-20. Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC,  
f(XIN) =5MH unless otherwise specified)  
Z
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P43,P50 to P57,  
P60 to P67  
HIGH output  
voltage  
1.5  
2.5  
2.5  
IOH= - 18mA  
IOH= - 5mA  
VOH  
V
P44 to P47,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107  
HIGH output  
voltage  
V
V
VOH  
IOH= - 1mA  
IOH= - 0.1mA  
HIGH POWER  
XOUT  
2.5  
2.5  
HIGH output  
voltage  
VOH  
VOL  
VOL  
LOW POWER  
IOH= - 50µA  
LOW output  
voltage  
P44 to P47,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107  
IOL=1mA  
0.5  
V
V
HIGH POWER  
IOL=0.1mA  
0.5  
0.5  
LOW output XOUT  
voltage  
LOW POWER  
IOL=50µA  
Hysteresis  
TA0IN to TA4IN,TB0IN to TB2IN,  
INT0 to INT5, CTS0, CTS1,  
CLK0,CLK1,SRDY2IN,SBSY2IN,  
0.2  
0.2  
0.8  
V
V
VT+-VT-  
SIN2,SCLK21,SCLK22  
RTS0,RTS1  
VT+-VT-  
IIH  
Hysteresis  
1.8  
4.0  
RESET  
HIGH input  
current  
P44 to P47,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107,  
XIN, RESET, CNVss  
VI=3V  
µA  
µA  
P30 to P37,P40 to P43(Note 1)  
IIH  
IIL  
4.0  
VI=3V  
VI=0V  
P44 to P47,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107,  
XIN, RESET, CNVss  
LOW input  
current  
- 4.0  
µA  
µA  
P30 to P37,P40 to P43(Note 1)  
- 4.0  
IIL  
VI=0V  
VI=0V  
RPULLUP  
Pull-up  
resistance  
P44 to P47,P70 to P77,  
P80 to P87,P90 to P97,  
P100 to P107  
66.0 120.0 500.0  
kΩ  
kΩ  
RPULLD  
ILEAK  
Pull-down  
resistance  
P00 to P07,P10 to P17,  
P50 to P57,P60 to P67  
VEE=VCC - 48V,VOL=VCC  
Output transistors off”  
68  
80  
120  
- 10  
Output leak  
current  
P00 to P07,P10 to P17,  
P20 to P27,P30 to P37,  
P40 to P44,P50 to P57,  
P60 to P67  
VEE=VCC - 48V,VOL=VCC - 48V  
Output transistors off”  
µA  
RfXIN  
Feedback resistance XIN  
Feedback resistance XCIN  
RAM retention voltage  
3.0  
MΩ  
MΩ  
V
RfXCIN  
VRAM  
10.0  
When clock is stopped  
2.0  
f(XIN)=5MHz  
The output  
pins are open  
and other  
6.0  
1.6  
15.0  
mA  
mA  
µA  
Square wave, no division  
f(XIN)=5MHz  
pins are VSS  
Square wave, 8 division  
f(XCIN)=32kHz  
Square wave  
50.0  
f(XCIN)=32kHz  
When a WAITinstruction  
is executed.  
Oscillation capacity High (Note2)  
2.8  
0.9  
Icc  
Power supply current (Note 3)  
µA  
µA  
f(XCIN)=32kHz  
When a WAIT instruction  
is executed.  
Oscillation capacity Low (Note2)  
C
Ta=25  
when clock is stopped  
1.0  
µA  
C
Ta=85  
when clock is stopped  
20.0  
Note 1: Except when reading ports P3, P40 to P43.  
Note 2: With one timer operated using fC32.  
Note 3: This contains an electric current to flow into AVCC pin.  
146  
nt  
Mitsubishi microcomputers  
M30218 Group  
Electrical characteristics(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
Table Z-21. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, Vss = AVSS = 0V  
at Ta = 25oC, f(XIN) = 5MH  
unless otherwise specified)  
Z
Standard  
Symbol  
Parameter  
Measuring condition  
Unit  
Min. Typ. Max  
V
REF = VCC  
REF = VCC = 3V, φAD = f(XIN)/2  
VREF = VCC  
10  
Bits  
Resolution  
Absolute accuracy Sample & hold function not available (8 bit)  
V
LSB  
±2  
R
LADDER  
40  
Ladder resistance  
Conversion time(8bit)  
Reference voltage  
Analog input voltage  
10  
14.0  
2.7  
0
k  
µs  
V
tCONV  
V
REF  
IA  
V
CC  
V
V
REF  
V
Table Z-22. D-A conversion characteristics (referenced to VCC = 3V, VSS = AVSS = 0V, VREF = 3V  
at Ta = 25oC, f(XIN) = 5MH  
unless otherwise specified)  
Z
Standard  
Min. Typ. Max  
Symbol  
Parameter  
Measuring condition  
Unit  
Resolution  
Absolute accuracy  
Setup time  
8
1.0  
3
Bits  
%
t
su  
µs  
R
O
Output resistance  
Reference power supply input current  
4
10  
20  
1.0  
kΩ  
mA  
I
VREF  
(Note)  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to 0016.  
The A-D converter's ladder resistance is not included.  
Also, when the Vref is unconnected at the A-D control register, IVREF is sent.  
147  
Mitsubishi microcomputers  
M30218 Group  
Timing(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-23. External clock input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
200  
85  
Max.  
ns  
ns  
ns  
ns  
ns  
t
c
External clock input cycle time  
t
w(H  
)
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
t
w(L)  
85  
t
r
18  
18  
t
f
External clock fall time  
148  
Mitsubishi microcomputers  
M30218 Group  
Timing(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-24. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
60  
Table Z-25. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table Z-26. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table Z-27. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
150  
Max.  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
ns  
ns  
t
w(TAL)  
Table Z-28. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
3000  
1500  
1500  
600  
Max.  
t
c(UP)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
t
w(UPH)  
TAiOUT input HIGH pulse width  
TAiOUT input LOW pulse width  
TAiOUT input setup time  
t
w(UPL)  
t
su(UP-TIN  
)
t
h(TIN-UP)  
TAiOUT input hold time  
600  
149  
Mitsubishi microcomputers  
M30218 Group  
Timing(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table Z-29. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
tc(TB)  
TBiIN input cycle time (counted on one edge)  
ns  
ns  
ns  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
c(TB)  
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
t
60  
t
300  
160  
160  
t
t
Table Z-30. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table Z-31. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table Z-32. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(CK)  
w(CKH)  
w(CKL)  
CLKi input cycle time  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
d(C-Q)  
h(C-Q)  
su(D-C)  
160  
t
0
50  
90  
t
RxDi input setup time  
RxDi input hold time  
t
h(C-D)  
_______  
Table Z-33. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
380  
380  
Max.  
t
w(INH)  
INTi input HIGH pulse width  
INTi input LOW pulse width  
ns  
ns  
t
w(INL)  
Table Z-34. Automatic transfer serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
2.0  
Max.  
t
c(SCLK)  
µs  
ns  
ns  
ns  
ns  
Serial I/O clock input cycle time  
Serial I/O clock input HIGH pulse width  
Serial I/O clock input LOW pulse width  
Serial I/O input setup time  
t
wH(SCLK)  
wL(SCLK)  
su(SCLK-SIN)  
h(SCLK-SIN)  
1000  
1000  
400  
t
t
t
Serial I/O input hold time  
400  
150  
Mitsubishi microcomputers  
M30218 Group  
Timing(VCC=3V, only mask ROM version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC=3V  
tc(TA)  
tw(TAH)  
TAiIN input  
tw(TAL)  
tc(UP)  
tw(UPH)  
TAiOUT input  
tw(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
th(TIN-UP)  
tsu(UP-TIN)  
(When count on falling edge is selected)  
TAiIN input  
(When count on rising edge is selected)  
tc(TB)  
tw(TBH)  
TBiIN input  
tw(TBL)  
tc(CK)  
tw(CKH)  
CLK  
i
tw(CKL)  
th(C-Q)  
TxD  
i
tsu(D-C)  
td(C-Q)  
th(C-D)  
RxD  
i
t
w(INL)  
INT  
i
input  
t
w(INH)  
t
C(SCLK)  
tf(SCLK)  
t
r
tWL(SCLK)  
tWH(SCLK)  
S
S
CLK  
0.8VCC  
0.2VCC  
t
SU(SiN-SCLK)  
t
h(SCLK-SiN)  
0.8VCC  
0.2VCC  
IN  
td(SCLK-SOUT)  
tV(SCLK-SOUT)  
S
OUT  
151  
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Outline Performance  
Table AA-1 shows the outline performance of the M30218 group (flash memory version).  
Table AA-1. Outline Performance of the M30218 group (flash memory version)  
Item  
Performance  
4.0V to 5.5 V (f(XIN)=10MHz)  
Power supply voltage  
V
PP=12V ± 5% (f(XIN)=10MHz)  
CC=5V ± 10% (f(XIN)=10MHz)  
Program/erase voltage  
V
Three modes (parallel I/O, standard serial I/O, CPU  
rewrite)  
Flash memory operation mode  
Erase block  
See Figure 1.AA.3.  
User ROM area  
division  
Boot ROM area  
One division (3.5 K bytes) (Note)  
In units of byte  
Program method  
Erase method  
Collective erase / block erase  
Program/erase control by software command  
6 commands  
Program/erase control method  
Number of commands  
Program/erase count  
100 times  
Standard serial I/O mode is supported.  
ROM code protect  
Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it  
when shipped from the factory. This area can be erased and programmed in only parallel I/O  
mode.  
152  
Mitsubishi microcomputers  
M30218 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Flash Memory  
The M30218 group (flash memory version) contains the NOR type of flash memory that requires a high-  
voltage VPP power supply for program/erase operations, in addition to the VCC power supply for device  
operation. For this flash memory, three flash memory modes are available in which to read, program, and  
erase: parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a  
programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Pro-  
cessing Unit (CPU). Each mode is detailed in the pages to follow.  
In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash  
memory has a boot ROM area that is used to store a program to control rewriting in CPU rewrite and  
standard serial I/O modes. This boot ROM area has had a standard serial I/O mode control program stored  
in it when shipped from the factory. However, the user can write a rewrite control program in this area that  
suits the users application system. This boot ROM area can be rewritten in only parallel I/O mode.  
CPU rewrite mode  
Standard serial I/O mode  
Microcomputer mode  
0000016  
Parallel I/O mode  
SFR  
SFR  
SFR  
0040016  
RAM  
RAM  
RAM  
YYYYY16  
DF00016  
DFDFF16  
E000016  
Collective  
erasable/  
programmable  
area  
Boot ROM  
area  
(3.5K bytes)  
Boot ROM  
area  
(3.5K bytes)  
Block 3  
E800016  
F000016  
Block 2  
Block 1  
XXXXX16  
FFFFF16  
Collective  
erasable/  
programmable  
area  
Collective  
erasable/  
programmable  
area  
User ROM  
area  
User ROM  
area  
User ROM  
area  
F800016  
FFFFF16  
Block 0  
XXXXX16  
E000016  
YYYYY16  
033FF16  
Type No.  
M30218FC  
Note 1: In CPU rewrite and standard serial I/O modes, the user ROM is the only erasable/programmable area.  
Note 2: In parallel I/O mode, the area to be erased/programmed can be selected by the address A17 input.  
The user ROM area is selected when this address input is high and the boot ROM area is selected  
when this address input is low.  
Figure AA-3. Block diagram of flash memory version  
153  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CPU Rewrite Mode  
In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control  
of the Central Processing Unit (CPU). In CPU rewrite mode, the flash memory can be operated on by  
reading or writing to the flash memory control register and flash command register. Figure BB-1, Figure BB-  
2 show the flash memory control register, and flash command register respectively.  
Also, in CPU rewrite mode, the CNVSS pin is used as the VPP power supply pin. Apply the power supply  
voltage, VPPH, from an external source to this pin.  
In CPU rewrite mode, only the user ROM area shown in Figure AA-3 can be rewritten; the boot ROM area  
cannot be rewritten. Make sure the program and block commands are issued for only the user ROM area.  
The control program for CPU rewrite mode can be stored in either user ROM or boot ROM area. In the CPU  
rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must  
be transferred to internal RAM before it can be executed.  
Flash memory control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
FCON0  
Address  
03B416  
When reset  
00100000  
2
0
0
R
W
Bit name  
CPU rewrite mode  
Function  
Bit symbol  
FCON00  
0: CPU rewrite mode is invalid  
1: CPU rewrite mode is valid  
select bit  
This bit can not write. The value, if  
read, turns out to be indeterminate.  
Reserved bit  
CPU rewrite mode  
monitor flag  
0: CPU rewrite mode is invalid  
1: CPU rewrite mode is valid  
FCON02  
Reserved bit  
FCON04  
Must always be set to "0".  
b6b5b4  
Erase / program  
area select bit  
000: Block 3 program/erase  
001: Block 2 program/erase  
010: Block 1 program/erase  
011: Block 0 program/erase  
110: Block 0 to 3 erase  
111: Inhibit  
FCON05  
FCON06  
Reserved bit  
Must always be set to "0".  
Flash memory control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
FCON1  
Address  
03B516  
When reset  
XXXXXX00  
2
0
0
R
W
Bit name  
Function  
Must always be set to "0".  
Bit symbol  
Reserved bit  
Nothing is assigned. In an attempt to write these bits, write "0". The  
value, if read, turns out to be indeterminate.  
Figure BB-1. Flash memory control register  
Flash command register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
FCMD  
Address  
03B616  
When reset  
0016  
R
W
Function  
Writing of software command  
<Software command name>  
Read command  
<Command code>  
"0016  
"4016  
"
"
Program command  
Program verify command  
Erase command  
Erase verify command  
Reset command  
"C016  
"2016" +"2016  
"A016  
"FF16" +"FF  
"
"
"
6
"
Figure BB-2. Flash command register  
154  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Microcomputer Mode and Boot Mode  
The control program for CPU rewrite mode must be written into the user ROM or boot ROM area in  
parallel I/O mode beforehand. (If the control program is written into the boot ROM area, the standard  
serial I/O mode becomes unusable.)  
See Figure AA-3 for details about the boot ROM area.  
Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVSS pin low  
(VSS). In this case, the CPU starts operating using the control program in the user ROM area.  
When the microcomputer is reset by pulling the P52 pin high (VCC), the CNVSS pin high(VPPH), the CPU  
starts operating using the control program in the boot ROM area. This mode is called the bootmode.  
The control program in the boot ROM area can also be used to rewrite the user ROM area.  
CPU rewrite mode operation procedure  
The internal flash memory can be operated on to program, read, verify, or erase it while being placed on-  
board by writing commands from the CPU to the flash memory control register (addresses 03B416,  
03B516) and flash command register (address 03B616). Note that when in CPU rewrite mode, the boot  
ROM area cannot be accessed for program, read, verify, or erase operations. Before this can be accom-  
plished, a CPU write control program must be written into the boot ROM area in parallel input/output  
mode. The following shows a CPU rewrite mode operation procedure.  
<Start procedure (Note 1)>  
(1) Apply VPPH to the CNVSS/VPP pin and VCC to the port P46 pin for reset release. Or the user can  
jump from the user ROM area to the boot ROM area using the JMP instruction and execute the CPU  
write control program. In this case, set the CPU write mode select bit of the flash memory control  
register to 1before applying VPPH to the CNVSS/VPP pin.  
(2) After transferring the CPU write control program from the boot ROM area to the internal RAM, jump  
to this control program in RAM. (The operations described below are controlled by this program.)  
(3) Set the CPU rewrite mode select bit to 1.  
(4) Read the CPU rewrite mode monitor flag to see that the CPU rewrite mode is enabled.  
(5) Execute operation on the flash memory by writing software commands to the flash command regis-  
ter.  
Note 1: In addition to the above, various other operations need to be performed, such as for entering the  
data to be written to flash memory from an external source (e.g., serial I/O), initializing the ports, and  
writing to the watchdog timer.  
<Clearing procedure>  
(1) Apply VSS to the CNVSS/VPP pin.  
(2) Set the CPU rewrite mode select bit to 0.  
155  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Precautions on CPU Rewrite Mode  
Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite  
mode.  
(1) Operation speed  
During erase/program mode, set BCLK to one of the following frequencies by changing the divide  
ratio:  
5 MHz or less when wait bit (bit 7 at address 000516) = 0 (without internal access wait state)  
10 MHz or less when wait bit (bit 7 at address 000516) = 1 (with internal access wait state)(Note 1)  
(2) Instructions inhibited against use  
The instructions listed below cannot be used during CPU rewrite mode because they refer to the  
internal data of the flash memory:  
UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction  
(3) Interrupts inhibited against use  
No interrupts can be used that look up the fixed vector table in the flash memory area. Maskable  
interrupts may be used by setting the interrupt vector table in a location outside the flash memory  
area.  
Note 1: Internal access wait state can be set in CPU rewrite mode. In this time, the following function is  
only used.  
CPU, ROM, RAM, timer, UART, SI/O2(non-automatic transfer), port  
In case of setting internal access wait state, refer to the following explain (software wait).  
Software wait  
A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address  
000516) (Note 2).  
A software wait is inserted in the internal ROM/RAM area by setting the wait bit of the processor mode  
register 1. When set to 0, each bus cycle is executed in one BCLK cycle. When set to 1, each bus  
cycle is executed in two BCLK cycles. After the microcomputer has been reset, this bit defaults to 0.  
The SFR area is always accessed in two BCLK cycles regardless of the setting of this control bit.  
Table DA-1 shows the software wait and bus cycles. Figure DA-6 shows example bus timing when  
using software waits.  
Note 2: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect  
register (address 000A16) to 1.  
Table DA-1. Software waits and bus cycles  
Bus cycle  
Area  
SFR  
Wait bit  
Invalid  
2 BCLK cycles  
1 BCLK cycle  
2 BCLK cycles  
0
1
Internal  
ROM/RAM  
156  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
< Internal bus (no wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Output  
Input  
Data bus  
Address bus  
Address  
Address  
< Internal bus (with wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Input  
Output  
Data bus  
Address  
Address bus  
Address  
Figure DA-6. Typical bus timings using software wait  
157  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Commands  
Table BB-1 lists the software commands available with the M30218 group (flash memory version).  
When CPU rewrite mode is enabled, write software commands to the flash command register to specify  
the operation to erase or program.  
The content of each software command is explained below.  
Table BB-1. List of Software Commands (CPU Rewrite Mode)  
First bus cycle  
Second bus cycle  
Command  
Data  
(D to D  
Data  
to D7)  
Mode Address  
Mode  
Address  
0
7)  
(D  
0
Read  
Write  
Write  
03B616  
03B616  
0016  
4016  
Program  
Write  
Read  
Program  
address  
Program  
data  
Program verify  
03B616  
C016  
Write  
Verify  
address  
Verify  
data  
Erase  
2016  
A016  
03B616  
03B616  
Write  
Write  
2016  
Write  
Read  
03B616  
Erase verify  
Verify  
address  
Verify  
data  
Reset  
FF16  
FF16  
Write  
Write  
03B616  
03B616  
Read Command (0016)  
The read mode is entered by writing the command code 0016to the flash command register in the  
first bus cycle. When an address to be read is input in one of the bus cycles that follow, the content of  
the specified address is read out at the data bus (D0D7), 8 bits at a time.  
The read mode is retained intact until another command is written.  
After reset and after the reset command is executed, the read mode is set.  
Program Command (4016)  
The program mode is entered by writing the command code 4016to the flash command register in  
the first bus cycle. When the user execute an instruction to write byte data to the desired address (e.g.,  
STE instruction) in the second bus cycle, the flash memory control circuit executes the program op-  
eration. The program operation requires approximately 20 µs. Wait for 20 µs or more before the user  
go to the next processing.  
During program operation, the watchdog timer remains idle, with the value 7FFF16set in it.  
Note 1: The write operation is not completed immediately by writing a program command once. The  
user must always execute a program-verify command after each program command executed. And if  
verification fails, the user need to execute the program command repeatedly until the verification  
passes. See Figure BB.3 for an example of a programming flowchart.  
158  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Program-verify command (C016)  
The program-verify mode is entered by writing the command code C016to the flash command  
register in the first bus cycle. When the user execute an instruction (e.g., LDE instruction) to read byte  
data from the address to be verified (the previously programmed address) in the second bus cycle,  
the content that has actually been written to the address is read out from the memory.  
The CPU compares this read data with the data that it previously wrote to the address using the  
program command. If the compared data do not match, the user need to execute the program and  
program-verify operations one more time.  
Erase command (2016 + 2016)  
The flash memory control circuit executes an erase operation by writing command code 2016to the  
flash command register in the first bus cycle and the same command code to the flash command  
register again in the second bus cycle. The erase operation requires approximately 20 ms. Wait for 20  
ms or more before the user go to the next processing.  
Before this erase command can be performed, all memory locations to be erased must have had data  
0016written to by using the program and program-verify commands. During erase operation, the  
watchdog timer remains idle, with the value 7FFF16 set in it.  
Note 1: The erase operation is not completed immediately by writing an erase command once. The  
user must always execute an erase-verify command after each erase command executed. And if  
verification fails, the user need to execute the erase command repeatedly until the verification passes.  
See Figure BB-3 for an example of an erase flowchart.  
Erase-verify command (A016)  
The erase-verify mode is entered by writing the command code A016to the flash command register  
in the first bus cycle. When the user execute an instruction to read byte data from the address to be  
verified (e.g., LDE instruction) in the second bus cycle, the content of the address is read out.  
The CPU must sequentially erase-verify memory contents one address at a time, over the entire area  
erased. If any address is encountered whose content is not FF16(not erased), the CPU must stop  
erase-verify at that point and execute erase and erase-verify operations one more time.  
Note 1: If any unerased memory location is encountered during erase-verify operation, be sure to  
execute erase and erase-verify operations one more time. In this case, however, the user does not  
need to write data 0016to memory before erasing.  
159  
Mitsubishi microcomputers  
M30218 Group  
CPU Rewrite Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset command (FF16 + FF16)  
The reset command is used to stop the program command or the erase command in the middle of  
operation. After writing command code 4016or 2016twice to the flash command register, write  
command code FF16to the flash command register in the first bus cycle and the same command  
code to the flash command register again in the second bus cycle. The program command or erase  
command is disabled, with the flash memory placed in read mode.  
Program  
Erase  
Start  
Start  
Address = first location  
Loop counter : X=0  
All bytes =  
"0016"?  
YES  
NO  
Program all bytes =  
Write : 4016  
Write program command  
"0016  
"
Address = First address  
Loop counter X=0  
Write program data/  
address  
Write : Program data  
Duration = 20 µs  
Write:2016  
Write:2016  
Write erase command  
Write erase command  
Loop counter : X=X+1  
Duration = 20ms  
Write program verify  
command  
Write : C016  
Loop counter X=X+1  
Write erase verify  
command/address  
Write:A016  
Duration = 6 µs  
Duration = 6µs  
YES  
X=25 ?  
NO  
YES  
X=1000 ?  
NO  
PASS  
FAIL  
NO  
Verify  
OK ?  
Verify  
OK ?  
FAIL  
NO  
Read:  
expect value=FF16  
Verify  
OK?  
Verify  
OK?  
PASS  
PASS  
FAIL  
PASS  
FAIL  
Last  
address ?  
Last  
address?  
Next address ?  
Next address  
Write:0016  
Write read command  
PASS  
Write read command  
FAIL  
Write read command  
PASS  
Write read command  
FAIL  
Write : 0016  
Figure BB-3. Program and erase execution flowchart in the CPU rewrite mode  
160  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin functions (Flash memory standard serial I/O mode)  
Pin  
Name  
Description  
I/O  
Apply 5V ± 10 % to Vcc pin and 0 V to Vss pin.  
Power input  
V
CC,VSS  
Apply 12V ± 5 % to this pin.  
CNVSS  
CNVSS  
RESET  
I
I
Reset input  
Reset input pin. While reset is "L" level, a 20 cycle or longer clock  
must be input to XIN pin.  
X
IN  
OUT  
AVCC, AVSS  
REF  
Connect a ceramic resonator or crystal oscillator between XIN and  
XOUT pins. To input an externally generated clock, input it to XIN pin  
and open XOUT pin.  
Clock input  
I
X
Clock output  
O
Connect AVSS to Vss and AVcc to Vcc, respectively.  
Analog power supply input  
Reference voltage input  
Output port P0  
V
Enter the reference voltage for AD from this pin.  
Output exclusive use pin.  
I
P0  
P1  
P2  
P3  
0
0
0
0
to P0  
to P1  
to P2  
to P3  
7
7
7
7
O
O
Output exclusive use pin.  
Output port P1  
Output exclusive use pin.  
Output port P2  
O
Input "H" or "L" level signal or open.  
Input "H" or "L" level signal or open.  
Input port P3  
Input port P4  
I
I
P4  
P4  
P4  
P4  
P4  
0
4
5
6
7
to P43  
TxD output  
RxD input  
SCLK input  
Serial data output pin.  
O
Serial data input pin.  
Serial clock input pin.  
I
I
O
BUSY output  
Output port P5  
Output port P6  
BUSY signal output pin.  
Output exclusive use pin.  
Output exclusive use pin.  
P5  
0
0
to P5  
to P6  
7
7
O
O
I
P6  
Input port P7  
Input port P8  
Input port P9  
Input port P10  
Input "H" or "L" level signal or open.  
Input "H" or "L" level signal or open.  
Input "H" or "L" level signal or open.  
Input "H" or "L" level signal or open.  
P7  
P8  
P9  
0
0
0
to P7  
to P8  
to P9  
7
7
7
I
I
P100 to P107  
I
161  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Mode setup method  
Signal  
CNVss  
RESET  
Value  
VppH  
V
SS  
VCC  
P6  
7
6
5
4
3
/FLD7  
/FLD6  
/FLD5  
/FLD4  
/FLD3  
81  
82  
50  
49  
P2  
P2  
P2  
P2  
P3  
P3  
P3  
P3  
P3  
P3  
4
5
6
7
0
1
2
3
4
5
/FLD36  
/FLD37  
/FLD38  
/FLD39  
/FLD40  
/FLD41  
/FLD42  
/FLD43  
/FLD44  
/FLD45  
P6  
P6  
P6  
P6  
P6  
P6  
83  
84  
85  
86  
87  
48  
47  
46  
45  
44  
2
/FLD2  
/FLD1  
/FLD0  
1
P6  
0
88  
89  
43  
42  
41  
40  
39  
38  
VEE  
90  
91  
P10  
P10  
P10  
P10  
7
6
5
4
/AN7  
/AN6  
/AN5  
/AN4  
M30218FCFP  
P3  
P3  
P4  
6/FLD46  
7/FLD47  
0/FLD48  
92  
93  
94  
95  
96  
97  
98  
99  
37  
36  
35  
34  
33  
32  
P10  
P10  
P10  
3
2
1
/AN3  
/AN2  
/AN1  
P4  
P4  
P4  
P4  
P4  
P4  
1
2
3
/FLD49  
/FLD50  
/FLD51  
AVSS  
/AN0  
REF  
AVCC  
Vss  
TxD  
4
5
6
/T  
/R  
/CLK0/FLD54  
XD0/FLD52  
P100  
RxD  
XD0/FLD53  
V
SCLK  
Vcc  
100  
31  
P47/CTS0/RTS0/FLD55  
BUSY  
Connect oscillator  
circuit.  
Figure DD-1. Pin connections for serial I/O mode (1)  
162  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Standard Serial I/O Mode  
The standard serial I/O mode serially inputs and outputs the software commands, addresses and data  
necessary for operating (read, program, erase, etc.) the internal flash memory. It uses a purpose-specific  
serial programmer.  
The standard serial I/O mode differs from the parallel I/O mode in that the CPU controls operations like  
rewriting (uses the CPU rewrite mode) in the flash memory or serial input for rewriting data. The standard  
serial I/O mode is started by clearing the reset with VPPH at the CNVss pin. (For the normal microprocessor  
mode, set CNVss to L.)  
This control program is written in the boot ROM area when shipped from Mitsubishi Electric. Therefore, if  
the boot ROM area is rewritten in the parallel I/O mode, the standard serial I/O mode cannot be used.  
Figures DD-1 shows the pin connections for the standard serial I/O mode. Serial data I/O uses three  
UART0 pins: CLK0, RxD0, TxD0, and RTS0 (BUSY).  
The CLK0 pin is the transfer clock input pin and it transfers the external transfer clock. The TxD0 pin outputs  
the CMOS signal. The RTS0 (BUSY) pin outputs an Llevel when reception setup ends and an Hlevel  
when the reception operation starts. Transmission and reception data is transferred serially in 8-byte  
blocks.  
In the standard serial I/O mode, only the user ROM area shown in Figure AA-3 can be rewritten, the boot  
ROM area cannot.  
The standard serial I/O mode has a 7-byte ID code. When the flash memory is not blank and the ID code  
does not match the content of the flash memory, the command sent from the programmer is not accepted.  
Function Overview (Standard Serial I/O Mode)  
In the standard serial I/O mode, software commands, addresses and data are input and output between  
the flash memory and an external device (serial programmer, etc.) using a clock synchronized serial I/O  
(UART0) . In reception, the software commands, addresses and program data are synchronized with the  
rise of the transfer clock input to the CLK0 pin and input into the flash memory via the RxD0 pin.  
In transmission, the read data and status are synchronized with the fall of the transfer clock and output to  
the outside from the TxD0 pin.  
The TxD0 pin is CMOS output. Transmission is in 8-bit blocks and LSB first.  
When busy, either during transmission or reception, or while executing an erase operation or program,  
the RTS0 (BUSY) pin is Hlevel. Accordingly, do not start the next transmission until the RTS0 (BUSY)  
pin is Llevel.  
Also, data in memory and the status register can be read after inputting a software command. It is pos-  
sible to check flash memory operating status or whether a program or erase operation ended success-  
fully or in error by reading the status register.  
Software commands and the status register are explained here following.  
163  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Commands  
Table DD-1 lists software commands. In the standard serial I/O mode, erase operations, programs and  
reading are controlled by transferring software commands via the RxD pin. Software commands are  
explained here below.  
Table DD-1. Software commands (Standard serial I/O mode)  
1st byte  
transfer  
When ID is  
not verificate  
Not  
Control command  
Page read  
2nd byte 3rd byte 4th byte 5th byte 6th byte  
Data  
output to  
259th  
Address  
(high)  
Data  
output  
Data  
output output  
Data  
Address  
(middle)  
1
2
FF16  
acceptable  
byte  
Page program  
Data input  
to 259th  
byte  
Address  
(high)  
Data  
input  
Data  
input  
Data  
input  
4116  
2016  
Address  
(middle)  
Not  
acceptable  
Address  
(high)  
D016  
Address  
(middle)  
D016  
Not  
acceptable  
Not  
acceptable  
Acceptable  
3
4
5
6
7
Bclock ease  
Erase all unlocked blocks  
Read status register  
Clear status register  
Read lockbit status  
A716  
7016  
5016  
7116  
SRD1  
output  
SRD  
output  
Not  
acceptable  
Not  
Address Lock bit  
Address  
(middle)  
(high)  
data  
acceptable  
output  
To ID7  
Address Address ID size  
ID1  
To  
Address  
(low)  
Size  
Acceptable  
8
9
ID check function  
Download function  
F516  
FA16  
(middle)  
Size  
(high)  
Check-  
sum  
Data  
Not  
acceptable  
(high)  
input required  
number  
(low)  
of times  
Version Version Version Version  
Version  
data  
output  
Address  
(middle)  
Acceptable  
Version  
data output  
to 9th byte  
Data  
output to  
259th byte  
10 Version data output function  
11 Boot area output function  
FB16  
FC16  
data  
output  
Address  
(high)  
data  
output  
Data  
data  
output output  
Data Data  
output output  
data  
Not  
acceptable  
output  
Note1: Shading indicates transfer from flash memory microcomputer to serial programmer. All other data is  
transferred from the serial programmer to the flash memory microcomputer.  
Note2: SRD refers to status register data. SRD1 refers to status register 1 data.  
Note3: All commands can be accepted when the flash memory is totally blank.  
164  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Page Read Command  
This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a  
time. Execute the page read command as explained here following.  
(1) Send the FF16command code in the 1st byte of the transmission.  
(2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respec-  
tively.  
(3) From the 4th byte onward, data (D0D7) for the page (256 bytes) specified with addresses A8 to  
A23 will be output sequentially from the smallest address first in sync with the rise of the clock.  
CLK0  
A
8
to  
A
16 to  
FF16  
RxD0  
TxD0  
A
15  
A23  
data0  
data255  
RTS0(BUSY)  
Figure DD-2. Timing for page read  
Read Status Register Command  
This command reads status information. When the 7016command code is sent in the 1st byte of the  
transmission, the contents of the status register (SRD) specified in the 2nd byte of the transmission  
and the contents of status register 1 (SRD1) specified in the 3rd byte of the transmission are read.  
CLK0  
RxD0  
TxD0  
7016  
SRD  
output  
SRD1  
output  
RTS0(BUSY)  
Figure DD-3. Timing for reading the status register  
165  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clear Status Register Command  
This command clears the bits (SR3SR4) which are set when the status register operation ends in  
error. When the 5016command code is sent in the 1st byte of the transmission, the aforementioned  
bits are cleared. When the clear status register operation ends, the RTS0 (BUSY) signal changes  
from the Hto the Llevel.  
CLK0  
5016  
RxD0  
TxD0  
RTS0(BUSY)  
Figure DD-4. Timing for clearing the status register  
Page Program Command  
This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a  
time. Execute the page program command as explained here following.  
(1) Send the 4116command code in the 1st byte of the transmission.  
(2) Send addresses A  
(3) From the 4th byte onward, as write data (D  
to A23 is input sequentially from the smallest address first, that page is automatically written.  
8
to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.  
0
D ) for the page (256 bytes) specified with addresses  
7
A
8
When reception setup for the next 256 bytes ends, the RTS0 (BUSY) signal changes from the Hto  
the Llevel. The result of the page program can be known by reading the status register. For more  
information, see the section on the status register.  
CLK0  
A
8
to  
A
16 to  
RxD0  
TxD0  
4116  
data0  
data255  
A
15  
A23  
RTS0(BUSY)  
Figure DD-5. Timing for the page program  
166  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Block Erase Command  
This command erases the data in the specified block. Execute the block erase command as explained  
here following.  
(1) Send the 2016command code in the 1st byte of the transmission.  
(2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respec-  
tively.  
(3) Send the verify command code D016in the 4th byte of the transmission. With the verify com-  
mand code, the erase operation will start for the specified block in the flash memory. Write the  
highest address of the specified block for addresses A16 to A23.  
When block erasing ends, the RTS0 (BUSY) signal changes from the Hto the Llevel. After block  
erase ends, the result of the block erase operation can be known by reading the status register. For  
more information, see the section on the status register.  
Each block can be erase-protected with the lock bit. For more information, see the section on the data  
protection function.  
CLK0  
A
8
to  
A
16 to  
RxD0  
TxD0  
2016  
D016  
A
15  
A23  
RTS0(BUSY)  
Figure DD-6.Timing for block erasing  
167  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Erase All Unlocked Blocks Command  
This command erases the content of all blocks. Execute the erase all unlocked blocks command as  
explained here following.  
(1) Send the A716command code in the 1st byte of the transmission.  
(2) Send the verify command code D016in the 2nd byte of the transmission. With the verify com-  
mand code, the erase operation will start and continue for all blocks in the flash memory.  
When block erasing ends, the RTS0 (BUSY) signal changes from the Hto the Llevel. The result of the  
erase operation can be known by reading the status register.  
CLK0  
RxD0  
TxD0  
A716  
D016  
RTS0(BUSY)  
Figure DD-7. Timing for erasing all unlocked blocks  
Read Lock Bit Status Command  
This command reads the lock bit status of the specified block. Execute the read lock bit status com-  
mand as explained here following.  
(1) Send the 7116command code in the 1st byte of the transmission.  
(2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respec-  
tively.  
(3) The lock bit data of the specified block is output in the 4th byte of the transmission. Write the  
highest address of the specified block for addresses A8 to A23.  
The M30218 group (flash memory version) does not have the lock bit, so the read value is always  
1(block unlock).  
CLK0  
A8 to  
A15  
A16 to  
A23  
RxD0  
TxD0  
7116  
DQ6  
RTS0(BUSY)  
Figure DD-8. Timing for reading lock bit status  
168  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Download Command  
This command downloads a program to the RAM for execution. Execute the download command as  
explained here following.  
(1) Send the FA16command code in the 1st byte of the transmission.  
(2) Send the program size in the 2nd and 3rd bytes of the transmission.  
(3) Send the check sum in the 4th byte of the transmission. The check sum is added to all data sent  
in the 5th byte onward.  
(4) The program to execute is sent in the 5th byte onward.  
When all data has been transmitted, if the check sum matches, the downloaded program is executed.  
The size of the program will vary according to the internal RAM.  
CLK0  
Program  
data  
Check  
sum  
Program  
data  
FA16  
Data size (low)  
RxD0  
TxD0  
Data size (high)  
RTS0(BUSY)  
Figure DD-9. Timing for download  
169  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Version Information Output Command  
This command outputs the version information of the control program stored in the boot area. Execute  
the version information output command as explained here following.  
(1) Send the FB16command code in the 1st byte of the transmission.  
(2) The version information will be output from the 2nd byte onward. This data is composed of 8  
ASCII code characters.  
CLK0  
FB16  
RxD0  
TxD0  
'V'  
'E'  
'R'  
'X'  
RTS0(BUSY)  
Figure DD-10. Timing for version information output  
Boot Area Output Command  
This command outputs the control program stored in the boot area in one page blocks (256 bytes).  
Execute the boot area output command as explained here following.  
(1) Send the FC16command code in the 1st byte of the transmission.  
(2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respec-  
tively.  
(3) From the 4th byte onward, data (D0D7) for the page (256 bytes) specified with addresses A8 to  
A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.  
CLK0  
A
8
to  
A16 to  
A23  
FC16  
RxD0  
TxD0  
A
15  
data0  
data255  
RTS0(BUSY)  
Figure DD-11. Timing for boot area output  
170  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
ID Check  
This command checks the ID code. Execute the boot ID check command as explained here following.  
(1) Send the F516command code in the 1st byte of the transmission.  
(2) Send addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code in the 2nd, 3rd  
and 4th bytes of the transmission respectively.  
(3) Send the number of data sets of the ID code in the 5th byte.  
(4) The ID code is sent in the 6th byte onward, starting with the 1st byte of the code.  
CLK0  
ID size  
ID1  
ID7  
F516  
DF16  
FF16  
0F16  
RxD0  
TxD0  
RTS0(BUSY)  
Figure DD-12. Timing for the ID check  
ID Code  
When the flash memory is not blank, the ID code sent from the serial programmer and the ID code  
written in the flash memory are compared to see if they match. If the codes do not match, the com-  
mand sent from the serial programmer is not accepted. An ID code contains 8 bits of data. Area is,  
from the 1st byte, addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, and  
0FFFF716 . Write a program into the flash memory, which already has the ID code set for these  
addresses.  
Address  
ID1 Undefined instruction vector  
ID2 Overflow vector  
0FFFDF16 to 0FFFDC16  
0FFFE316 to 0FFFE016  
0FFFE716 to 0FFFE416  
0FFFEB16 to 0FFFE816  
0FFFEF16 to 0FFFEC16  
0FFFF316 to 0FFFF016  
0FFFF716 to 0FFFF416  
0FFFFB16 to 0FFFF816  
0FFFFF16 to 0FFFFC16  
BRK instruction vector  
ID3 Address match vector  
ID4 Single step vector  
ID5 Watchdog timer vector  
ID6 DBC vector  
ID7  
Reset vector  
4 bytes  
Figure DD-13. ID code storage addresses  
171  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Status Register (SRD)  
The status register indicates operating status of the flash memory and status such as whether an erase  
operation or a program ended successfully or in error. It can be read by writing the read status register  
command (7016). Also, the status register is cleared by writing the clear status register command (5016).  
Table DD-2 gives the definition of each status register bit. After clearing the reset, the status register  
outputs 8016.  
Table DD-2. Status register (SRD)  
Definition  
SRD0 bits  
Status name  
"1"  
"0"  
Status bit  
Reserved  
Erase bit  
Program bit  
Reserved  
Reserved  
Reserved  
Reserved  
Ready  
Busy  
SR7 (bit7)  
SR6 (bit6)  
SR5 (bit5)  
-
-
Terminated in error  
Terminated normally  
Terminated in error  
Terminated normally  
SR4 (bit4)  
SR3 (bit3)  
-
-
-
-
-
-
-
-
SR2 (bit2)  
SR1 (bit1)  
SR0 (bit0)  
Status Bit (SR7)  
The status bit indicates the operating status of the flash memory. When power is turned on, 1(ready)  
is set for it. The bit is set to 0(busy) during an auto write or auto erase operation, but it is set back to  
1when the operation ends.  
Erase Bit (SR5)  
The erase bit reports the operating status of the auto erase operation. If an erase error occurs, it is set  
to 1. When the erase status is cleared, it is set to 0.  
Program Bit (SR4)  
The program bit reports the operating status of the auto write operation. If a write error occurs, it is set  
to 1. When the program status is cleared, it is set to 0.  
172  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Status Register 1 (SRD1)  
Status register 1 indicates the status of serial communications, results from ID checks and results from  
check sum comparisons. It can be read after the SRD by writing the read status register command (7016).  
Also, status register 1 is cleared by writing the clear status register command (5016).  
Table DD-3 gives the definition of each status register 1 bit. 0016is output when power is turned ON and  
the flag status is maintained even after the reset.  
Table DD-3. Status register 1 (SRD1)  
Definition  
SRD1 bits  
Status name  
"1"  
"0"  
Boot update completed bit  
Reserved  
SR15 (bit7)  
SR14 (bit6)  
SR13 (bit5)  
Not update  
Update completed  
-
-
Reserved  
-
-
Checksum match bit  
ID check completed bits  
Match  
SR12 (bit4)  
SR11 (bit3)  
Mismatch  
00  
01  
10  
11  
Not verified  
Verification mismatch  
Reserved  
SR10 (bit2)  
Verified  
Data receive time out  
Reserved  
SR9 (bit1)  
SR8 (bit0)  
Time out  
-
Normal operation  
-
Boot Update Completed Bit (SR15)  
This flag indicates whether the control program was downloaded to the RAM or not, using the down-  
load function.  
Check Sum Consistency Bit (SR12)  
This flag indicates whether the check sum matches or not when a program, is downloaded for execu-  
tion using the download function.  
ID Check Completed Bits (SR11 and SR10)  
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID  
check.  
Data Reception Time Out (SR9)  
This flag indicates when a time out error is generated during data reception. If this flag is attached  
during data reception, the received data is discarded and the microcomputer returns to the command  
wait state.  
173  
Mitsubishi microcomputers  
M30218 Group  
Appendix Standard Serial I/O Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Example Circuit Application for The Standard Serial I/O Mode  
The below figure shows a circuit application for the standard serial I/O mode. Control pins will vary ac-  
cording to programmer, therefore see the programmer manual for more information.  
Clock input  
RTS output  
Data input  
CLK0  
RTS0(BUSY)  
R
XD0  
T
XD0  
Data output  
M30218 Flash  
memory version  
V
PP  
CNVss  
(1) Control pins and external circuitry will vary according to programmer. For  
more information, see the programmer manual.  
(2) In this example, the microprocessor mode and standard serial I/O mode are  
switched via a switch.  
Figure DD-14. Example circuit application for the standard serial I/O mode  
174  
Mitsubishi microcomputers  
M30218 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
MMP  
100P6S-A  
Plastic 100pin 1420mm body QFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
MD  
QFP100-P-1420-0.65  
HD  
D
100  
81  
1
80  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.25  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.4  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.13  
0.1  
10°  
A
A
A
1
2
0.1  
2.8  
0.3  
0.15  
14.0  
20.0  
0.65  
16.8  
22.8  
0.6  
1.4  
b
c
D
E
e
30  
51  
31  
50  
HD  
A
L1  
HE  
L
L1  
x
y
F
b2  
0.35  
14.6  
20.6  
e
b
L
x
M
I
2
Detail F  
y
M
M
D
E
175  
Mitsubishi microcomputers  
M30218 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Revision History  
Version  
Revision  
date  
Contents for change  
99.12.21  
REV.A1  
Page 2 Figure AA-1  
M30218-XXXFP ---> M30218-XXXXFP  
Page 10 Figure BA-3  
03B816 DMA0 cause select register ---> DMA0 request cause select register  
03BA16 DMA1 cause select register ---> DMA1 request cause select register  
Page 55 Figure KA-2 FLDC mode register  
bit3, bit2  
(at rising edge of each edge) ---> (at rising edge of each digit)  
11: ---> 10:  
Page 90 Figure GA-4 UARTi transmit/receive control register 0  
bit4 (P47 and P74 function as) ---> (P47 and P77 function as)  
Page 128 Exclusive High-breakdown]voltage Output Ports Line 2  
All ports have structure of high-breakdown-voltage P-channel open drain output  
and pull-down resistance. ---> All ports have structure of high-breakdown-voltage  
P-channel open drain output. Exclusive output ports except P2 have built-in pull-  
down resistance.  
Page 134  
Add to Note 3.  
00.11.10  
REV.B  
Page 150 Figure Z-34 Automatic transfer serial I/O  
Decided electrical standard values (at VCC = 3V)  
Page 153 Figure AA-3  
User ROM area block number  
E000016 to E  
E800016 to EFFFF16 Block 1 ---> Block 2  
F000016 to F FFF16 Block 2 ---> Block 1  
7FFF16 Block 0 ---> Block 3  
7
F800016 to FFFFF16 Block 3 ---> Block 0  
Page 154 Figure BB-1 Flash memory control register 0  
bit6 bit5 bit4  
0
0
0
0
0
0
1
1
0 : Block 0 program/erase ---> Block 3 program/erase  
1 : Block 1 program/erase ---> Block 2 program/erase  
0 : Block 2 program/erase ---> Block 1 program/erase  
1 : Block 3 program/erase ---> Block 0 program/erase  
01.1.24  
Page 2, 5, 6, 7, 128, 133, 134, 140, 142 and 146  
Delete about mask option specification of pull-down resistor  
M30218 Data sheet  
Revision history  
176  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor  
products better and more reliable, but there is always the possibility that trouble may  
occur with them. Trouble with semiconductors may lead to personal injury, fire or  
property damage. Remember to give due consideration to safety when making your  
circuit designs, with appropriate measures such as (i) placement of substitutive,  
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any  
malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection  
of the Mitsubishi semiconductor product best suited to the customer's application;  
they do not convey any license under any intellectual property rights, or any other  
rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or  
infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in  
these materials.  
All information contained in these materials, including product data, diagrams, charts,  
programs and algorithms represents information on products at the time of publication  
of these materials, and are subject to change by Mitsubishi Electric Corporation  
without notice due to product improvements or other reasons. It is therefore  
recommended that customers contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor for the latest product information before  
purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical  
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,  
liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation  
by various means, including the Mitsubishi Semiconductor home page (http://  
www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including  
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate  
all information as a total system before making a final decision on the applicability of  
the information and products. Mitsubishi Electric Corporation assumes no  
responsibility for any damage, liability or other loss resulting from the information  
contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured  
for use in a device or system that is used under circumstances in which human life is  
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor when considering the use of a product  
contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint  
or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control  
restrictions, they must be exported under a license from the Japanese government  
and cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan  
and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon  
ductor product distributor for further details on these materials or the products con  
tained therein.  
MITSUBISHI SEMICONDUCTORS  
M30218 Group Data Sheet REV.B  
Feb. First Edition 2001  
Editioned by  
Committee of editing of Mitsubishi Semiconductor  
Published by  
Mitsubishi Electric Corp., Kitaitami Works  
This book, or parts thereof, may not be reproduced in any form without  
permission of Mitsubishi Electric Corporation.  
©2001 MITSUBISHI ELECTRIC CORPORATION  

相关型号:

M3021M8MA-AXXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M3021M8MC-AXXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30220

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220F8-XXXGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220F8-XXXRP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220FA

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30220FA-XXXGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220FA-XXXRP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30220FC

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30220FCGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30220FCRP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI