M37151M6 [RENESAS]

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER; SNGLE - CHIP 8 - BIT的CMOS微机
M37151M6
型号: M37151M6
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SNGLE - CHIP 8 - BIT的CMOS微机

计算机
文件: 总138页 (文件大小:1167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
REJ03B0129-0100Z  
Rev.1.00  
Nov 01, 2002  
1. DESCRIPTION  
The M37151M6/M8/MA/MC/MF-XXXFP and M37151EFFP are  
(It is possible to display 3 lines or more by software)  
Kinds of characters ........................................................ 254 kinds  
single-chip microcomputers designed with CMOS silicon gate tech-  
(coloring unit)  
(per charactor unit)  
2
nology. They have an OSD, data slicer, and I C-BUS interface, mak-  
Character display area ............................ CC mode: 16 26 dots  
OSD mode: 16 20 dots  
ing them perfect for TV channel selection systems with a closed cap-  
tion decoder. The M37151EFFP has a built-in PROM that can be  
written electrically.  
Kinds of character sizes ..................................... CC mode: 1 kind  
OSD mode: 8 kinds  
Kinds of character colors .................................. 8 colors (R, G, B)  
Coloring unit ................... character, character background, raster  
Display position  
2. FEATURES  
Number of basic instructions .................................................... 71  
Memory size  
Horizontal: 128 levels  
Vertical: 512 levels  
ROM .............. 24K bytes  
Attribute ........................................................................................  
CC mode: smooth italic, underline, flash, automatic solid space  
OSD mode: border  
(M37151M6-XXXFP)  
32K bytes  
(M37151M8-XXXFP)  
Smooth roll-up  
40K bytes  
Window function  
(M37151MA-XXXFP)  
48K bytes  
3. APPLICATION  
TV with closed caption decoder  
(M37151MC-XXXFP)  
60K bytes  
(M37151MF-XXXFP, M37151EFFP)  
RAM ............... 1024 bytes  
(M37151M6-XXXFP)  
1152 bytes  
(M37151M8-XXXFP)  
1472 bytes  
(M37151MA-XXXFP, M37151MC-XXXFP)  
2048 bytes  
(M37151MF-XXXFP, M37151EFFP)  
(*ROM correction memory included)  
Minimum instruction execution time  
................................................................. 0.5 µs (Min.)(at 8 MHz)  
Power source voltage ................................................. 5 V ± 10 %  
Subroutine nesting ............................................. 128 levels (Max.)  
Interrupts ....................................................... 17 types, 16 vectors  
8-bit timers .................................................................................. 6  
Programmable I/O ports (Ports P0, P1, P2, P30, P31) ............. 25  
Serial I/O ............................................................ 8-bit 1 channel  
2
Multi-master I C-BUS interface .............................. 1 (3 systems)  
A-D comparator (7-bit resolution) ................................ 8 channels  
PWM output circuit......................................................... 8-bit 5  
Power dissipation  
High-speed mode ............................................................ 165 mW  
(at VCC = 5.5V, Oscillation frequency 8 MHz, OSD on, and Data  
slicer on)  
Low-speed mode ............................................................ 0.33 mW  
(at VCC = 5.5V, 32 kHz oscillation frequency)  
Closed caption data slicer  
ROM correction function ................................................ 2 vectors  
OSD function  
Display characters ................................... 32 characters 2 lines  
Rev.1.00 Nov 01, 2002 page 1 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
TABLE OF CONTENTS  
14. MULTI-MASTER I2C-BUS BUS LINE CHARACTERISTICS..... 102  
15. PROM PROGRAMMING METHOD......................... 103  
16. DATA REQUIRED FOR MASK ORDERS ................ 103  
17. ONE TIME PROM VERSION M37151EFFP MARKING .............. 104  
18. APPENDIX ............................................................... 105  
19. PACKAGE OUTLINE ............................................... 136  
1. DESCRIPTION............................................................... 1  
2. FEATURES .................................................................... 1  
3. APPLICATION ................................................................ 1  
4. PIN CONFIGURATION .................................................. 3  
5. FUNCTIONAL BLOCK DIAGRAM ................................. 4  
6. PERFORMANCE OVERVIEW ....................................... 5  
7. PIN DESCRIPTION........................................................ 7  
8. FUNCTIONAL DESCRIPTION..................................... 11  
8.1 CENTRAL PROCESSING UNIT (CPU) .......... 11  
8.2 MEMORY........................................................ 12  
8.3 INTERRUPTS ................................................. 17  
8.4 TIMERS .......................................................... 22  
8.5 SERIAL I/O ..................................................... 26  
8.6 MULTI-MASTER I2C-BUS INTERFACE ......... 29  
8.7 PWM OUTPUT FUNCTION............................ 42  
8.8 A-D COMPARATOR........................................ 46  
8.9 ROM CORRECTION FUNCTION................... 48  
8.10 DATA SLICER ............................................... 49  
8.11 OSD FUNCTIONS ........................................ 60  
8.11.1 Display Position ................................. 65  
8.11.2 Dot Size ............................................. 69  
8.11.3 Clock for OSD .................................... 70  
8.11.4 Field Determination Display ............... 71  
8.11.5 Memory for OSD ................................ 73  
8.11.6 Character color .................................. 77  
8.11.7 Character background color............... 77  
8.11.8 OUT signals ....................................... 78  
8.11.9 Attribute .............................................. 79  
8.11.10 Multiline Display ............................... 84  
8.11.11 Automatic Solid Space Function....... 85  
8.11.12 Window Function ............................. 86  
8.11.13 OSD Output Pin Control................... 88  
8.11.14 Raster Coloring Function ................. 89  
8.12 SOFTWARE RUNAWAY DETECT FUNCTION.... 91  
8.13 RESET CIRCUIT .......................................... 92  
8.14 CLOCK GENERATING CIRCUIT ................. 93  
8.15 OSD OSCILLATION CIRCUIT ...................... 97  
8.16 AUTO-CLEAR CIRCUIT ............................... 98  
8.17 ADDRESSING MODE .................................. 98  
8.18 MACHINE INSTRUCTIONS ......................... 98  
9. PROGRAMMING NOTES ............................................ 98  
10. ABSOLUTE MAXIMUM RATINGS ............................. 99  
11. RECOMMENDED OPERATING CONDITIONS ......... 99  
12. ELECTRIC CHARACTERISTICS ............................ 100  
13. A-D CONVERTER CHARACTERISTICS................. 102  
Rev.1.00 Nov 01, 2002 page 2 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
4. PIN CONFIGURATION  
1
42  
P12/SCL2  
P13/SDA1  
P14/SDA2  
P16/AD8/TIM2  
P50/HSYNC  
P51/VSYNC  
P52/B  
P11/SCL1  
2
3
41  
40  
39  
P00/PWM0  
P01/PWM1  
P02/PWM2  
P03/PWM3/AD1  
P04/PWM4/AD2  
P05/AD3  
4
5
38  
37  
6
7
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
8
P53/G  
P06/INT2/AD4  
P07/INT1  
9
P54/R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P20/SCLK/AD5  
P21/SOUT/AD6  
P22/SIN/AD7  
P23/TIM3  
P55/OUT  
CLKCONT/P10  
P30/SDA3  
P31/SCL3  
P15  
P24/TIM2  
10K  
P25/INT3  
P26/XCIN  
RESET  
CVIN  
VHOLD  
HLF  
P27/XCOUT  
CNVSS  
XIN  
XOUT  
VSS  
FLIT  
VCC  
Outline 42P2R  
Fig. 4.1 Pin Configuration (Top View)  
Rev.1.00 Nov 01, 2002 page 3 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
5. FUNCTIONAL BLOCK DIAGRAM  
C N Y S H  
C N Y S V  
B
G
R
T U O  
0 M W P  
1 M W P  
2 M W P  
3 M W P  
4 M W P  
T U O S  
K L C S  
N I S  
1 L C S  
2 L C S  
3 L C S  
1 A D S  
2 A D S  
3 A D S  
8 A D 1  
3 T I N  
2 T I N  
1 T I N  
Fig. 5.1 Functional Block Diagram of M37151  
Rev.1.00 Nov 01, 2002 page 4 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
6. PERFORMANCE OVERVIEW  
Table 6.1 Performance Overview  
Parameter  
Number of basic instructions  
Instruction execution time  
Functions  
71  
0.5 ms (the minimum instruction execution time, at 8 MHz oscillation fre-  
quency)  
Clock frequency  
8 MHz (maximum)  
Memory size  
ROM M37151M6-XXXFP  
M37151M8-XXXFP  
24K bytes  
32K bytes  
M37151MA-XXXFP  
M37151MC-XXXFP  
40K bytes  
48K bytes  
M37151MF-XXXFP, M37151EFFP  
60K bytes  
RAM M37151M6-XXXFP  
M37151M8-XXXFP  
1024 bytes (ROM correction memory included)  
1152 bytes (ROM correction memory included)  
1472 bytes (ROM correction memory included)  
2048 bytes (ROM correction memory included)  
M37151MA-XXXFP, M37151MC-XXXFP  
M37151MF-XXXFP, M37151EFFP  
I/O  
Input/Output  
ports  
P0  
8-bit 1 (N-channel open-drain output structure, can be used as PWM  
output pins, INT input pins, A-D input pin)  
7-bit 1 (CMOS input/output structure, however, N-channel open-drain  
output structure, when P11–P14 are used as multi-master I C-BUS inter-  
P10–P16  
P20–P27  
I/O  
I/O  
2
face, can be used as A-D input pins, timer external clock input pins, multi-  
2
master I C-BUS interface)  
8-bit 1 (P2 is CMOS input/output structure, however, N-channel open-  
drain output structure when P20 and 21 are used as serial output, can be  
used as serial input/output pins, timer external clock input pins, A-D input  
pins, INT input pin, sub-clock input/output pins)  
P30, P31  
2-bit 1 (CMOS input/output structure, however, N-channel open-drain output structure,  
I/O  
when used as multi-master I2C-BUS interface, can be used as multi-master I2C-BUS interface.)  
P50, P51  
P52–P55  
2-bit 1(can be used as OSD input pins)  
Input  
4-bit 1(CMOS output structures, can be used as OSD output pins)  
Output  
Serial I/O  
8-bit 1  
2
Multi-master I C-BUS interface  
A-D comparator  
One (Three lines)  
8 channels (7-bit resolution)  
8-bit 5  
PWM output circuit  
Timers  
8-bit 6  
2 vectors  
ROM correction function  
128 levels (maximum)  
<17 types>  
Subroutine nesting  
Interrupt  
INT external interrupt 3, Internal timer interrupt 6, Serial I/O interrupt ✕  
2
1, OSD interrupt 1, Multi-master I C-BUS interface interrupt 1, Data  
slicer interrupt 1, f(XIN)/4096 interrupt 1, VSYNC interrupt 1, BRK  
instruction interrupt 1, reset 1  
Clock generating circuit  
Data slicer  
2 built-in circuits (externally connected to XCIN/OUT is a ceramic resonator  
or a quartz-crystal oscillator)  
Built-in  
Rev.1.00 Nov 01, 2002 page 5 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Table 6.2 Performance Overview (Continued)  
Parameter  
Functions  
Number of display characters  
32 characters 2 lines  
OSD function  
Dot structure  
CC mode: 16 26 dots (character display area : 16 20 dots)  
OSD mode: 16 20 dots  
Kinds of characters  
254 kinds  
Kinds of character sizes  
1 screen : 8  
CC mode: 1 kinds  
OSD mode: 8 kinds  
Character font coloring  
Display position  
1 screen: 8 kinds (per character unit)  
Horizontal: 128 levels, Vertical: 512 levels  
5V ± 10%  
Power source voltage  
Power  
dissipation  
In high-speed  
mode  
OSD ON  
Data slicer ON  
165 mW typ. ( at oscillation frequency f(XIN) = 8 MHz, fOSC = 26 MHz)  
OSD OFF Data slicer OFF  
OSD OFF Data slicer OFF  
82.5 mW typ. ( at oscillation frequency f(XIN) = 8 MHz)  
In low-speed  
mode  
0.33 mW typ. ( at oscillation frequency f(XCIN) = 32 kHz, f(XIN) = stop)  
In stop mode  
0.055 mW ( maximum )  
–10 °C to 70 °C  
Operating temperature range  
Device structure  
CMOS silicon gate process  
42-pin plastic molded SSOP  
Package  
Rev.1.00 Nov 01, 2002 page 6 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
7. PIN DESCRIPTION  
Table 7.1 PIN DESCRIPTION  
Input/  
Output  
Pin  
Name  
Functions  
VCC, VSS  
Power source  
CNVSS  
Apply voltage of 5 V ± 10 % to (typical) VCC, and 0 V to VSS.  
This is connected to VSS.  
CNVSS  
______  
RESET  
Reset input  
Input  
To enter the reset state, the reset input pin must be kept at a LOW for 2 ms or more (under  
normal VCC conditions).  
If more time is needed for the quartz-crystal oscillator to stabilize, this LOW condition should  
be maintained for the required time.  
XIN  
Clock input  
Input  
This is the input pin for the main clock generating circuit. Built-in clock clock generation  
circuit, when set  
XOUT  
Clock output  
Output  
to oscillation frequency, connect ceramic resonator or crystal frequency between XIN and  
XOUT. When use external clock input, connect clock oscillation source to XIN pin, and open  
XOUT pin.  
P0  
P0  
0
/PWM0– I/O port P0  
/PWM2,  
I/O  
Port P0 is an 8-bit I/O port with a direction register allowing each I/O bit to be individually  
programmed as input or output. At reset, this port is set to input mode. The output structure  
is N-channel open-drain output. (See note)  
2
P03/PWM3/AD1,  
P0  
4
/PWM4/AD2, PWM output  
Output  
Input  
Input  
I/O  
Output Pins P00 to P04 are also used as PWM output pins PWM0 to PWM4, respectively.  
The output structure is N-channel open-drain output.  
P05/AD3,  
P0  
6
/INT2/AD4, External interrupt  
Pins P06 and P07 are also used as INT external interrupt input pins INT2 and INT1 respectively.  
P07/INT1  
input  
Analog input  
Pins P03, P04, P05 and P06 are also used as analog input pins AD1, AD2, AD3 and AD4,  
respectively.  
P10  
/CLK CONT, I/O port P1  
Port P1 is a 7-bit I/O port and has basically the same functions as port P0. The output  
structure is CMOS output. (See note)  
P11/SCL1,  
P12/SCL2, Multi-master  
I/O  
Pins P11–P14 are used as SCL1, SCL2, SDA1 and SDA2 respectively, when multi-master  
I C-BUS interface is used. The output structure is N-channel open-drain output.  
2
2
P13/SDA1  
I C-BUS interface  
,
P14/SDA2, Clock control  
Output  
Input  
P10 pin is also used as Clock control output CLK CONT. The output structure is CMOS  
output.  
P16 pin is also used as timer external clock input pin TIM2.  
P15  
,
P16/AD8  
/
TIM2 External clock  
input for timer  
Analog input  
Input  
I/O  
P16 pin is also used as analog input pin AD8.  
P20  
/SCLK/AD5, I/O port P2  
/AD6  
Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The output  
structure is CMOS output. (See note)  
P21  
/SOUT  
,
P2  
2
/SIN/AD7, Serial I/O synchronous  
I/O  
P20 pin is also used as serial I/O synchronous clock input/output pin SCLK. The output  
structure is N-channel open-drain output.  
clock input/output port  
P23/TIM3,  
P24/TIM2,  
/INT3  
P25  
Serial I/O data  
output  
Output  
P21 pin is also used as serial I/O data output pin SOUT. The output structure is open-drain  
output.  
,
P2  
6
/
XCIN,  
Serial I/O data input  
Input  
Input  
P22 pin is also used as serial I/O data input pin SIN.  
P27/XCOUT External clock  
input for timer  
Pins P23 and P24 are also used as timer external clock input pins TIM3 and TIM2  
respectively.  
Analog input  
Input  
Input  
Pins P20–P22 are also used as analog input pins AD5, AD6 and AD7 respectively.  
P26 pin is also used as sub-clock input pin XCIN.  
Sub-clock input  
Sub-clock output  
External interrupt  
input  
Output  
Input  
P27 pin is also used as sub-clock output pin XCOUT. The output structure is CMOS output.  
P25 pin is also used as INT external interrupt input pin INT3.  
P30/SDA3 I/O port P3  
P31/SCL3  
I/O  
I/O  
Port P30,P31 is an 2-bit I/O port and has basically the same functions as port P0.  
The output structure is CMOS output. (See note)  
2
Multi-master  
Pins P30,P31 are used as SDA3,SCL3 respectively, when multi-master I C-BUS  
2
I C-BUS Interface  
interface is used. The output structure is N-channel open-drain output.  
Rev.1.00 Nov 01, 2002 page 7 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Table 7.2 PIN DESCRIPTION (continued)  
Input/  
Pin  
Name  
Functions  
Output  
Input  
Input  
Input  
P50/HSYNC Input P5  
Port P5 is a 2-bit input port.  
P51/VSYNC Horizonta synchronous signal  
Vertical synchronous signal  
The P50 pin is also used as a horizontal synchronous signal input HSYNC for OSD.  
The P51 pin is also used as a vertical synchronous signal input VSYNC for OSD.  
P52/B,  
Output P5  
OSD output  
output  
output  
Pins P52–P55 are a 4-bit output port. The output structure is CMOS output.  
Pins P52–P55 are also used as OSD output pins R, G, B and OUT respectively. The output  
structure is CMOS output.  
P53/G,  
P54/R,  
P55/OUT  
CVIN  
VHOLD  
HLF  
I/O for data slicer  
Input  
Input  
I/O  
Input the composite video signal through a capacitor.  
Connect a capacitor between VHOLD and Vss.  
Connect a filter consisting of a capacitor and a resistor, between HLF and Vss.  
Connect a capacitor between FILT and Vss.  
FILT  
Clock oscillation  
filter  
Input  
Notes : Port Pi (i = 0 to 3) has the port Pi direction register which can be used to program each bit for input (“0”) or an output (“1”). The pins programmed as “1” in  
the direction register are output pins. When pins are programmed as “0,” they are input pins. When pins are programmed as output pins, the output data are  
written into the port latch and then output. When data is read from the output pins, the data of the port latch, not the output pin level, is read. This allows a  
previously-output value to be read correctly even if the output LOW voltage has risen due to, for example, a directly-driven light emitting diode was directly  
driven. The input pins are in the floating state, so the values of the pins can be read. When data is written into the input pin, it is written only into the port latch,  
while the pin remains in the floating state.  
LED drive ports 4 (P24P27)  
Rev.1.00 Nov 01, 2002 page 8 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Ports P00–P07  
Direction register  
Port latch  
N-channel open-drain output  
Ports P00–P07  
Data bus  
Note : Each port is also used as follows :  
P00–P04 : PWM0–PWM4  
P05: AD3  
P06: INT2/AD4  
P07: INT1  
Ports P1, P2, P30, P31  
Direction register  
Port latch  
CMOS output  
Data bus  
Ports P1, P2, P30, P31  
Notes 1 : Each port is also used as follows :  
P10 : CLKCONT  
P11 : SCL1  
P12 : SCL2  
P20 : SCLK/AD5  
P21 : SOUT/AD6  
P22 : SIN/AD7  
P23 : TIM3  
P27 : XCOUT  
P30 : SDA3  
P31 : SCL3  
P13 : SDA1  
P14 : SDA2  
P24 : TIM2  
P16 : AD8/TIM2  
P25 : INT3  
P26 : XCIN  
2: The output structure of ports P11–P14, P30–P31 is N-channel open-drain output when using as multi-master  
2
I C-BUS interface (it is the same with P00–P07).  
3: The output structure of ports P20 and P21 is N-channel open-drain output when using as serial output (it is the  
same as P00–P07).  
Fig. 7.1 I/O Pin Block Diagram (1)  
Rev.1.00 Nov 01, 2002 page 9 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
P50, P51  
P52–P55  
CMOS input  
CMOS output  
Ports P52–P55  
Internal circuit  
Ports P50, P51  
Internal circuit  
Note : Each pin is also used  
as follows :  
Note : Each pin is also used  
as follows :  
P52 : B  
P50 : HSYNC  
P51 : VSYNC  
P53 : G  
P54 : R  
P55 : OUT  
Fig. 7.2 I/O Pin Block Diagram (2)  
Rev.1.00 Nov 01, 2002 page 10 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8. FUNCTIONAL DESCRIPTION  
8.1.1 CPU Mode Register  
8.1 CENTRAL PROCESSING UNIT (CPU)  
This microcomputer uses the standard 740 Family instruction set.  
Refer to the table of 740 Family addressing modes and machine  
instructions or the SERIES 740 <Software> User’s Manual for de-  
tails on the instruction set.  
The CPU mode register includes the stack page selection bit and  
internal system clock selection bit. The CPU mode register is allo-  
cated at address 00FB16.  
Availability of 740 Family instructions is as follows:  
The FST and SLW instructions cannot be used.  
The MUL, DIV, WIT and STP instructions can be used.  
CPU Mode Register  
b7b6 b5b4b3 b2b1b0  
1 1  
0 0  
CPU mode register (CM) [Address 00FB16  
]
Functions  
After reset  
B
Name  
R W  
R W  
b1 b0  
Processor mode bits  
(CM0, CM1)  
0, 1  
0
0 0: Single-chip mode  
0 1:  
1 0:  
1 1:  
Not available  
0: 0 page  
1: 1 page  
Stack page selection  
bit (CM2) (See note)  
2
1
R W  
Fix these bits to “1.”  
1
1
R W  
R W  
3, 4  
5
0: LOW drive  
1: HIGH drive  
X
COUT drivability  
selection bit (CM5)  
6
7
0
0
R W  
R W  
0: Oscillating  
1: Stopped  
Main Clock (XIN–XOUT  
stop bit (CM6)  
)
Internal system clock 0: XIN selected  
(high-speed mode)  
1: XCIN–XCOUT selected  
(low-speed mode)  
selection bit  
(CM7)  
Note. This bit is set to “1” after the reset release.  
Fig. 8.1.1 CPU Mode Register  
Rev.1.00 Nov 01, 2002 page 11 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.2 MEMORY  
8.2.6 Interrupt Vector Area  
8.2.1 Special Function Register (SFR) Area  
The special function register (SFR) area in the zero page contains  
control registers such as I/O ports and timers.  
The interrupt vector area contains reset and interrupt vectors.  
8.2.7 Zero Page  
The zero page addressing mode can be used to specify memory and  
register addresses in the zero page area. Access to this area with  
only 2 bytes is possible in the zero page addressing mode.  
8.2.2 RAM  
RAM is used for data storage and for stack area of subroutine calls  
and interrupts.  
8.2.8 Special Page  
8.2.3 ROM  
The special page addressing mode can be used to specify memory  
addresses in the special page area. Access to this area with only 2  
bytes is possible in the special page addressing mode.  
ROM is used for storing user programs as well as the interrupt vector  
area.  
8.2.4 OSD RAM  
RAM for display is used for specifying the character codes and col-  
8.2.9 ROM Correction Memory (RAM)  
This is used as the program area for ROM correction.  
ors to display.  
8.2.5 OSD ROM  
ROM for display is used for storing character data.  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
000016  
1000016  
M37151M6-  
XXXFP  
RAM  
M37151MF-XXXFP,  
M37151EFFP  
RAM  
Zero page  
00BF16  
00C016  
00FF16  
010016  
SFR1 area  
(1024 bytes)  
(2048 bytes)  
M37151MB-XXXFP  
01FF  
02001166  
RAM  
Not used  
SFR2 area  
Not used  
(1152 bytes)  
020F16  
M37151MA/MC-  
030016  
032016  
XXXFP  
RAM  
ROM correction function  
Vector 1: address 030016  
Vector 2: address 032016  
053F16  
05BF16  
06FF16  
(1472 bytes)  
Not used  
Not used  
OSD RAM  
(128 bytes)  
OSD ROM  
1140016  
080016  
087F16  
(10K bytes)  
13BFF16  
(See note)  
090016  
0B3F16  
M37151MF-XXXFP,  
M37151EFFP  
ROM  
(60K bytes)  
Not used  
Not used  
M37151MC-XXXFP  
ROM  
(48K bytes)  
M37151MA-XXXFP  
100016  
ROM  
(40K bytes)  
400016  
600016  
800016  
M37151M8-XXXFP  
A00016  
ROM  
(32K bytes)  
FF0016  
FFDE16  
1FFFF16  
M37151M6-XXXFP  
Special page  
ROM  
(24K bytes)  
Interrupt vector area  
FFFF16  
Fig. 8.2.1 Memory Map (M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP)  
Rev.1.00 Nov 01, 2002 page 12 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SFR1 Area (addresses C016 to DF16  
)
<Bit allocation>  
<State immediately after reset>  
:
:
0
1
?
: “0” immediately after reset  
: “1” immediately after reset  
Function bit  
Name  
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
Bit allocation  
State immediately after reset  
Address Register  
b7  
b0 b7  
b0  
?
C016  
C116  
C216  
C316  
C416  
C516  
C616  
C716  
C816  
C916  
CA16  
CB16  
CC16  
CD16  
CE16  
CF16  
D016  
D116  
D216  
D316  
D416  
D516  
D616  
D716  
D816  
D916  
DA16  
DB16  
DC16  
DD16  
DE16  
DF16  
Port P0(P0)  
0016  
Port P0 direction register (D0)  
0
0
?
?
0
0
1
?
0
?
?
0
?
0
?
1
Port P1(P1)  
0
0
Port P1 direction register (D1)  
Port P2(P2)  
?
0016  
Port P2 direction register (D2)  
Port P3(P3)  
BSEL21 BSEL20  
P31 P30  
0
0
?
0
0
0
0
0
0
0
?
0
?
0
T2SC T3SC  
OUTS P31D P30D  
0
0
1
0016  
?
Port P3 direction register (D3)  
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
1
0
0
?
0
?
Port P5(P5)  
1
PF5 PF4 PF3 PF2  
0
0
OSD port control register (PF)  
Timer return set register (TMS)  
TMS  
0
0016  
0016  
1
0
0
0
0
0
0
0
0
CC10  
Clock control register 1 (CC1)  
Caption data register 3 (CD3)  
Caption data register 4 (CD4)  
OSD control register (OC)  
CDL27 CDL26 CDL25 CDL24 CDL23 CDL22 CDL21 CDL20  
?
?
CDH27 CDH26 CDH25 CDH24 CDH23 CDH22 CDH21 CDH20  
OC7  
0
0
OC4 OC3 OC2 OC1 OC0  
0016  
0016  
?
HP6 HP5 HP4 HP3 HP2 HP1 HP0  
Horizontal position register (HP)  
Block control register 1(BC1)  
Block control register 2(BC2)  
Vertical position register 1(VP1)  
Vertical position register 2(VP2)  
BC17 BC16 BC15 BC14 BC13 BC12 BC11 BC10  
BC27 BC26 BC25 BC24 BC23 BC22 BC21 BC20  
VP17 VP16 VP15 VP14 VP13 VP12 VP11 VP10  
?
?
VP27 VP26 VP25 VP24 VP23 VP22 VP21 VP20  
WN17 WN16 WN15 WN14 WN13 WN12 WN11 WN10  
WN27 WN26 WN25 WN24 WN23 WN22 WN21 WN20  
?
?
Window register 1(WN1)  
Window register 2(WN2)  
I/O polarity control register (PC)  
Raster color register (RC)  
?
PC6 PC5  
PC3 PC2 PC1 PC0  
RC3 RC2 RC1 RC0  
4016  
0016  
?
0
0
0
RC7  
0
0
0
0
0
OC21 OC20  
0
0
0
0
?
0
0
0
0
OSD control register 2(OC2)  
INT3 INT2 INT1  
0016  
0016  
0016  
0016  
Interrupt input polarity control register (RE)  
0016  
0016  
0016  
Fig. 8.2.2 Memory Map of Special Function Register 1 (SFR1) (1)  
Rev.1.00 Nov 01, 2002 page 13 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SFR1 Area (addresses E016 to FF16  
)
<Bit allocation>  
:
<State immediately after reset>  
: “0” immediately after reset  
: “1” immediately after reset  
0
1
?
Function bit  
Name  
:
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
Bit allocation  
State immediately after reset  
Address  
Register  
b7  
0
b0 b7  
b0  
DSC12 DSC11 DSC10  
Data slicer control register 1 (DSC1)  
Data slicer control register 2 (DSC2)  
Caption data register 1 (CD1)  
Caption data register 2 (CD2)  
Clock run-in detect register (CRD)  
Data clock position register (DPS)  
Caption position register (CPS)  
Data slicer test register 2  
0016  
E016  
E116  
E216  
E316  
1
0
1
0
0
DSC25 DSC24 DSC23  
DSC20  
1
?
0
?
0
?
?
0
?
CDL17 CDL16 CDL15 CDL14 CDL13 CDL12 CDL11 CDL10  
CDH17 CDH16 CDH15 CDH14 CDH13 CDH12 CDH11 CDH10  
CRD7 CRD6 CRD5 CRD4 CRD3  
0016  
0016  
0016  
0916  
E416  
E516  
E616  
DPS7 DPS6 DPS5 DPS4 DPS3  
1
0
0
CPS7 CPS6 CPS5 CPS4 CPS3 CPS2 CPS1 CPS0  
0
0
?
0
0
0
0
0
0
0016  
0016  
0016  
E716  
E816  
E916  
EA16  
EB16  
Data slicer test register 1  
HC5 HC4 HC3 HC2 HC1 HC0  
Synchronous signal counter register (HC)  
Serial I/O register (SIO)  
?
SM6 SM5  
SM3 SM2 SM1 SM0  
Serial I/O mode register (SM)  
0016  
?
0
0
ADC14  
ADC12 ADC11 ADC10  
0
0
0
0
EC16 A-D control register 1 (AD1)  
0
0
ADC26 ADC25 ADC24 ADC23 ADC22 ADC21 ADC20  
0016  
0716  
A-D control register 2 (AD2)  
Timer 5 (T5)  
ED16  
EE16  
EF16  
F016  
Timer 6 (T6)  
FF16  
FF16  
0716  
FF16  
0716  
Timer 1 (T1)  
Timer 2 (T2)  
F116  
F216  
F316  
Timer 3 (T3)  
Timer 4 (T4)  
TM17 TM16 TM15 TM14 TM13 TM12 TM11 TM10  
TM27 TM26 TM25 TM24 TM23 TM22 TM21 TM20  
0016  
F416 Timer mode register 1 (TM1)  
Timer mode register 2 (TM2)  
2
F516  
0016  
?
0016  
D7 D6 D5 D4 D3 D2 D1 D0  
SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 RBW  
F616 I C data shift register (S0)  
2
F716  
F816  
I C address register (S0D)  
2
MST TRX BB PIN AL AAS AD0 LRB  
10BIT  
0
0
0
1
0
0
0
?
I C status register (S1)  
BSEL1 BSEL0  
ALS ESO BC2 BC1 BC0  
CCR4 CCR3 CCR2 CCR1 CCR0  
CM2  
2
0016  
SAD  
FAST  
MODE  
I C control register (S1D)  
F916  
FA16  
FB16  
FC16  
FD16  
FE16  
FF16  
ACK  
ACK  
2
0016  
3C16  
0016  
0016  
0016  
0016  
BIT  
I C clock control register (S2)  
CM7 CM6 CM5  
1
1
0
0
CPU mode register (CPUM)  
VSCR OSDR TM4R TM3R TM2R TM1R  
IN3R  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Interrupt control register 2 (ICON2)  
TM56R  
DSR  
IN1R  
IICR IN2R CKR S1R  
0
VSCE OSDE TM4E TM3E TM2E TM1E  
IICE IN2E CKE S1E DSE IN1E  
IN3E  
TM56C TM56E  
Fig. 8.2.3 Memory Map of Special Function Register 1 (SFR1) (2)  
Rev.1.00 Nov 01, 2002 page 14 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SFR2 Area (addresses 20016 to 20F16  
)
<Bit allocation>  
<State immediately after reset>  
:
0
1
?
: “0” immediately after reset  
: “1” immediately after reset  
Function bit  
Name  
:
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
State immediately after reset  
Register  
Bit allocation  
Address  
b0  
b0  
b7  
b7  
?
?
?
?
?
?
?
?
20016  
20116  
20216  
20316  
PWM0 register (PWM0)  
PWM1 register (PWM1)  
PWM2 register (PWM2)  
PWM3 register (PWM3)  
20416 PWM4 register (PWM4)  
20516  
20616  
0016  
0016  
PM13  
20716  
20816  
20916  
PWM mode register 1 (PM1)  
PWM mode register 2 (PM2)  
PM10  
?
?
?
?
0
?
?
0
PM24 PM23 PM22 PM21 PM20  
0
0
0
0016  
0016  
0016  
0016  
0016  
20A16  
20B16  
20C16  
ROM correction address 1 (high-order)  
ROM correction address 1 (low-order)  
ROM correction address 2 (high-order)  
20D16  
20E16  
ROM correction address 2 (low-order)  
ROM correction enable register (RCR)  
RC1 RC0  
0016  
?
20F16  
210  
0
0
0
0
1
1
1
0
Clock frequency set register (CFS)  
Clock control register 2(CC2)  
211  
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0016  
0016  
CC37  
CC35  
212 Clock control register 3(CC3)  
Fig. 8.2.4 Memory Map of Special Function Register 2 (SFR2)  
Rev.1.00 Nov 01, 2002 page 15 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
<
State immediately after reset>  
<
Bit allocation  
:
>
: “0” immediately after reset  
: “1” immediately after reset  
0
1
?
Function bit  
:
:
Name  
No function bit  
: Indeterminate immediately  
after reset  
: Fix to this bit to “0”  
(do not write to “1”)  
0
1
: Fix to this bit to “1”  
(do not write to “0”)  
Register  
Bit allocation  
State immediately after reset  
b0  
b0  
b7  
N
b7  
Processor status register (PS)  
V
T
B
D
I
Z
C
?
?
?
?
?
1
?
?
Program counter (PC  
Program counter (PC  
H)  
Contents of address FFFF16  
Contents of address FFFE16  
L
)
Fig. 8.2.5 Internal State of Processor Status Register and Program Counter at Reset  
Rev.1.00 Nov 01, 2002 page 16 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.3 INTERRUPTS  
8.3.1 Interrupt Causes  
Interrupts can be caused by 17 different sources consisting of 4 ex-  
ternal, 11 internal, 1 software, and reset. Interrupts are vectored in-  
terrupts with priorities as shown in Table 8.3.1. Reset is also included  
in the table because its operation is similar to an interrupt.  
When an interrupt is accepted,  
(1) VSYNC, OSD interrupts  
The VSYNC interrupt is an interrupt request synchronized with  
the vertical sync signal.  
The OSD interrupt occurs after character block display to the  
CRT is completed.  
The contents of the program counter and processor status regis-  
ter are automatically stored into the stack.  
(2) INT1 to INT3 external interrupts  
The interrupt disable flag I is set to “1” and the corresponding  
interrupt request bit is set to “0.”  
The INT1 to INT3 interrupts are external interrupt inputs, the sys-  
tem detects that the level of a pin changes from LOW to HIGH or  
from HIGH to LOW, and generates an interrupt request. The in-  
put active edge can be selected by bits 3 to 5 of the interrupt  
input polarity register (address 00DC16) : when this bit is “0,” a  
change from LOW to HIGH is detected; when it is “1,” a change  
from HIGH to LOW is detected. Note that both bits are cleared to  
“0” at reset.  
The jump destination address stored in the vector address enters  
the program counter.  
Other interrupts are disabled when the interrupt disable flag is set to  
“1.”  
All interrupts except the BRK instruction interrupt have an interrupt  
request bit and an interrupt enable bit. The interrupt request bits are  
in interrupt request registers 1 and 2 and the interrupt enable bits are  
in interrupt control registers 1 and 2. Figures 8.3.2 to 8.3.6 show the  
interrupt-related registers.  
(3) Timers 1 to 4 interrupts  
An interrupt is generated by an overflow of timers 1 to 4.  
Interrupts other than the BRK instruction interrupt and reset are ac-  
cepted when the interrupt enable bit is “1,” interrupt request bit is “1,”  
and the interrupt disable flag is “0.” The interrupt request bit can be  
set to “0” by a program, but not set to “1.” The interrupt enable bit can  
be set to “0” and “1” by a program.  
Reset is treated as a non-maskable interrupt with the highest priority.  
Figure 8.3.1 shows interrupt control.  
Table 8.3.1 Interrupt Vector Addresses and Priority  
Priority  
Interrupt Source  
Vector Addresses  
Remarks  
1
2
Reset  
FFFF16, FFFE16  
FFFD16, FFFC16  
FFFB16, FFFA16  
FFF916, FFF816  
FFF716, FFF616  
FFF516, FFF416  
FFF316, FFF216  
FFF116, FFF016  
FFEF16, FFEE16  
FFED16, FFEC16  
FFEB16, FFEA16  
FFE916, FFE816  
FFE716, FFE616  
FFE516, FFE416  
FFE316, FFE216  
FFDF16, FFDE16  
Non-maskable  
OSD interrupt  
3
INT1 external interrupt  
Data slicer interrupt  
Serial I/O interrupt  
Timer 4 interrupt  
Active edge selectable  
4
5
6
7
f(XIN)/4096 interrupt  
VSYNC interrupt  
8
9
Timer 3 interrupt  
10  
11  
12  
13  
14  
15  
16  
Timer 2 interrupt  
Timer 1 interrupt  
INT3 external interrupt  
INT2 external interrupt  
Active edge selectable  
Active edge selectable  
2
Multi-master I C-BUS interface interrupt  
Timer 5 • 6 interrupt  
Source switch by software (see note)  
Non-maskable  
BRK instruction interrupt  
Note: Switching a source during a program causes an unnecessary interrupt. Therefore, set a source at initializing of program.  
Rev.1.00 Nov 01, 2002 page 17 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
(4) Serial I/O interrupt  
This is an interrupt request from the clock synchronous serial I/O  
function.  
Interrupt request bit  
Interrupt enable bit  
(5) f(XIN)/4096 interrupt  
The f (XIN)/4096 interrupt occurs regularly with a f(XIN)/4096 pe-  
riod. Set bit 0 of the PWM mode register 1 to “0.”  
Interrupt disable flag I  
(6) Data slicer interrupt  
An interrupt occurs when slicing data is completed.  
Interrupt  
request  
BRK instruction  
Reset  
2
(7) Multi-master I C-BUS interface interrupt  
2
This is an interrupt request related to the multi-master I C-BUS  
interface.  
(8) Timer 5 • 6 interrupt  
Fig. 8.3.1 Interrupt Control  
An interrupt is generated by an overflow of timer 5 or 6. Their  
priorities are same, and can be switched by software.  
(9) BRK instruction interrupt  
This software interrupt has the least significant priority. It does  
not have a corresponding interrupt enable bit, and it is not af-  
fected by the interrupt disable flag I (non-maskable).  
Rev.1.00 Nov 01, 2002 page 18 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Interrupt Request Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Interrupt request register 1 (IREQ1) [Address 00FC16]  
B
0
Name  
Functions  
Afrer reset R W  
0
0 : No interrupt request issued  
1 : Interrupt request issued  
R
Timer 1 interrupt request  
bit (TM1R)  
1
2
3
4
5
6
7
Timer 2 interrupt request 0 : No interrupt request issued  
bit (TM2R) 1 : Interrupt request issued  
0
0
0
R
Timer 3 interrupt request 0 : No interrupt request issued  
bit (TM3R) 1 : Interrupt request issued  
R
R
R
Timer 4 interrupt request 0 : No interrupt request issued  
bit (TM4R)  
1 : Interrupt request issued  
OSD interrupt  
request bit (OSDR)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0
0
0
0
VSYNC interrupt request  
bit (VSCR)  
0 : No interrupt request issued  
1 : Interrupt request issued  
R
R
INT3 external interrupt  
request bit (IN3R)  
0 : No interrupt request issued  
1 : Interrupt request issued  
R —  
Nothing is assigned. This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
: “0” can be set by software, but “1” cannot be set.  
Fig. 8.3.2 Interrupt Request Register 1  
Interrupt Request Register 2  
b7b6 b5b4b3 b2b1b0  
0
Interrupt request register 2 (IREQ2) [Address 00FD16  
]
After reset  
0
B
0
Name  
Functions  
R W  
INT1 external interrupt  
request bit (IN1R)  
Data slicer interrupt  
request bit (DSR)  
Serial I/O interrupt  
request bit (SIR)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
R
R
R
R
1
2
3
4
0
0
0
f(XIN  
)/4096 interrupt  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
request bit (CKR)  
INT2 external interrupt  
request bit (IN2R)  
0
0
R
R
2C-BUS  
0 : No interrupt request issued  
Multi-master I  
5
6
interrupt request bit (IICR) 1 : Interrupt request issued  
Timer 5 • 6 interrupt  
request bit (TM56R)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0
0
R
7
Fix this bit to “0.”  
R W  
: “0” can be set by software, but “1” cannot be set.  
Fig. 8.3.3 Interrupt Request Register 2  
Rev.1.00 Nov 01, 2002 page 19 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Interrupt Control Register 1  
b7b6 b5b4b3 b2b1b0  
Interrupt control register 1 (ICON1) [Address 00FE16]  
Name  
After reset  
0
B
0
Functions  
R W  
R W  
Timer 1 interrupt  
enable bit (TM1E)  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
1
2
3
4
Timer 2 interrupt  
enable bit (TM2E)  
Timer 3 interrupt  
enable bit (TM3E)  
Timer 4 interrupt  
enable bit (TM4E)  
R W  
R W  
R W  
R W  
0
0
0
0
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
OSD interrupt enable bit  
(OSDE)  
VSYNC interrupt enable 0 : Interrupt disabled  
5
6
7
R W  
R W  
R —  
0
0
1 : Interrupt enabled  
bit (VSCE)  
0 : Interrupt disabled  
1 : Interrupt enabled  
INT3 external interrupt  
enable bit (IN3E)  
Nothing is assigned. This bit is a write disable  
bit. When this bit is read out, the value is “0.”  
0
Fig. 8.3.4 Interrupt Control Register 1  
Interrupt Control Register 2  
b7b6 b5b4b3 b2b1b0  
Interrupt control register 2 (ICON2) [Address 00FF16  
]
After reset  
0
B
0
Name  
Functions  
R W  
R W  
INT1 external interrupt  
enable bit (IN1E)  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
Data slicer interrupt  
enable bit (DSE)  
1
2
3
4
0
R W  
Serial I/O interrupt  
enable bit (SIE)  
0
0
0
R W  
R W  
R W  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
f(XIN  
)/4096 interrupt  
enable bit (CKE)  
INT2 external interrupt  
enable bit (IN2E)  
I2  
Multi-master C-BUS  
5
0 : Interrupt disabled  
1 : Interrupt enabled  
0
R W  
interface interrupt enable  
bit (IICE)  
0
0
R W  
R W  
Timer 5 • 6 interrupt  
enable bit (TM56E  
Timer 5 • 6 interrupt  
switch bit (TM56C)  
0 : Interrupt disabled  
1 : Interrupt enabled  
6
7
)
0 : Timer 5  
1 : Timer 6  
Fig. 8.3.5 Interrupt Control Register 2  
Rev.1.00 Nov 01, 2002 page 20 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Interrupt Input Polarity Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Interrupt input polarity register (RE) [Address 00DC16  
]
B
0
Name  
Functions  
After reset  
0
R
R
W
W
INT1 polarity switch bit  
(INT1)  
0 : Positive polarity  
1 : Negative polarity  
0
0
0
R
R
R
W
W
1
2
INT2 polarity switch bit  
(INT2)  
0 : Positive polarity  
1 : Negative polarity  
INT3 polarity switch bit  
(INT3)  
0 : Positive polarity  
1 : Negative polarity  
3
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
Fig. 8.3.6 Interrupt Input Polarity Register  
Rev.1.00 Nov 01, 2002 page 21 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.4 TIMERS  
8.4.5 Timer 5  
This microcomputer has 6 timers: timer 1, timer 2, timer 3, timer 4,  
timer 5, and timer 6. All timers are 8-bit timers with the 8-bit timer  
latch. The timer block diagram is shown in Figure 8.4.3.  
All of the timers count down and their divide ratio is 1/(n+1), where n  
is the value of timer latch. By writing a count value to the correspond-  
ing timer latch (addresses 00F016 to 00F316 : timers 1 to 4, addresses  
00EE16 and 00EF16 : timers 5 and 6), the value is also set to a timer,  
simultaneously.  
Timer 5 can select one of the following count sources:  
f(XIN)/16 or f(XCIN)/16  
Timer 2 overflow signal  
Timer 4 overflow signal  
The count source of timer 3 is selected by setting bit 6 of timer mode  
register 1 (address 00F416) and bit 7 of the timer mode register 2  
(address 00F516). When overflow of timer 2 or 4 is a count source  
for timer 5, either timer 2 or 4 functions as an 8-bit prescaler. Either  
f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.  
Timer 5 interrupt request occurs at timer 5 overflow.  
The count value is decremented by 1. The timer interrupt request bit  
is set to “1” by a timer overflow at the next count pulse, after the  
count value reaches “0016”.  
8.4.6 Timer 6  
8.4.1 Timer 1  
Timer 1 can select one of the following count sources:  
Timer 6 can select one of the following count sources:  
f(XIN)/16 or f(XCIN)/16  
f(XIN)/16 or f(XCIN)/16  
Timer 5 overflow signal  
f(XIN)/4096 or f(XCIN)/4096  
The count source of timer 6 is selected by setting bit 7 of the timer  
mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is selected  
by bit 7 of the CPU mode register. When timer 5 overflow signal is a  
count source for timer 6, the timer 5 functions as an 8-bit prescaler.  
Timer 6 interrupt request occurs at timer 6 overflow.  
External clock from the TIM2 pin  
The count source of timer 1 is selected by setting bits 5 and 0 of  
timer mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is  
selected by bit 7 of the CPU mode register.  
Timer 1 interrupt request occurs at timer 1 overflow.  
At reset, timers 3 and 4 are connected by hardware and “FF16” is  
8.4.2 Timer 2  
automatically set in timer 3; “0716” in timer 4. The f(XIN) /16 is se-  
Timer 2 can select one of the following count sources:  
lected as the timer 3 count source. The internal reset is released by  
timer 4 overflow in this state and the internal clock is connected.  
At execution of the STP instruction, timers 3 and 4 are connected by  
hardware and “FF16” is automatically set in timer 3; “0716” in timer 4.  
f(XIN)/16 or f(XCIN)/16  
Timer 1 overflow signal  
External clock from the TIM2 pin  
The count source of timer 2 is selected by setting bits 4 and 1 of  
timer mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is  
selected by bit 7 of the CPU mode register. When timer 1 overflow  
signal is a count source for the timer 2, the timer 1 functions as an 8-  
bit prescaler.  
However, the f(XIN) /16 is not selected as the timer 3 count source.  
So set both bit 0 of timer mode register 2 (address 00F516) and bit 6  
at address 00C716 to “0” before the execution of the STP instruction  
(f(XIN) /16 is selected as timer 3 count source). The internal STP  
state is released by timer 4 overflow in this state and the internal  
clock is connected.  
Timer 2 interrupt request occurs at timer 2 overflow.  
As a result of the above procedure, the program can start under a  
stable clock.  
8.4.3 Timer 3  
Timer 3 can select one of the following count sources:  
f(XIN)/16 or f(XCIN)/16  
: When CPU Mode Register bit 7 (CM7) = 1, f(XIN) becomes f(XCIN).  
f(XCIN)  
External clock from the TIM3 pin  
The timer-related registers is shown in Figures 8.4.1 and 8.4.2.  
The count source of timer 3 is selected by setting bit 0 of timer mode  
register 2 (address 00F516) and bit 6 at address 00C716. Either f(XIN)  
or f(XCIN) is selected by bit 7 of the CPU mode register.  
Timer 3 interrupt request occurs at timer 3 overflow.  
The input path for the TIM2 pin can be selected between ports P16 or  
P24. Use Port P3 Direction Register (address 00C716) bit 7 to select  
either port.  
8.4.4 Timer 4  
Timer 4 can select one of the following count sources:  
f(XIN)/16 or f(XCIN)/16  
f(XIN)/2 or f(XCIN)/2  
f(XCIN)  
The count source of timer 3 is selected by setting bits 1 and 4 of the  
timer mode register 2 (address 00F516). Either f(XIN) or f(XCIN) is  
selected by bit 7 of the CPU mode register. When timer 3 overflow  
signal is a count source for the timer 4, the timer 3 functions as an 8-  
bit prescaler.  
Timer 4 interrupt request occurs at timer 4 overflow.  
Rev.1.00 Nov 01, 2002 page 22 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Timer Mode Register 1  
b7b6 b5b4b3 b2b1b0  
Timer mode register 1 (TM1) [Address 00F4 16  
]
After reset  
B
0
Name  
Functions  
R W  
R W  
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Count source selected by bit 5 of TM1  
Timer 1 count source  
selection bit 1 (TM10)  
0
0: Count source selected by bit 4 of TM1  
1: External clock from TIM2 pin  
0
R W  
1
Timer 2 count source  
selection bit 1 (TM11)  
Timer 1 count  
stop bit (TM12)  
2
3
4
0: Count start  
1: Count stop  
0
0
0
R W  
R W  
R W  
Timer 2 count stop  
bit (TM13)  
0: Count start  
1: Count stop  
Timer 2 count source  
selection bit 2  
(TM14)  
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Timer 1 overflow  
5
Timer 1 count source  
selection bit 2 (TM15)  
0: f(XIN)/4096 or f(XCIN)/4096 (See note)  
1: External clock from TIM2 pin  
0
R W  
6
7
Timer 5 count source  
selection bit 2 (TM16)  
0: Timer 2 overflow  
1: Timer 4 overflow  
0
0
R W  
R W  
Timer 6 internal count 0: f(XIN)/16 or f(XCIN)/16 (See note)  
source selection bit  
(TM17)  
1: Timer 5 overflow  
Note: Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.  
Fig. 8.4.1 Timer Mode Register 1  
Timer Mode Register 2  
b7b6 b5b4b3 b2b1b0  
Timer mode register 2 (TM2) [Address 00F516  
]
After reset  
0
B
0
Name  
Functions  
R W  
R W  
Timer 3 count source  
selection bit (TM20)  
(b6 at address 00C716  
)
b0  
0
1
0
1
0 : f(XIN)/16 or f(XCIN)/16 (See note)  
0 : f(XCIN  
)
1 :  
1 :  
External clock from TIM3 pin  
b4 b1  
1, 4  
Timer 4 count source  
selection bits  
(TM21, TM24)  
0
R W  
0
0
1
1
0 : Timer 3 overflow signal  
1 : f(XIN)/16 or f(XCIN)/16 (See note)  
0 : f(XIN)/2 or f(XCIN)/2 (See note)  
1 : f(XCIN  
)
Timer 3 count  
stop bit (TM22)  
2
3
0: Count start  
1: Count stop  
0
0
R W  
R W  
Timer 4 count stop bit  
(TM23)  
0: Count start  
1: Count stop  
Timer 5 count stop bit  
(TM25)  
5
6
0: Count start  
1: Count stop  
0
0
R W  
R W  
Timer 6 count stop bit  
(TM26)  
0: Count start  
1: Count stop  
Timer 5 count source  
selection bit 1  
(TM27)  
7
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Count source selected by bit 6  
of TM1  
0
R W  
Note: Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.  
Fig. 8.4.2 Timer Mode Register 2  
Rev.1.00 Nov 01, 2002 page 23 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Port P3 direction register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Port P3 direction register (D3) [Address 00C716  
]
B
0
Name  
Functions  
After reset  
0
R
R
W
W
0 : Port P3  
0
0
input  
Port P3 direction register  
(See note 1)  
1 : Port P3  
output  
1
0 : Port P3  
1
1
input  
0
0
R
R
W
W
1 : Port P3  
output  
Output amplitude level selection bit 0 : 2 value output  
(See note 2)  
2
3
(OUTS)  
1 : 3 value output  
Fix this bit to "0."  
0
0
W
R
R
R
4, 5  
6
Nothing is assigned fix these bits  
When this bit are read out, the value are "0."  
Timer 3 (T3SC)  
0
0
W
W
Refer to explanation of a timer  
Timer 2 (T2SC)  
0 : P2  
1 : P1  
4
6
input  
input  
7
R
Notes 1: When using the port as the I2C-BUS interface, set the Port P3 Direction Register to 1.  
2: Use the Clock Control Register 3 (address 021216) bit 5 to select the binary  
output level of OUT.  
Fig. 8.4.3 Port P3 direction register  
Timer return setting register  
b7 b6 b5 b4 b3 b2 b1 b0  
1
1
0
0
0
0
0
Timer return setting register (TMS) [Address 00CC16  
]
B
Name  
Functions  
After reset  
R
W
0 to  
4
Fix these bits to "0."  
0
R W  
Fix these bits to "1."  
0
0
R W  
R W  
5, 6  
7
STOP mode return selection bit  
(TMS)  
0: Timer Count "07FF16"  
1: Timer Count Variable  
Fig. 8.4.4 Timer return setting register  
Rev.1.00 Nov 01, 2002 page 24 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Data bus  
8
XCIN  
CM7  
TM15  
Timer 1 latch (8)  
8
1/4096  
1/2  
Timer 1  
interrupt request  
XIN  
1/8  
Timer 1 (8)  
TM10  
TM14  
TM12  
8
8
Timer 2 latch (8)  
8
Timer 2  
interrupt request  
TIM2  
Timer 2 (8)  
TM11  
TM13  
8
8
Reset  
STP instruction  
FF16  
T3SC  
Timer 3 latch (8)  
8
Timer 3  
interrupt request  
Timer 3 (8)  
TIM3  
TM20  
TM22  
8
8
0716  
TM21  
Timer 4 latch (8)  
8
Timer 4  
interrupt request  
Timer 4 (8)  
TM21  
TM24  
TM23  
8
8
TM16  
Timer 5 latch (8)  
8
Selection gate: Connected to  
black side at  
reset  
Timer 5  
interrupt request  
Timer 5 (8)  
TM27  
TM25  
TM1 : Timer mode register 1  
TM2 : Timer mode register 2  
T3SC : Timer 3 count source  
8
8
switch bit (address 00C716  
)
CM : CPU mode register  
Timer 6 latch (8)  
8
Timer 6  
interrupt request  
Timer 6 (8)  
8
TM17  
TM26  
Notes 1: HIGH pulse width of external clock inputs TIM2 and TIM3 needs 4 machine cycles or more.  
2: When the external clock source is selected, timers 1, 2, and 3 are counted at a rising edge of input signal.  
3: In the stop mode or the wait mode, external clock inputs TIM2 and TIM3 cannot be used.  
Fig. 8.4.5 Timer Block Diagram  
Rev.1.00 Nov 01, 2002 page 25 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.5 SERIAL I/O  
The operation of the serial I/O is described below. The operation of  
the serial I/O differs depending on the clock source; external clock or  
internal clock.  
This microcomputer has a built-in serial I/O which can either transmit  
or receive 8-bit data serially in the clock synchronous mode.  
The serial I/O block diagram is shown in Figure 8.5.1. The synchro-  
nous clock I/O pin (SCLK), and data output pin (SOUT) also function  
as port P4, data input pin (SIN) also functions as port P20–P22.  
Bit 3 of the serial I/O mode register (address 00EB16) selects whether  
the synchronous clock is supplied internally or externally (from the  
SCLK pin). When an internal clock is selected, bits 1 and 0 select  
whether f(XIN) or f(XCIN) is divided by 8, 16, 32, or 64. To use the SIN  
pin for serial I/O, set the corresponding bit of the port P2 direction  
register (address 00C516) to “0.”  
XCIN  
1/2  
Data bus  
XIN  
Frequency divider  
1/2 1/4 1/8 1/16  
1/2  
1/2  
CM7  
SM1  
Selection gate: Connect to  
black side at  
reset.  
SM2  
SM0  
Synchronous  
circuit  
S
CM : CPU mode register  
SM : Serial I/O mode register  
P20  
Latch  
SM3  
Serial I/O  
interrupt request  
S
CLK  
Serial I/O counter (8)  
MSB  
P21  
Latch  
SM3  
SM5 : LSB  
S
OUT  
(See note)  
SIN  
Serial I/O shift register (8)  
SM6  
8
Note : When the data is set in the serial I/O register (address 00EA16), the register functions as the serial I/O shift register.  
Fig. 8.5.1 Serial I/O Block Diagram  
Rev.1.00 Nov 01, 2002 page 26 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Internal clock : The serial I/O counter is set to “7” during the write  
cycle into the serial I/O register (address 00EA16), and the transfer  
clock goes HIGH forcibly. At each falling edge of the transfer clock  
after the write cycle, serial data is output from the SOUT pin. Transfer  
direction can be selected by bit 5 of the serial I/O mode register. At  
each rising edge of the transfer clock, data is input from the SIN pin  
and data in the serial I/O register is shifted 1 bit.  
External clock : The an external clock is selected as the clock source,  
the interrupt request is set to “1” after the transfer clock has been  
counted 8 counts. However, transfer operation does not stop, so the  
clock should be controlled externally. Use the external clock of 1 MHz  
or less with a duty cycle of 50%.  
The serial I/O timing is shown in Figure 8.5.2. When using an exter-  
nal clock for transfer, the external clock must be held at HIGH for  
initializing the serial I/O counter. When switching between an inter-  
nal clock and an external clock, do not switch during transfer. Also,  
be sure to initialize the serial I/O counter after switching.  
After the transfer clock has counted 8 times, the serial I/O counter  
becomes “0” and the transfer clock stops at HIGH. At this time the  
interrupt request bit is set to “1.”  
Notes 1: On programming, note that the serial I/O counter is set by writing to  
the serial I/O register with the bit managing instructions, such as SEB  
and CLB.  
2: When an external clock is used as the synchronous clock, write trans-  
mit data to the serial I/O register when the transfer clock input level is  
HIGH.  
Synchronous clock  
Transfer clock  
Serial I/O register  
write signal  
(Note)  
Serial I/O output  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D7  
S
OUT  
Serial I/O input  
S
IN  
Interrupt request bit is set to “1”  
Note : When an internal clock is selected, the SOUT pin is at high-impedance after transfer is completed.  
Fig. 8.5.2 Serial I/O Timing (for LSB first)  
Rev.1.00 Nov 01, 2002 page 27 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Serial I/O Mode Register  
b7b6 b5b4b3 b2b1b0  
0
0
Serial I/O mode register (SM) [Address 00EB16  
]
After reset  
B
Functions  
Name  
R W  
R W  
0
b1 b0  
0, 1  
Internal synchronous  
clock selection bits  
(SM0, SM1)  
0 0: f(XIN)/8 or f(XCIN)/8  
0 1: f(XIN)/16 or f(XCIN)/16  
1 0: f(XIN)/32 or f(XCIN)/32  
1 1: f(XIN)/64 or f(XCIN)/64  
0
0
R W  
R W  
2
3
0: External clock  
1: Internal clock  
Synchronous clock  
selection bit (SM2)  
0: P20, P21  
Port function  
1: SCLK, SOUT  
selection bit (SM3)  
0
0
R W  
R W  
Fix this bit to “0.”  
4
5
6
7
0: LSB first  
1: MSB first  
Transfer direction  
selection bit (SM5)  
0: Input signal from SIN pin  
1: Input signal from SOUT pin  
Transfer clock input  
pin selection bit (SM6)  
0
0
R W  
R W  
Fix this bit to “0.”  
Fig. 8.5.3 Serial I/O Mode Register  
Rev.1.00 Nov 01, 2002 page 28 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
2
8.6 MULTI-MASTER I C-BUS INTERFACE  
Table 8.6.1 Multi-master I C-BUS Interface Functions  
2
The multi-master I C-BUS interface is a serial communications cir-  
Item  
Function  
2
cuit, conforming to the Philips I C-BUS data transfer format. This  
2
In conformity with Philips I C-BUS  
standard:  
10-bit addressing format  
7-bit addressing format  
High-speed clock mode  
Standard clock mode  
interface, offering both arbitration lost detection and synchronous  
function, is useful for multi-master serial communications.  
Format  
2
Figure 8.6.1 shows a block diagram of the multi-master I C-BUS in-  
2
terface and Table 8.6.1 shows multi-master I C-BUS interface func-  
2
tions.  
In conformity with Philips I C-BUS  
standard:  
2
This multi-master I C-BUS interface consists of the address register,  
Master transmission  
Master reception  
Slave transmission  
Slave reception  
the data shift register, the clock control register, the control register,  
the status register and other control circuits.  
Communication mode  
SCL clock frequency 16.1 kHz to 400 kHz (φ = at 4 MHz)  
φ : System clock = f(XIN)/2  
Note : We are not responsible for any third party’s infringement of patent rights  
or other rights attributable to the use of the control function (bits 6 and 7  
of the I2C control register at address 00F916) for connections between  
the I2C-BUS interface and ports (SCL1, SCL2, SDA1, SDA2).  
I2C address register (S0D)  
b7  
b0  
Interrupt  
generating  
circuit  
Interrupt  
request signal  
(IICIRQ)  
SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 RBW  
Address comparator  
Serial  
data  
(SDA)  
Noise  
elimination  
circuit  
Data  
control  
circuit  
b7  
b0  
I2C data shift register  
b7  
b0  
S0  
AL AAS AD0 LRB  
I2C control register (S1D)  
MST TRX BB PIN  
I2C status  
register (S1)  
AL  
circuit  
Internal data bus  
BB  
circuit  
Noise  
elimination  
circuit  
Serial  
clock  
(SCL)  
Clock  
control  
circuit  
b7  
b0  
b7  
b0  
FAST  
MODE  
10BIT  
ACK  
BIT  
BSEL1 BSEL0  
ALS  
CCR4 CCR3 CCR2 CCR1 CCR0  
ACK  
ESO BC2 BC1 BC0  
SAD  
I2C control register (S1D)  
System clock (φ)  
I2C clock control register (S2)  
Clock division  
Bit counter  
2
Fig. 8.6.1 Block Diagram of Multi-master I C-BUS Interface  
Rev.1.00 Nov 01, 2002 page 29 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
8.6.1 I C Data Shift Register  
2
The I C data shift register (S0 : address 00F616) is an 8-bit shift  
register to store receive data and write transmit data.  
When transmit data is written into this register, it is transferred to the  
outside from bit 7 in synchronization with the SCL clock, and each  
time one-bit data is output, the data of this register are shifted one bit  
to the left. When data is received, it is input to this register from bit 0  
in synchronization with the SCL clock, and each time one-bit data is  
input, the data of this register are shifted one bit to the left.  
2
The I C data shift register is in a write enable status only when the  
2
ESO bit of the I C control register (address 00F916) is “1.” The bit  
2
counter is reset by a write instruction to the I C data shift register.  
2
When both the ESO bit and the MST bit of the I C status register  
(address 00F816) are “1,” the SCL is output by a write instruction to  
2
2
the I C data shift register. Reading data from the I C data shift regis-  
ter is always enabled regardless of the ESO bit value.  
Note: To write data into the I2C data shift register after setting the MST bit to  
“0” (slave mode), keep an interval of 8 machine cycles or more.  
2
I C Data Shift Register  
b7 b6 b5 b4 b3 b2 b1 b0  
2
I C data shift register 1(S0) [Address 00F616  
]
B
Name  
Functions  
After reset  
R
R
W
W
0
to  
7
D0 to D7 This is an 8-bit shift register to store  
receive data and write transmit data.  
Indeterminate  
2
Note : To write data into the I C data shift register after setting the MST bit to  
“0” (slave mode), keep an interval of 8 machine cycles or more.  
2
Fig. 8.6.2 I C Data Shift Register  
Rev.1.00 Nov 01, 2002 page 30 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
8.6.2 I C Address Register  
2
The I C address register (address 00F716) consists of a 7-bit slave  
address and a read/write bit. In the addressing mode, the slave ad-  
dress written in this register is compared with the address data to be  
received immediately after the START condition is detected.  
(1) Bit 0: read/write bit (RBW)  
Not used when comparing addresses in the 7-bit addressing mode.  
In the 10-bit addressing mode, the first address data to be received  
2
is compared with the contents (SAD6 to SAD0 + RBW) of the I C  
address register.  
The RBW bit is cleared to “0” automatically when the stop condition  
is detected.  
(2) Bits 1 to 7: slave address (SAD0–SAD6)  
These bits store slave addresses. Regardless of the 7-bit address-  
ing mode and the 10-bit addressing mode, the address data trans-  
mitted from the master is compared with the contents of these bits.  
2
I C Address Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C address register (S0D) [Address 00F716  
BName Functions  
]
After reset  
0
R W  
R —  
0
<Only in 10-bit addressing (in slave) mode>  
The last significant bit of address data is  
compared.  
Read/write bit  
(RBW)  
0: Wait the first byte of slave address after  
START condition  
(read state)  
1: Wait the first byte of slave address after  
(write state)  
RESTART condition  
<In both modes>  
(SAD0 to SAD6) The address data is compared.  
R
W
Slave address  
0
1
to  
7
2
Fig. 8.6.3 I C Address Register  
Rev.1.00 Nov 01, 2002 page 31 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
8.6.3 I C Clock Control Register  
(4) Bit 7: ACK clock bit (ACK)  
2
The I C clock control register (address 00FA16) is used to set ACK  
This bit specifies a mode of acknowledgment which is an acknowl-  
edgment response of data transmission. When this bit is set to “0,”  
the no ACK clock mode is set. In this case, no ACK clock occurs  
after data transmission. When the bit is set to “1,” the ACK clock  
mode is set and the master generates an ACK clock upon comple-  
tion of each 1-byte data transmission.The device for transmitting  
address data and control data releases the SDA at the occurrence of  
an ACK clock (make SDA HIGH) and receives the ACK bit generated  
by the data receiving device.  
control, SCL mode and SCL frequency.  
(1) Bits 0 to 4: SCL frequency control bits (CCR0–CCR4)  
These bits control the SCL frequency.  
(2) Bit 5: SCL mode specification bit (FAST MODE)  
This bit specifies the SCL mode. When this bit is set to “0,” the stan-  
dard clock mode is set. When the bit is set to “1,” the high-speed  
clock mode is set.  
Note: Do not write data into the I2C clock control register during transmission.  
If data is written during transmission, the I2C clock generator is reset, so  
that data cannot be transmitted normally.  
(3) Bit 6: ACK bit (ACK BIT)  
This bit sets the SDA status when an ACK clock is generated. When  
this bit is set to “0,” the ACK return mode is set and SDA goes to  
LOW at the occurrence of an ACK clock. When the bit is set to “1,”  
the ACK non-return mode is set. The SDA is held in the HIGH status  
at the occurrence of an ACK clock.  
However, when the slave address matches the address data in the  
reception of address data at ACK BIT = “0,” the SDA automatically  
goes to LOW (ACK is returned). If there is a mismatch between the  
slave address and the address data, the SDA automatically goes to  
HIGH (ACK is not returned).  
ACK clock: Clock for acknowledgement  
2
I C Clock Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
2
I C clock control register (S2) [Address 00FA16  
]
After reset  
0
B
Functions  
R W  
R W  
Name  
Setup value  
of CCR4–  
CCR0  
Standard  
clock  
mode  
High speed  
clock mode  
0
to  
4
SCL frequency control  
bits  
(CCR0 to CCR4)  
Setup disabled Setup disabled  
00 to 02  
Setup disabled  
333  
03  
04  
05  
06  
Setup disabled  
250  
400 (See note)  
166  
100  
83.3  
500/CCR value 1000/CCR value  
17.2  
16.6  
16.1  
34.5  
33.3  
32.3  
1D  
1E  
1F  
(φ = 4 MHz, unit : kHz)  
0
5
SCL mode  
specification bit  
(FAST MODE)  
0: Standard clock mode  
1: High-speed clock mode  
R W  
6
7
ACK bit  
(ACK BIT)  
0: ACK is returned.  
1: ACK is not returned.  
0
0
R W  
R W  
ACK clock bit  
(ACK)  
0: No ACK clock  
1: ACK clock  
Note. At 400kHz in the high-speed clock mode, the duty is as below.  
“0” period : “1” period = 3 : 2  
In the other cases, the duty is as below.  
“0” period : “1” period = 1 : 1  
2
Fig. 8.6.4 I C Clock Control Register  
Rev.1.00 Nov 01, 2002 page 32 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
8.6.4 I C Control Register  
(3) Bit 4: data format selection bit (ALS)  
2
The I C control register (address 00F916) controls the data commu-  
This bit decides whether or not to recognize slave addresses. When  
this bit is set to “0,” the addressing format is selected, so that ad-  
dress data is recognized. When a match is found between a slave  
address and address data as a result of comparison or when a gen-  
nication format.  
(1) Bits 0 to 2: bit counter (BC0–BC2)  
2
These bits decide the number of bits for the next 1-byte data to be  
transmitted. An interrupt request signal occurs immediately after the  
number of bits specified with these bits are transmitted.  
eral call (refer to “8.6.5 I C Status Register,” bit 1) is received, trans-  
mission processing can be performed. When this bit is set to “1,” the  
free data format is selected, so that slave addresses are not recog-  
nized.  
When a START condition is received, these bits become “0002” and  
the address data is always transmitted and received in 8 bits.  
(4) Bit 5: addressing format selection bit (10BIT SAD)  
This bit selects a slave address specification format. When this bit is  
set to “0,” the 7-bit addressing format is selected. In this case, only  
2
(2) Bit 3: I C interface use enable bit (ESO)  
2
This bit enables usage of the multimaster I C BUS interface. When  
2
this bit is set to “0,” interface is in the disable status, so the SDA and  
the SCL become high-impedance. When the bit is set to “1,” use of  
the interface is enabled.  
the high-order 7 bits (slave address) of the I C address register (ad-  
dress 00F716) are compared with address data. When this bit is set  
to “1,” the 10-bit addressing format is selected and all the bits of the  
2
When ESO = “0,” the following is performed.  
I C address register are compared with the address data.  
2
• PIN = “1,” BB = “0” and AL = “0” are set (they are bits of the I C  
status register at address 00F816 ).  
(5) Bits 6 and 7: connection control bits between  
I2C-BUS interface and ports  
(BSEL0, BSEL1)  
2
• Writing data to the I C data shift register (address 00F616) is dis-  
abled.  
These bits control the connection between SCL and ports or SDA  
and ports (refer to Figure 8.6.5).  
Note: To connect with SCL3 and SDA3, set bits 2 and 3 of the port P3 register  
(00C616) .  
“0”  
“1” BSEL20  
Notes • The paths SCL1, SCL2, SDA1, and SDA2, as well as the paths  
SCL3 and SDA3 cannot be connected at the same time.  
SCL3/P3  
1
“0”  
BSEL21  
“1”  
“0”  
“1”  
BSEL0  
BSEL1  
SCL1/P1  
1
2
SCL  
• Port P3 Register (address 00C616) bit 3 is used to control the pin  
“0”  
“1”  
connections of SCL3/P31 and SCL1/P11 and those of SDA3/P30 and SDA1/P13.  
SCL2/P1  
Multi-master  
“0”  
“1”  
BSEL20  
I2C-BUS  
interface  
• Set the corresponding direction register to "1" to use the port as  
multi-master I2C-BUS interface.  
SDA3/P3  
0
“0”  
BSEL21  
“1”  
“0”  
“1” BSEL0  
SDA1/P1  
3
SDA  
“0”  
BSEL1  
“1”  
SDA2/P1  
4
Fig. 8.6.5 Connection Port Control by BSEL0 and BSEL1  
Rev.1.00 Nov 01, 2002 page 33 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
I C Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C control register (S1D) [Address 00F916]  
After reset  
0
B
Name  
Functions  
R W  
R W  
Bit counter  
(Number of transmit/recieve  
b2 b1 b0  
0
to  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : 8  
bits)  
1 : 7  
0 : 6  
1 : 5  
0 : 4  
1 : 3  
0 : 2  
1 : 1  
(BC0 to BC2)  
3
4
5
I2C-BUS interface use  
enable bit (ESO)  
0
0
0
0
0 : Disabled  
1 : Enabled  
R W  
R W  
R W  
R W  
Data format selection  
bit(ALS)  
0 : Addressing mode  
1 : Free data format  
Addressing format selection  
bit (10BIT SAD)  
0 : 7-bit addressing format  
1 : 10-bit addressing format  
b7 b6 Connection port (See note)  
6, 7 Connection control bits  
between I2C-BUS interface  
and ports  
0
0
1
1
0: None  
1: SCL1, SDA1  
0: SCL2, SDA2  
1: SCL1, SDA1  
SCL2, SDA2  
(BSEL0, BSEL1)  
Note: • Set the corresponding direction register to "1" to use the port as multi-master I2C-BUS interface.  
• To use SCL1, SDA1, SCL2 and SDA2, set the port P3 Register (address 00C616) bit 2 to 0.  
2
Fig. 8.6.6 I C Control Register  
Port P3 register  
b7 b6 b5 b4 b3 b2 b1 b0  
Port P3 register (P3) [Address 00C616]  
BName  
Functions  
After reset  
Indeterminate  
Indeterminate  
0
R
R
R
R
W
W
W
W
0
1
2
Port P3 register  
Port P3  
0
1
data  
data  
Port P3  
Switch bit of I2C-BUS  
interface and port P3  
0: Port P30, Port P31  
1: I2CBUS (SDA3,SCL3)  
(BSEL20)  
(See note)  
SCL3/P3 -SCL1/P1  
1
1
3
R
R
0
0
W
0: Cutting  
SDA3/P3 -SDA1/P1  
0
3
1: Connection  
Connection control bit (BSEL21)  
Nothing is assigned. This bit is write disable bit.  
When this bit is read out, the value is "0."  
4 to  
7
Notes  
For the ports used as the Multi-master I2C-BUS interface, set their direction registers to 1.  
• To use SCL3 and SDA3, set the I2C Control Register (address 00F916) bits 6–7 to 0.  
Fig. 8.6.7 Port P3 Register  
Rev.1.00 Nov 01, 2002 page 34 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
2
8.6.5 I C Status Register  
(5) Bit 4: I2C-BUS interface interrupt request bit (PIN)  
This bit generates an interrupt request signal. Each time 1-byte data  
is transmitted, the state of the PIN bit changes from “1” to “0.” At the  
same time, an interrupt request signal is sent to the CPU. The PIN bit  
is set to “0” in synchronization with a falling edge of the last clock  
(including the ACK clock) of an internal clock and an interrupt re-  
quest signal occurs in synchronization with a falling edge of the PIN  
bit. When the PIN bit is “0,” the SCL is kept in the “0” state and clock  
generation is disabled. Figure 8.6.9 shows an interrupt request sig-  
nal generating timing chart.  
2
2
The I C status register (address 00F816) controls the I C-BUS inter-  
face status. The low-order 4 bits are read-only bits and the high-  
order 4 bits can be read out and written to.  
(1) Bit 0: last receive bit (LRB)  
This bit stores the last bit value of received data and can also be  
used for ACK receive confirmation. If ACK is returned when an ACK  
clock occurs, the LRB bit is set to “0.” If ACK is not returned, this bit is  
set to “1.” Except in the ACK mode, the last bit value of received data  
is input. The state of this bit is changed from “1” to “0” by executing a  
The PIN bit is set to “1” in any one of the following conditions.  
2
2
write instruction to the I C data shift register (address 00F616).  
• Executing a write instruction to the I C data shift register (address  
00F616).  
(2) Bit 1: general call detecting flag (AD0)  
• When the ESO bit is “0”  
This bit is set to “1” when a general call whose address data is all  
• At reset  
“0” is received in the slave mode. By a general call of the master  
device, every slave device receives control data after the general  
call. The AD0 bit is set to “0” by detecting the STOP condition or  
START condition.  
The conditions in which the PIN bit is set to “0” are shown below:  
• Immediately after completion of 1-byte data transmission (includ-  
ing when arbitration lost is detected)  
• Immediately after completion of 1-byte data reception  
• In the slave reception mode, with ALS = “0” and immediately after  
completion of slave address or general call address reception  
• In the slave reception mode, with ALS = “1” and immediately after  
completion of address data reception  
General call: The master transmits the general call address “0016”  
to all slaves.  
(3) Bit 2: slave address comparison flag (AAS)  
This flag indicates a comparison result of address data.  
(6) Bit 5: bus busy flag (BB)  
In the slave receive mode, when the 7-bit addressing format is  
selected, this bit is set to “1” in either of the following conditions.  
• The address data immediately after occurrence of a START con-  
dition matches the slave address stored in the high-order 7 bits  
This bit indicates the status of the bus system. When this bit is set to  
“0,” this bus system is not busy and a START condition can be gen-  
erated. When this bit is set to “1,” this bus system is busy and the  
occurrence of a START condition is disabled by the START condition  
duplication prevention function (See note).  
2
of the I C address register (address 00F716).  
• A general call is received.  
This flag can be written by software only in the master transmission  
mode. In the other modes, this bit is set to “1” by detecting a START  
condition and set to “0” by detecting a STOP condition. When the  
In the slave reception mode, when the 10-bit addressing format is  
selected, this bit is set to “1” in the following condition.  
2
2
• When the address data is compared with the I C address regis-  
ESO bit of the I C control register (address 00F916) is “0” at reset,  
ter (8 bits consisting of slave address and RBW), the first bytes  
match.  
the BB flag is kept in the “0” state.  
The state of this bit is changed from “1” to “0” by executing a write  
(7) Bit 6: communication mode specification bit  
(transfer direction specification bit: TRX)  
2
instruction to the I C data shift register (address 00F616).  
This bit decides the direction of transfer for data communication. When  
this bit is “0,” the reception mode is selected and the data of a trans-  
mitting device is received. When the bit is “1,” the transmission mode  
is selected and address data and control data are output into the  
SDA in synchronization with the clock generated on the SCL.  
(4) Bit 3: arbitration lost detecting flag (AL)  
In the master transmission mode, when a device other than the mi-  
crocomputer sets the SDA to “L,” arbitration is judged to have been  
lost, so that this bit is set to “1.” At the same time, the TRX bit is set to  
“0,” so that immediately after transmission of the byte whose arbitra-  
tion was lost is completed, the MST bit is set to “0.” When arbitration  
is lost during slave address transmission, the TRX bit is set to “0” and  
the reception mode is set. Consequently, it becomes possible to re-  
ceive and recognize its own slave address transmitted by another  
master device.  
2
When the ALS bit of the I C control register (address 00F916) is “0” in  
the slave reception mode, the TRX bit is set to “1” (transmit) if the  
___  
least significant bit (R/W bit) of the address data transmitted by the  
___  
master is “1.” When the ALS bit is “0” and the R/W bit is “0,” the TRX  
bit is cleared to “0” (receive).  
The TRX bit is cleared to “0” in one of the following conditions.  
• When arbitration lost is detected.  
Arbitration lost: The status in which communication as a master is  
• When a STOP condition is detected.  
disabled.  
• When occurence of a START condition is disabled by the START  
condition duplication prevention function (Note).  
• When MST = “0” and a START condition is detected.  
• When MST = “0” and ACK non-return is detected.  
• At reset  
Rev.1.00 Nov 01, 2002 page 35 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Note:The START condition duplication prevention function disables the START  
condition generation, bit counter reset, and SCL output, when the follow-  
ing condition is satisfied:  
(8) Bit 7: Communication mode specification bit  
(master/slave specification bit: MST)  
This bit is used for master/slave specification in data communica-  
tions. When this bit is “0,” the slave is specified, so that a START  
condition and a STOP condition generated by the master are received,  
and data communication is performed in synchronization with the  
clock generated by the master. When this bit is “1,” the master is  
specified and a START condition and a STOP condition are gener-  
ated, and also the clocks required for data communication are gen-  
erated on the SCL.  
a START condition is set by another master device.  
The MST bit is cleared to “0” in any of the following conditions.  
• Immediately after completion of 1-byte data transmission when  
arbitration lost is detected  
• When a STOP condition is detected.  
• When occurence of a START condition is disabled by the START  
condition duplication prevention function (Note).  
• At reset  
2
I C Status Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C status register (S1) [Address 00F816  
]
After reset  
BName  
Functions  
W
R
0
1
2
Last receive bit (LRB)  
(See note)  
0 : Last bit = “0 ”  
1 : Last bit = “1 ”  
Indeterminate  
R —  
R —  
R —  
(See note)  
General call detecting flag  
(AD0) (See note)  
0 : No general call detected  
1 : General call detected  
0
0
(See note)  
Slave address comparison  
flag (AAS) (See note)  
0 : Address mismatch  
1 : Address match  
(See note)  
(See note)  
3
4
5
Arbitration lost detecting flag 0 : Not detected  
(AL) (See note)  
0
1
0
0
R —  
R W  
R W  
R W  
1 : Detected  
I2C-BUS interface interrupt  
request bit (PIN)  
0 : Interrupt request issued  
1 : No interrupt request issued  
Bus busy flag (BB)  
0 : Bus free  
1 : Bus busy  
6, 7 Communication mode  
specification bits  
b7 b6  
0
0
1
1
0 : Slave recieve mode  
1 : Slave transmit mode  
0 : Master recieve mode  
1 : Master transmit mode  
(TRX, MST)  
Note : These bits and flags can be read out, but cannnot be written.  
2
Fig. 8.6.8 I C Status Register  
SCL  
PIN  
IICIRQ  
Fig. 8.6.9 Interrupt Request Signal Generation Timing  
Rev.1.00 Nov 01, 2002 page 36 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.6.6 START Condition Generation Method  
2
When the ESO bit of the I C control register (address 00F916) is “1,”  
I2C status register  
write signal  
2
execute a write instruction to the I C status register (address 00F816)  
to set the MST, TRX and BB bits to “1.” A START condition will then  
be generated. After that, the bit counter becomes “0002” and an SCL  
is output for 1 byte. The START condition generation timing and BB  
bit set timing are different in the standard clock mode and the high-  
speed clock mode. Refer to Figure 8.6.10 for the START condition  
generation timing diagram, and Table 8.6.2 for the START condition/  
STOP condition generation timing table.  
SCL  
SDA  
Setup  
time  
Hold time  
Set time  
for BB flag  
BB flag  
Fig. 8.6.10 START Condition Generation Timing Diagram  
8.6.7 STOP Condition Generation Method  
2
When the ESO bit of the I C control register (address 00F916) is “1,”  
I2C status register  
write signal  
2
execute a write instruction to the I C status register (address 00F816)  
to set the MST bit and the TRX bit to “1” and the BB bit to “0”. A STOP  
condition will then be generated. The STOP condition generation tim-  
ing and the BB flag reset timing are different in the standard clock  
mode and the high-speed clock mode. Refer to Figure 8.6.11 for the  
STOP condition generation timing diagram, and Table 8.6.2 for the  
START condition/STOP condition generation timing table.  
SCL  
Setup  
time  
Hold time  
SDA  
Reset time  
for BB flag  
BB flag  
Fig. 8.6.11 STOP Condition Generation Timing Diagram  
Table 8.6.2 START Condition/STOP Condition Generation Tim-  
ing Table  
Item  
Standard Clock Mode High-speed Clock Mode  
Setup time  
(START condition)  
Setup time  
(STOP condition)  
Hold time  
5.0 µs (20 cycles)  
2.5 µs (10 cycles)  
4.25 µs (17 cycles)  
5.0 µs (20 cycles)  
3.0 µs (12 cycles)  
1.75 µs (7 cycles)  
2.5 µs (10 cycles)  
1.5 µs (6 cycles)  
Set/reset time  
for BB flag  
Note: Absolute time at φ = 4 MHz. The value in parentheses denotes the  
number of φ cycles.  
Rev.1.00 Nov 01, 2002 page 37 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.6.8 START/STOP Condition Detect Conditions  
The START/STOP condition detect conditions are shown in  
Figure 8.6.12 and Table 8.6.3. Only when the 3 conditions of Table  
8.6.3 are satisfied, a START/STOP condition can be detected.  
8.6.9 Address Data Communication  
There are two address data communication formats, namely, 7-bit  
addressing format and 10-bit addressing format. The respective ad-  
dress communication formats are described below.  
Note: When a STOP condition is detected in the slave mode  
(MST = 0), an interrupt request signal “IICIRQ” is generated to the  
CPU.  
(1) 7-bit addressing format  
To support the 7-bit addressing format, set the 10BIT SAD bit of the  
2
I C control register (address 00F916) to “0.” The first 7-bit address  
data transmitted from the master is compared with the high-order 7-  
2
bit slave address stored in the I C address register (address 00F716).  
At the time of this comparison, address comparison of the RBW bit of  
2
the I C address register (address 00F716) is not made. For the data  
transmission format when the 7-bit addressing format is selected,  
refer to Figure 8.6.13, (1) and (2).  
SCL release time  
SCL  
Setup  
Hold time  
time  
SDA  
(2) 10-bit addressing format  
(START condition)  
Setup  
To support the 10-bit addressing format, set the 10BIT SAD bit of the  
Hold time  
time  
2
I C control register (address 00F916) to “1.” An address comparison  
SDA  
(STOP condition)  
is made between the first-byte address data transmitted from the  
2
master and the 7-bit slave address stored in the I C address register  
(address 00F716). At the time of this comparison, an address com-  
Fig. 8.6.12 START Condition/STOP Condition Detect Timing  
Diagram  
2
parison is performed between the RBW bit of the I C address regis-  
ter (address 00F716) and the R/W bit, which is the last bit of the  
address data transmitted from the master. In the 10-bit addressing  
mode, the R/W bit not only specifies the direction of communication  
Table 8.6.3 START Condition/STOP Condition Detect Conditions  
for control data but is also processed as an address data bit.  
When the first-byte address data matches the slave address, the  
Standard Clock Mode  
High-speed Clock Mode  
2
AAS bit of the I C status register (address 00F816) is set to “1.” After  
6.5 µs (26 cycles) < SCL  
1.0 µs (4 cycles) < SCL  
2
the second-byte address data is stored into the I C data shift register  
release time  
release time  
(address 00F616), perform an address comparison between the sec-  
ond-byte data and the slave address by software. When the address  
data of the 2nd byte matches the slave address, set the RBW bit of  
3.25 µs (13 cycles) < Setup time  
3.25 µs (13 cycles) < Hold time  
0.5 µs (2 cycles) < Setup time  
0.5 µs (2 cycles) < Hold time  
Note: Absolute time at φ = 4 MHz. The value in parentheses denotes the num-  
ber of φ cycles.  
2
the I C address register (address 00F716) to “1” by software. This  
processing can match the 7-bit slave address and R/W data, which  
are received after a RESTART condition is detected, with the value  
2
of the I C address register (address 00F716). For the data transmis-  
sion format when the 10-bit addressing format is selected, refer to  
Figure 8.6.13, (3) and (4).  
Rev.1.00 Nov 01, 2002 page 38 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.6.10 Example of Master Transmission  
An example of master transmission in the standard clock mode, at  
the SCL frequency of 100 kHz with the ACK return mode enabled, is  
shown below.  
8.6.11 Example of Slave Reception  
An example of slave reception in the high-speed clock mode, at the  
SCL frequency of 400 kHz, with the ACK Non-return mode enabled  
while using the addressing format, is shown below.  
2
2
Set a slave address in the high-order 7 bits of the I C address  
Set a slave address in the high-order 7 bits of the I C address  
register (address 00F716) and “0” in the RBW bit.  
register (address 00F716) and “0” in the RBW bit.  
Set the ACK return mode and SCL = 100 kHz by setting “8516” in  
Set the ACK non-return mode and SCL = 400 kHz by setting “2516”  
2
2
the I C clock control register (address 00FA16).  
in the I C clock control register (address 00FA16).  
2
2
Set “1016” in the I C status register (address 00F816) and hold the  
Set “1016” in the I C status register (address 00F816) and hold the  
SCL at HIGH.  
SCL at HIGH.  
2
2
Set a communication enable status by setting “4816” in the I C  
Set a communication enable status by setting “4816” in the I C  
control register (address 00F916).  
control register (address 00F916).  
Set the address data of the destination of transmission in the high-  
When a START condition is received, an address comparison is  
executed.  
2
order 7 bits of the I C data shift register (address 00F616) and set  
“0” in the least significant bit.  
•When all transmitted address are“0” (general call):  
2
2
Set “F016” in the I C status register (address 00F816) to generate  
AD0 of the I C status register (address 00F816) is set to “1” and  
a START condition. At this time, an SCL for 1 byte and an ACK  
an interrupt request signal occurs.  
clock automatically occurs.  
•When the transmitted addresses match the address set in :  
2
2
Set transmit data in the I C data shift register (address 00F616). At  
ASS of the I C status register (address 00F816) is set to “1” and  
this time, an SCL and an ACK clock automatically occurs.  
an interrupt request signal occurs.  
•In the cases other than the above:  
When transmitting control data of more than 1 byte, repeat step .  
2
2
Set “D016” in the I C status register (address 00F816). After this, if  
AD0 and AAS of the I C status register (address 00F816) are set  
ACK is not returned or transmission ends, a STOP condition will  
be generated.  
to “0” and no interrupt request signal occurs.  
2
Set dummy data in the I C data shift register (address 00F616).  
When receiving control data of more than 1 byte, repeat step .  
When a STOP condition is detected, the communication ends.  
Rev.1.00 Nov 01, 2002 page 39 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
S
Slave address R/W  
7 bits “0”  
A
Data  
A
Data  
A/A  
P
P
A
1 to 8 bits  
1 to 8 bits  
(1) A master-transmitter transmits data to a slave-receiver  
R/W  
“1”  
S
Slave address  
7 bits  
A
Data  
A
Data  
A
1 to 8 bits  
1 to 8 bits  
(2) A master-receiver receives data from a slave-transmitter  
Slave address  
1st 7 bits  
Slave address  
2nd byte  
S
R/W  
“0”  
A
A
Data  
1 to 8 bits  
Data  
A/A  
P
7 bits  
8 bits  
1 to 8 bits  
(3) A master-transmitter transmits data to a slave-receiver with a 10-bit address  
Slave address  
1st 7 bits  
Slave address  
2nd byte  
Slave address  
1st 7 bits  
S
R/W  
“0”  
A
A
Sr  
R/W Data  
A
Data  
A
P
7 bits  
8 bits  
7 bits  
“1” 1 to 8 bits  
1 to 8 bits  
(4) A master-receiver receives data from a slave-transmitter with a 10-bit address  
S : START condition  
A : ACK bit  
Sr :Restart condition  
P : STOP condition  
R/W : Read/Write bit  
From master to slave  
From slave to master  
Fig. 8.6.13 Address Data Communication Format  
(2) START condition generating procedure us-  
ing multi-master  
8.6.12 Precautions when using multi-master  
2
I C-BUS interface  
Procedure example (The necessary conditions for the procedure  
are described in to below).  
(1) Read-modify-write instruction  
Precautions for executing the read-modify-write instructions, such  
2
as SEB and CLB, is for each register of the multi-master I C-BUS  
interface are described below.  
LDA  
SEI  
(Take at slave address value)  
(Interrupt disabled)  
2
•I C data shift register (S0)  
When executing the read-modify-write instruction for this register  
during transfer, data may become an arbitrary value.  
BBS 5,S1,BUSBUSY (BB flag confirmation and branch  
process)  
2
•I C address register (S0D)  
BUSFREE:  
STA S0  
When the read-modify-write instruction is executed for this register  
(Write slave address value)  
(Trigger START condition generation)  
(Interrupt enabled)  
at detection of the STOP condition, data may become an arbitrary  
LDM #$F0, S1  
______  
value because hardware changes the read/write bit (RBW) at the  
CLI  
above timing.  
2
•I C status register (S1)  
Do not execute the read-modify-write instruction for this register  
because all bits of this register are changed by hardware.  
BUSBUSY:  
CLI  
(Interrupt enabled)  
2
•I C control register (S1D)  
When the read-modify-write instruction is executed for this register  
at detection of the START condition or at completion of the byte  
transfer, data may become an arbitrary value because hardware  
changes the bit counter (BC0–BC2) at the above timing.  
Use “STA,” “STX” or “STY” of the zero page addressing instruc-  
2
tion for writing the slave address value to the I C data shift register.  
2
•I C clock control register (S2)  
Use “LDM” instruction for setting trigger of START condition gen-  
eration.  
The read-modify-write instruction can be executed for this register.  
Write the slave address value of and set trigger of START con-  
dition generation as in continuously, as shown in the procedure  
example.  
Disable interrupts during the following three process steps:  
• BB flag confirmation  
• Write slave address value  
• Trigger of START condition generation  
When the condition of the BB flag is bus busy, enable interrupts  
immediately.  
Rev.1.00 Nov 01, 2002 page 40 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
(3) RESTART condition generation procedure  
Procedure example (The necessary conditions for the procedure  
are described in to below.)  
(4) STOP condition generating procedure  
Procedure example (The necessary conditions for the procedure  
are described in to below.)  
Execute the following procedure when the PIN bit is “0.”  
SEI  
(Interrupt disabled)  
LDM #$00, S1  
(Select slave receive mode)  
(Take out slave address value)  
(Interrupt disabled)  
LDM #$C0, S1  
NOP  
(Select master transmit mode)  
(Set NOP)  
LDA  
SEI  
LDM #$D0, S1  
CLI  
(Trigger STOP condition generation)  
(Interrupt enabled)  
STA  
S0  
(Write slave address value)  
(Trigger RESTART condition generation)  
(Interrupt enabled)  
LDM #$F0, S1  
CLI  
Write “0” to the PIN bit when master transmit mode is selected.  
Execute “NOP” instruction after master transmit mode is set. Also,  
set trigger of STOP condition generation within 10 cycles after se-  
lecting the master trasmit mode.  
Select the slave receive mode when the PIN bit is “0.” Do not write  
“1” to the PIN bit. Neither “0” nor “1” is specified for the writing to  
the BB bit.  
Disable interrupts during the following two process steps:  
• Select master transmit mode  
The TRX bit becomes “0” and the SDA pin is released.  
The SCL pin is released by writing the slave address value to the  
• Trigger STOP condition generation  
2
I C data shift register. Use “STA,” “STX” or “STY” of the zero page  
2
addressing instruction for writing.  
(5) Writing to I C status register  
Use “LDM” instruction for setting trigger of RESTART condition  
generation.  
Do not execute an instruction to set the PIN bit to “1” from “0” and an  
instruction to set the MST and TRX bits to “0” from “1” simultaneously  
as it may cause the SCL pin the SDA pin to be released after about  
one machine cycle. Also, do not execute an instruction to set the  
MST and TRX bits to “0” from “1” when the PIN bit is “1,” as it may  
cause the same problem.  
Write the slave address value of and set trigger of RESTART  
condition generation of continuously, as shown in the procedure  
example.  
Disable interrupts during the following two process steps:  
• Write slave address value  
• Trigger RESTART condition generation  
(6) Process after STOP condition generation  
2
2
Do not write data in the I C data shift register S0 and the I C status  
register S1 until the bus busy flag BB becomes “0” after generating  
the STOP condition in the master mode. Doing so may cause the  
STOP condition waveform from being generated normally. Reading  
the registers does not cause the same problem.  
Rev.1.00 Nov 01, 2002 page 41 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.7 PWM OUTPUT FUNCTION  
This microcomputer is equipped with five 8-bit PWMs (PWM0–  
PWM4). PWM0–PWM4 have the same circuit structure, an 8-bit reso-  
lution with minimum resolution bit width of 4 µs (for f(XIN) = 8 MHz)  
and repeat period of 1024 µs (for f(XIN) = 8 MHz).  
Figure 8.7.1 shows the PWM block diagram. The PWM timing gen-  
erating circuit applies individual control signals to PWM0–PWM4 us-  
ing f(XIN) divided by 2 as a reference signal.  
8.7.1 Data Setting  
When outputting PWM0–PWM4, set 8-bit output data to the PWMi  
register (i means 0 to 4; addresses 020016 to 020416).  
8.7.2 Transmitting Data from Register to PWM  
circuit  
Data transfer from the 8-bit PWM register to the 8-bit PWM circuit is  
executed when writing data to the register.  
The signal output from the 8-bit PWM output pin corresponds to the  
contents of this register.  
8.7.3 Operating of 8-bit PWM  
The following explains the PWM operation.  
First, set bit 0 of PWM mode register 1 (address 020816) to “0” (at  
reset, bit 0 is already set to “0” automatically), so that the PWM count  
source is supplied.  
PWM0–PWM4 are also used as pins P00–P04. Set the correspond-  
ing bits of the port P0 direction register to “1” (output mode). And  
select each output polarity by bit 3 of PWM mode register 1 (address  
020816). Then, set bits 4 to 0 of PWM mode register 2 (address  
020916) to “1” (PWM output).  
The PWM waveform is output from the PWM output pins by setting  
these registers.  
Figure 8.7.2 shows the 8-bit PWM timing. One cycle (T) is com-  
8
posed of 256 (2 ) segments. 8 kinds of pulses, relative to the weight  
of each bit (bits 0 to 7), are output inside the circuit during 1 cycle.  
Refer to Figure 8.7.2 (a). The 8-bit PWM outputs a waveform which  
is the logical sum (OR) of pulses corresponding to the contents of  
bits 0 to 7 of the 8-bit PWM register. Several examples are shown in  
Figure 8.7.2 (b). 256 kinds of output (HIGH area: 0/256 to 255/256)  
are selected by changing the contents of the PWM register. An en-  
tirely HIGH section cannot be output, i.e. 256/256.  
8.7.4 Output after Reset  
At reset, the output of ports P00–P04 is in the high-impedance state,  
and the contents of the PWM register and the PWM circuit are unde-  
fined. Note that after reset, the PWM output is undefined until setting  
the PWM register.  
Rev.1.00 Nov 01, 2002 page 42 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Data bus  
PWM timing  
generating  
circuit  
XIN  
1/2  
PM10  
PWM0 register  
(Address 020016  
)
b7  
b0  
8
PWM0  
PWM1  
PM13  
D0  
D0  
0
1
P0  
0
8-bit PWM circuit  
PM20  
P0  
1
PM21  
P0  
PM22  
P0  
PM23  
P0  
PM24  
PWM1 register (Address 020116)  
PWM2 register (Address 020216)  
PWM3 register (Address 020316)  
PWM4 register (Address 020416)  
PWM2  
PWM3  
PWM4  
D0  
D0  
D0  
2
3
4
2
3
4
Selection gate:  
Connected to  
black side at  
reset.  
PM1 : PWM mode register 1 (address 0208 16  
PM2 : PWM mode register 2 (address 0209 16  
P0 : Port P0 register (address 00C0 16  
D0 : Port P0 direction register (address 00C1 16  
)
)
)
)
Inside of  
is as same contents with the others.  
Fig. 8.7.1 PWM Block Diagram  
Rev.1.00 Nov 01, 2002 page 43 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Fig. 8.7.2 PWM Timing  
Rev.1.00 Nov 01, 2002 page 44 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
PWM Mode Register 1  
b7b6 b5b4b3 b2b1b0  
PWM mode register 1 (PM1) [Address 020816  
]
After reset  
0
B
0
Name  
Functions  
R W  
PWM counts source  
selection bit (PM10)  
0 : Count source supply  
1 : Count source stop  
W
R
1, 2  
3
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
Indeterminate  
0
R
PWM output polarity  
selection bit (PM13)  
0 : Positive polarity  
1 : Negative polarity  
R W  
4
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
R
Indeterminate  
Fig. 8.7.3 PWM Mode Register 1  
PWM Mode Register 2  
b7b6 b5b4b3 b2b1b0  
0 0 0  
PWM mode register 2 (PM2) [Address 020916  
]
B
0
Name  
Functions  
output  
1 : PWM0 output  
0 : P0 output  
1 : PWM1 output  
After reset R W  
0 : P0  
0
P0  
0
/PWM0 output  
0
R W  
selection bit (PM20)  
P0 /PWM1 output  
selection bit (PM21)  
P0 /PWM2 output  
selection bit (PM22)  
P0 /PWM3 output  
selection bit (PM23)  
1
2
3
4
1
1
0
0
0
R W  
R W  
R W  
2
0 : P02 output  
1 : PWM2 output  
3
0 : P0 output  
3
1 : PWM3 output  
P0 /PWM4 output  
selection bit (PM24)  
4
0
0
R W  
R W  
0 : P0 output  
4
1 : PWM4 output  
Fix these bits to “0.”  
5 to  
7
Fig. 8.7.4 PWM Mode Register 2  
Rev.1.00 Nov 01, 2002 page 45 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.8 A-D COMPARATOR  
The A-D comparator consists of a 7-bit D-A converter and a com-  
parator. The A-D comparator block diagram is shown in Figure 8.8.1.  
The reference voltage “Vref” for D-A conversion is set by bits 0 to 6 of  
A-D control register 2 (address 00ED16).  
The comparison result of the analog input voltage and the reference  
voltage “Vref” is stored in bit 4 of A-D control register 1 (address  
00EC16).  
For A-D comparison, set “0” to corresponding bits of the direction  
register to use ports as analog input pins. Write the data to select  
analog input pins for bits 0 to 2 of A-D control register 1 and write the  
digital value corresponding to Vref to be compared to bits 0  
to 4 of A-D control register 2. The voltage comparison is started by  
writing to A-D control register 2, and it is completed after 16 machine  
cycles (NOP instruction 8).  
Data bus  
A-D control register 1  
Comparator control  
Bits 0 to 2  
A-D control  
register 1  
A-D control  
register 2  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
Analog  
signal  
switch  
Compa-  
rator  
Bit 4  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD7  
AD8  
Switch tree  
Resistor ladder  
Fig. 8.8.1 A-D Comparator Block Diagram  
Rev.1.00 Nov 01, 2002 page 46 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
A-D Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
A-D control register 1 (AD1) [Address 00EC16  
]
B
Name  
Functions  
After reset R W  
0
to  
2
Analog input pin selection  
bits  
(ADC10 to ADC12)  
b2 b1 b0  
0
R W  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : AD1  
1 : AD2  
0 : AD3  
1 : AD4  
0 : AD5  
1 : AD6  
0 : AD7  
1 : AD8  
3
4
This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
0
R
0: Input voltage < reference voltage  
1: Input voltage > reference voltage  
Storage bit of comparison  
result (ADC14)  
R —  
Indeterminate  
0
5
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
R
Fig. 8.8.2 A-D Control Register 1  
A-D Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
A-D control register 2 (AD2) [Address 00ED16  
]
B
Name  
Functions  
After reset  
0
R
R
W
W
b6 b5 b4 b3 b2 b1 b0  
0
to  
6
D-A converter set bits  
(ADC20 to ADC25)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
: 1/256Vcc  
: 3/256Vcc  
: 5/256Vcc  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
: 251/256Vcc  
: 253/256Vcc  
: 255/256Vcc  
Nothing is assigned. This bit is a write disable bit.  
When these bits are reed out, the values are “ 0.”  
0
R
7
Fig. 8.8.3 A-D Control Register 2  
Rev.1.00 Nov 01, 2002 page 47 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.9 ROM CORRECTION FUNCTION  
This can correct program data in the ROM. Up to 2 addresses can be  
corrected; a program for correction is stored in the ROM correction  
vector in the RAM as the top address. There are 2 vectors for ROM  
correction:.  
ROM correction address 1 (high-order) 020A16  
ROM correction address 1 (low-order) 020B16  
ROM correction address 2 (high-order) 020C16  
Vector 1 : address 030016  
Vector 2 : address 032016  
Set the address of the ROM data to be corrected into the ROM cor-  
rection address register. When the value of the counter matches the  
ROM data address in the top address of the ROM correction vector,  
the main program branches to the correction program stored in the  
ROM memory. To return from the correction program to the main  
program, the op code and operand of the JMP instruction (total of 3  
bytes) are necessary at the end of the correction program.  
The ROM correction function is controlled by the ROM correction  
enable register.  
ROM correction address 2 (low-order)  
020D16  
Fig. 8.9.1 ROM Correction Address Registers  
Notes 1: Specify the first address (op code address) of each  
instruction as the ROM correction address.  
2: Use the JMP instruction (total of 3 bytes) to return from  
the correction program to the main program.  
3: Do not set the same ROM correction address to both vectors 1  
and 2.  
ROM Correction Enable Register  
b7 b6 b5 b4 b3 b2 b1 b0  
ROM correction enable register (RCR) [Address 020E 16  
]
After reset  
0
B
Name  
Functions  
R W  
R W  
0
Vector 1 enable bit (RC0)  
0: Disabled  
1: Enabled  
1
Vector 2 enable bit (RC1)  
0: Disabled  
1: Enabled  
0
0
R W  
R —  
Nothing is assigned. These bits are write disable bits. When  
these bits are read out, the values are “0.”  
2
to  
7
Rev.1.00 Nov 01, 2002 page 48 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10 DATA SLICER  
When the data slicer function is not used, the data slicer circuit and  
the timing signal generating circuit can be cut off by setting bit 0 of  
data slicer control register 1 (address 00E016) to “0.” These settings  
support low-power dissipation.  
This microcomputer includes the data slicer function for the closed  
caption decoder (referred to as the CCD). This function takes out the  
caption data superimposed in the vertical blanking interval of a com-  
posite video signal. A composite video signal, which makes the sync  
chip’s polarity negative, is input to the CVIN pin.  
0.1 µF  
1 MΩ  
Composite  
video  
signal  
470 Ω  
1 kΩ  
Sync pulse counter  
register  
560 pF  
1 µF  
200 pF  
(address 00E916  
)
CVIN  
H
SYNC  
HLF  
Synchronizing  
signal counter  
Data slicer control register 2  
(address 00E116  
Clamping  
circuit  
)
Synchronizing  
separation  
circuit  
Low-pass  
filter  
Sync slice  
circuit  
Data slicer control register 1  
(address 00E016  
)
Timing signal  
generating  
circuit  
Data slicer ON/OFF  
VHOLD  
Reference  
voltage  
generating  
circuit  
+
Clock run-in  
determination  
circuit  
1000 pF  
Comparator  
Clock run-in defect register  
(address 00E416  
)
Data slice line  
specification  
circuit  
Caption position register  
(address 00E616  
Start bit detecting  
circuit  
)
External circuit  
Note : Make the length of wiring which is  
Data clock  
connected to VHOLD, HLF, and CVIN pin as  
short as possible so that a leakage current  
may not be generated when mounting a  
resistor or a capacitor on each pin.  
generating circuit  
Data clock position register  
(address 00E516  
)
16-bit shift register  
Data slicer  
interrupt  
request  
Interrupt request  
generating circuit  
high-order  
low-order  
Caption data register 1  
Caption data register 2  
(address 00E316  
(address 00E216  
)
)
Caption data register 4  
(address 00CF16  
Caption data register 3  
(address 00CE16  
)
)
Data bus  
Fig. 8.10.1 Data Slicer Block Diagram  
Rev.1.00 Nov 01, 2002 page 49 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.1 Notes When not Using Data Slicer  
When bit 0 of data slicer control register 1 (address 00E016) is “0,”  
terminate the pins as shown in Figure 8.10.2.  
<When data slicer circuit and timing signal generating circuit are in OFF state>  
Leave HLF pin open.  
Open  
Open  
HLF  
24  
25  
26  
Leave VHOLD pin open.  
V
HOLD  
CVIN  
Pull-down CVIN pin to VSS through  
a resistor of 5 kor more.  
5 kor more  
Fig. 8.10.2 Termination of Data Slicer Input/Output Pins when Data Slicer Circuit and Timing Generating Circuit are in OFF State  
When both bits 0 and 2 of data slicer control register 1 (address  
00E016) are “1,” terminate the pins as shown in Figure 8.10.3.  
<When using a reference clock generated in timing signal generating circuit as OSD clock>  
1 k  
HLF  
Connect the same external circuit as when  
using data slicer to HLF pin.  
24  
25  
1 µF  
200pF  
Open  
HOLD  
V
Leave VHOLD pin open.  
Pull-up CVIN to VCC through a resistor  
of 5 kor more.  
5 kor more  
CVIN  
26  
Fig. 8.10.3 Termination of Data Slicer Input/Output Pins when Timing Signal Generating Circuit Is in ON State  
Rev.1.00 Nov 01, 2002 page 50 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Figures 8.10.4 and 8.10.5 the data slicer control registers.  
Data Slicer Control Register 1  
b7b6b5b4b3b2b1b0  
0 1 1 0 0  
Data slicer control register 1(DSC1) [Address 00E016  
]
B
0
Name  
Functions  
0: Stopped  
1: Operating  
After reset  
R
R
W
W
0
Data slicer and timing signal  
generating circuit control bit (DSC10)  
1
2
0: F2  
1: F1  
0
0
0
R
R
R
W
W
W
Selection bit of data slice reference  
voltage generating field (DSC11)  
0: Video signal  
1: HSYNC signal  
Reference clock source  
selection bit (DSC12)  
3, 4  
Fix these bits to “0.”  
5, 6  
7
0
0
R
R
W
W
Fix these bits to “1.”  
Fix this bit to “0.”  
Definition of fields 1 (F1) and 2 (F2)  
sep  
H
F2:  
sep  
H
F1:  
sep  
V
sep  
V
Fig. 8.10.4 Data Slicer Control Register 1  
Data Slicer Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
Data slicer control register 2 (DSC2) [Address 00E116]  
B
1
Name  
Functions  
After reset  
R
R
W
0: Data is not latched yet  
and a clock-run-in is not  
determined.  
1: Data is latched and a  
clock-run-in is determined.  
Indeterminate  
Caption data latch  
completion flag 1  
(DSC20)  
1
2
0
Fix this bit to “1.”  
Test bit  
R
R
R
R
W
W
0
Indeterminate  
Read-only  
0: F2  
1: F1  
Indeterminate  
0
Field determination  
flag(DSC23)  
0: Method (1)  
1: Method (2)  
Vertical synchronous signal  
(Vsep) generating method  
selection bit (DSC24)  
4
5
0: Match  
1: Mismatch  
Indeterminate  
R
V-pulse shape  
determination flag (DSC25)  
0
R
R
6
7
W
Fix this bit to “0.”  
Test bit  
Indeterminate  
Read-only  
Definition of fields 1 (F1) and 2 (F2)  
Hsep  
Vsep  
Hsep  
Vsep  
F2:  
F1:  
Fig. 8.10.5 Data Slicer Control Register 2  
Rev.1.00 Nov 01, 2002 page 51 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.2 Clamping Circuit and Low-pass Filter  
The clamp circuit clamps the sync chip part of the composite video  
signal input from the CVIN pin. The low-pass filter attenuates the noise  
of the clamped composite video signal. The CVIN pin to which com-  
posite video signal is input requires an external capacitor (0.1 µF)  
coupling. Pull down the CVIN pin with a resistor of hundreds of kilo-  
ohms to 1 M. In addition, we recommend installing a simple low-  
pass filter externally, using a resistor and a capacitor at the CVIN pin  
(refer to Figure 8.10.1).  
Composite s  
Measure LOW period  
Timing  
signal  
Vsep signal  
8.10.3 Sync Slice Circuit  
This circuit takes out a composite sync signal from the output signal  
of the low-pass filter.  
A Vsep signal is generated at a rising of the timing signal  
immediately after the LOW level width of the composite  
sync signal exceeds a certain time.  
8.10.4 Synchronous Signal Separation Circuit  
This circuit separates a horizontal synchronous signal and a vertical  
synchronous signal from the composite sync signal taken out in the  
sync slice circuit.  
Fig. 8.10.6 Vsep Generating Timing (method 2)  
(1) Horizontal Synchronous Signal (Hsep)  
A one-shot horizontal synchronizing signal Hsep is generated at  
the falling edge of the composite sync signal.  
(2) Vertical Synchronous Signal (Vsep)  
As a Vsep signal generating method, it is possible to select one of  
the following 2 methods by using bit 4 of data slicer control regis-  
ter 2 (address 00E116).  
•Method 1 The LOW level width of the composite sync signal is  
measured. If this width exceeds a certain time, a Vsep  
signal is generated in synchronization with the rising  
of the timing signal immediately after this LOW level.  
•Method 2 The LOW level width of the composite sync signal is  
measured. If this width exceeds a certain time, it is  
detected whether a falling of the composite sync sig-  
nal exits or not in the LOW level period of the timing  
signal immediately after this LOW level. If a falling  
exists, a Vsep signal is generated in synchronization  
with the rising of the timing signal (refer to Figure  
8.10.6).  
Figure 8.10.6 shows a Vsep generating timing. The timing signal shown  
in the figure is generated from the reference clock which the timing  
generating circuit outputs.  
Reading bit 5 of data slicer control register 2 permits determinating  
the shape of the V-pulse portion of the composite sync signal. As  
shown in Figure 8.10.7, when the A level matches the B level, this bit  
is “0.” In the case of a mismatch, the bit is “1.”  
Rev.1.00 Nov 01, 2002 page 52 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.5 Timing Signal Generating Circuit  
This circuit generates a reference clock which is 832 times as large  
as the horizontal synchronous signal frequency. It also generates  
various timing signals on the basis of the reference clock, horizontal  
synchronous signal and vertical synchronizing signal. The circuit  
operates by setting bit 0 of data slicer control register 1 (address  
00E016) to “1.”  
Bit 5 of  
DSC2  
0
1
1
The reference clock can be used as a display clock for the OSD  
function in addition to the data slicer. The HSYNC signal can be used  
as a count source instead of the composite sync signal. However,  
when the HSYNC signal is selected, the data slicer cannot be used. A  
count source of the reference clock can be selected by bit 2 of data  
slicer control register 1 (address 00E016).  
Composite  
sync signal  
A
B
For pins HLF, connect a resistor and a capacitor as shown in Figure  
8.10.1. Make the length of wiring which is connected to these pins as  
short as possible to prevent a leakage current from being generated.  
Note: It takes a few tens of milliseconds until the reference clock becomes  
stable after the data slicer and the timing signal generating circuit are  
started. In this period, various timing signals, Hsep signals and Vsep sig-  
nals become unstable. For this reason, take stabilization time into con-  
sideration when programming.  
Fig. 8.10.7 Determination of V-pulse Waveform  
Rev.1.00 Nov 01, 2002 page 53 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.6 Data Slice Line Specification Circuit  
(1) Specification of data slice line  
(3) Field determination  
The field determination flag can be read out by bit 3 of data slicer  
This circuit determines the lines on to which caption data is super-  
imposed. Data can be sliced for line 21 and one arbitrary line in  
both field (2 lines total per field). The caption position register (ad-  
dress 00E616) is used for each setting (refer to Table 8.10.1).  
The counter is reset at the falling edge of Vsep and is incremented  
by 1 every Hsep pulse. When the counter value matches the value  
specified by bits 4 to 0 of the caption position register, this Hsep is  
sliced.  
control register 2. This flag changes at the falling edge of Vsep.  
The values of “0016” to “1F16” can be set in the caption position  
register (when setting only one arbitrary line). Figure 8.10.8 shows  
the signals in the vertical blanking interval. Figure 8.10.9 shows  
the structure of the caption position register.  
(2) Specification of line to set slice voltage  
Table 8.10.1 shows which field and line generates the reference  
slice voltage for the clock run-in pulse of each line. The field to  
generate slice voltage is specified by bit 1 of data slicer control  
register 1. The line to generate slice voltage for one field is speci-  
fied by bits 6 and 7 of the caption position register (refer to  
Table 8.10.1).  
Vertical blanking interval  
Video signal  
Composite  
video signal  
1 appropriate line is set by  
the caption position register  
(when setting line 19)  
Vsep  
Hsep  
Line 21  
Count value to be set in the caption position register (“0F 16” in this case)  
Magnified  
drawing  
Hsep  
Clock run-in  
Start bit + 16-bit data  
Start bit  
Composite video  
signal  
Window for  
deteminating  
clock-run-in  
Fig. 8.10.8 Signals in Vertical Blanking Interval  
Rev.1.00 Nov 01, 2002 page 54 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Caption Position Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Caption Position Register (CPS) [Address 00E616  
]
R W  
R W  
Name  
Functions  
After reset  
0
B
0
to  
4
Caption position  
bits(CPS0 to CPS4)  
5
0: Data is not latched yet and a  
clock-run-in is not determined.  
1: Data is latched and a  
Indeterminate  
R
Caption data latch  
completion flag 2  
(CPS5)  
clock-run-in is determined.  
W
6, 7  
Refer to the corresponding  
Table (Table 8.10.1).  
0
R
Slice line mode  
specification bits  
(in 1 field) (CPS6, CPS7)  
Fig. 8.10.9 Caption Position Register  
Table 8.10.1 Specification of Data Slice Line  
CPS  
Field and Line to Be Sliced Data  
• Both fields of F1 and F2  
• Line 21 and a line specified by bits 4 to 0 of CPS  
(total 2 lines) (See note 2)  
Field and Line to Generate Slice Voltage  
• Field specified by bit 1 of DSC1  
b7  
0
b6  
0
• Line 21 (total 1 line)  
• Both fields of F1 and F2  
• A line specified by bits 4 to 0 of CPS  
(total 1 line) (See note 3)  
• Field specified by bit 1 of DSC1  
• A line specified by bits 4 to 0 of CPS  
(total 1 line) (See note 3)  
0
1
1
1
0
1
• Both fields of F1 and F2  
• Line 21 (total 1 line)  
• Field specified by bit 1 of DSC1  
• Line 21 (total 1 line)  
• Both fields of F1 and F2  
• Line 21 and a line specified by bits 4 to 0 of CPS  
(total 2 lines) (See note 2)  
• Field specified by bit 1 of DSC1  
• Line 21 and a line specified by bits 4 to 0 of CPS  
(total 2 lines) (See note 2)  
Notes 1: DSC1 is data slicer control register 1.  
CPS is caption position register.  
2: Set “0016” to “1016” to bits 4 to 0 of CPS.  
3: Set “0016” to “1F16” to bits 4 to 0 of CPS.  
Rev.1.00 Nov 01, 2002 page 55 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.7 Reference Voltage Generating Circuit  
and Comparator  
8.10.8 Start Bit Detecting Circuit  
This circuit detects a start bit at the line decided in the data slice line  
specification circuit.  
The composite video signal clamped by the clamping circuit is input  
to the reference voltage generating circuit and the comparator.  
The detection of a start bit is as follows:.  
A sampling clock is generated by dividing the reference clock out-  
put by the timing signal.  
(1) Reference voltage generating circuit  
This circuit generates a reference voltage (slice voltage) by us-  
ing the amplitude of the clock run-in pulse in the line specified by  
the data slice line specification circuit. Connect a capacitor be-  
tween the VHOLD pin and the VSS pin, and make the length of  
wiring as short as possible to prevent a leakage current from be-  
ing generated.  
A clock run-in pulse is detected by the sampling clock.  
After detection of the pulse, a start bit pattern is detected from the  
comparator output.  
8.10.9 Clock Run-in Determination Circuit  
This circuit determinates clock run-in by counting the number of pulses  
in a window of the composite video signal.  
(2) Comparator  
The reference clock count value in one pulse cycle is stored in bits 3  
to 7 of the clock run-in detect register (address 00E416). Read out  
these bits after the occurrence of a data slicer interrupt (refer to  
“8.10.12 Interrupt Request Generating Circuit”).  
The comparator compares the voltage of the composite video  
signal with the voltage (reference voltage) generated in the refer-  
ence voltage generating circuit, and converts the composite video  
signal into a digital value.  
Figure 8.10.10 shows the structure of the clock run-in detect register.  
Clock Run-in Detect Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock run-in detect register (CRD) [Address 00E416  
]
R
R
After reset  
0
W
B
Name  
Test bits  
Functions  
0
to  
2
Read-only  
3
Clock run-in detection  
Number of reference clocks to  
be counted in one clock run-in  
pulse period.  
0
R
to bit(CRD3 to CRD7)  
7
Fig. 8.10.10 Clock Run-in Detect Register  
Rev.1.00 Nov 01, 2002 page 56 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.10 Data Clock Generating Circuit  
This circuit generates a data clock synchronized with the start bit  
detected in the start bit detecting circuit. The data clock stores cap-  
tion data to the 16-bit shift register. When the 16-bit data has been  
stored and the clock run-in determination circuit determines clock  
run-in, the caption data latch completion flag is set. This flag is reset  
at a falling edge of the vertical synchronous signal (Vsep).  
Data Clock Position Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
0
Data clock position register (DPS) [Address 00E516]  
R
R
W
W
B
0
Name  
Functions  
After reset  
1
Fix this bit to “0.”  
1
Fix this bit to “1.”  
Fix this bit to “0.”  
0
R
W
2
3
0
1
R
R
W
W
Data clock position set  
bits (DPS3 to DPS7)  
4
to  
7
0
Fig. 8.10.11 Data Clock Position Register  
Rev.1.00 Nov 01, 2002 page 57 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.11 16-bit Shift Register  
8.10.12 Interrupt Request Generating Circuit  
The interrupt requests as shown in Table 8.10.3 are generated by a  
combination of the following bits; bits 6 and 7 of the caption position  
register (address 00E616). Read out the contents of data registers 1  
to 4 and the contents of bits 3 to 7 of the clock run-in detect register  
after the occurrence of a data slicer interrupt request.  
The caption data converted into a digital value by the comparator is  
stored into the 16-bit shift register in synchronization with the data  
clock. The contents of the high-order 8 bits of the stored caption data  
can be obtained by reading out data register 2 (address 00E316) and  
data register 4 (address 00CF16). The contents of the low-order 8  
bits can be obtained by reading out data register 1 (address 00E216)  
and data register 3 (address 00CE16), respectively. These registers  
are reset to “0” at a falling edge of Vsep. Read out data registers 1  
and 2 after the occurrence of a data slicer interrupt (refer to “8.10.12  
Interrupt Request Generating Circuit”).  
Table 8.10.2 Contents of Caption Data Latch Completion Flag and 16-bit Shift Register  
Slice Line Specification Mode  
CPS  
Contents of Caption Data Latch Completion Flag  
Contents of 16-bit Shift Register  
Completion Flag 1  
(bit 0 of DSC2)  
Completion Flag 2  
(bit 5 of CPS)  
Caption Data  
Caption Data  
Registers 3, 4  
Registers 1, 2  
bit 7  
bit 6  
A line specified by  
bits 4 to 0 of CPS  
16-bit data of line 21  
16-bit data of a line specified by  
bits 4 to 0 of CPS  
0
0
Line 21  
A line specified by  
bits 4 to 0 of CPS  
16-bit data of a line specified  
by bits 4 to 0 of CPS  
0
1
1
1
0
1
Invalid  
Invalid  
Invalid  
Invalid  
Line 21  
Line 21  
16-bit data of line 21  
16-bit data of line 21  
A line specified by  
bits 4 to 0 of CPS  
16-bit data of a line specified by  
bits 4 to 0 of CPS  
CPS: Caption position register  
DSC2: Data slicer control register 2  
Table 8.10.3 Occurence Sources of Interrupt Request  
Caption position register  
Occurence Souces of Interrupt Request at End of Data Slice Line  
After slicing line 21  
b7  
b6  
0
0
1
After a line specified by bits 4 to 0 of CPS  
After slicing line 21  
0
1
1
After slicing line 21  
Rev.1.00 Nov 01, 2002 page 58 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.10.13 Synchronous Signal Counter  
The synchronous signal counter counts the composite sync signal  
taken out from a video signal in the data slicer circuit or the vertical  
synchronous signal Vsep as a count source.  
The latch value can be obtained by reading out the sync pulse counter  
register (address 00E916). A count source is selected by bit 5 of the  
sync pulse counter register.  
The synchronous signal counter is used when bit 0 of PWM mode  
register 1 (address 020816) is set to “0.”  
13  
The count value in a certain time (T time) generated by f(XIN)/2 or  
13  
f(XIN)/2 is stored into the 5-bit latch. Accordingly, the latch value  
Figure 8.10.12 shows the structure of the sync pulse counter and  
Figure 8.10.13 shows the synchronous signal counter block diagram.  
changes in the cycle of T time. When the count value exceeds “1F16,”  
“1F16” is stored into the latch.  
Sync Pulse Counter Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Sync pulse counter register (HC) [Address 00E916  
]
R
R
W
Name  
Functions  
After reset  
0
B
0
to  
4
Count value (HC0 to HC4)  
5
Count source (HC5)  
0: HSYNC signal  
1: Composite sync signal  
0
0
R
R
W
6, 7 Nothing is assigned. These bits are write disable bits.  
“0.”  
When these bits are read out, the values are  
Fig. 8.10.12 Sync Pulse Counter Register  
f(XIN)/213  
Composite  
sync signal  
Reset  
Counter  
5-bit counter  
H
SYNC signal  
Sync pulse  
counter register  
Latch (5 bits)  
b5  
Selection gate : connected to black  
side when reset.  
Data bus  
Fig. 8.10.13 Synchronous Signal Counter Block Diagram  
Rev.1.00 Nov 01, 2002 page 59 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11 OSD FUNCTIONS  
Table 8.11.1 outlines the OSD functions.  
This microcomputer incorporates an OSD circuit of 32 characters  
2 lines. There are also 2 display modes which are selected in block  
units. The display modes are selected by bits 0 and 1 of block con-  
trol register i (i = 1 and 2).  
The features of each mode are described below.  
Table 8.11.1 Features of Each Display Mode  
Display mode  
Parameter  
CC mode  
(Closed caption mode)  
OSD mode (Border OFF)  
(On-screen display mode)  
Number of display characters  
Dot structure  
32 characters 2 lines  
16 26 dots (Character display area : 16 20 dots)  
254 kinds  
16 20 dots  
Kinds of characters  
Kinds of character sizes  
1 kinds  
8 kinds  
Pre-divide ratio (See note)  
Dot size  
2 (fixed)  
2, 3  
1T  
Smooth italic, under line, flash  
1 screen : 8 kinds (per character unit)  
1 screen : 8 kinds (per character unit)  
C
1/2H  
1T  
C
1/2H, 1T  
C 1H, 2TC 2H, 3TC 3H  
Attribute  
Border (black)  
Character font coloring  
Character background coloring  
OSD output  
R, G, B  
Possible (per character unit)  
Auto solid space function  
Window function  
Horizontal: 128 levels, Vertical: 512 levels  
Possible  
Raster coloring  
Function  
Display position  
Display expansion (multiline display)  
Notes 1: The divide ratio of the frequency divider (the pre-divide circuit) is referred as “pre-divide ratio” hereafter.  
2: The character size is specified with dot size and pre-divide ratio (refer to 8.11.2 Dot Size).  
Rev.1.00 Nov 01, 2002 page 60 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
The OSD circuit has an extended display mode. This mode allows  
multiple lines (3 lines or more) to be displayed on the screen by inter-  
rupting the display each time one line is displayed and rewriting data  
in the block for which display has been terminated by software.  
Figure 8.11.1 shows the configuration of an OSD character. Figure  
8.11.2 shows the block diagram of the OSD circuit. Figure 8.11.3  
shows the OSD control register. Figure 8.11.4 shows block control  
register i.  
CC mode  
OSD mode  
16 dots  
16 dots  
Blank area  
Underline area✕  
Blank area✕  
: Displayed only in CCD mode.  
Fig. 8.11.1 Configuration of OSD Character Display Area  
Rev.1.00 Nov 01, 2002 page 61 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
HSYNC VSYNC  
Standard clock  
Data slicer clock  
for OSD f(OSC)  
Control registers for OSD  
OSD Control circuit  
OSD bort control register  
(address 00CB16)  
OSD control register  
(address 00D016)  
Horizontal position register  
Block control register i  
Vertical position register i  
Window register i  
I/O polarity control register  
Raster color register  
(address 00D116)  
(addresses 00D216, 00D316)  
(addresses 00D416, 00D516)  
(addresses 00D616, 00D716)  
(address 00D816)  
(address 00D916)  
OSD control register 2  
(address 00DB16)  
RAM for OSD  
2 bytes 32 characters 2 lines  
ROM for OSD  
16 dots 20 dots 254 characters  
Shift register  
16-bit  
Output circuit  
R
G
B
OUT  
Data bus  
Fig. 8.11.2 Block Diagram of OSD Circuit  
Rev.1.00 Nov 01, 2002 page 62 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
OSD Control Register  
b7 b6 b5b4 b3 b2b1 b0  
0 0  
OSD control register (OC) [Address 00D016  
Functions  
]
After reset  
R
W
B
Name  
0 : All-blocks display off  
1 : All-blocks display on  
OSD control bit  
(OC0) (See note 1)  
0
R W  
R W  
R W  
R W  
0
1
2
Automatic solid space 0 : OFF  
0
0
0
1 : ON  
control bit (OC1)  
Window control bit  
(OC2)  
0 : OFF  
1 : ON  
CC mode clock  
selection bit (OC3)  
0 : Data slicer clock  
1 : Internal oscillating clock f(osc)  
3
4
OSD mode clock  
selection bit (OC4)  
0
R W  
0 : Data slicer clock  
1 : Internal oscillating clock f(osc)  
R W  
R W  
5, 6 Fix these bits to “0.”  
0
0
0 : Divide ratio by the block  
control register  
1 : Pre-divide ratios = 1  
for blocks 1 and 2  
Pre-divide ratio  
7
selection bit (OC7)  
(See note 2)  
Notes 1:Even this bit is switched during display, the display screen  
remains unchanged until a rising (falling) of the next VSYNC  
2:This bit's priority is higher than BCi4 of Block Control  
Register i setting.  
Fig. 8.11.3 OSD Control Register  
Rev.1.00 Nov 01, 2002 page 63 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Block Control register i  
b7 b6 b5b4 b3 b2b1 b0  
Block control register i (BCi) (i=1, 2) [Addresses 00D216 and 00D316]  
After reset  
B
Name  
Functions  
R W  
R W  
b1 b0  
Indeterminate  
0, 1 Display mode  
selection bits  
(BCi0, BCi1)  
0 0: Display OFF  
0 1: CC mode  
1 0: OSD mode (Border OFF)  
1 1: OSD mode (Border ON)  
(See note 1)  
b4 b3 b2 Pre-divide Ratio Dot Size  
Indeterminate  
Indeterminate  
2, 3 Dot size selection  
bits (BCi2, BCi3)  
R W  
R W  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1Tc 1/2H  
1Tc 1H  
2Tc 2H  
3Tc 3H  
1Tc 1/2H  
1Tc 1H  
2Tc 2H  
3Tc 3H  
0
1
2  
4
Pre-divide ratio  
selection bit (BCi4)  
3  
0: 2 value output control  
1: 3 value output control  
(notes 3)  
5
6
OUToutput control bit  
(BCi5)  
Indeterminate  
Indeterminate  
R W  
R W  
Vertical display start  
position control bit  
(BCi6)  
BC16: Block 1  
BC26: Block 1  
BC17: Window top boundary  
BC27: Window bottom boundary  
Indeterminate  
7
Window top/bottom  
boundary control bit  
(BCi7)  
R W  
Notes 1: Tc is OSD clock cycle divided in pre-divide circuit.  
2: H is HSYNC.  
3: Refer to the corresponding figure 8.11.18.  
Fig. 8.11.4 Block Control Register i  
Rev.1.00 Nov 01, 2002 page 64 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.1 Display Position  
Blocks are displayed in conformance with the following rules:  
• When the display position of block 1 is overlapped with that of block  
2 (Figure 8.11.5 (b)), block 1 is displayed in front.  
The display positions of characters are specified in units called  
“blocks.” There are 2 blocks: blocks 1 and 2. Up to 32 characters can  
be displayed in each block (refer to “8.11.5 Memory for OSD”).  
The display position of each block can be set in both horizontal and  
vertical directions by software.  
• When another block display position appears while one block is  
displayed (Figure 8.11.5 (c)), the block with a larger set value as  
the vertical display start position is displayed.  
The display start position in the horizontal direction can be selected  
for all blocks from 128-step display positions in units of 4TOSC (TOSC  
= OSD oscillation cycle).  
The display start position in the vertical direction for each block can  
be selected from 512-step display positions in units of 1 TH ( TH =  
HSYNC cycle).  
(HP)  
VP1  
Block 1  
Block 2  
VP2  
(a) Example when each block is separated  
(HP)  
VP1 = VP2  
Block 1  
(Block 2 is not displayed)  
(b) Example when block 2 overlaps with block 1  
(HP)  
VP1  
VP2  
Block 1  
Block 2  
(c) Example when block 2 overlaps in process of block 1  
Note: VP1 or VP2 indicates the vertical display start position of display block 1 or 2.  
Fig. 8.11.5 Display Position  
Rev.1.00 Nov 01, 2002 page 65 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
The vertical display start position is determined by counting the hori-  
zontal sync signal (HSYNC). At this time, when VSYNC and HSYNC are  
positive polarity (negative polarity), the count starts at the rising edge  
(falling edge) of HSYNC signal after the fixed cycle of the rising edge  
(falling edge) of VSYNC signal. So the interval from the rising edge  
(falling edge) of VSYNC signal to rising edge (falling edge) of HSYNC  
signal needs enough time (2 machine cycles or more) to avoid jitters.  
The polarity of HSYNC and VSYNC signals can be select with the I/O  
polarity control register (address 00D816).  
8 machine cycles  
or more  
VSYNC signal input  
0.25 to 0.50 [µs]  
( at f(XIN) = 8MHz)  
VSYNC control  
signal in  
microcomputer  
Period of counting  
HSYNC signal  
(See note 2)  
HSYNC  
signal input  
8 machine cycles  
or more  
1
2
3
4
5
Not count  
When bits 0 and 1 of the I/O polarity control register  
(address 00D816) are set to “1” (negative polarity)  
Notes 1 : The vertical position is determined by counting falling edge of HSYNC  
signal after rising edge of VSYNC control signal in the microcomputer.  
2 : Do not generate falling edge of HSYNC signal near rising edge of  
VSYNC control signal in microcomputer to avoid jitter.  
3 : The pulse width of VSYNC and HSYNC needs 8 machine cycles or  
more.  
Fig. 8.11.6 Supplement Explanation for Display Position  
Rev.1.00 Nov 01, 2002 page 66 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
The vertical display start position for each block can be set in 512  
steps (where each step is 1TH (TH: HSYNC cycle)) as values “0016” to  
“FF16” in vertical position register i (i = 1 and 2) (addresses 00D416  
and 00D516) and values “0” or “1” in bit 6 of block control register i (i  
= 1 and 2) (addresses 00D216 and 00D316). The vertical position  
register is shown in Figure 8.11.7.  
The vertical display start position of both blocks can be switched in  
each step to 1TH or 2TH by setting values “0” or “1” in bit 1 of OSD  
control register 2 (address 00DB16).  
Vertical Position Register i  
b7 b6 b5 b4 b3 b2 b1 b0  
Vertical position register i (VPi) (i = 1 and 2) [Addresses 00D416, 00D516  
]
After reset  
Name  
B
Functions  
R
R
W
W
Vertical display start  
position control bits  
(VPi0 to VPi7)  
Vertical display start position =  
Inderterminate  
0
to  
7
TH  
5 (BCi6 162 + n)  
(n: setting value, TH: HSYNC cycle,  
(See note)  
BCi6: bit 6 of block control register i)  
Notes 1: Set values except “0016” to VPi when BCi6 is “0.”  
2: When OS21 of OSD control register 2 = “0”, TH = 1HSYNC  
,
and OS21 of OSD control register 2 = “1”, TH = 2HSYNC  
.
Fig. 8.11.7 Vertical Position Register i (i = 1 and 2)  
Rev.1.00 Nov 01, 2002 page 67 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
The horizontal display start position is common to all blocks, and can  
be set in 128 steps (where 1 step is 4TOSC, TOSC being the OSD  
oscillation cycle) as values “0016” to “FF16” in bits 0 to 6 of the hori-  
zontal position register (address 00D116). The horizontal position reg-  
ister is shown in Figure 8.11.8.  
Horizontal Position Register  
b7 b6 b5b4 b3 b2b1 b0  
Horizontal position register (HP) [Address 00D116  
]
B
0
Name  
Functions  
After reset R W  
Horizontal display start position  
4Tosc n  
Horizontal display start  
0
R W  
to position control bits  
6
(n: setting value, Tosc: OSD oscillation cycle)  
(HP0 to HP6)  
Nothing is assigned. This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
7
0
R —  
Note: The setting value synchronizes with the V SYNC  
.
Fig. 8.11.8 Horizontal Position Register  
Notes 1 : 1TC (TC : OSD clock cycle divided in pre-divide circuit) gap occurs  
between the horizontal display start position set by the horizontal  
position register and the most left dot of the 1st block. Accordingly,  
when 2 blocks have different pre-divide ratios, their horizontal dis-  
play start position will not match.  
2 : The horizontal start position is based on the OSD clock source cycle  
selected for each block. Accordingly, when 2 blocks have different  
OSD clock source cycles, their horizontal display start position will  
not match.  
3 : When setting “0016” to the horizontal position register, it needs an  
approximately 62TOSC (= Tdef) interval from a rising edge (when nega-  
tive polarity is selected) of HSYNC signal to the horizontal display start  
position.  
H
SYNC  
1T  
C
T
def  
4TOSC N  
Note 1  
Block 2 (Pre-divide ratio = 2, clock source = data slicer clock)  
1T  
C
Block 3 (Pre-divide ratio = 3, clock source = data slicer clock)  
1T  
C
Tdef’  
4TOSC’ N  
Note 2  
Block 4 (Pre-divide ratio = 3, clock source = OSC1)  
: Value of horizontal position register (decimal notation)  
N
1TC : OSD clock cycle divided in pre-divide circuit  
TOSC : OSD oscillation cycle  
Tdef : 62 TOSC  
Fig. 8.11.9 Notes on Horizontal Display Start Position  
Rev.1.00 Nov 01, 2002 page 68 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.2 Dot Size  
The pre-divide ratio is specified by bit 7 of the OSD control register  
(address 00D016) and bit 4 of block control register i (addresses  
00D216 and 00D316) .  
The dot size can be selected in block units. The vertical dot size is  
determined by dividing HSYNC in the vertical dot size control circuit.  
The horizontal dot size is determined by dividing the following clock  
in the horizontal dot size control circuit : the clock gained by dividing  
the OSD clock source (data slicer clock, f (OSC) in the pre-divide  
circuit. The clock cycle divided in the pre-divide circuit is defined as  
1TC.  
When bit 7 of the OSD control register (address 00D016) is set to  
"0," the double or triple pre-divide ratio can be chosen per block unit  
by bit 4 of block control register i. And then, when it is set to "1", the  
pre-divide ratio increases 1 time (both blocks 1 and 2). The pre-di-  
vided dot size can be specified per block unit by bits 2 and 3 of block  
control register i.  
The dot size of each block is specified by bits 2 to 4 of block control  
register i.  
Refer to Figure 8.11.4 for the structure of the block control register.  
The block diagram of the dot size control circuit is shown in Figure  
8.11.10.  
Clock cycle  
= 1TC  
f (OSC)  
“0”  
“1”  
“1”  
“0”  
Synchronous  
Horizontal dot size  
control circuit  
Cycle 2  
circuit  
OC7  
OC3 or OC4  
Data slicer clock  
BCi4  
Cycle 3  
Pre-divide circuit  
Vertical dot size  
control circuit  
H
SYNC  
OSD control circuit  
Note: To use data slicer clock, set bit 0 of data slicer control register 1 to “1.”  
Fig. 8.11.10 Block Diagram of Dot Size Control Circuit  
1 dot  
1T  
C
1T  
C
2T  
C
3TC  
Scanning line of F1(F2 )  
Scanning line of F2(F1 )  
1/2 H  
1H  
2H  
3H  
Fig. 8.11.11 Definition of Dot Sizes  
Rev.1.00 Nov 01, 2002 page 69 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.3 Clock for OSD  
The following 2 types of clocks can be selected for OSD display:  
Data slicer clock output from the data slicer (approximately 26 MHz)  
OSD clock f (osc) generated based on the reference clock from  
pin XIN.  
The OSD clock for each block can be selected by bits 3 and 4 of the  
clock source control register (addresses 00D016).  
Data slicer clock  
(See note)  
“0”  
Data slicer circuit  
CC mode block  
OC3  
OC4  
“1”  
“0”  
OSD mode block  
f(osc)  
“1”  
Note : To use data slicer clock, set bit 0 of data slicer control register 1 to “1.”  
When use the clock for OSD generated based on the main clock,  
set the bit 0 of the clock control register 1 to “0.”  
Fig. 8.11.12 Block Diagram of OSD Selection Circuit  
Clock control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
0
0
0
Clock control register 1 (CC1) [Address 00CD16]  
B
0
Name  
Functions  
0: Operation  
W
W
R
R
After reset  
0
System clock generating  
circuit control bit (CC10)  
1: Stop  
W
0
R
1 to  
7
Fix these bits to "0"  
Fig. 8.11.13 Clock control register 1  
Rev.1.00 Nov 01, 2002 page 70 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.4 Field Determination Display  
When displaying a block with vertical dot size of 1/2H, the differ-  
ences in the synchronizing signal waveform of the interlacing system  
determine whether the field is odd or even. The dot lines 0 and 1  
(refer to Figure 8.11.15), corresponding to each field, are displayed  
alternately.  
In the following, the field determination standard for the case where  
both the horizontal sync signal and the vertical sync signal are nega-  
tive-polarity inputs will be explained. A field determination is deter-  
mined by detecting the time from a falling edge of the horizontal sync  
signal until a falling edge of the VSYNC control signal (refer to Figure  
8.11.6) in the microcomputer and then comparing this time with the  
time of the previous field. When the time is longer than the previous  
time, it is regarded as an even field. When the time is shorter, it is  
regarded as an odd field  
The contents of this field can be read out by the field determination  
flag (bit 6 of the I/O polarity control register at address 00D816). A dot  
line is specified by bit 5 of the I/O polarity control register (refer to  
Figure 8.11.15).  
However, the field determination flag read out from the CPU is fixed  
to “0” for even fields or “1” for odd fields, regardless of bit 5.  
I/O Polarity Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
I/O polarity control register (PC) [Address 00D816  
]
After reset  
0
B
0
Name  
Functions  
R
R
W
W
H
SYNC input polarity  
switch bit (PC0)  
0 : Positive polarity input  
1 : Negative polarity input  
1
2
3
5
0 : Positive polarity input  
1 : Negative polarity input  
0
0
0
0
R
R
R
R
W
W
W
W
V
SYNC input polarity  
switch bit (PC1)  
0 : Positive polarity output  
1 : Negative polarity output  
R, G, B output polarity  
switch bit (PC2)  
OUT1 output polarity  
switch bit (PC3)  
0 : Positive polarity output  
1 : Negative polarity output  
Display dot line selection  
bit (PC5) (See note)  
0 : “  
” at even field  
” at odd field  
” at even field  
” at odd field  
1 : “  
6
Field determination flag  
(PC6)  
0 : Even field  
1 : Odd field  
1
0
R
R
W
4, 7  
Fix these bits to “0.”  
Note: Refer to the corresponding figure. 8.11.15  
Fig. 8.11.14 I/O Polarity Control Register  
Rev.1.00 Nov 01, 2002 page 71 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Both HSYNC cignal and VSYNC signal are negative-polarity input  
Field  
determination  
flag(Note)  
Display dot line  
selection bit  
Display dot line  
H
SYNC  
Field  
Odd  
V
V
SYNC and  
SYNC  
(n 1) field  
(Odd-numbered)  
control  
0.25 to 0.50[ µs] at  
T1  
T2  
T3  
signal  
in microcom-  
puter  
f(XIN) = 8 MHz  
0
1
Dot line 1  
Dot line 0  
(n) field  
(Even-numbered)  
Even  
Odd  
0 (T2 > T1)  
1 (T3 < T2)  
Upper :  
V
SYNC signal  
Lower :  
V
SYNC control  
0
1
Dot line 0  
Dot line 1  
signal in  
micro-  
computer  
(n +1) field  
(Odd-numbered)  
When using the field determination flag, be sure to set bit 0 of the PWM mode register 1 (address 0208 16) to “0.”  
3 4 7 8 10 1112 1314 1516 3 4 9 10 1112 1314 1516  
1
2
5
6
9
1
2
5
6 7 8  
1
2
1
2
3
3
4
4
5
6
5
6
7
7
8
9
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSD mode  
“0,”  
” font is displayed at even field, the  
24  
25  
I/O polarity control register can be read as the  
field determination flag : “1” is read at odd field,  
“0” is read at even field.  
26  
CC mode  
OSD ROM font configuration diagram  
Note : The field determination flag changes at a rising edge of the V SYNC control signal (negative-polarity input) in  
the microcomputer.  
Fig. 8.11.15 Relation between Field Determination Flag and Display Font  
Rev.1.00 Nov 01, 2002 page 72 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.5 Memory for OSD  
(1) OSD ROM  
There are 2 types of memory for OSD: OSD ROM used to store  
character dot data and OSD RAM used to specify the characters and  
colors to be displayed.  
The dot pattern data for OSD characters is stored in the OSD ROM.  
To specify the kinds of character font, it is necessary to write the  
character code into the OSD RAM.  
Data of the character font is specified as shown in Figure 8.11.16.  
OSD ROM : addresses 1140016 to 13BFF16  
OSD RAM : addresses 080016 to 087F16  
OSD ROM address of character font data  
OSD ROM  
AD16 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0  
address bit  
Font  
bit  
Line number/character  
0
0
1
Line number  
Character code  
code/font bit  
= “0A16” to “1D16”  
Line number  
Character code  
Font bit  
= “0016” to “FF16” (“7F16” and “8016” cannot be used)  
= 0 : Left area  
1 : Right area  
Data in  
OSD  
ROM  
Line  
number  
Left  
area  
Right  
area  
b7  
b0 b7  
b0  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
000016  
7FF016  
7FF816  
601C16  
600C16  
600C16  
600C16  
600C16  
601C16  
7FF816  
7FF016  
630016  
638016  
61C016  
60E016  
607016  
603816  
601C16  
600C16  
000016  
Character font  
Fig. 8.11.16 Character Font Data Storing Address  
Rev.1.00 Nov 01, 2002 page 73 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Notes 1 : The 80-byte addresses corresponding to the character code “7F16”  
and “8016” in the OSD ROM are the test data storing area. Set data  
to the area as follows.  
2 : The character code “0916” is used for “transparent space” when  
displaying Closed Caption.  
Therefore, set “0016” to the 40-byte addresses corresponding to the  
character code “0916.”  
<Test data storing area>  
addresses 1100016 + (4 + 2n) 10016 + FE16 to  
1100016 + (5 + 2n) 10016 + 0116  
(n = 0 to 19)  
<Transparent space font data storing area>  
addresses 1100016 + (4 + 2n) 10016 + 1216 to  
1100016 + (4 + 2n) 10016 + 1316  
(n = 0 to 19)  
(1)Mask version (M37151M6/M8/MA/MC/MF-XXXFP)  
Set “FF16” to the area (This sample has test data in this area but the actual  
product will have different data.) When using our font editor, the test data is  
written automatically.  
(2)EPROM version (M37151EFFP)  
Set the test data to the area. When using our font editor, the test data  
is written automatically.  
addresses 1141216 and 1141316  
addresses 1161216 and 1161316  
addresses 1381216 and 1381316  
addresses 13A1216 and 13A1316  
M37151EFFP  
<“7F16”> address (test data)  
114FE16 (0916), 114FF16 (5116)  
116FE16 (0016), 116FF16 (5216)  
118FE16 (1216), 118FF16 (5316)  
11AFE16 (0016), 11AFF16 (5416)  
11CFE16 (2416), 11CFF16 (5516)  
11EFE16 (0016), 11EFF16 (5616)  
120FE16 (8816), 120FF16 (5716)  
122FE16 (0016), 122FF16 (5816)  
124FE16 (9016), 124FF16 (5916)  
126FE16 (4816), 126FF16 (5A16)  
128FE16 (2416), 128FF16 (5B16)  
12AFE16 (0016), 12AFF16 (5C16)  
12CFE16 (2416), 12CFF16 (5D16)  
12EFE16 (4816), 12EFF16 (5E16)  
130FE16 (0016), 130FF16 (5F16)  
132FE16 (4816), 132FF16 (5016)  
134FE16 (9016), 134FF16 (5116)  
136FE16 (0016), 136FF16 (5216)  
138FE16 (0116), 138FF16 (5316)  
13AFE16 (8016), 13AFF16 (5416)  
<“8016”> address (test data)  
1150016 (9016), 1150116 (A116)  
1170016 (0016), 1170116 (A216)  
1190016 (4816), 1190116 (A316)  
11B0016 (0016), 11B0116 (A416)  
11D0016 (2416), 11D0116 (A516)  
11F0016 (0016), 11F0116 (A616)  
1210016 (1216), 1210116 (A716)  
1230016 (0016), 1230116 (A816)  
1250016 (0916), 1250116 (A916)  
1270016 (0016), 1270116 (AA16)  
1290016 (8116), 1290116 (AB16)  
12B0016 (1816), 12B0116 (AC16)  
12D0016 (0016), 12D0116 (AD16)  
12F0016 (4216), 12F0116 (AE16)  
1310016 (2416), 1310116 (AF16)  
1330016 (0016), 1330116 (B016)  
1350016 (8116), 1350116 (B116)  
1370016 (0C16), 1370116 (B216)  
1390016 (0616), 1390116 (B316)  
13B0016 (0016), 13B0116 (B416)  
Rev.1.00 Nov 01, 2002 page 74 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
(2) OSD RAM  
The RAM for OSD is allocated at addresses 080016 to 087F16, and  
is divided into a display character code specification part, color code  
1 specification part, and color code 2 specification part for each block.  
Table 8.11.2 shows the contents of the OSD RAM.  
For example, to display the first character position (the left edge) in  
block 1, write the character code in address 080016 and write the  
color code at 082016.  
The structure of the OSD RAM is shown in Figure 8.11.17.  
Table 8.11.2 Contents of OSD RAM  
Display Position (from left)  
Color Code Specification  
Block  
Character Code Specification  
080016  
080116  
082016  
082116  
1st character  
2nd character  
080216  
:
081D16  
082216  
:
083D16  
3rd character  
Block 1  
:
30th character  
081E16  
081F16  
084016  
084116  
083E16  
083F16  
086016  
086116  
31st character  
32nd character  
1st character  
2nd character  
3rd character  
084216  
:
086216  
:
:
Block 2  
30th character  
085D16  
087D16  
31st character  
32nd character  
085E16  
085F16  
087E16  
087F16  
Rev.1.00 Nov 01, 2002 page 75 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Blocks 1, 2  
b7  
b0  
b7  
b0  
RA6 RA5 RA4 RA3 RA2 RA1 RA0 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0  
(See note 1)  
Color code 1  
CC mode  
Character code (See note 3)  
OSD mode  
Bit name  
Bit  
Bit name  
Function  
Function  
RF0  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RA0  
Character code  
Character code in  
OSD ROM  
Character code  
Character code in  
OSD ROM  
0: Color signal output OFF  
1: Color signal output ON  
Control of  
character color R  
Control of  
0: Color signal output OFF  
1: Color signal output ON  
Control of  
character color R  
Control of  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
character color G  
Control of  
character color G  
Control of  
character color B  
character color B  
(See note 2)  
OUT control  
(See note 2)  
OUT control  
Flash control  
0: Flash OFF  
1: Flash ON  
Control of  
background color R  
Control of  
0: Color signal output OFF  
1: Color signal output ON  
0: Underline OFF  
1: Underline ON  
0: Italic OFF  
Underline control  
Italic control  
background color G  
Control of  
1: Italic ON  
background color B  
Notes 1: Read value of bits 7 of the color code is “0.”  
2: For OUT control, refer to “8.11.8 OUT signal.”  
3: “7F16” and “8016” cannot be used as character code.  
Fig. 8.11.17 Bit structure of OSD RAM  
Rev.1.00 Nov 01, 2002 page 76 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.6 Character color  
8.11.7 Character background color  
The character background color can be displayed in the character  
display area only in the OSD mode. The character background color  
for each character is specified by the color code.  
The 7 kinds of color are specified by bits 0 (R), 1 (G), and 2 (B) of the  
color code.  
The color for each character is displayed by the color code.  
The 7 kinds of color are specified by bits 0 (R), 1 (G), and 2 (B) of the  
color code.  
Note : The character background color is displayed in the following parts:  
(character display area)–(character font)–(border).  
Accordingly, the character background color does not mix with these  
color signals.  
Rev.1.00 Nov 01, 2002 page 77 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.8 OUT signal  
The OUT signal is used to control the luminance of the video sig-  
nal. The output waveform of the OUT signal is controlled by RA3 of  
the OSD RAM. The setting values for controlling OUT and the cor-  
responding output waveform are shown in Figure 8.11.18.  
A'  
A
Block Control  
Display Register i  
OUT control  
(RA3 of OSD RAM)  
Output Waveform (A-A')  
Mode  
OUT Output  
Control Bit (b5)  
Vcc  
0V  
0
1
0
1
0
1
0
1
OUT=FONT/BORDER  
OUT=AREA  
0
Vcc  
0V  
OSD  
Vcc  
OUT=FONT/BORDER  
OUT=FONT/BORDER  
OUT=FONT  
0V  
1
Vcc  
About 0.6Vcc  
0V  
Vcc  
0V  
0
Vcc  
OUT=AREA  
0V  
CC  
Vcc  
OUT=FONT  
0V  
1
Vcc  
OUT=FONT  
About 0.6Vcc  
0V  
Notes 1: FONT/BORDER.....In the OSD mode (Border ON), OUT outputs to the area of font and border.  
In the OSD mode (Border OFF), OUT outputs to only the font area.  
AREA.....................OUT outputs to entire display area of character.  
FONT.....................In the CC mode, OUT outputs to font area.  
2: When the automatic solid space function is OFF in the CC mode, AREA outputs according to bit 3 of color code.  
When it is ON, the solid space is automatically output by a character code regardless of RA3.  
3: The OUT signal's three-level outputs are useful only during positive polarity output.  
4: For three-level OUT signal outputs, set Port P3 Direction Register (address 00C716) bit 2 to 1.  
5: For three-level OUT signal outputs, set about 2 kresistor between OUT pin and VSS  
.
Fig. 8.11.18 Setting Value for Controlling OUT and Corresponding Output Waveform  
Rev.1.00 Nov 01, 2002 page 78 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.9 Attribute  
The attributes (border, flash, underline, italic) are controlled accord-  
ing to the character font. The attributes to be controlled are different  
depending on each mode.  
CC mode ..................... Flash, underline, italic (per character unit)  
OSD mode .................. Border (per character unit)  
(1) Underline  
The underline is output at the 23th and 24th dots in the vertical direc-  
tion only in the CC mode. The underline is controlled by RA5 of the  
OSD RAM. The color of the underline is the same color as that of the  
character font.  
(2) Flash  
The character font and the underline are flashed only in the CC mode.  
The flash is controlled by RA4 of OSD RAM. In the character font  
part, the character output part is flashed, but the character back-  
ground part is not flashed. The flash cycle is based on the VSYNC  
count.  
• VSYNC cycle 48 800 ms (at display ON)  
• VSYNC cycle 16 267 ms (at display OFF)  
(3) Italic  
The italic is made by slanting the font stored in the OSD ROM to the  
right only in the CC mode. The italic is controlled by RA6 of OSD  
RAM.  
Display examples of the italic and underline are shown in Figure  
8.11.19, using “R.”  
Notes 1: When setting both the italic and the flash, the italic character flashes.  
2: The boundary of character color is displayed in italic. However, the  
boundary of character background color is not affected by the italic  
(refer to Figure 8.11.20).  
3: The adjacent character (one side or both sides) to an italic character  
is displayed in italic even when the character is not specified to be  
displayed in italic (refer to Figure 8.11.20).  
4: Italics display cannot be used at pre-divided ratio 1 setting .  
Rev.1.00 Nov 01, 2002 page 79 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Color code  
Color code  
Bit 6  
Bit 5  
Bit 6  
Bit 5  
(RA6)  
(RA5)  
(RA6)  
(RA5)  
0
0
0
1
(a) Ordinary  
(b) Under line  
Color code  
Bit 6  
Bit 5  
(RA6)  
(RA5)  
1
0
(c) Italic (pre-divide ratio = 2)  
Color code  
Bit 6  
Bit 5  
Bit 4  
(RA6)  
(RA5)  
(RA4)  
flash  
flash  
flash  
1
1
1
ON  
ON  
OFF  
OFF  
(d) Under line amd Italic and flash  
Fig. 8.11.19 Example of Attribute Display (in CC Mode)  
Rev.1.00 Nov 01, 2002 page 80 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
26th chracter  
(Refer to “8.11.9 Notes 2, 3”)  
(Refer to “8.11.9 Notes 2, 3”)  
RA6 of  
OSD RAM  
1
0
0
1
1
0
1
Notes 1 : The dotted line is the boundary of character color.  
2 : When bit 1 of OSD control register is “0.”  
Fig. 8.11.20 Example of Italic Display  
Rev.1.00 Nov 01, 2002 page 81 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Notes 1 : The border dot area is the shaded area as shown in Figure 8.11.21.  
2 : When the border dot overlaps on the next character font, the charac-  
ter font has priority (refer to Figure 8.11.23 A).  
(4) Border  
The border is output around the character font (all bordered) in the  
OSD mode only. The border ON/OFF is controlled by bit 0 and 1 of  
block control register i (refer to Figure 8.11.4).  
When the border dot overlaps the next character back ground, the  
border has priority (refer to Figure 8.11.23 B).  
3 : The border in vertical out of the character area is not displayed (refer  
to Figure 8.11.23).  
The OUT signal is used for border output.  
The horizontal size (x) of the border is 1TC (OSD clock cycle divided  
in pre-divide circuit) regardless of the character font dot size. The  
vertical size (y) differs depending on the screen scan mode and the  
vertical dot size of the character font.  
OSD mode  
16 dots  
Character  
font area  
All bordered  
1 dot width of border  
1 dot width of border  
Fig. 8.11.21 Example of Border Display  
y
x
Scan mode  
Normal scan mode  
Bi-scan mode  
Vertical dot size of  
character font  
1/2H  
1H, 2H, 4H, 8H  
1H, 2H, 3H  
1Tc (OSD clock cycle divided in pre-divide circuit)  
1/2H  
Border dot size  
Horizontal size (x)  
Vertical size (y)  
1H  
1H  
Fig. 8.11.22 Horizontal and Vertical Size of Border  
Rev.1.00 Nov 01, 2002 page 82 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Character boundary Character boundary Character boundary  
B
A
B
Fig. 8.11.23 Border Priority  
Rev.1.00 Nov 01, 2002 page 83 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Notes 1: An OSD interrupt does not occur at the end of display when the block  
is not displayed. In other words, if a block is set to display off by the  
display control bit of the block control register (addresses 00D216,  
00D316), an OSD interrupt request does not occur (refer to Figure  
8.11.24 (A)).  
8.11.10 Multiline Display  
This microcomputer can display 2 lines on the CRT screen by dis-  
playing 2 blocks at different vertical positions. In addition, it can dis-  
play up to 16 lines by using OSD interrupts.  
2: When another block display appears while one block is displayed, an  
OSD interrupt request occurs only once at the end of the second  
block display (refer to Figure 8.11.24 (B)).  
3: On the screen setting window, an OSD interrupt occurs even at the  
end of the CC mode block (display off) out of window (refer to Figure  
8.11.24 (C)).  
An OSD interrupt request occurs at the point at which that display of  
each block has been completed. In other words, when a scanning  
line reaches the point of the display position (specified by the vertical  
position registers) of a certain block, the character display of that  
block starts, and an interrupt occurs at the point at which the scan-  
ning line exceeds the block.  
Block 1 (on display)  
Block 1 (on display)  
“OSD interrupt request”  
“OSD interrupt request”  
“OSD interrupt request”  
Block 2 (on display)  
Block 1’ (on display)  
Block 2’ (on display)  
Block 2 (on display)  
“OSD interrupt request”  
Block 1’ (off display)  
Block 2’ (off display)  
No  
“OSD interrupt request”  
“OSD interrupt request”  
“OSD interrupt request”  
No  
“OSD interrupt request”  
On display (OSD interrupt request occurs  
at the end of block display)  
Off display (OSD interrupt request does  
not occur at the end of block display)  
(A)  
Block 1  
Block 2  
“OSD interrupt request”  
“OSD interrupt request”  
Block 1  
Block 2  
No  
“OSD interrupt request”  
“OSD interrupt request”  
Block 1’  
“OSD interrupt request”  
Window  
In CC mode  
(C)  
(B)  
Fig. 8.11.24 Note on Occurence of OSD Interrupt  
Rev.1.00 Nov 01, 2002 page 84 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Notes : The character code “0916” is used for “transparent space” when dis-  
playing Closed Caption.  
8.11.11 Automatic Solid Space Function  
This function automatically generates the solid space (OUT blank  
output) of the character area in the CC mode.  
Therefore, set “0016” to the 40-byte addresses corresponding to the  
character code “0916.”  
The solid space is output in the following areas:  
<Transparent space font data storing area>  
addresses 1100016 + (4 + 2n) 10016 + 1216 to  
1100016 + (4 + 2n) 10016 + 1316  
(n = 0 to 19)  
• Any character area except character code “0916 ”  
• Character area on the left and right sides of the above character  
This function is turned on and off by bit 1 of the OSD control register  
(refer to Figure 8.11.3).  
addresses 1141216 and 1141316  
addresses 1161216 and 1161316  
addresses 1381216 and 1381316  
addresses 13A1216 and 13A1316  
When setting the character code “0516” as the character A, “0616” as the character B.  
(OSD RAM)  
• • •  
05 09 09090 6 06  
06 09 09 06  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
(Display screen)  
• • •  
1st  
2nd  
31st  
character  
32nd  
character  
No blank output  
character character  
The solid space is automatically output on the left side of the 1st character and on the right side  
of the 32nd character by setting the 1st and 32nd of the character code.  
Fig. 8.11.25 Display Screen Example of Automatic Solid Space  
Rev.1.00 Nov 01, 2002 page 85 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.12 Window Function  
The setting value per one step of the top and bottom window borders  
can be switched to either 1TH or 2TH by setting “0” or “1” to bit 1 of  
OSD control register 2 (address 02DB16).  
This function sets the top and bottom boundaries for display limits  
on a screen. The window function is valid only in the CC mode. The  
top boundary is set by the window register 1 and bit 7 of block con-  
trol register 1. The bottom boundary is set by window register 1 and  
bit 7 of block control register 2. This function is turned on and off by  
bit 2 of the OSD control register (refer to Figure 8.11.3).  
Window registers 1 and 2 are shown in Figures 8.11.27 and 8.11.28.  
Top  
boundary  
of window  
OSD mode  
CC mode  
A B  
C D E  
F
G H  
I
J
CC mode  
CC mode  
K L M N O  
Window  
P
Q R  
S
T
Y
OSD mode  
U V W X  
Bottom  
boundary  
of window  
Screen  
Fig. 8.11.26 Example of Window Function  
Rev.1.00 Nov 01, 2002 page 86 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Window Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Window register 1 (WN1) [Address 00D616]  
After reset  
Name  
B
Functions  
R
R
W
W
Window top border position =  
TH 5 (BC17 162 + n)  
(n: setting value, TH: HSYNC cycle,  
Inderterminate  
Window top boundary  
control bits  
(WN10 to WN17)  
0
to  
7
BC17: bit 7 of block control register 1)  
Notes 1: Set values except “0016” to WN1 when BC17 is “0.”  
2: Set values fit for the following condition: WN1 < WN2.  
3: When OC21 of OSD control register 2 is “0”, TH is 1 HSYNC.  
And when “1”, TH is 2 HSYNC.  
Fig. 8.11.27 Window Register 1  
Window Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Window register 2 (WN2) [Address 00D716]  
After reset  
Name  
B
Functions  
R
R
W
Window bottom border position =  
TH 5 (BC27 162 + n)  
(n: setting value, TH: HSYNC cycle,  
Inderterminate  
Window bottom boundary  
control bits  
(WN20 to WN27)  
W
0
to  
7
BC27: bit 7 of block control register 2)  
Notes 1: Set values fit for the following condition: WN1 < WN2.  
2: When OC21 of OSD control register 2 is “0”, TH is 1 HSYNC.  
And when “1”, TH is 2 HSYNC.  
Fig. 8.11.28 Window Register 2  
Rev.1.00 Nov 01, 2002 page 87 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.13 OSD Output Pin Control  
The OSD output pins R, G, B and OUT can also function as ports  
P52–P55. Set the corresponding bit of the OSD port control register  
(address 00CB16) to “0” to specify these pins as OSD output pins, or  
to “1” to specify as the general-purpose port P5.  
The input polarity of the HSYNC and VSYNC, and the output polarity of  
signals R, G, B, OUT can be specified with the I/O polarity control  
register (address 00D8). Set bits to “0” to specify positive polarity;  
“1” to specify negative polarity (refer to Figure 8.11.14).  
The structure of the OSD port control register is shown in Figure  
8.11.29.  
OSD Port Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
OSD port control register (PF) [Address 00CB16  
]
1 0  
0 0  
R
R
B
Name  
Functions  
After reset  
0
W
0, 1  
Fix these bits to “0.”  
2
3
4
Port P5  
selection bit (PF2)  
2
output signal  
0 : B signal output  
1 : Port P5 output  
0
0
0
0
R
R
R
R
W
W
W
W
2
Port P5  
3
output signal  
0 : G signal output  
1 : Port P5 output  
selection bit (PF3)  
3
0 : R signal output  
1 : Port P5 output  
Port P54 output signal  
4
selection bit (PF4)  
Port P5 output signal  
5
0 : OUT signal output  
1 : Port P5 output  
5
6
7
selection bit (PF5)  
5
Fix this bit to “0.”  
R
W
W
Indeterminate  
0
Fix this bit to “1.”  
Fig. 8.11.29 OSD Port Control Register  
Rev.1.00 Nov 01, 2002 page 88 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.11.14 Raster Coloring Function  
An entire screen (raster) can be colored by setting bits 4 to 0 of the  
raster color register. Since each of the R, G, B, OUT pins can be  
switched to raster coloring output, 8 raster colors can be obtained.  
When the character color/character background color overlaps with  
the raster color, the color (R, G, B, OUT), specified for the character  
color/character background color, takes priority over the raster color.  
This ensures that character color/character background color is not  
mixed with the raster color.  
The raster color register is shown in Figure 8.11.30, an example of  
raster coloring is shown in Figure 8.11.31.  
Raster Color Register  
b7 b6 b5b4 b3 b2b1 b0  
0 0 0  
Raster color register (RC) [Address 00D916]  
Functions  
After reset  
R
W
B
Name  
0 : No output  
1 : Output  
0
R W  
R W  
R W  
R W  
0
1
2
3
Raster color R  
control bit (RC0)  
Raster color G  
control bit (RC1)  
0 : No output  
1 : Output  
0
0
0
Raster color B  
control bit (RC2)  
0 : No output  
1 : Output  
Raster color OUT  
control bit (RC3)  
0 : No output  
1 : Output  
4
R W  
R W  
Fix these bits to “0.”  
0
0
to  
6
7
Port function  
selection bit (RC7)  
0 : XCIN,  
XCOUT  
1 : P26, P27  
Fig. 8.11.30 Raster Color Register  
Rev.1.00 Nov 01, 2002 page 89 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
: Character color “RED” (R + OUT)  
: Border color “BLACK” (OUT)  
: Background color “MAGENTA” (R + B + OUT)  
: Raster color “BLUE” (B + OUT)  
A'  
A
H
SYNC  
OUT  
Signals  
across  
A-A'  
R
G
B
Fig. 8.11.31 Example of Raster Coloring  
Rev.1.00 Nov 01, 2002 page 90 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.12 SOFTWARE RUNAWAY DETECT FUNCTION  
This microcomputer has a function to decode undefined instructions  
to detect a software runaway.  
When an undefined op-code is input to the CPU as an instruction  
code during operation, the following processing is done.  
The CPU generates an undefined instruction decoding signal.  
The device is internally reset due to the undefined instruction de-  
coding signal.  
As a result of internal reset, the same reset processing as in the  
case of ordinary reset operation is done, and the program restarts  
from the reset vector.  
Note, however, that the software runaway detecting function cannot  
be disabled.  
φ
SYNC  
AD  
AD  
H
,
Address  
Data  
PC  
?
01,S  
01,S–1  
01,S–2  
FFFE16  
FFFF16  
L
?
PCH  
PC  
L
PS  
AD  
L
ADH  
Reset sequence  
Undefined instruction decoding signal  
occurs.Internal reset signal occurs.  
: Undefined instruction decode  
?
PC  
S
: Invalid  
: Program counter  
: Stack pointer  
AD  
L, ADH  
: Jump destination address of reset  
Fig.8.12.1 Sequence at Detecting Software Runaway Detection  
Rev.1.00 Nov 01, 2002 page 91 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.13. RESET CIRCUIT  
Power on  
When the oscillation of a quartz-crystal oscillator or a ceramic reso-  
nator is stable and the power source voltage is 5 V ± 10 %, hold the  
RESET pin at LOW for 2 µs or more, then return to HIGH. Then, as  
shown in Figure 8.13.2, reset is released and the program starts from  
the address formed by using the content of address FFFF16 as the  
high-order address and the content of the address FFFE16 as the  
low-order address. The internal states of the microcomputer at reset  
are shown in Figures 8.2.2 to 8.2.5.  
4.5 V  
0.9 V  
Power source voltage 0 V  
Reset input voltage 0 V  
An example of the reset circuit is shown in Figure 8.13.1.  
The reset input voltage must be kept 0.9 V or less until the power  
source voltage surpasses 4.5 V.  
Vcc  
1
5
RESET  
M51953AL  
4
0.1 µF  
3
Vss  
Microcomputer  
Fig.8.13.1 Example of Reset Circuit  
XIN  
φ
RESET  
Internal RESET  
SYNC  
AD  
AD  
H
L
,
Address  
Data  
01, S-1  
01, S-2  
FFFE FFFF  
?
?
01, S  
Reset address from the vector table  
AD  
L
ADH  
?
?
?
?
?
Notes 1 : f(XIN) and f(φ) are in the relation : f(XIN) = 2·f (φ).  
2 : A question mark (?) indicates an undefined state that  
depends on the previous state.  
32768 count of XIN  
clock cycle (See note 3)  
3 : Immediately after a reset, timer 3 and timer 4 are  
connected by hardware. At this time, “FF16” is set  
in timer 3 and “0716” is set to timer 4. Timer 3 counts down  
with f(XIN)/16, and reset state is released by the timer 4  
overflow signal.  
Fig.8.13.2 Reset Sequence  
Rev.1.00 Nov 01, 2002 page 92 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.14 CLOCK GENERATING CIRCUIT  
(3) Low-speed Mode  
This microcomputer has 2 built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance with  
the resonator manufacturer’s recommended values. No external re-  
sistor is needed between XIN and XOUT since a feed-back resistor  
exists on-chip. However, an external feed-back resistor is needed  
between XCIN and XCOUT. When using XCIN-XCOUT as sub-clock,  
clear bits 5 and 6 of the OSD control register to “0.” To supply a clock  
signal externally, input it to the XIN (XCIN) pin and make the XOUT  
(XCOUT) pin open. When not using XCIN clock, connect the XCIN to  
VSS and make the XCOUT pin open.  
If the internal clock is generated from the sub-clock (XCIN), a low  
power consumption operation can be realized by stopping only the  
main clock XIN. To stop the main clock, set bit 6 (CM6) of the CPU  
mode register (00FB16) to “1.” When the main clock XIN is restarted,  
the program must allow enough time for oscillation to stabilize.  
Note that in the low-power-consumption mode the XCIN-XCOUT  
drivability can be reduced, allowing even lower power consumption.  
To reduce the XCIN-XCOUT drivability, clear bit 5 (CM5) of the CPU  
mode register (00FB16) to “0.” At reset, this bit is set to “1” and strong  
drivability is selected to help the oscillation to start. When executing  
an STP instruction, set this bit to “1” by software before initiating the  
instruction.  
The OSD clock can be chosen to be the data slicer clock (approx. 26  
MHz) that is output from the data slicer.  
After reset has completed, the internal clock φ is half the frequency of  
XIN. Immediately after poweron, both the XIN and XCIN clock start  
oscillating. To set the internal clock φ to low-speed operation mode,  
set bit 7 of the CPU mode register to “1.”  
Microcomputer  
X
CIN  
X
COUT  
X
IN  
XOUT  
FILT  
8.14.1 OSCILLATION CONTROL  
(1) Stop Mode  
Rf  
Rd  
The built-in clock generating circuit is shown in Figure 120. When the  
STP instruction is executed, the internal clock f stops at HIGH. At the  
same time, timers 3 and 4 are connected by hardware and “FF16” is  
set in timer 3 and “0716” is set in timer 4. Select f(XIN)/16 or f(XCIN)/  
16 as the timer 3 count source (set both bit 0 of timer mode register  
2 and bit 6 at address 00C716 to “0” before the execution of the STP  
instruction). Moreover, set the timer 3 and timer 4 interrupt enable  
bits to disabled (“0”) before execution of the STP instruction. The  
oscillator restarts when an external interrupt is accepted. However,  
the internal clock f keeps its HIGH level until timer 4 overflows, allow-  
ing time for oscillation stabilization when a ceramic resonator or a  
quartz-crystal oscillator is used.  
0.01µF  
C1  
C
CIN  
C
COUT  
C
IN  
COUT  
Fig.8.14.1 Ceramic Resonator Circuit Example  
Microcomputer  
X
CIN  
X
COUT  
X
IN  
XOUT  
By settimg bit 7 of timer return setting register (address 00CC16) to  
“1, ” an arbitrarary value can be set to timer 3 and timer 4.  
Bit 7 of clock control register 3 (address 020216) can switch Port P10  
pin and the CLKCONT. When CLKCONT pin is selected, “H” is output  
normally. When an extenal interrupt is recieved in the STP state, the  
CLKCONT pin goes back to “H” output.  
Open  
Open  
External oscillation  
circuit or external  
pulse  
External oscillation  
circuit  
Vcc  
Vss  
Vcc  
Vss  
(2) Wait Mode  
When the WIT instruction is executed, the internal clock φ stops in  
the HIGH level but the oscillator continues running. This wait state is  
released at reset or when an interrupt is accepted (See note). Since  
the oscillator does not stop, the next instruction can be executed  
immediately.  
Fig.8.14.2 External Clock Input Circuit Example  
Note: In the wait mode, the following interrupts are invalid.  
• VSYNC interrupt  
• OSD interrupt  
• All timer interrupts using external clock input from port pin as count  
source  
• All timer interrupts using f(XIN)/2 or f(XCIN)/2 as count source  
• All timer interrupts using f(XIN)/4096 or f(XCIN)/4096 as count source  
• f(XIN)/4096 interrupt  
• Multi-master I2C-BUS interface interrupt  
• Data slicer interrupt  
• A-D conversion interrupt  
Rev.1.00 Nov 01, 2002 page 93 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Clock control register 3  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock control register 3 (CC3) [Address 021216  
]
0
0
0
0
0 0  
B
Name  
Functions  
After reset  
W
W
R
R
0
0 to  
4
Fix these bits to "0"  
0: 0V–VCC  
1: 0V–About 0.6VCC  
5
R
R,G,B,OUT Output amplitude  
level selection bit (CC35)  
0
W
6
7
R
R
0
0
W
W
Fix this bit to "0"  
P10  
function-selection bit  
(Note)  
(CC37)  
0: Clock control signal  
1: P10 I/O  
Note: When used as the clock control signal, set the Port 1 Direction Register  
(address 00C316) bit 0 to 1.  
Fig.8.14.3 Clock Control Register 3  
Rev.1.00 Nov 01, 2002 page 94 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
XCIN  
XCOUT  
OSC1 clock selection  
bits (See notes 1, 4)  
Timer 3 count  
stop bit (See notes 1, 2)  
Timer 4 count  
stop bit (See notes 1, 2)  
XIN  
XOUT  
“1”  
“1”  
“0”  
Timer 3  
Timer 4  
1/8  
1/2  
“0”  
Internal system clock  
selection bit (See notes 1, 3)  
Timer 3  
count source selection bit (See notes 1, 2)  
Timing φ  
(Internal clock)  
Main clock (XIN–XOUT) stop bit (See notes 1, 3)  
Internal system clock selection bit  
(See notes 1, 3)  
Q
S
R
S
Q
Q
S
R
Reset  
WIT  
instruction  
R
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Notes 1 : The value at reset is “0.”  
2 : Refer to timer mode register 2.  
3 : Refer to the CPU mode register.  
4 : Refer to the OSD control register.  
Fig.8.14.4 Clock Generating Circuit Block Diagram  
Rev.1.00 Nov 01, 2002 page 95 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
High-speed operation start  
mode  
Reset  
STP instruction  
WIT instruction  
8 MHz oscillating  
8 MHz oscillating  
32 kHz oscillating  
f(φ) = 4 MHz  
8 MHz stopped  
32 kHz stopped  
φ is stopped (“H”)  
32 kHz oscillating  
φ is stopped (“H”)  
Timer operating  
Interrupt  
Interrupt (See note 1)  
External INT  
External INT,  
timer interrupt,  
or SI/O interrupt  
CM7 = 0  
CM7 = 1  
WIT instruction  
Interrupt  
STP instruction  
8 MHz oscillating  
32 kHz oscillating  
φ is stopped (“H”)  
Timer operating  
(See note 3)  
8 MHz oscillating  
32 kHz oscillating  
f(φ) = 16kHz  
8 MHz stopped  
32 kHz stopped  
φ is stopped (“H”)  
Interrupt (See note 2)  
CM6 = 0  
The program must  
allow time for 8 MHz  
oscillation to stabilize  
CM6 = 1  
STP instruction  
WIT instruction  
Interrupt  
8 MHz stopped  
32 kHz oscillating  
φ is stopped (“H”)  
Timer operating  
(See note 3)  
8 MHz stopped  
32 kHz stopped  
φ = stopped (“H”)  
8 MHz stopped  
32 kHz oscillating  
f(φ) = 16 kHz  
Interrupt (See note 2)  
CPU mode register  
(Address : 00FB16  
)
CM6 : Main clock (XIN–XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
CM7 : Internal system clock selection bit  
0 : XIN-XOUT selected (high-speed mode)  
1 : XCIN-XCOUT selected (low-speed mode)  
The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. The φ indicates the internal clock.  
Notes 1: When the STP state is ended, a delay of approximately 8 ms is automatically generated by timer 3 and timer 4.  
2: The delay after the STP state ends is approximately 2s.  
3: When the internal clock φ divided by 8 is used as the timer count source, the frequency of the count source is 2 kHz.  
Fig.8.14.5 State Transitions of System Clock  
Rev.1.00 Nov 01, 2002 page 96 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.15 OSD CLOCK GENERATING CIRCUIT  
When generate OSD clock based on main clock, connect capacity to  
FILT pin.  
In order to generate normally oscillation frequency for OSD shown in  
Table 8.15.1, be sure to set the main clock f (XIN) to 8MHz. Then, set  
up not any values other than these.  
Set bit 0 of the clock control register 1 (address 00CD16) to operate  
OSD clock generating circuit “0.” Clock control register 1 (address  
00CD16) is shown in Fig.8.15.3. Then, clock frequency for OSD is set  
up by the clock frequency register (address 021016).  
Clock frequency setting register is shown in Fig.8.15.2.  
Table.8.15.1 OSD Clock frequency  
Clock frequency  
setting register  
(address 021016  
0C  
0D  
)
OSD clock  
frequency  
26 MHz  
28 MHz  
FLIT  
C1  
Fig.8.15.1 Display Oscillation Circuit  
Clock frequency set register  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock frequency set register(CFS) [Address 021016  
]
BFunctions  
Name  
After reset  
R
R
W
W
Clock frequency (Note)  
0 to  
7
Clock frequency bit  
(CFS 0 to 7)  
0E  
Setting value(Limitation) Frequency(MHz)  
0C  
0D  
26  
28  
Note: Do not set other than the values shown above to CFS.  
Then, must to use at f(XIN) = 8 MHz.  
Fig.8.15.2 Clock Frequency Register  
Clock control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
0
0
0
Clock control register 1 (CC1) [Address 00CD16  
]
BFunctions  
Name  
W
R
After reset  
0
W
R
System clock generating  
circuit control bit (CC10)  
0: Operation  
1: Stop  
0
W
0
R
1 to  
7
Fix these bits to "0"  
Fig.8.15.3 Clock Control Register 1  
Rev.1.00 Nov 01, 2002 page 97 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
8.16 AUTO-CLEAR CIRCUIT  
When a power source is supplied, the auto-clear function will oper-  
8.17 ADDRESSING MODE  
The memory access is reinforced with 17 kinds of addressing modes.  
ate by connecting the following circuit to the RESET pin.  
Refer to SERIES 740 <Software> User’s Manual for details.  
8.18 MACHINE INSTRUCTIONS  
There are 71 machine instructions. Refer to SERIES 740 <Software>  
User’s Manual for details.  
Circuit example 1  
9. TECHNICAL NOTES  
• The divide ratio of the timer is 1/(n+1).  
Vcc  
RESET  
Even though the BBC and BBS instructions are executed imme-  
diately after the interrupt request bits are modified (by the pro-  
gram), those instructions are only valid for the contents before  
the modification. At least one instruction cycle is needed (such as  
an NOP) between the modification of the interrupt request bits  
and the execution of the BBC and BBS instructions.  
After the ADC and SBC instructions are executed (in the decimal  
mode), one instruction cycle (such as an NOP) is needed before  
the SEC, CLC, or CLD instruction is executed.  
Vss  
Circuit example 2  
An NOP instruction is needed immediately after the execution of  
a PLP instruction.  
Vcc  
RESET  
In order to avoid noise and latch-up, connect a bypass capacitor  
(0.1µF) directly between the VCC pin–VSS pin and the VCC pin–  
CNVSS pin, using a thick wire.  
Vss  
Characteristic value, margin of operation, etc. of versions with  
built-in EPROM and built-in mask ROM may differ from each other  
within the limits of the electrical characteristics in terms of manu-  
facturing process, built-in ROM, difference of a layout pattern,  
etc.  
Note : Make the level change from “L” to “H” at the point at  
which the power source voltage exceeds the specified  
voltage.  
Carry out and check an examination equivalent to the system  
evaluation examination carried out on the EPROM version when  
replacing it with the mask ROM version.  
Fig.8.16.1 Auto-clear Circuit Example  
Rev.1.00 Nov 01, 2002 page 98 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
10. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parametear  
Conditions  
Ratings  
–0.3 to 6  
Unit  
V
VCC  
Power source voltage VCC  
VI  
VI  
Input voltage  
Input voltage  
CNVSS  
–0.3 to 6  
V
All voltages are based  
on VSS.  
P00–P07, P10–P16, P20–P27,  
______  
–0.3–VCC + 0.3  
V
P30, P31, P50, P51, RESET, CVIN  
Output transistors are  
cut off.  
VO  
Output voltage P06, P07, P10–P16, P20–P27,  
P30, P31, P52–P55  
–0.3–VCC + 0.3  
0 to 1 (See note 1)  
0 to 2 (See note 2)  
V
IOH  
IOL1  
Circuit current P10–P16, P20–P27, P30, P31,  
P52–P55,  
mA  
mA  
Circuit current P00–P07, P10–P15, P16, P20–P23  
P52–P55,  
IOL2  
IOL4  
Pd  
Circuit current P11–P14, P30, P31  
Circuit current P24–P27  
Power dissipation  
0 to 6 (See note 2)  
0 to 10 (See note 3)  
550  
mA  
mA  
mW  
°C  
Ta = 25 °C  
Topr  
Tstg  
Operating temperature  
–10 to 70  
Storage temperature  
–40 to 125  
°C  
11. RECOMMENDED OPERATING CONDITIONS (Ta = –10 °C to 70 °C, VCC = 5 V ± 10 %, unless otherwise noted)  
Limits  
Symbol  
Unit  
Parametear  
Min.  
4.5  
Typ.  
5.0  
Max.  
5.5  
V
V
VCC  
Power source voltage (See note 4)  
Power source voltage  
VSS  
0
0
0
VIH1  
HIGH Input voltage  
P00–P07, P10–P16, P20–P27, P30, P31, P50, P51,  
0.8VCC  
VCC  
V
______  
RESET  
VIH2  
HIGH Input voltage  
SCL1, SCL2, SCL3, SDA1, SDA2 , SDA3  
0.7VCC  
VCC  
0.4VCC  
0.3VCC  
V
V
V
2
(When using I C-BUS)  
VIL1  
VIL2  
LOW Input voltage  
LOW Input voltage  
P00  
P07, P10  
P16, P20  
P27, P30, P31  
0
0
SCL1, SCL2, SCL3, SDA1, SDA2, SDA3  
2
______  
(When using I C-BUS)  
VIL3  
LOW Input voltage (See note 6)  
P50, P51,RESET, TIM2, TIM3, INT1,  
0
0.2VCC  
V
INT2, INT3, SIN, SCLK  
IOH  
HIGH average output current (See note1)  
HIGH average output current (See note2)  
P10  
P0  
P16, P20  
P0 , P1 , P1  
P14, P30, P31  
P27  
P27, P30, P31, P52  
P55  
P5  
1
2
mA  
mA  
IOL1  
IOL2  
0
7
0
5
, P1 , P2 P2 , P5  
6
0
3
2
5
LOW average output current (See note 2) P11  
LOW average output current (See note 3) P24  
6
mA  
IOL3  
10  
8.1  
mA  
f(XIN)  
Oscillation frequency (for CPU operation)  
(See note 5)  
XIN  
7.9  
29  
8.0  
32  
MHz  
f(XCIN)  
fhs1  
fhs2  
fhs3  
fhs4  
VI  
Oscillation frequency (for sub-clock operation) XCIN  
35  
100  
kHz  
kHz  
MHz  
kHz  
kHz  
V
Input frequency  
TIM2, TIM3, INT1, INT2, INT3  
Input frequency  
SCLK  
1
Input frequency  
SCL1, SCL2  
447.5  
16.206  
2.5  
Input frequency  
Horizontal sync. signal of video signal  
CVIN  
15.262  
1.5  
15.734  
2.0  
Input amplitude video signal  
Rev.1.00 Nov 01, 2002 page 99 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
12. ELECTRIC CHARACTERISTICS (VCC = 5 V ± 10 %, VSS = 0 V, f(XIN) = 8 MHz, T  
a
= –10 °C to 70 °C, unless otherwise noted)  
Limits  
Unit  
Test  
Symbol  
Parametear  
Test conditions  
Min.  
Typ.  
Max.  
circuit  
OSD OFF  
Data slicer OFF  
15  
30  
VCC = 5.5V,  
f(XIN) = 8 MHz  
mA  
OSD ON  
Data slicer ON  
30  
60  
45  
VCC = 5.5V, f(XIN) = 0,  
f(XCIN) = 32kHz,  
µA  
200  
System operation  
Wait mode  
OSD OFF, Data slicer OFF,  
Low-power dissipation mode set  
1
2
3
Power source current  
ICC  
(CM5 = “0”, CM6 = “1”)  
VCC = 5.5 V, f(XIN) = 8 MHz  
mA  
µA  
1
25  
2
100  
VCC = 5.5 V, f(XIN) = 0,  
f(XCIN) = 32 kHz,  
Low-power dissipation mode set  
(CM5 = “0”, CM6 = “1”)  
Stop mode  
VCC = 5.5V, f(XIN) = 0,  
f(XCIN) = 0  
1
10  
2.4  
HIGH output voltage P10–P16, P20–P27,  
P30, P31, P52–P55,  
VCC = 4.5 V  
IOH = –0.5 mA  
VOH  
VOL  
V
V
LOW output voltage P00–P07, P10,  
P15, P16, P20–P23,  
VCC = 4.5 V  
IOL = 0.5 mA  
0.4  
3.0  
P52–P55  
LOW output voltage P24– P27  
VCC = 4.5 V  
IOL = 10.0 mA  
LOW output voltage P11–P14, P30, P32  
VCC = 4.5 V  
VCC = 5.0 V  
IOL = 3 mA  
IOL = 6 mA  
0.4  
0.6  
1.3  
Hysteresis (See note 6)  
0.5  
VT+ –VT–  
V
____________  
RESET, P50, P51, INT1, INT2,  
INT3, TIM2, TIM3, SIN, SCLK, SCL1,  
SCL2, SCL3, SDA1, SDA2, SDA3  
HIGH input leak current  
4
4
5
VCC = 5.5 V  
VI = 5.5 V  
µA  
µA  
5
5
IIZH  
IIZL  
P00–P07, P10–P16, P20–P27,  
P30, P31, _R__E___S__E___T_, P50, P51,  
HIGH input leak current  
VCC = 5.5 V  
VI = 0 V  
P00–P07, P10–P16, P20–P27, P30,  
P31, P50, P51, _R__E__S___E__T__  
2
RBS  
I C-BUS • BUS switch connection resistor  
130  
VCC = 4.5 V  
(between SCL1 and SCL2, SDA1 and SDA2)  
Notes 1: The total current that flows out of the IC must be 20 mA or less.  
2: The total input current to IC (IOL1 + IOL2) must be 30 mA or less.  
3: The total average input current for ports P24–P27 and AVCC–VSS to IC must be 20 mA or less.  
4: Connect 0.1 µF or more capacitor externally between the power source pins VCC–VSS so as to reduce power source noise.  
Also connect 0.1 µF or more capacitor externally between the pins VCC–CNVSS.  
5: P06, P07, P16, P23, P24, P25 have hysteresis when used as interrupt input pins or timer input pins. P11–P14, P30, P31 have hysteresis when used as multi-  
master I2C-BUS interface ports. P20–P22 have hysteresis when used as serial I/O pins.  
6: Pin names in each parameter are described as below.  
(1) Dedicated pins: dedicated pin names.  
(2) Double-/triple-function ports  
• Same limits: I/O port name.  
• Functions other than ports vary from I/O port limits: function pin name.  
Rev.1.00 Nov 01, 2002 page 100 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
+
Power source voltage  
Icc  
4.5 V  
Vcc  
1
2
A
Vcc  
XIN  
8.00 MHz  
XOUT  
Each output pin  
OH  
OH  
I
V
V
or  
or  
Vss  
Vss  
OL  
OL  
V
I
OH  
Using ceramic oscillator, it changes into a state of  
operation and measure the current.  
After setting each output pin to HIGH level when measuring V  
OL  
and to LOW level when measuring V , each pin is measured.  
5.5 V  
3
4
5.0 V  
Vcc  
IZH  
Vcc  
I
or  
IZL  
I
A
Each input pin  
Each input pin  
Vss  
5.5 V  
or  
Vss  
0 V  
5
4.5V  
Vcc  
BS  
I
SCL1 or SDA1  
A
BS  
R
SCL2 or SDA2  
BS  
V
Vss  
BS  
R
BS BS  
= V /I  
Fig.12.1 Measurement Circuits  
Rev.1.00 Nov 01, 2002 page 101 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
13. A-D CONVERTER CHARACTERISTICS  
(VCC = 5 V ± 10 %, VSS = 0 V, f(XIN) = 8 MHz, Ta = –10 °C to 70 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
7
Resolution  
bits  
LSB  
LSB  
LSB  
LSB  
Non-linearity error  
±1.5  
±0.9  
2
Differencial non-linearity error  
Zero transition error  
V0T  
VFST  
IOL (SUM) = 0 mA  
Full-scale transition error  
–2  
2
14. MULTI-MASTER I C-BUS BUS LINE CHARACTERISTICS  
Standard clock mode High-speed clock mode  
Symbol  
Parameter  
Unit  
Min.  
4.7  
4.0  
4.7  
Max.  
Min.  
1.3  
Max.  
tBUF  
Bus free time  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
tHD; STA  
tLOW  
Hold time for START condition  
LOW period of SCL clock  
0.6  
1.3  
tR  
Rising time of both SCL and SDA signals  
Data hold time  
1000  
300  
20+0.1Cb  
0
300  
0.9  
tHD; DAT  
tHIGH  
0
HIGH period of SCL clock  
4.0  
0.6  
tF  
Falling time of both SCL and SDA signals  
Data set-up time  
20+0.1Cb  
100  
300  
tSU; DAT  
tSU; STA  
tSU; STO  
250  
4.7  
4.0  
Set-up time for repeated START condition  
Set-up time for STOP condition  
0.6  
0.6  
Note: Cb = total capacitance of 1 bus line  
SDA  
tSU;STO  
tHD;STA  
tBUF  
tLOW  
tR  
tF  
Sr  
P
P
S
SCL  
S : Start condition  
Sr : Restart condition  
P : Stop condition  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
2
Fig.14.1 Definition Diagram of Timing on Multi-master I C-BUS  
Rev.1.00 Nov 01, 2002 page 102 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
15. PROM PROGRAMMING METHOD  
16. DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM product:  
• Mask ROM Order Confirmation Form  
• Mark Specification Form  
The built-in PROM of the One Time PROM version (blank) and the  
built-in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming adapter.  
• Data to be written to ROM, in EPROM form (three identical copies)  
or FDK  
Product  
Name of Programming Adapter  
PCA7450FP  
M37151EFFP  
When using EPROM:  
Three sets of 32-pin DIP Type 27C101  
The PROM of the One Time PROM version (blank) is not tested or  
screened in the assembly process nor any following processes. To  
ensure proper operation after programming, the procedure shown in  
Figure 15.1 is recommended to verify programming.  
Programming with  
PROM programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in target device  
Caution : The screening temperature is far higher  
than the storage temperature. Never  
expose to 150°C exceeding 100 hours.  
Fig. 15.1 Programming and Testing of One Time PROM Version  
Rev.1.00 Nov 01, 2002 page 103 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
17. ONE TIME PROM VERSION M37151EFFP MARKING  
M37151EFFP  
XXXXXXX  
XXXXXXX is lot number  
Rev.1.00 Nov 01, 2002 page 104 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
18. APPENDIX  
Pin Configuration (TOP VIEW)  
1
42  
P1  
P1  
P1  
P1  
P5  
P5  
P5  
P5  
P5  
P5  
2
3
4
6
0
1
2
3
4
5
/SCL2  
/SDA1  
/SDA2  
/AD8/TIM2  
/HSYNC  
/VSYNC  
/B  
P1  
1/SCL1  
2
3
41  
40  
39  
P00/PWM0  
P01/PWM1  
4
P02/PWM2  
5
P0  
3
/PWM3/AD1  
/PWM4/AD2  
38  
37  
6
P04  
P0  
/INT2/AD4  
P0 /INT1  
/SCLK/AD5  
/SOUT/AD6  
P2 /SIN/AD7  
5/AD3  
7
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
8
/G  
P0  
6
9
/R  
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P2  
0
/OUT  
CLKCONT/P1  
0
P2  
1
P30  
P31  
P15  
/SDA3  
2
/SCL3  
P2  
3
/TIM3  
/TIM2  
P2  
4
10K  
P2  
5/INT3  
P2  
6/XCIN  
RESET  
CVIN  
P27/XCOUT  
CNVSS  
VHOLD  
XIN  
HLF  
FLIT  
XOUT  
VSS  
VCC  
Outline 42P2R  
Rev.1.00 Nov 01, 2002 page 105 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Memory Map  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
000016  
1000016  
M37151M6-  
XXXFP  
RAM  
M37151MF-XXXFP,  
M37151EFFP  
RAM  
Zero page  
00BF16  
00C016  
00FF16  
010016  
SFR1 area  
(1024 bytes)  
(2048 bytes)  
M37151MB-XXXFP  
01FF  
02001166  
RAM  
Not used  
SFR2 area  
Not used  
(1152 bytes)  
020F16  
M37151MA/MC-  
030016  
032016  
XXXFP  
RAM  
ROM correction function  
Vector 1: address 030016  
Vector 2: address 032016  
053F16  
05BF16  
06FF16  
(1472 bytes)  
Not used  
Not used  
OSD RAM  
(128 bytes)  
OSD ROM  
(10K bytes)  
(See note)  
080016  
087F16  
1140016  
13BFF16  
090016  
0B3F16  
M37151MF-XXXFP,  
M37151EFFP  
ROM  
(60K bytes)  
Not used  
Not used  
M37151MC-XXXFP  
ROM  
(48K bytes)  
M37151MA-XXXFP  
100016  
ROM  
(40K bytes)  
400016  
600016  
800016  
M37151M8-XXXFP  
A00016  
ROM  
(32K bytes)  
FF0016  
FFDE16  
1FFFF16  
M37151M6-XXXFP  
ROM  
(24K bytes)  
Special page  
Interrupt vector area  
FFFF16  
Rev.1.00 Nov 01, 2002 page 106 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Memory Map of Special Function Register (SFR)  
SFR1 Area (addresses C016 to DF16)  
<Bit allocation>  
<State immediately after reset>  
:
0
1
?
: “0” immediately after reset  
: “1” immediately after reset  
Function bit  
Name  
:
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
Bit allocation  
State immediately after reset  
Address Register  
b7  
b0 b7  
b0  
?
C016  
C116  
C216  
C316  
C416  
C516  
C616  
C716  
C816  
C916  
CA16  
CB16  
CC16  
CD16  
CE16  
CF16  
D016  
D116  
D216  
D316  
D416  
D516  
D616  
D716  
D816  
D916  
DA16  
DB16  
DC16  
DD16  
DE16  
DF16  
Port P0(P0)  
0016  
Port P0 direction register (D0)  
0
?
?
0
0
1
?
0
?
?
0
?
0
?
1
Port P1(P1)  
0
0
0
Port P1 direction register (D1)  
Port P2(P2)  
?
0016  
Port P2 direction register (D2)  
Port P3(P3)  
BSEL21 BSEL20  
P31 P30  
0
0
?
0
0
0
0
0
0
0
?
0
?
0
T2SC T3SC  
OUTS P31D P30D  
0
0
1
0016  
?
Port P3 direction register (D3)  
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
1
0
0
?
0
?
Port P5(P5)  
1
PF5 PF4 PF3 PF2  
0
0
OSD port control register (PF)  
Timer return set register (TMS)  
TMS  
0
0016  
0016  
?
1
0
0
0
0
0
0
0
0
CC10  
Clock control register 1 (CC1)  
Caption data register 3 (CD3)  
CDL27 CDL26 CDL25 CDL24 CDL23 CDL22 CDL21 CDL20  
CDH27 CDH26 CDH25 CDH24 CDH23 CDH22 CDH21 CDH20  
?
Caption data register 4 (CD4)  
OSD control register (OC)  
OC7  
0
0
OC4 OC3 OC2 OC1 OC0  
0016  
0016  
?
HP6 HP5 HP4 HP3 HP2 HP1 HP0  
Horizontal position register (HP)  
Block control register 1(BC1)  
Block control register 2(BC2)  
Vertical position register 1(VP1)  
Vertical position register 2(VP2)  
Window register 1(WN1)  
BC17 BC16 BC15 BC14 BC13 BC12 BC11 BC10  
BC27 BC26 BC25 BC24 BC23 BC22 BC21 BC20  
VP17 VP16 VP15 VP14 VP13 VP12 VP11 VP10  
?
?
VP27 VP26 VP25 VP24 VP23 VP22 VP21 VP20  
WN17 WN16 WN15 WN14 WN13 WN12 WN11 WN10  
WN27 WN26 WN25 WN24 WN23 WN22 WN21 WN20  
?
?
?
Window register 2(WN2)  
PC6 PC5  
PC3 PC2 PC1 PC0  
RC3 RC2 RC1 RC0  
4016  
0016  
?
0
0
0
I/O polarity control register (PC)  
Raster color register (RC)  
RC7  
0
0
0
0
0
OC21 OC20  
0
0
0
0
?
0
0
0
0
OSD control register 2(OC2)  
INT3 INT2 INT1  
0016  
0016  
0016  
0016  
Interrupt input polarity control register (RE)  
0016  
0016  
0016  
Rev.1.00 Nov 01, 2002 page 107 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SFR1 Area (addresses E016 to FF16  
)
<Bit allocation>  
:
<State immediately after reset>  
: “0” immediately after reset  
: “1” immediately after reset  
0
1
?
Function bit  
Name  
:
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
Bit allocation  
State immediately after reset  
Address  
Register  
b7  
0
b0 b7  
b0  
DSC12 DSC11 DSC10  
Data slicer control register 1 (DSC1)  
Data slicer control register 2 (DSC2)  
Caption data register 1 (CD1)  
Caption data register 2 (CD2)  
Clock run-in detect register (CRD)  
Data clock position register (DPS)  
Caption position register (CPS)  
Data slicer test register 2  
0016  
E016  
E116  
E216  
E316  
1
0
1
0
0
DSC25 DSC24 DSC23  
DSC20  
1
?
0
?
0
?
?
0
?
CDL17 CDL16 CDL15 CDL14 CDL13 CDL12 CDL11 CDL10  
CDH17 CDH16 CDH15 CDH14 CDH13 CDH12 CDH11 CDH10  
CRD7 CRD6 CRD5 CRD4 CRD3  
0016  
0016  
0016  
0916  
E416  
E516  
E616  
DPS7 DPS6 DPS5 DPS4 DPS3  
1
0
0
CPS7 CPS6 CPS5 CPS4 CPS3 CPS2 CPS1 CPS0  
0
0
?
0
0
0
0
0
0
0016  
0016  
0016  
E716  
E816  
E916  
EA16  
EB16  
Data slicer test register 1  
HC5 HC4 HC3 HC2 HC1 HC0  
Synchronous signal counter register (HC)  
Serial I/O register (SIO)  
?
SM6 SM5  
SM3 SM2 SM1 SM0  
Serial I/O mode register (SM)  
0016  
?
0
0
ADC14  
ADC12 ADC11 ADC10  
0
0
0
0
EC16 A-D control register 1 (AD1)  
0
0
ADC26 ADC25 ADC24 ADC23 ADC22 ADC21 ADC20  
0016  
0716  
A-D control register 2 (AD2)  
Timer 5 (T5)  
ED16  
EE16  
EF16  
F016  
Timer 6 (T6)  
FF16  
FF16  
0716  
FF16  
0716  
Timer 1 (T1)  
Timer 2 (T2)  
F116  
F216  
F316  
Timer 3 (T3)  
Timer 4 (T4)  
TM17 TM16 TM15 TM14 TM13 TM12 TM11 TM10  
TM27 TM26 TM25 TM24 TM23 TM22 TM21 TM20  
0016  
F416 Timer mode register 1 (TM1)  
Timer mode register 2 (TM2)  
2
F516  
0016  
?
0016  
D7 D6 D5 D4 D3 D2 D1 D0  
SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 RBW  
F616 I C data shift register (S0)  
2
F716  
F816  
I C address register (S0D)  
2
MST TRX BB PIN AL AAS AD0 LRB  
10BIT  
0
0
0
1
0
0
0
?
I C status register (S1)  
BSEL1 BSEL0  
ALS ESO BC2 BC1 BC0  
CCR4 CCR3 CCR2 CCR1 CCR0  
CM2  
2
0016  
SAD  
FAST  
MODE  
I C control register (S1D)  
F916  
FA16  
FB16  
FC16  
FD16  
FE16  
FF16  
ACK  
ACK  
2
0016  
3C16  
0016  
0016  
0016  
0016  
BIT  
I C clock control register (S2)  
CM7 CM6 CM5  
1
1
0
0
CPU mode register (CPUM)  
VSCR OSDR TM4R TM3R TM2R TM1R  
IN3R  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Interrupt control register 2 (ICON2)  
TM56R  
DSR  
IN1R  
IICR IN2R CKR S1R  
0
VSCE OSDE TM4E TM3E TM2E TM1E  
IICE IN2E CKE S1E DSE IN1E  
IN3E  
TM56C TM56E  
Rev.1.00 Nov 01, 2002 page 108 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
SFR2 Area (addresses 20016 to 20F16)  
<Bit allocation>  
<State immediately after reset>  
:
:
0
1
?
: “0” immediately after reset  
: “1” immediately after reset  
Function bit  
Name  
: No function bit  
: Indeterminate immediately  
after reset  
0
1
: Fix this bit to “0”  
(do not write “1”)  
: Fix this bit to “1”  
(do not write “0”)  
State immediately after reset  
Register  
Bit allocation  
Address  
b0  
b0  
b7  
b7  
?
?
?
?
?
?
?
?
20016  
20116  
20216  
20316  
PWM0 register (PWM0)  
PWM1 register (PWM1)  
PWM2 register (PWM2)  
PWM3 register (PWM3)  
20416 PWM4 register (PWM4)  
20516  
20616  
0016  
0016  
PM13  
20716  
20816  
20916  
PWM mode register 1 (PM1)  
PWM mode register 2 (PM2)  
PM10  
?
?
?
?
0
?
?
0
PM24 PM23 PM22 PM21 PM20  
0
0
0
0016  
0016  
0016  
0016  
0016  
20A16  
20B16  
20C16  
ROM correction address 1 (high-order)  
ROM correction address 1 (low-order)  
ROM correction address 2 (high-order)  
20D16  
20E16  
ROM correction address 2 (low-order)  
ROM correction enable register (RCR)  
RC1 RC0  
0016  
?
20F16  
210  
0
0
0
0
1
1
1
0
Clock frequency set register (CFS)  
Clock control register 2(CC2)  
211  
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0016  
0016  
CC37  
CC35  
212 Clock control register 3(CC3)  
Rev.1.00 Nov 01, 2002 page 109 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
<
State immediately after reset>  
<
Bit allocation  
:
>
: “0” immediately after reset  
: “1” immediately after reset  
0
1
?
Function bit  
:
:
Name  
No function bit  
: Indeterminate immediately  
after reset  
: Fix to this bit to “0”  
(do not write to “1”)  
0
1
: Fix to this bit to “1”  
(do not write to “0”)  
Register  
Bit allocation  
State immediately after reset  
b0  
b0  
b7  
N
b7  
Processor status register (PS)  
V
T
B
D
I
Z
C
?
?
?
?
?
1
?
?
Program counter (PC  
Program counter (PC  
H)  
Contents of address FFFF16  
Contents of address FFFE16  
L
)
Rev.1.00 Nov 01, 2002 page 110 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Structure of Register  
The figure of each register structure describes its functions, contents  
at reset, and attributes as follows:  
<Example>  
Bit position  
Bit attributes(Note 2)  
CPU Mode Register  
(Note 1)  
Values immediately after reset release  
b7b6 b5b4b3 b2b1b0  
1 1 0 0  
CPU mode register (CPUM) (CM) [Address 00FB16  
]
B
Name  
Functions  
R W  
R W  
After re  
0
Processor mode bits b1 b0  
(CM0, CM1)  
0, 1  
0 0: Single-chip mode  
0 1:  
1 0: Not available  
1 1:  
0: 0 page  
1: 1 page  
Stack page selection  
bit (See note) (CM2)  
2
1
R W  
3, 4 Fix these bits to “1.”  
1
1
R W  
R W  
5
Nothing is assigned. This bit is write disable bit.  
When this bit is read out, the value is “1.”  
Clock switch bits  
(CM6, CM7)  
b7 b6  
6, 7  
0
R W  
0 0: f(XIN) = 8 MHz  
0 1: f(XIN) = 12 MHz  
1 0: f(XIN) = 16 MHz  
1 1: Do not set  
: Bit in which nothing is assigned  
Notes 1: Values immediately after reset release  
0 ••••••••••••••••••“0” after reset release  
1 ••••••••••••••••••“1” after reset release  
Indeterminate•••Indeterminate after reset  
release  
2: Bit attributes••••••The attributes of control register bits are classified into 3 types : read-only, write-only  
and read and write. In the figure, these attributes are represented as follows :  
R••••••Read  
W••••••Write  
W
R
••••••Read enabled  
••••••Read disabled  
••••••Write enabled  
••••••Write disabled  
••••••“0” can be set by software, but “1”  
cannot be set.  
Rev.1.00 Nov 01, 2002 page 111 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00C116, 00C516  
Port Pi Direction Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Port Pi direction register (Di) (i=0, 2) [Addresses 00C116, 00C516  
]
B
0
Name  
After reset  
0
R
R
Functions  
W
W
0 : Port Pi  
1 : Port Pi  
0
0
input mode  
output mode  
Port Pi direction register  
1
2
3
0
0
0
0
0
0
0
0 : Port Pi  
1 : Port Pi  
1
1
input mode  
output mode  
R
R
R
R
R
R
R
W
W
W
W
W
W
W
0 : Port Pi  
1 : Port Pi  
2
2
input mode  
output mode  
0 : Port Pi  
1 : Port Pi  
3
3
input mode  
output mode  
0 : Port Pi  
1 : Port Pi  
4
4
input mode  
output mode  
4
5
0 : Port Pi  
1 : Port Pi  
5
5
input mode  
output mode  
0 : Port Pi  
1 : Port Pi  
6
6
input mode  
output mode  
6
7
0 : Port Pi  
1 : Port Pi  
7
7
input mode  
output mode  
Address 00C216  
Port P1 register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Port P1 register (P1) [Address 00C216  
]
B
Name  
Functions  
After reset  
R
R
W
W
0
1
Port P1 register  
Port P10 data  
Port P11 data  
Indeterminate  
Indeterminate  
R
W
2
3
4
5
R
R
R
R
R
R
W
W
W
Port P12 data  
Port P13 data  
Port P14 data  
Port P15 data  
Port P16 data  
Indeterminate  
Indeterminate  
Indeterminate  
0
W
W
W
6
7
Indeterminate  
Indeterminate  
Fix this bit to "0"  
Rev.1.00 Nov 01, 2002 page 112 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00C316  
Port P1 direction register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Port P1 direction register (D1) [Address 00C316]  
B
0
Name  
Functions  
After reset R  
W
W
0 : Port P10 input mode (note)  
1 : Port P10 output mode  
1
0
0
R
R
R
Port P1 direction register  
W
W
1
2
3
4
5
6
7
0 : Port P11 input mode  
1 : Port P11 output mode  
0 : Port P12 input mode  
1 : Port P12 output mode  
0 : Port P13 input mode  
1 : Port P13 output mode  
0
0
R
R
R
W
W
W
0 : Port P14 input mode  
1 : Port P14 output mode  
0 : Port P15 input mode  
1 : Port P15 output mode  
1
0
0
0 : Port P16 input mode  
1 : Port P16 output mode  
R
W
R W  
Fix this bit to "0"  
Note: When using P10 as a general-purpose port, set the Clock Control Register 3 (address 021216) bit 7 to 1.  
When using P10 as a clock control signal, refer to 8.14.1 oscillation control.  
P10 becomes clock control signal output and “H” output setting immediately after reset release , and P16  
becomes “Loutput setting after reset release.  
Address 00C616  
Port P3 register  
b7 b6 b5 b4 b3 b2 b1 b0  
Port P3 register (P3) [Address 00C616  
]
B
0
1
Name  
Functions  
data  
After reset  
Indeterminate  
Indeterminate  
0
R
R
R
W
W
W
Port P3 register  
Port P3  
0
1
Port P3  
data  
Switch bit of I2C-BUS  
interface and port P3  
R W  
2
0: Port P30, Port P31  
1: I2CBUS (SDA3,SCL3)  
(BSEL20)  
(See note)  
SCL3/P3 -SCL1/P1  
1
1
3
R
R
0
0
W
0: Cutting  
SDA3/P3 -SDA1/P13  
0
1: Connection  
Connection control bit (BSEL21)  
Nothing is assigned. This bit is write disable bit.  
When this bit is read out, the value is "0."  
4 to  
7
Notes  
For the ports used as the Multi-master I2C-BUS interface, set their direction registers to 1.  
• To use SCL3 and SDA3, set the I2C Control Register (address 00F916) bits 6–7 to 0.  
Rev.1.00 Nov 01, 2002 page 113 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00C716  
Port P3 direction register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Port P3 direction register (D3) [Address 00C716  
]
B
0
Name  
Functions  
After reset  
0
R
R
W
W
0 : Port P3  
0
0
input  
Port P3 direction register  
(See note 1)  
1 : Port P3  
output  
1
0 : Port P3  
1
1
input  
0
0
R
R
W
W
1 : Port P3  
output  
Output amplitude level selection bit 0 : 2 value output  
(See note 2)  
2
3
(OUTS)  
1 : 3 value output  
Fix this bit to "0."  
0
0
W
R
R
R
4, 5  
6
Nothing is assigned fix these bits  
When this bit are read out, the value are "0."  
Timer 3 (T3SC)  
0
0
W
W
Refer to explanation of a timer  
Timer 2 (T2SC)  
0 : P2  
1 : P1  
4
6
input  
input  
7
R
Notes 1: When using the port as the I2C-BUS interface, set the Port P3 Direction Register to 1.  
2: Use the Clock Control Register 3 (address 021216) bit 5 to select the binary  
output level of OUT.  
Address 00CA16  
Port P5 register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
Port P5 register (P5) [Address 00CA16]  
B
Name  
Functions  
After reset  
R
R
W
W
Fix these bits to "0."  
0, 1  
Indeterminate  
Port P5 register  
Port P5  
Port P5  
Port P5  
Port P5  
2
3
4
5
data  
data  
data  
data  
2
3
4
5
R W  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
R
R
W
W
R W  
6
7
Fix these bits to "0."  
W
Indeterminate R W  
Rev.1.00 Nov 01, 2002 page 114 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00CB16  
OSD Port Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
OSD port control register (PF) [Address 00CB16  
]
1 0  
0 0  
R
R
B
Name  
Functions  
After reset  
0
W
0, 1  
Fix these bits to “0.”  
2
3
4
Port P5  
selection bit (PF2)  
2
output signal  
0 : B signal output  
1 : Port P5 output  
0
0
0
0
R
R
R
R
W
W
W
W
2
Port P5  
3
output signal  
0 : G signal output  
1 : Port P5 output  
selection bit (PF3)  
3
0 : R signal output  
1 : Port P5 output  
Port P54 output signal  
4
selection bit (PF4)  
Port P5 output signal  
5
0 : OUT signal output  
1 : Port P5 output  
5
6
7
selection bit (PF5)  
5
Fix this bit to “0.”  
R
W
W
Indeterminate  
0
Fix this bit to “1.”  
Address 00CC16  
Timer return setting register  
b7 b6 b5 b4 b3 b2 b1 b0  
1
1
0
0
0
0
0
Timer return setting register (TMS) [Address 00CC16  
]
B
Name  
Functions  
After reset  
R
W
0 to  
4
Fix these bits to "0."  
0
R W  
Fix these bits to "1."  
0
0
R W  
R W  
5, 6  
7
STOP mode return selection bit  
(TMS)  
0: Timer Count "07FF16"  
1: Timer Count Variable  
Rev.1.00 Nov 01, 2002 page 115 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00CD16  
Clock control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
0
0
0
Clock control register 1 (CC1) [Address 00CD16]  
B
0
Name  
Functions  
0: Operation  
W
W
R
R
After reset  
0
System clock generating  
circuit control bit (CC10)  
1: Stop  
W
0
R
1 to  
7
Fix these bits to "0"  
Address 00D016  
OSD Control Register  
b7 b6 b5b4 b3 b2b1 b0  
0 0  
OSD control register (OC) [Address 00D016  
]
Functions  
Name  
After reset R  
W
B
0
0 : All-blocks display off  
1 : All-blocks display on  
OSD control bit  
(OC0) (See note 1)  
0
R W  
R W  
R W  
R W  
Automatic solid space 0 : OFF  
0
0
0
1
2
3
1 : ON  
control bit (OC1)  
Window control bit  
(OC2)  
0 : OFF  
1 : ON  
CC mode clock  
0 : Data slicer clock  
selection bit (OC3)  
1 : Internal oscillating clock f(osc)  
4
OSD mode clock  
selection bit (OC4)  
0
R W  
0 : Data slicer clock  
1 : Internal oscillating clock f(osc)  
R W  
R W  
5, 6 Fix these bits to “0.”  
0
0
0 : Divide ratio by the block  
control register  
1 : Pre-divide ratios = 1  
for blocks 1 and 2  
Pre-divide ratio  
7
selection bit (OC7)  
(See note 2)  
Notes 1:Even this bit is switched during display, the display screen  
remains unchanged until a rising (falling) of the next VSYNC  
2:This bit's priority is higher than BCi4 of Block Control  
Register i setting.  
Rev.1.00 Nov 01, 2002 page 116 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00D116  
Horizontal Position Register  
b7 b6 b5b4 b3 b2b1 b0  
Horizontal position register (HP) [Address 00D116  
]
B
0
Name  
Functions  
After reset R W  
Horizontal display start position  
4Tosc n  
Horizontal display start  
0
R W  
to position control bits  
6
(n: setting value, Tosc: OSD oscillation cycle)  
(HP0 to HP6)  
Nothing is assigned. This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
7
0
R —  
Note: The setting value synchronizes with the V SYNC  
.
Address 00D216, 00D316  
Block Control register i  
b7 b6 b5b4 b3 b2b1 b0  
Block control register i (BCi) (i=1, 2) [Addresses 00D216 and 00D316  
]
After reset  
B
Name  
Functions  
R W  
R W  
b1 b0  
Indeterminate  
0, 1 Display mode  
selection bits  
(BCi0, BCi1)  
0 0: Display OFF  
0 1: CC mode  
1 0: OSD mode (Border OFF)  
1 1: OSD mode (Border ON)  
(See note 1)  
b4 b3 b2 Pre-divide Ratio Dot Size  
Indeterminate  
Indeterminate  
2, 3 Dot size selection  
bits (BCi2, BCi3)  
R W  
R W  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1Tc 1/2H  
1Tc 1H  
2Tc 2H  
3Tc 3H  
1Tc 1/2H  
1Tc 1H  
2Tc 2H  
3Tc 3H  
0
1
2  
4
Pre-divide ratio  
selection bit (BCi4)  
3  
0: 2 value output control  
1: 3 value output control  
(notes 3)  
5
6
OUToutput control bit  
(BCi5)  
Indeterminate  
Indeterminate  
R W  
R W  
Vertical display start  
position control bit  
(BCi6)  
BC16: Block 1  
BC26: Block 1  
BC17: Window top boundary  
BC27: Window bottom boundary  
Indeterminate  
7
Window top/bottom  
boundary control bit  
(BCi7)  
R W  
Notes 1: Tc is OSD clock cycle divided in pre-divide circuit.  
2: H is HSYNC  
3: Refer to the corresponding figure 8.11.18.  
.
Rev.1.00 Nov 01, 2002 page 117 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00D416, 00D516  
Vertical Position Register i  
b7 b6 b5 b4 b3 b2 b1 b0  
Vertical position register i (VPi) (i = 1 and 2) [Addresses 00D416, 00D516  
]
After reset  
Name  
B
Functions  
R
R
W
W
Vertical display start  
position control bits  
(VPi0 to VPi7)  
Vertical display start position =  
Inderterminate  
0
to  
7
TH  
5 (BCi6 162 + n)  
(n: setting value, TH: HSYNC cycle,  
(See note)  
BCi6: bit 6 of block control register i)  
Notes 1: Set values except “0016” to VPi when BCi6 is “0.”  
2: When OS21 of OSD control register 2 = “0”, TH = 1HSYNC  
,
and OS21 of OSD control register 2 = “1”, TH = 2HSYNC  
.
Address 00D616  
Window Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Window register 1 (WN1) [Address 00D616]  
After reset  
Name  
B
Functions  
R
R
W
W
Window top border position =  
TH 5 (BC17 162 + n)  
(n: setting value, TH: HSYNC cycle,  
Inderterminate  
Window top boundary  
control bits  
(WN10 to WN17)  
0
to  
7
BC17: bit 7 of block control register 1)  
Notes 1: Set values except “0016” to WN1 when BC17 is “0.”  
2: Set values fit for the following condition: WN1 < WN2.  
3: When OC21 of OSD control register 2 is “0”, TH is 1 HSYNC.  
And when “1”, TH is 2 HSYNC.  
Address 00D716  
Window Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Window register 2 (WN2) [Address 00D716]  
After reset  
Name  
B
Functions  
R
R
W
W
Window bottom border position =  
Inderterminate  
Window bottom boundary  
control bits  
(WN20 to WN27)  
0
to  
7
TH  
5 (BC27 162 + n)  
(n: setting value, TH: HSYNC cycle,  
BC27: bit 7 of block control register 2)  
Notes 1: Set values fit for the following condition: WN1 < WN2.  
2: When OC21 of OSD control register 2 is “0”, T  
And when “1”, T  
H
is 1 HSYNC.  
H
is 2 HSYNC.  
Rev.1.00 Nov 01, 2002 page 118 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00D816  
I/O Polarity Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
I/O polarity control register (PC) [Address 00D816  
]
After reset  
0
B
0
Name  
Functions  
R
R
W
W
H
SYNC input polarity  
switch bit (PC0)  
0 : Positive polarity input  
1 : Negative polarity input  
1
2
3
5
0 : Positive polarity input  
1 : Negative polarity input  
0
0
0
0
R
R
R
R
W
W
W
W
V
SYNC input polarity  
switch bit (PC1)  
0 : Positive polarity output  
1 : Negative polarity output  
R, G, B output polarity  
switch bit (PC2)  
OUT1 output polarity  
switch bit (PC3)  
0 : Positive polarity output  
1 : Negative polarity output  
Display dot line selection  
bit (PC5) (See note)  
0 : “  
” at even field  
” at odd field  
” at even field  
” at odd field  
1 : “  
6
Field determination flag  
(PC6)  
0 : Even field  
1 : Odd field  
1
0
R
R
W
4, 7  
Fix these bits to “0.”  
Note: Refer to the corresponding figure. 8.11.15  
Address 00D916  
Raster Color Register  
b7 b6 b5b4 b3 b2b1 b0  
0 0 0  
Raster color register (RC) [Address 00D916]  
After reset  
Functions  
Name  
R
W
B
0
0 : No output  
1 : Output  
0
R W  
R W  
R W  
R W  
Raster color R  
control bit (RC0)  
Raster color G  
control bit (RC1)  
0 : No output  
1 : Output  
0
0
0
1
2
3
Raster color B  
control bit (RC2)  
0 : No output  
1 : Output  
Raster color OUT  
control bit (RC3)  
0 : No output  
1 : Output  
4
R W  
R W  
Fix these bits to “0.”  
0
0
to  
6
7
Port function  
selection bit (RC7)  
0 : XCIN,  
XCOUT  
1 : P26, P27  
Rev.1.00 Nov 01, 2002 page 119 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00DB16  
OSD Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
OSD control register (OC2) [Address 00DB16  
]
0
0
0
0
Functions  
After reset  
0
R
R
W
W
B
Name  
0: 1HSYNC (normal scan)  
1: 2HSYNC (by scan)  
Vertical character dot size  
(OC20)  
0
0: Counts one time by 1HSYNC  
1: Counts two time by 1HSYNC  
.
(normal scan)  
(by scan)  
Vertical start position count  
selection bit (OC21)  
1
0
0
R
R
W
W
.
Fix this bit to "0."  
2
3
4
Nothing is assigned. This bit is write disable bit.  
When this bit is read out, the value is "0."  
0
R
Nothing is assigned. This bit is write disable bit.  
When this bit is read out, the value is "0."  
Inderterminate  
5 to Fix these bits to "0."  
7
0
R
W
Address 00DC16  
Interrupt Input Polarity Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Interrupt input polarity register (RE) [Address 00DC16  
]
B
0
Name  
Functions  
After reset  
0
R
R
W
W
INT1 polarity switch bit  
(INT1)  
0 : Positive polarity  
1 : Negative polarity  
0
0
0
R
R
R
W
W
1
2
INT2 polarity switch bit  
(INT2)  
0 : Positive polarity  
1 : Negative polarity  
INT3 polarity switch bit  
(INT3)  
0 : Positive polarity  
1 : Negative polarity  
3
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
Rev.1.00 Nov 01, 2002 page 120 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00E016  
Data Slicer Control Register 1  
b7b6b5b4b3b2b1b0  
0 1 1 0 0  
Data slicer control register 1(DSC1) [Address 00E016  
]
B
0
Name  
Functions  
0: Stopped  
1: Operating  
After reset  
R
R
W
W
0
Data slicer and timing signal  
generating circuit control bit (DSC10)  
1
2
0: F2  
1: F1  
0
0
0
R
R
R
W
W
W
Selection bit of data slice reference  
voltage generating field (DSC11)  
0: Video signal  
1: HSYNC signal  
Reference clock source  
selection bit (DSC12)  
3, 4  
Fix these bits to “0.”  
5, 6  
7
0
0
R
R
W
W
Fix these bits to “1.”  
Fix this bit to “0.”  
Definition of fields 1 (F1) and 2 (F2)  
sep  
H
F2:  
sep  
H
F1:  
sep  
V
sep  
V
Rev.1.00 Nov 01, 2002 page 121 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Data Slicer Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
Data slicer control register 2 (DSC2) [Address 00E116]  
B
1
Name  
Functions  
After reset  
R
R
W
0: Data is not latched yet  
and a clock-run-in is not  
determined.  
1: Data is latched and a  
clock-run-in is determined.  
Indeterminate  
Caption data latch  
completion flag 1  
(DSC20)  
1
2
0
Fix this bit to “1.”  
Test bit  
R
R
W
W
0
Indeterminate  
Read-only  
0: F2  
1: F1  
Indeterminate R  
Field determination  
flag(DSC23)  
0: Method (1)  
1: Method (2)  
0
R
Vertical synchronous signal  
(Vsep) generating method  
selection bit (DSC24)  
4
5
0: Match  
1: Mismatch  
Indeterminate R  
V-pulse shape  
determination flag (DSC25)  
0
R
R
6
7
W
Fix this bit to “0.”  
Test bit  
Indeterminate  
Read-only  
Definition of fields 1 (F1) and 2 (F2)  
Hsep  
Vsep  
Hsep  
Vsep  
F2:  
F1:  
Address 00E416  
Clock Run-in Detect Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock run-in detect register (CRD) [Address 00E416  
]
R
R
After reset  
0
W
B
Name  
Test bits  
Functions  
0
to  
2
Read-only  
3
Clock run-in detection  
Number of reference clocks to  
be counted in one clock run-in  
pulse period.  
0
R
to bit(CRD3 to CRD7)  
7
Rev.1.00 Nov 01, 2002 page 122 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Data Clock Position Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
0
Data clock position register (DPS) [Address 00E516  
]
R
R
W
W
B
0
Name  
Functions  
After reset  
1
Fix this bit to “0.”  
1
Fix this bit to “1.”  
Fix this bit to “0.”  
0
R
W
2
3
0
1
R
R
W
W
Data clock position set  
bits (DPS3 to DPS7)  
4
to  
7
0
Caption Position Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Caption Position Register (CPS) [Address 00E616  
]
R W  
Name  
Functions  
After reset  
0
B
0
to  
4
R W  
Caption position  
bits(CPS0 to CPS4)  
5
0: Data is not latched yet and a  
clock-run-in is not determined.  
1: Data is latched and a  
Indeterminate  
R
R
W
Caption data latch  
completion flag 2  
(CPS5)  
clock-run-in is determined.  
6, 7  
Refer to the corresponding  
Table (Table 8.10.1).  
0
Slice line mode  
specification bits  
(in 1 field) (CPS6, CPS7)  
Address 00E916  
Sync Pulse Counter Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Sync pulse counter register (HC) [Address 00E916  
]
R
W
Name  
Functions  
After reset  
B
0
to  
4
Count value (HC0 to HC4)  
0
R
5
Count source (HC5)  
0: HSYNC signal  
1: Composite sync signal  
0
0
R
W
R
6, 7 Nothing is assigned. These bits are write disable bits.  
“0.”  
When these bits are read out, the values are  
Rev.1.00 Nov 01, 2002 page 123 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00EB16  
Serial I/O Mode Register  
b7b6 b5b4b3 b2b1b0  
0
0
Serial I/O mode register (SM) [Address 00EB16  
]
After reset  
B
Functions  
Name  
R W  
0
R W  
b1 b0  
0, 1  
Internal synchronous  
clock selection bits  
(SM0, SM1)  
0 0: f(XIN)/8 or f(XCIN)/8  
0 1: f(XIN)/16 or f(XCIN)/16  
1 0: f(XIN)/32 or f(XCIN)/32  
1 1: f(XIN)/64 or f(XCIN)/64  
0
0
R W  
R W  
2
3
0: External clock  
1: Internal clock  
Synchronous clock  
selection bit (SM2)  
0: P20, P21  
Port function  
1: SCLK, SOUT  
selection bit (SM3)  
0
0
R W  
R W  
Fix this bit to “0.”  
4
5
6
7
0: LSB first  
1: MSB first  
Transfer direction  
selection bit (SM5)  
0: Input signal from SIN pin  
1: Input signal from SOUT pin  
Transfer clock input  
pin selection bit (SM6)  
0
0
R W  
R W  
Fix this bit to “0.”  
Address 00EC16  
A-D Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
A-D control register 1 (AD1) [Address 00EC16  
]
B
Name  
Functions  
After reset R W  
0
to  
2
Analog input pin selection  
bits  
(ADC10 to ADC12)  
b2 b1 b0  
0
R W  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : AD1  
1 : AD2  
0 : AD3  
1 : AD4  
0 : AD5  
1 : AD6  
0 : AD7  
1 : AD8  
3
4
This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
0
R
0: Input voltage < reference voltage  
1: Input voltage > reference voltage  
Storage bit of comparison  
result (ADC14)  
R —  
Indeterminate  
0
5
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
R
Rev.1.00 Nov 01, 2002 page 124 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00ED16  
A-D Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
A-D control register 2 (AD2) [Address 00ED16  
]
B
Name  
Functions  
After reset  
0
R
R
W
W
b6 b5 b4 b3 b2 b1 b0  
0
to  
6
D-A converter set bits  
(ADC20 to ADC25)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
: 1/256Vcc  
: 3/256Vcc  
: 5/256Vcc  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
: 251/256Vcc  
: 253/256Vcc  
: 255/256Vcc  
Nothing is assigned. This bit is a write disable bit.  
When these bits are reed out, the values are “ 0.”  
0
R
7
Address 00F416  
Timer Mode Register 1  
b7b6 b5b4b3 b2b1b0  
Timer mode register 1 (TM1) [Address 00F4 16  
]
After reset  
B
0
Name  
Functions  
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Count source selected by bit 5 of TM1  
R W  
Timer 1 count source  
selection bit 1 (TM10)  
0
0
R W  
0: Count source selected by bit 4 of TM1  
1: External clock from TIM2 pin  
R W  
1
Timer 2 count source  
selection bit 1 (TM11)  
Timer 1 count  
stop bit (TM12)  
2
3
4
0: Count start  
1: Count stop  
0
0
0
R W  
R W  
R W  
Timer 2 count stop  
bit (TM13)  
0: Count start  
1: Count stop  
Timer 2 count source  
selection bit 2  
(TM14)  
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Timer 1 overflow  
5
Timer 1 count source  
selection bit 2 (TM15)  
0: f(XIN)/4096 or f(XCIN)/4096 (See note)  
1: External clock from TIM2 pin  
0
R W  
6
7
Timer 5 count source  
selection bit 2 (TM16)  
0: Timer 2 overflow  
1: Timer 4 overflow  
0
0
R W  
R W  
Timer 6 internal count 0: f(XIN)/16 or f(XCIN)/16 (See note)  
source selection bit  
(TM17)  
1: Timer 5 overflow  
Note: Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.  
Rev.1.00 Nov 01, 2002 page 125 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00F516  
Timer Mode Register 2  
b7b6 b5b4b3 b2b1b0  
Timer mode register 2 (TM2) [Address 00F516  
]
After reset  
B
0
Name  
Functions  
R W  
R W  
Timer 3 count source  
selection bit (TM20)  
0
(b6 at address 00C716  
)
b0  
0
1
0
1
0 : f(XIN)/16 or f(XCIN)/16 (See note)  
0 : f(XCIN  
)
1 :  
1 :  
External clock from TIM3 pin  
b4 b1  
1, 4  
Timer 4 count source  
selection bits  
(TM21, TM24)  
0
R W  
0
0
1
1
0 : Timer 3 overflow signal  
1 : f(XIN)/16 or f(XCIN)/16 (See note)  
0 : f(XIN)/2 or f(XCIN)/2 (See note)  
1 : f(XCIN  
)
Timer 3 count  
stop bit (TM22)  
2
3
0: Count start  
1: Count stop  
0
0
R W  
R W  
Timer 4 count stop bit  
(TM23)  
0: Count start  
1: Count stop  
Timer 5 count stop bit  
(TM25)  
5
6
0: Count start  
1: Count stop  
0
0
R W  
R W  
Timer 6 count stop bit  
(TM26)  
0: Count start  
1: Count stop  
Timer 5 count source  
selection bit 1  
(TM27)  
7
0: f(XIN)/16 or f(XCIN)/16 (See note)  
1: Count source selected by bit 6  
of TM1  
0
R W  
Note: Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.  
Address 00F616  
2
I C Data Shift Register  
b7 b6 b5 b4 b3 b2 b1 b0  
2
I C data shift register 1(S0) [Address 00F616  
]
B
Name  
Functions  
After reset  
R
R
W
W
0
to  
7
D0 to D7 This is an 8-bit shift register to store  
receive data and write transmit data.  
Indeterminate  
2
Note : To write data into the I C data shift register after setting the MST bit to  
“0” (slave mode), keep an interval of 8 machine cycles or more.  
Rev.1.00 Nov 01, 2002 page 126 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00F716  
2
I C Address Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C address register (S0D) [Address 00F716]  
After reset  
0
B
0
Name  
Functions  
R W  
R —  
<Only in 10-bit addressing (in slave) mode>  
The last significant bit of address data is  
compared.  
Read/write bit  
(RBW)  
0: Wait the first byte of slave address after  
START condition  
(read state)  
1: Wait the first byte of slave address after  
(write state)  
RESTART condition  
<In both modes>  
(SAD0 to SAD6) The address data is compared.  
R
W
Slave address  
0
1
to  
7
Address 00F816  
2
I C Status Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C status register (S1) [Address 00F816  
]
After reset  
B
Name  
Functions  
W
R
0
Last receive bit (LRB)  
(See note)  
0 : Last bit = “0 ”  
1 : Last bit = “1 ”  
Indeterminate  
R —  
R —  
R —  
(See note)  
1
2
General call detecting flag  
(AD0) (See note)  
0 : No general call detected  
1 : General call detected  
0
0
(See note)  
Slave address comparison  
flag (AAS) (See note)  
0 : Address mismatch  
1 : Address match  
(See note)  
(See note)  
3
4
5
Arbitration lost detecting flag 0 : Not detected  
(AL) (See note)  
0
1
0
0
R —  
R W  
R W  
R W  
1 : Detected  
I2C-BUS interface interrupt  
request bit (PIN)  
0 : Interrupt request issued  
1 : No interrupt request issued  
Bus busy flag (BB)  
0 : Bus free  
1 : Bus busy  
6, 7 Communication mode  
specification bits  
b7 b6  
0
0
1
1
0 : Slave recieve mode  
1 : Slave transmit mode  
0 : Master recieve mode  
1 : Master transmit mode  
(TRX, MST)  
Note : These bits and flags can be read out, but cannnot be written.  
Rev.1.00 Nov 01, 2002 page 127 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00F916  
2
I C Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
I2C control register (S1D) [Address 00F916  
]
After reset  
0
B
Name  
Functions  
R W  
Bit counter  
(Number of transmit/recieve  
b2 b1 b0  
0
to  
2
R W  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 : 8  
bits)  
1 : 7  
0 : 6  
1 : 5  
0 : 4  
1 : 3  
0 : 2  
1 : 1  
(BC0 to BC2)  
3
4
5
I2C-BUS interface use  
enable bit (ESO)  
0
0
0
0
0 : Disabled  
1 : Enabled  
R W  
R W  
R W  
R W  
Data format selection  
bit(ALS)  
0 : Addressing mode  
1 : Free data format  
Addressing format selection  
bit (10BIT SAD)  
0 : 7-bit addressing format  
1 : 10-bit addressing format  
b7 b6 Connection port (See note)  
6, 7 Connection control bits  
between I2C-BUS interface  
and ports  
0
0
1
1
0: None  
1: SCL1, SDA1  
0: SCL2, SDA2  
1: SCL1, SDA1  
SCL2, SDA2  
(BSEL0, BSEL1)  
Note: • Set the corresponding direction register to "1" to use the port as multi-master I2C-BUS interface.  
• To use SCL1, SDA1, SCL2 and SDA2, set the port P3 Register (address 00C616) bit 2 to 0.  
Rev.1.00 Nov 01, 2002 page 128 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00FA16  
2
I C Clock Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
2
I C clock control register (S2) [Address 00FA16  
]
After reset  
B
Functions  
R W  
R W  
Name  
Setup value  
of CCR4–  
CCR0  
Standard  
clock  
mode  
High speed  
clock mode  
0
to  
4
SCL frequency control  
bits  
(CCR0 to CCR4)  
0
Setup disabled Setup disabled  
00 to 02  
Setup disabled  
333  
03  
04  
05  
06  
Setup disabled  
250  
400 (See note)  
166  
100  
83.3  
500/CCR value 1000/CCR value  
17.2  
16.6  
16.1  
34.5  
33.3  
32.3  
1D  
1E  
1F  
(φ = 4 MHz, unit : kHz)  
0
5
SCL mode  
specification bit  
(FAST MODE)  
0: Standard clock mode  
1: High-speed clock mode  
R W  
6
7
ACK bit  
(ACK BIT)  
0: ACK is returned.  
1: ACK is not returned.  
0
0
R W  
R W  
ACK clock bit  
(ACK)  
0: No ACK clock  
1: ACK clock  
Note. At 400kHz in the high-speed clock mode, the duty is as below.  
“0” period : “1” period = 3 : 2  
In the other cases, the duty is as below.  
“0” period : “1” period = 1 : 1  
Rev.1.00 Nov 01, 2002 page 129 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00FB16  
CPU Mode Register  
b7b6 b5b4b3 b2b1b0  
1 1  
0 0  
CPU mode register (CM) [Address 00FB16  
]
Functions  
After reset  
0
B
Name  
R W  
R W  
b1 b0  
Processor mode bits  
(CM0, CM1)  
0, 1  
0 0: Single-chip mode  
0 1:  
1 0:  
1 1:  
Not available  
0: 0 page  
1: 1 page  
Stack page selection  
bit (CM2) (See note)  
2
1
R W  
Fix these bits to “1.”  
1
1
R W  
R W  
3, 4  
5
0: LOW drive  
1: HIGH drive  
X
COUT drivability  
selection bit (CM5)  
6
7
0
0
R W  
R W  
0: Oscillating  
1: Stopped  
Main Clock (XIN–XOUT  
stop bit (CM6)  
)
Internal system clock 0: XIN selected  
(high-speed mode)  
1: XCIN–XCOUT selected  
(low-speed mode)  
selection bit  
(CM7)  
Note. This bit is set to “1” after the reset release.  
Address 00FC16  
Interrupt Request Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Interrupt request register 1 (IREQ1) [Address 00FC16  
]
B
0
Name  
Functions  
Afrer reset R  
W
0
0 : No interrupt request issued  
1 : Interrupt request issued  
Timer 1 interrupt request  
bit (TM1R)  
R
1
2
3
4
5
6
7
Timer 2 interrupt request 0 : No interrupt request issued  
bit (TM2R) 1 : Interrupt request issued  
0
0
0
R
Timer 3 interrupt request 0 : No interrupt request issued  
bit (TM3R) 1 : Interrupt request issued  
R
R
R
Timer 4 interrupt request 0 : No interrupt request issued  
bit (TM4R)  
1 : Interrupt request issued  
OSD interrupt  
request bit (OSDR)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0
0
0
0
VSYNC interrupt request 0 : No interrupt request issued  
R
R
R
bit (VSCR)  
1 : Interrupt request issued  
INT3 external interrupt  
request bit (IN3R)  
0 : No interrupt request issued  
1 : Interrupt request issued  
Nothing is assigned. This bit is a write disable bit.  
When this bit is read out, the value is “0.”  
: “0” can be set by software, but “1” cannot be set.  
Rev.1.00 Nov 01, 2002 page 130 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00FD16  
Interrupt Request Register 2  
b7b6 b5b4b3 b2b1b0  
0
Interrupt request register 2 (IREQ2) [Address 00FD16  
]
After reset  
B
0
Name  
Functions  
R W  
INT1 external interrupt  
request bit (IN1R)  
Data slicer interrupt  
request bit (DSR)  
Serial I/O interrupt  
request bit (SIR)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
0
0
0
0
R
R
R
R
1
2
3
4
f(XIN  
)/4096 interrupt  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
request bit (CKR)  
INT2 external interrupt  
request bit (IN2R)  
0
0
R
R
2C-BUS  
0 : No interrupt request issued  
Multi-master I  
5
6
interrupt request bit (IICR) 1 : Interrupt request issued  
Timer 5 • 6 interrupt  
request bit (TM56R)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0
0
R
7
Fix this bit to “0.”  
R W  
: “0” can be set by software, but “1” cannot be set.  
Address 00FE16  
Interrupt Control Register 1  
b7b6 b5b4b3 b2b1b0  
Interrupt control register 1 (ICON1) [Address 00FE16  
]
Name  
After reset  
0
B
0
Functions  
R W  
Timer 1 interrupt  
enable bit (TM1E)  
0 : Interrupt disabled  
1 : Interrupt enabled  
R W  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
1
2
3
4
Timer 2 interrupt  
enable bit (TM2E)  
Timer 3 interrupt  
enable bit (TM3E)  
Timer 4 interrupt  
enable bit (TM4E)  
R W  
0
R W  
R W  
R W  
0
0
0
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
OSD interrupt enable bit  
(OSDE)  
V
SYNC interrupt enable 0 : Interrupt disabled  
5
6
7
R W  
R W  
R —  
0
0
1 : Interrupt enabled  
bit (VSCE)  
0 : Interrupt disabled  
1 : Interrupt enabled  
INT3 external interrupt  
enable bit (IN3E)  
Nothing is assigned. This bit is a write disable  
bit. When this bit is read out, the value is “0.”  
0
Rev.1.00 Nov 01, 2002 page 131 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 00FF16  
Interrupt Control Register 2  
b7b6 b5b4b3 b2b1b0  
Interrupt control register 2 (ICON2) [Address 00FF16]  
After reset  
0
B
0
Name  
Functions  
R W  
R W  
INT1 external interrupt  
enable bit (IN1E)  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
Data slicer interrupt  
enable bit (DSE)  
1
2
3
4
0
R W  
Serial I/O interrupt  
enable bit (SIE)  
0
0
0
R W  
R W  
R W  
0 : Interrupt disabled  
1 : Interrupt enabled  
0 : Interrupt disabled  
1 : Interrupt enabled  
f(XIN  
)/4096 interrupt  
enable bit (CKE)  
INT2 external interrupt  
enable bit (IN2E)  
I2  
Multi-master C-BUS  
5
0 : Interrupt disabled  
1 : Interrupt enabled  
0
R W  
interface interrupt enable  
bit (IICE)  
0
0
R W  
R W  
Timer 5 • 6 interrupt  
enable bit (TM56E  
Timer 5 • 6 interrupt  
switch bit (TM56C)  
0 : Interrupt disabled  
1 : Interrupt enabled  
6
7
)
0 : Timer 5  
1 : Timer 6  
Address 020816  
PWM Mode Register 1  
b7b6 b5b4b3 b2b1b0  
PWM mode register 1 (PM1) [Address 020816  
]
After reset  
R W  
B
0
Name  
Functions  
PWM counts source  
selection bit (PM10)  
0 : Count source supply  
1 : Count source stop  
W
0
R
1, 2  
3
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
Indeterminate  
0
R
PWM output polarity  
selection bit (PM13)  
0 : Positive polarity  
1 : Negative polarity  
R W  
4
to  
7
Nothing is assigned. These bits are write disable bits.  
When these bits are read out, the values are “0.”  
R
Indeterminate  
Rev.1.00 Nov 01, 2002 page 132 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 020916  
PWM Mode Register 2  
b7b6 b5b4b3 b2b1b0  
0 0 0  
PWM mode register 2 (PM2) [Address 020916  
]
B
0
Name  
Functions  
output  
1 : PWM0 output  
0 : P0 output  
1 : PWM1 output  
After reset R W  
0 : P0  
0
P0  
0
/PWM0 output  
0
R W  
selection bit (PM20)  
P0 /PWM1 output  
selection bit (PM21)  
P0 /PWM2 output  
selection bit (PM22)  
P0 /PWM3 output  
selection bit (PM23)  
1
2
3
4
1
1
0
0
0
R W  
R W  
R W  
2
0 : P02 output  
1 : PWM2 output  
3
0 : P0 output  
3
1 : PWM3 output  
P0 /PWM4 output  
selection bit (PM24)  
4
0
0
R W  
R W  
0 : P0 output  
4
1 : PWM4 output  
Fix these bits to “0.”  
5 to  
7
Address 020E16  
ROM Correction Enable Register  
b7 b6 b5 b4 b3 b2 b1 b0  
ROM correction enable register (RCR) [Address 020E 16  
]
After reset  
0
B
Name  
Functions  
R W  
R W  
0
Vector 1 enable bit (RC0)  
0: Disabled  
1: Enabled  
1
Vector 2 enable bit (RC1)  
0: Disabled  
1: Enabled  
0
0
R W  
R —  
Nothing is assigned. These bits are write disable bits. When  
these bits are read out, the values are “0.”  
2
to  
7
Rev.1.00 Nov 01, 2002 page 133 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 021016  
Clock frequency set register  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock frequency set register(CFS) [Address 021016  
]
B
Name  
Functions  
After reset  
R
R
W
W
Clock frequency (Note)  
0 to  
7
Clock frequency bit  
(CFS 0 to 7)  
0E  
Setting value(Limitation) Frequency(MHz)  
0C  
0D  
26  
28  
Note: Do not set other than the values shown above to CFS.  
Then, must to use at f(XIN) = 8 MHz.  
Address 021116  
Clock control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
0
0
0
1
0
0
Clock control register 2 (CC2) [Address 021116  
]
B
Name  
0,1 Fix these bits to "0"  
Fix this bit to "1"  
Functions  
After reset  
W
R
0
0
R W  
R W  
2
3 to Fix these bits to "0"  
5
0
R W  
6
7
Fix this bit to "1"  
Fix this bit to "0"  
0
0
R W  
R W  
Rev.1.00 Nov 01, 2002 page 134 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Address 021216  
Clock control register 3  
b7 b6 b5 b4 b3 b2 b1 b0  
Clock control register 3 (CC3) [Address 021216  
]
0
0
0
0
0 0  
B
Name  
Functions  
After reset  
W
W
R
R
0
0 to  
4
Fix these bits to "0"  
0: 0V–VCC  
1: 0V–About 0.6VCC  
5
R
R,G,B,OUT Output amplitude  
level selection bit (CC35)  
0
W
6
7
R
R
0
0
W
W
Fix this bit to "0"  
P10  
function-selection bit  
(Note)  
(CC37)  
0: Clock control signal  
1: P10 I/O  
Note: When used as the clock control signal, set the Port 1 Direction Register  
(address 00C316) bit 0 to 1.  
Rev.1.00 Nov 01, 2002 page 135 of 136  
REJ03B0129-0100Z  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
19. PACKAGE OUTLINE  
42P2R-A/E  
Plastic 42pin 450mil SSOP  
EIAJ Package Code  
SSOP42-P-450-0.80  
JEDEC Code  
Weight(g)  
0.63  
Lead Material  
Alloy 42  
e
b
2
42  
22  
Recommended Mount Pad  
Dimension in Millimeters  
F
Symbol  
Min  
0.05  
0.25  
0.13  
17.3  
8.2  
11.63  
0.3  
0°  
1.27  
Nom  
Max  
2.4  
A
A
A
1
21  
1
2
A
2.0  
0.3  
0.15  
17.5  
8.4  
0.8  
11.93  
0.5  
1.765  
0.75  
D
G
b
0.4  
0.2  
17.7  
8.6  
12.23  
0.7  
c
D
E
e
H
L
A
2
A1  
e
b
E
y
L1  
z
Z
y
1
0.9  
0.15  
10°  
c
z
b2  
0.5  
11.43  
Z
1
Detail G  
Detail F  
e1  
I
2
Rev.1.00 Nov 01, 2002 page 136 of 136  
REJ03B0129-0100Z  
REVISION HISTORY  
M37151M6/M8/MA/MC/MF-XXXFP, M37151EFFP  
Rev.  
Date  
Description  
Summary  
Page  
1.00 Nov 01, 2002  
First edition issued  
A - 1  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits,  
(ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology (Shanghai) Co., Ltd.  
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China  
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
© 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .2.0  

相关型号:

M37151M6-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
RENESAS

M37151M6_02

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37151M8

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37151M8-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
RENESAS

M37151MA

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37151MA-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
RENESAS

M37151MC

SNGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37151MC-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
RENESAS

M37151MF-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
RENESAS

M37160EFFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37160EFSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M37160M8

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS