M38022M2-XXXFP [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38022M2-XXXFP
型号: M38022M2-XXXFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

微控制器和处理器 外围集成电路 装置 计算机 时钟
文件: 总52页 (文件大小:667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Programmable input/output ports ............................................. 56  
DESCRIPTION  
Interrupts .................................................. 16 sources, 16 vectors  
The 3802 group is the 8-bit microcomputer based on the 740 fam-  
Timers ............................................................................. 8 bit 4  
ily core technology.  
Serial I/O1 .................... 8-bit 1 (UART or Clock-synchronized)  
The 3802 group is designed for controlling systems that require  
analog signal processing and include two serial I/O functions, A-D  
converters, and D-A converters.  
Serial I/O2 .................................... 8-bit 1 (Clock-synchronized)  
PWM................................................................................ 8-bit 1  
A-D converter .................................................. 8-bit 8 channels  
The various microcomputers in the 3802 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
D-A converter .................................................. 8-bit 2 channels  
Clock generating circuit ....................... Internal feedback resistor  
(connect to external ceramic resonator or quartz-crystal oscillator)  
For details on availability of microcomputers in the 3802 group, re-  
fer to the section on group expansion.  
Power source voltage ..................................................3.0 to 5.5 V  
(Extended operating temperature version : 4.0 to 5.5 V)  
Power dissipation ............................................................... 32 mW  
FEATURES  
Memory expansion possible  
Basic machine-language instructions....................................... 71  
Operating temperature range .................................... –20 to 85°C  
The minimum instruction execution time ............................ 0.5 µs  
(Extended operating temperature version : –40 to 85°C)  
(at 8 MHz oscillation frequency)  
Memory size  
APPLICATIONS  
Office automation, VCRs, tuners, musical instruments, cameras,  
ROM .................................................................. 8 K to 32 K bytes  
RAM ................................................................. 384 to 1024 bytes  
air conditioners, etc.  
PIN CONFIGURATION (TOP VIEW)  
49  
32  
P20/DB0  
P21/DB1  
P37/RD  
P36/WR  
50  
31  
51  
30  
P22/DB2  
P35/SYNC  
52  
29  
P34/φ  
P23/DB3  
53  
28  
P33/RESETOUT  
P24/DB4  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
P32/ONW  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P25/DB5  
P26/DB6  
P27/DB7  
VSS  
XOUT  
XIN  
P31/DA2  
P30/DA1  
VCC  
VREF  
AVSS  
P67/AN7  
P66/AN6  
P65/AN5  
P64/AN4  
P63 /AN3  
M38022M4-XXXFP  
P40/INT4  
P41/INT0  
RESET  
CNVSS  
P42/INT1  
Package type : 64P6N-A  
64-pin plastic-molded QFP  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
CC  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
/DA  
1
2
2
V
REF  
/DA  
3
AVSS  
/ONW  
/RESETOUT  
/φ  
4
P6  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
7
6
5
4
3
2
1
0
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
7
6
5
4
3
2
1
0
3
5
6
/SYNC  
/WR  
7
8
/RD  
9
/AD  
/AD  
/AD  
/AD  
/AD  
/AD  
/AD  
/AD  
/AD  
/AD  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P5  
P5  
7/INT  
6
/PWM  
P5  
P5  
5
/CNTR  
/CNTR  
1
4
0
P5  
P5  
P5  
P5  
P4  
P4  
P4  
P4  
3
/SRDY2  
/SCLK2  
/SOUT2  
/SIN2  
/SRDY1  
/SCLK1  
2
1
0
/AD10  
/AD11  
/AD12  
/AD13  
/AD14  
/AD15  
7
6
5
/T  
X
D
D
4
/RX  
P4  
P4  
3
/INT  
2
2
/INT  
1
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
0
1
2
3
4
5
6
7
CNVSS  
RESET  
P4  
P4  
1
/INT  
/INT  
0
0
4
X
IN  
OUT  
SS  
X
V
Package type : 64P4B  
64-pin shrink plastic-molded DIP  
2
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
~
3
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Pin  
Function  
Name  
Function except a port function  
VCC, VSS  
• Apply voltage of 3.0 V–5.5 V to VCC, and 0 V to VSS.  
(Extended operating temperature version : 4.0 V to 5.5 V)  
Power source  
CNVSS  
• This pin controls the operation mode of the chip.  
CNVSS  
• Normally connected to VSS.  
• If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.  
VREF  
AVSS  
• Reference voltage input pin for A-D and D-A converters  
Analog reference  
voltage  
• GND input pin for A-D and D-A converters  
• Connect to VSS.  
Analog power  
source  
RESET  
XIN  
• Reset input pin for active “L”  
Reset input  
Clock input  
Clock output  
• Input and output signals for the clock generating circuit.  
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the  
oscillation frequency.  
XOUT  
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
• The clock is used as the oscillating source of system clock.  
P00–P07  
P10–P17  
P20–P27  
• 8 bit CMOS I/O port  
I/O port P0  
I/O port P1  
I/O port P2  
I/O port P3  
• I/O direction register allows each pin to be individually programmed as either input or output.  
• At reset this port is set to input mode.  
• In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.  
• CMOS compatible input level  
• CMOS 3-state output structure  
P30/DA1,  
P31/DA2  
• D–A conversion output pins  
P32–P37  
P40/INT4,  
P41/INT0,  
P42/INT1,  
P43/INT2  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
• CMOS 3-state output structure  
I/O port P4  
• External interrupt input pin  
• Serial I/O1 I/O pins  
P44/RXD,  
P45/TXD,  
P46/SCLK1,  
P47/SRDY1  
P50/SIN2,  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
• CMOS 3-state output structure  
I/O port P5  
• Serial I/O2 I/O pins  
P51/SOUT2,  
P52/SCLK2,  
P53/SRDY2  
P54/CNTR0,  
P55/CNTR1  
• Timer X and Timer Y I/O pins  
P56/PWM  
P57/INT3  
• PWM output pin  
• External interrupt input pin  
• A-D conversion input pins  
P60/AN0–  
P67/AN7  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
I/O port P6  
• CMOS 3-state output structure  
4
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Packages  
GROUP EXPANSION  
64P4B ............................................ Shrink plastic molded DIP  
64P6N-A................................................... Plastic molded QFP  
64S1B-E .................................................... Shrink ceramic DIP  
64D0 ................................................................... Ceramic LCC  
Mitsubishi plans to expand the 3802 group as follows:  
(1) Support for mask ROM, One Time PROM, and EPROM  
versions  
ROM/PROM capacity................................... 8 K to 32 K bytes  
RAM capacity .............................................. 384 to 1024 bytes  
Memory Expansion Plan  
Mass product  
M38027M8/E8  
ROM size (bytes)  
32K  
28K  
Mass product  
24K  
M38024M6  
20K  
Mass product  
16K  
12K  
8K  
M38022M4  
M38022M2  
Mass product  
4K  
192 256  
384  
512  
640  
768  
896  
1024  
RAM size (bytes)  
Currently supported products are listed below  
As of May 1996  
(P) ROM size (bytes)  
Product  
RAM size (bytes)  
Package  
Remarks  
ROM size for User in (  
)
M38022M2-XXXSP  
M38022M2-XXXFP  
M38022M4-XXXSP  
M38022M4-XXXFP  
M38024M6-XXXSP  
M38024M6-XXXFP  
M38027M8-XXXSP  
M38027E8-XXXSP  
M38027E8SP  
64P4B  
64P6N-A Mask ROM version  
64P4B Mask ROM version  
64P6N-A Mask ROM version  
64P4B Mask ROM version  
Mask ROM version  
8192  
(8062)  
384  
384  
640  
16384  
(16254)  
24576  
(24446)  
64P6N-A Mask ROM version  
Mask ROM version  
One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
64P4B  
M38027M8-XXXFP  
M38027E8-XXXFP  
M38027E8FP  
32768  
(32638)  
1024  
One Time PROM version  
One Time PROM version (blank)  
64P6N-A  
M38027E8SS  
64S1B-E EPROM version  
64D0 EPROM version  
M38027E8FS  
5
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Packages  
GROUP EXPANSION  
64P4B ............................................ Shrink plastic molded DIP  
64P6N-A................................................... Plastic molded QFP  
(Extended operating temperature version)  
Mitsubishi plans to expand the 3802 group (extended operating  
temperature version) as follows:  
(1) Support for mask ROM One Time PROM, and EPROM ver-  
sions  
ROM/PROM capacity................................... 8 K to 32 K bytes  
RAM capacity .............................................. 384 to 1024 bytes  
Memory Expansion Plan (Extended operating temperature version)  
Mass product  
ROM size (bytes)  
32K  
M38027M8D/E8D  
28K  
24K  
20K  
16K  
12K  
8K  
Mass product  
Mass product  
M38022M4D  
M38022M2D  
4K  
192 256  
384  
512  
RAM size (bytes)  
640  
768  
896  
1024  
Currently supported products are listed below.  
As of May 1996  
(P) ROM size (bytes)  
Product  
RAM size (bytes)  
Package  
64P4B  
Remarks  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
8192  
(8062)  
16384  
(16254)  
M38022M2DXXXSP  
M38022M2DXXXFP  
M38022M4DXXXSP  
M38022M4DXXXFP  
M38027M8DXXXSP  
M38027E8DXXXSP  
M38027E8DSP  
384  
384  
64P6N-A  
64P4B  
64P6N-A  
One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
64P4B  
32768  
1024  
(32638)  
M38027M8DXXXFP  
M38027E8DXXXFP  
M38027E8DFP  
One Time PROM version  
One Time PROM version (blank)  
64P6N-A  
6
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M3802 2 M 4 - XXX SP  
Package type  
SP : 64P4B package  
FP : 64P6N-A package  
SS : 64S1B-E package  
FS : 64D0 package  
ROM number  
Omitted in some types.  
Normally, using hyphen.  
When electrical characteristic, or division of quality  
identification code using alphanumeric character  
– : standard  
D : Extended operating temperature version  
ROM/PROM size  
: 4096 bytes  
: 8192 bytes  
: 12288 bytes  
: 16384 bytes  
: 20480 bytes  
: 24576 bytes  
: 28672 bytes  
: 32768 bytes  
1
2
3
4
5
6
7
8
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
M : Mask ROM version  
E : EPROM or One Time PROM version  
RAM size  
0 : 192 bytes  
1 : 256 bytes  
2 : 384 bytes  
3 : 512 bytes  
4 : 640 bytes  
5 : 768 bytes  
6 : 896 bytes  
7 : 1024 bytes  
7
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
Central Processing Unit (CPU)  
The 3802 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine in-  
structions or the SERIES 740 <Software> User’s Manual for de-  
tails on the instruction set.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
CPU mode register  
The CPU mode register is allocated at address 003B16.  
The CPU mode register contains the stack page selection bit.  
b7  
b0  
CPU mode register  
(
CPUM : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0
1
0
1
: Single-chip mode  
: Memory expansion mode  
: Microprocessor mode  
: Not available  
Stack page selection bit  
0
1
: 0 page  
: 1 page  
Not used (return “0” when read)  
Fig. 1 Structure of CPU mode register  
8
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Memory  
Zero page  
Special function register (SFR) area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt vector area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM capacity  
(bytes)  
Address  
XXXX16  
000016  
SFR area  
192  
256  
384  
512  
640  
768  
896  
1024  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
Zero page  
004016  
010016  
RAM  
XXXX16  
Reserved area  
044016  
ROM area  
Not used  
ROM capacity  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
YYYY16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
12288  
16384  
20480  
24576  
28672  
32768  
ZZZZ16  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
FFFE16  
Reserved ROM area  
FFFF16  
Fig. 2 Memory map diagram  
9
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
Prescaler 12 (PRE12)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer 1 (T1)  
Timer 2 (T2)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Timer XY mode register (TM)  
Prescaler X (PREX)  
Timer X (TX)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Prescaler Y (PREY)  
Timer Y (TY)  
Port P3 direction register (P3D)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
PWM control register (PWMCON)  
PMW prescaler (PREPWM)  
PWM register (PWM)  
Port P6 direction register (P6D)  
AD/DA control register (ADCON)  
A-D conversion register (AD)  
D-A1 conversion register (DA1)  
D-A2 conversion register (DA2)  
Transmit/Receive buffer register (TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Serial I/O2 control register (SIO2CON)  
Serial I/O2 register (SIO2)  
Fig. 3 Memory map of special function register (SFR)  
10  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
If data is read from a pin which is set to output, the value of the  
port output latch is read, not the value of the pin itself. Pins set to  
input are floating. If a pin set to input is written to, only the port  
output latch is written to and the pin remains floating.  
I/O Ports  
Direction registers  
The 3802 group has 56 programmable I/O pins arranged in seven  
I/O ports (ports P0 to P6). The I/O ports have direction registers  
which determine the input/output direction of each individual pin.  
Each bit in a direction register corresponds to one pin, each pin  
can be set to be input port or output port.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin be-  
comes an output pin.  
Pin  
Name  
Input/Output  
I/O Format  
CMOS 3-state output  
CMOS compatible  
input level  
Non-Port Function  
Related SFRs  
Ref.No.  
Input/output,  
individual bits  
Address low-order byte  
output  
P00–P07  
Port P0  
CPU mode register  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Address high-order  
byte output  
P10–P17  
P20–P27  
Port P1  
Port P2  
Port P3  
CPU mode register  
CPU mode register  
(1)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Data bus I/O  
P30/DA1  
CMOS 3-state output  
CMOS compatible  
input level  
D-A conversion output  
Control signal I/O  
External interrupt input  
AD/DA control register  
CPU mode register  
CPU mode register  
Input/output,  
individual bits  
(2)  
(1)  
P31/DA2  
P32–P37  
P40/INT4,  
P41/INT0,  
P43/INT2  
Interrupt edge selection  
register  
(3)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
P44/RXD,  
P45/TXD,  
P46/SCLK1,  
P47/SRDY1  
P50/SIN2,  
P51/SOUT2,  
P52/SCLK2,  
P53/SRDY2  
P54/CNTR0,  
P55/CNTR1  
P56/PWM  
P57/INT3  
Port P4  
(4)  
(5)  
Serial I/O1 control  
register  
Serial I/O1 function I/O  
Serial I/O2 function I/O  
(6)  
UART control register  
(7)  
(8)  
Serial I/O2 control  
register  
(9)  
(10)  
(11)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Port P5  
Port P6  
Timer X and Timer Y  
function I/O  
Timer XY mode register  
(12)  
PWM output  
PWM control register  
(13)  
(3)  
External interrupt input  
Interrupt edge selection register  
CMOS 3-state output  
CMOS compatible  
input level  
P60/AN0–  
P67/AN7  
Input/output,  
individual bits  
A-D conversion input  
(14)  
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as func-  
tion I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
11  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P1, P2, P32–P37  
(2) Ports P30, P31  
Direction register  
Direction register  
Port latch  
Port latch  
Data bus  
Data bus  
D–A conversion output  
DA1 output enable bit (P30)  
DA2 output enable bit (P31)  
(3) Ports P40–P43, P57  
(4) Port P44  
Serial I/O1 enable bit  
Receive enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Interrupt input  
Serial I/O1 input  
(5) Port P45  
(6) Port P46  
Serial I/O1 synchronous  
clock selection bit  
Serial I/O1 enable bit  
P45/TXD P-channel output disable bit  
Serial I/O1 enable bit  
Transmit enable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O1 output  
Serial I/O1  
external  
Serial I/O1 clock output  
clock input  
(7) Port P47  
(8) Port P50  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction register  
Port latch  
SRDY1 output enable bit  
Direction register  
Data bus  
Port latch  
Data bus  
Serial I/O2 input  
Serial I/O1 ready output  
Fig. 4 Port block diagram (single-chip mode) (1)  
12  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Port P5  
1
(10) Port P5  
2
P51/SOUT2 P-channel output disable bit  
Serial I/O2  
synchronous clock selection bit  
Serial I/O2 port selection bit  
Serial I/O2 transmit end signal  
Serial I/O2 port selection bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O2 clock output  
Serial I/O2 output  
Serial I/O2 external clock input  
(11) Port P5  
3
(12) Ports P54, 55  
S
RDY2 output enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Pulse output mode  
Timer output  
Serial I/O2 ready output  
CNTR  
0, CNTR1  
Interrupt input  
(13) Port P5  
6
(14) Port P6  
PWM output enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
A-D conversion input  
Analog input pin selection bit  
PWM output  
Fig. 5 Port block diagram (single-chip mode) (2)  
13  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupt operation  
Interrupts occur by sixteen sources: seven external, eight internal,  
When an interrupt is received, the contents of the program counter  
and processor status register are automatically stored into the  
stack. The interrupt disable flag is set to inhibit other interrupts  
from interfering.The corresponding interrupt request bit is cleared  
and the interrupt jump destination address is read from the vector  
table into the program counter.  
and one software.  
Interrupt control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the corre-  
sponding interrupt request and enable bits are “1” and the inter-  
rupt disable flag is “0”.  
Notes on use  
When the active edge of an external interrupt (INT0 to INT4,  
CNTR0, or CNTR1) is changed, the corresponding interrupt re-  
quest bit may also be set. Therefore, please take following se-  
quence;  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
(interrupt disable) flag disables all interrupts except the BRK in-  
struction interrupt.  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge selection.  
(3) Clear the interrupt request bit which is selected to “0”.  
(4) Enable the external interrupt which is selected.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Table 1. Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Reset (Note 2)  
INT0  
Priority  
High  
Low  
Generating Conditions  
1
2
FFFD16  
FFFC16  
At reset  
Non-maskable  
At detection of either rising or  
falling edge of INT0 input  
At detection of either rising or  
falling edge of INT1 input  
At completion of serial I/O1  
data reception  
External interrupt  
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
FFF616  
(active edge selectable)  
External interrupt  
INT1  
3
4
(active edge selectable)  
Serial I/O1  
reception  
Valid when serial I/O1 is selected  
At completion of serial I/O1  
transfer shift or when  
Serial I/O1  
5
FFF516  
FFF416  
Valid when serial I/O1 is selected  
transmission  
transmission buffer is empty  
At timer X underflow  
Timer X  
Timer Y  
Timer 1  
Timer 2  
6
7
8
9
FFF316  
FFF116  
FFEF16  
FFED16  
FFF216  
FFF016  
FFEE16  
FFEC16  
At timer Y underflow  
At timer 1 underflow  
STP release timer underflow  
At timer 2 underflow  
At detection of either rising or  
falling edge of CNTR0 input  
At detection of either rising or  
falling edge of CNTR1 input  
At completion of serial I/O2  
data transfer  
External interrupt  
CNTR0  
CNTR1  
Serial I/O2  
INT2  
10  
11  
12  
13  
14  
FFEB16  
FFE916  
FFE716  
FFE516  
FFE316  
FFEA16  
FFE816  
FFE616  
FFE416  
FFE216  
(active edge selectable)  
External interrupt  
(active edge selectable)  
Valid when serial I/O2 is selected  
At detection of either rising or  
falling edge of INT2 input  
At detection of either rising or  
falling edge of INT3 input  
At detection of either rising or  
falling edge of INT4 input  
At completion of A-D conversion  
External interrupt  
(active edge selectable)  
External interrupt  
INT3  
(active edge selectable)  
External interrupt  
INT4  
15  
16  
17  
FFE116  
FFDF16  
FFDD16  
FFE016  
FFDE16  
FFDC16  
(active edge selectable)  
A-D converter  
BRK instruction  
At BRK instruction execution  
Non-maskable software interrupt  
Note 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
14  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. 6 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
0
active edge selection bit  
active edge selection bit  
1
Not used (returns “0” when read)  
INT  
INT  
INT  
2
3
4
active edge selection bit  
active edge selection bit  
active edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
Not used (returns “0” when read)  
b7  
b0  
b7 b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
interrupt request bit  
interrupt request bit  
CNTR  
0
interrupt request bit  
interrupt request bit  
1
CNTR  
1
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
Serial I/O2 interrupt request bit  
INT  
INT  
INT  
2
3
4
interrupt request bit  
interrupt request bit  
interrupt request bit  
Timer Y interrupt request bit  
Timer 1 interrupt request bit  
AD converter interrupt request bit  
Not used (returns “0” when read)  
Timer 2 interrupt request bit  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0 Interrupt control register 1  
(ICON1 : address 003E16  
b7  
b0  
Interrupt control register 2  
(ICON2 : address 003F16  
)
)
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
Serial I/O2 interrupt enable bit  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
INT  
INT  
INT  
2
3
4
interrupt enable bit  
interrupt enable bit  
interrupt enable bit  
Timer Y interrupt enable bit  
AD converter interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 7 Structure of interrupt-related registers  
15  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timers  
Timer 1 and Timer 2  
The 3802 group has four timers: timer X, timer Y, timer 1, and timer  
The count source of prescaler 12 is the oscillation frequency di-  
vided by 16. The output of prescaler 12 is counted by timer 1 and  
timer 2, and a timer underflow sets the interrupt request bit.  
2.  
All timers are count down. When the timer reaches “0016”, an un-  
derflow occurs at the next count pulse and the corresponding  
timer latch is reloaded into the timer and the count is continued.  
When a timer underflows, the interrupt request bit corresponding  
to that timer is set to “1”.  
Timer X andTimer Y  
Timer X and Timer Y can each be selected in one of four operating  
modes by setting the timer XY mode register.  
The division ratio of each timer or prescaler is given by 1/(n + 1),  
where n is the value in the corresponding timer or prescaler latch.  
Timer Mode  
The timer counts f(XIN)/16 in timer mode.  
Pulse Output Mode  
b7  
b0  
Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of  
the timer reach “0016”, the signal output from the CNTR0 (or  
CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge  
switch bit is “0”, output begins at “ H”.  
Timer XY mode register  
(TM : address 002316)  
Timer X operating mode bit  
b1b0  
0 0: Timer mode  
0 1: Pulse output mode  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
If it is “1”, output starts at “L”. When using a timer in this mode, set  
the corresponding port P54 ( or port P55) direction register to out-  
put mode.  
CNTR0 active edge switch bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
Event Counter Mode  
Operation in event counter mode is the same as in timer mode,  
except the timer counts signals input through the CNTR0 or  
CNTR1 pin.  
Timer X count stop bit  
0: Count start  
1: Count stop  
Timer Y operating mode bit  
b4b5  
0 0: Timer mode  
Pulse Width Measurement Mode  
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer  
counts at the oscillation frequency divided by 16 while the CNTR0  
(or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge  
switch bit is “1”, the count continues during the time that the  
CNTR0 (or CNTR1) pin is at “L”.  
0 1: Pulse output mode  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
CNTR1 active edge switch bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
In all of these modes, the count can be stopped by setting the  
timer X (timer Y) count stop bit to “1”. Every time a timer  
underflows, the corresponding interrupt request bit is set.  
Timer Y count stop bit  
0: Count start  
1: Count stop  
Fig. 8 Structure of timer XY register  
16  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
Oscillator  
f(XIN  
Divider  
1/16  
Prescaler X latch (8)  
Timer X latch (8)  
)
Timer mode  
Pulse output  
mode  
Pulse width  
measurement  
mode  
Prescaler X (8)  
Timer X (8)  
To timer X interrupt  
request bit  
CNTR0 active  
edge switch bit  
P54/CNTR0 pin  
Event  
counter  
mode  
Timer X count stop bit  
“0”  
To CNTR  
0 interrupt  
request bit  
“1”  
CNTR0 active  
edge switch  
bit  
Q
Q
“1”  
“0”  
Toggle flip- flop  
R
T
Port P5  
latch  
4
Port P5  
direction register  
4
Timer X latch write pulse  
Pulse output mode  
Pulse output  
mode  
Data bus  
Prescaler Y latch (8)  
Timer Y latch (8)  
Timer Y (8)  
Timer mode  
Pulse output  
mode  
Pulse width  
measurement  
mode  
Prescaler Y (8)  
To timer Y interrupt  
request bit  
CNTR1 active  
edge switch bit  
P55/CNTR1 pin  
Event  
counter  
mode  
Timer Y count stop bit  
“0”  
To CNTR  
1 interrupt  
request bit  
“1”  
CNTR1 active  
edge switch  
bit  
Q
Q
“1”  
“0”  
Toggle flip- flop  
R
T
Port P5  
latch  
5
Port P5  
direction register  
5
Timer Y latch write pulse  
Pulse output mode  
Pulse output  
mode  
Data bus  
Prescaler  
12 latch (8)  
Timer 1 latch (8)  
Timer 2 latch (8)  
To timer 2 interrupt  
request bit  
Prescaler 12 (8)  
Timer 1 (8)  
Timer 2 (8)  
To timer 1 interrupt  
request bit  
Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2  
17  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Clock synchronous serial I/O mode  
Serial I/O1  
Clock synchronous serial I/O1 mode can be selected by setting  
the mode selection bit of the serial I/O1 control register to “1”.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB (address 001816).  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for  
baud rate generation.  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer  
Receive buffer full flag (RBF)  
Receive shift register  
Receive interrupt request (RI)  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK1  
Serial I/O1 synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN)  
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
P47/SRDY1  
P45/TXD  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register  
Transmit buffer  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 10 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
D
D
0
0
D
D
1
1
D
D
2
2
D
D
3
3
D
D
4
4
D
D
5
5
D
D
6
6
D
D
7
7
Receive enable signal SRDY1  
Write pulse to receive/transmit  
buffer (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes  
1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the  
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1  
control register.  
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the TxD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 11 Operation of clock synchronous serial I/O1 function  
18  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Asynchronous serial I/O (UART) mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O control  
register to “0”.  
two buffers have the same address in memory. Since the shift reg-  
ister cannot be written to or read from directly, transmit data is  
written to the transmit buffer, and receive data is read from the re-  
ceive buffer.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer, but the  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer can hold a character while the next charac-  
ter is being received.  
Data bus  
Address 001816  
Serial I/O1 control register Address 001A16  
Receive buffer  
Character length selection bit  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
OE  
P44/RXD  
STdetector  
7 bits  
8 bits  
Receive shift register  
1/16  
UART control register  
PE FE SP detector  
Address 001B16  
Clock control circuit  
Serial I/O1 synchronous clock selection bit  
P46/SCLK1  
f(XIN)  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 12 Block diagram of UART serial I/O  
19  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1✽  
TBE=1  
Serial output TXD  
ST  
SP  
D0  
D1  
D0  
D1  
ST  
SP  
Generated at 2nd bit in 2-stop-bit mode  
1 start bit  
7 or 8 data bit  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input R  
X
D
D0  
D1  
D1  
ST  
D0  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).  
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt  
source selection bit (TIC) of the serial I/O control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes "1".  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 13 Operation of UART serial I/O function  
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of  
the Serial I/O Control Register) also clears all the status flags, in-  
cluding the error flags.  
Serial I/O1 control register (SIO1CON) 001A16  
The serial I/O control register consists of eight control bits for the  
serial I/O function.  
All bits of the serial I/O1 status register are initialized to “0” at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O control reg-  
ister has been set to “1”, the transmit shift completion flag (bit 2)  
and the transmit buffer empty flag (bit 0) become “1”.  
UART control register (UARTCON) 001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD pin.  
Transmit buffer/Receive buffer register (TB/  
RB) 001816  
The transmit buffer and the receive buffer are located at the same  
address. The transmit buffer is write-only and the receive buffer is  
read-only. If a character bit length is 7 bits, the MSB of data stored  
in the receive buffer is “0”.  
Serial I/O1 status register (SIO1STS) 001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
Baud rate generator (BRG) 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer, and  
the receive buffer full flag is set. A write to the serial I/O status reg-  
ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
20  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O1 status register  
Serial I/O1 control register  
(SIO1STS : address 0019 16  
)
(SIO1CON : address 001A 16  
BRG count source selection bit (CSS)  
0: f(XIN  
)
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
)
1: f(XIN)/4  
Serial I/O1 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinaly I/O pin  
pin operates as SRDY1 output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O1 mode selection bit (SIOM)  
0: Asynchronous serial I/O (UART)  
1: Clock synchronous serial I/O  
Not used (returns "1" when read)  
b7  
b0  
Serial I/O enable bit (SIOE)  
0: Serial I/O disabled  
UART control register  
(UARTCON : address 001B 16  
)
(pins P4  
1: Serial I/O enabled  
(pins P4 to P4 operate as serial I/O pins)  
4 to P47 operate as ordinary I/O pins)  
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P4  
5/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return "1" when read)  
Fig. 14 Structure of serial I/O control registers  
21  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O2  
b7  
b0  
Serial I/O2 control register  
(SIO2CON : address 001D16  
The serial I/O2 function can be used only for clock synchronous  
)
serial I/O.  
Internal synchronous clock selection bits  
b2 b1 b0  
For clock synchronous serial I/O the transmitter and the receiver  
must use the same clock. If the internal clock is used, transfer is  
started by a write signal to the serial I/O2 register.  
0 0 0: f(XIN)/8  
0 0 1: f(XIN)/16  
0 1 0: f(XIN)/32  
0 1 1: f(XIN)/64  
1 1 0: f(XIN)/128  
1 1 1: f(XIN)/256  
Serial I/O2 control register (SIO2CON) 001D16  
The serial I/O2 control register contains seven bits which control  
various serial I/O functions.  
Serial I/O2 port selection bit (SM2  
0: I/O port  
3)  
1: SOUT2,SCLK2 output pin  
S
RDY2 output enable bit (SM24)  
0: I/O port  
1: SRDY2 output pin  
Transfer direction selection bit (SM2  
0: LSB first  
1: MSB first  
5)  
Serial I/O2 synchronous clock selection bit (SM2  
0: External clock  
1: Internal clock  
6)  
P51/SOUT2 P-channel output disable bit  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Fig. 15 Structure of serial I/O2 control register  
Internal synchronous  
clock selection bits  
1/8  
1/16  
Data bus  
1/32  
X
IN  
1/64  
1/128  
1/256  
P53 latch  
Serial I/O2 synchronous  
clock selection bit  
"0"  
"1"  
P5  
3
/SRDY2  
S
RDY2  
Synchronization circuit  
"1"  
SRDY2 output enable bit  
"0"  
External clock  
P52 latch  
"0"  
P5  
P5  
2
1
/SCLK2  
/SOUT2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
"1"  
Serial I/O2 port selection bit  
P51  
latch  
"0"  
"1"  
Serial I/O2 port selection bit  
Serial I/O shift register 2 (8)  
P50/SIN2  
Fig. 16 Block diagram of serial I/O2 function  
22  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output SOUT2  
Serial I/O2 input SIN2  
D2  
D0  
D1  
D3  
D4  
D5  
D6  
D7  
Receive enable signal SRDY2  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial  
I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.  
Fig. 17 Timing of serial I/O2 function  
23  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PULSE WIDTH MODULATION (PWM)  
The 3802 group has a PWM function with an 8-bit resolution,  
based on a signal that is the clock input XIN or that clock input di-  
vided by 2.  
PWM Operation  
When bit 0 (PWM enable bit) of the PWM control register is set to  
“1”, operation starts by initializing the PWM output circuit, and  
pulses are output starting at an “H”.  
If the PWM register or PWM prescaler is updated during PWM  
output, the pulses will change in the cycle after the one in which  
the change was made.  
Data Setting  
The PWM output pin also functions as port P56. Set the PWM pe-  
riod by the PWM prescaler, and set the period during which the  
output pulse is an “H” by the PWM register.  
If the value in the PWM prescaler is n and the value in the PWM  
register is m (where n = 0 to 255 and m = 0 to 255) :  
PWM period = 255 (n+1)/f(XIN)  
51 m (n+1)  
µs  
255  
= 51 (n+1) µs (when XIN = 5 MHz)  
Output pulse “H” period = PWM period m/255  
= 0.2 (n+1) m µs  
PWM output  
(when XIN = 5 MHz)  
T = [51 (n+1)] µs  
m: Contents of PWM register  
n : Contents of PWM prescaler  
T : PWM cycle (when XIN = 5 MHz)  
Fig. 18 Timing of PWM cycle  
Data bus  
PWM  
prescaler pre-latch  
PWM  
register pre-latch  
Transfer control circuit  
PWM  
prescaler latch  
PWM  
register latch  
Count source  
selection bit  
Port P56  
“0”  
XIN  
PWM register  
PWM prescaler  
“1”  
1/2  
Port P56 latch  
PWM enable bit  
Fig. 19 Block diagram of PWM function  
24  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
PWM control register  
(PWMCON : address 002B16  
)
PWM function enable bit  
0: PWM disabled  
1: PWM enabled  
Count source selection bit  
0: f(XIN  
)
1: f(XIN)/2  
Not used (return “0” when read)  
Fig. 20 Structure of PWM control register  
B
T
C
T2  
=
A
B
C
PWM output  
T
T
T2  
PWM register  
write signal  
(Changes from “A” to “B” during “H” period)  
PWM prescaler  
write signal  
(Changes from “T” to “T2” during PWM period)  
When the contents of the PWM register or PWM prescaler have changed, the PWM  
output will change from the next period after the change.  
Fig. 21 PWM output timing when PWM register or PWM prescaler is changed  
25  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Comparator and Control circuit]  
A-D Converter  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage, then stores the result in the A-D  
conversion register. When an A-D conversion is complete, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to “1”.  
The functional blocks of the A-D converter are described below.  
[A-D conversion register]  
The A-D conversion register is a read-only register that stores the  
result of an A-D conversion. When reading this register during an  
A-D conversion, the previous conversion result is read.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to 500 kHz or more during an A-D conversion.  
[AD/DA control register]  
The AD/DA control register controls the A-D conversion process.  
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the  
completion of an A-D conversion. The value of this bit remains at  
“0” during an A-D conversion, and changes to “1” when an A-D  
conversion ends. Writing “0” to this bit starts the A-D conversion.  
Bits 6 and 7 are used to control the output of the D-A converter.  
b7  
b0  
AD/DA control register  
(ADCON : address 003416)  
Analog input pin selection bits  
b2 b1 b0  
0 0 0: P60/AN0  
0 0 1: P61/AN1  
0 1 0: P62/AN2  
0 1 1: P63/AN3  
1 0 0: P64/AN4  
1 0 1: P65/AN5  
1 1 0: P66/AN6  
1 1 1: P67/AN7  
[Comparison voltage generator]  
The comparison voltage generator divides the voltage between  
AVSS and VREF into 256, and outputs the divided voltages.  
[Channel selector]  
The channel selector selects one of the ports P60/AN0 to P67/AN7,  
AD conversion completion bit  
0: Conversion in progress  
1: Conversion completed  
and inputs the voltage to the comparator.  
Not used (return "0" When read)  
DA1 output enable bit  
0: DA1 output disabled  
1: DA1 output enabled  
DA2 output enable bit  
0: DA2 output disabled  
1: DA2 output enabled  
Fig.22 Structure of AD/DA control register  
Data bus  
b7  
3
b0  
AD/DA control register  
(Address 003416  
)
A-D control circuit  
A-D interrupt request  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
0
/AN  
0
1
2
3
4
5
6
7
1/AN  
2/AN  
3/AN  
4/AN  
5/AN  
6/AN  
7/AN  
Comparator  
A-D conversion register (Address 003516  
8
)
Resistor ladder  
V
REF AVSS  
Fig. 23 Block diagram of A-D converter  
26  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A Converter  
The 3802 group has two internal D-A converters (DA1 and DA2)  
with 8-bit resolutions.  
The D-A converter is performed by setting the value in the D-A  
conversion register. The result of D-A converter is output from the  
DA1 or DA2 pin by setting the DA output enable bit to “1”.  
When using the D-A converter, the corresponding port direction  
register bit (P30/DA1 or P31/DA2) should be set to “0” (input sta-  
tus).  
D-A1 conversion register (8)  
DA  
1
output enable bit  
P3 /DA  
The output analog voltage V is determined by the value n (base  
10) in the D-A conversion register as follows:  
R-2R resistor ladder  
0
1
V = VREF n/256 (n = 0 to 255)  
Where VREF is the reference voltage.  
D-A2 conversion register (8)  
DA  
At reset, the D-A conversion registers are cleared to “0016”, the DA  
output enable bits are cleared to “0”, and the P30/DA1 and P31/  
DA2 pins are set to input (high impedance).  
2
output enable bit  
P3 /DA  
R-2R resistor ladder  
1
2
The D-A output is not buffered, so connect an external buffer when  
driving a low-impedance load.  
Set VCC to 3.0 V or more when using the D-A converter.  
Fig. 24 Block diagram of D-A converter  
DA  
1
output enable bit  
R
"0"  
R
R
2R  
R
R
R
R
P3 /DA1  
0
"1"  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
MSB  
"0"  
D-A1 conversion  
register  
"1"  
AVSS  
VREF  
Fig. 25 Equivalent connection circuit of D-A converter  
27  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset Circuit  
Address  
Register contents  
0016  
To reset the microcomputer, the RESET pin should be held at an  
“L” level for 2 µs or more. Then the RESET pin is returned to an “H”  
level (the power source voltage should be between 4.0 V and 5.5  
V), reset is released. Internal operation begin until after 8 to 13 XIN  
clock cycles are completed. After the reset is completed, the pro-  
gram starts from the address contained in address FFFD16 (high-  
order byte) and address FFFC16 (low-order byte).  
(000116) · · ·  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
Port P3 direction register  
Port P4 direction register  
Port P5 direction register  
Port P6 direction register  
(000316) · · ·  
(000516) · · ·  
(000716) · · ·  
(000916) · · ·  
(000B16) · · ·  
(000D16) · · ·  
(001916) · · ·  
(001A16) · · ·  
(001B16) · · ·  
(001D16) · · ·  
(002016) · · ·  
(002116) · · ·  
(002216) · · ·  
(002316) · · ·  
(002416) · · ·  
(002516) · · ·  
(002616) · · ·  
(002716) · · ·  
(002B16) · · ·  
(003416) · · ·  
(003616) · · ·  
(003716) · · ·  
(003A16) · · ·  
0016  
0016  
0016  
0016  
0016  
0016  
Make sure that the reset input voltage is less than 0.6 V for VCC of  
3.0 V (Extended operating temperature version : the reset input  
voltage is less than 0.8 V for VCC of 4.0 V).  
(8) Serial I/O1 status register  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
(9)  
Serial I/O1 control register  
UART control register  
Serial I/O2 control register  
Prescaler 12  
0016  
(10)  
(11)  
(12)  
(13)  
0
0
4.0V  
0016  
FF16  
0116  
FF16  
0016  
FF16  
FF16  
FF16  
FF16  
0016  
Power source  
0V  
voltage  
Timer 1  
(14) Timer 2  
0.8V  
Reset input  
voltage  
(15)  
(16)  
(17)  
(18)  
(19)  
Timer XY mode register  
Prescaler X  
Timer X  
0V  
VCC  
Prescaler Y  
Timer Y  
1
5
4
RESET  
(20) PWM control register  
M51953AL  
3
(21)  
(22)  
AD/DA control register  
0
0
0
0
0
0
0
1
0
0
0
0
0
0.1 µ F  
D-A1 conversion register  
0016  
0016  
0016  
VSS  
(23) D-A2 conversion register  
3802 group  
(24)  
(25)  
(26)  
Interrupt edge selection register  
CPU mode register  
(003B16) · · ·  
(003C16) · · ·  
(003D16) · · ·  
(003E16) · · ·  
(003F16) · · ·  
0
0
Fig. 26 Example of reset circuit  
Interrupt request register 1  
0016  
0016  
0016  
0016  
(27) Interrupt request register 2  
Interrupt control register 1  
Interrupt control register 2  
(28)  
(29)  
(30) Processor status register  
Program counter  
(PS)  
(PCH)  
(PCL)  
1
(31)  
Contents of address FFFD16  
Contents of address FFFC16  
Note. : Undefined  
: The initial values of CM1 are determined by the level at the  
CNVSS pin.  
The contents of all other registers and RAM are undefined  
after a reset, so they must be initialized by software.  
Fig. 27 Internal status of microcomputer after reset  
28  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
IN  
φ
RESET  
RESETOUT  
(internal reset)  
SYNC  
ADH, ADL  
Address  
?
?
?
?
?
FFFC  
FFFD  
Reset address from the vector table  
ADH  
Data  
?
?
?
?
ADL  
?
Notes 1: f(XIN) and f(φ) are in the relationship: f(XIN)=2  
f(φ).  
X
IN: 8 to 13 clock cycles  
2: A question mark (?) indicates an undefined status that depends on the previous status.  
Fig. 28 Timing of reset  
29  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When the STP status is released, prescaler 12 and timer 1 will  
start counting and reset will not be released until timer 1  
underflows, so set the timer 1 interrupt enable bit to “0” before the  
STP instruction is executed.  
Clock Generating Circuit  
An oscillation circuit can be formed by connecting a resonator be-  
tween XIN and XOUT. To supply a clock signal externally, input it to  
the XIN pin and make the XOUT pin open.  
Oscillation control  
Stop Mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H”. Timer 1 is set to “0116” and prescaler 12 is set to “FF16”.  
Oscillator restarts when an external interrupt is received, but the  
internal clock φ remains at an “H” until timer 1 underflow.  
This allows time for the clock circuit oscillation to stabilize.  
If oscillator is restarted by a reset, no wait time is generated, so  
keep the RESET pin at an “L” level until oscillation has stabilized.  
XIN  
XOUT  
Wait Mode  
CIN  
COUT  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level, but the oscillator itself does not stop. The internal clock  
restarts if a reset occurs or when an interrupt is received.  
Since the oscillator does not stop, normal operation can be started  
immediately after the clock is restarted.  
Fig. 29 Ceramic resonator circuit  
To ensure that interrupts will be received to release the STP or  
WIT state, interrupt enable bits must be set to “1” before the STP  
or WIT instruction is executed.  
XIN  
XOUT  
Open  
Vcc  
Vss  
External oscillation  
circuit  
Fig. 30 External clock input circuit  
Interrupt request  
Interrupt disable  
Reset  
S
R
Q
S
R
Q
Q
S
R
flag (I)  
Reset  
WIT  
instruction  
STP instruction  
STP instruction  
φ output  
Internal clock φ  
ONW pin  
Single-chip mode  
ONW  
control  
1/2  
Rd  
1/8  
Prescaler 12  
Timer 1  
FF16  
0116  
Reset or STP instruction  
Rf  
XIN  
XOUT  
Fig. 31 Block diagram of clock generating circuit  
30  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Processor Modes  
Single-chip mode, memory expansion mode, and microprocessor  
mode can be selected by changing the contents of the processor  
mode bits CM0 and CM1 (bits 0 and 1 of address 003B16). In  
memory expansion mode and microprocessor mode, memory can  
be expanded externally through ports P0 to P3. In these modes,  
ports P0 to P3 lose their I/O port functions and become bus pins.  
000016  
000816  
000016  
000816  
SFR area  
SFR area  
004016  
004016  
Internal RAM  
reserved area  
Internal RAM  
reserved area  
044016  
044016  
Table 2. Functions of ports in memory expansion mode and  
microprocessor mode  
Port Name  
Port P0  
Function  
YYYY16  
Outputs low-order byte of address.  
Outputs high-order byte of address.  
Operates as I/O pins for data D7 to D0  
(including instruction codes).  
Internal ROM  
Port P1  
FFFF16  
FFFF16  
Memory expansion mode  
Microprocessor mode  
Port P2  
P30 and P31 function only as output pins  
(except that the port latch cannot be read).  
P32 is the ONW input pin.  
The shaded areas are external memory areas.  
YYYY16 is the start address of internal ROM.  
:
P33 is the RESETOUT output pin. (Note)  
P34 is the φ output pin.  
Fig. 32 Memory maps in various processor modes  
Port P3  
P35 is the SYNC output pin.  
P36 is the WR output pin, and P37 is the  
RD output pin.  
b7  
b0  
CPU mode register  
(CPUM : address 003B16  
Note: If CNVSS is connected to VSS, the microcomputer goes to  
single-chip mode after a reset, so this pin cannot be used  
as the RESETOUT output pin.  
)
Processor mode bits  
b1 b0  
0 0 : Single-chip mode  
Single-Chip Mode  
0 1 : Memory expansion mode  
1 0 : Microprocessor mode  
1 1 : Not available  
Select this mode by resetting the microcomputer with CNVSS con-  
nected to VSS.  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Memory Expansion Mode  
Select this mode by setting the processor mode bits to “01” in soft-  
ware with CNVSS connected to VSS. This mode enables external  
memory expansion while maintaining the validity of the internal  
ROM. Internal ROM will take precedence over external memory if  
addresses conflict.  
Not used (return “0” when read)  
Fig. 33 Structure of CPU mode register  
Microprocessor Mode  
Select this mode by resetting the microcomputer with CNVSS con-  
nected to VCC, or by setting the processor mode bits to “10” in  
software with CNVSS connected to VSS. In microprocessor mode,  
the internal ROM is no longer valid and external memory must be  
used.  
31  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bus control with memory expansion  
The 3802 group has a built-in ONW function to facilitate access to  
external memory and I/O devices in memory expansion mode or  
microprocessor mode.  
If an “L” level signal is input to the ONW pin when the CPU is in a  
read or write state, the corresponding read or write cycle is ex-  
tended by one cycle of φ. During this extended period, the RD or  
WR signal remains at “L”. This extension period is valid only for  
writing to and reading from addresses 000016 to 000716 and  
044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in  
memory expansion mode, and only read and write cycles are ex-  
tended.  
Dummy cycle  
Read cycle Dummy cycle  
Read cycle  
Write cycle  
Write cycle  
φ
AD15 to AD  
0
RD  
WR  
ONW  
:  
Period during which ONW input signal is received  
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW  
signal has no affect on operations.  
The bus cycles is not extended for an address in the area 000816 to 043F16, regardless of whether the ONW signal  
is received.  
Fig. 34 ONW function timing  
32  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY1 signal, set the transmit  
enable bit, the receive enable bit, and the SRDY1 output enable bit  
to “1”.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
Serial I/O1 continues to output the final bit from the TXD pin after  
transmission is completed. The SOUT2 pin from serial I/O2 goes to  
high impedance after transmission is completed.  
Interrupts  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt re-  
quest register, execute at least one instruction before executing a  
BBC or BBS instruction.  
A-D Converter  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500 kHz during an A-D conver-  
sion. (If the ONW pin has been set to “L”, the A-D conversion will  
take twice as long to match the longer bus cycle, and so f(XIN)  
must be at least 1 MHz.)  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
“1”, then execute an ADC or SBC instruction. Only the ADC and  
SBC instructions yield proper decimal results. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
D-A Converter  
The accuracy of the D-A converter becomes poor rapidly under  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
the VCC = 3.0 V or less condition.  
The carry flag can be used to indicate whether a carry or borrow  
has occurred. Initialize the carry flag before each calculation.  
Clear the carry flag before an ADC and set the flag before an  
SBC.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
The frequency of the internal clock φ is half of the XIN frequency.  
When the ONW function is used in modes other than single-chip  
mode, the frequency of the internal clock φ may be one fourth the  
XIN frequency.  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index X mode (T) and the decimal mode (D) flags do not af-  
fect the MUL and DIV instruction.  
Memory Expansion Mode  
The memory expansion mode is not available in the following mi-  
crocomputers.  
The execution of these instructions does not change the contents  
of the processor status register.  
• M38024M6-XXXSP  
Ports  
• M38024M6-XXXFP  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
Memory Expansion Mode and Microproces-  
sor Mode  
Execute the LDM or STA instruction for writing to port P3 (address  
000616) in memory expansion mode and microprocessor mode.  
Set areas which can be read out and write to port P3 (address  
000616) in a memory, using the read-modify-write instruction  
(SEB, CLB).  
• The data transfer instruction (LDA, etc.)  
• The operation instruction when the index X mode flag (T) is “1”  
• The addressing mode which uses the value of a direction regis-  
ter as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
33  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
1. Mask ROM Order Confirmation Form  
2. Mark Specification Form  
3. Data to be written to ROM, in EPROM form (three identical  
copies)  
Package  
64P4B, 64S1B  
64P6N  
Name of Programming Adapter  
PCA4738S-64A  
PCA4738F-64A  
64D0  
PCA4738L-64A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 35 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 35 Programming and testing of One Time PROM version  
34  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67,  
VREF  
VI  
–0.3 to VCC +0.3  
V
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
VI  
Input voltage RESET, XIN  
Input voltage CNVSS  
–0.3 to VCC +0.3  
–0.3 to 13  
V
V
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
Pd  
Power dissipation  
Ta = 25 °C  
1000 (Note)  
–20 to 85  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–40 to 125  
°C  
Note: 300 mW in case of the flat package.  
RECOMMENDED OPERATING CONDITIONS (Vcc = 3.0 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
3.0  
Typ.  
5.0  
5.0  
0
Max.  
5.5  
Power source voltage (f(XIN) < 2 MHz) (Note 1)  
Power source voltage (f(XIN) = 8 MHz) (Note 1)  
Power source voltage  
VCC  
V
V
V
4.0  
5.5  
VSS  
Analog reference voltage (when A-D converter is used)  
Analog reference voltage (when D-A converter is used)  
Analog power source voltage  
2.0  
3.0  
VCC  
VCC  
VREF  
AVSS  
VIA  
0
V
V
Analog input voltage  
“H” input voltage  
AN0–AN7  
AVSS  
0.8 VCC  
0.8 VCC  
0
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67  
VIH  
VIH  
VIL  
V
V
“H” input voltage  
“L” input voltage  
RESET, XIN, CNVSS  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67  
0.2 VCC  
V
VIL  
“L” input voltage  
RESET, CNVSS  
XIN  
0
0
0.2 VCC  
0.16 VCC  
–80  
–80  
80  
V
VIL  
“L” input voltage  
V
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P40–P47,P50–P57, P60–P67 (Note 2)  
P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 2)  
P40–P47,P50–P57, P60–P67 (Note 2)  
–P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 2)  
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 2)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 2)  
“L” total average output current P40–P47,P50–P57, P60–P67 (Note 2)  
0–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
(Note 2)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
0
7
80  
“H” total average output current P0  
0
7
0
7
0
7
0
7
–40  
–40  
40  
0
7
0
7
0
7
0
7
40  
“H” peak output current  
“L” peak output current  
“H” average output current  
“L” average output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 3)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
–10  
10  
–5  
5
mA  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 3)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 4)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 4)  
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)  
8
f(XIN)  
MHz  
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)  
X +16  
6 VCC–16  
Note 1: The minimum power source voltage is  
[V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz.  
6
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
3: The peak output current is the peak current flowing in each port.  
4: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.  
35  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
Max.  
“H” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7, P1  
0
0
–P1  
–P4  
7
7
, P2  
0
–P2  
–P5  
7
7
,
,
IOH = –10 mA  
VCC = 4.0 to 5.5 V  
V
CC–2.0  
P3  
P6  
7
, P4  
(Note 1)  
, P5  
0
VOH  
7
IOH = –1.0 mA  
VCC = 3.0 to 5.5 V  
V
CC–1.0  
“L” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7
, P1  
0
0
–P1  
–P4  
7
7
, P2  
0
–P2  
7
,
IOL = 10 mA  
VCC = 4.0 to 5.5 V  
2.0  
1.0  
P3  
P6  
7, P4  
,P50  
–P5  
7
,
VOL  
V
7
IOL = 1.0 mA  
VCC = 3.0 to 5.5 V  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis  
CNTR  
D, SCLK1, SIN2, SCLK2  
RESET  
0
, CNTR  
1
, INT  
0
–INT  
4
0.4  
0.5  
0.5  
V
V
V
Hysteresis  
RX  
Hysteresis  
“H” input current  
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7
, P1  
0
0
–P1  
–P4  
7
7
, P2  
0
–P2  
–P5  
7
7
,
,
IIH  
7, P4  
, P5  
0
5.0  
5.0  
µA  
VI = VCC  
7
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET, CNVSS  
µA  
µA  
VI = VCC  
VI = VCC  
X
IN  
4
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7
, P1  
0
0
–P1  
–P4  
7
7
, P2  
0
–P2  
–P5  
7
7
,
,
IIL  
7, P4  
, P5  
0
–5.0  
–5.0  
µA  
VI = VSS  
7, RESET, CNVSS  
IIL  
“L” input current  
“L” input current  
RAM hold voltage  
RESET, CNVSS  
µA  
µA  
V
VI = VSS  
IIL  
X
IN  
–4  
VI = VSS  
VRAM  
2.0  
5.5  
13  
8
When clock stopped  
f(XIN) = 8 MHz, VCC = 5 V  
f(XIN) = 5 MHz, VCC = 5 V  
6.4  
4
0.8  
2.0  
f(XIN) = 2 MHz, VCC = 3 V  
When WIT instruction is executed with  
1.5  
1
mA  
f(Xin) = 8MHz,VCC=5V  
When WIT instruction is executed with  
ICC  
Power source current  
f(Xin) = 5MHz,VCC=5V  
When WIT instruction is executed with  
0.2  
0.1  
f(Xin) = 2MHz,VCC=3V  
When STP instruction  
Ta = 25 °C  
1
is executed with clock (Note 2)  
µA  
stopped, output  
transistors isolated.  
(Note 2)  
Ta = 85 °C  
10  
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.  
2: With output transistors isolated andA-D converter having completed conversion, and not including current flowing through VREF pin.  
A–D CONVERTER CHARACTERISTICS  
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, T  
a
= –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Resolution  
Bits  
LSB  
tC(φ)  
kΩ  
8
Absolute accuracy (excluding quantization error)  
Conversion time  
±1  
±2.5  
tCONV  
50  
RLADDER Ladder resistor  
35  
150  
0.5  
VREF = 5.0 V  
50  
IVREF  
II(AD)  
Reference power source input current (Note)  
A-D port input current  
µA  
200  
5.0  
µA  
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.  
36  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER CHARACTERISTICS  
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Bits  
%
Min.  
Typ.  
Max.  
8
Resolution  
V
CC = 4.0 to 5.5 V  
CC = 3.0 to 4.0 V  
1.0  
2.5  
3
Absolute accuracy  
V
tsu  
Setting time  
µs  
kΩ  
mA  
RO  
Output resistor  
1
2.5  
4
IVREF  
Reference power source input current (Note)  
3.2  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-  
rents flowing through the A-D resistance ladder.  
37  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
125  
50  
twH(XIN)  
twL(XIN)  
50  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
twL(CNTR)  
twL(INT)  
200  
80  
80  
80  
80  
tc(SCLK1)  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
800  
1000  
370  
400  
370  
400  
220  
200  
100  
200  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
XD–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.  
TIMING REQUIREMENTS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
2
µs  
500/  
(3 VCC–8)  
External clock input cycle time  
ns  
200/  
(3 VCC–8)  
twH(XIN)  
twL(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
ns  
ns  
200/  
(3 VCC–8)  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
500  
230  
230  
230  
230  
2000  
2000  
950  
950  
950  
950  
400  
400  
200  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twL(CNTR)  
twL(INT)  
tc(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.  
38  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock output “H” pulse width  
Serial I/O2 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O2 output delay time (Note 2)  
Serial I/O1 output valid time (Note 1)  
Serial I/O2 output valid time (Note 2)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 3)  
CMOS output falling time (Note 3)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
c(SCLK1)/2–30  
c(SCLK2)/2–160  
c(SCLK1)/2–30  
c(SCLK2)/2–160  
t
t
t
t
d(SCLK1–T  
X
D)  
d(SCLK2–SOUT2  
D)  
v(SCLK2–SOUT2  
140  
200  
)
v(SCLK1–T  
X
Fig. 36  
–30  
0
)
tr(SCLK1)  
tf(SCLK1)  
tr(SCLK2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
30  
30  
30  
40  
30  
30  
10  
10  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.  
3: XOUT pin is excluded.  
SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock output “H” pulse width  
Serial I/O2 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O2 output delay time (Note 2)  
Serial I/O1 output valid time (Note 1)  
Serial I/O2 output valid time (Note 2)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 3)  
CMOS output falling time (Note 3)  
t
t
t
t
c(SCLK1)/2–50  
c(SCLK2)/2–240  
c(SCLK1)/2–50  
c(SCLK2)/2–240  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
d(SCLK1–T  
X
D)  
d(SCLK2–SOUT2  
D)  
v(SCLK2–SOUT2  
350  
400  
)
v(SCLK1–T  
X
Fig. 36  
–30  
0
)
tr(SCLK1)  
tf(SCLK1)  
tr(SCLK2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
50  
50  
50  
50  
50  
50  
20  
20  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.  
3: XOUT pin is excluded.  
39  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
–20  
–20  
60  
Typ.  
Max.  
tsu(ONW–φ)  
th(φ–ONW)  
tsu(DB–φ)  
th(φ–DB)  
Before φ ONW input set up time  
After φ ONW input hold time  
Before φ data bus set up time  
After φ data bus hold time  
ns  
ns  
ns  
ns  
0
tsu(ONW–RD) Before RD ONW input set up time  
tsu(ONW–WR) Before WR ONW input set up time  
–20  
–20  
ns  
ns  
th(RD–ONW) After RD ONW input hold time  
th(WR–ONW) After WR ONW input hold time  
tsu(DB–RD)  
th(RD–DB)  
Before RD data bus set up time  
After RD data bus hold time  
65  
0
ns  
ns  
SWITCHING CHARATERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
tc(XIN)–10  
tc(XIN)–10  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
tv(φ–SYNC)  
td(φ–WR)  
tv(φ–WR)  
td(φ–DB)  
tv(φ–DB)  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
20  
10  
25  
10  
20  
10  
10  
5
40  
45  
6
6
SYNC valid time  
RD and WR delay time  
RD and WR valid time  
20  
10  
70  
3
After φ data bus delay time  
After φ data bus valid time  
RD pulse width, WR pulse width  
20  
15  
Fig. 36  
tc(XIN)–10  
twL(RD)  
twL(WR)  
RD pulse width, WR pulse width  
(When one-wait is valid)  
3tc(XIN)–10  
ns  
ns  
ns  
ns  
ns  
td(AH–RD)  
td(AH–WR)  
After AD15–AD8 RD delay time  
After AD15–AD8 WR delay time  
tc(XIN)–35  
t
t
c(XIN  
c(XIN  
)
)
–15  
–20  
td(AL–RD)  
td(AL–WR)  
After AD7–AD0 RD delay time  
After AD7–AD0 WR delay time  
tc(XIN)–40  
tv(RD–AH)  
tv(WR–AH)  
After RD AD15–AD8 valid time  
After WR AD15–AD8 valid time  
0
0
5
tv(RD–AL)  
tv(WR–AL)  
After RD AD7–AD0 valid time  
After WR AD7–AD0 valid time  
5
td(WR–DB)  
tv(WR–DB)  
After WR data bus delay time  
After WR data bus valid time  
15  
65  
ns  
ns  
ns  
ns  
10  
0
t
d
(RESET–RESETOUT  
)
RESETOUT output delay time (Note 1)  
200  
200  
tv(φ–RESET) RESETOUT output valid time (Note 1)  
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
the RESET input goes “H”.  
40  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Parameter  
Unit  
Symbol  
Max.  
Min.  
–20  
–20  
180  
0
tsu(ONW–φ)  
th(φ–ONW)  
tsu(DB–φ)  
th(φ–DB)  
Before φ ONW input set up time  
After φ ONW input hold time  
Before φ data bus set up time  
After φ data bus hold time  
ns  
ns  
ns  
ns  
tsu(ONW–RD)  
tsu(ONW–WR)  
Before RD ONW input set up time  
Before WR ONW input set up time  
ns  
ns  
–20  
–20  
th(RD–ONW)  
th(WR–ONW)  
After RD ONW input hold time  
After WR ONW input hold time  
ns  
ns  
tsu(DB–RD)  
th(RD–DB)  
Before RD data bus set up time  
After RD data bus hold time  
185  
0
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Typ.  
Max.  
Min.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
tc(XIN)–20  
tc(XIN)–20  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
tv(φ–SYNC)  
td(φ–WR)  
tv(φ–WR)  
td(φ–DB)  
tv(φ–DB)  
150  
150  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
10  
10  
15  
15  
40  
20  
15  
7
SYNC valid time  
25  
15  
RD and WR delay time  
RD and WR valid time  
3
200  
After φ data bus delay time  
After φ data bus valid time  
RD pulse width, WR pulse width  
15  
Fig. 36  
tc(XIN)–20  
twL(RD)  
twL(WR)  
RD pulse width, WR pulse width  
(when one-wait is valid)  
3tc(XIN)–20  
ns  
ns  
ns  
ns  
ns  
td(AH–RD)  
td(AH–WR)  
After AD15–AD8 RD delay time  
After AD15–AD8 WR delay time  
tc(XIN)–145  
td(AL–RD)  
td(AL–WR)  
After AD7–AD0 RD delay time  
After AD7–AD0 WR delay time  
tc(XIN)–145  
tv(RD–AH)  
tv(WR–AH)  
After RD AD15–AD8 valid time  
After WR AD15–AD8 valid time  
5
5
10  
10  
tv(RD–AL)  
tv(WR–AL)  
After RD AD7–AD0 valid time  
After WR AD7–AD0 valid time  
195  
td(WR–DB)  
tv(WR–DB)  
After WR data bus delay time  
ns  
ns  
ns  
ns  
After WR data bus valid time  
10  
0
300  
300  
td(RESET–RESETOUT)  
RESETOUT output delay time (Note 1)  
RESETOUT output valid time (Note 1)  
tv(φ–RESET)  
Note1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
the RESET input goes “H”.  
41  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version)  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67,  
VREF  
VI  
–0.3 to VCC +0.3  
V
All voltage are based on VSS.  
Output transistors are cut off.  
VI  
VI  
Input voltage RESET, XIN  
Input voltage CNVSS  
–0.3 to VCC +0.3  
–0.3 to 13  
V
V
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
Pd  
Power dissipation  
Ta = 25 °C  
1000 (Note)  
–40 to 85  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–65 to 150  
°C  
RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Power source voltage (f(XIN) 2 MHz)  
Min.  
4.0  
Typ.  
5.0  
0
Max.  
5.5  
VCC  
V
V
VSS  
Power source voltage  
Analog reference voltage (when A-D converter is used)  
Analog reference voltage (when D-A converter is used)  
Analog power source voltage  
2.0  
4.0  
VCC  
VCC  
V
VREF  
AVSS  
VIA  
0
V
V
Analog input voltage  
“H” input voltage  
AN0–AN7  
AVSS  
0.8 VCC  
0.8 VCC  
0
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67  
VIH  
VIH  
VIL  
V
V
V
“H” input voltage  
“L” input voltage  
RESET, XIN, CNVSS  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67  
0.2 VCC  
VIL  
“L” input voltage  
RESET, CNVSS  
XIN  
0
0
0.2 VCC  
0.16 VCC  
–80  
–80  
80  
V
VIL  
“L” input voltage  
V
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P40–P47,P50–P57, P60–P67 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 1)  
P40–P47,P50–P57, P60–P67 (Note 1)  
–P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 1)  
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 (Note 1)  
“L” total average output current P40–P47,P50–P57, P60–P67 (Note 1)  
0–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
0
7
80  
“H” total average output current P0  
0
7
0
7
0
7
0
7
–40  
–40  
40  
0
7
0
7
0
7
0
7
40  
“H” peak output current  
“L” peak output current  
“H” average output current  
“L” average output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 2)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
–10  
10  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 2)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 3)  
–5  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67 (Note 3)  
IOL(avg)  
f(XIN)  
5
8
mA  
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)  
MHz  
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.  
42  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V,  
VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
Typ.  
Max.  
“H” output voltage P0  
P3  
P6  
“L” output voltage P0  
P3  
P6  
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
(Note 1)  
0
–P1  
–P4  
7
7
, P2  
, P5  
0
–P2  
7
7
,
,
VOH  
0
0
0–P5  
IOH = –10 mA  
VCC–2.0  
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
0
–P1  
–P4  
7
7
, P2  
0–P2  
7
,
VOL  
0
0
,P50  
–P5  
7
,
IOL = 10 mA  
2.0  
V
0
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis  
CNTR  
D, SCLK1, SIN2, SCLK2  
RESET  
0
, CNTR  
1
, INT  
0
–INT  
4
0.4  
0.5  
0.5  
V
V
V
Hysteresis  
RX  
Hysteresis  
“H” input current  
P0  
P3  
P6  
0
–P0  
–P3  
–P6  
7
7
7
, P1  
0
–P1  
–P4  
7
7
, P2  
, P5  
0
–P2  
7
7
,
,
IIH  
0
, P4  
0
0–P5  
VI = VCC  
5.0  
5.0  
µA  
0
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET, CNVSS  
VI = VCC  
VI = VCC  
µA  
µA  
XIN  
4
P0  
P3  
P6  
0
–P0  
–P3  
–P6  
7
7
7
, P1  
0
–P1  
–P4  
7
7
, P2  
, P5  
0
–P2  
7
7
,
,
IIL  
0
, P4  
0
0–P5  
VI = VSS  
–5.0  
µA  
0
, RESET, CNVSS  
IIL  
“L” input current  
XIN  
VI = VSS  
–4  
µA  
VRAM  
RAM hold voltage  
When clock stopped  
f(XIN) = 8 MHz  
f(XIN) = 5 MHz  
2.0  
5.5  
13  
8
V
6.4  
4
When WIT instruction is executed  
with f(XIN) = 8 MHz  
mA  
1.5  
1
When WIT instruction is executed  
with f(XIN) = 5 MHz  
ICC  
Power source current  
When STP instruction  
is executed with clock (Note 2)  
Ta = 25 °C  
0.1  
1
µA  
stopped, output  
transistors isolated.  
(Note 2)  
Ta = 85 °C  
10  
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.  
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.  
A-D CONVERTER CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, T  
a
= –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
LSB  
tC(φ)  
kΩ  
Absolute accuracy (excluding quantization error)  
Conversion time  
±1  
±2.5  
50  
tCONV  
RLADDER  
IVREF  
Ladder resistor  
35  
150  
0.5  
Reference power source input current (Note)  
A-D port input current  
VREF = 5.0 V  
50  
200  
5.0  
µA  
II(AD)  
µA  
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.  
43  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 4.0 V to VCC, T  
a
= –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
%
Absolute accuracy  
Setting time  
1.0  
3
tsu  
µs  
RO  
Output resistor  
1
2.5  
4
kΩ  
mA  
IVREF  
Reference power source input current (Note)  
3.2  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-  
rents flowing through the A-D resistance ladder.  
44  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
125  
50  
twH(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
twL(XIN)  
50  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
twL(CNTR)  
twL(INT)  
200  
80  
80  
80  
80  
tc(SCLK1)  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
800  
1000  
370  
400  
370  
400  
220  
200  
100  
200  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
XD–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.  
SWITCHING CHARACTERISTICS 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock output “H” pulse width  
Serial I/O2 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O2 output delay time (Note 2)  
Serial I/O1 output valid time (Note 1)  
Serial I/O2 output valid time (Note 2)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output rising time  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 3)  
CMOS output falling time (Note 3)  
t
t
t
t
c(SCLK1)/2–30  
c(SCLK2)/2–160  
c(SCLK1)/2–30  
c(SCLK2)/2–160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
d(SCLK1–T  
X
D)  
d(SCLK2–SOUT2  
D)  
v(SCLK2–SOUT2  
140  
200  
)
v(SCLK1–T  
X
–30  
0
Fig. 36  
)
tr(SCLK1)  
tf(SCLK1)  
tr(SCLK2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
30  
30  
30  
40  
30  
30  
10  
10  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: When the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.  
3: XOUT pin excluded.  
45  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
–20  
–20  
60  
Typ.  
Max.  
tsu(ONW–φ)  
th(φ–ONW)  
tsu(DB–φ)  
Before φ ONW input set up time  
After φ ONW input hold time  
Before φ data bus set up time  
After φ data bus hold time  
ns  
ns  
ns  
ns  
th(φ–DB)  
0
tsu(ONW–RD)  
Before RD ONW input set up time  
–20  
–20  
ns  
ns  
tsu(ONW–WR) Before WR ONW input set up time  
th(RD–ONW) After RD ONW input hold time  
th(WR–ONW) After WR ONW input hold time  
tsu(DB–RD)  
th(RD–DB)  
Before RD data bus set up time  
After RD data bus hold time  
65  
0
ns  
ns  
SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
twH(φ)  
φ clock cycle time  
φ clock “H” pulse width  
φ clock “L” pulse width  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(XIN)–10  
tc(XIN)–10  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
tv(φ–SYNC)  
td(φ–WR)  
tv(φ–WR)  
td(φ–DB)  
tv(φ–DB)  
twL(RD)  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
20  
10  
25  
10  
20  
10  
10  
5
40  
45  
6
6
SYNC valid time  
RD and WR delay time  
RD and WR valid time  
After φ data bus delay time  
After φ data bus valid time  
RD pulse width, WR pulse width  
20  
10  
70  
3
20  
15  
tc(XIN)–10  
Fig. 36  
RD pulse width, WR pulse width  
(when one wait is valid)  
ns  
3tc(XIN)–10  
tc(XIN)–35  
tc(XIN)–40  
twL(WR)  
After AD15–AD8 RD delay time  
After AD15–AD8 WR delay time  
td(AH–RD)  
td(AH–WR)  
t
t
c(XIN  
)
–15  
ns  
ns  
ns  
ns  
td(AL–RD)  
td(AL–WR)  
After AD7–AD0 RD delay time  
After AD7–AD0 WR delay time  
c(XIN  
)
–20  
tv(RD–AH)  
tv(WR–AH)  
After RD AD15–AD8 valid time  
After WR AD15–AD8 valid time  
0
0
5
tv(RD–AL)  
tv(WR–AL)  
After RD AD7–AD0 valid time  
After WR AD7–AD0 valid time  
5
td(WR–DB)  
tv(WR–DB)  
ns  
ns  
ns  
ns  
After WR data bus delay time  
After WR data bus valid time  
RESETOUT output delay time  
RESETOUT output valid time (Note 1)  
65  
15  
10  
0
td(RESET–RESETOUT)  
200  
200  
tv(φ–RESET)  
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
the RESET input goes “H”.  
Measurement output pin  
100pF  
CMOS output  
Fig. 36  
Circuit for measuring output switching  
characteristics  
46  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
(1) Timing Diagram  
tC(CNTR)  
tWL(CNTR)  
tWH(CNTR)  
0.8 VCC  
CNTR  
0
, CNTR  
1
0.2 VCC  
t
WL(INT)  
tWH(INT)  
0.8 VCC  
INT0–INT  
RESET  
4
0.2 VCC  
tW(RESET)  
0.8 VCC  
0.2 VCC  
tC(XIN)  
tWL(XIN)  
t
WH(XIN)  
0.8 VCC  
XIN  
0.2 VCC  
tC(SCLK1),  
tC(SCLK2)  
tWL(SCLK1),  
tWL(SCLK2  
)
tWH(SCLK1), tWH(SCLK2)  
tr  
tf  
S
S
CLK1  
CLK2  
0.8 VCC  
0.2 VCC  
t
su(R  
X
D
-
S
CLK1),  
CLK2  
th(SCLK1-  
t
R
X
D),  
tsu(SIN2-  
S
)
h
(SCLK2-  
SIN2  
)
R
S
X
D
0.8 VCC  
0.2 VCC  
IN2  
t
t
v(SCLK1-T  
v(SCLK2-  
X
D),  
td(SCLK1-T  
X
D),td(SCLK2-SOUT2)  
S
OUT2  
)
TXD  
SOUT2  
47  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a)  
tC(φ)  
tWL(φ)  
tWH(φ)  
φ
0.5 VCC  
tv(φ-AH)  
td(φ-AH)  
0.5 VCC  
0.5 VCC  
AD15–AD8  
AD7–AD0  
td(φ-AL)  
tv(φ-AL)  
tv(φ-SYNC)  
td(φ-SYNC)  
0.5 VCC  
SYNC  
td(φ-WR)  
0.5 VCC  
tv(φ-WR)  
RD,WR  
th(φ-ONW)  
tSU(ONW-φ)  
0.8 VCC  
0.2 VCC  
ONW  
th(φ-DB)  
tv(φ-DB)  
tSU(DB-φ)  
0.8 VCC  
0.2 VCC  
DB0–DB7  
(At CPU reading)  
td(φ-DB)  
DB0–DB7  
0.5 VCC  
(At CPU writing)  
(3)Timing Diagram in Microprocessor Mode  
0.8 VCC  
RESET  
0.2 VCC  
φ
0.5 VCC  
td(RESET- RESETOUT)  
tv(φ- RESETOUT)  
0.5 VCC  
RESETOUT  
48  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b)  
t
WL(RD)  
tWL(WR)  
RD,WR  
0.5 VCC  
t
d(AH-RD)  
d(AH-WR)  
t
t
v(RD-AH)  
v(WR-AH)  
t
0.5 VCC  
AD15–AD8  
AD7–AD0  
t
t
d(AL-RD)  
d(AL-WR)  
t
t
v(RD-AL)  
v(WR-AL)  
0.5 VCC  
t
t
h(RD-ONW)  
h(WR-ONW)  
t
t
su(ONW-RD)  
su(ONW-WR)  
0.8 VCC  
0.2 VCC  
ONW  
(At CPU reading)  
RD  
tWL(RD)  
0.5 VCC  
tSU(DB-RD)  
th(RD-DB)  
0.8 VCC  
0.2 VCC  
DB0–DB7  
(At CPU writing)  
WR  
tWL(WR)  
0.5 VCC  
tv(WR-DB)  
td(WR-DB)  
0.5 VCC  
DB0–DB7  
49  
MITSUBISHI MICROCOMPUTERS  
3802 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1997 MITSUBISHI ELECTRIC CORP.  
New publication, effective Dec. 1997.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3802 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
971226  
(1/1)  

相关型号:

M38022M2-XXXFS

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38022M2-XXXSP

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38022M2-XXXSS

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38022M2D384FP

8-BIT SINGLE-CHIP MICROCOMPUTER
MITSUBISHI

M38022M2D384FS

8-BIT SINGLE-CHIP MICROCOMPUTER
MITSUBISHI

M38022M2D384SP

8-BIT SINGLE-CHIP MICROCOMPUTER
MITSUBISHI

M38022M2D384SS

8-BIT SINGLE-CHIP MICROCOMPUTER
MITSUBISHI

M38022M2DXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38022M2DXXXFP

Microcontroller, 8-Bit, MROM, MELPS740 CPU, 4MHz, CMOS, PQFP64, 14 X 14 MM, 0.80 MM PITCH, PLASTIC, QFP-64
MITSUBISHI

M38022M2DXXXFS

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38022M2DXXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38022M2DXXXSP

Microcontroller, 8-Bit, MROM, MELPS740 CPU, 4MHz, CMOS, PDIP64, 0.750 INCH, 1.78 MM PITCH, SHRINK, PLASTIC, DIP-64
MITSUBISHI