M38060E3-FP [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38060E3-FP
型号: M38060E3-FP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总71页 (文件大小:1462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no ces whatsoever have been  
made to the contents of the document, and these changes do not cony alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business opof high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O ...................... 8-bit 1 (UART or Clock-synchronized)  
A-D converter .................................................. 8-bit 8 channels  
LCD drive control circuit  
DESCRIPTION  
The 3825 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
Bias ................................................................................... 1/2, 1/3  
Duty ............................................................................ 1/2, 1/3, 1/4  
Common output .......................................................................... 4  
Segment output......................................................................... 40  
2 Clock generating circuits  
The 3825 group has the LCD drive control circuit, an 8-channel A-  
D converter, and a Serial I/O as additional functions.  
The various microcomputers in the 3825 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Power source voltage  
For details on availability of microcomputers in the 3825 Group,  
refer the section on group expansion.  
In high-speed mode ................................................... 4.0 to 5.5 V  
In middle-speed mode ............................................... 2.5 to 5.5 V  
(M version: 2.2 to 5.5 V)  
FEATURES  
Basic machine-language instructions ....................................... 71  
(Extended operating temperature version: 3.0 to 5.5 V)  
In low-speed mode..................................................... 2.5 to 5.5 V  
(M version: 2.2 to 5.5 V)  
The minimum instruction execution time ............................ 0.5 µs  
(at 8 MHz oscillation frequency)  
Memory size  
(Extended omperature version: 3.0 to 5.5 V)  
Power dissipation  
ROM .................................................................. 4 K to 60 K bytes  
RAM ................................................................. 192 to 2048 bytes  
In high-speed m............................................... 32 mW  
(at 8 MHrequency, at 5 V power source voltage)  
In low-sp..........................................................45 µW  
(at lation frequency, at 3 V power source voltage)  
Operature range ................................... – 20 to 85°C  
tended operating temperature version: –40 to 85°C)  
Programmable input/output ports ............................................. 43  
Software pull-up/pull-down resistors (Ports P0–P8)  
Interrupts .................................................. 17 sources, 16 vectors  
(includes key input interrupt)  
Timers ........................................................... 8-bit 3, 16-bit 2  
ICATIONS  
era, household appliances, consumer electronics, etc.  
PIN CONFIGURATION (TOP VIEW)  
873 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
8
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
6
7
0
1
2
3
4
5
6
7
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
9
8
7
6
5
4
3
2
1
0
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
M38258MCMXXXFP  
V
X
X
SS  
V
CC  
REF  
AVSS  
OUT  
IN  
V
P8  
P8  
RESET  
P7  
P7  
P7  
P7  
0
/XCOUT  
/XCIN  
COM  
COM  
COM  
COM  
3
2
1
0
1
0
1
2
3
VL3  
VL2  
C
2
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Package type : 100P6S-A (100-pin plastic-molded QFP)  
Fig. 1 Pin configuration of M38258MCMXXXFP  
(The pin configuration of 100D0 is same as this.)  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
5  
34  
33  
32  
31  
30  
29  
28  
27  
26  
SEG12  
SEG11  
SEG10  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
P1  
P1  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
4
5
6
7
0
1
2
3
4
5
6
7
/SEG38  
/SEG39  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
9
8
7
6
5
4
3
2
1
0
M38258MCMXXXGP  
M38258MCMXXXHP  
V
X
X
SS  
OUT  
IN  
V
CC  
REF  
AVSS  
V
P8  
P8  
RESET  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
0
/XCOUT  
/XCIN  
1
COM  
COM  
COM  
COM  
3
2
1
0
0
1
2
3
4
5
6
VL3  
VL2  
C
C
2
1
VL1  
1
2 3 4 5 6 7 8 9 16 17 18 19 20 21 22 23 24 25  
Package type : .................. 100P6Q-A (100-pin plastic-molded LQFP)  
Package type ...................... 100PFB-A (100-pin plastic-molded TQFP)  
Fig. 2 Pin configuration of M38258MCMXXXGP, M38258MCMXXXHP  
2
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
p u e k a w n o - y e K  
n o i t c R  
1 T N I , 0 T N I  
3 T N I , 2 T N I  
T D A  
φ
Fig. 3 Functional block diagram  
3
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1. Pin description (1)  
Function  
Pin  
Name  
Function except a port function  
Apply voltage of power source to VCC, and 0 V to VSS. (For the limits of VCC, refer to Recom-  
mended operating conditions.)  
VCC, VSS  
VREF  
Power source  
Analog reference  
voltage  
Reference voltage input pin for A-D converter.  
GND input pin for A-D converter.  
Connect to VSS.  
AVSS  
Analog power  
source  
Reset input pin for active L”  
RESET  
XIN  
Reset input  
Clock input  
Input and output pins for the main clock generating circuit.  
Feedback resistor is built in between XIN pin and XOUT pin.  
Connect a ceramic resonator or a quartz-crystal oscillator betn the XIN and XOUT pins to set  
the oscillation frequency.  
If an external clock is used, connect the clock source to nd leave the XOUT pin open.  
This clock is used as the oscillating source of system
XOUT  
Clock output  
Input 0 VL1 VL2 VL3 VCC voltage  
Input 0 VL3 voltage to LCD  
VL1 VL3  
LCD power source  
External capacitor pins for a voltage muls) of LCD contorl.  
C1, C2  
Charge-pump  
capacitor pin  
LCD common output pins  
COM2 and COM3 are not used ratio.  
COM3 is not used at 1/3 dut
COM  
0
COM  
3
Common output  
LCD segment output p
SEG0 SEG17 Segment output  
8-bit output port  
CMOS 3-state ure  
Pull-down coled.  
Port outpunabled.  
P00/SEG26  
P07/SEG33  
Output port P0  
LCD segment pins  
6-bit
P10/SEG34  
P15/SEG39  
Output port P1  
I/O port P1  
CMoutput structure  
ntrol is enabled.  
t control is enabled.  
/O port  
OS compatible input level  
P16, P17  
MOS 3-state output structure  
I/O direction register allows each pin to be individually programmed as either input or output.  
Pull-up control is enabled.  
8-bit Input port  
P20 P27  
I/O port P2  
Key input (key-on wake up) interrupt  
CMOS compatible input level  
input pins  
CMOS 3-state output structure  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
8-bit output port  
CMOS 3-state output structure  
Pull-down control is enabled.  
Port output control is enabled.  
P30/SEG18  
P37/SEG25  
Output port P3  
LCD segment pins  
4
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 2. Pin description (2)  
Pin  
Name  
Function  
Function except a port function  
8-bit I/O port  
CMOS compatible input level  
CMOS 3-state output structure  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
P40/f(XIN)/  
f(XIN)/2,  
P41/f(XIN)/5/  
f(XIN)/10  
I/O port P4  
Clock output pins  
P42/INT0,  
P43/INT1  
Interrupt input pins  
Serial I/O function pins  
P44/RXD,  
P45/TXD,  
P46/SCLK,  
P47/SRDY  
8-bit I/O port  
P50/INT2,  
P51/INT3  
I/O port P5  
Interrupt input pins  
CMOS compatible input level  
CMOS 3-state output structure  
I/O direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
e port function pins  
P52/RTP0,  
P53/RTP1  
mers X, Y functions pins  
P54/CNTR0,  
P55/CNTR1  
P56/TOUT  
P57/ADT  
Timer 2 output pin  
A-D trigger input pin  
A-D conversion input pins  
P60/AN0–  
I/O port P6  
8-bit I/O port  
P67/AN7  
CMOS compatible input level  
CMOS 3-state output structure  
I/O direction register allows eindividually  
programmed as either inpu
Pull-up control is enable
1-bit input port  
CMOS compatibl
P70  
Input port P7  
I/O port P7  
7-bit I/O port  
CMOS cot level  
CMOS t structure  
P71P77  
I/O dter allows each pin to be individually programmed as either input or output.  
Puis enabled.  
P80/XCOUT,  
P81/XCIN  
I/O port P8  
ort  
Sub-clock generating circuit I/O pins  
(Connect a resonator. External clock  
cannot be used.)  
ompatible input level  
S 3-state output structure  
direction register allows each pin to be individually  
programmed as either input or output.  
Pull-up control is enabled.  
5
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M3825 8 M C M XXX HP  
Package type  
FP: 100P6S-A package  
HP: 100PFB-A package  
GP: 100P6Q-A package  
FS: 100D0 package  
ROM number  
Omitted in One Time PROM version shipped in  
blank and EPROM version.  
Normally, using hyphen  
When electrical charactervision of quality  
identification code usinmeric character  
: Standard  
D : Extended operperature version  
M : M version  
ROM/PRO
1
2
3
8
: 4096
: 81
: es  
bytes  
0 bytes  
576 bytes  
28672 bytes  
: 32768 bytes  
9 : 36864 bytes  
A: 40960 bytes  
B: 45056 bytes  
C: 49152 bytes  
D: 53248 bytes  
E: 57344 bytes  
F : 61440 bytes  
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
: Mask ROM version  
: EPROM or One Time PROM version  
M
E
RAM size  
: 192 bytes  
: 256 bytes  
: 384 bytes  
: 512 bytes  
: 640 bytes  
: 768 bytes  
: 896 bytes  
: 1024 bytes  
: 1536 bytes  
: 2048 bytes  
0
1
2
3
4
5
6
7
8
9
Fig. 4 Part numbering  
6
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (STANDARD, ONE TIME  
PROM VERSION, EPROM VERSION)  
Mitsubishi plans to expand the 3825 group(Standard, One Time  
PROM version, EPROM version) as follows.  
Packages  
100PFB-A ................................ 0.4 mm-pitch plastic molded TQFP  
100P6Q-A ................................ 0.5 mm-pitch plastic molded LQFP  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
100D0 ................... 0.65 mm-pitch ceramic LCC (EPROM version)  
Memory Type  
Support for mask ROM, One Time PROM, and EPROM versions.  
Memory Size  
ROM size ............................................................ 16 K to 60 Kbytes  
RAM size ............................................................ 640 to 2048 bytes  
Memory Expansion Plan  
ROM size (bytes)  
roduct  
M38259EF  
60K  
56K  
52K  
48K  
44K  
40K  
36K  
Mass product  
M
32K  
28K  
24K  
20K  
16K  
12K  
8K  
Mass product  
Mass product  
M38254M
M3
4K  
256  
512  
640  
768  
1,024  
1,536  
2,048  
RAM size (bytes)  
Fig. 5 Memory expansion plan  
7
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Currently products are listed below.  
As of Dec. 2000  
Table 3. List of products  
ROM size (bytes)  
ROM size for User in (  
Product  
RAM size (bytes)  
Package  
Remarks  
)
M38254M4-XXXFP  
M38254M4-XXXGP  
M38254M6-XXXFP  
M38254M6-XXXGP  
M38257M8-XXXFP  
M38257E8FP  
100P6S-A Mask ROM version  
16384  
(16254)  
640  
640  
100P6Q-A Mask ROM version  
100P6S-A Mask ROM version  
24576  
(24446)  
100P6Q-A Mask ROM version  
100P6S-A Mask ROM version  
100P6S-A One Time PROM version (blank)  
100P6Q-A Mask ROM version  
32768  
(32638)  
M38257M8-XXXGP  
M38257E8GP  
1024  
2048  
100P6Q-A One Time PROM version (blank)  
M38257E8FS  
100D0  
EPROM version  
100P6S-A  
M38259EFFP  
One Time PROersion (blank)  
M38259EFHP  
61440  
(61310)  
100PFB-A One Time Pion (blank)  
100P6Q-A One Timsion (blank)  
M38259EFGP  
M38259EFFS  
100D0  
EPR
8
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Memory Size  
(EXTENDED OPERATING TEMPERATURE VERSION)  
Mitsubishi plans to expand the 3825 group (Extended operating  
temperature version) as follows.  
ROM size ............................................................ 16 K to 60 Kbytes  
RAM size ............................................................ 640 to 2048 bytes  
Packages  
Memory Type  
Support for mask ROM, one time PROM version.  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
Memory Expansion Plan  
ROM size (bytes)  
Mass product  
M38259EFD  
60K  
56K  
52K  
48K  
44K  
40K  
Mass product  
M3
36K  
Mass product  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
M38257M8
Mass product  
Mass product  
M38254M6D  
M38254M4D  
4K  
256  
0  
768  
1,024  
1,536  
2,048  
RAM size (bytes)  
Fig. 6 Memory expansion pladed operating temperature version  
Currently products are listed below.  
Table 4. List of products for extended operating temperature version  
As of Dec. 2000  
ROM size (bytes)  
ROM size for User in (  
Product  
RAM size (bytes)  
640  
Package  
Remarks  
)
16384  
(16254)  
24576  
M38254M4DXXXFP  
100P6S-A Mask ROM version  
M38254M6DXXXFP  
M38257M8DXXXFP  
M38258MCDXXXFP  
M38259EFDFP  
640  
100P6S-A Mask ROM version  
100P6S-A Mask ROM version  
100P6S-A Mask ROM version  
(24446)  
32768  
(32638)  
49152  
1024  
1536  
2048  
(49022)  
61440  
100P6S-A One Time PROM version (blank)  
(61310)  
9
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (M VERSION)  
Packages  
Mitsubishi plans to expand the 3825 group (M version) as follows.  
100PFB-A ................................ 0.4 mm-pitch plastic molded TQFP  
100P6Q-A ................................ 0.5 mm-pitch plastic molded LQFP  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
Memory Type  
Support for mask ROM version.  
Memory Size  
ROM size ......................................................................... 48 Kbytes  
RAM size ....................................................................... 1536 bytes  
Memory Expansion Plan  
ROM size (bytes)  
60K  
56K  
52K  
48K  
44K  
40K  
36K  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
Mass product  
8MCM  
4K  
25
12  
768  
1,024  
1,536  
2,048  
RAM size (bytes)  
Fig. 7 Memory expansion plan for M version  
Currently products are listed below.  
As of Dec. 2000  
Table 5. List of products for low power source version  
ROM size (bytes)  
Product  
Remarks  
RAM size (bytes)  
Package  
ROM size for User in (  
)
Mask ROM version  
Mask ROM version  
Mask ROM version  
M38258MCMXXXFP  
100P6S-A  
49152  
1536  
M38258MCMXXXHP  
M38258MCMXXXGP  
100PFB-A  
100P6Q-A  
(49022)  
10  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
[Stack Pointer (S)]  
CENTRAL PROCESSING UNIT (CPU)  
The 3825 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
The stack pointer is an 8-bit register used during subroutine calls  
and interrupts. This register indicates start address of stored area  
(stack) for storing registers during subroutine calls and interrupts.  
The low-order 8 bits of the stack address are determined by the  
contents of the stack pointer. The high-order 8 bits of the stack  
address are determined by the stack page selection bit. If the  
stack page selection bit is 0, the high-order 8 bits becomes  
0016. If the stack page selection bit is 1, the high-order 8 bits  
becomes 0116.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
[Accumulator (A)]  
The operations of pushing register contents onto the stack and  
popping them from the stack are shown in Figure 9.  
Store registers other than those described in Figure 9 with pro-  
gram when the user needs them during interrupts or subroutine  
calls.  
The accumulator is an 8-bit register. Data operations such as data  
transfer, etc., are executed mainly through the accumulator.  
[Index Register X (X)]  
The index register X is an 8-bit register. In the index addressing  
modes, the value of the OPERAND is added to the contents of  
register X and specifies the real address.  
[Program Count
The program counit counter consisting of two 8-bit  
registers PCH aused to indicate the address of the  
next instructicuted.  
[Index Register Y (Y)]  
The index register Y is an 8-bit register. In partial instruction, the  
value of the OPERAND is added to the contents of register Y and  
specifies the real address.  
b0  
b0  
b0  
b0  
b0  
b7  
A
Accumulator  
b7  
Index register X  
Index register Y  
Y
b7  
S
Stack pointer  
b15  
b7  
PCH  
PC  
L
Program counter  
b7  
N V T B D I Z C  
Processor status register (PS)  
Carry flag  
Zero flag  
Interrupt disable flag  
Decimal mode flag  
Break flag  
Index X mode flag  
Overflow flag  
Negative flag  
Fig. 8 740 Family CPU register structure  
11  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
On-going Routine  
Execute JSR  
Interrupt request  
(Note)  
M (S) (PCH)  
(S) (S) 1  
Push return address  
on stack  
M (S) (PCH)  
(S) (S) 1  
M (S) (PCL)  
(S) (S)1  
Subroutine  
M (S) (PCL)  
(S) (S) 1  
Push return address  
on stack  
Push contents of processor  
tatus register on stack  
M (S) (PS)  
(S) (
I
Se  
I Flag is set from 0to 1”  
Execute RTS  
(S) (S) + 1  
Fetch the jump vector  
e RTI  
S) (S) + 1  
POP return  
address from stack  
POP contents of  
processor status  
register from stack  
(PCL) M (S)  
(S) (S) + 1  
(PCH) M (S)  
(PS)  
M (S)  
(S) (S) + 1  
(PCL) M (S)  
(S) (S) + 1  
(PCH) M (S)  
POP return  
address  
from stack  
Note: Condeptance of an interrupt  
Interrupt enable flag is 1”  
Interrupt disable flag is 0”  
Fig. 9 Register push and pop at interrupt generation and subroutine call  
Table 6 Push and pop instructions of accumulator or processor status register  
Push instruction to stack  
Pop instruction from stack  
Accumulator  
PHA  
PHP  
PLA  
PLP  
Processor status register  
12  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bit 4: Break flag (B)  
[Processor status register (PS)]  
The B flag is used to indicate that the current interrupt was  
generated by the BRK instruction. The BRK flag in the processor  
status register is always 0. When the BRK instruction is used to  
generate an interrupt, the processor status register is pushed  
onto the stack with the break flag set to 1.  
The processor status register is an 8-bit register consisting of 5  
flags which indicate the status of the processor after an arithmetic  
operation and 3 flags which decide MCU operation. Branch opera-  
tions can be performed by testing the Carry (C) flag , Zero (Z) flag,  
Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z,  
V, N flags are not valid.  
Bit 5: Index X mode flag (T)  
When the T flag is 0, arithmetic operations are performed  
between accumulator and memory. When the T flag is 1, direct  
arithmetic operations and direct data transfers are enabled  
between memory locations.  
Bit 0: Carry flag (C)  
The C flag contains a carry or borrow generated by the arithmetic  
logic unit (ALU) immediately after an arithmetic operation. It can  
also be changed by a shift or rotate instruction.  
Bit 1: Zero flag (Z)  
Bit 6: Overflow flag (V)  
The V flag is used during the addition or subtraction of one byte  
of signed data. It is set if the result exceeds +127 to -128. When  
the BIT instruction is executed, bit 6 of the memory location  
operated on by the BIT uction is stored in the overflow flag.  
Bit 7: Negative flag (N)  
The Z flag is set if the result of an immediate arithmetic operation  
or a data transfer is 0, and cleared if the result is anything other  
than 0.  
Bit 2: Interrupt disable flag (I)  
The I flag disables all interrupts except for the interrupt  
generated by the BRK instruction.  
The N flag is set of an arithmetic operation or data  
transfer is negthe BIT instruction is executed, bit 7 of  
the memorerated on by the BIT instruction is stored  
in the n
Interrupts are disabled when the I flag is 1.  
Bit 3: Decimal mode flag (D)  
The D flag determines whether additions and subtractions are  
executed in binary or decimal. Binary arithmetic is executed when  
this flag is 0; decimal arithmetic is executed when it is 1.  
Decimal correction is automatic in decimal mode. Only the ADC  
Table 7 Set and clear instructions of each bit of processoister  
N flag  
C flag  
SEC  
CLC  
Z flag  
D flag  
SED  
CLD  
B flag  
T flag  
SET  
CLT  
V flag  
Set instruction  
LI  
CLV  
Clear instruction  
13  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 :  
1 :  
Not available  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Not used (returns
(Do not write 0
Port XC switc
0 : I/O op oscillating)  
1 : Xlating function  
Main T) stop bit  
ivision ratio selection bit  
N)/2 (high-speed mode)  
(XIN)/8 (middle-speed mode)  
nal system clock selection bit  
0 : XINXOUT selected (middle-/high-speed mode)  
1 : XCINXCOUT selected (low-speed mode)  
Fig. 10 Structure of CPU mode register  
14  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special Page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM size  
(bytes)  
Address  
XXXX16  
SFR area  
Zero page  
416  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
192  
256  
LCD display RAM area  
010016  
XXXX16  
084016  
384  
512  
640  
768  
896  
1024  
1536  
2048  
Reserved area  
Not used  
ROM area  
ROM size  
(bytes)  
Addre
YY
dress  
ZZZZ16  
YYYY16  
ZZZZ16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F0
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 11 Memory map diagram  
15  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003
16  
03B16  
003C16  
003D16  
003E16  
003F16  
Port P0 (P0)  
Port P1 (P1)  
Timer X (low) (TXL)  
Timer X (high) (TXH)  
Timer Y (low) (TYL)  
Timer Y (high) (TYH)  
Timer 1 (T1)  
Port P1 output control register (P1C)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Timer 2 (T2)  
Timer 3 (T3)  
Timer X mode register (TXM)  
Timer Y mode register (TYM)  
Timer 123 mode register (T123M)  
Clock output control register (TCON)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
Port P6 direction register (P6D)  
Port P7 (P7)  
Port P7 direction register (P7D)  
Port P8 (P8)  
Port P8 direction register (P8D)  
A-ter (ADCON)  
on register (AD)  
PULL register A (PULLA)  
PULL register B (PULLB)  
Transmit/Receive buffer register(TB/RB)  
Serial I/O status register (SIOSTS)  
Serial I/O control register (SIO1C
UART control register (UARTC
Baud rate generator (BRG
gment output enable register (SEG)  
LCD mode register (LM)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Fig. 12 Memory map of special funer (SFR)  
16  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
Direction Registers  
b7  
b0  
PULL register A  
(PULLA : address 001616  
)
The 3825 group has 43 programmable I/O pins arranged in seven  
I/O ports (ports P16, P17, P2, P4P6, P71P77, P80 and P81). The  
I/O ports have direction registers which determine the input/output  
direction of each individual pin. (Ports P16 and P17 are shared  
with bits 6 and 7 of the port P1 output control register). Each bit in  
a direction register corresponds to one pin, and each pin can be  
set to be input port or output port.  
P0, P1 P1 , P3 pull-down  
0
5
(shared with P0 and P3 output  
control : refer to the text)  
P16  
P20  
P80  
P40  
P44  
P1  
P2  
, P8  
P4  
P4  
7
7
1
3
7
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
When 0is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When 1is written to that bit, that pin be-  
comes an output pin.  
Not used (return 0when read)  
b7  
b0  
PULL register B  
(PULLB : address 001716  
)
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are  
floating. If a pin set to input is written to, only the port output latch  
is written to and the pin remains floating.  
P50  
P54  
P60  
64  
74  
P5  
P5  
P6  
P6  
P7  
P7  
3
7
3
7
3
7
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
Port P1 Output Control Register  
Bit 0 of the port P1 output control register (address 000316) en-  
ables control of the output of ports P10 to P15.  
When the bit is set to 1, the port output function is valid.  
In this case, setting of the PULL register A to ports P10 to P15 is  
invalid.  
Not used (return 0when read)  
0 : Disable  
1 : Enable  
Nots of PULL register A and PULL register B  
ect ports programmed as the output port.  
When resetting, bit 0 of the port P1 output control register is set to  
0(the port output function is invalid.)  
ucture of PULL register A and PULL register B  
Pull-up/Pull-down Control  
By setting the PULL register A (address 001616) or the PUL
ister B (address 001716), ports P0 to P8 except P70 can
ther pull-down or pull-up (pins that are shared with
output pins for LCD are pull-down; all other pins with  
a program.  
However, the contents of PULL register A aister B do  
not affect ports programmed as the outpcept for ports  
P0 and P3).  
Ports P0 and P3 share the port ouunction with bit 0 of  
the PULL register A. When set trt output function is in-  
valid (Pull-down is valid).  
When set to 0, the port output function is valid (Pull-down is in-  
valid).  
The PULL register A setting is invalid for pins set to segment out-  
put with the segment output enable register.  
17  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 8. I/O ports functions  
Related SFRs  
Pin  
Input/Output  
Output  
I/O Format  
Non-Port Function  
Name  
Diagram No.  
PULL register A  
Segment output enable  
register  
P00/SEG26–  
P07/SEG33  
CMOS 3-state output  
LCD segment output  
(1)  
Port P0  
PULL register A  
Segment output enable  
register  
Port P1 output  
control register  
P10/SEG34–  
P15/SEG39  
(1)  
CMOS 3-state output  
LCD segment output  
Output  
Port P1  
CMOS compatible  
input level  
CMOS 3-state output  
Input/output,  
individual bits  
(2)  
(2)  
(1)  
PULL register A  
P16 , P17  
CMOS compatible  
input level  
CMOS 3-state output  
PULL register A  
Interrupt control register 2  
Input/output,  
individual bits  
Key-on wake up  
interrupt input  
Port P2  
Port P3  
P20P27  
LL register A  
ment output enable  
gister  
P30/SEG18–  
P37/SEG25  
Output  
CMOS 3-state output  
LCD segment out
Clock o
P40/f(XIN)/  
f(XIN)/2,  
P41/f(XIN)/5/  
f(XIN)/10  
Clock output control  
register  
PULL register A  
(2)  
PULL register A  
Interrupt edge selection  
register  
CMOS compatible  
input level  
CMOS 3-state outp
P42/INT0,  
P43/INT1  
Input/output,  
individual bits  
terrupt input  
Serial I/O function I/O  
Port P4  
(3)  
(4)  
(5)  
(6)  
PULL register A  
P44/RXD  
P54/TXD  
P46/SCLK  
P47/SRDY  
Serial I/O control register  
Serial I/O status register  
UART control register  
PULL register B  
Interrupt edge selection  
register  
P50/INT2,  
P51/INT3  
External interrupt input  
(2)  
PULL register B  
Timer X mode register  
Real time port  
function output  
P52/RTP0,  
P53/RTP1  
(7)  
(8)  
PULL register B  
Timer X mode register  
MOS compatible  
input level  
CMOS 3-state output  
Inpu
in
Timer X function I/O  
Timer Y function input  
Timer 2 output  
P54/CNTR0  
Port P5  
PULL register B  
Timer Y mode register  
P55/CNTR1  
P56/TOUT  
(9)  
(8)  
PULL register B  
Timer 123 mode register  
PULL register B  
A-D control register  
P57/ADT  
(9)  
A-D trigger input  
CMOS compatible  
input level  
CMOS 3-state output  
Input/output,  
individual bits  
P60/AN0–  
P67/AN7  
PULL register B  
A-D control register  
Port P6  
Port P7  
Port P8  
(10)  
A-D conversion input  
CMOS compatible  
input level  
P70  
(11)  
(12)  
Input  
CMOS compatible  
input level  
CMOS 3-state output  
Input/output,  
individual bits  
PULL register B  
P71P77  
CMOS compatible  
input level  
CMOS 3-state output  
(13)  
(14)  
(15)  
(16)  
P80/XCOUT  
P81/XCIN  
Sub-clock  
generating circuit  
PULL register A  
CPU mode register  
Input/output,  
individual bits  
LCD mode register  
Common  
Segment  
LCD common output  
LCD segment output  
COM0COM3  
SEG0SEG17  
Output  
Output  
Note 1: When using double-function ports as functional I/O pins, refer the method to the relevant sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
18  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P10P15, P3  
V
/VL3/VCC  
SegmeLn2t/Port  
LCD drive timing  
Segment data  
Interface logic  
level shift circuit  
Segment  
Data bus  
Port latch  
V
L1/VSS  
Port  
Pull-down  
Port/Segment  
Port ON/OFF  
(2) Ports P1  
6
, P17, P2, P4  
0P4  
3, P5  
0, P5  
1
(3) Port P4  
4
Pull-up control  
Pull-up control  
Serial I/O enable bit  
Reception enable bit  
Direction  
register  
Dire
re
Data bus  
Port latch  
Data bus  
Key-on wake up interrupt input  
INT INT interrupt input  
Serial I/O input  
0
3
Except P1 , P1 , P40, P41  
6
7
(4) Port P4  
5
(5) Port P46  
Serial I/O synchronization clock  
selection bit  
Pull-up contro
Pull-up control  
Serial I/O enable bit  
P45/T  
X
D P-channel output disable bit  
Serial I/O enable bit  
Serial I/O mode selection bit  
Serial I/O enable bit  
Transmission enable bit  
Direction  
register  
Direction  
register  
Data bus  
Data bus  
Port latch  
Port latch  
Serial I/O output  
Serial I/O clock output  
Serial I/O clock input  
(6) Port P4  
7
(7) Ports P52, P53  
Pull-up control  
Pull-up control  
Serial I/O mode selection bit  
Serial I/O enable bit  
S
RDY output enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Real time control bit  
Real time port data  
Serial I/O ready output  
Fig. 14 Port block diagram (1)  
19  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Ports P55, P57  
(8) Ports P54, P56  
Pull-up control  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Port latch  
Data bus  
Pulse output mode  
Timer output  
CNTR1 interrupt input  
A-D trigger interrupt input  
CNTR0 interrupt input  
P54 only  
(10) Port P6  
Pull-up control  
(11) Port P70  
Direction  
register  
Data bus  
Port latch  
ta bus  
A-D conversion input  
Analog input pin selection bit  
(12) Ports P71P77  
(13) Port P80  
Port Xc switch bit + Pull-up control  
Port XC switch bit  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Oscillation circuit  
Port P81  
(14) Port P81  
Port XC switch bit  
Port Xc switch bit + Pull-up control  
Port XC switch bit  
Direction  
register  
(15) COM0COM3  
VL3  
Port latch  
Data bus  
VL2  
VL1  
The gate input signal of each  
transistor is controlled by the  
LCD duty ratio and the bias  
value.  
Sub-clock generating circuit input  
(16) SEG0SEG17  
VSS  
VL2/VL3  
The voltage applied to the sources of  
P-channel and N-channel transistors  
is the controlled voltage by the bias  
value.  
VL1/VSS  
Fig. 15 Port block diagram (2)  
20  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupts occur by seventeen sources: eight external, eight inter-  
Interrupt Operation  
By acceptance of an interrupt, the following operations are auto-  
nal, and one software.  
matically performed:  
1. The contents of the program counter and the processor status  
register are automatically pushed onto the stack.  
2. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the corre-  
sponding interrupt request and enable bits are “1” and the inter-  
rupt disable flag is “0”.  
3. The interrupt jump destination address is read from the vector  
table into the program counter.  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
flag disables all interrupts except the BRK instruction interrupt.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Table 9. Interrupt vector addresses and priority  
Inter
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Reset (Note 2)  
INT0  
Priority  
High  
Low  
Genitions  
1
2
FFFD16  
FFFC16  
At res
Non-maskable  
At either rising or  
of INT0 input  
tion of either rising or  
g edge of INT1 input  
t completion of serial I/O data  
reception  
External interrupt  
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
F
(active edge selectable)  
External interrupt  
INT1  
3
4
(active edge selectable)  
Serial I/O  
reception  
Valid when serial I/O is selected  
At completion of serial I/O transmit  
shift or when transmission buffer is  
empty  
Serial I/O  
5
FFF516  
16  
Valid when serial I/O is selected  
transmission  
Timer X  
Timer Y  
Timer 2  
Timer 3  
6
7
8
9
FFF
6  
FFF216  
FFF016  
FFEE16  
FFEC16  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
At detection of either rising or  
falling edge of CNTR0 input  
At detection of either rising or  
falling edge of CNTR1 input  
At timer 1 underflow  
External interrupt  
CNTR0  
10  
FFEB16  
FFEA16  
(active edge selectable)  
External interrupt  
CNTR1  
Timer 1  
INT2  
11  
12  
13  
FFE916  
FFE716  
FFE516  
FFE816  
FFE616  
FFE416  
(active edge selectable)  
At detection of either rising or  
falling edge of INT2 input  
At detection of either rising or  
falling edge of INT3 input  
At falling of conjunction of input  
level for port P2 (at input mode)  
External interrupt  
(active edge selectable)  
External interrupt  
INT3  
14  
15  
FFE316  
FFE116  
FFE216  
FFE016  
(active edge selectable)  
External interrupt  
Key input  
(Key-on wake up)  
(valid when an “L” level is applied)  
Valid when ADT interrupt is selected  
External interrupt  
At falling of ADT input  
ADT  
16  
17  
FFDF16  
FFDD16  
FFDE16  
FFDC16  
(Valid at falling)  
Valid when A-D interrupt is  
selected  
A-D conversion  
BRK instruction  
At completion of A-D conversion  
At BRK instruction execution  
Non-maskable software interrupt  
Notes 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
21  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When not requiring for the interrupt occurrence synchronized with  
these setting, take the following sequence.  
Notes on interrupts  
When setting the followings, the interrupt request bit may be set to  
1.  
Set the corresponding interrupt enable bit to 0(disabled).  
Set the interrupt edge select bit or the interrupt source select bit  
to 1.  
When setting external interrupt active edge  
Related register: Interrupt edge selection register (address 3A16)  
Timer X mode register (address 2716)  
Set the corresponding interrupt request bit to 0after 1 or more  
instructions have been executed.  
Timer Y mode register (address 2816)  
Set the corresponding interrupt enable bit to 1(enabled).  
When switching interrupt sources of an interrupt vector address  
where two or more interrupt sources are allocated  
Related register: A-D control regsiter (address 3416)  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Inte
BRK instruction  
Reset  
Fig. 16 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
0
1
2
3
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
Not used (return 0when read)  
dge active  
g edge active  
b7  
b0  
b7  
b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request regi
)
(IREQ1 : address
INT  
INT  
0
1
intet  
it bit  
CNTR  
CNTR  
0
1
interrupt request bit  
interrupt request bit  
Sernterrupt request bit  
mit interrupt request bit  
Trrupt request bit  
Timer 1 interrupt request bit  
INT  
2
interrupt request bit  
interrupt request bit  
INT  
3
Timnterrupt request bit  
Key input interrupt request bit  
Timer 2 interrupt request bit  
Timer 3 interrupt request bit  
ADT/AD conversion interrupt request bit  
Not used (returns 0when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16  
)
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
Serial I/O receive interrupt enable bit  
Serial I/O transmit interrupt enable bit  
Timer X interrupt enable bit  
Timer 1 interrupt enable bit  
INT  
INT  
2
interrupt enable bit  
interrupt enable bit  
3
Timer Y interrupt enable bit  
Key input interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
ADT/AD conversion interrupt enable bit  
Not used (returns 0when read)  
(Do not write 1to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 17 Structure of interrupt-related registers  
22  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Key Input Interrupt (Key-on Wake Up)  
1to 0. An example of using a key input interrupt is shown in  
Figure 18, where an interrupt request is generated by pressing  
one of the keys consisted as an active-low key matrix which inputs  
to ports P20P23.  
A Key-on wake up interrupt request is generated by applying a  
falling edge to any pin of port P2 that have been set to input mode.  
In other words, it is generated when AND of input level goes from  
Port PXx  
Llevel output  
PULL register A  
Bit 2 = 1”  
Port P2  
7
Key input interrupt request  
direction register = 1”  
✕  
Port P2  
latch  
7
6
5
P2  
7
output  
output  
Port P2  
direction register = 1”  
6
✕  
Port P2  
latch  
P2  
6
Port P2  
direction register =
5
✕  
Port P2  
latch  
P2  
P2  
5
output  
output  
P
er = 1”  
✕  
Port P2  
latch  
4
Port P2  
3
direction register = 0”  
Port P2  
Input reading circuit  
rt P2  
atch  
3
P2  
3
input  
input  
input  
input  
Port P2  
2
direction register = 0”  
✕  
Port P2  
latch  
2
P2  
2
Port P2  
1
direction register = 0”  
✕  
Port P2  
latch  
1
P2  
P2  
1
Port P2  
0
direction register = 0”  
✕  
Port P2  
latch  
0
0
P-channel transistor for pull-up  
CMOS output buffer  
Fig. 18 Connection example when using key input interrupt and port P2 block diagram  
23  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Read and write operation on 16-bit timer must be performed for  
both high- and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct op-  
eration when reading during the write operation, or when writing  
during the read operation.  
TIMERS  
The 3825 group has five timers: timer X, timer Y, timer 1, timer 2,  
and timer 3. Timer X and timer Y are 16-bit timers, and timer 1,  
timer 2, and timer 3 are 8-bit timers.  
All timers are down count timers. When the timer reaches “0016”,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is contin-  
ued. When a timer underflows, the interrupt request bit corre-  
sponding to that timer is set to “1”.  
Real time port  
control bit 1”  
Data bus  
P52 data for real time port  
Q D  
P5  
2
2
Latch  
P5  
direction register 0”  
P52 latch  
Real time port  
control bit 1”  
Q D  
P53 data for real time port  
P5  
3
3
Latch  
Real time port  
P5  
direction register 0”  
control bit 0”  
Timer X mode
write signal  
P53 latch  
1”  
f(XIN)/16  
(f(XCIN)/16 in low-speed mode)  
Timer X stop  
control bit  
Timer X write  
control bit  
Timer X operat-  
ing mode bits  
00,01,11”  
CNTR0 active  
edge switch bit  
Timer X (l
er X (high) latch (8)  
Timer X  
interrupt  
request  
0”  
P54/CNTR0  
Ti
Timer X (high) (8)  
10”  
1”  
Pulse width  
CNTR  
0
measurement  
interrupt  
request  
mode  
tput mode  
CNTR  
edge switch bit  
0
active  
0”  
Timer Y operating mode bits  
00,01,10”  
CNTR  
interrupt  
request  
1
P54 direction register  
Pulse width HL continuously measurement mode  
P54 l
11”  
Rising edge detection  
Pulse ou
Period  
measurement mode  
Falling edge detection  
6 in low-speed mode])  
Timer Y stop  
control bit  
CN
Timer Y (low) latch (8)  
Timer Y (high) latch (8)  
Timer Y (high) (8)  
00,01,11”  
Timer Y  
interrupt  
request  
P55/CNTR1  
Timer Y (low) (8)  
10Timer Y operating  
1”  
mode bits  
f(XIN)/16  
Timer 1  
interrupt  
request  
(f(XCIN)/16 in low-speed mode])  
Timer 1 count source  
selection bit  
0”  
Timer 2 count source  
selection bit  
Timer 2 write  
control bit  
Timer 1 latch (8)  
Timer 1 (8)  
Timer 2 latch (8)  
0”  
Timer 2  
interrupt  
request  
X
CIN  
Timer 2 (8)  
1”  
1”  
f(XIN)/16  
(f(XCIN)/16 in low-speed mode )  
]
T
OUT output  
T
OUT output  
control bit  
active edge  
switch bit 0”  
S
Q
P56/TOUT  
T
1”  
P5  
OUT output control bit  
f(XIN)/16(f(XCIN)/16 in low-speed mode])  
6 latch  
Q
P56 direction register  
0”  
1”  
Timer 3 latch (8)  
Timer 3 (8)  
Timer 3  
interrupt  
request  
T
Timer 3 count  
Internal clock φ = XCIN/2.  
source selection bit  
Fig. 19 Timer block diagram  
24  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer X  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write and the real time port by  
setting the timer X mode register.  
b7  
b0  
Timer X mode register  
(TXM : address 002716  
)
(1) Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Timer X write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
Real time port control bit  
0 : Real time port function invalid  
1 : Real time port function valid  
(2) Pulse output mode  
P5  
2
data for real time port  
data for real time port  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode,  
set the corresponding port P54 direction register to output mode.  
P53  
Timer X operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
CNTR0 active edge switch bit  
0 : Counat rising edge in event counter mode  
StaHoutput in pulse output mode  
pulse width in pulse width measurement  
(3) Event counter mode  
The timer counts signals input through the CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P54 direction register to input mode.  
active for CNTR0 interrupt  
alling edge in event counter mode  
m Loutput in pulse output mode  
ure Lpulse width in pulse width measurement  
de  
Rising edge active for CNTR  
mer X stop control bit  
0 : Count start  
0 interrupt  
(4) Pulse width measurement mode  
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If  
CNTR0 active edge switch bit is 0, the timer counts while the in-  
put signal of CNTR0 pin is at H. If it is 1, the timer counts while  
the input signal of CNTR0 pin is at L. When using a timer in this  
mode, set the corresponding port P54 direction register to input  
mode.  
1 : Count stop  
0 Structure of timer X mode register  
Timer X Write Control  
If the timer X write control bit is 0, when the value is
address of timer X, the value is loaded in the timetch  
at the same time.  
If the timer X write control bit is 1, when thtten in the  
address of timer X, the value is loaded och. The value  
in the latch is loaded in timer X after rflows.  
If the value is written in latch only, value may be set in  
the high-order counter when the igh-order latch and the  
underflow of timer X are performed e same timing.  
Real Time Port Control  
While the real time port function is valid, data for the real time port  
are output from ports P52 and P53 each time the timer X  
underflows. (However, if the real time port control bit is changed  
from 0to 1after set of the real time port data, data are output  
independent of the timer X operation.) If the data for the real time  
port is changed while the real time port function is valid, the  
changed data are output at the next underflow of timer X.  
Before using this function, set the corresponding port direction  
registers to output mode.  
Note on CNTR0 interrupt active edge selection  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
switch bit.  
25  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
b7  
b0  
Timer Y mode register  
(TYM : address 002816  
)
(1) Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Not used (return 0when read)  
Timer Y operating mode bits  
b5 b4  
(2) Period measurement mode  
0
0
1
1
0 : Timer mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. Ex-  
cept for the above-mentioned, the operation in period measure-  
ment mode is the same as in timer mode.  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously  
measurement mode  
CNTR1 active edge switch bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge to falling edge  
period in period measurement mode  
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
Falling edge active for CNTR1 interrupt  
1 : Count at falling edge in event counter mode  
asure the rising edge period in period  
urement mode  
dge active for CNTR  
p control bit  
nt start  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
1 interrupt  
ount stop  
(3) Event counter mode  
Fig. 21 Stmer Y mode register  
The timer counts signals input through the CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
(4) Pulse width HL continuously measure-  
ment mode  
CNTR1 interrupt request is generated at both rising and
edges of CNTR1 pin input signal. Except for this, the op
pulse width HL continuously measurement mode is th
period measurement mode. When using a timer iset  
the corresponding port P55 direction register to
Note on CNTR1 interrupt actielection  
CNTR1 interrupt active edge dependTR1 active edge  
switch bit. However, in pulse widtously measurement  
mode, CNTR1 interrupt requeted at both rising and  
falling edges of CNTR1 pin input siegardless of the setting of  
CNTR1 active edge switch bit.  
26  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1, Timer 2, Timer 3  
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an inadvert-  
ent count down of the timer. Therefore, rewrite the value of timer  
whenever the count source is changed.  
b7  
b0  
Timer 123 mode register  
(T123M :address 002916  
)
T
T
OUT output active edge switch bit  
0 : Start at Houtput  
1 : Start at Loutput  
OUT output control bit  
0 : TOUT output disabled  
1 : TOUT output enabled  
Timer 2 Write Control  
Timer 2 write control bit  
0 : Write data in latch and counter  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
If the timer 2 write control bit is 0, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
If the timer 2 write control bit is 1, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
: Timer 1 output  
XIN)/16  
(XCIN)/16 in low-speed mode)  
count source selection bit  
f(XIN)/16  
Timer 2 Output Control  
When the timer 2 (TOUT) is output enabled, an inversion signal  
from pin TOUT is output each time timer 2 underflows.  
In this case, set the port P56 shared with the port TOUT to the out-  
put mode.  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN  
)
Not used (return 0when read)  
clock φ is f(XCIN)/2 in the low-speed mode.  
Note on Timer 1 to Timer 3  
When the count source of timers 1 to 3 is changed, the timer  
counting value may be changed large because a thin pulse is gen-  
erated in count input of timer. If timer 1 output is selected as the  
count source of timer 2 or timer 3, when timer 1 is written,
counting value of timer 2 or timer 3 may be changed lar
cause a thin pulse is generated in timer 1 output.  
Structure of timer 123 mode register  
Therefore, set the value of timer in the order of tim
and timer 3 after the count source selection of tim
27  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SERIAL I/O  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O mode can be selected by setting the  
mode selection bit of the serial I/O control register to 1.  
For clock synchronous serial I/O, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB (address 001816).  
Serial I/O can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer (baud rate generator) is  
also provided for baud rate generation.  
Data bus  
Serial I/O control register  
Address 001A16  
Address 001816  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
Receive shift register  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK  
Serial I/O synchronization  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
f(XIN  
)
Baud rate generator  
Address 001C16  
1/
(f(XCIN) in low-speed mode)  
1/4  
Ct  
P47/SRDY  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register shift completion flag (TSC)  
nsmit interrupt source selection bit  
Transmit shift reg
P45/TXD  
Transmit interrupt request (TI)  
Transmit buffe
Transmit buffer empty flag (TBE)  
Address 001916  
Serial I/O status register  
01816  
Fig. 23 Block diagram of clock synchronO  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TXD  
D
0
0
D
1
1
D
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
Serial input RXD  
D
D
D
D
D
D
D
D
2
Receive enable signal SRDY  
Write signal to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
Overrun error (OE)  
detection  
TBE = 0  
TBE = 1  
TSC = 0  
Notes  
1 : The transmit interrupt (TI) can be generated either when the transmit buffer register has emptied (TBE = 1) or after the transmit  
shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O control register.  
2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the T  
XD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes 1.  
Fig. 24 Operation of clock synchronous serial I/O function  
28  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ter, but the two buffers have the same address in memory. Since  
the shift register cannot be written to or read from directly, transmit  
data is written to the transmit buffer, and receive data is read from  
the receive buffer.  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O control  
register to 0.  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer register can hold a character while the next  
character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer regis-  
Data bus  
Address 001816  
Address 001A16  
Serial I/O control register  
OE  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
Character length selection bit  
7 bits  
P44/RXD  
STdetector  
Receive shift register  
1/16  
8 bits  
trol register  
SP detector  
PE FE  
dress 001B16  
Clock control circuit  
Serial I/O synchronization clock selection bit  
P46/SCLK  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN)  
( f(XCIN) in low-speed  
mode)  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transm
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
gister  
ddress 001816  
Address 001916  
Serial I/O status register  
Fig. 25 Block diagram of UART serial I/
Transmit or receive clock  
Transmit buffer write signal  
TBE=0  
TBE=0  
TSC=0  
TSC=1●  
SP  
TBE=1  
TBE=1  
ST  
ST  
D
0
D1  
Serial output T  
X
D
D
0
D
1
SP  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
D
0
D
1
ST  
D
0
D1  
Serial input RXD  
1 : Error flag detection occurs at the same time that the RBF flag becomes 1(at 1st stop bit, during reception).  
Notes  
2 : The transmit interrupt (TI) can be generated to occur when either the TBE or TSC flag becomes 1, depending on the setting of the transmit interrupt  
source selection bit (TIC) of the serial I/O control register.  
3 : The receive interrupt (RI) is set when the RBF flag becomes 1.  
4 : After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 26 Operation of UART serial I/O function  
29  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Transmit Buffer/Receive Buffer Register (TB/  
RB)] 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is write-  
only and the receive buffer register is read-only. If a character bit  
length is 7 bits, the MSB of data stored in the receive buffer regis-  
ter is “0”.  
[Serial I/O Status Register (SIOSTS)] 001916  
The read-only serial I/O status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing “0” to the serial I/O enable bit SIOE  
(bit 7 of the Serial I/O Control Register) also clears all the status  
flags, including the error flags.  
All bits of the serial I/O status register are initialized to “0” at reset,  
but if the transmit enable bit (bit 4) of the serial I/O control register  
has been set to “1”, the transmit shift register shift completion flag  
(bit 2) and the transmit buffer empty flag (bit 0) become “1”.  
[Serial I/O Control Register (SIOCON)] 001A
The serial I/O control register contains eight control bits
rial I/O function.  
[UART Control Register (UARTCB16  
The UART control register consists of four its 0 to 3)  
which are valid when asynchronous sercted and set  
the data format of an data transfer. Oregister (bit 4) is  
always valid and sets the output se P45/TXD pin.  
[Baud Rate Generator (B)] 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
Notes on serial I/O  
When setting the transmit enable bit to “1”, the serial I/O transmit  
interrupt request bit is automatically set to “1”. When not requiring  
the interrupt occurrence synchronized with the transmission  
enalbed, take the following sequence.  
Set the serial I/O transmit interrupt enable bit to “0” (disabled).  
Set the transmit enable bit to “1”.  
Set the serial I/O transmit interrupt request bit to “0” after 1 or  
more instructions have been executed.  
Set the serial I/O transmit interrupt enable bit to “1” (enabled).  
30  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O status register  
(SIOSTS : address 001916  
Serial I/O control register  
(SIOCON : address 001A16  
)
)
BRG count source selection bit (CSS)  
0: f(XIN) (f(XCIN) in low-speed mode)  
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O synchronization clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronized serial  
I/O is selected.  
BRG output divided by 16 when UART is selected.  
1: External clock input when clock synchronized serial I/O is  
selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
Transmit shift register shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
External clock input divided by 16 when UART is selected.  
S
0: P4  
1: P4  
RDY output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinary I/O pin  
pin operates as SRDY output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt whesmit buffer has emptied  
1: Interrupt wmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transm)  
0: Tr
1: ed  
Framing error flag (FE)  
0: No error  
1: Framing error  
ble bit (RE)  
disabled  
ive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE) =0  
1: (OE) U (PE) U (FE) =1  
rial I/O mode selection bit (SIOM)  
0: Asynchronous serial I/O (UART)  
1: Clock synchronous serial I/O  
Not used (returns 1when read)  
Serial I/O enable bit (SIOE)  
0: Serial I/O disabled  
b7  
b0  
UART control register  
(UARTCON : address 001B16  
(pins P4  
1: Serial I/O enabled  
(pins P4 P4 operate as serial I/O pins)  
4P47 operate as ordinary I/O pins)  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS
0: Even parity  
1: Odd parity  
Stop bit length sPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel utput disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Not used (return 1when read)  
Fig. 27 Structure of serial I/O control registers  
31  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
Comparator and Control Circuit  
The functional blocks of the A-D converter are described below.  
The comparator and control circuit compare an analog input volt-  
age with the comparison voltage and store the result in the A-D  
conversion register. When an A-D conversion is completed, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to 1.  
[A-D Conversion Register (AD)] 003516  
The A-D conversion register is a read-only register that contains  
the result of an A-D conversion. When reading this register during  
an A-D conversion, the previous conversion result is read.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to at least 500kHz during A-D conversion.  
Use the clock divided from the main clock XIN as the internal clock  
φ.  
[A-D Control Register (ADCON)] 003416  
The A-D control register controls the A-D conversion process. Bits  
0 to 2 of this register select specific analog input pins. Bit 3 signals  
the completion of an A-D conversion. The value of this bit remains  
at 0during an A-D conversion, then changes to 1when the A-  
D conversion is completed. Writing 0to this bit starts the A-D  
conversion. Bit 4 controls the transistor which breaks the through  
current of the resistor ladder. When bit 5, which is the AD external  
trigger valid bit, is set to 1, this bit enables A-D conversion even  
by a falling edge of an ADT input. Set ports which share with ADT  
pins to input when using an A-D external trigger.  
b7  
b0  
A-D control register  
(ADCON : address 003416  
)
Analog input pin selection bits  
0 0 0 : P6  
0 1 : P6  
1 0 : P6  
0 1 1 : P6  
1 0 0 : P6  
1 0 1 : P6  
1 1 0 : P6  
1 1 1 : P6  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
Comparison Voltage Generator  
The comparison voltage generator divides the voltage between  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
AVSS and VREF by 256, and outputs the divided voltages.  
V
REF input switch bit  
0 : OFF  
1 : ON  
Channel Selector  
The channel selector selects one of the input ports P67/AN7P60/  
AD external trigger valid bit  
0 : A-D external trigger invalid  
1 : A-D external trigger valid  
Interrupt source selection bit  
0 : Interrupt request at A-D  
conversion completed  
AN0.  
1 : Interrupt request at ADT  
input falling  
Not used (returns 0when read)  
Fig. 28 Structure of A-D control register  
Data bus  
b7  
b0  
A-D control register  
P57/ADT  
3
ADT/A-D interrupt request  
A-D control circuit  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
A-D conversion  
register  
Comparator  
8
Resistor ladder  
AVSS  
VREF  
Fig. 29 A-D converter block diagram  
32  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
enable bit is set to 1after data is set in the LCD mode register,  
the segment output enable register and the LCD display RAM, the  
LCD drive control circuit starts reading the display data automati-  
cally, performs the bias control and the duty ratio control, and dis-  
plays the data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 3825 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
LCD mode register  
Table 10. Maximum number of display pixels at each duty ratio  
Voltage multiplier  
Selector  
Duty ratio  
2
Maximum number of display pixel  
80 dots  
Timing controller  
Common driver  
or 8 segment LCD 10 digits  
120 dots  
Segment driver  
3
4
Bias control circuit  
or 8 segment LCD 15 digits  
160 dots  
A maximum of 40 segment output pins and 4 common output pins  
can be used.  
or 8 segment LCD 20 digits  
Up to 160 pixels can be controlled for LCD display. When the LCD  
b7  
b0  
Segment output enable r
(SEG : address 00381
Segment outpu
0 : Output
1 : SegG18SEG23  
Segmee bit 1  
0 36, P37  
utput SEG24,SEG25  
ut enable bit 2  
t ports P00P05  
ment output SEG26SEG31  
nt output enable bit 3  
: Output ports P06,P07  
1 : Segment output SEG32,SEG33  
Segment output enable bit 4  
0 : Output port P1  
0
1 : Segment output SEG34  
Segment output enable bit 5  
0 : Output ports P11P15  
1 : Segment output SEG35SEG39  
Not used (return 0when read)  
(Do not write 1to this bit)  
b0  
LCD mode register  
(LM : address 003916  
)
Duty ratio selection bits  
0 0 : Not used  
0 1 : 2 duty (use COM  
1 0 : 3 duty (use COM  
1 1 : 4 duty (use COM  
Bias control bit  
0 : 1/3 bias  
0
0
0
, COM  
COM  
COM  
1)  
2)  
3)  
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Voltage multiplier control bit  
0 : Voltage multiplier disable  
1 : Voltage multiplier enable  
LCD circuit divider division ratio selection bits  
0 0 : Clock input  
0 1 : 2 division of Clock input  
1 0 : 4 division of Clock input  
1 1 : 8 division of Clock input  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192 (f(XCIN)/8192 in low-speed mode)  
Note : LCDCK is a clock for a LCD timing controller.  
Fig. 30 Structure of segment output enable register and LCD mode register  
33  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 31 Block diagram of LCD controller/driver  
34  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 11. Bias control and applied voltage to VL1–VL3  
Voltage Multiplier (3 Times)  
The voltage multiplier performs threefold boosting. This circuit in-  
puts a reference voltage for boosting from LCD power input pin  
VL1. (However, when using a 1/2 bias, connect VL1 and VL2 and  
apply voltage by external resistor division.)  
Bias value  
Voltage value  
VL3=VLCD  
1/3 bias  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
VL3=VLCD  
The voltage multiplier control bit (bit 4 of the LCD mode register)  
controls the voltage multiplier.  
1/2 bias  
VL2=VL1=1/2 VLCD  
When voltage is input to the VL1 pin during operating the voltage  
multiplier, voltage that is twice as large as VL1 occurs at the VL2  
pin, and voltage that is three times as large as VL1 occurs at the  
VL3 pin.  
Note : VLCD is the maximum value of supplied voltage for the  
LCD panel.  
When using the voltage multiplier; after applying 1.3 V Voltage 2.3 V  
to the VL1 pin, set the voltage multiplier control bit to 1to select the  
voltage multiplier enable.  
Table 12. Duty ratio control and common pins used  
Duty  
ratio  
Duty ratio selection bits  
Common pins used  
Bit 1  
0
Bit 0  
1
When not using the voltage multiplier, apply proper voltage to the  
LCD power input pins (VL1VL3).  
2
COM0, COM1 (Note 1)  
OM0COM2 (Note 2)  
COM0COM3  
3
4
1
1
Bias Control and Applied Voltage to LCD  
Power Input Pins  
Notes 1: COM2 re open.  
2: CO
To the LCD power input pins (VL1VL3), apply the voltage shown  
in Table 11 according to the bias value.  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
Common Pin and Duty Ratio Control  
The common pins (COM0COM3) to be used are determined by  
duty ratio.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1
LCD mode register).  
Contrast control  
Contrast control  
V
V
L3  
L2  
V
V
L3  
L2  
V
V
L3  
L2  
R1  
R2  
R4  
C
2
1
C
C
2
Open  
Open  
Open  
Open  
C
2
1
C
1
C
V
L1  
V
L1  
V
L1  
R3  
R5  
R4=R5  
R1=R2=R3  
1/3 bias  
1/3 bias  
when not using the voltage multiplier  
1/2 bias  
when using the voltage multiplier  
Fig. 32 Example of circuit at each bias  
35  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD Display RAM  
LCD Drive Timing  
Address 004016 to 005316 is the designated RAM for the LCD dis-  
play. When 1are written to these addresses, the corresponding  
segments of the LCD display panel are turned on.  
The LCDCK timing frequency (LCD drive timing) is generated in-  
ternally and the frame frequency can be determined with the fol-  
lowing equation;  
(frequency of count source for LCDCK)  
f(LCDCK)=  
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency=  
duty ratio  
Bit  
7
6
5
4
3
2
1
0
Address  
COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM0  
SEG1  
SEG3  
SEG0  
SEG2  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
SEG5  
SEG4  
SEG7  
SEG6  
SEG9  
SE
SEG11  
SEG13  
SEG15  
SEG17  
SEG19  
SEG21  
SEG23  
SEG25  
SEG
S
37  
EG39  
16  
EG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
SEG30  
SEG32  
SEG34  
SEG36  
SEG38  
Fig. 33 LCD display RAM map  
36  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
V
V
V
L3  
L2=VL1  
SS  
COM  
0
1
2
3
COM  
COM  
COM  
V
V
L3  
SEG  
0
SS  
OFF  
ON  
ON  
COM  
3
COM  
2
COM  
1
COM  
0
OM  
2
COM  
1
COM0  
1/3 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
0
COM  
2
COM  
1
COM  
2
COM  
1
COM  
0
COM2  
1/2 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
0
1
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
1
COM  
0
COM  
1
COM  
1
COM  
0
COM  
1
COM0  
Fig. 34 LCD drive waveform (1/2 bias)  
37  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
V
VL2  
VSL1S  
COM  
0
COM  
COM  
COM  
1
2
3
V
V
L3  
SEG  
0
SS  
OFF  
ON  
ON  
COM  
3
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
2
COM  
1
COM  
0
COM2  
COM  
2
COM  
1
COM0  
1/2 duty  
VL3  
VL2  
VSL1S  
V
COM  
0
1
COM  
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
1
COM  
0
COM  
1
COM  
0
COM  
1
COM0  
COM  
1
COM0  
Fig. 35 LCD drive waveform (1/3 bias)  
38  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK OUTPUT FUNCTION  
Selection of Output Clock Frequency  
Bit 2 (output clock frequency selection bit) of the clock output con-  
trol register selects an output clock frequency.  
Input/output ports P40 and P41 can output clock. The input/output  
ports and clock output function are put under double function con-  
trolled by the clock output control register (address 002A16).  
When setting the output clock frequency selection bit to 0, port  
P40 becomes the frequency of f(XIN) and port P41 becomes the  
frequency of f(XIN)/5.  
Selection of Input/Output Ports and Clock  
Output Function  
At this time, the output pulse of port P40 depends on the XIN input  
pulse, while the output pulse of port P41 has duty ratio of about  
40%.  
Bits 0 and 1 of the clock output control register can select between  
the input/output ports and the clock output function.  
When selecting the clock output function, clocks are output while  
the direction register of ports P40 and P41 are set to output.  
At the next cycle of rewriting the clock output control bit, P40 is  
switched between the port output and the clock output.  
In synchronization with the fall of the clock (resulting from dividing  
XIN by 5) on rewriting the clock output control bit, P41 is switched  
between the port output and the clock output.  
When setting the output clock frequency selection bit to 1, port  
P40 becomes the frequency of f(XIN)/2 and port P41 becomes the  
frequency of f(XIN)/10. At this time, the output pulses of both ports  
P40 and P41 have duty ratio of 50%.  
b7  
b
tput control register  
: address 002A16  
)
P40 clock output control bit  
0 : I/O port  
1 : Clock output  
P41  
clock output control bit  
0 : I/O port  
1 : Clock output  
Output clock frequency selection bit  
0 : P4  
1 : P4  
0
f(XIN), P4  
1
f(XIN)/5  
0f(XIN)/2, P4  
1f(XIN)/10  
Not used (return 0when read)  
Fig. 36 Structure of clock output control register  
P40 port latch  
P4  
control bit  
0 clock output  
0”  
1”  
0”  
X
IN  
P40  
1”  
Output clock  
frequency  
P40 direction register  
1/2  
selection bit  
P41 port latch  
P4  
control bit  
1 clock output  
0”  
0”  
1”  
1/5  
P41  
1”  
Output clock  
frequency  
selection bit  
P41 direction register  
1/2  
Fig. 37 Clock output function block diagram  
39  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Address Register contents  
To reset the microcomputer, RESET pin should be held at an L”  
level for 2 µs or more. Then the RESET pin is returned to an H”  
level (the power source voltage should be between VCC(min.) and  
5.5 V, and the quartz-crystal oscillator should be stable), reset is  
released. After the reset is completed, the program starts from the  
address contained in address FFFD16 (high-order byte) and ad-  
dress FFFC16 (low-order byte). Make sure that the reset input  
voltage meets VIL spec. when a power source voltage passes  
VCC(min.).  
(1)  
000016  
000216  
000316  
000416  
000516  
000616  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
00E16  
00F16  
001016  
001116  
001616  
001716  
001916  
001A16  
001B16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
003416  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
(PS)  
Port P0  
0016  
0016  
0016  
0016  
0016  
0016  
(2)  
Port P1  
(3)  
Port P1 output control register  
Port P2  
(4)  
(5)  
Port P2 direction register  
Port P3  
(6)  
(7)  
Port P4  
0016  
0016  
(8)  
Port P4 direction register  
Port P5  
(9)  
0016  
0016  
0016  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
(17)  
(18
2)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
(32)  
(33)  
(34)  
(35)  
(36)  
(37)  
(38)  
(39)  
(40)  
(41)  
(42)  
(43)  
Port P5 direction register  
Port P6  
Power on  
Power  
source  
Port P6 direction register  
Port P7  
0016  
0016  
voltage  
RESET  
VCC  
0V  
Reset input  
voltage  
Port P7 direction
Port P8  
0016  
0016  
0016  
V
IL spec.  
0V  
Port P8
PU
tatus register  
I/O control register  
ART control register  
Timer X (low)  
0116  
0016  
1
1
0
1
0 0  
0
0 0  
0 0  
0
0
0016  
RESET  
VCC  
1 0  
0
FF16  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
Power source voltage  
detection circuit  
Timer X (high)  
Timer Y (low)  
Timer Y (high)  
Timer 1  
Timer 2  
Timer 3  
0016  
00  
Timer X mode register  
Timer Y mode register  
Timer 123 mode register  
Clock output control register  
Fig. 38 Example of reset circuit  
0016  
0016  
0016  
A-D control register  
0
0
0
0
1
0 0 1  
0016  
0
0
0
Segment output enable register  
LCD mode register  
0016  
Interrupt edge selection register  
0016  
CPU mode register  
0
0 0  
1
0
Interrupt request register 1  
Interrupt request register 2  
Interrupt control register 1  
Interrupt control register 2  
Processor status register  
Program counter  
0016  
0016  
0016  
0016  
● ●  
● ● ● 1 ● ●  
(PC  
H)  
Contents of address FFFD16  
)
Contents of address FFFC16  
(PC  
L
Note: The contents of all other registers and RAM are undefined after  
reset, so they must be initialized by software.  
: Undefined  
Fig. 39 Internal state of microcomputer immediately after re-  
set  
40  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
IN  
φ
RESET  
Internal reset  
Reset address from  
vector table  
Address  
Data  
?
?
?
?
DL  
FFFC  
FFFD  
ADL  
SYNC  
Notes 1 : XIN and φ are in the r
N) = 8f(φ)  
2 : A question mark (?ndefined status that depends on the previous status.  
X
IN : about 8000  
clock cycles  
Fig. 40 Reset sequence  
41  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 3825 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
(1) Stop mode  
If the STP instruction is executed, the internal clock φ stops at an  
Hlevel, and XIN and XCIN oscillators stop. Timer 1 is set to FF16”  
and timer 2 is set to 0116.  
Either XIN or XCIN divided by 16 is input to timer 1 as count  
source, and the output of timer 1 is connected to timer 2.  
The bits of the timer 123 mode register except bit 4 are cleared to  
0. Set the timer 1 and timer 2 interrupt enable bits to disabled  
(0) before executing the STP instruction.  
To supply a clock signal externally, input it to the XIN pin and make  
the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit  
cannot directly input clocks that are externally generated. Accord-  
ingly, be sure to cause an external resonator to oscillate.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O ports.  
Oscillator restarts at reset or when an external interrupt is re-  
ceived, but the internal clock φ is not supplied to the CPU until  
timer 2 underflows. This allows time for the clock circuit oscillation  
to stabilize.  
Frequency Control  
(2) Wait mode  
(1) Middle-speed mode  
If the WIT instruction the internal clock φ stops at an  
Hlevel. The stateXCIN are the same as the state be-  
fore the executnstruction. The internal clock restarts  
at reset or wrupt is received. Since the oscillator does  
not stop, ration can be started immediately after the  
clock
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
(2)High-speed mode  
The internal clock φ is half the frequency of XIN.  
(3) Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
A low-power consumption operation can be realized by stoppin
the main clock XIN in this mode. To stop the main clock, set
of the CPU mode register to 1.  
X
CIN  
X
COUT  
XIN  
X
OUT  
When the main clock XIN is restarted, set enough tim
lation to stabilize by programming.  
Rf  
Rd  
Note: If you switch the mode between middle/higlow-  
speed, stabilize both XIN and XCIN osce suffi-  
cient time is required for the sub-clize, espe-  
cially immediately after power-on ing from stop  
mode. When switching the en middle/high-  
speed and low-speed, set cy in the condition  
that f(XIN) > 3f(XCIN).  
C
OUT  
C
CIN  
C
COUT  
CIN  
Fig. 41 Ceramic resonator circuit  
X
CIN  
X
COUT  
X
IN  
XOUT  
Rf  
Open  
Rd  
External oscillation circuit  
C
CIN  
CCOUT  
V
CC  
V
SS  
Fig. 42 External clock input circuit  
42  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
COUT  
X
CIN  
1”  
0”  
Port X  
C
switch bit  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
(Note)  
X
IN  
X
OUT  
Low-speed mode  
1”  
0”  
1”  
Timer 1  
Timer 2  
1/4  
1/2  
1/2  
0”  
0”  
1”  
Middle-/High-speed mode  
Main clock dection bit  
Middle-sp
1”  
Timing φ  
(Internal clock)  
0”  
High-speed mode  
or Low-speed
Main clock stop bit  
Q
Q
S
R
S
R
S
R
Q
ction  
STP instruction  
STP instruction  
Res
Interrupt disable flag I  
Interrupt requ
Note: When using the low-speed mode, set the port X  
C
switch bit to 1.  
Fig. 43 Clock generating circuit block diagram  
43  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
CM  
6
Middle-speed mode (f(φ) = 1 MHz)  
High-speed mode (f(φ) = 4 MHz)  
1”  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8 MHz selected)  
= 1 (Middle-speed)  
= 0 (8 MHz oscillating)  
= 0 (32 kHz stopped)  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8 MHz selected)  
= 0 (High-speed)  
= 0 (8 MHz oscillating)  
= 0 (32 kHz stopped)  
0”  
0
M4  
C
0
M6  
1
C
1
CM  
6
High-speed mode (f(φ) = 4 MHz)  
Middle-speed mode (f(φ) = 1 MHz)  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8 MHz selected)  
= 1 (Middle-speed)  
= 0 (8 MHz oscillating)  
= 1 (32 kHz oscillating)  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8 MHz selected)  
= 0 (High-speed)  
= 0 (8 MHz oscillating)  
= 1 (32 kHz oscillating)  
1”  
0”  
CM  
6
Low-speed mode (f(φ) =16 kHz)  
(f(φ) =16 kHz)  
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32 kHz selected)  
= 1 (Middle-speed)  
= 0 (8 MHz oscillating)  
= 1 (32 kHz oscillating)  
4
2 kHz selected)  
(High-speed)  
= 0 (8 MHz oscillating)  
= 1 (32 kHz oscillating)  
1”  
0”  
b7  
b4  
CPU mode register  
(CPUM : address 003B16  
)
CM  
CM  
CM  
CM  
4 : Port Xc switch bit  
0: I/O port  
1: XCIN, XCOUT  
5 : Main clock (XINXOUT) stop bit  
0: Oscillating  
1: Stopped  
0
M5  
C
1
6
: Main clock division ratio selection bit  
0: f(XIN)/2 (high-speed mode)  
1: f(XIN)/8 (middle-speed mode)  
Low-speed mode (f(φ) = 16 kHz)  
Low-speed mode (f(φ) =16 kHz)  
CM  
6
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32 kHz selected)  
= 1 (Middle-speed)  
= 1 (8 MHz stopped)  
= 1 (32 kHz oscillating)  
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32 kHz selected)  
= 0 (High-speed)  
= 1 (8 MHz stopped)  
= 1 (32 kHz oscillating)  
1”  
0”  
7
: Internal system clock selection bit  
0: XINXOUT selected  
(middle-/high-speed mode)  
1: XCINXCOUT selected  
(low-speed mode)  
Notes  
1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2: The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait  
mode is ended.  
3: Timer and LCD operate in the wait mode.  
4: When the stop mode is ended, a delay of approximately 1 ms occurs automatically by timer 1 and timer 2 in middle-/high-speed mode.  
5: When the stop mode is ended, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2 in low-speed mode.  
6: Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle-/high-  
speed mode.  
7: The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. f indicates the internal clock.  
Fig. 44 State transitions of internal clock φ  
44  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit en-  
able bit, the receive enable bit, and the SRDY output enable bit to  
1.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is 1. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
Serial I/O continues to output the final bit from the TXD pin after  
transmission is completed.  
Interrupt  
A-D Converter  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt re-  
quest register, execute at least one instruction before performing a  
BBC or BBS instruction.  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500kHz during an A-D conversion.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
1, then execute an ADC or SBC instruction. Only the ADC and  
SBC instructions yield proper decimal results. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
Instruction ExecutTime  
The instruction executobtained by multiplying the fre-  
quency of the intery the number of cycles needed to  
execute an instr
The number uired to execute an instruction is shown  
in the list structions.  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
The free internal clock φ is half of the XIN frequency.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index mode (T) and the decimal mode (D) flags
the MUL and DIV instruction.  
The execution of these instructions does not chntents  
of the processor status register.  
Ports  
The contents of the port direction rnot be read.  
The following cannot be used:  
The data transfer instruction (LD)  
The operation instruction when the index X mode flag (T) is 1”  
The addressing mode which uses the value of a direction regis-  
ter as an index  
The bit-test instruction (BBC or BBS, etc.) to a direction register  
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
45  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
1.Mask ROM Order Confirmation Form✽  
2.Mark Specification Form✽  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk.  
Table 13. Programming adapter  
For the mask ROM confirmation and the mark specifications, re-  
fer to the “Mitsubishi MCU Technical Information” Homepage  
(http://www.infomicom.mesc.co.jp/indexe.htm).  
Package  
100PFB-A  
100P6Q-A  
100P6S-A  
100D0  
Name of Programming Adapter  
PCA4738H-100A  
PCA4738G-100A  
PCA4738F-100A  
PCA4738L-100A  
The PROM of the blank e PROM version is not tested or  
screened in the asses and following processes. To en-  
sure proper operogramming, the procedure shown in  
Figure 45 is reto verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 45 Programming and testing of One Time PROM version  
46  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Standard, One Time PROM Version)  
Table 14. Absolute maximum ratings (Standard, One time PROM version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 7.0  
Input voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P80, P81  
V
0.3 to VCC +0.3  
VI  
Input voltage P70P77  
Input voltage VL1  
0.3 to VCC +0.3  
0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
V
VI  
VI  
VI  
VI  
VI  
VI  
VO  
All voltages are based on VSS.  
Output transistors are cut off.  
Input voltage VL2  
Input voltage VL3  
VL2 to 7.0  
Input voltage C1, C2  
Input voltage RESET, XIN  
Output voltage C1, C2  
0.3 to 7.0  
0.3 to VCC +0.3  
0.3 to 7.0  
At output port  
0.3 to VCC  
0.3 to VL3  
VO  
VO  
Output voltage P00P07, P10P15, P30P37  
At segment output  
V
Output voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P71P77,  
P80, P81  
0.3 to VCC +0.3  
V
VO  
VO  
VO  
Pd  
0.3 to 7.0  
0.3 to VL3  
0.3 to VCC +0.3  
300  
Output voltage VL3  
V
V
Output voltage VL2, SEG0SEG17  
Output voltage XOUT  
Power dissipation  
V
mW  
°C  
°C  
Ta = 25°C  
Operating temperature  
20 to 85  
Topr  
Tstg  
Storage temperature  
40 to 125  
Table 15. Recommended operating conditions (StandaPROM version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise
Limits  
Symbol  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
d mode f(XIN) = 8 MHz  
speed mode f(XIN) = 8 MHz  
-speed mode  
4.0  
2.5  
2.5  
5.5  
5.5  
5.5  
VCC  
Power source voltage  
VSS  
Power source voltage  
V
V
V
V
VREF  
AVSS  
A-D conversion rege  
Analog power soge  
Analog input voltage 0AN7  
Hinput voltage  
2.0  
VCC  
0
VCC  
VCC  
VIA  
VIH  
AVSS  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
V
0.7VCC  
0.8VCC  
0.8VCC  
0.8VCC  
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
V
V
V
VIH  
VIH  
VIH  
VCC  
VCC  
VCC  
RESET  
XIN  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
0.3VCC  
V
0
VIL  
0
0
0
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
V
V
V
VIL  
VIL  
VIL  
0.2VCC  
0.2VCC  
0.2VCC  
RESET  
XIN  
47  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 16. Recommended operating conditions (Standard, One time PROM version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
P0 , P1 P1  
Unit  
Min.  
Max.  
ΣIOH(peak)  
ΣIOH(peak)  
Htotal peak output current  
Htotal peak output current  
P0  
0
7
0
7
, P2  
0
P2  
7
, P3  
0
P3  
7
(Note 1)  
20  
mA  
mA  
P40P47,P50P57, P60P67, P71P77, P80, P81  
(Note 1)  
20  
ΣIOL(peak)  
Ltotal peak output current  
P0  
P40P47,P50P57, P60P67, P80, P81 (Note 1)  
P7 P7 (Note 1)  
0P07, P10P17, P20P27, P30P37 (Note 1)  
20  
20  
40  
mA  
mA  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
Ltotal peak output current  
Ltotal peak output current  
1
7
mA  
mA  
Htotal average output current P00P07,P10P17, P20P27, P30P37 (Note 1)  
10  
10  
Htotal average output current P40P47, P50P57, P60P67, P71P77, P80, P81  
ΣIOH(avg)  
mA  
(Note 1)  
ΣIOL(avg)  
ΣIOL(avg)  
10  
Ltotal average output current P00P07, P10P17, P20P27, P30P37 (Note 1)  
Ltotal average output current P40P47, P50P57, P60P67, P80, P81 (Note 1)  
mA  
mA  
mA  
10  
20  
Ltotal average output current P71P77 (Note 1)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
Hpeak output current  
Hpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
0.5  
mA  
mA  
mA  
P16, P17, P20P27, P40P47, P50P57, P60
P71P77, P80, P81 (Note 2)  
5.0  
IOL(peak)  
IOL(peak)  
Lpeak output current  
Lpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
5.0  
10  
P16, P17, P20P27, P40P47, P507,  
P70P77, P80, P81 (Note 2)  
mA  
mA  
IOH(avg)  
IOH(avg)  
Haverage output current  
Haverage output current  
P00P07, P10P15, P30P37
0.1  
P16, P17, P20P27, P40P, P60P67,  
P71P77, P80, P81 (Not
mA  
mA  
2.5  
2.5  
Laverage output current  
Laverage output current  
P00P07, P10P15, te 3)  
IOL(avg)  
IOL(avg)  
P16, P17, P20PP50P57, P60P67,  
P71P77, P80, )  
5.0  
4.0  
mA  
MHz  
MHz  
VCC 5.5 V)  
CC 4.0 V)  
Input frequency for timers X and Y  
(duty cycle 50%)  
f(CNTR0)  
f(CNTR1)  
(2VCC)  
4  
High-speed mode  
(4.0 V VCC 5.5 V)  
Main clock input oscillation freque
(Note 4)  
f(XIN)  
8.0  
MHz  
MHz  
High-speed mode  
(VCC 4.0 V)  
(4VCC)  
8  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input osency (Note 4, 5)  
32.768  
Note 1: The total output currenof all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over s. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: When the oscillation frequency has a duty cycle of 50%.  
5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that  
f(XCIN) < f(XIN)/3.  
48  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 17. Electrical characteristics (Standard, One time PROM version)  
(VCC =4.0 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
VCC2.0  
IOH = 0.1 mA  
IOH = 25 µA  
VCC = 2.5 V  
IOH = 5 mA  
IOH = 1.25 mA  
IOH = 1.25 mA  
VCC = 2.5 V  
IOL = 5 mA  
V
V
VOH  
Houtput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0P3  
7
VCC1.0  
VCC2.0  
VCC0.5  
V
V
Houtput voltage P1  
6
0
0
, P1  
P5  
, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
7
, P4  
, P7  
0
P4  
7
,
,
VOH  
VOL  
P5  
P8  
0
P6  
7
1
P7  
7
VCC1.0  
V
2.0  
0.5  
V
V
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 2.5 V  
Loutput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0P3  
7
1.0  
V
2.0  
0.5  
V
V
Loutput voltage P1  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
7
,P4  
0
P4  
P7  
7
,
P5  
P8  
0
P6  
7
, P7  
1
7
,
VOL  
1.0  
V
V
Hysteresis  
INT0INT3, ADT, CNTR0,  
CNTR1, P20P27  
VT+ VT–  
0.5  
VT+ VT–  
VT+ VT–  
Hysteresis  
S
CLK, R  
X
D
V
V
0.5  
0.5  
Hysteresis  
RESET  
RESET: o 5.5 V  
V
Hinput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P2  
7
,P4  
0
P4  
P7  
7
,
,
0
P6  
7
, P7  
0
7
IIH  
5.0  
5.0  
µA  
IIH  
IIH  
µA  
µA  
Hinput current  
Hinput current  
RESET  
VCC  
4.0  
X
IN  
= VSS  
Pull-ups off”  
µA  
µA  
5.0  
140  
45  
Linput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P
VCC = 5 V, VI = VSS  
Pull-ups on”  
0
7
,
30  
IIL  
70  
25  
VCC = 3 V, VI = VSS  
Pull-ups on”  
µA  
µA  
6.0  
Linput current  
P7  
IIL  
IIL  
IIL  
5.0  
5.0  
Linput current  
Linput current  
µA  
µA  
VI = VSS  
VI = VSS  
4.0  
V
CC = 5.0 V, V  
O
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs off”  
Output transistors off”  
= VSS, Pull-downs off”  
Output transistors off”  
µA  
µA  
µA  
µA  
30  
70  
140  
45  
Output load current P00P07, P10P15, P30P37  
ILOAD  
ILEAK  
V
CC = 3.0 V, VO  
6.0  
25  
V
O
5.0  
Output leak current P00P07, P10P15, P30P37  
V
O
5.0  
Note: When 1is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P80 is different from the  
value above mentioned.  
49  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 18. Electrical characteristics (Standard, One time PROM version)  
(VCC =2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
RAM retention voltage  
Test conditions  
Unit  
V
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
6.4  
mA  
mA  
f(XCIN) = 32.768 kHz  
13  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
1.6  
3.2  
Output transistors off”  
A-D converter in operating  
Low-speed mode, VCC = 5 V, Ta
f(XIN) = stopped  
36  
14  
25  
7.0  
15  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors o
ICC  
Power source current  
Low-speed mode, = 25°C  
f(XIN) = stopp
f(XCIN) = 3n WIT state)  
Output off”  
LowVCC = 3 V, Ta 55°C  
ped  
22  
32.768 kHz  
t transistors off”  
-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
9.0  
4.5  
0.1  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25 °C  
1.0  
10  
Ta = 85 °C  
VL1  
IL1  
When using voltage multiplier  
VL1 = 1.8 V  
1.3  
1.8  
3.0  
10  
Power source volta
2.3  
6.0  
50  
V
Power source cur
(Note)  
µA  
VL1 < 1.3 V  
Note : When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is 1.  
50  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 19. A-D converter characteristics (Standard, One time PROM version)  
(
VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, 4 MHz f(XIN) 8 MHz, in middle-/high-speed mode, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
LSB  
Absolute accuracy (excluding quantization error)  
V
CC = VREF = 5 V  
±2  
12.5  
(Note)  
µs  
tCONV  
Conversion time  
f(XIN) = 8 MHz  
RLADDER  
IVREF  
IIA  
Ladder resistor  
12  
50  
35  
100  
200  
5.0  
kΩ  
µA  
µA  
Reference input current  
Analog port input current  
150  
V
REF = 5 V  
Note : When an internal trigger is used in middle-speed mode, it is 14 µs.  
51  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 20. Timing requirements 1 (Standard, One time PROM version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
0  
100  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is
Table 21. Timing requirements 2 (Standard, One time PROM version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
2
µs  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
500/  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
(VCC2)  
250/  
(VCC2)20  
twH(CNTR)  
twL(CNTR)  
CNTR0, CNTR1 input H
250/  
(VCC2)20  
ns  
CNTR0, CNTR1 inpwidth  
twH(INT)  
twL(INT)  
tc(SCLK)  
INT0 to INT3 inpuwidth  
INT0 to INT3 input Lulse width  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
230  
230  
2000  
950  
950  
400  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is 0(UART).  
52  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 22. Switching characteristics 1 (Standard, One time PROM version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Min.  
Typ.  
Max.  
twH(SCLK)  
twL(SCLK)  
t
t
c(SCLK  
)
/230  
/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
c(SCLK  
)
t
t
d(SCLKT  
v(SCLKT  
X
D)  
140  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
30  
30  
30  
30  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
Table 23. Switching characteristics 2 (Standard, One time PROM version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Unit  
in.  
Typ.  
Max.  
twH(SCLK)  
twL(SCLK)  
t
c(SCLK  
)
)
/250  
/250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
c(SCLK  
t
t
d(SCLKT  
v(SCLKT  
X
D)  
350  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
50  
50  
50  
50  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes 1 : When the P45/TXD P-channel output disable biT control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
53  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version)  
Table 24. Absolute maximum ratings (Extended operating temperature version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 7.0  
Input voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P80, P81  
0.3 to VCC +0.3  
VI  
V
Input voltage P70P77  
Input voltage VL1  
Input voltage VL2  
Input voltage VL3  
Input voltage C1, C2  
0.3 to VCC +0.3  
0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
V
V
VI  
VI  
VI  
VI  
VI  
VI  
VO  
All voltages are based on VSS.  
Output transistors are cut off.  
VL2 to 7.0  
0.3 to 7.0  
0.3 to VCC +0.3  
0.3 to 7.0  
Input voltage RESET, XIN  
Output voltage C1, C2  
0.3 to VCC  
0.3 to VL3  
At output port  
Output voltage P00P07, P10P15, P30P37  
VO  
VO  
At segment output  
Output voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P71P77,  
P80, P81  
0.3 to VCC +0.3  
V
VO  
0.3 to 7.0  
0.3 to VL3  
0.3 to VCC +0.3  
300  
Output voltage VL3  
V
V
VO  
Output voltage VL2, SEG0SEG17  
Output voltage XOUT  
Power dissipation  
VO  
V
Pd  
Ta = 25°C  
mW  
°C  
°C  
Topr  
Tstg  
40 to 85  
Operating temperature  
Storage temperature  
65 to 150  
Table 25. Recommended operating conditions (Extendetemperature version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, and VCC = 3.0 to 50 to 20°C, unless otherwise noted.)  
Limits  
Symbol  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
5.0  
5.0  
0
Max.  
d mode f(XIN)=8 MHz  
4.0  
2.5  
3.0  
2.5  
3.0  
5.5  
5.5  
5.5  
5.5  
5.5  
-speed mode  
N) = 8 MHz  
Ta = 20 to 85°C  
Ta = 40 to 20°C  
Ta = 20 to 85°C  
Ta = 40 to 20°C  
VCC  
Power source voltage  
Low-speed mode  
VSS  
Power source vol
V
V
V
V
VREF  
AVSS  
A-D conversion referce voltage  
Analog power source voltage  
Analog input voltage  
2.0  
VCC  
0
VCC  
VCC  
AN0AN7  
AVSS  
VIA  
VIH  
Hinput voltage  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
0.7VCC  
V
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
VCC  
VCC  
VCC  
V
V
V
VIH  
VIH  
VIH  
0.8VCC  
0.8VCC  
0.8VCC  
RESET  
XIN  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
0
0.3VCC  
0.2VCC  
VIL  
VIL  
V
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
V
V
V
0
0
0
RESET  
XIN  
0.2VCC  
0.2VCC  
VIL  
VIL  
54  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 26. Recommended operating conditions (Extended operating temperature version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20°C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
P0 , P1 P17, P20P27, P30P37 (Note 1)  
Unit  
Min.  
Max.  
ΣIOH(peak)  
ΣIOH(peak)  
20  
mA  
mA  
Htotal peak output current  
Htotal peak output current  
P0  
0
7
0
P40P47,P50P57, P60P67, P71P77, P80, P81  
(Note 1)  
20  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
Ltotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
P0  
P40P47,P50P57, P60P67, P80, P81 (Note 1)  
P7 P7 (Note 1)  
0P07, P10P17, P20P27, P30P37 (Note 1)  
20  
20  
mA  
mA  
mA  
mA  
1
7
40  
Htotal average output current P00P07, P10P17, P20P27, P30P37 (Note 1)  
10  
Htotal average output current P40P47, P50P57, P60P67, P70P71, P80, P81  
ΣIOH(avg)  
mA  
mA  
10  
(Note 1)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
Ltotal average output current P00P07, P10P17, P20P27, P30P37 (Note 1)  
Ltotal average output current P40P47, P50P57, P60P67, P80, P81 (Note 1)  
Ltotal average output current P71P77 (Note 1)  
10  
10  
mA  
mA  
20  
0.5  
Hpeak output current  
Hpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
mA  
mA  
P16, P17, P20P27, P40P47, P50P57, P60
P71P77, P80, P81 (Note 2)  
5.0  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
5.0  
10  
mA  
mA  
mA  
mA  
mA  
mA  
Lpeak output current  
Lpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
P16, P17, P20P27, P40P47, P50P,  
P71P77, P80, P81 (Note 2)  
0.1  
2.5  
2.5  
Haverage output current  
Haverage output current  
P00P07, P10P15, P30P37 (
P16, P17, P20P27, P40P4P60P67,  
P71P77, P80, P81 (Note
Haverage output current  
Haverage output current  
P00P07, P10P15, Pte 3)  
P16, P17, P20P2P50P57, P60P67,  
P71P77, P80,
5.0  
VCC 5.5 V)  
MHz  
MHz  
f(CNTR0)  
f(CNTR1)  
4.0  
Input frequency for timers X and Y  
(duty cycle 50%)  
4.0 V)  
(2VCC)4  
gh-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
MHz  
Main clock input oscillation freque
(Note 4)  
f(XIN)  
High-speed mode  
(VCC 4.0 V)  
(4VCC)8  
MHz  
kHz  
8.0  
50  
Middle-speed mode  
f(XCIN)  
Sub-clock input oscillati(Note 4, 5)  
32.768  
Notes 1 : The total output current iall the currents flowing through all the applicable ports. The total average current is an av-  
erage value measured s. The total peak current is the peak value of all the currents.  
2 : The peak output curreak current flowing in each port.  
3 : The average output currs an average value measured over 100 ms.  
4 : When the oscillation frequency has a duty cycle of 50%.  
5 : When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that  
f(XCIN) < f(XIN)/3.  
55  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 27. Electrical characteristics (Extended operating temperature version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, and VCC = 3.0 to 5.5V, Ta = 40 to 20°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = 2.5 mA  
Unit  
Min.  
Max.  
VCC2.0  
V
V
VOH  
Houtput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0
P3  
7
IOH = 0.6 mA  
VCC = 3.0 V  
IOH = 5 mA  
IOH = 1.25 mA  
IOH = 1.25 mA  
VCC = 3.0 V  
IOL = 5 mA  
VCC0.9  
VCC2.0  
VCC0.5  
V
V
Houtput voltage P1  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
P6  
7
,P4  
0
P4  
1
7
,
7
VOH  
VOL  
P5  
P8  
0
7
, P7  
P7  
,
VCC0.9  
V
2.0  
0.5  
V
V
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 3.0 V  
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 3.0 V  
Loutput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0P3  
7
1.1  
V
2.0  
0.5  
V
V
Loutput voltage P1  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
P6  
7
,P4  
0
P4  
1
7
,
7
P5  
P8  
0
7
, P7  
P7  
,
VOL  
1.1  
V
V
Hysteresis  
INT0INT3, ADT, CNTR0,  
CNTR1, P20P27  
0.5  
VT+ VT–  
Hysteresis  
S
CLK, R  
X
D
0.5  
0.5  
VT+ VT–  
VT+ VT–  
V
V
Hysteresis  
RESET  
RESET: V5.5 V  
VI =
Hinput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P2  
7
,P4  
0
P4  
P7  
7
,
,
µA  
IIH  
5.0  
5.0  
0
P6  
7
, P7  
0
7
IIH  
IIH  
µA  
µA  
Hinput current  
Hinput current  
RESET  
C  
4.0  
X
IN  
VSS  
ull-ups off”  
µA  
µA  
µA  
5.0  
140  
45  
Linput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P2  
7
VCC = 5 V, VI = VSS  
Pull-ups on”  
0
P
IIL  
70  
25  
30  
VCC = 3 V, VI = VSS  
Pull-ups on”  
6.0  
Linput current  
P7  
0
5.0  
5.0  
µA  
µA  
µA  
IIL  
IIL  
IIL  
VI = VSS  
VI = VSS  
Linput current  
Linput current  
R
4.0  
V
CC = 5.0 V, V  
O
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs off”  
Output transistors off”  
µA  
µA  
µA  
µA  
70  
170  
55  
30  
ILOAD  
ILEAK  
Output load current P00P07, P10P15, P30P37  
V
CC = 3.0 V, VO  
25  
6.0  
V
O
5.0  
Output leak current P00P07, P10P15, P30P37  
V
O
= VSS, Pull-downs off”  
5.0  
Output transistors off”  
Note : When 1is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P80 is different from the  
value above mentioned.  
56  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 28. Electrical characteristics (Extended operating temperature version)  
(VCC = 2.5 to 5.5 V, Ta = 20 to 85°C, and VCC = 3.0 to 5.5 V, Ta = 40 to 20°C, unless otherwise noted.)  
Limits  
Typ.  
Symbol  
Parameter  
RAM retention voltage  
Test conditions  
At clock stop mode  
Unit  
V
Min.  
2.0  
Max.  
5.5  
VRAM  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
mA  
mA  
6.4  
1.6  
f(XCIN) = 32.768 kHz  
13  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
3.2  
Output transistors off”  
A-D converter in operating  
Low-speed mode, VCC = 5 V, Ta 55
f(XIN) = stopped  
µA  
µA  
µA  
36  
14  
25  
7.0  
15  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VC5°C  
f(XIN) = stopped  
f(XCIN) = 32.7IT state)  
Output tra
Low-spC = 3 V, Ta 55°C  
f(X
22  
768 kHz  
ansistors off”  
eed mode, VCC = 3 V, Ta = 25°C  
IN) = stopped  
9.0  
µA  
µA  
4.5  
0.1  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25°C  
Ta = 85°C  
1.0  
10  
VL1  
IL1  
1.3  
1.8  
3.0  
10  
Power source voltage  
2.3  
6.0  
50  
V
When using voltage multiplier  
VL1 = 1.8 V  
Power source curr
(Note)  
µA  
VL1 < 1.3 V  
Note : When the voltage multiplier corol bit of the LCD mode register (bit 4 at address 003916) is 1.  
Table 29. A-D converter characteristics (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 40 to 85°C, 4 MHz f(XIN) 8 MHz, in middle-/high-speed mode, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
LSB  
Absolute accuracy (excluding quantization error)  
V
CC = VREF = 5 V  
±2  
12.5  
(Note)  
µs  
tCONV  
Conversion time  
f(XIN) = 8 MHz  
RLADDER  
IVREF  
IIA  
Ladder resistor  
35  
kΩ  
µA  
µA  
12  
50  
100  
200  
5.0  
Reference input current  
Analog iinput current  
150  
V
REF = 5 V  
Note : When an internal trigger is used in middle-speed mode, it is 14 µs.  
57  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 30. Timing reguirements 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 40 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
20  
100  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is 0
Table 31. Timing reguirements 2 (Extended operating temperature version
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, and VCC = 3.0 to 4.0 V, VS40 to 20°C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
2
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
125  
45  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
twH(XIN)  
twL(XIN)  
40  
500/  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
(VCC2)  
250/  
(VCC2)20  
twH(CNTR)  
CNTR0, CNTR1 input Hpuls
250/  
(VCC2)20  
twL(CNTR)  
CNTR0, CNTR1 input L
ns  
twH(INT)  
twL(INT)  
tc(SCLK)  
230  
230  
2000  
950  
950  
400  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
INT0 to INT3 input dth  
INT0 to INT3 inpwidth  
Serial I/O clock inpucle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is 0(UART).  
58  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 32. Switching characteristics 1 (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 40 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Min.  
Max.  
Typ.  
twH(SCLK)  
twL(SCLK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
c(SCLK  
c(SCLK  
)
/230  
/230  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
)
t
t
d(SCLKT  
v(SCLKT  
X
D)  
140  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
30  
30  
30  
30  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
Table 33. Switching characteristics 2 (Extended operating temperature version)  
(VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, and VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = 40 to ss otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
.  
Typ.  
Max.  
350  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
t
CLK  
)
)
/250  
/250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
c(SCLK  
t
t
d(SCLKT  
v(SCLKT  
X
D)  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
50  
50  
50  
50  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes 1 : When the P45/TXD P-channel output disable bit control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
59  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (M Version)  
Table 34. Absolute maximum ratings (M version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 7.0  
Input voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P80, P81  
0.3 to VCC +0.3  
VI  
V
Input voltage P70P77  
Input voltage VL1  
Input voltage VL2  
Input voltage VL3  
Input voltage C1, C2  
0.3 to VCC +0.3  
0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
V
V
VI  
VI  
VI  
VI  
VI  
VI  
VO  
All voltages are based on VSS.  
Output transistors are cut off.  
VL2 to 7.0  
0.3 to 7.0  
0.3 to VCC +0.3  
0.3 to 7.0  
Input voltage RESET, XIN  
Output voltage C1, C2  
0.3 to VCC  
0.3 to VL3  
At output port  
Output voltage P00P07, P10P15, P30P37  
VO  
VO  
At segment output  
Output voltage P16, P17, P20P27, P40P47,  
P50P57, P60P67, P71P77  
P80, P81  
0.3 to VCC +0.3  
V
VO  
0.3 to 7.0  
0.3 to VL3  
0.3 to VCC +0.3  
300  
Output voltage VL3  
V
V
VO  
Output voltage VL2, SEG0SEG17  
Output voltage XOUT  
Power dissipation  
VO  
V
Pd  
Ta = 25°C  
mW  
°C  
°C  
Topr  
Tstg  
20 to 85  
Operating temperature  
Storage temperature  
40 to 125  
Table 35. Recommended operating conditions (M vers
(VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise
Limits  
Symbol  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
ed mode, f(XIN)=8 MHz  
-speed mode, f(XIN) = 8 MHz  
w-speed mode  
4.0  
2.2  
2.2  
5.5  
5.5  
5.5  
VCC  
Power source voltage  
VSS  
Power source volta
V
V
V
V
2.0  
VCC  
VREF  
AVSS  
VIA  
A-D conversion tage  
Analog power souage  
Analog input voltage  
0
AVSS  
VCC  
VCC  
AN0AN7  
Hinput voltage  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
0.7VCC  
VIH  
V
VCC  
VCC  
VCC  
VIH  
VIH  
VIH  
V
V
V
Hinput voltage  
Hinput voltage  
Hinput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
0.8VCC  
0.8VCC  
0.8VCC  
RESET  
XIN  
P16, P17, P40, P41, P45, P47, P52, P53, P56,  
P60P67, P70P77, P80, P81 (CM4=0)  
0.3VCC  
VIL  
0
V
0.2VCC  
0.2VCC  
0.2VCC  
Linput voltage  
Linput voltage  
Linput voltage  
P20P27, P42P44, P46, P50, P51, P54, P55, P57  
V
V
V
0
0
0
VIL  
VIL  
VIL  
RESET  
XIN  
60  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 36. Recommended operating conditions (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
P0 , P1 P1  
Min.  
Max.  
Typ.  
ΣIOH(peak)  
ΣIOH(peak)  
Htotal peak output current  
Htotal peak output current  
P0  
0
7
0
7
, P2  
0
P2  
7
, P3  
0
P3  
7
(Note 1)  
20  
mA  
mA  
P40P47,P50P57, P60P67, P71P77, P80, P81  
(Note 1)  
20  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
Ltotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
P0  
P40P47,P50P57, P60P67, P80, P81 (Note 1)  
P7 P7 (Note 1)  
0P07, P10P17, P20P27, P30P37 (Note 1)  
20  
20  
mA  
mA  
mA  
mA  
1
7
40  
Htotal average output current P00P07, P10P17, P20P27, P30P37 (Note 1)  
10  
Htotal average output current P40P47, P50P57, P60P67, P71P77, P80, P81  
ΣIOH(avg)  
mA  
mA  
10  
(Note 1)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
Ltotal average output current P00P07, P10P17, P20P27, P30P37 (Note 1)  
Ltotal average output current P40P47, P50P57, P60P67, P80, P81 (Note 1)  
Ltotal average output current P71P77 (Note 1)  
10  
10  
mA  
mA  
20  
0.5  
Hpeak output current  
Hpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
mA  
mA  
P16, P17, P20P27, P40P47, P50P57, P60P
P71P77, P80, P81 (Note 2)  
5.0  
IOH(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOH(avg)  
IOL(avg)  
IOL(avg)  
5.0  
10  
mA  
mA  
mA  
mA  
mA  
mA  
Lpeak output current  
Lpeak output current  
P00P07, P10P15, P30P37 (Note 2)  
P16, P17, P20P27, P40P47, P50P
P71P77, P80, P81 (Note 2)  
0.1  
2.5  
2.5  
Haverage output current  
Haverage output current  
P00P07, P10P15, P30P37 (
P16, P17, P20P27, P40P4P60P67,  
P71P77, P80, P81 (Note
Haverage output current  
Haverage output current  
P00P07, P10P15, Pe 3)  
P16, P17, P20P250P57, P60P67,  
P71P77, P80, P
5.0  
CC 5.5 V)  
4.0  
MHz  
MHz  
MHz  
Input frequency for timers X and Y  
(duty cycle 50%)  
f(CNTR0)  
f(CNTR1)  
(10 VCC  
V VCC 4.0 V)  
4) / 9  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
Main clock input oscillation freq
(Note 4)  
f(XIN)  
High-speed mode  
(2.2 V VCC 4.0 V)  
(20 VCC  
MHz  
8) / 9  
Middle-speed mode  
MHz  
kHz  
8.0  
50  
Sub-clock input oscillcy (Note 4, 5)  
f(XCIN)  
32.768  
Notes 1 : The total output curreof all the currents flowing through all the applicable ports. The total average current is an av-  
erage value measurems. The total peak current is the peak value of all the currents.  
2 : The peak output current e peak current flowing in each port.  
3 : The average output current is an average value measured over 100 ms.  
4 : When the oscillation frequency has a duty cycle of 50%.  
5 : When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that  
f(XCIN) < f(XIN)/3.  
61  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 37. Electrical characteristics (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
VCC2.0  
IOH = 2.5 mA  
IOH = 0.25 mA  
VCC = 2.2 V  
V
V
VOH  
Houtput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0P3  
7
VCC0.8  
VCC2.0  
VCC0.5  
V
V
IOH = 5 mA  
IOH = 1.25 mA  
IOH = 1.25 mA  
VCC = 2.2 V  
Houtput voltage P1  
6
0
0
, P1  
P5  
, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
7
,P4  
0
P4  
P7  
7
,
,
VOH  
VOL  
P5  
P8  
0
P6  
7
, P7  
1
7
VCC0.8  
V
IOL = 5 mA  
V
V
2.0  
0.5  
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.2 V  
Loutput voltage P0  
0P0  
7
, P1  
0
P1  
5
, P3  
0
P3  
7
0.8  
V
IOL = 10 mA  
IOL = 2.5 mA  
IOL = 2.5 mA  
VCC = 2.2 V  
V
V
2.0  
0.5  
Loutput voltage P1  
6
0
0
, P1  
P5  
, P8  
7
7
1
, P2  
, P6  
(Note)  
0
P2  
7
,P4  
0
P4  
P7  
7
,
,
P5  
P8  
0
P6  
7
, P7  
1
7
VOL  
0.8  
V
V
Hysteresis  
INT0INT3, ADT, CNTR0,  
CNTR1, P20P27  
0.5  
VT+ VT–  
Hysteresis  
S
CLK, R  
X
D
0.5  
0.5  
VT+ VT–  
VT+ VT–  
V
V
Hysteresis  
RESET  
RESET: o 5.5 V  
VI
Hinput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P2  
7
,P4  
0
P4  
P7  
7
,
,
µA  
IIH  
5.0  
5.0  
0
P6  
7
, P7  
0
7
IIH  
IIH  
µA  
µA  
Hinput current  
Hinput current  
RESET  
CC  
4.0  
X
IN  
= VSS  
Pull-ups off”  
µA  
µA  
µA  
5.0  
140  
45  
Linput current  
P1  
P5  
P8  
6, P1  
0P5  
0, P8  
7
7
1
, P2  
, P6  
0
P
VCC = 5 V, VI = VSS  
Pull-ups on”  
0
7
,
IIL  
70  
25  
30  
VCC = 2.2 V, VI = VSS  
Pull-ups on”  
6.0  
Linput current  
P7  
5.0  
5.0  
µA  
µA  
µA  
IIL  
IIL  
IIL  
VI = VSS  
VI = VSS  
Linput current  
Linput current  
4.0  
V
CC = 5.0 V, V  
O
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs on”  
Output transistors off”  
= VCC, Pull-downs off”  
Output transistors off”  
µA  
µA  
µA  
µA  
70  
140  
45  
30  
ILOAD  
ILEAK  
Output load current P00P07, P10P15, P30P37  
V
CC = 2.2 V, VO  
25  
6.0  
V
O
5.0  
Output leak current P00P07, P10P15, P30P37  
V
O
= VSS, Pull-downs off”  
5.0  
Output transistors off”  
Note : When 1is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P80 is different from the  
value above mentioned.  
62  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 38. Electrical characteristics (M version)  
(VCC = 2.2 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
RAM retention voltage  
Test conditions  
Unit  
V
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
At clock stop mode  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
mA  
mA  
6.4  
f(XCIN) = 32.768 kHz  
13  
Output transistors off”  
A-D converter in operating  
High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
1.6  
3.2  
Output transistors off”  
A-D converter in operating  
Low-speed mode, VCC = 5 V, Ta 5
f(XIN) = stopped  
µA  
µA  
µA  
36  
14  
25  
7.0  
15  
f(XCIN) = 32.768 kHz  
Output transistors off”  
ICC  
Power source current  
Low-speed mode, VC5°C  
f(XIN) = stopped  
f(XCIN) = 32.WIT state)  
Output tr”  
Low-spCC = 3 V, Ta 55°C  
f(Xd  
22  
.768 kHz  
ansistors off”  
peed mode, VCC = 3 V, Ta = 25°C  
XIN) = stopped  
9.0  
µA  
µA  
4.5  
0.1  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors off”  
All oscillation stopped  
(in STP state)  
Output transistors off”  
Ta = 25°C  
1.0  
10  
Ta = 85°C  
VL1  
IL1  
1.3  
1.8  
3.0  
10  
Power source voltage  
2.3  
6.0  
50  
V
When using voltage multiplier  
VL1 = 1.8 V  
Power source cur
(Note)  
µA  
VL1 < 1.3 V  
Note : When the voltage multiplier cotrol bit of the LCD mode register (bit 4 at address 003916) is 1.  
Table 39. A-D converter characteristics (M version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, 4 MHz f(XIN) 8 MHz, in middle-/high-speed mode, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
LSB  
Absolute accuracy (excluding quantization error)  
V
CC = VREF = 5 V  
±2  
12.5  
(Note)  
µs  
tCONV  
Conversion time  
f(XIN) = 8 MHz  
RLADDER  
IVREF  
IIA  
Ladder resistor  
35  
kΩ  
µA  
µA  
12  
50  
100  
200  
5.0  
Reference input current  
Analog iinput current  
150  
V
REF = 5 V  
Note : When an internal trigger is used in middle-speed mode, it is 14 µs.  
63  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 40. Timing reguirements 1 (M Version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input Hpulse width  
CNTR0, CNTR1 input Lpulse width  
INT0 to INT3 input Hpulse width  
INT0 to INT3 input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
tc(SCLK)  
250  
105  
105  
80  
80  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
800  
370  
370  
20  
100  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is
Table 41. Timing reguirements 2 (M Version)  
(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Typ.  
tw(RESET)  
tc(XIN)  
Reset input Lpulse width  
µs  
ns  
ns  
ns  
2
Main clock input cycle time (XIN input)  
Main clock input Hpulse width  
Main clock input Lpulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
900 /  
tc(CNTR)  
CNTR0, CNTR1 input cycle time  
ns  
ns  
(VCC 0.4)  
450 /  
(VCC 0.4) 20  
twH(CNTR)  
CNTR0, CNTR1 input Hpul
450 /  
(VCC 0.4) 20  
twL(CNTR)  
CNTR0, CNTR1 input h  
ns  
twH(INT)  
twL(INT)  
tc(SCLK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
INT0 to INT3 inpuidth  
INT0 to INT3 input e width  
Serial I/O clock input ycle time (Note)  
Serial I/O clock input Hpulse width (Note)  
Serial I/O clock input Lpulse width (Note)  
Serial I/O input set up time  
230  
230  
2000  
950  
950  
400  
200  
twH(SCLK)  
twL(SCLK)  
t
t
su(R  
X
DSCLK  
D)  
)
h(SCLKR  
X
Serial I/O input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is 1(Clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is 0(UART).  
64  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 42. Switching characteristics 1 (M version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Unit  
Symbol  
Parameter  
Serial I/O clock output Hpulse width  
Min.  
Typ.  
Max.  
twH(SCLK)  
twL(SCLK)  
t
t
c(SCLK  
)
/230  
/230  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
c(SCLK  
)
t
t
d(SCLKT  
v(SCLKT  
X
D)  
140  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
30  
30  
30  
30  
tr(CMOS)  
tf(CMOS)  
10  
10  
Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
Table 43. Switching characteristics 2 (M version)  
(VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = 20 to 85°C, unless otherwise noted.)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
twH(SCLK)  
twL(SCLK)  
Serial I/O clock output Hpulse width  
t
t
c(SCLK  
)
)
/250  
/250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O clock output Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
c(SCLK  
t
t
d(SCLKT  
v(SCLKT  
X
D)  
X
D)  
30  
tr(SCLK)  
tf(SCLK)  
50  
50  
50  
50  
tr(CMOS)  
tf(CMOS)  
20  
20  
Notes 1 : When the P45/TXD P-channel output disable RT control register (bit 4 of address 001B16) is 0.  
2 : XOUT and XCOUT pins are excluded.  
1 kΩ  
Measurement output
Measurement output pin  
100 pF  
100 pF  
CMOS output  
N-channel open-drain output (Note)  
Note: When bit 4 of the UART control register (address  
001B16) is 1(N-channel open-drain output mode).  
Fig. 46 Circuit for measuring output switching characteristics  
65  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
t
C(CNTR)  
t
WH(CNTR)  
tWL(CNTR)  
0.8VCC  
CNTR0, CNTR1  
0.2VCC  
t
WH(INT)  
tWL(INT)  
INT0INT3  
0.8VCC  
0.2VCC  
t
W(RESET)  
0.8VCC  
0.2VCC  
RESET  
(XIN)  
t
WL(XIN)  
t
0.
X
IN  
0.2VCC  
t
C(SCLK)  
t
r
t
f
tWH(SCLK)  
t
WL(SCLK)  
0.8VCC  
h(SCLK-R  
0.2VCC  
S
CLK  
t
su(R  
X
D-SCLK  
)
t
XD)  
0.8VCC  
0.2VCC  
RXD  
t
d(SCLK-T  
X
D)  
tv(SCLK-TXD)  
T
XD  
Fig. 47 Timing diagram  
66  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINES  
MMP  
100P6S-A  
Plastic 100pin 1420mm body QFP  
EIAJ Package Code  
QFP100-P-1420-0.65  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
MD  
HD  
D
100  
81  
1
80  
I2  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.25  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.4  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.13  
0.1  
10°  
A
A1  
0.1  
2.8  
0.3  
0.15  
14.0  
20.0  
0.65  
16.8  
22.8  
0.6  
1.4  
30  
51  
E
e
31  
50  
HD  
HE  
L
L1  
x
A
y
F
b2  
I2  
MD  
ME  
0.35  
14.6  
20.6  
e
b
L
x
M
etail F  
y
MMP  
100P6Q-A  
Plastic 100pin 1414mm body LQFP  
EIAJ Package Code  
JEDEC Code  
Lead Material  
Cu Alloy  
MD  
LQFP100-P-1414-0.50  
HD  
D
100  
l2  
Recommended Mount Pad  
1
75  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
0.1  
Max  
1.7  
0.2  
0.28  
0.175  
14.1  
14.1  
A
A1  
A2  
b
c
D
1.4  
0.13  
0.105  
13.9  
13.9  
0.18  
0.125  
14.0  
14.0  
0.5  
E
e
25  
51  
HD  
HE  
L
L1  
Lp  
A3  
x
15.8  
15.8  
0.3  
0.45  
0°  
16.0  
16.0  
0.5  
1.0  
0.6  
0.25  
16.2  
16.2  
0.7  
0.75  
0.08  
0.1  
10°  
26  
50  
A
L1  
F
e
y
b
x
y
L
M
b2  
I2  
MD  
ME  
0.225  
14.4  
14.4  
0.9  
Lp  
Detail F  
67  
MITSUBISHI MICROCOMPUTERS  
3825 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MMP  
100PFB-A  
Plastic 100pin 1212mm body TQFP  
EIAJ Package Code  
TQFP100-P-1212-0.40  
JEDEC Code  
Weight(g)  
0.37  
Lead Material  
Cu Alloy  
MD  
HD  
D
100  
76  
I2  
1
75  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0.05  
0.13  
0.105  
11.9  
11.9  
Nom  
0.1  
Max  
1.2  
0.15  
0.23  
0.175  
12.1  
12.1  
A
A1  
A2  
b
c
1.0  
0.18  
0.125  
12.0  
12.0  
0.4  
25  
51  
E  
L
L1  
Lp  
A3  
x
13.8  
13.8  
0.4  
0.45  
0°  
14.0  
14.0  
0.5  
1.0  
0.6  
0.25  
14.2  
14.2  
0.6  
0.75  
0.07  
0.08  
10°  
26  
50  
A
L1  
e
F
y
b2  
I2  
MD  
ME  
0.225  
12.4  
12.4  
L
b
1.0  
y
x
M
Lp  
100D0  
Glass seal 100pin QFN  
EIAJ Package Code  
JEDEC Code  
W
5.0MAX  
3.5TYP  
18.85±0.15  
0.65TYP 0.45TYP  
21.0
51  
50  
80  
81  
31  
100  
1
30 1.075TYP  
INDEX  
68  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to  
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable  
material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property  
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by  
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision  
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric  
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved  
destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2001 MITSUBISHI ELECTRIC CORP.  
Specifications subject to change without notice.  
REVISION HISTORY  
3825 GROUP DATA SHEET  
Rev.  
Date  
Description  
Summary  
Page  
First Edition  
1.0  
2.0  
2.1  
01/23/98  
05/15/98  
07/13/99  
Low power source version is added.  
The followings are mainly revised:  
7 to 10 Group expnasion  
17  
43  
53  
(11) Port P70 of port bock diagram  
Name in Table 11  
The “L” input current parameter of IIL in Tables 25 and 35 is not P70–P77 but P71–  
P77.  
“•2 Clock generating circuits” of “FEATURES” iiminated.  
“•Power source voltage” of “FEATURES” is ed.  
“Function” of “Vcc, Vss” into Table 1 is pad.  
Figure 4 is partly revised.  
Clause name and explanations of “GRANSION (STANDARD, ONE TIME  
PROM VERSION, EPROM VERSpartly revised.  
Table 3 is partly eliminated.  
1
1
4
6
7
3.0  
12/11/00  
8
Table 4 is partly eliminated.  
9
Clause name and explanaROUP EXPANSION (M VERSION)” are partly  
revised.  
10  
Figure name of Figuly revised.  
10  
Explanations of “CPROCESSING UNIT (CPU)” are added.  
(12), (13), (14) 15 is partly revised.  
Figure 19 is ed.  
11 to 13  
20  
24  
Figure 31 vised.  
34  
ExplanaRESET CIRCUIT” are partly revised.  
Figurrtly revised.  
40  
40  
Exof “CLOCK GENERATING CIRCUIT” are partly eliminated.  
is partly revised.  
42  
43  
ations of “Decimal Calculations” of “NOTES ON PROGRAMMING” are partly  
nated.  
45  
xplanations of “DATA REQUIRED FOR MASK ORDERS” are partly added.  
Explanations of “DATA REQUIRED FOR WRITING ORDERS” in Rev.2.1 are elimi-  
nated.  
46  
46  
Note number of “IOH(avg) P00–P07, P10–P15, P30–P37” into Table 16 is revised.  
Test conditions of Icc into Table 18 are partly revised.  
Test conditions of Icc into Table 28 are partly revised.  
Table names of Tables 34 to 43 are partly revised.  
Limits of AVss into Table 35 is partly revised.  
Parameter of ΣIOH(avg) into Table 36 is partly revised.  
Test conditions of Icc into Table 38 is partly revised.  
48  
50  
57  
60 to 65  
60  
61  
63  
3.1  
02/06/01 22  
Explanations of “Notes on interrupts” are partly revised.  
Figure 19 is partly revised.  
Notes on serial I/O” is added.  
24  
30  
46  
Explanations of “DATA REQUIRED FOR MASK ORDERS” are partly revised.  
(1/1)  

相关型号:

M38060E3-FS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38060E3AFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3DFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3DFS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3H-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E3XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E4-FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E4-FS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38060E4-XXXFP

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38060E4-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS