M38063ED-XXXFP [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38063ED-XXXFP
型号: M38063ED-XXXFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总80页 (文件大小:1551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timers ........................................................... 8-bit 3, 16-bit 2  
Serial I/O1 ..................... 8-bit 1 (UART or Clock-synchronous)  
Serial I/O2 .................................... 8-bit 1 (Clock-synchronous)  
PWM output .................................................................... 8-bit 1  
A-D converter .................................................. 8-bit 8 channels  
D-A converter .................................................. 8-bit 2 channels  
.................................... (used as the DTMF and CTCSS function)  
LCD drive control circuit  
DESCRIPTION  
The 3826 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
The 3826 group has the LCD drive control circuit, an 8-channel A-  
D/D-A converter, UART and PWM as additional functions.  
The various microcomputers in the 3826 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
Bias ................................................................................... 1/2, 1/3  
Duty ............................................................................ 1/2, 1/3, 1/4  
Common output .......................................................................... 4  
Segment output......................................................................... 40  
2 Clock generating circuits  
For details on availability of microcomputers in the 3826 Group,  
refer the section on group expansion.  
FEATURES  
Basic machine-language instructions ....................................... 71  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Watchdog timer ............................................................. 14-bit 1  
Power source voltage ................................................ 2.5 to 5.5 V  
............................................ (2.2 to 5.5 V for low voltage version)  
Power dissipation  
The minimum instruction execution time ............................ 0.5 µs  
(at 8 MHz oscillation frequency)  
Memory size  
ROM ................................................................ 32 K to 60 K bytes  
RAM ............................................................... 1024 to 2560 bytes  
In high-speed mode ........................................................... 40 mW  
(at 8 MHz oscillation frequency, at 5 V power source voltage)  
In low-speed mode..............................................................60 µW  
(at 32 kHz oscillation frequency, at 3 V power source voltage)  
Operating temperature range ................................... – 20 to 85°C  
Programmable input/output ports ............................................. 55  
Software pull-up resistors .................................................... Built-in  
Output ports ................................................................................. 8  
Input ports .................................................................................... 1  
Interrupts .................................................. 17 sources, 16 vectors  
(includes key input interrupt)  
APPLICATIONS  
Camera, household appliances, consumer electronics, etc.  
PIN CONFIGURATION (TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
81  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
9
8
7
6
5
4
3
2
1
0
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
6
7
0
1
2
3
4
5
6
7
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
M38268MCLXXXFP  
V
X
X
X
X
SS  
V
CC  
REF  
AVSS  
OUT  
IN  
V
COUT  
CIN  
COM  
COM  
COM  
COM  
3
2
1
0
RESET  
P7  
P7  
P7  
P7  
0
1
2
3
/INT0  
VL3  
VL2  
C
2
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Package type : 100P6S-A  
Fig. 1 Pin configuration of M38268MCLXXXFP  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
SEG12  
SEG11  
SEG10  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
P1  
P1  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
4
5
6
7
0
1
2
3
4
5
6
7
/SEG38  
/SEG39  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
SEG  
9
8
7
6
5
4
3
2
1
0
V
X
X
X
X
SS  
M38268MCLXXXGP  
OUT  
IN  
V
CC  
REF  
AVSS  
V
COUT  
CIN  
COM  
COM  
COM  
COM  
3
2
1
0
RESET  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
0
1
2
3
4
5
6
/INT0  
VL3  
VL2  
C
C
2
1
VL1  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
Package type : 100P6Q-A  
Fig. 2 Pin configuration of M38268MCLXXXGP  
2
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
t p u r r e t n i ) p u e k a w n o - y e K ( t u p n i y e K  
n o i t c n u f t r o p e m i t l a e R  
N I , 1 T N I  
T D A  
0 T N I  
Fig. 3 Functional block diagram  
3
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1 Pin description (1)  
Pin  
Name  
Function  
Function except a port function  
VCC, VSS  
VREF  
Power source  
•Apply voltage of 2.5 V to 5.5 V (2.2 V to 5.5 V for low voltage version) to VCC, and 0 V to VSS.  
•Reference voltage input pin for A-D converter.  
Analog refer-  
ence voltage  
AVSS  
Analog power  
source  
•GND input pin for A-D converter.  
•Connect to VSS.  
Reset input  
Clock input  
•Reset input pin for active “L”.  
RESET  
XIN  
•Input and output pins for the main clock generating circuit.  
•Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set  
the oscillation frequency.  
XOUT  
Clock output  
•If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open. A  
feedback resistor is built-in.  
LCD power  
source  
•Input 0 VL1 VL2 VL3 voltage.  
VL1–VL3  
C1, C2  
•Input 0 – VL3 voltage to LCD. (0 VL1 VL2 VL3 when a voltage is multiplied.)  
Charge-pump  
capacitor pin  
•External capacitor pins for a voltage multiplier (3 times) of LCD contorl.  
Common output  
•LCD common output pins.  
COM0–COM3  
•COM2 and COM3 are not used at 1/2 duty ratio.  
•COM3 is not used at 1/3 duty ratio.  
•LCD segment output pins.  
SEG0–SEG17 Segment output  
P00/SEG26–  
P07/SEG33  
I/O port P0  
•8-bit I/O port.  
•LCD segment output pins  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•I/O direction register allows each 8-bit pin to be pro-  
grammed as either input or output.  
P10/SEG34– I/O port P1  
P15/SEG39  
•6-bit I/O port with same function as port P0.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•I/O direction register allows each 6-bit pin to be pro-  
grammed as either input or output.  
P16, P17  
•2-bit I/O port.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•I/O direction register allows each pin to be individually programmred as either input or output.  
•Pull-up control is enabled.  
P20 – P27  
•8-bit I/O port with same function as P16 and P17.  
•CMOS compatible input level.  
•Key input (key-on wake-up) interrupt  
input pins  
I/O port P2  
•CMOS 3-state output structure.  
•Pull-up control is enabled.  
•LCD segment output pins  
P3  
P3  
0
7
/SEG18  
/SEG25  
Output port P3  
•8-bit output port with same function as port P0.  
•CMOS 3-state output structure.  
•Port output control is enabled.  
4
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 2 Pin description (2)  
Pin  
Name  
Function  
Function except a port function  
P40  
I/O port P4  
1-bit I/O port with same function as P16 and P17.  
CMOS compatible input level.  
N-channel open-drain output structure.  
7-bit I/O port with same function as P16 and P17.  
CMOS compatible input level.  
Interrupt input pins  
P41/INT1,  
P42/INT2  
CMOS 3-state output structure.  
P43/φ/TOUT  
φ clock output pin  
Timer 2 output pin  
Pull-up control is enabled.  
P44/RXD,  
P45/TXD,  
P46/SCLK1,  
P47/SRDY1  
Serial I/O1 I/O pins  
P50/PWM0,  
P51/PWM1  
I/O port P5  
8-bit I/O port with same function as P16 and P17.  
CMOS compatible input level.  
PWM function pins  
CMOS 3-state output structure.  
Pull-up control is enabled.  
P52/RTP0,  
P53/RTP1  
Real time port function pins  
Timer X, Y function pins  
D-A conversion output pins  
P54/CNTR0,  
P55/CNTR1  
P56/DA1,  
P57/ADT/DA2  
P6  
P6  
P6  
P6  
0
/AN  
0
1
2
3
/SIN2,  
I/O port P6  
8-bit I/O port with same function as P16 and P17.  
CMOS compatible input level.  
A-D conversion input pins  
Serial I/O2 I/O pins  
1
2
3
/AN  
/AN  
/AN  
/SOUT2,  
/SCLK21,  
/SCLK22  
CMOS 3-state output structure.  
Pull-up control is enabled.  
P64/AN4–  
P67/AN7  
A-D conversion input pins  
Interrupt input pin  
Input port P7  
I/O port P7  
1-bit input port.  
P70/INT0  
7-bit I/O port with same function as P16 and P17.  
CMOS compatible input level.  
P71P77  
N-channel open-drain output structure.  
Sub-clock generating circuit I/O pins.  
XCOUT  
XCIN  
Sub-clock output  
Sub-clock input  
(Connect a resonator. External clock cannot be used.)  
5
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M3826  
8
M
C
L
XXX FP  
Package type  
FP : 100P6S-A package  
GP : 100P6Q-A package  
FS : 100D0  
ROM number  
Omitted in One Time PROM version  
shipped in blank and EPROM version.  
Characteristics  
:Standard  
L : Low voltage version  
ROM/PROM size  
1 : 4096 bytes  
2 : 8192 bytes  
3 : 12288 bytes  
4 : 16384 bytes  
5 : 20480 bytes  
6 : 24576 bytes  
7 : 28672 bytes  
8 : 32768 bytes  
9 : 36864 bytes  
A : 40960 bytes  
B : 45056 bytes  
C : 49152 bytes  
D : 53248 bytes  
E : 57344 bytes  
F : 61440 bytes  
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
M: Mask ROM version  
E: EPROM or One Time PROM version  
RAM size  
0 : 192 bytes  
1 : 256 bytes  
2 : 384 bytes  
3 : 512 bytes  
4 : 640 bytes  
5 : 768 bytes  
6 : 896 bytes  
7 : 1024 bytes  
8 : 1536 bytes  
9 : 2048 bytes  
A : 2560 bytes  
Fig. 4 Part numbering  
6
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Packages  
(One Time PROM Version, EPROM Version)  
Mitsubishi plans to expand the 3826 group (One Time PROM ver-  
sion, EPROM version) as follows.  
100P6Q-A .................................. 0.5 mm-pitch plastic molded QFP  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
100D0 .......................................... Ceramic LCC (EPROM version)  
Memory Type  
Support for One Time PROM version, EPROM version.  
Memory Size  
ROM/PROM size ............................................... 32 K to 60 K bytes  
RAM size .......................................................... 1024 to 2560 bytes  
3826 Group Memory Expansion Plan (One Time PROM version, EPROM version)  
Mass product  
M3826AEF  
ROM size (bytes)  
60K  
56K  
52K  
48K  
44K  
40K  
36K  
32K  
28K  
24K  
Mass product  
M38267E8  
20K  
16K  
12K  
8K  
4K  
192 256  
512  
768  
1024  
1280  
1536  
1792  
2048  
2304  
2560  
RAM size (bytes)  
Products under development or planning :the development schedule and specification may be revised without notice.  
Fig. 5 Memory expansion plan (One Time PROM version, EPROM version)  
Currently products are listed below.  
As of Nov. 2001  
Table 3. List of products (One Time PROM version, EPROM version)  
ROM size (bytes)  
ROM size for User in (  
Product  
RAM size (bytes)  
1024  
Package  
Remarks  
)
M38267E8FP  
M38267E8GP  
M3826AEFFP  
M3826AEFGP  
M3826AEFFS  
100P6S-A One Time PROM version (shipped in blank)  
100P6Q-A One Time PROM version (shipped in blank)  
100P6S-A One Time PROM version (shipped in blank)  
100P6Q-A One Time PROM version (shipped in blank)  
32768  
(32638)  
61440  
(61310)  
2560  
100D0  
EPROM version  
7
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION (Low Voltage Version)  
Mitsubishi plans to expand the 3826 group (low voltage version)  
as follows.  
Packages  
100P6Q-A .................................. 0.5 mm-pitch plastic molded QFP  
100P6S-A ................................ 0.65 mm-pitch plastic molded QFP  
Memory Type  
Support for Mask ROM version.  
Memory Size  
ROM/PROM size ............................................... 32 K to 60 K bytes  
RAM size .......................................................... 1024 to 2560 bytes  
3826 Group Memory Expansion Plan (Low voltage version)  
Mass product  
ROM size (bytes)  
60K  
M3826AMFL  
56K  
Mass product  
52K  
48K  
44K  
M38268MCL  
40K  
36K  
32K  
28K  
24K  
Mass product  
M38267M8L  
20K  
16K  
12K  
8K  
4K  
192 256  
512  
768  
1024  
1280  
1536  
1792  
2048  
2304  
2560  
RAM size (bytes)  
Products under development or planning :the development schedule and specification may be revised without notice.  
Fig. 6 Memory expansion plan (Low voltage version)  
Currently products are listed below.  
As of Nov. 2001  
Table 4. List of products (Low voltage version)  
ROM size (bytes)  
Product  
RAM size (bytes)  
Package  
Remarks  
ROM size for User in (  
)
M38267M8LXXXFP  
M38267M8LXXXGP  
M38268MCLXXXFP  
M38268MCLXXXGP  
M3826AMFLXXXFP  
M3826AMFLXXXGP  
100P6S-A Mask ROM version  
100P6Q-A Mask ROM version  
100P6S-A Mask ROM version  
100P6Q-A Mask ROM version  
100P6S-A Mask ROM version  
100P6Q-A Mask ROM version  
32768  
(32638)  
1024  
1536  
2560  
49152  
(49022)  
61440  
(61310)  
8
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
[Stack Pointer (S)]  
CENTRAL PROCESSING UNIT (CPU)  
The 3826 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
The stack pointer is an 8-bit register used during subroutine calls  
and interrupts. This register indicates start address of stored area  
(stack) for storing registers during subroutine calls and interrupts.  
The low-order 8 bits of the stack address are determined by the  
contents of the stack pointer. The high-order 8 bits of the stack  
address are determined by the stack page selection bit. If the  
stack page selection bit is 0, the high-order 8 bits becomes  
0016. If the stack page selection bit is 1, the high-order 8 bits  
becomes 0116.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
[Accumulator (A)]  
The operations of pushing register contents onto the stack and  
popping them from the stack are shown in Figure 8.  
Store registers other than those described in Figure 8 with pro-  
gram when the user needs them during interrupts or subroutine  
calls.  
The accumulator is an 8-bit register. Data operations such as data  
transfer, etc., are executed mainly through the accumulator.  
[Index Register X (X)]  
The index register X is an 8-bit register. In the index addressing  
modes, the value of the OPERAND is added to the contents of  
register X and specifies the real address.  
[Program Counter (PC)]  
The program counter is a 16-bit counter consisting of two 8-bit  
registers PCH and PCL. It is used to indicate the address of the  
next instruction to be executed.  
[Index Register Y (Y)]  
The index register Y is an 8-bit register. In partial instruction, the  
value of the OPERAND is added to the contents of register Y and  
specifies the real address.  
b0  
b0  
b0  
b0  
b0  
b0  
b7  
A
Accumulator  
b7  
X
Index register X  
Index register Y  
b7  
Y
b7  
S
Stack pointer  
b15  
b7  
b7  
PCH  
PC  
L
Program counter  
N V T B D I Z C  
Processor status register (PS)  
Carry flag  
Zero flag  
Interrupt disable flag  
Decimal mode flag  
Break flag  
Index X mode flag  
Overflow flag  
Negative flag  
Fig. 7 740 Family CPU register structure  
9
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
On-going Routine  
Execute JSR  
Interrupt request  
(Note)  
M (S) (PC  
(S) (S) 1  
M (S) (PC  
H)  
Push return address  
on stack  
M (S) (PC  
(S) (S) 1  
M (S) (PC  
H)  
L
)
(S) (S) 1  
M (S) (PS)  
(S) (S) 1  
Push return address  
on stack  
Push contents of processor  
status register on stack  
L
)
(S) (S)1  
Subroutine  
Interrupt  
Service Routine  
I Flag is set from 0to 1”  
Execute RTS  
(S) (S) + 1  
Fetch the jump vector  
Execute RTI  
(S) (S) + 1  
POP return  
address from stack  
POP contents of  
processor status  
register from stack  
(PC  
(S) (S) + 1  
(PC M (S)  
L)  
M (S)  
(PS)  
(S) (S) + 1  
(PC M (S)  
(S) (S) + 1  
(PC M (S)  
M (S)  
H)  
L)  
POP return  
address  
from stack  
H)  
Note: Condition for acceptance of an interrupt  
Interrupt enable flag is 1”  
Interrupt disable flag is 0”  
Fig. 8 Register push and pop at interrupt generation and subroutine call  
Table 5 Push and pop instructions of accumulator or processor status register  
Push instruction to stack  
Pop instruction from stack  
Accumulator  
PHA  
PHP  
PLA  
PLP  
Processor status register  
10  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Processor status register (PS)]  
Bit 4: Break flag (B)  
The processor status register is an 8-bit register consisting of 5  
flags which indicate the status of the processor after an arithmetic  
operation and 3 flags which decide MCU operation. Branch opera-  
tions can be performed by testing the Carry (C) flag , Zero (Z) flag,  
Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z,  
V, N flags are not valid.  
The B flag is used to indicate that the current interrupt was gen-  
erated by the BRK instruction. The BRK flag in the processor  
status register is always 0. When the BRK instruction is used to  
generate an interrupt, the processor status register is pushed  
onto the stack with the break flag set to 1.  
Bit 5: Index X mode flag (T)  
When the T flag is 0, arithmetic operations are performed be-  
tween accumulator and memory. When the T flag is 1, direct  
arithmetic operations and direct data transfers are enabled be-  
tween memory locations.  
Bit 0: Carry flag (C)  
The C flag contains a carry or borrow generated by the arith-  
metic logic unit (ALU) immediately after an arithmetic operation.  
It can also be changed by a shift or rotate instruction.  
Bit 1: Zero flag (Z)  
Bit 6: Overflow flag (V)  
The V flag is used during the addition or subtraction of one byte  
of signed data. It is set if the result exceeds +127 to -128. When  
the BIT instruction is executed, bit 6 of the memory location op-  
erated on by the BIT instruction is stored in the overflow flag.  
Bit 7: Negative flag (N)  
The Z flag is set if the result of an immediate arithmetic operation  
or a data transfer is 0, and cleared if the result is anything other  
than 0.  
Bit 2: Interrupt disable flag (I)  
The I flag disables all interrupts except for the interrupt gener-  
ated by the BRK instruction.  
The N flag is set if the result of an arithmetic operation or data  
transfer is negative. When the BIT instruction is executed, bit 7  
of the memory location operated on by the BIT instruction is  
stored in the negative flag.  
Interrupts are disabled when the I flag is 1.  
Bit 3: Decimal mode flag (D)  
The D flag determines whether additions and subtractions are  
executed in binary or decimal. Binary arithmetic is executed  
when this flag is 0; decimal arithmetic is executed when it is  
1.  
Decimal correction is automatic in decimal mode. Only the ADC  
and SBC instructions can be used for decimal arithmetic.  
Table 6 Set and clear instructions of each bit of processor status register  
N flag  
C flag  
SEC  
CLC  
Z flag  
I flag  
SEI  
D flag  
SED  
CLD  
B flag  
T flag  
SET  
CLT  
V flag  
Set instruction  
CLI  
CLV  
Clear instruction  
11  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16  
)
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 :  
1 :  
Not available  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Not used (returns 1when read)  
(Do not write 0to this bit)  
Port XC switch bit  
0 : Oscillation stop  
1 : XCINXCOUT oscillating function  
Main clock (XINXOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bit  
0 : f(XIN)/2 (high-speed mode)  
1 : f(XIN)/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XINXOUT selected (middle-/high-speed mode)  
1 : XCINXCOUT selected (low-speed mode)  
Fig. 9 Structure of CPU mode register  
12  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special Page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM size  
(bytes)  
Address  
XXXX16  
000016  
SFR area  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
0A3F16  
192  
256  
Zero page  
004016  
005416  
LCD display RAM area  
384  
512  
010016  
XXXX16  
044016  
RAM  
640  
768  
896  
1024  
1536  
2048  
2560  
Reserved area  
Not used (Note)  
ROM area  
ROM size  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
YYYY16  
ZZZZ16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Note: When RAM area exceeds 1024 bytes, the areas shown the table are used.  
Fig. 10 Memory map diagram  
13  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Port P0 (P0)  
Timer X (low) (TXL)  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer X (high) (TXH)  
Timer Y (low) (TYL)  
Timer Y (high) (TYH)  
Timer 1 (T1)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Timer 2 (T2)  
Timer 3 (T3)  
Port P3 (P3)  
Timer X mode register (TXM)  
Timer Y mode register (TYM)  
Timer 123 mode register (T123M)  
Port P3 output control register (P3C)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
T
OUT/φ output control register (CKOUT)  
Port P5 direction register (P5D)  
Port P6 (P6)  
PWM control register (PWMCON)  
PWM prescaler (PREPWM)  
PWM register (PWM)  
Port P6 direction register (P6D)  
Port P7 (P7)  
CTCSS timer (low) (CTCSSL)  
CTCSS timer (high) (CTCSSH)  
DTMF high group timer (DTMFH)  
DTMF low group timer (DTMFL)  
D-A1 conversion register (DA1)  
D-A2 conversion register (DA2)  
A-D control register (ADCON)  
Port P7 direction register (P7D)  
Reserved area (Note)  
Key input control register (KIC)  
PULL register A (PULLA)  
A-D conversion register (AD)  
D-A control register (DACON)  
Watchdog timer control register (WDTCON)  
PULL register B (PULLB)  
Transmit/Receive buffer register(TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Segment output enable register (SEG)  
LCD mode register (LM)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Serial I/O2 control register (SIO2CON)  
Reserved area (Note)  
Serial I/O2 register (SIO2)  
Note: The register of reserved area can not be used.  
Fig. 11 Memory map of special function register (SFR)  
14  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
Direction Registers  
b7  
b0  
PULL register A  
(PULLA : address 001616  
)
The I/O ports (ports P0, P1, P2, P4, P5, P6, P71P77) have direc-  
tion registers which determine the input/output direction of each  
individual pin. (Ports P00P07 are shared with bit 0 of the port P0  
direction register, and ports P10P15 shared with bit 0 of the port  
P1 direction register.) Each bit in a direction register corresponds  
to one pin, and each pin can be set to be input port or output port.  
When 0is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When 1is written to that bit, that pin be-  
comes an output pin.  
P0  
P0  
P0  
P1  
P1  
P1  
P2  
P2  
0
2
4
0
4
6
0
4
, P0  
, P0  
P0  
P1  
, P1  
, P1  
P2  
P2  
1
3
7
3
5
7
3
7
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
b7  
b0  
PULL register B  
(PULLB : address 001716  
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are  
floating. If a pin set to input is written to, only the port output latch  
is written to and the pin remains floating.  
)
P41  
P44  
P50  
P54  
P60  
P64  
P4  
P4  
P5  
P5  
P6  
P6  
3
7
3
7
3
7
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
Port P3 Output Control Register  
Bit 0 of the port P3 output control register (address 000716) en-  
Not used (return 0when read)  
ables control of the output of ports P30P37.  
0 : Disable  
1 : Enable  
When the bit is set to 1, the port output function is valid.  
When resetting, bit 0 of the port P3 output control register is set to  
0(the port output function is invalid) and pulled up.  
Note: The contents of PULL register A and PULL register B  
do not affect ports programmed as the output port.  
Pull-up Control  
Fig. 12 Structure of PULL register A and PULL register B  
By setting the PULL register A (address 001616) or the PULL reg-  
ister B (address 001716), ports P0 to P2, P4 to P6 can control pull-  
up with a program.  
However, the contents of PULL register A and PULL register B do  
not affect ports programmed as the output ports.  
The PULL register A setting is invalid for pins set to segment out-  
put with the segment output enable register.  
15  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 7 List of I/O port function (1)  
Name  
Input/Output  
Non-Port Function  
I/O Format  
Related SFRs  
Pin  
Diagram No.  
(1)  
P00/SEG26–  
P07/SEG33  
Port P0  
Input/output,  
byte unit  
CMOS compatible  
input level  
LCD segment output  
PULL register A  
Segment output enable  
register  
(2)  
CMOS 3-state output  
P10/SEG34–  
P15/SEG39  
Port P1  
Input/output,  
6-bit unit  
CMOS compatible  
input level  
LCD segment output  
PULL register A  
(1)  
(2)  
Segment output enable  
register  
CMOS 3-state output  
Input/output,  
individual bits  
CMOS compatible  
input level  
PULL register A  
P16 , P17  
(4)  
CMOS 3-state output  
P20P27  
Port P2  
Port P3  
Input/output,  
individual bits  
CMOS compatible  
input level  
Key input (key-on  
wake-up) interrupt  
input  
PULL register A  
Interrupt control register2  
Key input control register  
CMOS 3-state output  
Segment output enable  
register  
(3)  
P30/SEG18–  
P37/SEG25  
Output  
CMOS 3-state output  
LCD segment output  
P3 output enable register  
CMOS compatible  
input level  
(13)  
P40  
Port P4  
Input/output,  
individual bits  
N-channel open-drain  
output  
CMOS compatible  
input level  
External interrupt input  
(4)  
Interrupt edge selection  
register  
P41/INT1,  
P42/INT2  
CMOS 3-state output  
(12)  
PULL register B  
P43/φ/TOUT  
Timer output  
Timer 123 mode register  
φ output  
TOUT/φ output control  
register  
PULL register B  
P44/RXD,  
P45/TXD,  
P46/SCLK1,  
P47/SRDY1  
Serial I/O1 function I/O  
(5)  
(6)  
Serial I/O1 control register  
Serial I/O1 status register  
UART control register  
(7)  
(8)  
(10)  
P50/PWM0,  
P51/PWM1  
Port P5  
Input/output,  
individual bits  
CMOS compatible  
input level  
PWM output  
PULL register B  
PWM control register  
CMOS 3-state output  
P52/RTP0,  
P53/RTP1  
Real time port  
function output  
(9)  
PULL register B  
Timer X mode register  
P54/CNTR0  
(11)  
(14)  
PULL register B  
Timer X function I/O  
Timer X mode register  
PULL register B  
P55/CNTR1  
Timer Y function input  
DA1 output  
Timer Y mode register  
PULL register B  
P56/DA1  
(15)  
(15)  
D-A control register  
PULL register B  
DTMF input  
DA2 output  
P57/ADT/  
DA2  
CTCSS output  
D-A control register  
A-D control register  
A-D trigger input  
16  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 8 List of I/O port function (2)  
Pin  
Name  
Input/Output  
I/O Format  
Non-Port Function  
Related SFRS  
Diagram No.  
P60/SIN2/AN0  
Port P6  
Input/  
A-D conversion input  
Serial I/O2 function I/O  
PULL register B  
A-D control register  
Serial I/O2 control  
register  
(17)  
CMOS compatible input  
level  
CMOS 3-state output  
output,  
individual  
bits  
P61/SOUT2/  
AN1  
(18)  
(19)  
P62/SCLK21/  
AN2  
P63/SCLK22 /  
AN3  
(20)  
(16)  
A-D conversion input  
External interrupt input  
A-D control register  
PULL register B  
P64/AN4–  
P67/AN7  
P70/INT0  
Port P7  
Input  
CMOS compatible input  
level  
Interrupt edge  
selection register  
(23)  
(13)  
P71P77  
Input/  
CMOS compatible input  
level  
output,  
individual  
bits  
N-channel open-drain  
output  
COM0COM3  
SEG0SEG17  
LCD mode register  
Common  
Segment  
Output  
Output  
LCD common output  
LCD segment output  
(21)  
(22)  
Notes1: How to use double-function ports as function I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate po-  
tential, a current will flow VCC to VSS through the input-stage gate.  
17  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P01P07, P11P15  
Pull-up  
V
L2/VL3/VCC  
LCD drive timing  
Segment/Port  
Segment data  
Data bus  
Port direction register  
Interface logic level  
shift circuit  
Segment  
Port latch  
V
L1/VSS  
Port  
Port direction register  
Port/Segment  
(2) Ports P00, P10  
Pull-up  
V
L2/VL3/VCC  
LCD drive timing  
Segment/Port  
Direction register  
Segment data  
Port latch  
Interface logic level  
shift circuit  
Segment  
Data bus  
V
L1/VSS  
Port/Segment  
Port  
Port direction register  
(3) Port P3  
Pull-up  
V
/VL3/VCC  
SegLm2ent/Port  
LCD drive timing  
Segment data  
Port latch  
Interface logic level  
shift circuit  
Segment  
Data bus  
V
L1/VSS  
Port  
Port/Segment  
Output control  
(4) Ports P1  
6
,P1  
7
,P2,P4  
1
,P42  
(5) Port P4  
4
Pull-up control  
Pull-up control  
Serial I/O1 enable bit  
Reception enable bit  
Direction  
register  
Direction  
register  
Port latch  
Data bus  
Port latch  
Data bus  
Key-on wake up interrupt input  
INT , INT interrupt input  
Serial I/O1 input  
1
2
Except P1 , P17  
6
Fig. 13 Port block diagram (1)  
18  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(6) Port P4  
5
(7) Port P46  
Serial I/O1 synchronization  
clock selection bit  
Pull-up control  
Pull-up control  
Serial I/O1 enable bit  
P45  
/TxD P-channel output disable bit  
Serial I/O1 enable bit  
Transmission enable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction  
Direction  
register  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O1 output  
Serial I/O1 clock output  
Serial I/O1 clock input  
(8) Port P4  
7
(9) Ports P52,P53  
Pull-up control  
Pull-up control  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
S
RDY1 output enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Real time control bit  
Real time port data  
Serial I/O1 ready output  
Pull-up control  
(11) Port P5  
4
(10) Ports P50,P51  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Pulse output mode  
Timer output  
PWM function enable bit  
PWM output  
CNTR0 interrupt input  
Fig. 14 Port block diagram (2)  
19  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(13) Ports P40,P71P77  
(12) Port P4  
3
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
T
OUT/φ output control  
Timer output  
T
OUT/φ selection bit  
φ output  
(15) Ports P56,P57  
(14) Port P5  
5
Pull-up control  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
A-D trigger input  
CNTR1 interrupt input  
Except P5  
6
D-A converter output  
D-A ,D-A2 output enable bit  
1
(16) Ports P64P67  
(17) Port P6  
0
Pull-up control  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
A-D conversion input  
Analog input pin selection bit  
Serial I/O2 input  
A-D conversion input  
Analog input pin selection bit  
Fig. 15 Port block diagram (3)  
20  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(19) Port P6  
2
(18) Port P6  
1
Synchronous clock selection bit  
Pull-up control  
P61/SOUT2 P-channel output disable bit  
Pull-up control  
Serial I/O2 port selection bit  
Synchronous clock output pin  
selection bit  
Serial I/O2 transmit end signal  
Synchronous clock selection bit  
Serial I/O2 port selection bit  
Direction  
Direction  
register  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O2 output  
Serial I/O2 clock output  
A-D conversion input  
Serial I/O2 clock input  
Analog input pin selection bit  
A-D conversion input  
Analog input pin selection bit  
(20) Port P6  
3
Pull-up control  
Synchronous clock selection bit  
Serial I/O2 port selection bit  
Synchronous clock output pin selection bit  
(21)COM0COM3  
V
L3  
Direction  
register  
The gate input signal of each  
transistor is controlled by the LCD  
duty ratio and the bias value.  
V
L2  
L1  
Data bus  
Port latch  
V
Serial I/O2 clock output  
V
SS  
A-D conversion input  
Analog input pin selection bit  
(23) Port P7  
0
(22)SEG0SEG17  
Direction  
register  
V
L2/VL3  
The voltage applied to the sources of P-  
channel and N-channel transistors is the  
controlled voltage by the bias value.  
Data bus  
Port latch  
V
L1/VSS  
INT0 input  
Fig. 16 Port block diagram (4)  
21  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupts occur by seventeen sources: seven external, nine inter-  
Interrupt Operation  
By acceptance of an interrupt, the following operations are auto-  
nal, and one software.  
matically performed:  
1. The contents of the program counter and the processor status  
register are automatically pushed onto the stack.  
2. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the corre-  
sponding interrupt request and enable bits are 1and the inter-  
rupt disable flag is 0.  
3. The interrupt jump destination address is read from the vector  
table into the program counter.  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
flag disables all interrupts except the BRK instruction interrupt.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Table 9 Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Priority  
High  
Low  
Generating Conditions  
Reset (Note 2)  
At reset  
1
2
FFFD16  
FFFB16  
FFFC16  
FFFA16  
Non-maskable  
INT0  
At detection of either rising or  
falling edge of INT0 input  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT1 input  
INT1  
FFF916  
FFF716  
FFF516  
FFF816  
FFF616  
FFF416  
External interrupt  
(active edge selectable)  
3
4
Serial I/O1  
reception  
At completion of serial I/O1 data  
reception  
Valid when serial I/O1 is selected  
Valid when serial I/O1 is selected  
At completion of serial I/O1  
transmit shift or when transmis-  
sion buffer is empty  
Serial I/O1  
transmission  
5
Timer X  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
6
7
FFF316  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFF216  
FFF016  
FFEE16  
FFEC16  
FFEA16  
Timer Y  
Timer 2  
Timer 3  
8
9
CNTR0  
At detection of either rising or  
falling edge of CNTR0 input  
10  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of CNTR1 input  
CNTR1  
11  
FFE916  
FFE816  
External interrupt  
(active edge selectable)  
FFE616  
FFE416  
At timer 1 underflow  
Timer 1  
INT2  
12  
13  
FFE716  
FFE516  
At detection of either rising or  
falling edge of INT2 input  
External interrupt  
(active edge selectable)  
Serial I/O2  
At completion of serial I/O2 data  
transmission or reception  
14  
15  
16  
FFE316  
FFE116  
FFDF16  
FFE216  
FFE016  
FFDE16  
Valid when serial I/O2 is selected  
Key input  
(Key-on wake-up)  
At falling of conjunction of input External interrupt  
level for port P2 (at input mode) (valid at falling)  
Valid when ADT interrupt is selected  
ADT  
At falling edge of ADT input  
External interrupt  
(valid at falling)  
At completion of A-D conversion Valid when A-D interrupt is selected  
A-D conversion  
BRK instruction  
17  
FFDD16  
FFDC16  
At BRK instruction execution Non-maskable software interrupt  
Notes1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
22  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When not requiring for the interrupt occurrence synchronous with  
these setting, take the following sequence.  
Notes on interrupts  
When setting the followings, the interrupt request bit may be set to  
1.  
Set the corresponding interrupt enable bit to 0(disabled).  
Set the interrupt edge select bit (polarity switch bit) or the inter-  
rupt source select bit to 1.  
When setting external interrupt active edge  
Related register: Interrupt edge selection register (address 3A16)  
Timer X mode register (address 2716)  
Set the corresponding interrupt request bit to 0after 1 or more  
instructions have been executed.  
Timer Y mode register (address 2816)  
Set the corresponding interrupt enable bit to 1(enabled).  
When switching interrupt sources of an interrupt vector address  
where two or more interrupt sources are allocated  
Related register: Interrupt source selection bit of A-D control  
regsiter (bit 6 of address 3416)  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Interrupt request  
BRK instruction  
Reset  
Fig. 17 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
0
1
2
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
Not used (return 0when read)  
0 : Falling edge active  
1 : Rising edge active  
b7  
b0  
b7  
b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
1
interrupt request bit  
interrupt request bit  
CNTR  
CNTR  
0
1
interrupt request bit  
interrupt request bit  
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
Timer 1 interrupt request bit  
INT interrupt request bit  
Serial I/O2 interrupt request bit  
Key input interrupt request bit  
2
Timer Y interrupt request bit  
Timer 2 interrupt request bit  
Timer 3 interrupt request bit  
ADT/AD conversion interrupt request bit  
Not used (returns 0when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16  
)
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
Timer Y interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
Timer 1 interrupt enable bit  
INT interrupt enable bit  
2
Serial I/O2 interrupt enable bit  
Key input interrupt enable bit  
ADT/AD conversion interrupt enable bit  
Not used (returns 0when read)  
(Do not write 1to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 18 Structure of interrupt-related registers  
23  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Key Input Interrupt (Key-on Wake Up)  
goes from 1to 0. An example of using a key input interrupt is  
shown in Figure 19, where an interrupt request is generated by  
pressing one of the keys consisted as an active-low key matrix  
which inputs to ports P20P23.  
A Key-on wake up interrupt request is generated by applying L”  
level voltage to any pin of port P2 that have been set to input  
mode. In other words, it is generated when AND of input level  
Port PXx  
Llevel output  
PULL register A  
Port P2  
direction register = 1”  
7
Key input control register = 1”  
Bit 2 = 1”  
Key input interrupt request  
✕  
Port P2  
latch  
7
P2  
7
output  
output  
output  
output  
Key input control register = 1”  
direction register = 1”  
Port P2  
6
✕  
Port P2  
latch  
6
P2  
6
Key input control register = 1”  
Port P2  
direction register = 1”  
5
✕  
Port P2  
latch  
5
P2  
5
Key input control register = 1”  
Port P2  
direction register = 1”  
4
✕  
Port P2  
latch  
4
P2  
4
Key input control register = 1”  
Port P2  
direction register = 0”  
3
Port P2  
Input reading circuit  
✕  
Port P2  
latch  
3
P23 input  
Key input control register = 1”  
Port P2  
direction register = 0”  
2
✕  
Port P2  
latch  
2
P2  
2
input  
input  
input  
Key input control register = 1”  
Port P2  
direction register = 0”  
1
✕  
Port P2  
latch  
1
P2  
1
Port P2  
direction register = 0”  
0
Key input control register = 1”  
✕  
Port P2  
latch  
0
P2  
0
P-channel transistor for pull-up  
CMOS output buffer  
Fig. 19 Connection example when using key input control register, key input interrupt and port P2 block diagram  
24  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Read and write operation on 16-bit timer must be performed for  
both high- and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct  
operation when reading during the write operation, or when writing  
during the read operation.  
TIMERS  
The 3826 group has five timers: timer X, timer Y, timer 1, timer 2,  
and timer 3. Timer X and timer Y are 16-bit timers, and timer 1,  
timer 2, and timer 3 are 8-bit timers.  
All timers are down count timers. When the timer reaches 0016,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is contin-  
ued. When a timer underflows, the interrupt request bit corre-  
sponding to that timer is set to 1.  
Data bus  
Real time port  
control bit 1”  
P52 data for  
Q D  
real time port  
P52/RTP0  
P53/RTP1  
Latch  
0”  
P52 direction register  
P52 latch  
Real time port  
control bit 1”  
P53 data for  
real time port  
Q D  
Real time port  
control bit 0”  
Latch  
0”  
P53 direction register  
Timer X mode register  
write signal  
P53 latch  
1”  
f(XIN)/16  
(f(XCIN)/16 when φ = XCIN/2)  
Timer X stop  
control bit  
Timer X write  
control bit  
Timer X operat-  
CNTR0 active  
edge switch bit  
0”  
ing mode bits  
Timer X (low) latch (8)  
Timer X (low) (8)  
Timer X (high) latch (8)  
Timer X (high) (8)  
00,01,11”  
Timer X  
interrupt  
request  
P54/CNTR0  
"10"  
1”  
Pulse width  
measurement  
mode  
Pulse output mode  
CNTR0 active  
edge switch bit  
0”  
1”  
S
Q
Q
T
P54 direction register  
Pulse width HL continuously  
measurement mode  
P54 latch  
Rising edge detection  
Pulse output mode  
f(XIN)/16  
Period  
measurement mode  
Falling edge detection  
(f(XCIN)/16 when φ = XCIN/2)  
Timer Y stop  
control bit  
CNTR1 active  
edge switch bit  
Timer Y (low) latch (8)  
Timer Y (low) (8)  
Timer Y (high) latch (8)  
Timer Y (high) (8)  
"00","01","11"  
Timer Y  
interrupt  
request  
0”  
P55/CNTR1  
Timer Y  
"10"  
operating  
mode bits  
1”  
f(XIN)/16  
(f(XCIN)/16 when φ = XCIN/2)  
Timer 1  
interrupt  
request  
Timer 2 write  
control bit  
Timer 1 count source  
selection bit  
0”  
Timer 2 count source  
selection bit  
Timer 2 latch (8)  
Timer 2 (8)  
Timer 1 latch (8)  
Timer 1 (8)  
0”  
Timer 2  
interrupt  
request  
XCIN  
1”  
1”  
f(XIN)/16  
(f(XCIN)/16 when φ = XCIN/2)  
TOUT output  
control bit  
TOUT output  
active edge  
switch bit 0”  
TOUT output  
control bit  
S
Q
P43/φ/TOUT  
T
1”  
P43 latch  
P43 direction register  
Timer 3 latch (8)  
Q
0”  
Timer 3  
interrupt  
request  
f(XIN)/16  
(f(XCIN)/16  
when φ = XCIN/2)  
Timer 3 (8)  
φ
1”  
φ output control bit  
Timer 3 count  
source selection bit  
Fig. 20 Timer block diagram  
25  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer X  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write and the real time port by  
setting the timer X mode register.  
b7  
b0  
Timer X mode register  
(TXM : address 002716  
)
Timer X write control bit  
0 : Write value in latch and counter  
1 : Write value in latch only  
(1) Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Real time port control bit  
0 : Real time port function invalid  
1 : Real time port function valid  
(2) Pulse output mode  
P5  
2
data for real time port  
data for real time port  
P53  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode,  
set the corresponding port P54 direction register to output mode.  
Timer X operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
CNTR0 active edge switch bit  
0 : Count at rising edge in event counter mode  
Start from Houtput in pulse output mode  
Measure Hpulse width in pulse width measurement  
mode  
(3) Event counter mode  
The timer counts signals input through the CNTR0 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P54 direction register to input mode.  
Falling edge active for CNTR0 interrupt  
1 : Count at falling edge in event counter mode  
Start from Loutput in pulse output mode  
Measure Lpulse width in pulse width measurement  
mode  
Rising edge active for CNTR  
Timer X stop control bit  
0 : Count start  
0 interrupt  
(4) Pulse width measurement mode  
The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode). If  
CNTR0 active edge switch bit is 0, the timer counts while the in-  
put signal of CNTR0 pin is at H. If it is 1, the timer counts while  
the input signal of CNTR0 pin is at L. When using a timer in this  
mode, set the corresponding port P54 direction register to input  
mode.  
1 : Count stop  
Fig. 21 Structure of timer X mode register  
Timer X Write Control  
If the timer X write control bit is 0, when the value is written in the  
address of timer X, the value is loaded in the timer X and the latch  
at the same time.  
If the timer X write control bit is 1, when the value is written in the  
address of timer X, the value is loaded only in the latch. The value  
in the latch is loaded in timer X after timer X underflows.  
If the value is written in latch only, unexpected value may be set in  
the high-order counter when the writing in high-order latch and the  
underflow of timer X are performed at the same timing.  
Real Time Port Control  
While the real time port function is valid, data for the real time port  
are output from ports P52 and P53 each time the timer X  
underflows. (However, if the real time port control bit is changed  
from 0to 1after set of the real time port data, data are output  
independent of the timer X operation.) If the data for the real time  
port is changed while the real time port function is valid, the  
changed data are output at the next underflow of timer X.  
Before using this function, set the corresponding port direction  
registers to output mode.  
Note on CNTR0 interrupt active edge selection  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
switch bit.  
26  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
b7  
b0  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
Timer Y mode register  
(TYM : address 002816  
)
(1) Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode).  
Not used (return 0when read)  
Timer Y operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
(2) Period measurement mode  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously  
measurement mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. Ex-  
cept for the above-mentioned, the operation in period measure-  
ment mode is the same as in timer mode.  
CNTR1 active edge switch bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge to falling edge  
period in period measurement mode  
Falling edge active for CNTR1 interrupt  
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
1 : Count at falling edge in event counter mode  
Measure the rising edge period in period  
measurement mode  
Rising edge active for CNTR  
Timer Y stop control bit  
0 : Count start  
1 interrupt  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
1 : Count stop  
(3) Event counter mode  
Fig. 22 Structure of timer Y mode register  
The timer counts signals input through the CNTR1 pin.  
Except for this, the operation in event counter mode is the same  
as in timer mode. When using a timer in this mode, set the corre-  
sponding port P55 direction register to input mode.  
(4) Pulse width HL continuously measure-  
ment mode  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode. When using a timer in this mode, set  
the corresponding port P55 direction register to input mode.  
Note on CNTR1 interrupt active edge selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
switch bit. However, in pulse width HL continuously measurement  
mode, CNTR1 interrupt request is generated at both rising and  
falling edges of CNTR1 pin input signal regardless of the setting of  
CNTR1 active edge switch bit.  
27  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1, Timer 2, Timer 3  
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an inadvert-  
ent count down of the timer. Therefore, rewrite the value of timer  
whenever the count source is changed.  
b7  
b0  
Timer 123 mode register  
(T123M :address 002916  
)
T
T
OUT output active edge switch bit  
0 : Start at Houtput  
1 : Start at Loutput  
OUT/φ output control bit  
0 : TOUT/φ output disabled  
1 : TOUT/φ output enabled  
Timer 2 Write Control  
Timer 2 write control bit  
0 : Write data in latch and counter  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
If the timer 2 write control bit is 0, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
If the timer 2 write control bit is 1, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
Timer 2 Output Control  
When the timer 2 (TOUT) is output enabled, an inversion signal  
from pin TOUT is output each time timer 2 underflows.  
In this case, set the port P56 shared with the port TOUT to the out-  
put mode.  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN  
)
Not used (return 0when read)  
Note: Internal clock φ is f(XCIN)/2 in the low-speed mode.  
Note on Timer 1 to Timer 3  
When the count source of timers 1 to 3 is changed, the timer  
counting value may be changed large because a thin pulse is gen-  
erated in count input of timer. If timer 1 output is selected as the  
count source of timer 2 or timer 3, when timer 1 is written, the  
counting value of timer 2 or timer 3 may be changed large be-  
cause a thin pulse is generated in timer 1 output.  
Fig. 23 Structure of timer 123 mode register  
Therefore, set the value of timer in the order of timer 1, timer 2  
and timer 3 after the count source selection of timer 1 to 3.  
28  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SERIAL I/O  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O mode can be selected by setting the  
mode selection bit of the serial I/O1 control register to 1.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB (address 001816).  
Serial I/O1  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer (baud rate generator) is  
also provided for baud rate generation.  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
Receive shift register  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK1  
Serial I/O1 synchronization  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
X
IN  
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
P47/SRDY1  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register  
Transmit buffer register (TB)  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Address 001916  
Serial I/O1 status register  
Address 001816  
Data bus  
Fig. 24 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TXD  
D
0
0
D
1
1
D
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
Serial input RXD  
D
D
D
D
D
D
D
D
2
Receive enable signal SRDY1  
Write signal to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
Overrun error (OE)  
detection  
TBE = 0  
TBE = 1  
TSC = 0  
Notes  
1 : The transmit interrupt (TI) can be generated either when the transmit buffer register has emptied (TBE = 1) or after the transmit  
shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1 control register.  
2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the T  
XD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes 1.  
Fig. 25 Operation of clock synchronous serial I/O1 function  
29  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ter, but the two buffers have the same address in memory. Since  
the shift register cannot be written to or read from directly, transmit  
data is written to the transmit buffer, and receive data is read from  
the receive buffer.  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O1 control  
register to 0.  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer register can hold a character while the next  
character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer regis-  
Data bus  
Address 001816  
Address 001A16  
Serial I/O1 control register  
OE  
Receive buffer register  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
Character length selection bit  
7 bits  
P44/RXD  
STdetector  
Receive shift register  
1/16  
8 bits  
UART control register  
SP detector  
PE FE  
Address 001B16  
Clock control circuit  
Serial I/O1 synchronization clock selection bit  
P46/SCLK1  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
X
IN  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift register shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 26 Block diagram of UART serial I/O1  
Transmit or receive clock  
Transmit buffer write signal  
TBE=0  
TBE=0  
TSC=0  
TSC=1✕  
SP  
TBE=1  
TBE=1  
ST  
ST  
D
0
D1  
Serial output TxD  
D
0
D
1
SP  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
D
0
D
1
ST  
D
0
D1  
Serial input RxD  
1 : Error flag detection occurs at the same time that the RBF flag becomes 1(at 1st stop bit, during reception).  
Notes  
2 : The transmit interrupt (TI) can be generated to occur when either the TBE or TSC flag becomes 1, depending on the setting of the transmit interrupt  
source selection bit (TIC) of the serial I/O1 control register.  
3 : The receive interrupt (RI) is set when the RBF flag becomes 1.  
Fig. 27 Operation of UART serial I/O1 function  
30  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Transmit Buffer/Receive Buffer Register (TB/  
RB)] 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is write-  
only and the receive buffer register is read-only. If a character bit  
length is 7 bits, the MSB of data stored in the receive buffer regis-  
ter is 0.  
[Serial I/O1 Status Register (SIO1STS)]  
001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O1  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to 0when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O1  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing 0to the serial I/O1 enable bit SIOE  
(bit 7 of the Serial I/O1 Control Register) also clears all the status  
flags, including the error flags.  
All bits of the serial I/O1 status register are initialized to 0at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O1 control  
register has been set to 1, the transmit shift register shift comple-  
tion flag (bit 2) and the transmit buffer empty flag (bit 0) become  
1.  
[Serial I/O1 Control Register (SIO1CON)]  
001A16  
The serial I/O1 control register contains eight control bits for the  
serial I/O1 function.  
[UART Control Register (UARTCON)] 001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD pin.  
[Baud Rate Generator (BRG)] 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
Notes on serial I/O  
When setting the transmit enable bit to 1, the serial I/O1 transmit  
interrupt request bit is automatically set to 1. When not requiring  
the interrupt occurrence synchronous with the transmission  
enalbed, take the following sequence.  
Set the serial I/O1 transmit interrupt enable bit to 0(disabled).  
Set the transmit enable bit to 1.  
Set the serial I/O1 transmit interrupt request bit to 0after 1 or  
more instructions have been executed.  
Set the serial I/O1 transmit interrupt enable bit to 1(enabled).  
31  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O1 status register  
(SIO1STS : address 001916  
Serial I/O1 control register  
)
(SIO1CON : address 001A16  
BRG count source selection bit (CSS)  
0: f(XIN  
)
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
)
1: f(XIN)/4  
Serial I/O1 synchronization clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous serial  
I/O is selected.  
BRG output divided by 16 when UART is selected.  
1: External clock input when clock synchronous serial I/O is  
selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
Transmit shift register shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
External clock input divided by 16 when UART is selected.  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinary I/O pin  
pin operates as SRDY1 output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE) =0  
1: (OE) U (PE) U (FE) =1  
Serial I/O1 mode selection bit (SIOM)  
0: Asynchronous serial I/O (UART)  
1: Clock synchronous serial I/O  
Not used (returns 1when read)  
Serial I/O1 enable bit (SIOE)  
0: Serial I/O1 disabled  
b7  
b0  
UART control register  
(UARTCON : address 001B16  
(pins P4  
1: Serial I/O1 enabled  
(pins P4 P4 operate as serial I/O pins)  
4P47 operate as ordinary I/O pins)  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open-drain output (in output mode)  
Not used (return 1when read)  
Fig. 28 Structure of serial I/O1 control registers  
32  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O2  
The serial I/O2 function can be used only for clock synchronous  
b7  
b0  
Serial I/O2 control register  
(SIO2CON : address 001D16  
serial I/O.  
)
For clock synchronous serial I/O2, the transmitter and the receiver  
must use the same clock. When the internal clock is used, transfer  
is started by a write signal to the serial I/O2 register.  
When an internal clock is selected as the synchronous clock of the  
serial I/O2, either P62 or P63 can be selected as an output pin of  
the synchronous clock. In this case, the pin that is not selected as  
an output pin of the synchronous clock functions as a port.  
Internal synchronous clock select bits  
b2 b1 b0  
0 0 0: f(XIN)/8  
0 0 1: f(XIN)/16  
0 1 0: f(XIN)/32  
0 1 1: f(XIN)/64  
1 0 0:  
Do not set  
1 0 1:  
1 1 0: f(XIN)/128  
1 1 1: f(XIN)/256  
Serial I/O2 port selection bit  
0: I/O port  
[Serial I/O2 Control Register (SIO2CON)] 001D16  
The serial I/O2 control register contains 8 bits which control vari-  
ous serial I/O2 functions.  
1: SOUT2,SCLK21/SCLK22 signal output  
P61/SOUT2 P-channel output disable bit  
0: CMOS output (in output mode)  
1: N-channel open-drain output  
(in output mode)  
Transfer direction selection bit  
0: LSB first  
1: MSB first  
Synchronous clock selection bit  
0: External clock  
1: Internal clock  
Synchronous clock output pin selection bit  
0: SCLK21  
1: SCLK22  
Fig. 29 Structure of serial I/O2 control register  
Internal synchronous  
clock select bits  
1/8  
1/16  
Data bus  
1/32  
X
IN  
1/64  
1/128  
1/256  
P63 latch  
Synchronous clock  
selection bit  
(Note)  
1”  
P6  
3
/SCLK22  
Synchronous circuit  
0”  
External clock  
P62 latch  
0”  
P6  
P6  
2
1
/SCLK21  
/SOUT2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
(Note)  
1”  
P61  
latch  
0”  
1”  
Serial I/O2 port selection bit  
Serial I/O shift register 2 (8)  
P60/SIN2  
Note: It is selected by the synchronous clock selection bit, the synchronous  
clock output pin selection bit, and the serial I/O port selection bit.  
Fig. 30 Block diagram of serial I/O2 function  
33  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output  
SOUT2  
D
2
D
0
D
1
D
3
D
4
D
5
D
6
D7  
Serial I/O2 input SIN2  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial  
I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.  
When the external clock is selected as the transfer clock, a content of the serial I/O shift register is continued to shift  
during inputting a transfer clock. The SOUT2 pin does not go to high impedance after transfer completion.  
Fig. 31 Timing of serial I/O2 function  
34  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PULSE WIDTH MODULATION (PWM)  
The 3826 group has a PWM function with an 8-bit resolution,  
based on a signal that is the clock input XIN or that clock input di-  
vided by 2.  
PWM Operation  
When at least either bit 1 (PWM0 function enable bit) or bit 2  
(PWM1 function enable bit) of the PWM control register is set to  
1, operation starts by initializing the PWM output circuit, and  
pulses are output starting at an H. When one PWM output is en-  
abled and that the other PWM output is enabled, PWM output  
which is enabled to output later starts pulse output from halfway.  
When the PWM register or PWM prescaler is updated during  
PWM output, the pulses will change in the cycle after the one in  
which the change was made.  
Data Setting  
The PWM output pin also functions as ports P50 and P51. Set the  
PWM period by the PWM prescaler, and set the period during  
which the output pulse is an Hby the PWM register.  
If PWM count source is f(XIN) and the value in the PWM prescaler  
is n and the value in the PWM register is m (where n = 0 to 255  
and m = 0 to 255) :  
PWM period = 255 (n+1)/f(XIN)  
31.875 m (n+1)  
µs  
= 31.875 (n+1) µs (when f(XIN) = 8 MHz)  
Output pulse Hperiod = PWM period m/255  
= 0.125 (n+1) m µs  
255  
PWM output  
(when f(XIN) = 8 MHz)  
T = [31.875 (n+1)] µs  
m: Contents of PWM register  
n : Contents of PWM prescaler  
T : PWM cycle (when f(XIN) = 8 MHz)  
Fig. 32 Timing of PWM cycle  
Data bus  
PWM  
register pre-latch  
PWM  
prescaler pre-latch  
PWM  
enable bit  
1 function  
Transfer control circuit  
Port P5  
1
lacth  
PWM  
prescaler latch  
PWM  
register latch  
Port P5  
1
0
Count source  
selection bit  
0”  
PWM prescaler  
PWM circuit  
XIN  
Port P5  
1”  
1/2  
Port P5  
lacth  
0
0
PWM  
function  
enable bit  
Fig. 33 Block diagram of PWM function  
35  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b0  
b7  
PWM control register  
(PWMCON : address 002B16  
)
Count source selection bit  
0: f(XIN  
)
1: f(XIN)/2  
PWM  
0: PWM  
1: PWM  
0
function enable bit  
0
disabled  
enabled  
0
PWM1 function enable bit  
0: PWM  
1: PWM  
1
disabled  
enabled  
1
Not used (return 0when read)  
Fig. 34 Structure of PWM control register  
C
T2  
B
T
=
C
A
B
PWM  
(internal)  
stop  
Port  
stop  
T
T2  
T
Port  
PWM  
PWM  
0
1
output  
output  
Port  
Port  
PWM register  
write signal  
(Changes from Ato Bduring Hperiod)  
PWM prescaler  
write signal  
(Changes from Tto T2during PWM period)  
PWM  
0 function  
enable bit  
PWM  
1 function  
enable bit  
When the contents of the PWM register or PWM prescaler have changed, the PWM  
output will change from the next period after the change.  
Fig. 35 PWM output timing when PWM register or PWM prescaler is changed  
36  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
Comparator and Control Circuit  
The functional blocks of the A-D converter are described below.  
The comparator and control circuit compare an analog input volt-  
age with the comparison voltage and store the result in the A-D  
conversion register. When an A-D conversion is completed, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to 1.  
[A-D Conversion Register (AD)] 003516  
The A-D conversion register is a read-only register that contains  
the result of an A-D conversion. When reading this register during  
an A-D conversion, the previous conversion result is read.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to at least 500kHz during A-D conversion.  
Use the clock divided from the main clock XIN as the internal clock  
φ.  
[A-D Control Register (ADCON)] 003416  
The A-D control register controls the A-D conversion process. Bits  
0 to 2 of this register select specific analog input pins. Bit 3 signals  
the completion of an A-D conversion. The value of this bit remains  
at 0during an A-D conversion, then changes to 1when the A-  
D conversion is completed. Writing 0to this bit starts the A-D  
conversion. Bit 4 controls the transistor which breaks the through  
current of the resistor ladder. When bit 5, which is the AD external  
trigger valid bit, is set to 1, this bit enables A-D conversion even  
by a falling edge of an ADT input. Set ports which share with ADT  
pins to input when using an A-D external trigger.  
b7  
b0  
A-D control register  
(ADCON : address 003416  
)
Analog input pin selection bits  
0 0 0 : P6  
0 0 1 : P6  
0 1 0 : P6  
0 1 1 : P6  
1 0 0 : P6  
1 0 1 : P6  
1 1 0 : P6  
1 1 1 : P6  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
Comparison Voltage Generator  
The comparison voltage generator divides the voltage between  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
AVSS and VREF by 256, and outputs the divided voltages.  
V
REF input switch bit  
0 : OFF  
1 : ON  
Channel Selector  
The channel selector selects one of the input ports P67/AN7P60/  
AD external trigger valid bit  
0 : A-D external trigger invalid  
1 : A-D external trigger valid  
Interrupt source selection bit  
0 : Interrupt request at A-D  
conversion completed  
AN0.  
1 : Interrupt request at ADT  
input falling  
Not used (returns 0when read)  
Fig. 36 Structure of A-D control register  
Data bus  
b7  
b0  
A-D control register  
P57/ADT/DA2  
3
ADT/A-D interrupt request  
A-D control circuit  
P60/SIN2/AN0  
P6 /SOUT2/AN  
1
1
2
3
4
5
6
7
A-D conversion  
register  
P62/SCLK21/AN  
Comparator  
P63/SCLK22/AN  
8
P64  
P65  
P66  
P67  
/AN  
/AN  
/AN  
/AN  
Resistor ladder  
AVSS  
VREF  
Fig. 37 A-D converter block diagram  
37  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A Converter  
b7  
b0  
The 3826 group has an on-chip D-A converter with 8-bit resolution  
and 2 channels (DAi (i=1, 2)). After the DTMF/DA1 selection bit or  
CTCSS/DA2 selection bit is set to “0”, the D-A converter is per-  
formed by setting the value in the D-A conversion register. The  
result of D-A converter is output from DAi pin by setting the DTMF/  
DA1 output enable bit or CTCSS/DA2 output enable bit to “1”.  
When using the D-A converter, the corresponding port direction  
register bit (P56/DA1, P57/DA2) should be set to “0” (input status)  
and the pull-up resistor should be in the OFF state.  
D-A control register  
(DACON : address 003616)  
DTMF/DA1 output enable bit  
0 : Disabled  
1 : Enabled  
CTCSS/DA2 output enable bit  
0 : Disabled  
1 : Enabled  
The output analog voltage V is determined by the value n (base  
10) in the D-A conversion register as follows:  
DTMF/DA1 selection bit  
0 : DA1 function  
1 : DTMF function  
V=VREF n/256 (n=0 to 255)  
CTCSS/DA2 selection bit  
0 : DA2 function  
Where VREF is the reference voltage.  
1 : CTCSS function  
At reset, the D-A conversion registers are cleared to “0016”, the  
DTMF/DA1 output enable bit or CTCSS/DA2 output enable bit are  
cleared to “0”, and DAi pin goes to high impedance state. The DA  
output is not buffered, so connect an external buffer when driving  
a low-impedance load.  
Low group ROM data selection bit  
0 : Sine wave  
1 : 0fixed  
High group ROM data selection bit  
0 : Sine wave  
1 : 0fixed  
Note on applied voltage to VREF pin  
High/Low group timer write control bit  
0 : Write value in latch only  
1 : Write value in latch and counter  
When the P56/DA1 pin and P57/DA2 pin are used as I/O ports, be  
sure to apply Vcc level to VREF pin.  
When these pins are used as D-A conversion output pins, the Vcc  
level is recommended for the applied voltage to VREF pin.  
When the voltage below Vcc level is applied, the D-A conversion  
accuracy may be worse.  
CTCSS timer write control bit  
0 : Write value in latch only  
1 : Write value in latch and counter  
Fig. 38 Structure of D-A control register  
Data bus  
DA1 output enable bit  
R-2R resistor ladder  
Data bus  
P56/DA1  
D-A1 conversion register (8)  
*
Low  
group  
ROM  
5-bit adder  
Selector  
8-bit timer  
5-bit 32  
High  
group  
ROM  
8-bit timer  
X
IN/2  
5-bit 32  
CTCSS  
ROM  
10-bit timer  
8-bit 64  
Selector  
D-A2 conversion register (8)  
* When DTMF is selected, the high-order 6 bits are automatically set  
as the DTMF output.  
The low-order 2 bits is set by writing data to the D-A1 conversion register.  
P57/DA2  
R-2R resistor ladder  
DA2 output enable bit  
Fig. 39 Block diagram of D-A converter  
38  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DTMF Function (Dual Tone Multi Frequency)  
DTMF function is used to output the result which generated auto-  
matically the waveform of sine wave of two kinds of different  
frequency, and added two kinds of this sine wave as an analog  
value.  
The digital value for one period of high group and low group out-  
put is shown in Figure 40.  
DTMF output is automatically input to high-order 6 bits of the D-A1  
conversion register as 6-bit D-A data. The low-order 2 bits of the  
D-A1 conversion register are fixed to the value written in the D-A1  
conversion register.  
DTMF output can be performed using DA1 function. DTMF wave-  
form is output by setting 1to the DTMF/DA1 output enable bit (bit  
0 of address 003616), and setting 1to the DTMF/DA1 selection  
bit (bit 2 of address 003616). At this time, set 0(input state) to the  
direction register of ports P56/DA1 and pull-up resistor to be OFF  
state.  
Moreover, only the sine wave of high group can be output by set-  
ting 1to the bit 4 of the D-A control register. By setting 1to the  
bit 5 of the D-A control register similarly, only the sine wave of low  
group can be output. Writing to the DTMF high group timer and  
the DTMF low group timer can also be changed to writing to latch  
and timer simultaneouslyby setting 1to the bit 6 of the D-A con-  
trol register. Writing to only latchis set after reset release. If the  
D-A1 conversion register is read when the DTMF function is se-  
lected, the digital value of DTMF output can be read.  
In order to set two kinds of frequency which generates DTMF  
waveform, value is written in the DTMF high group timer and the  
DTMF low group timer, respectively. By the value n written in the  
above-mentioned timer, respectively, the sine wave of the follow-  
ing frequency can be generated.  
f (XIN)/2  
f =  
(Hz)  
(n+1) 32  
Set 0616or more to the DTMF high group timer and the DTMF  
low group timer. After reset release, 0616is automatically set to  
them.  
D-A data of low group waveform (1 period) for DTMF  
7816  
D-A data of high group waveform (1 period) for DTMF  
7816  
6416  
5016  
3C16  
2816  
6416  
5016  
3C16  
2816  
1416  
1416  
0
16  
0
16  
25  
Conversion time of low group ROM  
10  
15  
20  
30  
25  
Conversion time of high group ROM  
10  
15  
20  
30  
5
5
0
0
* This is the value set to D-A1 conversion register when the low-order 2 bits are 0.  
Fig. 40 Waveform data of high group and low group  
39  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Low Groupt Frequency, High Group Frequency  
Low group frequency and high group frequency are as follows.  
Table 10 shows the example of frequency accuracy (at f(XIN)=4  
MHz).  
(1) Low group frequency  
697Hz  
A
B
2 3  
1
4
7
*
697 Hz  
770 Hz  
852 Hz  
941 Hz  
770Hz  
852Hz  
941Hz  
5
6
Low group  
frequency  
8 9 C  
(2) High group frequency  
0
D
#
1209 Hz  
1336 Hz  
1477 Hz  
1633 Hz  
High group frequency  
Fig. 41 Key matrix of telephone and rating frequency  
Table 10 Example of frequency accuracy (at f(XIN) = 4 MHz)  
Rating frequency (Hz)  
n (Timer value)  
Output frequency (Hz)]  
Error frequency (Hz)  
Deviation (%)  
697  
770  
89  
80  
72  
65  
51  
46  
41  
37  
694.4  
771.6  
2.6  
1.6  
0.367  
0.208  
0.488  
0.630  
0.580  
0.460  
0.750  
0.720  
852  
856.2  
4.2  
941  
946.9  
5.9  
1209  
1336  
1477  
1633  
1201.9  
1329.7  
1488.1  
1644.7  
7.1  
6.3  
11.1  
11.7  
40  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CTCSS Function  
When reading a value from the CTCSS timer, read the high-order  
byte first. By the value n written in the CTCSS timer, the sine wave  
of the following frequency is generated.  
(Continuous Tone-Controlled Squelch System)  
The CTCSS function is used to generate the sine wave of single  
frequency automatically. The CTCSS output waveform can be out-  
put using DA2 function. CTCSS waveform is outputted by setting  
1to the CTCSS/DA2 output enable bit (bit 1 of address 003616),  
and setting 1to the CTCSS/DA2 selection bit (bit 3 of address  
003616). In order to set the frequency of CTCSS output, value is  
written in the CTCSS timer. The CTCSS timer consists of a 10-bit  
timer. When writing a value to the CTCSS timer, write the low-or-  
der byte first.  
f (XIN)/2  
f =  
(Hz)  
(n+1) 64  
Set 00616or more to the CTCSS timer. 0016is automatically  
set to the high-order of the CTCSS timer and 0616is automati-  
cally set to the low-order of the CTCSS timer after reset release.  
The amplitude of CTCSS output is obtained by the following for-  
mula.  
VCC  
C =  
2
If the D-A2 conversion register is read when the CTCSS function  
is selected, the digital value of CTCSS output can be read.  
Table 11 Example of frequency accuracy (at f(XIN) = 4 MHz)  
Rating frequency (Hz)  
67.0  
n (Timer value)  
465  
Output frequency (Hz)]  
67.06  
Error frequency (Hz)  
0.06  
Deviation (%)  
0.089  
77.0  
405  
76.97  
0.03  
0.027  
0.16  
0.18  
0.09  
0.038  
0.030  
88.5  
352  
88.53  
100.0  
312  
99.84  
0.160  
0.167  
0.078  
107.2  
291  
107.02  
114.89  
114.8  
271  
123.0  
253  
123.03  
131.86  
141.40  
151.70  
161.92  
173.61  
186.01  
202.92  
218.53  
233.20  
250.00  
0.03  
0.026  
131.8  
236  
0.06  
0.043  
141.3  
220  
0.10  
0.073  
151.4  
205  
0.30  
0.198  
162.2  
192  
0.28  
0.19  
0.19  
0.58  
0.43  
0.174  
0.109  
0.101  
0.284  
0.198  
173.8  
179  
186.2  
167  
203.5  
153  
218.1  
142  
233.6  
133  
0.39  
0.30  
0.167  
0.120  
250.3  
124  
41  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
enable bit is set to 1after data is set in the LCD mode register,  
the segment output enable register and the LCD display RAM, the  
LCD drive control circuit starts reading the display data automati-  
cally, performs the bias control and the duty ratio control, and dis-  
plays the data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 3826 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
LCD mode register  
Table 12. Maximum number of display pixels at each duty ratio  
Voltage multiplier  
Selector  
Duty ratio  
2
Maximum number of display pixel  
80 dots  
Timing controller  
Common driver  
or 8 segment LCD 10 digits  
120 dots  
Segment driver  
3
4
Bias control circuit  
or 8 segment LCD 15 digits  
160 dots  
A maximum of 40 segment output pins and 4 common output pins  
can be used.  
or 8 segment LCD 20 digits  
Up to 160 pixels can be controlled for LCD display. When the LCD  
b7  
b0  
Segment output enable register  
(SEG : address 003816  
)
Segment output enable bit 0  
0 : Output ports P3 P35  
0
1 : Segment output SEG18SEG23  
Segment output enable bit 1  
0 : Output ports P36, P37  
1 : Segment output SEG24,SEG25  
Segment output enable bit 2  
0 : I/O ports P00P05  
1 : Segment output SEG26SEG31  
Segment output enable bit 3  
0 : I/O ports P06,P07  
1 : Segment output SEG32,SEG33  
Segment output enable bit 4  
0 : I/O port P1  
0
1 : Segment output SEG34  
Segment output enable bit 5  
0 : I/O ports P11P15  
1 : Segment output SEG35SEG39  
LCD output enable bit  
0 : Disabled  
1 : Enabled  
Not used (return 0when read)  
(Do not write 1to this bit)  
b7  
b0  
LCD mode register  
(LM : address 003916  
)
Duty ratio selection bits  
0 0 : Not used  
0 1 : 2 duty (use COM  
1 0 : 3 duty (use COM  
1 1 : 4 duty (use COM  
Bias control bit  
0 : 1/3 bias  
0, COM  
0COM  
0COM  
1)  
2)  
3
)
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Voltage multiplier control bit  
0 : Voltage multiplier disable  
1 : Voltage multiplier enable  
LCD circuit divider division ratio selection bits  
0 0 : Clock input  
0 1 : 2 division of Clock input  
1 0 : 4 division of Clock input  
1 1 : 8 division of Clock input  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192 (f(XCIN)/8192 in low-speed mode)  
Note : LCDCK is a clock for a LCD timing controller.  
Fig. 42 Structure of segment output enable register and LCD mode register  
42  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 43 Block diagram of LCD controller/driver  
43  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Voltage Multiplier (3 Times)  
Bias Control and Applied Voltage to LCD  
Power Input Pins  
The voltage multiplier performs threefold boosting. This circuit in-  
puts a reference voltage for boosting from LCD power input pin  
VL1. (However, when using a 1/2 bias, connect VL1 and VL2 and  
apply voltage by external resistor division.)  
To the LCD power input pins (VL1VL3), apply the voltage shown  
in Table 13 according to the bias value.  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
Set each bit of the segment output enable register and the LCD  
mode register in the following order for operating the voltage mul-  
tiplier.  
Table 13. Bias control and applied voltage to VL1–VL3  
1. Set the segment output enable bits (bits 0 to 5) of the seg-  
ment output enable register to 0or 1.”  
Bias value  
Voltage value  
VL3=VLCD  
2. Set the duty ratio selection bits (bits 0 and 1), the bias con-  
trol bit (bit 2), the LCD circuit divider division ratio selection  
bits (bits 5 and 6), and the LCDCK count source selection  
bit (bit 7) of the LCD mode register to 0or 1.”  
3. Set the LCD output enable bit (bit 6) of the segment output  
enable register to 1.”  
1/3 bias  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
VL3=VLCD  
1/2 bias  
VL2=VL1=1/2 VLCD  
Note : VLCD is the maximum value of supplied voltage for the  
LCD panel.  
4. Set the voltage multiplier control bit (bit 4) of the LCD mode  
register to 1.”  
When voltage is input to the VL1 pin during operating the voltage  
multiplier, voltage that is twice as large as VL1 occurs at the VL2  
pin, and voltage that is three times as large as VL1 occurs at the  
VL3 pin.  
When using the voltage multiplier, apply 1.3 V Voltage 2.3 V  
(1.3 V Voltage 2.1 V for low voltage version) to the VL1 pin.  
When not using the voltage multiplier,apply proper voltage to the  
LCD power input pins (VL1VL3). Then set the LCD output enable  
bit to 1.”  
When the LCD output enable bit is set to 0,the VCC voltage is  
applied to the VL3 pin inside of this microcomputer.  
The voltage multiplier control bit (bit 4 of the LCD mode register)  
controls the voltage multiplier.  
Contrast control  
Contrast control  
V
V
L3  
L2  
V
V
L3  
L2  
V
V
L3  
L2  
R1  
R2  
R4  
C
2
1
C
C
2
Open  
Open  
Open  
Open  
C
2
1
C
1
C
V
L1  
V
L1  
V
L1  
R3  
R5  
PXx  
R4=R5  
R1=R2=R3  
1/3 bias  
1/3 bias  
when not using the voltage multiplier  
1/2 bias  
when using the voltage multiplier  
Fig. 44 Example of circuit at each bias  
44  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Common Pin and Duty Ratio Control  
The common pins (COM0COM3) to be used are determined by  
duty ratio.  
LCD Display RAM  
Address 004016 to 005316 is the designated RAM for the LCD dis-  
play. When 1are written to these addresses, the corresponding  
segments of the LCD display panel are turned on.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the  
LCD mode register).  
When releasing from reset, the VCC (VL3) voltage is output from  
the common pins.  
LCD Drive Timing  
The LCDCK timing frequency (LCD drive timing) is generated in-  
ternally and the frame frequency can be determined with the fol-  
lowing equation;  
Table 14. Duty ratio control and common pins used  
Duty  
ratio  
Duty ratio selection bits  
Common pins used  
Bit 1  
0
Bit 0  
1
2
COM0, COM1 (Note 1)  
COM0COM2 (Note 2)  
COM0COM3  
(frequency of count source for LCDCK)  
f(LCDCK)=  
3
4
1
1
0
1
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency=  
duty ratio  
Notes 1: COM2 and COM3 are open.  
2: COM3 is open.  
Segment Signal Output Pin  
Segment signal output pins are classified into the segment-only  
pins (SEG0SEG17), the segment/output port pins (SEG18–  
SEG25), and the segment/I/O port pins (SEG26SEG39).  
Segment signals are output according to the bit data of the LCD  
RAM corresponding to the duty ratio. After reset release, a VCC  
(=VL3) voltage is output to the segment-only pins and the seg-  
ment/output port pins are the high impedance condition and  
pulled up to VCC (=VL3) voltage.  
Also, the segment/I/O port pins(SEG26SEG39) are set to input  
ports, and VCC (=VL3) is applied to them by pull-up resistor.  
Bit  
7
6
5
4
3
2
1
0
Address  
COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM0  
SEG1  
SEG3  
SEG0  
SEG2  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
SEG5  
SEG4  
SEG7  
SEG6  
SEG9  
SEG8  
SEG11  
SEG13  
SEG15  
SEG17  
SEG19  
SEG21  
SEG23  
SEG25  
SEG27  
SEG29  
SEG31  
SEG33  
SEG35  
SEG37  
SEG39  
SEG10  
SEG12  
SEG14  
SEG16  
SEG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
SEG30  
SEG32  
SEG34  
SEG36  
SEG38  
Fig. 45 LCD display RAM map  
45  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
V
V
V
L3  
L2=VL1  
SS  
COM  
0
1
2
3
COM  
COM  
COM  
V
V
L3  
SEG  
0
SS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
0
COM  
2
COM  
1
COM  
2
COM  
1
COM  
0
COM2  
1/2 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
0
1
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
1
COM  
0
COM  
1
COM  
1
COM  
0
COM  
1
COM0  
Fig. 46 LCD drive waveform (1/2 bias)  
46  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal logic  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
V
VL2  
VSL1S  
COM  
0
COM  
COM  
COM  
1
2
3
VL3  
SEG  
0
VSS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
COM  
0
1
2
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
0
COM  
2
COM  
1
COM  
0
COM2  
COM  
2
COM  
1
COM0  
1/2 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
0
1
VL3  
SEG  
0
VSS  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
COM  
1
COM  
0
COM  
1
COM  
0
COM  
1
COM0  
COM  
1
COM0  
Fig. 47 LCD drive waveform (1/3 bias)  
47  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
value of high-order 6-bit counter  
Watchdog Timer  
value of STP instruction disable bit  
value of count source selection bit.  
The watchdog timer gives a mean of returning to the reset status  
when a program cannot run on a normal loop (for example, be-  
cause of a software runaway).  
When bit 6 of the watchdog timer control register (address 003716)  
is set to 0,the STP instruction is valid. The STP instruction is  
disabled by rewriting this bit to 1.At this time, if the STP instruc-  
tion is executed, it is processed as an undefined instruction, so  
that a reset occurs inside.  
The watchdog timer consists of an 8-bit watchdog timer L and a 6-  
bit watchdog timer H. At reset or writing to the watchdog timer  
control register (address 003716), the watchdog timer is set to  
3FFF16.When any data is not written to the watchdog timer con-  
trol register (address 003716) after reset, the watchdog timer is in  
stop state. The watchdog timer starts to count down from 3FFF16”  
by writing an optional value into the watchdog timer control regis-  
ter (address 003716) and an internal reset occurs at an underflow.  
Accordingly, programming is usually performed so that writing to  
the watchdog timer control register (address 003716) may be  
started before an underflow. The watchdog timer does not function  
when an optional value has not been written to the watchdog timer  
control register (address 003716). When address 003716 is read,  
the following values are read:  
This bit cannot be rewritten to 0by programming. This bit is 0”  
immediately after reset.  
The count source of the watchdog timer becomes the system  
clock φ divided by 8. The detection time in this case is set to 8.19 s  
at f(XCIN) = 32 kHz and 32.768 ms at f(XIN) = 8 MHz.  
However, count source of high-order 6-bit timer can be connected  
to a signal divided system clock by 8 directly by writing the bit 7 of  
the watchdog timer control register (address 003716) to 1.The  
detection time in this case is set to 32 ms at f(XCIN) = 32 kHz and  
128 µs at f(XIN) = 8 MHz. There is no difference in the detection  
time between the middle-speed mode and the high-speed mode.  
FF16is set when  
watchdog timer is  
Data bus  
XCIN  
Watchdog timer H count  
source selection bit  
0”  
written to.  
Watchdog timer  
L (8)  
1”  
0”  
Internal  
Watchdog timer  
system clock  
selection bit  
(Note)  
1/16  
1”  
H (6)  
3F16is set when  
watchdog timer is  
written to.  
XIN  
Undefined instruction  
Reset  
STP instruction disable bit  
STP instruction  
Internal reset  
Reset circuit  
RESET  
Reset release time wait  
Note: This is the bit 7 of CPU mode register and is used to switch the middle-/high-speed mode and low-speed mode.  
Fig. 48 Block diagram of watchdog timer  
b7  
b0  
Watchdog timer register (address 003716  
)
WDTCON  
Watchdog timer H (for read-out of high-order 6 bit)  
3FFF16is set to the watchdog timer by writing values to this address.  
STP instruction disable bit  
0 : STP instruction enabled  
1 : STP instruction disabled  
Watchdog timer H count source selecion bit  
0 : Watchdog timer L underflow  
1 : f(XIN)/16 or f(XCIN)/16  
Fig. 49 Structure of watchdog timer control register  
f(XIN  
)
1
ms (f(XIN) = 8 MHZ)  
Internal  
reset signal  
Watchdog timer detection  
Fig. 50 Timing of reset output  
48  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TOUT/φ CLOCK OUTPUT FUNCTION  
The internal system clock φ or timer 2 divided by 2 (TOUT output)  
can be output from port P43 by setting the TOUT/φ output control  
bit (bit 1) of the timer 123 mode register and the TOUT/φ output  
control register. Set bit 3 of the port P4 direction register to 1”  
when outputting the clock.  
b7  
b0  
TOUT/φ output control register  
(CKOUT : address 002A16  
)
T
OUT/φ output control bit  
0 : φ clock output  
1 : TOUT output  
Not used (return 0when read)  
b7  
b0  
Timer 123 mode register  
(T123M : address 002916  
)
T
T
OUT output active edge switch bit  
0 : Start at Houtput  
1 : Start at Loutput  
OUT/φ output control bit  
0 : TOUT/φ output disabled  
1 : TOUT/φ output enabled  
Timer 2 write control bit  
0 : Write data in latch and timer  
1 : Write data in latch only  
Timer 2 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 3 count source selection bit  
0 : Timer 1 output  
1 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
Timer 1 count source selection bit  
0 : f(XIN)/16  
(or f(XCIN)/16 in low-speed mode)  
1 : f(XCIN  
)
Not used (return 0when read)  
: Internal clock φ is f(XCIN)/2 in the low-speed mode.  
Fig. 51 Structure of TOUT/φ output-related register  
49  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
To reset the microcomputer, RESET pin should be held at an L”  
level for 2 µs or more. Then the RESET pin is returned to an H”  
level (the power source voltage should be between VCC(min.) and  
5.5 V, and the quartz-crystal oscillator should be stable), reset is  
released. After the reset is completed, the program starts from the  
address contained in address FFFD16 (high-order byte) and ad-  
dress FFFC16 (low-order byte). Make sure that the reset input  
voltage is less than 0.2 VCC for VCC of VCC (min.).  
Power on  
Power  
(Note)  
source  
voltage  
0V  
RESET  
VCC  
Reset input  
voltage  
0.2 VCC  
0V  
Note: Reset release voltage VCC = VCC (min.)  
RESET  
VCC  
Power source voltage  
detection circuit  
Fig. 52 Example of reset circuit  
X
IN  
φ
RESET  
Internal reset  
Reset address from  
vector table  
Address  
Data  
?
?
?
?
ADH,ADL  
FFFC  
FFFD  
ADH  
ADL  
SYNC  
Notes 1 : XIN and φ are in the relationship  
: f(XIN) = 8f(φ)  
2 : A question mark (?) indicates an undefined status that depends on the previous status.  
X
IN : about 8200  
clock cycles  
Fig. 53 Reset Sequence  
50  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address Register contents  
(1)  
(2)  
000116  
000316  
000516  
000716  
000916  
000B16  
000D16  
000F16  
001516  
001616  
001716  
001916  
001A16  
001B16  
001D16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002E16  
002F16  
Port P0 direction register  
Port P1 direction register  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
(3) Port P2 direction register  
(4)  
Port P3 output control register  
Port P4 direction register  
(5)  
(6)  
(7)  
(8)  
(9)  
Port P5 direction register  
Port P6 direction register  
Port P7 direction register  
Key input control register  
0016  
3F16  
0016  
(10) PULL register A  
(11) PULL register B  
(12)  
(13)  
(14)  
(15)  
Serial I/O1 status register  
Serial I/O1 control register  
UART control register  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0016  
0
0
Serial I/O2 control register  
0016  
FF16  
(16) Timer X (low)  
(17) Timer X (high)  
(18) Timer Y (low)  
(19) Timer Y (high)  
(20) Timer 1  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
0016  
0016  
0016  
0016  
0016  
0616  
0016  
(21) Timer 2  
(22) Timer 3  
(23)  
Timer X mode register  
(24) Timer Y mode register  
Timer 123 mode register  
(25)  
(26)  
TOUT/φ output control register  
(27) PWM control register  
CTCSS timer (low)  
CTCSS timer (high)  
(28)  
(29)  
(30)  
003016  
003116  
003216  
003316  
003416  
003616  
003716  
003816  
003916  
DTMF high group timer  
0616  
0616  
0016  
0016  
(31) DTMF low group timer  
D-A1 conversion register  
D-A2 conversion register  
(32)  
(33)  
(34) A-D control register  
0
0
0
0
0
1
0
1
0
1
0
1
0
1
D-A control register  
(35)  
(36)  
0016  
Watchdog timer control register  
1
1
(37) Segment output enable register  
(38) LCD mode register  
0016  
0016  
0016  
(39) Interrupt edge selection register 003A16  
(40) CPU mode register  
003B16  
003C16  
003D16  
003E16  
003F16  
0
1
0
0
0
0
0
1
(41) Interrupt request register 1  
(42) Interrupt request register 2  
0016  
0016  
0016  
0016  
Interrupt control register 1  
Interrupt control register 2  
Processor status register  
(43)  
(44)  
(45)  
(PS)  
(PCH)  
(PCL)  
✕ ✕  
✕ ✕ ✕ 1 ✕ ✕  
(46) Program counter  
Contents of address FFFD16  
Contents of address FFFC16  
Watchdog timer (high-order)  
(47)  
(48)  
3F16  
FF16  
Watchdog timer (low-order)  
Note: The contents of all other registers and RAM are undefined after  
reset, so they must be initialized by software.  
: Undefined  
Fig. 54 Internal state of microcomputer immediately after reset  
51  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Oscillation Control  
CLOCK GENERATING CIRCUIT  
(1) Stop mode  
The 3826 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillators stop.  
In this time, values set previously to timer 1 latch and timer 2 latch  
are loaded automatically to timer 1 and timer 2. Set the values to  
generate the wait time required for oscillation stabilization to timer  
1 latch and timer 2 latch (low-order 8 bits of timer 1 and high-order  
8 bits of timer 2) before the STP instruction.  
To supply a clock signal externally, input it to the XIN pin and make  
the XOUT pin open. The sub-clock XCIN-XCOUT oscillation circuit  
cannot directly input clocks that are externally generated. Accord-  
ingly, be sure to cause an external resonator to oscillate.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins go to high-impedance state.  
Either XIN or XCIN divided by 16 is input to timer 1 as count  
source, and the output of timer 1 is connected to timer 2.  
The bits of the timer 123 mode register except bit 4 are cleared to  
“0”. Set the timer 1 and timer 2 interrupt enable bits to disabled  
(“0”) before executing the STP instruction.  
Oscillator restarts at reset or when an external interrupt is re-  
ceived, but the internal clock φ is not supplied to the CPU until  
timer 2 underflows. This allows time for the clock circuit oscillation  
to stabilize when a ceramic resonator is used.  
Frequency Control  
(1) Middle-speed mode  
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
(2) Wait mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level. The states of XIN and XCIN are the same as the state be-  
fore the executing the WIT instruction. The internal clock restarts  
at reset or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
(2)High-speed mode  
The internal clock φ is half the frequency of XIN.  
(3) Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
A low-power consumption operation can be realized by stopping  
the main clock XIN in this mode. To stop the main clock, set bit 5  
of the CPU mode register to “1”.  
When the main clock XIN is restarted, set enough time for oscil-  
lation to stabilize by programming.  
Note: If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The suffi-  
cient time is required for the sub-clock to stabilize, espe-  
cially immediately after power-on and at returning from stop  
mode. When switching the mode between middle/high-  
speed and low-speed, set the frequency in the condition  
that f(XIN) > 3•f(XCIN).  
X
CIN  
X
COUT  
X
IN  
X
OUT  
Rf  
Rd  
C
OUT  
C
CIN  
C
COUT  
CIN  
Fig. 55 Ceramic resonator circuit  
XCIN  
XCOUT  
XIN  
XOUT  
Rf  
Open  
Rd  
External oscillation circuit  
C
CIN  
CCOUT  
VCC  
VSS  
Fig. 56 External clock input circuit  
52  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
COUT  
X
CIN  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
(Note)  
X
IN  
X
OUT  
Low-speed mode  
1”  
0”  
0”  
Timer 1  
Timer 2  
1/4  
1/2  
1/2  
1”  
0”  
1”  
Middle-/High-speed mode  
Main clock division ratio selection bit  
Middle-speed mode  
1”  
Timing φ  
(Internal clock)  
0”  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
Q
Q
S
R
S
R
S
R
Q
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note: When using the low-speed mode, set the X  
C
switch bit to 1.  
Fig. 57 Clock generating circuit block diagram  
53  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
Middle-speed mode  
(φ = 1 MHz)  
High-speed mode  
(φ = 4 MHz)  
CM  
6
1”  
0”  
CM  
CM  
CM  
7
6
5
= 0 (8 MHz selected)  
= 0 (High-speed)  
= 0 (XIN oscillating)  
CM  
CM  
CM  
7
6
5
= 0 (8 MHz selected)  
= 1 (Middle-speed)  
= 0 (XIN oscillating)  
CM  
6
Low-speed mode  
(φ =16 kHz)  
Low-speed mode  
(φ =16 kHz)  
1”  
0”  
CM  
CM  
CM  
7
6
5
= 1 (32 kHz selected)  
= 1 (Middle-speed)  
= 0 (XIN oscillating)  
CM  
CM  
CM  
7
6
5
= 1 (32 kHz selected)  
= 0 (High-speed)  
= 0 (XIN oscillating)  
b7  
b4  
CPU mode register  
(CPUM : address 003B16  
)
CM  
CM  
CM  
CM  
4 : Xc switch bit  
0: Oscillation stop  
1: XCIN, XCOUT  
0
M5  
0
C
M6  
1
5
: Main clock (XINXOUT) stop bit  
C
0: Oscillating  
1: Stopped  
1
6
: Main clock division ratio selection bit  
0: f(XIN)/2 (high-speed mode)  
1: f(XIN)/8 (middle-speed mode)  
CM  
6
Low-speed mode  
(φ = 16 kHz)  
Low-speed mode  
(φ =16 kHz)  
1”  
0”  
7
: Internal system clock selection bit  
CM  
CM  
CM  
7
6
5
= 1 (32 kHz selected)  
CM  
CM  
CM  
7
6
5
= 1 (32 kHz selected)  
= 0 (High-speed)  
= 1 (XIN stopped)  
0: XINXOUT selected  
= 1 (Middle-speed)  
= 1 (XIN stopped)  
(middle-/high-speed mode)  
1: XCINXCOUT selected  
(low-speed mode)  
Notes  
1: Switch the mode by the arrows shown between the mode blocks. (Do not switch between the mode directly without an arrow.)  
2: The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait  
mode is ended.  
3: Timer and LCD operate in the wait mode.  
4: When the stop mode is ended, a delay time can be set by timer 1 and timer 2 in middle-/high-speed mode.  
5: When the stop mode is ended, a delay time in low-speed mode can be set as well.  
6: Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle-/high-  
speed mode.  
7: The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. 58 State transitions of system clock  
54  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit en-  
able bit, the receive enable bit, and the SRDY output enable bit to  
1.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is 1. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
Serial I/O1 continues to output the final bit from the TXD pin after  
transmission is completed.  
In serial I/O2, the SOUT2 pin goes to high impedance state after  
transmission is completed.  
Interrupt  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt re-  
quest register, execute at least one instruction before performing a  
BBC or BBS instruction.  
A-D Converter  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500kHz during an A-D conversion.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
1, then execute an ADC or SBC instruction. Only the ADC and  
SBC instructions yield proper decimal results. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
The frequency of the internal clock φ is half of the XIN frequency.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n + 1).  
Multiplication and Division Instructions  
The index mode (T) and the decimal mode (D) flags do not affect  
the MUL and DIV instruction.  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
The data transfer instruction (LDA, etc.)  
The operation instruction when the index X mode flag (T) is 1”  
The addressing mode which uses the value of a direction regis-  
ter as an index  
The bit-test instruction (BBC or BBS, etc.) to a direction register  
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
55  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
1.Mask ROM Order Confirmation Form  
2.Mark Specification Form  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies) or one floppy disk.  
Table 15. Programming adapter  
For the mask ROM confirmation and the mark specifications, re-  
fer to the “Mitsubishi MCU Technical Information” Homepage  
(http://www.infomicom.maec.co.jp/indexe.htm).  
Package  
100P6Q-A  
100P6S-A  
100D0  
Name of Programming Adapter  
PCA4738G-100A  
PCA4738F-100A  
PCA4738L-100A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 59 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 59 Programming and testing of One Time PROM version  
56  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Table 16 Absolute maximum ratings  
Symbol  
VCC  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
–0.3 to 7.0  
VI  
Input voltage P00–P07, P10–P17, P20–P27,  
P40–P47, P50–P57, P60–P67  
–0.3 to VCC +0.3  
V
VI  
VI  
VI  
VI  
VI  
VI  
VO  
–0.3 to VCC +0.3  
–0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
V
V
Input voltage P70–P77  
Input voltage VL1  
All voltages are based on VSS.  
Output transistors are cut off.  
Input voltage VL2  
VL2 to 7.0  
Input voltage VL3  
–0.3 to 7.0  
Input voltage C1, C2  
Input voltage RESET, XIN  
Output voltage C1, C2  
–0.3 to VCC +0.3  
–0.3 to 7.0  
–0.3 to VCC  
–0.3 to VL3  
At output port  
VO  
Output voltage P00–P07, P10–P15, P30–P37  
At segment output  
Output voltage P16, P17, P20–P27, P40–P47,  
P50–P57, P60–P67, P71–P77  
–0.3 to VCC +0.3  
V
VO  
VO  
Output voltage VL3  
–0.3 to 7.0  
–0.3 to VL3  
V
V
VO  
Output voltage VL2, SEG0–SEG17  
Output voltage XOUT  
VO  
–0.3 to VCC +0.3  
V
Ta = 25°C  
Pd  
Power dissipation  
Operating temperature  
Storage temperature  
300  
–20 to 85  
–40 to 125  
mW  
°C  
°C  
Topr  
Tstg  
RECOMMENDED OPERATING CONDITIONS  
Table 17 Recommended operating conditions (1) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
2.5  
2.5  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
5.5  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
VCC  
5.5  
Power source voltage  
Power source voltage  
5.5  
VSS  
V
V
V
V
VREF  
AVSS  
VIA  
A-D, D-A conversion reference voltage  
Analog power source voltage  
2.0  
VCC  
VCC  
0
Analog input voltage AN0–AN7  
AVSS  
57  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 18 Recommended operating conditions (2) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
VCC  
“H” input voltage  
“H” input voltage  
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
VIH  
0.7 VCC  
V
V
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIH  
0.8 VCC  
VCC  
VIH  
VIH  
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
0.8 VCC  
0.8 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
V
V
VIL  
VIL  
0
0
0.3 VCC  
0.2 VCC  
“L” input voltage  
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIL  
VIL  
“L” input voltage  
“L” input voltage  
0
0
0.2 VCC  
0.2 VCC  
V
V
RESET  
XIN  
58  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 19 Recommended operating conditions (3) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
–20  
–20  
20  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
“L” total peak output current  
“H” total average output current  
“H” total average output current  
“L” total average output current  
“L” total average output current  
“L” total average output current  
“H” peak output current  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
20  
80  
–10  
–10  
10  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
10  
40  
–1.0  
P00–P07, P10–P15, P30–P37 (Note 2)  
“H” peak output current  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
IOH(peak)  
IOL(peak)  
IOL(peak)  
–5.0  
5.0  
mA  
mA  
“L” peak output current  
“L” peak output current  
P00–P07, P10–P15, P30–P37 (Note 2)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
10  
mA  
“L” peak output current  
IOL(peak)  
IOH(avg)  
IOH(avg)  
IOL(avg)  
20  
mA  
mA  
mA  
mA  
P40, P71–P77 (Note 2)  
“H” average output current  
“H” average output current  
“L” average output current  
–0.5  
–2.5  
2.5  
P00–P07, P10–P15, P30–P37 (Note 3)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
P00–P07, P10–P15, P30–P37 (Note 3)  
“L” average output current  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 3)  
IOL(avg)  
5.0  
10  
mA  
mA  
IOL(avg)  
“L” average output current  
P40, P71–P77 (Note 3)  
Notes1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
59  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 20 Recommended operating conditions (4) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
(4.0 V VCC 5.5 V)  
Unit  
MHz  
MHz  
Min.  
Max.  
4.0  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(2VCC)  
(VCC 4.0 V)  
–4  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
Main clock input oscillation frequency  
(Note 1)  
f(XIN)  
High-speed mode  
(2.5 V VCC 4.0 V)  
(4VCC)  
MHz  
–8  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 1, 2)  
32.768  
Notes1: When the oscillation frequency has a duty cycle of 50%.  
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
60  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 21 Electrical characteristics (1) (VCC =4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = –1 mA  
Unit  
Max.  
Min.  
VCC–2.0  
V
V
“H” output voltage  
P00–P07, P10–P15, P30–P37  
VOH  
IOH = –0.25 mA  
VCC = 2.5 V  
VCC–0.8  
IOH = –5 mA  
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67 (Note 1)  
IOH = –1.5 mA  
VOH  
VOL  
VOL  
IOH = –1.25 mA  
VCC = 2.5 V  
VCC–0.8  
V
IOL = 5 mA  
2.0  
0.5  
V
V
“L” output voltage  
P00–P07, P10–P15, P30–P37  
IOL = 1.5 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
0.8  
V
2.0  
0.5  
V
V
IOL = 10 mA  
IOL = 3.0 mA  
“L” output voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67  
IOL = 2.5 mA  
VCC = 2.5 V  
0.8  
0.5  
0.3  
V
IOL = 10 mA  
V
V
“L” output voltage  
P40, P71–P77  
VOL  
IOL = 5 mA  
VCC = 2.5 V  
Hysteresis  
VT+ – VT–  
0.5  
V
INT0–INT2, ADT, CNTR0, CNTR1, P20–P27  
0.5  
0.5  
Hysteresis  
SCLK, RXD, SIN2  
RESET  
VT+ – VT–  
VT+ – VT–  
V
V
Hysteresis  
“H” input current  
P00–P07, P10–P17, P20–P27, P40–P47,  
P50–P57, P60–P67, P70–P77  
IIH  
5.0  
5.0  
µA  
VI = VCC  
µA  
µA  
IIH  
IIH  
“H” input current RESET  
“H” input current XIN  
VI = VCC  
VI = VCC  
4.0  
VI = VSS  
Pull-ups “off”  
–5.0  
µA  
µA  
µA  
“L” input current  
VCC = 5 V, VI = VSS  
Pull-ups “on”  
P00–P07,P10–P17, P20–P27,P41–P47,  
P50–P57, P60–P67  
IIL  
–60.0  
–6.0  
–120.0 –240.0  
VCC = 2.5 V, VI = VSS  
Pull-ups “on”  
–25.0  
–45.0  
µA  
µA  
µA  
“L” input current P40, P70–P77  
“L” input current RESET  
“L” input current XIN  
–5.0  
–5.0  
IIL  
IIL  
IIL  
VI = VSS  
VI = VSS  
–4.0  
VCC = 5.0 V, VO = VCC, Pullup ON  
Output transistors “off”  
µA  
µA  
–60.0  
–6.0  
–120.0 –240.0  
Output load current  
P30–P37  
ILOAD  
VCC = 2.5 V,VO = VCC, Pullup ON  
Output transistors “off”  
–25.0  
–45.0  
VO = VCC, Pullup OFF  
Output transistors “off”  
µA  
µA  
5.0  
Output leak current  
P30–P37  
ILEAK  
VO = VSS, Pullup OFF  
Output transistors “off”  
–5.0  
61  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 22 Electrical characteristics (2) (VCC =2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
2.0  
Max.  
5.5  
VRAM  
RAM retention voltage  
At clock stop mode  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
8.0  
2.5  
mA  
mA  
15  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
A-D converter in operating  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
4.0  
Output transistors “off”  
A-D converter stop  
• Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
45  
23  
18  
8
67  
46  
36  
µA  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
ICC  
Power source current  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
16  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped (in STP state)  
Output transistors “off”  
(M3826AEF)  
0.1  
0.5  
Ta = 25 °C  
1.0  
µA  
µA  
Ta = 85 °C  
Ta = 25 °C  
10  
10  
All oscillation stopped (in STP state)  
Output transistors “off”  
(M38267E8)  
Ta = 55 °C  
60  
Power source voltage  
Power source current  
1.8  
4.0  
VL1  
IL1  
When using voltage multiplier  
VL1 = 1.8 V  
2.3  
V
1.3  
µA  
(VL1)  
(Note)  
Note: When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”.  
62  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 23 A-D converter characteristics  
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85°C, 500 kHz f(XIN) 8 MHz, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
VCC = VREF = 2.7 to 5.5 V  
f(XIN) = 8 MHz  
±2  
LSB  
Absolute accuracy  
(excluding quantization error)  
12.5  
(Note)  
tCONV  
Conversion time  
µs  
RLADDER  
IVREF  
IIA  
Ladder resistor  
12  
50  
35  
kΩ  
µA  
µA  
100  
200  
5.0  
Reference power source input current  
Analog port input current  
VREF = 5 V  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
Table 24 D-A converter characteristics  
(VCC = 2.7 to 5.5 V, VCC = VREF, VSS = AVSS = 0 V, Ta = –20 to 85°C, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
%
Resolution  
1.0  
2.0  
VCC = VREF = 5 V  
Absolute accuracy  
%
VCC = VREF = 2.7 V  
Setting time  
µs  
tsu  
3
Output resistor  
1
4
kΩ  
mA  
mA  
RO  
2.5  
(Note)  
(Note)  
IVREF  
Reference power source M3826AEF  
input current  
M38267E8  
3.2  
6.0  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through  
the A-D resistance ladder.  
63  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 25 Timing requirements 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
250  
105  
105  
80  
80  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
su(RXD–SCLK1)  
th(SCLK1–RXD) Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O2 input set up time  
t
su(SIN2–SCLK2)  
th(SCLK2–SIN2) Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
Table 26 Timing requirements 2 (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
125  
twH(XIN)  
45  
twL(XIN)  
Main clock input “L” pulse width  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
CNTR0, CNTR1 input cycle time  
500/(VCC–2)  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
250/(VCC–2)–20  
250/(VCC–2)–20  
230  
230  
2000  
950  
950  
400  
200  
2000  
950  
950  
400  
300  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
ns  
ns  
t
su(R  
X
D–SCLK1  
)
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(SCLK1–RXD) Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O2 input set up time  
t
su(SIN2–SCLK2)  
th(SCLK2–SIN2) Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
64  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 27 Switching characteristics 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
140  
tC (SCLK1)/2–30  
tC (SCLK1)/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
td(SCLK1–TXD) Serial I/O1 output delay time (Note 1)  
tv(SCLK1–TXD) Serial I/O1 output valid time (Note 1)  
–30  
tr(SCLK1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
t
t
C
C
(SCLK2)/2–160  
(SCLK2)/2–160  
twH(SCLK2)  
twL(SCLK2)  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
0
)
Serial I/O2 output valid time  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
Table 28 Switching characteristics 2 (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
tC (SCLK1)/2–50  
tC (SCLK1)/2–50  
twH(SCLK1)  
twL(SCLK1)  
td(SCLK1–TXD)  
tv(SCLK1–TXD)  
tr(SCLK1)  
–30  
50  
50  
tf(SCLK1)  
twH(SCLK2)  
twL(SCLK2)  
t
t
C
C
(SCLK2)/2–240  
(SCLK2)/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
Serial I/O2 output valid time  
)
0
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
50  
50  
50  
20  
20  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
65  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Low Voltage Version)  
ABSOLUTE MAXIMUM RATINGS (Low Voltage Version)  
Table 29 Absolute maximum ratings (low voltage version)  
Symbol  
VCC  
Parameter  
Conditions  
Ratings  
Unit  
V
–0.3 to 6.5  
Power source voltage (Note 1)  
VI  
Input voltage P00–P07, P10–P17, P20–P27,  
P40–P47, P50–P57, P60–P67  
–0.3 to VCC +0.3  
V
VI  
VI  
VI  
VI  
VI  
VI  
VO  
–0.3 to VCC +0.3  
–0.3 to VL2  
VL1 to VL3  
V
V
V
V
V
V
V
V
V
Input voltage P70–P77  
Input voltage VL1  
All voltages are based on VSS.  
Output transistors are cut off.  
Input voltage VL2  
VL2 to 6.5  
Input voltage VL3 (Note 2)  
Input voltage C1, C2 (Note 1)  
Input voltage RESET, XIN  
Output voltage C1, C2 (Note 1)  
–0.3 to 6.5  
–0.3 to VCC +0.3  
–0.3 to 6.5  
–0.3 to VCC  
–0.3 to VL3  
At output port  
VO  
Output voltage P00–P07, P10–P15, P30–P37  
At segment output  
Output voltage P16, P17, P20–P27, P40–P47,  
P50–P57, P60–P67, P71–P77  
–0.3 to VCC +0.3  
V
VO  
VO  
Output voltage VL3 (Note 1)  
Output voltage VL2, SEG0–SEG17  
Output voltage XOUT  
–0.3 to 6.5  
–0.3 to VL3  
V
V
VO  
VO  
–0.3 to VCC +0.3  
V
Ta = 25°C  
Pd  
Power dissipation  
Operating temperature  
Storage temperature  
300  
–20 to 85  
–40 to 125  
mW  
°C  
°C  
Topr  
Tstg  
Notes 1: –0.3 V to 7.0 V for M38267M8L.  
2: VL2 to 7.0 V for M38267M8L.  
RECOMMENDED OPERATING CONDITIONS (Low Voltage Version)  
Table 30 Recommended operating conditions (1) (low voltage version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
4.0  
2.2  
2.2  
Typ.  
5.0  
5.0  
5.0  
0
Max.  
5.5  
High-speed mode f(XIN) = 8 MHz  
Middle-speed mode f(XIN) = 8 MHz  
Low-speed mode  
VCC  
5.5  
Power source voltage  
Power source voltage  
5.5  
VSS  
V
V
V
V
VREF  
AVSS  
VIA  
A-D, D-A conversion reference voltage  
Analog power source voltage  
2.0  
VCC  
VCC  
0
Analog input voltage AN0–AN7  
AVSS  
66  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 31 Recommended operating conditions (2) (low voltage version) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
VCC  
“H” input voltage  
“H” input voltage  
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
VIH  
0.7 VCC  
V
V
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIH  
0.8 VCC  
VCC  
VIH  
VIH  
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
0.8 VCC  
0.8 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
V
V
VIL  
VIL  
0
0
0.3 VCC  
0.2 VCC  
“L” input voltage  
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIL  
VIL  
“L” input voltage  
“L” input voltage  
0
0
0.2 VCC  
0.2 VCC  
V
V
RESET  
XIN  
Table 32 Recommended operating conditions (3) (low voltage version) (VCC = 2.2 to 2.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
VCC  
“H” input voltage  
“H” input voltage  
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
VIH  
0.8 VCC  
V
V
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
VIH  
0.95 VCC  
VCC  
VIH  
VIH  
“H” input voltage  
“H” input voltage  
“L” input voltage  
RESET  
XIN  
0.95 VCC  
0.95 VCC  
VCC  
VCC  
V
V
P00–P07, P10–P17, P40, P43, P45, P47, P50–P53,  
P56, P61, P64–P67, P71–P77  
V
V
VIL  
VIL  
0
0
0.2 VCC  
“L” input voltage  
P20–P27, P41, P42, P44, P46, P54, P55, P57, P60,  
P62, P63, P70  
0.05 VCC  
VIL  
VIL  
“L” input voltage  
“L” input voltage  
0
0
0.05 VCC  
0.05 VCC  
V
V
RESET  
XIN  
67  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 33 Recommended operating conditions (4) (low voltage version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
–20  
–20  
20  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
“L” total peak output current  
“H” total average output current  
“H” total average output current  
“L” total average output current  
“L” total average output current  
“L” total average output current  
“H” peak output current  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
20  
80  
–10  
–10  
10  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37 (Note 1)  
P41–P47, P50–P57, P60–P67 (Note 1)  
P40, P71–P77 (Note 1)  
10  
40  
–1.0  
P00–P07, P10–P15, P30–P37 (Note 2)  
“H” peak output current  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
IOH(peak)  
IOL(peak)  
IOL(peak)  
–5.0  
5.0  
mA  
mA  
“L” peak output current  
“L” peak output current  
P00–P07, P10–P15, P30–P37 (Note 2)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 2)  
10  
mA  
“L” peak output current  
IOL(peak)  
IOH(avg)  
IOH(avg)  
IOL(avg)  
20  
mA  
mA  
mA  
mA  
P40, P71–P77 (Note 2)  
“H” average output current  
“H” average output current  
“L” average output current  
–0.5  
–2.5  
2.5  
P00–P07, P10–P15, P30–P37 (Note 3)  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
P00–P07, P10–P15, P30–P37 (Note 3)  
“L” average output current  
P16, P17, P20–P27, P41–P47, P50–P57, P60–P67  
(Note 3)  
IOL(avg)  
5.0  
10  
mA  
mA  
IOL(avg)  
“L” average output current  
P40, P71–P77 (Note 3)  
Notes1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
68  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 34 Recommended operating conditions (5) (low voltage version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
(4.0 V VCC 5.5 V)  
Unit  
MHz  
MHz  
Min.  
Typ.  
Max.  
4.0  
f(CNTR0)  
f(CNTR1)  
Input frequency for timers X and Y  
(duty cycle 50%)  
(10VCC  
(VCC 4.0 V)  
–4)/9  
High-speed mode  
(4.0 V VCC 5.5 V)  
8.0  
MHz  
Main clock input oscillation frequency  
(Note 1)  
f(XIN)  
High-speed mode  
(2.2 V VCC 4.0 V)  
(20VCC  
MHz  
–8)/9  
Middle-speed mode  
MHz  
kHz  
8.0  
50  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 1, 2)  
32.768  
Notes1: When the oscillation frequency has a duty cycle of 50%.  
2: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
69  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 35 Electrical characteristics (1) (low voltage version) (VCC =4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –1 mA  
Unit  
Max.  
Typ.  
Min.  
VCC–2.0  
V
V
“H” output voltage  
P00–P07, P10–P15, P30–P37  
VOH  
IOH = –0.25 mA  
VCC = 2.2 V  
VCC–0.8  
IOH = –5 mA  
VCC–2.0  
VCC–0.5  
V
V
“H” output voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67 (Note 1)  
IOH = –1.5 mA  
VOH  
VOL  
VOL  
IOH = –1.25 mA  
VCC = 2.2 V  
VCC–0.8  
V
IOL = 5 mA  
2.0  
0.5  
V
V
“L” output voltage  
P00–P07, P10–P15, P30–P37  
IOL = 1.5 mA  
IOL = 1.25 mA  
VCC = 2.2 V  
0.8  
V
2.0  
0.5  
V
V
IOL = 10 mA  
IOL = 3.0 mA  
“L” output voltage  
P16, P17, P20–P27, P41–P47, P50–P57,  
P60–P67  
IOL = 2.5 mA  
VCC = 2.2 V  
0.8  
0.5  
0.3  
V
IOL = 10 mA  
V
V
“L” output voltage  
P40, P71–P77  
VOL  
IOL = 5 mA  
VCC = 2.2 V  
Hysteresis  
VT+ – VT–  
0.5  
V
INT0–INT2, ADT, CNTR0, CNTR1, P20–P27  
0.5  
0.5  
Hysteresis  
SCLK, RXD, SIN2  
RESET  
VT+ – VT–  
VT+ – VT–  
V
V
Hysteresis  
“H” input current  
P00–P07, P10–P17, P20–P27, P40–P47,  
P50–P57, P60–P67, P70–P77  
IIH  
5.0  
5.0  
µA  
VI = VCC  
µA  
µA  
IIH  
IIH  
“H” input current RESET  
“H” input current XIN  
VI = VCC  
VI = VCC  
4.0  
VI = VSS  
Pull-ups “off”  
–5.0  
µA  
µA  
µA  
“L” input current  
VCC = 5 V, VI = VSS  
Pull-ups “on”  
P00–P07,P10–P17, P20–P27,P41–P47,  
P50–P57, P60–P67  
IIL  
–60.0  
–5.0  
–120.0 –240.0  
VCC = 2.2 V, VI = VSS  
Pull-ups “on”  
–20.0  
–40.0  
µA  
µA  
µA  
“L” input current P40, P70–P77  
“L” input current RESET  
“L” input current XIN  
–5.0  
–5.0  
IIL  
IIL  
IIL  
VI = VSS  
VI = VSS  
–4.0  
VCC = 5.0 V, VO = VCC, Pullup ON  
Output transistors “off”  
µA  
µA  
–60.0  
–5.0  
–120.0 –240.0  
Output load current  
P30–P37  
ILOAD  
VCC = 2.2 V,VO = VCC, Pullup ON  
Output transistors “off”  
–20.0  
–40.0  
VO = VCC, Pullup OFF  
Output transistors “off”  
µA  
µA  
5.0  
Output leak current  
P30–P37  
ILEAK  
VO = VSS, Pullup OFF  
Output transistors “off”  
–5.0  
70  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 36 Electrical characteristics (2) (low voltage version) (VCC =2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
2.0  
Typ.  
Max.  
5.5  
VRAM  
RAM retention voltage  
At clock stop mode  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz  
8.0  
mA  
mA  
15  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
A-D converter in operating  
• High-speed mode, VCC = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
2.5  
4.0  
Output transistors “off”  
A-D converter stop  
• Low-speed mode, VCC = 5 V, Ta 55°C  
f(XIN) = stopped  
45  
23  
18  
8
67  
46  
36  
µA  
µA  
µA  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
ICC  
Power source current  
• Low-speed mode, VCC = 5 V, Ta = 25°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta 55°C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
• Low-speed mode, VCC = 3 V, Ta = 25°C  
f(XIN) = stopped  
16  
µA  
µA  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
All oscillation stopped (in STP state)  
Output transistors “off”  
(M38268MCL, M3826AMFL)  
0.1  
0.5  
1.8  
Ta = 25 °C  
1.0  
Ta = 85 °C  
Ta = 25 °C  
10  
10  
All oscillation stopped (in STP state)  
Output transistors “off”  
(M38267M8L)  
µA  
Ta = 55 °C  
60  
Power source voltage  
Power source current  
VL1  
IL1  
When using voltage multiplier  
2.1  
V
M38268MCL,  
M3826AMFL  
1.3  
1.3  
2.3  
M38267M8L  
1.8  
4.0  
VL1 = 1.8 V  
µA  
(VL1)  
(Note)  
Note: When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”.  
71  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 37 A-D converter characteristics (low voltage version)  
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85°C, 500 kHz f(XIN) 8 MHz, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
Resolution  
VCC = VREF = 2.7 to 5.5 V  
f(XIN) = 8 MHz  
±2  
LSB  
Absolute accuracy  
(excluding quantization error)  
12.5  
(Note)  
tCONV  
Conversion time  
µs  
RLADDER  
IVREF  
IIA  
Ladder resistor  
12  
50  
35  
kΩ  
µA  
µA  
100  
200  
5.0  
Reference power source input current  
Analog port input current  
VREF = 5 V  
150  
Note: When an internal trigger is used in middle-speed mode, it is 14 µs.  
Table 38 D-A converter characteristics (low voltage version)  
(VCC = 2.7 to 5.5 V, VCC = VREF, VSS = AVSS = 0 V, Ta = –20 to 85°C, in middle/high-speed mode unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
8
Bits  
%
Resolution  
1.0  
2.0  
VCC = VREF = 5 V  
Absolute accuracy  
%
VCC = VREF = 2.7 V  
Setting time  
µs  
tsu  
3
Output resistor  
Reference power  
1
4
kΩ  
mA  
mA  
RO  
2.5  
(Note)  
(Note)  
IVREF  
M38268MCL, M3826AMFL  
3.2  
6.0  
source input current M38267M8L  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through  
the A-D resistance ladder.  
72  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 39 Timing requirements 1 (low voltage version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “L” pulse width  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
250  
105  
105  
80  
80  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
800  
370  
370  
220  
100  
1000  
400  
400  
200  
200  
t
su(RXD–SCLK1)  
th(SCLK1–RXD) Serial I/O1 input hold time  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O2 input set up time  
t
su(SIN2–SCLK2)  
th(SCLK2–SIN2) Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
Table 40 Timing requirements 2 (low voltage version) (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
125  
twH(XIN)  
45  
twL(XIN)  
Main clock input “L” pulse width  
40  
900/(VCC–0.4)  
tc(CNTR)/2–20  
tc(CNTR)/2–20  
230  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
twL(INT)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT2 input “H” pulse width  
INT0 to INT2 input “L” pulse width  
Serial I/O1 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
230  
tc(SCLK1)  
twH(SCLK1)  
twL(SCLK1)  
2000  
950  
ns  
ns  
950  
t
su(R  
X
D–SCLK1  
)
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(SCLK1–RXD) Serial I/O1 input hold time  
200  
tc(SCLK2)  
Serial I/O2 clock input cycle time (Note)  
2000  
twH(SCLK2)  
twL(SCLK2)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O2 input set up time  
950  
950  
t
su(SIN2–SCLK2  
)
400  
th(SCLK2–SIN2) Serial I/O2 input hold time  
300  
Note: When bit 6 of address 001A16 is “1”.  
Divide this value by four when bit 6 of address 001A16 is “0”.  
73  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 41 Switching characteristics 1 (low voltage version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Max.  
140  
Typ.  
tC (SCLK1)/2–30  
tC (SCLK1)/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
td(SCLK1–TXD) Serial I/O1 output delay time (Note 1)  
tv(SCLK1–TXD) Serial I/O1 output valid time (Note 1)  
–30  
tr(SCLK1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
30  
30  
tf(SCLK1)  
t
t
C
C
(SCLK2)/2–160  
(SCLK2)/2–160  
twH(SCLK2)  
twL(SCLK2)  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
0
)
Serial I/O2 output valid time  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
Table 42 Switching characteristics 2 (low voltage version) (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
tC (SCLK1)/2–50  
tC (SCLK1)/2–50  
twH(SCLK1)  
twL(SCLK1)  
td(SCLK1–TXD)  
tv(SCLK1–TXD)  
tr(SCLK1)  
–30  
50  
50  
tf(SCLK1)  
twH(SCLK2)  
twL(SCLK2)  
t
t
C
C
(SCLK2)/2–240  
(SCLK2)/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
0.2 t  
C
(SCLK2  
)
Serial I/O2 output valid time  
)
0
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
50  
50  
50  
20  
20  
Notes1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT and XCOUT pins are excluded.  
74  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
1 k  
Measurement output pin  
Measurement output pin  
100 pF  
100 pF  
CMOS output  
N-channel open-drain output (Note)  
Note: When P71P77, P40 and bit 4 of the UART control  
register (address 001B16) is 1(N-channel open-  
drain output mode).  
Fig. 60 Circuit for measuring output switching characteristics  
75  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
t
C(CNTR)  
t
WL(CNTR)  
t
WH(CNTR)  
0.8VCC  
CNTR  
0
, CNTR  
1
0.2VCC  
t
WL(INT)  
t
WH(INT)  
0.8VCC  
INT0INT  
2
0.2VCC  
t
W(RESET)  
RESET  
0.8VCC  
0.2VCC  
t
C(XIN)  
t
WL(XIN)  
t
WH(XIN)  
0.8VCC  
X
IN  
0.2VCC  
t
C(SCLK1),  
t
C(SCLK2  
)
t
r
t
f
t
WL(SCLK1),  
t
WL(SCLK2  
)
t
WH(SCLK1), WH(SCLK2)  
t
S
S
CLK1  
CLK2  
0.8VCC  
0.2VCC  
t
t
su(R  
X
D
-
S
CLK1),  
CLK2  
th(SCLK1-  
R
X
D),  
su(SIN2-  
S
)
t
h(SCLK2-S  
IN2)  
R D  
X
0.8VCC  
0.2VCC  
SIN2  
t
t
v(SCLK1-T  
v(SCLK2-  
X
D),  
t
d(SCLK1-T  
X
D),td(SCLK2-  
SOUT2)  
SOUT2  
)
TXD  
SOUT2  
Fig. 61 Timing diagram  
76  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
MMP  
100P6Q-A  
Plastic 100pin 1414mm body LQFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
0.63  
Lead Material  
Cu Alloy  
MD  
LQFP100-P-1414-0.50  
HD  
D
100  
76  
l2  
Recommended Mount Pad  
1
75  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
1.7  
0.2  
A
A
1
0
0.1  
2
1.4  
b
0.13  
0.105  
13.9  
13.9  
0.18  
0.125  
14.0  
14.0  
0.5  
0.28  
0.175  
14.1  
14.1  
c
D
E
e
25  
51  
H
H
L
D
15.8  
15.8  
0.3  
0.45  
0°  
16.0  
16.0  
0.5  
1.0  
0.6  
0.25  
16.2  
16.2  
0.7  
0.75  
0.08  
0.1  
10°  
26  
50  
E
A
L
1
L1  
F
e
Lp  
A3  
x
y
b
x
y
L
M
b2  
0.225  
14.4  
14.4  
I
2
0.9  
Lp  
Detail F  
M
M
D
E
MMP  
100P6S-A  
Plastic 100pin 1420mm body QFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
M
D
QFP100-P-1420-0.65  
HD  
D
100  
81  
1
80  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.25  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.4  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.13  
0.1  
10°  
A
A
A
1
2
0.1  
2.8  
0.3  
0.15  
14.0  
20.0  
0.65  
16.8  
22.8  
0.6  
1.4  
b
c
D
E
e
30  
51  
31  
50  
HD  
A
L1  
HE  
L
L1  
x
y
F
b2  
0.35  
14.6  
20.6  
e
b
L
x
M
I
2
Detail F  
y
M
M
D
E
77  
MITSUBISHI MICROCOMPUTERS  
3826 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to  
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable  
material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property  
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by  
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision  
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric  
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved  
destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2001 MITSUBISHI ELECTRIC CORP.  
Specifications subject to change without notice.  
REVISION HISTORY  
3826 GROUP DATA SHEET  
Rev.  
Date  
Description  
Summary  
Page  
1.0  
1.1  
03/28/01  
08/06/01  
First Edition  
57  
66  
7
Table 17 VREF Min. VCC+0.3 VCC  
Table 30 VREF Min. VCC+0.3 VCC  
1.2  
05/12/01  
Fig.5 M3826AEF; Under development Mass product  
Fig.6 M38268MCL; Under development Mass product, M3826AMFL added.  
Fig.11 Note for “Reserved area” added.  
8
14  
52  
56  
60  
Oscillation Control (1) Stop mode revised.  
URL revised; mesc maec  
Table 20 f(CNTR0), f(CNTR1); (10VCC–4)/9 (2VCC)–4  
f(XIN); (20VCC–8)/9 (4VCC)–8  
62  
Table 22 ICC values revised.  
(M38267E8) Ta = 85 °C Ta = 55 °C  
63  
64  
Table 23 VCC=VREF=5 V VCC=VREF=2.7 to 5.5 V  
Table 26 tC(CNTR); 900/(VCC+0.4) 500/(VCC–2)  
tWH(CNTR); tC(CNTR)/20 250/(VCC–2)–20  
tWL(CNTR); tC(CNTR)/20 250/(VCC–2)–20  
Table 29 VCC Note 1 added.  
66  
71  
Vo; VL3 (Note 2) (Note 1)  
Table 36 (M38268MCL) (M38268MCL, M3826AMFL)  
(M38267M8L), Ta = 25 °C; 1.0 10  
(M38267M8L) Ta = 85 °C Ta = 55 °C  
72  
73  
Table 37 VCC=VREF=5 V VCC=VREF=2.7 to 5.5 V  
Table 38 (M38268MCL) (M38268MCL, M3826AMFL)  
Table 40 tC(CNTR); 900/(VCC+0.4) 900/(VCC–0.4)  
(1/1)  

相关型号:

M38063ED-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EDA-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EDDFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EDXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EE-FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EE-XXXFP

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EE-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EEA-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EEDFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EEXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EF-FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EF-XXXFP

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS