M38C31E2M [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38C31E2M
型号: M38C31E2M
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总63页 (文件大小:928K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no ces whatsoever have been  
made to the contents of the document, and these changes do not cony alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business opof high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD drive control circuit  
DESCRIPTION  
Bias ............................................................................ 1/1, 1/2, 1/3  
Duty .................................................................... 1/1, 1/2, 1/3, 1/4  
Common output .......................................................................... 4  
Segment output ........................................................................ 32  
2 Clock generating circuit  
The 38C3 group is the 8-bit microcomputer based on the 740 family  
core technology.  
The 38C3 group has a LCD drive control circuit, a 10-channel A-D  
converter, and a Serial I/O as additional functions.  
The various microcomputers in the 38C3 group include variations of  
internal memory size and packaging. For details, refer to the section  
on part numbering.  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Power source voltage  
In high-speed mode .................................................... 4.0 to 5.5 V  
In middle-speed mode ................................................2.5 to 5.5 V  
In low-speed mode...................................................... 2.5 to 5.5 V  
Power dissipation  
For details on availability of microcomputers in the 38C3 group, refer  
to the section on group expansion.  
FEATURES  
In high-speed mode ...........................................................32 mW  
(at 8 MHz oscillation frequency)  
Basic machine-language instructions ....................................... 71  
The minimum instruction execution time ............................. 0.5 µs  
(at 8MHz oscillation frequency)  
In low-speed mode..............................................................45 µW  
(at 32 kHz oscillatiouency, at 3 V power source voltage)  
Operating temperatu............................... – 20 to 85°C  
Memory size  
ROM ..................................................................4 K to 48 K bytes  
RAM ................................................................. 192 to 1024 bytes  
Programmable input/output ports ............................................. 57  
Software pull-up/pull-down resistors  
APPLICATI
Camera, hounces, consumer electronics, etc.  
..................................................... (Ports P0–P8 except Port P51)  
Interrupts ................................................... 16 sources, 16 vectors  
(includes key input interrupt)  
Timers ............................................................8-bit 6, 16-bit 1  
A-D converter ................................................. 10-bit 8 channels  
Serial I/O .......................................8-bit 1 (Clock-synchronized)  
PIN CONFIGURATION (TOP VIEW)  
P47/SRD
7  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P30/SEG24  
P31/SEG25  
P32/SEG26  
P33/SEG27  
P34/SEG28  
P35/SEG29  
P36/SEG30  
P37/SEG31  
COM0  
COM1  
COM2  
COM3  
VL1  
P46/SC
P45/SOUT  
P44/SIN  
P43/φ  
P42/T3OUT  
P41/T1OUT  
P40/SCLK2  
M38C34M6AXXXFP  
AVSS  
VREF  
P67/AN7  
P66/AN6  
P65/AN5  
P64/AN4  
P63/AN3  
P62/AN2  
VL2  
VL3  
P80  
Package type : 80P6N-A  
80-pin plastic-molded QFP  
Fig. 1 M38C34M6AXXXFP pin configuration  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
K e y - o n w a k e - u p  
O U T T 3 O U T T , 1  
φ
2
0 I N T I N T  
Fig. 2 Functional block diagram  
2
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1 Pin description (1)  
Pin  
Name  
Function  
Function except a port function  
VCC, VSS  
VREF  
Power source  
• Apply voltage of 2.5 V to 5.5 V to VCC, and 0 V to VSS.  
• Reference voltage input pin for A-D converter.  
Analog reference  
voltage  
AVSS  
Analog power  
source  
• GND input pin for A-D converter.  
• Connect to VSS.  
RESET  
XIN  
Reset input  
Clock input  
• Reset input pin for active “L.”  
• Input and output pins for the main clock generating circuit.  
• Feedback resistor is built in between XIN pin and XOUT pin.  
• Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set the  
oscillation frequency.  
XOUT  
Clock output  
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
VL1 – VL3  
LCD power  
source  
• Input 0 VL1 VL2 VL3 VCC voltage.  
• Input 0 – VL3 voltage to LCD.  
COM0 –  
COM3  
Common output  
• LCD common output pins.  
• COM1, COM2, and COM3 are not used at 1/1 duty ratio.  
• COM2 and COM3 are not used at 1/2 duty ratio.  
• COM3 is not used at 1/3 duty ratio.  
P00/SEG9 – I/O port P0  
P07/SEG15  
• 8-bit I/O port.  
• CMOS compatible input level.  
• LCD segment pins  
• CMOS 3-state output structure.  
• I/O direction register allows each port ually  
programmed as either input or output
• Pull-down control is enabled.  
P10/SEG16 – I/O port P1  
P17/SEG23  
P20/SEG0 – I/O port P2  
P27/SEG7  
P30/SEG24 – Output port P3  
P37/SEG31  
• 8-bit output port.  
• CMOS state output.  
• Pull-down control
P40/SCLK2  
P41/T1OUT  
P42/T3OUT  
P43/φ  
I/O port P4  
• 8-bit I/O port.  
• Serial I/O function pin  
• Timer output pin  
• Timer output pin  
φ output pin  
• CMOS comlevel.  
• CMOS 3structure.  
• I/O direr allows each pin to be individually  
proeither input or output.  
• Pl is enabled.  
P44/SIN,  
• Serial I/O function pins  
P45/SOUT,  
P46/SCLK1,  
P47/SRDY  
3
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 2 Pin description (2)  
Pin  
Name  
Function  
Function except a port function  
P51  
Input port P5  
• 1-bit input pin.  
• CMOS compatible input level.  
P50/TAOUT  
P52/PWM1  
I/O port P5  
• 7-bit I/O port.  
• CMOS compatible input level.  
• CMOS 3-state output structure.  
• I/O direction register allows each pin to be individually  
programmed as either input or output.  
• Pull-up control is enabled.  
• Timer A output pin  
• PWM1 output (timer output) pin  
• External count I/O pins  
P53/CNTR0,  
P54/CNTR1  
P55/INT0,  
P56/INT1,  
P57/INT2  
• External interrupt input pins  
• A-D conversion input pins  
P60/AN0 –  
P67/AN7  
I/O port P6  
I/O port P7  
I/O port P8  
• 8-bit I/O port.  
• CMOS compatible input level.  
• CMOS 3-state output structure.  
• I/O direction register allows each pin to be individually  
programmed as either input or output.  
• Pull-up control is enabled.  
P70/XCOUT,  
P71/XCIN  
• 2-bit I/O port.  
ck generating circuit I/O pins  
• CMOS compatible input level.  
• CMOS 3-state output structure.  
• I/O direction register allows each pin to be individ
programmed as either input or output.  
• Pull-up control is enabled.  
P80 – P87  
• 8-bit I/O port.  
• TTL input level.  
• Key input (Key-on wake-up) interrupt  
input pins  
• CMOS 3-state output structure.  
• I/O direction register allows each ividually  
programmed as either input or
• Pull-up control is enabled.  
4
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M38C3  
4
M
6
A
XXX FP  
Package type  
: 80P6N-A package  
: 80D0 package  
FP  
FS  
ROM number  
Omitted in some types.  
A : Standard(Note)  
M : M version  
ROM/PROM size  
1
: 4096 bytes  
2 : 8192 bytes  
3 : 12288 bytbytes  
s  
tes  
4
52 bytes  
: 16384
5 : 2048
6 : 24
7
:
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
M
: Mask ROM version  
E
: EPROM or One Time PROM version  
RAM size  
0
: 192 bytes  
1 : 256 bytes  
2 : 384 bytes  
3
: 512 bytes  
4 : 640 bytes  
5 : 768 bytes  
6
: 896 bytes  
7 : 1024 bytes  
Note : Difference between standard and M version  
• Standard : Port P5  
0
/TAOUT pin remains set to the input mode until the direction  
register is set to the output mode during reset and after  
reset.  
• M version : Port P50/TAOUT pin remains set to the output mode (“L” output) until  
the direction register is set to the input mode during reset  
and after reset.  
Fig. 3 Part numbering  
5
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Mitsubishi plans to expand the 38C3 group as follows.  
Packages  
80P6N-A ..................................... 0.8 mm-pitch plastic molded QFP  
80D0 ........................ 0.8 mm-pitch ceramic LCC (EPROM version)  
Memory Type  
Support for mask ROM, One Time PROM, and EPROM versions  
Memory Size  
ROM/PROM size ................................................ 16 K to 48 K bytes  
RAM size............................................................. 512 to 1024 bytes  
Memory Expansion Plan  
Under development  
M38C37ECA/ECM  
ROM size (bytes)  
48K  
44K  
40K  
36K  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
Under develop
6M  
Planning  
4K  
192
384  
512  
640  
768  
896  
1024  
RAM size (bytes)  
Products under deplanning : the development schedule and specification may be revised without notice.  
Planning produpped the development.  
Fig. 4 Memory expansion plan  
Currently planning products are listed below.  
Table 3 Support products  
As of April 1998  
(P) ROM size (bytes)  
ROM size for User in ( )  
RAM size  
(bytes)  
Remarks  
Product name  
Package  
M38C34M6AXXXFP  
M38C37ECAXXXFP  
M38C37ECAFP  
24576 (24446)  
640  
1024  
640  
Mask ROM version  
80P6N-A  
80D0  
One Time PROM version  
One Time PROM version (blank)  
EPROM version  
49152 (49022)  
24576 (24446)  
49152 (49022)  
M38C37ECAFS  
M38C34M6MXXXFP  
M38C37ECMXXXFP  
M38C37ECMFP  
Mask ROM version  
80P6N-A  
80D0  
One Time PROM version  
One Time PROM version (blank)  
EPROM version  
1024  
M38C37ECMFS  
6
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
CENTRAL PROCESSING UNIT (CPU)  
The 38C3 group uses the standard 740 family instruction set. Refer  
to the table of 740 family addressing modes and machine instruc-  
tions or the 740 Family Software Manual for details on the instruction  
set.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit and the  
internal system clock selection bit.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mod
(CPUM s 003B16  
)
mode bits  
1
1
0 : Single-chip mode  
1 :  
0 :  
1 :  
Not available  
Stack page selection bit  
0 : RAM in the zero page is used as stack area  
1 : RAM in page 1 is used as stack area  
Not used (returns “1” when read)  
(Do not write “0” to this bit.)  
Port XC switch bit  
0 : I/O port  
1 : XCIN, XCOUT  
Main clock ( XIN–XOUT) stop bit  
0 : Operating  
1 : Stopped  
Main clock division ratio selection bit  
0 : f(XIN)/2 (high-speed mode)  
1 : f(XIN)/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XIN-XOUT selected (middle-/high-speed mode)  
1 : XCIN-XCOUT selected (low-speed mode)  
Fig. 5 Structure of CPU mode register  
7
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains control  
registers such as I/O ports and timers.  
Access to this area with only 2 bytes is possible in the zero page  
addressing mode.  
Special Page  
RAM  
Access to this area with only 2 bytes is possible in the special page  
RAM is used for data storage and for stack area of subroutine calls  
addressing mode.  
and interrupts.  
ROM  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
000
RAM size  
(bytes)  
Address  
XXXX16  
SFR area 1  
192  
256  
384  
512  
640  
768  
896  
1024  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
LCD display RAM area  
Zero page  
ROM corrective RAM area  
(Note 1)  
05816  
010016  
XXXX16  
Reserved area  
044016  
Not used  
0F0016  
0FFF16  
ROM area  
SFR area 2 (Note 1)  
ROM size  
(bytes)  
Address  
YYYY16  
s  
Z16  
YYYY16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
ZZZZ16  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Note 1 : This is valid only in mask ROM version.  
Fig. 6 Memory map diagram  
8
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
002016  
002116  
002216  
002316  
002416  
Timer 1 (T1)  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer 2 (T2)  
Timer 3 (T3)  
Timer 4 (T4)  
Timer 5 (T5)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
002516 Timer 6 (T6)  
002616  
Timer 6 PWM register (T6PWM)  
002716  
002816  
002916  
Port P4 (P4)  
Timer 12 mode register (T12M)  
Timer 34 mode register (T34M)  
Port P4 direction register (P4D)  
Port P5 (P5)  
002A16 Timer 56 mode register (T56M)  
φ output control register (CKOUT)  
Port P5 direction register (P5D)  
Port P6 (P6)  
002B16  
002C16 Timer A register (low) (TAL)  
Timer A register (high) (TAH)  
Port P6 direction register (P6D)  
Port P7 (P7)  
002D16  
002E16 Compare register (low) AL)  
002F16 Compare register (h)  
003016 Timer A mode re
Port P7 direction register (P7D)  
Port P8 (P8)  
Timer A contrON)  
A-D contrON)  
001116 Port P8 direction register (P8D)  
003116  
003216  
003316  
003416  
003516  
003
0
16  
3B16  
003C16  
003D16  
003E16  
003F16  
001216  
001316  
A-D coer (low) (ADL)  
A-D gister (high) (ADH)  
001416  
001516  
001616 PULL register A (PULLA)  
PULL register B (PULLB)  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
Port P8 output selection register (P8SEL)  
Serial I/O control register 1 (SIOCON1)  
Serial I/O control register 2 (SIOCON2)  
Serial I/O register (SIO)  
ment output enable register (SEG)  
CD mode register (LM)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Interrupt control register 2 (ICON2)  
ROM correct enable regis
0F0A16  
0F0B16  
0F0C16  
0F0D16  
0F0E16  
0F0116  
0F0216  
0F0316  
ROM correct high-order address register 5 (Note)  
ROM correct low-order address register 5 (Note)  
ROM correct high-order address register 6 (Note)  
ROM correct low-order address register 6 (Note)  
ROM correct high-order address register 7 (Note)  
ROM correct high-ordster 1 (Note)  
ROM correct low-ogister 1 (Note)  
0F0416 ROM correct hiss register 2 (Note)  
0F0516 ROM correcdress register 2 (Note)  
ROM correct hir address register 3 (Note)  
0F0F16 ROM correct low-order address register 7 (Note)  
0F1016  
0F0616  
ROM correct low-oder address register 3 (Note)  
ROM correct high-order address register 8 (Note)  
0F1116 ROM correct low-order address register 8 (Note)  
0F0716  
ROM correct high-order address register 4 (Note)  
ROM correct low-order address register 4 (Note)  
0F0816  
0F0916  
Note: This register is valid only in mask ROM version.  
Fig. 7 Memory map of special function register (SFR)  
9
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
[Direction Registers (ports P2, P4, P50, P52–P57,  
and P6–P8)]  
b7  
b0  
PULL register A  
(PULLA : address 001616  
)
The I/O ports P2, P4, P50, P52–P57, and P6–P8 have direction reg-  
isters which determine the input/output direction of each individual  
pin. Each bit in a direction register corresponds to one pin, each pin  
can be set to be input port or output port.  
P0  
P1  
P2  
0
0
0
–P0  
–P1  
–P2  
7
7
7
pull-down  
pull-down  
pull-down  
Not used  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin becomes  
an output pin.  
P7  
P8  
0
, P7  
1
pull-up  
pull-up  
0
–P8  
7
Not used (return “0” when read)  
If data is read from a pin set to output, the value of the port output  
latch is read, not the value of the pin itself. Pins set to input are float-  
ing. If a pin set to input is written to, only the port output latch is  
written to and the pin remains floating.  
b7  
b0  
PULL register B  
(PULLB : address 001716  
)
P4  
P4  
5  
6  
P6  
0
4
0
0
4
–P4  
–P4  
, P5  
–P5  
, P6  
–P6  
3
7
2
7
3
7
pull-up  
pull-up  
[Direction Registers (ports P0 and P1)]  
Ports P0 and P1 have direction registers which determine the input/  
output direction of each individual port.  
, P53 pull-up  
pull-up  
pull-up  
pull-up  
Each port in a direction register corresponds to one port, each port  
can be set to be input or output.  
Not used (return “0” when read)  
0 : Disable  
1 : Enable  
When “0” is written to the bit 0 of a direction register, that port be-  
comes an input port. When “1” is written to that port, that port be-  
comes an output port. Bits 1 to 7 of ports P0 and P1 direction regis-  
ters are not used.  
contents of PULL register A and PULL register B  
o not affect ports programmed as the output ports.  
tructure of PULL register A and PULL register B  
Pull-up/Pull-down Control  
By setting the PULL register A (address 001616) or the PULL regis
B (address 001716), ports except for ports P3 and P51 can
either pull-down or pull-up (pins that are shared with the
output pins for LCD are pull-down; all other pins are p
program.  
b7  
b0  
Port P8 output selection register  
(P8SEL : address 001816)  
However, the contents of PULL register A and r B do  
not affect ports programmed as the output po
0 : CMOS output (in output mode)  
1 : N-channel open-drain output  
(in output mode)  
Port P8 Output Selection  
Ports P80 to P87 can be switched to pen-drain output by  
Fig. 9 Structure of port P8 output selection register  
setting “1” to the port P8 output ister.  
Table 4 List of I/O port function (1)  
Pin  
Name  
Port P0  
Input/Output  
I/O format  
Non-port function  
Related SFRs  
PULL register A  
Segment output enable reg-  
ister  
Ref. No.  
(1)  
P00/SEG8 –  
P07/SEG15  
Input/Output,  
port unit  
CMOS compatible input LCD segment output  
level  
CMOS 3-state output  
P10/SEG16 –  
P17/SEG23  
Port P1  
Port P2  
Port P3  
Input/Output,  
port unit  
CMOS compatible input LCD segment output  
level  
CMOS 3-state output  
PULL register A  
Segment output enable reg-  
ister  
P20/SEG0 –  
P27/SEG7  
Input/Output,  
individual bits  
CMOS compatible input  
CMOS 3-state output  
LCD segment output  
LCD segment output  
PULL register A  
Segment output enable reg-  
ister  
P30/SEG24 –  
P37/SEG31  
Output,  
individual bits  
CMOS 3-state output  
Segment output enable reg-  
ister  
(2)  
10  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 5 List of I/O port function (2)  
Pin  
Name  
Port P4  
Input/Output  
I/O format  
Non-port function  
Related SFRs  
Ref. No.  
(3)  
P40/SCLK2  
Input/Output,  
individual bits  
CMOS compatible input Serial I/O function I/O Serial I/O control registers  
level  
1, 2  
CMOS 3-state output  
PULL register B  
P41/T1OUT  
P42/T3OUT  
P43/φ  
Timer output  
Timer output  
φ clock output  
Timer 12 mode register  
PULL register B  
(4)  
(4)  
(5)  
Timer 34 mode register  
PULL register B  
φ output control register  
PULL register B  
P44/SIN  
Serial I/O function I/O Serial I/O control registers  
(6)  
(7)  
P45/SOUT  
P46/SCLK1  
P47/SRDY  
1, 2  
PULL register B  
(8)  
(9)  
P50/TAOUT  
Port P5  
Input/Output,  
individual bits  
CMOS compatible input Timer A output  
level  
CMOS 3-state output  
imer A mode register  
er A control reigster  
register B  
(10)  
P51  
Input  
CMOS compatible input  
level  
(11)  
(4)  
P52/PWM1  
Input/Output,  
individual bits  
CMOS compatible input PWM ou
level  
Timer 56 mode register  
PULL register B  
CMOS 3-state output  
P53/CNTR0  
P54/CNTR1  
nt I/O  
Interrupt edge selection reg-  
ister  
PULL register B  
(12)  
(12)  
(13)  
P55/INT0  
P56/INT1  
P57/INT2  
rnal interrupt in- Interrupt edge selection reg-  
ut  
ister  
PULL register B  
P60/AN0  
P67/AN7  
Port P6  
Port P7  
Port P8  
Common  
Input/Output,  
individual bits  
CMOS cot A-D converter input  
A-D control register  
PULL register B  
level  
CMOput  
Input/Output,  
individual bits  
Cible input Sub-clock generating CPU mode register  
P70/XCIN  
(14)  
circuit I/O  
PULL register A  
P71/XCOUT  
P80 – P87  
(15)  
(17)  
tate output  
Input/Outp
individua
compatible input Key input (key-on Interrupt control register 2  
l  
wake-up) interrupt in- PULL register A  
put  
MOS 3-state output  
COM  
0
– COM  
3
LCD common output  
LCD mode register  
(16)  
Notes 1: Make sure that the input leveeither 0 V or VCC during execution of the STP instruction.  
When an input level is at an potential, a current will flow from VCC to VSS through the input-stage gate.  
2: For details of the functions of pto P3 in modes other than single-chip mode, and how to use double function ports as function I/O ports, refer to the  
applicable sections.  
11  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1)Ports P0, P1, P2  
(2)Port P3  
V
V
L2/VL3  
L1/VSS  
V
V
L2/VL3  
L1/VSS  
Segment output enable bit  
(Note)  
Segment output enable bit  
Port latch  
Direction register  
Data bus  
Port latch  
Data bus  
down control  
tput enable bit  
Pull-down control  
Segment output enable bit  
Note : Port P0, P1 direction registers are only bit 0.  
(3)Port P4  
0
(4)P, P52  
Pull-up control  
P-channel output disable bit  
Pull-up control  
output selection bit  
3 output selection bit  
er 6 output selection bit  
Serial I/O mode selection bit  
Direction register  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Timer 1 output  
Timer 3 output  
Timer 6 output  
Serial I/O clock output  
(6)Port P4  
4
(5)Port P4  
3
Pull-up control  
Pull-up control  
Direction register  
Port latch  
Direction register  
Port latch  
Data bus  
Data bus  
φ output control bit  
Serial I/O input  
φ
Fig. 10 Port block diagram (1)  
12  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(8)Port P4  
6
(7)Port P4  
5
Pull-up control  
P-channel output disable bit  
Pull-up control  
P-channel output disable bit  
Serial I/O port selection bit  
Direction register  
Serial I/O mode selection bit  
Direction register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O output  
Serial I/O clock output  
l I/O clock input  
(9)Port P4  
7
(10)Port P5  
0
Pull-up control  
Pull-up control  
S
RDY output enable bit  
Direction register  
ut enable bit  
(Note)  
rection register  
Data bus  
Port latch  
Port latch  
Serial I/O ready output  
Timer A output  
(12)Ports P53–P57  
(11)Port P5  
1
Pull-up control  
Data bus  
Direction register  
Port latch  
Data bus  
INT  
0
–INT  
2
1
interrupt input  
interrupt input  
Note: The initihal value of M version becomes “1” (output).  
CNTR ,CNTR  
0
Fig. 11 Port block diagram (2)  
13  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(14)Port P7  
0
(13)Port P6  
Port selection • pull-up control  
Pull-up control  
Port Xc switch bit  
Direction register  
Direction register  
Port latch  
Port latch  
Data bus  
Data bus  
A-D conversion input  
Analog input pin selection bit  
Sub-cloing circuit input  
(15)Port P7  
1
(16)CO
Port selection • pull-up control  
Port Xc switch bit  
Direction register  
V
V
L2  
L1  
The gate input signal of each  
Port latch  
Data bus  
transistor is controlled by the  
LCD duty ratio and the bias  
value.  
Oscillator  
7  
0
Port Xc switch bit  
(17)Port P8  
Pull-up control  
P-channel output disable bit  
Direction register  
Data bus  
Port latch  
Key input (key-on wake-up) interrupt input  
Fig. 12 Port block diagram (3)  
14  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupts occur by sixteen sources: six external, nine internal, and  
one software.  
Interrupt Control  
Each interrupt except the BRK instruction interrupt have both an in-  
terrupt request bit and an interrupt enable bit, and is controlled by the  
interrupt disable flag. An interrupt occurs if the corresponding inter-  
rupt request and enable bits are “1” and the interrupt disable flag is  
“0”.  
Interrupt enable bits can be set or cleared by software. Interrupt re-  
quest bits can be cleared by software, but cannot be set by software.  
The BRK instruction interrupt and reset cannot be disabled with any  
flag or bit. The I flag disables all interrupts except the BRK instruction  
interrupt and reset. If several interrupts requests occurs at the same  
time the interrupt with highest priority is accepted first.  
Interrupt Operation  
By acceptance of an interrupt, the following operations are automati-  
cally performed:  
1. The processing being executed is stopped.  
2. The contents of the program counter and processor status reg-  
ister are automatically pushed onto the stack.  
3. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
4. The interrupt jump destination address is read from the vector  
table into the program counter.  
Notes on Interrupts  
When the active edge of an external interrupt (INT0 – I
or CNTR1) is set or an vector interrupt source where upt  
source is assigned to the same vector address ie cor-  
responding interrupt request bit may also be , take fol-  
lowing sequence:  
(1) Disable the interrupt.  
(2) Change the active edge in iselection register.  
(3) Clear the set interrupt re0.”  
(4) Enable the interrupt.  
15  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 6 Interrupt vector addresses and priority  
Vector Addresses (Note 1)  
Interrupt Request  
Generating Conditions  
Interrupt Source Priority  
Remarks  
High  
Low  
Reset (Note 2)  
1
2
FFFD16  
FFFB16  
FFFC16  
FFFA16  
At reset  
Non-maskable  
INT0  
At detection of either rising or falling edge of External interrupt  
INT0 intput  
(active edge selectable)  
INT1  
3
4
5
FFF916  
FFF716  
FFF516  
FFF816  
FFF616  
FFF416  
At detection of either rising or falling edge of External interrupt  
INT1 input  
(active edge selectable)  
INT2  
At detection of either rising or falling edge of External interrupt  
INT2 input  
(active edge selectable)  
Serial I/O  
At completion of serial I/O data transmit/re- Valid when serial I/O is selected  
ceive  
Timer A  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timer 5  
Timer 6  
CNTR0  
6
7
FFF316  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFE916  
FFE716  
FFE516  
FFF216  
FFF016  
FFEE16  
FFEC16  
FFEA16  
FFE816  
FFE616  
FFE416  
At timer A underflow  
At timer 1 underflow  
8
At timer 2 underflow  
At timer 3 underflow  
At timer 4 underflow  
At timer 5 underflow  
At timer 6 underflow  
STP release timer underflow  
9
10  
11  
12  
13  
At detection of either rising or ff External interrupt  
CNTR0 input  
(active edge selectable)  
CNTR1  
14  
15  
16  
17  
FFE316  
FFE116  
FFDF16  
FFDD16  
FFE216  
FFE016  
FFDE16  
FFDC16  
At detection of either risidge of External interrupt  
CNTR1 input  
(active edge selectable)  
Key input (Key-  
on wake-up)  
At falling of port P8 t logical level External interrupt  
AND  
(falling valid)  
A-D conversion  
At completioersion  
Valid whenA-D conversion interrupt  
is selected  
BRK instruction  
At BRK xecution  
Non-maskable software interrupt  
Notes 1: Vector addresses contain interrupt jump destination address
2: Reset function in the same way as an interrupt with the h
16  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
Interrupt request  
BRK instruction  
Reset  
Fig. 13 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
0
1
2
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
0 : Falling edge a
1 : Rising edge
Not used (return “0” when read)  
CNTR  
CNTR  
0
active edge switch bit  
active edge switch bit  
0 : Falling ing edge count  
1 : Risinfalling edge count  
1
b7  
b0  
b7  
b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
(IREQ1 : address 003C16  
)
)
INT  
INT  
INT  
0
1
2
interrupt requ
interrupt r
interru
Timer 4 interrupt request bit  
Timer 5 interrupt request bit  
Timer 6 interrupt request bit  
Serial I/O st bit  
Timer est bit  
Timequest bit  
t request bit  
rupt request bit  
CNTR  
CNTR  
0
interrupt request bit  
interrupt request bit  
1
Key input interrupt request bit  
AD conversion interrupt request bit  
Not used (returns “0” when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16  
)
INT  
INT  
INT  
0
1
2
interrupt enable bit  
interrupt enable bit  
interrupt enable bit  
Timer 4 interrupt enable bit  
Timer 5 interrupt enable bit  
Timer 6 interrupt enable bit  
Serial I/O interrupt enable bit  
Timer A interrupt enable bit  
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
CNTR  
CNTR  
0
interrupt enable bit  
interrupt enable bit  
1
Key input interrupt enable bit  
AD conversion interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 14 Structure of interrupt-related registers  
17  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
of using a key input interrupt is shown in Figure 15, where an inter-  
rupt request is generated by pressing one of the keys consisted as  
an active-low key matrix which inputs to ports P80–P83.  
Key Input Interrupt (Key-on Wake-Up)  
A key input interrupt request is generated by applying “L” level to any  
pin of port P8 that have been set to input mode. In other words, it is  
generated when AND of input level goes from “1” to “0”. An example  
Port PXx  
“L” level output  
PULL register A  
Bit 5 = “1”  
Port P8  
7
Key input interrupt request  
direction register = “1”  
✽ ✽  
✽ ✽  
✽ ✽  
✽ ✽  
Port P8  
latch  
7
6
5
P8  
7
output  
output  
Port P8  
direction register = “1”  
6
Port P8  
latch  
P8  
6
Port P8  
directio
5
Port P8  
latch  
P8  
5
output  
output  
P8  
ction register = “1”  
4
P84  
Port P8  
3
direction register = “0”  
Port P8  
Input reading circuit  
✽ ✽  
Port P8  
latch  
3
P8  
3
input  
input  
input  
input  
Port P8  
2
direction register = “0”  
✽ ✽  
Port P8  
latch  
2
P8  
2
Port P8  
1
direction register = “0”  
✽ ✽  
Port P8  
latch  
1
P81  
Port P8  
0
direction register = “0”  
✽ ✽  
Port P8  
latch  
0
P80  
P-channel transistor for pull-up  
✽ ✽CMOS output buffer  
Fig. 15 Connection example when using key input interrupt and port P8 block diagram  
18  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMERS  
8-Bit Timer  
The 38C3 group has six built-in timers : Timer 1, Timer 2, Timer 3,  
Timer 4, Timer 5, and Timer 6.  
b7  
b7  
b7  
b0  
Timer 12 mode register  
Each timer has the 8-bit timer latch. All timers are down-counters.  
When the timer reaches “0016,” an underflow occurs with the next  
count pulse. Then the contents of the timer latch is reloaded into the  
timer and the timer continues down-counting. When a timer  
underflows, the interrupt request bit corresponding to that timer is  
set to “1.”  
(T12M: address 002816  
)
Timer 1 count stop bit  
0 : Count operation  
1 : Count stop  
Timer 2 count stop bit  
0 : Count operation  
1 : Count stop  
Timer 1 count source selection bits  
00 : f(XIN)/16 or f(XCIN)/16  
01 : f(XCIN  
)
The count can be stopped by setting the stop bit of each timer to “1.”  
The system clock φ can be set to either the high-speed mode or low-  
speed mode with the CPU mode register. At the same time, timer  
internal count source is switched to either f(XIN) or f(XCIN).  
10 : f(XIN)/32 or f(XCIN)/32  
11 : f(XIN)/128 or f(XCIN)/128  
Timer 2 count source selection bits  
00 : Underflow of Timer 1  
01 : f(XCIN  
)
10 : External count input CNTR  
11 : Not available  
Timer 1 output selection bit (P4  
0 : I/O port  
Timer 1 output  
sed (returns “0” when read)  
ot write “1” to this bit.)  
0
1)  
Timer 1, Timer 2  
The count sources of timer 1 and timer 2 can be selected by setting  
the timer 12 mode register. Arectangular waveform of timer 1 under-  
flow signal divided by 2 is output from the P41/T1OUT pin. The wave-  
form polarity changes each time timer 1 overflows. The active edge  
of the external clock CNTR0 can be switched with the bit 6 of the  
interrupt edge selection register.  
Timer 34 mode register  
(T34M: address 002916  
)
Timer 3 count stop bit  
0 : Count operation  
1 : Count stop  
Timer 4 count stop bit  
0 : Count operation  
1 : Count stop  
Timer 3 count source selection bits  
00 : f(XIN)/16 or f(XCIN)/16  
01 : Underflow of Timer 2  
10 : f(XIN)/32 or f(XCIN)/32  
11 : f(XIN)/128 or f(XCIN)/128  
Timer 4 count source selection bits  
00 : f(XIN)/16 or f(XCIN)/16  
01 : Underflow of Timer 3  
10 : External count input CNTR  
11 : Not available  
Timer 3 output selection bit (P4  
0 : I/O port  
At reset or when executing the STP instruction, all bits of the timer 12  
mode register are cleared to “0,” timer 1 is set to “FF16,” and timer 2 is  
set to “0116.”  
Timer 3, Timer 4  
The count sources of timer 3 and timer 4 can be selected by
the timer 34 mode register. Arectangular waveform of time
flow signal divided by 2 is output from the P42/T3OUT pi
form polarity changes each time timer 3 overflows. ge  
of the external clock CNTR1 can be switched of the  
interrupt edge selection register.  
1
2)  
1 : Timer 3 output  
Not used (returns “0” when read)  
(Do not write “1” to this bit.)  
b0  
Timer 56 mode register  
(T56M: address 002A16  
)
Timer 5, Timer 6  
Timer 5 count stop bit  
0 : Count operation  
1 : Count stop  
Timer 6 count stop bit  
0 : Count operation  
1 : Count stop  
The count sources of timer 5 and tiselected by setting  
the timer 56 mode register. Areceform of timer 6 under-  
flow signal divided by 2 can be outm the P52/PWM1 pin.  
Timer 5 count source selection bit  
0 : f(XIN)/16 or f(XCIN)/16  
1 : Underflow of Timer 4  
Timer 6 operation mode selection bit  
0 : Timer mode  
Timer 6 PWM1 Mode  
Timer 6 can output a rectangular waveform with “H” duty cycle n/  
(n+m) from the P52/PWM1 pin by setting the timer 56 mode register  
(refer to Figure 17). The n is the value set in timer 6 latch (address  
002516) and m is the value in the timer 6 PWM register (address  
002716). If n is “0,” the PWM output is “L,” if m is “0,” the PWM output  
is “H” (n = 0 is prior than m = 0). In the PWM mode, interrupts occur  
at the rising edge of the PWM output.  
1 : PWM mode  
Timer 6 count source selection bits  
00 : f(XIN)/16 or f(XCIN)/16  
01 : Underflow of Timer 5  
10 : Underflow of Timer 4  
11 : Not available  
Timer 6 (PWM) output selection bit (P5  
0 : I/O port  
1 : Timer 6 output  
Not used (returns “0” when read)  
(Do not write “1” to this bit.)  
2)  
Fig. 16 Structure of Timer Related Register  
19  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
X
CIN  
RESET  
Timer 1 latch (8)  
Timer 1 count source  
selection bit  
1/2  
“01”  
FF16  
Internal system clock  
selection bit  
STP instruction  
Timer 1 interrupt request  
“1”  
Timer 1 (8)  
1/16  
X
IN  
“00”  
“10”  
“11”  
Timer 1 count  
stop bit  
“0”  
1/32  
1/128  
P41 latch  
P41/T1OUT  
1/2  
Timer 1 output selection bit  
Timer 2 latch (8)  
Timer 2 count source  
selection bit  
“00”  
“01”  
0116  
P41  
direction register  
Timer 2 interrupt request  
Timer 2 (8)  
Timer 2 count  
stop bit  
“10”  
Rising/Falling  
active edge switch  
P53/CNTR0  
(8)  
Timer
sel
“01”  
“00”  
Timer 3 interrupt request  
Timer 3 (8)  
count  
it  
P42 latch  
P42/T3OUT  
1/2  
Timer 3 output selection bi
Timer 4 latch (8)  
Timer 4 count source  
selection bit  
“01”  
P42  
direction re
Timer 4 (8)  
Timer 4 interrupt request  
“00”  
Timer 4 count  
stop bit  
“10”  
ling  
e switch  
CNTR1 interrupt request  
P54/CNTR1  
Timer 5 latch (8)  
Timer 5 count source  
selection bit  
“1”  
“0”  
Timer 5 interrupt request  
Timer 5 (8)  
Timer 5 count  
stop bit  
Timer 6 latch (8)  
Timer 6 count source  
selection bit  
“01”  
Timer 6 (8)  
Timer 6 interrupt request  
“00”  
“10”  
Timer 6 count  
stop bit  
Timer 6 PWM register (8)  
P52 latch  
P52/PWM1  
PWM  
1/2  
“1”  
“0”  
Timer 6 output selection bit  
Timer 6 operation  
mode selection bit  
P52 direction register  
Fig. 17 Block diagram of timer  
20  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
t
s
Timer 6  
count source  
Timer 6  
PWM mode  
n ts  
m ts  
(n+m) ts  
Timer 6 interrupt request  
interrupt request  
Note: PWM waveform (duty : n/(n+m) and period : (n+m) ts) is ou
n: setting value of Timer 6  
m: setting value of Timer 6 PWM register  
ts: period of Timer 6 count source  
Fig. 18 Timing chart of timer 6 PWM1 mode  
16-bit Timer  
es of delay time by a delay circuit.  
Timer A is a 16-bit timer that can be selected in one of four mo
When using this mode, set port P55 sharing the INT0 pin to input  
mode and set port P50 sharing the TAOUT pin to output mode.  
It is possible to force the timer A output to be “L” using pins INT1 and  
INT2 by the timer A control register.  
the timer A mode register and the timer A control register.  
Timer A  
The timer A operates as down-count. When the ts reach  
“000016”, an underflow occurs at the next cothe timer  
latch contents are reloaded. After that, ttinues count-  
down. When the timer underflows, the inst bit correspond-  
ing to the timer A is set to “1”.  
(4) PWM mode  
IGBT dummy output, an external trigger with the INT0 pin and output  
control with pins INT1 and INT2 are not used. Except for those, this  
mode operates just as in the IGBT output mode.  
The period of PWM waveform is specified by the timer A set value.  
The “H” term is specified by the compare register set value.  
When using this mode, set port P50 sharing the TAOUT pin to output  
mode.  
(1) Timer mode  
The count source can be selected by setting the timer A mode regis-  
ter.  
(2) Pulse output mode  
Pulses of which polarity is inverted each time the timer underflows  
are output from the TAOUT pin. Except for that, this mode operates  
just as in the timer mode.  
When using this mode, set port P50 sharing the TAOUT pin to output  
mode.  
(3) IGBT output mode  
After dummy output from the TAOUT pin, count starts with the INT0  
pin input as a trigger. When the trigger is detected or the timer A  
underflows, “H” is output from the the TAOUT pin.  
When the count value corresponds with the compare register value,  
the TAOUT output becomes “L”. When the INT0 signal becomes “H”,  
the TAOUT output is forced to become “L”.  
After noise is cleared by noise filters, judging continuous 4-time same  
levels with sampling clocks to be signals, the INT0 signal can use 4  
21  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
External trigger delay  
time selection bit  
0µs  
00  
Data bus  
4/f(XIN  
8/f(XIN  
)
)
01  
Noise filter  
(4-time same levels judgement)  
INT  
0
10  
16/f(XIN  
)
11  
Noise filter sampling  
clock selection bit  
Timer A  
operating  
“10”  
mode bits  
1/2  
1/4  
Internal trigger start  
“00”, “01”, “11”  
Timer A count  
source selection bit  
1/1  
Timer A write control bit  
1/2  
1/4  
1/8  
X
IN  
Timer A (high-order) latch (8)  
Timer A (high-order) (8)  
Timer A (low-order) latch (8)  
Timer A (low-order) (8)  
Timer A underflow  
interrupt request  
TAOUT output  
control bit 1  
“1”  
INT  
INT  
1
2
“0”  
Compare register (high-order) (8)  
Compare reg
TAOUT output  
control bit 2  
“1”  
“0”  
Timer A operating  
mode bits  
“00”, “01”, “11”  
TAOUT active  
edge switch bit  
“10”  
“0”  
T
Timer A start  
signal  
P50  
/TAOUT  
IGBT outp
PWM m
(Note)  
P5  
direction  
register  
0
Pulse output mode  
P5  
0 latch  
S
Q
Q
Output selection bit  
“1”  
OUT active  
dge switch bit  
Note: The initial value of M version put).  
Fig. 19 Block diagram of timer A  
b7  
b0  
b7  
b0  
Timer A control register  
(TACON : address 003116)  
Tie register  
(TAdress 003016)  
Noise filter sampling clock selection bit  
0 : f(XIN)/2  
1 : f(XIN)/4  
External trigger delay time selection bits  
0 0 : No delay  
0 1 : ( 4/f(XIN))µs  
1 0 : ( 8/f(XIN))µs  
1 1 : (16/f(XIN))µs  
Timer A output control bit 1 (P56)  
0 : Not used  
Timer A operating mode bits  
00 : Timer mode  
01 : Pulse output mode  
10 : IGBT output mode  
11 : PWM mode  
Timer A write control bit  
0 : Write data to both timer latch and timer  
1 : Write data to timer latch only  
Timer A count source selection bits  
0 0 : f(XIN)  
0 1 : f(XIN)/2  
1 0 : f(XIN)/4  
1 1 : f(XIN)/8  
Timer A output active edge switch bit  
0 : Output starts with “L” level  
1 : Output starts with “H” level  
Timer A count stop bit  
0 : Count operating  
1 : INT1 interrupt used  
Timer A output control bit 2 (P57)  
0 : Not used  
1 : INT2 interrupt used  
Not used (returns “0” when read)  
1 : Count stop  
Timer A output selection bit (P50)  
0 : I/O port  
1 : Timer A output  
Fig. 20 Structure of timer A related registers  
22  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
t
s
Timer A count  
source  
Timer A  
PWM mode  
IGBT output mode  
(n-m+1) ts  
m ts  
(n+1) ts  
Note: PWM waveform (duty : (n-m+1)/(n+1) and period : (n+1) tput.  
n : setting value of Timer A  
m : setting value of compare register  
ts : period of Timer A count source  
Fig. 21 Timing chart of timer A PWM, IGBT output modes  
Notes on Timer A  
mer A mode register  
(1) Write order to timer A  
write control bit to “1” (write to the latch only) when setting the  
and PWM modes.  
• In the timer and pulse output modes, write to the timer A registe
(low-order) first and to the timer A register (high-order) next. D
write to only one side.  
utput waveform simultaneously reflects the contents of both regis-  
ters at the next underflow after writing to the timer A register (high-  
order).  
• In the IGBT and PWM modes, write to the registers as
the compare register (high- and low-order)  
the timer A register (low-order)  
(5) Output control function of timer A  
the timer A register (high-order).  
When using the output control function (INT1 and INT2) in the IGBT  
mode, set the levels of INT1 and INT2 to “H” in the falling edge active  
or to “L” in the rising edge active before switching to the IGBT mode.  
It is possible to use whichever order to writare register  
(high- and low-order). However, write bre register and  
the timer A register at the same tim
(2) Read order to timer A  
• In all modes, read to the timer A regr (high-order) first and to the  
timer A register (low-order) next. Read order to the compare regis-  
ter is not specified.  
• If reading to the timer A register during write operation or writing to  
it during read operation, normal operation will not be performed.  
(3) Write to timer A  
• When writing a value to the timer A address to write to the latch  
only, the value is set into the reload latch and the timer is updated  
at the next underflow. Normally, when writing a value to the timer A  
address, the value is set into the timer and the timer latch at the  
same time, because they are written at the same time.  
When writing to the latch only, if the write timing to the high-order  
reload latch and the underflow timing are almost the same, an ex-  
pected value may be set in the high-order counter.  
• Do not switch the timer count source during timer count operation.  
Stop the timer count before switching it. Additionally, when perform-  
ing write to the latch and the timer at the same time, the timer count  
value may change large.  
23  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O pins of serial I/O also operate as I/O port P4, and their function is  
selected by the serial I/O control register 1 (address 001916).  
SERIAL I/O  
The 38C3 group has a built-in 8-bit clock synchronous serial I/O. The  
Internal synchronous  
clock selection bits  
Data bus  
1/8  
Internal  
XCIN  
system clock  
1/16  
1/32  
1/64  
“1”  
selection bit  
XIN  
1/128  
1/256  
“0”  
P47 latch  
Synchronous clock  
selection bit  
“0”  
“1”  
P47/SRDY  
SRDY  
Synchronous  
circuit  
“1”  
SRDY output selection bit  
“0”  
External clock  
P46 latch  
“0”  
P46/SCLK1  
Serial I/O  
interrupt request  
Serial I/O cou
“1”  
Serial I/O port selection bit  
P45 latch  
“0”  
P45/SOUT  
P44/SIN  
“1”  
Serial I/O port selection bit  
t register (8)  
P40 latch  
“0”  
P40/SCLK2  
“1”  
Serial I/O port selection bit  
Fig. 22 Block diagram of seria
24  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When internal clock is selected, serial I/O starts to transfer by a write  
signal to the serial I/O register (address 001B16). After 8 bits have  
been transferred, the SOUT pin goes to high impedance.  
[Serial I/O Control Registers 1, 2 (SIOCON1,  
SIOCON2)] 001916, 001A16  
Each of the serial I/O control registers 1, 2 contains 8 bits that select  
When external clock is selected, the clock must be controlled exter-  
nally because the contents of the serial I/O register continue to shift  
while the transfer clock is input. In this case, the SOUT pin does not  
go to high impedance at the completion of data transfer.  
various control parameters of serial I/O.  
Operation in serial I/O mode  
Either an internal clock or an external clock can be selected as the  
synchronous clock for serial I/O transfer. A dedicated divider is built-  
in as the internal clock, giving a choice of six clocks.  
The interrupt request bit is set at the end of the transfer of 8 bits,  
regardless of whether the internal or external clock is selected.  
b7  
b0  
b7  
b0  
Serial I/O control register 1  
(SIOCON1 : address 001916  
Serial I/O control register 2  
(SIOCON2: address 001A16  
)
)
Internal synchronous clock selection bits  
b2 b1 b0  
ynchronous clock output pin selection bit  
: SCLK1  
CLK2  
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8 or f(XCIN)/8  
1 : f(XIN)/16 or f(XCIN)/16  
0 : f(XIN)32 or f(XCIN)/32  
1 : f(XIN)/64 or f(XCIN)/64  
0 : f(XIN)/128 or f(XCIN)/128  
1 : f(XIN)/256 or f(XCIN)/256  
d (returns “0” when read)  
Serial I/O port selection bit (P4  
0 : I/O port  
0
, P4  
5, P4  
6
)
1 : SOUT, SCLK1, SCLK2 signal pin  
S
RDY output selection bit (P4  
0 : I/O port  
7)  
1 : SRDY signal pin  
Transfer direction selection bit  
0 : LSB first  
1 : MSB first  
Synchronous clock selection bit  
0 : External clock  
1 : Internal clock  
P-channel output disable bit (
0 : CMOS output (in outp
1 : N-channel open-drode)  
Fig. 23 Structure of serial I/O control regist
Synchronous clock  
Transfer clock  
Serial I/O register  
write signal  
(Note)  
Serial I/O output  
SOUT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Serial I/O input  
SIN  
Receive enable signal  
SRDY  
Note: When internal clock is selected, the SOUT pin goes to high impedance after  
Interrupt request bit set  
transfer ends.  
Fig. 24 Serial I/O timing (for LSB first)  
25  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Note that the comparator is constructed linked to a capacitor, so set  
f(XIN) to at least 500 kHz during A-D conversion. Use a CPU system  
clock dividing the main clock XIN as the internal system clock.  
A-D CONVERTER  
The 38C3 group has a 10-bit A-D converter. The A-D converter per-  
forms successive approximation conversion.  
[A-D Conversion Register (AD)] 003316, 003416  
One of these registers is a high-order register, and the other is a low-  
order register. The high-order 8 bits of a conversion result is stored in  
the A-D conversion register (high-order) (address 003416), and the  
low-order 2 bits of the same result are stored in bit 7 and bit 6 of the  
A-D conversion register (low-order) (address 003316).  
b7  
b0  
A-D control register  
(ADCON: address 003216  
)
Analog input pin selection bits  
000: P6 /AN  
001: P6 /AN  
0
0
During A-D conversion, do not read these registers.  
1
1
010: P6  
011: P6  
100: P6  
101: P6  
110: P6  
111: P6  
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
2
3
4
5
6
7
[A-D Control Register (ADCON)] 003216  
This register controls A-D converter. Bits 2 to 0 are analog input pin  
selection bits. Bit 4 is an AD conversion completion bit and “0” during  
A-D conversion. This bit is set to “1” upon completion of A-D conver-  
sion.  
Not used (returns “0” when read)  
AD conversion completion bit  
0: Conversion in progress  
1: Conversion completed  
A-D conversion is started by setting “0” in this bit.  
Not used (returns “0” when read)  
[Comparison Voltage Generator]  
The comparison voltage generator divides the voltage between AVSS  
and VREF, and outputs the divided voltages.  
b0  
A-D conversion register (high-order)  
(ADH: address 003416  
[Channel Selector]  
The channel selector selects one of the input ports P67/AN7–P60/  
)
AD conversion result stored bits  
AN0 and inputs it to the comparator.  
[Comparator and Control Circuit]  
b7  
b0  
The comparator and control circuit compares an analog i
age with the comparison voltage and stores the resu
conversion register. When an A-D conversion is comon-  
trol circuit sets the AD conversion completion bit onver-  
sion interrupt request bit to “1.”  
A-D conversion register (low-order)  
(ADL: address 003316  
)
Not used (returns “0” when read)  
AD conversion result stored bits  
Fig. 25 Structure of A-D control register  
Data bus  
b7  
b0  
A-D control register  
3
P6  
P6  
P6  
P6  
P6  
P6  
P6  
P6  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
A-D control circuit  
A-D interrupt request  
A-D conversion register (H)  
Comparator  
A-D conversion register (L)  
(Address 003416  
)
(Address 003316  
)
Resistor ladder  
AVSS  
VREF  
Fig. 26 Block diagram of A-D converter  
26  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
segment output enable register, and the LCD display RAM, the LCD  
drive control circuit starts reading the display data automatically, per-  
forms the bias control and the duty ratio control, and displays the  
data on the LCD panel.  
LCD DRIVE CONTROL CIRCUIT  
The 38C3 group has the built-in Liquid Crystal Display (LCD) drive  
control circuit consisting of the following.  
LCD display RAM  
Segment output enable register  
LCD mode register  
Table 7 Maximum number of display pixels at each duty ratio  
Selector  
Duty ratio  
1
Maximum number of display pixels  
32 dots  
or 8 segment LCD 4 digits  
Timing controller  
Common driver  
Segment driver  
64 dots  
or 8 segment LCD 8 digits  
2
3
4
Bias control circuit  
A maximum of 32 segment output pins and 4 common output pins  
can be used.  
96 dots  
or 8 segment LCD 12 digits  
128 dots  
or 8 segment LCD 16 digits  
Up to 128 pixels can be controlled for a LCD display. When the LCD  
enable bit is set to “1” after data is set in the LCD mode register, the  
b7  
b0  
Segment output enable regis
(SEG : address 003816  
)
Segment output e
0 : I/O ports
1 : Segme
Segment t 1  
0 : I/
1 : t SEG  
Senable bit 2  
P0 –P0  
nt output SEG  
utput enable bit 3  
O ports P0 –P0  
–SEG  
3
7
4–SEG  
0
3
8–SEG11  
4
7
Segment output SEG12–SEG15  
gment output enable bit 4  
0 : I/O ports P10–P13  
1 : Segment output SEG16–SEG19  
Segment output enable bit 5  
0 : I/O ports P14–P17  
1 : Segment output SEG20–SEG23  
Segment output enable bit 6  
0 : Output ports P30–P33  
1 : Segment output SEG24–SEG27  
Segment output enable bit 7  
0 : Output ports P3  
4–P37  
1 : Segment output SEG28–SEG31  
b
b0  
LCD mode register  
(LM : address 003916  
)
Duty ratio selection bits  
0 0 : 1 (use COM  
0 1 : 2 (use COM  
1 0 : 3 (use COM  
1 1 : 4 (use COM  
Bias control bit  
0 : 1/3 bias  
0
0
0
0
)
,COM1)  
–COM  
–COM  
2
)
3)  
1 : 1/2 bias  
LCD enable bit  
0 : LCD OFF  
1 : LCD ON  
Not used (returns “0” when read)  
(Do not write “1” to this bit.)  
LCD circuit divider division ratio selection bits  
0 0 : Clock input  
0 1 : 2 division of clock input  
1 0 : 4 division of clock input  
1 1 : 8 division of clock input  
LCDCK count source selection bit (Note)  
0 : f(XCIN)/32  
1 : f(XIN)/8192 (f(XCIN)/8192 in low-speed mode)  
Note : LCDCK is a clock for a LCD timing controller.  
Fig. 27 Structure of LCD related registers  
27  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Fig. 28 Block diagram of LCD controller/driver  
28  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 8 Bias control and applied voltage to VL1–VL3  
Bias Control and Applied Voltage to LCD Power  
Input Pins  
Bias value  
Voltage value  
To the LCD power input pins (VL1–VL3), apply the voltage value shown  
VL3=VLCD  
1/3 bias  
VL2=2/3 VLCD  
VL1=1/3 VLCD  
in Table 8 according to the bias value.  
Select a bias value by the bias control bit (bit 2 of the LCD mode  
register).  
VL3=VLCD  
VL2=VL1=1/2 VLCD  
1/2 bias  
1/1 bias  
VL3=VLCD  
Common Pin and Duty Ratio Control  
The common pins (COM0–COM3) to be used are determined by duty  
ratio.  
(1-duty ratio) VL2=VL1=VSS  
Note 1: VLCD is the maximum value of supplied voltage for the LCD panel.  
Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the  
LCD mode register).  
Table 9 Duty ratio control and common pins used  
When selecting 1-duty ratio, 1/1 bias can be used.  
Duty ratio selection bit  
Duty  
ratio  
Common pins used  
COM0 (Note 1)  
Bit 1  
Bit 0  
1
2
3
4
0
0
1
1
0
1
COM0, COM1 (Note 2)  
M0–COM2 (Note 3)  
COM0–COM3  
Notes 1:COM1, CM3 are open.  
2:COMe open.  
3:CO
Contrast control  
trol  
Contrast control  
V
L3  
V
L3  
V
L3  
R1  
R4  
R5  
V
V
L2  
L1  
V
V
L2  
L1  
V
L2  
R3  
V
L1  
R6  
R4 = R5  
R1 = R2 = R3  
1/3 bias  
1/2 bias  
1/1 bias  
Fig. 29 Example of circuit at each bias  
29  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD Display RAM  
LCD Drive Timing  
Address 004016 to 004F16 is the designated RAM for the LCD dis-  
play. When “1” are written to these addresses, the corresponding seg-  
ments of the LCD display panel are turned on.  
The LCDCK timing frequency (LCD drive timing) is generated inter-  
nally and the frame frequency can be determined with the following  
equation;  
(frequency of count source for LCDCK)  
f(LCDCK)=  
(divider division ratio for LCD)  
f(LCDCK)  
Frame frequency=  
duty ratio  
Bit  
7
6
5
4
3
2
1
0
Address  
004016  
004116  
004216  
004316  
004416  
SEG1  
SEG3  
SEG5  
SEG7  
SEG9  
SEG11  
SEG13  
SEG15  
SEG17  
SEG19  
SEG21  
SEG23  
SEG25  
SEG
S
SEG0  
SEG2  
SEG4  
SEG6  
SE
16  
EG18  
SEG20  
SEG22  
SEG24  
SEG26  
SEG28  
SEG30  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
COM3 1 COM0 COM3 COM2 COM1 COM0  
Fig. 30 LCD display RAM map  
30  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal  
signal  
LCDCK  
timing  
1/4 duty  
Voltage level  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
COM  
0
1
2
3
V
V
L3  
SEG  
0
SS  
OFF  
ON  
OFF  
ON  
COM  
3
COM3  
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
1/3 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
ON  
OFF  
ON  
FF  
ON  
OFF  
COM  
COM  
0
COM  
2
COM  
COM  
2
COM  
1
COM  
0
2
1/2 duty  
V
V
V
L3  
L2=VL1  
SS  
COM  
COM  
0
1
V
V
L3  
SEG  
0
SS  
ON  
OFF  
COM  
ON  
OFF  
COM  
ON  
OFF  
COM  
ON  
OFF  
COM  
COM  
1
0
COM  
1
0
COM  
1
0
COM  
1
0
1/1 duty (1/1 bias)  
VL3  
COM  
0
V
L2=VL1=VSS  
L3  
V
SEG  
0
VSS  
OFF  
ON  
Fig. 31 LCD drive waveform (1/2 bias)  
31  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Internal signal  
LCDCK timing  
1/4 duty  
Voltage level  
VL3  
V
VL2  
VSL1S  
COM  
0
COM  
COM  
COM  
1
2
3
V
V
L3  
SEG  
0
SS  
OFF  
ON  
ON  
COM  
3
COM  
2
COM  
1
COM  
0
COM  
2
COM  
1
COM0  
1/3 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
COM  
0
1
2
V
V
L3  
SEG  
0
SS  
O
FF  
COM  
ON  
OFF  
ON  
OFF  
COM  
COM  
COM  
2
COM  
1
COM  
0
2
2
COM  
1
COM0  
1/2 duty  
VL3  
VL2  
VSL1S  
V
COM  
COM  
0
1
V
V
L3  
SEG  
0
SS  
ON  
OFF  
COM  
ON  
COM  
OFF  
COM  
ON  
OFF  
COM  
ON  
OFF  
COM  
COM  
1
0
COM  
1
0
COM  
1
0
1
0
Fig. 32 LCD drive waveform (1/3 bias)  
32  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
φ CLOCK OUTPUT FUNCTION  
The internal system clock φ can be output from port P43 by setting  
the φ output control register. Set “1” to bit 3 of the port P4 direction  
register when outputting φ clock.  
b7  
b0  
φ output control register  
(CKOUT : address 002B16)  
φ output control bit  
0 : Port function  
1 : φ clock output  
Not used (return “0” wh
Fig. 33 Structure of φ output control register  
33  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM CORRECTION FUNCTION  
The 38C3 group has the ROM correction function correcting data at  
ROM correct high-order address register 1  
ROM correct low-order address register 1  
ROM correct high-order address register 2  
ROM correct low-order address register 2  
ROM correct high-order address register 3  
ROM correct low-order address register 3  
ROM correct high-order address register 4  
ROM correct low-order address register 4  
ROM correct high-order address register 5  
ROM correct low-order address register 5  
ROM correct high-order address register 6  
ROM correct low-order address register 6  
ROM correct high-order address register 7  
ROM correct low-order address register 7  
ROM corrhigh-order address register 8  
0F0216  
0F0316  
0F0416  
0F0516  
0F0616  
0F0716  
0F0816  
0F0916  
0F0A16  
0F0B16  
0F0C16  
0F0D16  
0F0E16  
0F0F16  
0F1016  
the arbitrary addresses in the ROM area.  
[ROM correct address register] 0F0216 – 0F1116  
This is the register to store the address performing ROM correction.  
There are two types of registers to correct up to 8 addresses: one is  
the register to store the high-order address and the other is to store  
the low-order address.  
[ROM correct enable register (RC1)] 0F0116  
This is the register to enable the ROM correction function. When set-  
ting the bit corresponding to the ROM correction address to “1”, the  
ROM correction function is enabled.  
It becomes invalid to the addresses of which corresponding bit is “0”.  
All bits are “0” at the initial state.  
0F1116 ROM -order address register 8  
[ROM correct data]  
This is the register to store a correct data for the address specified by  
Fig. 34 Structure rect address register  
the ROM correct address register.  
Notes on ROM correction function  
6  
05116  
005216  
005316  
005416  
005516  
005616  
005716  
ROM correct data 1  
ROM correct data 2  
ROM correct data 3  
ROM correct data 4  
ROM correct data 5  
ROM correct data 6  
ROM correct data 7  
ROM correct data 8  
1. To use the ROM correction function, transfer data to each ROM  
correct data register in the initial setting.  
2. Do not specify the same addresses in the ROM correct address  
register.  
Fig. 35 Structure of ROM correct data  
b7  
b0  
ROM correct enable register 1(address 0F0116  
RC1  
)
ROM correct address 1 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 2 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 3 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 4 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 5 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 6 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 7 enable bit  
0 : Disabled  
1 : Enabled  
ROM correct address 8 enable bit  
0 : Disabled  
1 : Enabled  
Fig. 36 Structure of ROM correct enable register 1  
34  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Poweron  
To reset the microcomputer, RESET pin should be held at an “L” level  
for 2 µs or more. Then the RESET pin is returned to an “H” level (the  
power source voltage should be between 2.5 V and 5.5 V, and the  
oscillation should be stable), reset is released. After the reset is com-  
pleted, the program starts from the address contained in address  
FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make  
sure that the reset input voltage is less than 0.5 V for VCC of 2.5 V  
(switching to the high-speed mode, a power source voltage must be  
between 4.0 V and 5.5 V).  
(Note)  
Power source  
voltage  
0V  
RESET  
VCC  
Reset input  
voltage  
0V  
0.2VCC  
Note : Reset release voltage ; Vcc=2.5 V  
RESET  
V
CC  
Power source  
voltage detection  
circuit  
Ficircuit example  
XIN  
φ
RESET  
Internal  
reset  
Reset address from  
vector table  
Address  
Data  
?
?
?
?
ADH, ADL  
FFFC  
FFFD  
ADL  
ADH  
SYNC  
XIN : about 8000 cycles  
Note 1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 8 • f(φ).  
2: The question marks (?) indicate an undefined state that depends on the previous state.  
Fig. 38 Reset sequence  
35  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address Register contents  
Address Register contents  
002D16  
FF16  
000016  
000116  
000216  
000316  
(1)  
(2)  
(3)  
(4)  
0016  
0016  
0016  
0016  
(34)  
(35)  
(36)  
(37)  
(38)  
Port P0  
Timer A (high-order)  
0016  
0016  
0016  
0016  
002E16  
002F16  
Port P0 direction register  
Port P1  
Compare register (low-order)  
Compare register (high-order)  
Timer A mode register  
003016  
003116  
Port P1 direction register  
Timer A control register  
000416  
000516  
000616  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001616  
001716  
001816  
0
6  
002116  
002216  
002316  
002416  
002516  
(5) Port P2  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0F
16  
0016  
FF16  
003216  
003816  
(39)  
(40)  
A-D control register  
(6) Port P2 direction register  
1016  
0016  
0016  
0016  
Segment output enable register  
Port P3  
(7)  
(8)  
Port P4  
LCD mode register  
003916  
003A16  
(41)  
(42)  
(9)  
Port P4 direction register  
Port P5  
Interrupt edge selection regi
CPU mode register  
(10)  
3B16  
003C16  
003D16  
003E16  
003F16  
0F0116  
(43)  
(44)  
(45)  
(46)  
(47)  
(51)  
(52)  
(53)  
(54)  
(55)  
(56)  
(57)  
(58)  
(59)  
(60)  
(61)  
(62)  
(63)  
(64)  
(65)  
(66)  
0 1 0 0 1 0 0 0  
0016  
(11) Port P5 direction register  
(12) Port P6  
Interrupt request
Interrupt re
Interruter 1  
Iregister 2  
ect enable register 1  
0016  
(13) Port P6 direction register  
(14) Port P7  
0016  
0016  
(15)  
(16)  
Port P7 direction register  
Port P8  
0016  
correct high-order address  
gister 1  
ROM correct low-order address  
register 1  
0F0216  
0F0316  
FF16  
(17) Port P8 direction register  
FF16  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
PULL register A  
PULL register B  
Port P8 output selection register  
Serial I/O control register 1  
Serial I/O control register 2  
Timer 1  
ROM correct high-order address 0F0416  
register 2  
ROM correct low-order address 0F0516  
register 2  
FF16  
FF16  
ROM correct high-order address 0F0616  
register 3  
ROM correct low-order address 0F0716  
register 3  
ROM correct high-order address 0F0816  
register 4  
FF16  
FF16  
FF16  
ROM correct low-order address  
register 4  
ROM correct high-order address  
register 5  
0F0916  
FF16  
Timer 2  
0F0A16  
FF16  
0116  
FF16  
FF16  
ROM correct low-order address 0F0B16  
register 5  
Timer 3  
FF16  
Timer 4  
ROM correct high-order address 0F0C16  
register 6  
ROM correct low-order address 0F0D16  
register 6  
FF16  
Timer 5  
FF16  
FF16  
0016  
0016  
0016  
0016  
FF16  
FF16  
ROM correct high-order address  
register 7  
ROM correct low-order address  
register 7  
0F0E16  
Timer 6  
FF16  
0F0F16  
Timer 12 mode register  
Timer 34 mode register  
Timer 56 mode register  
002816  
002916  
002A16  
FF16  
ROM correct high-order address 0F1016  
register 8  
FF16  
ROM correct low-order address  
register 8  
0F1116  
FF16  
002B16  
002C16  
(PS) ✕ ✕ ✕ ✕ ✕  
✕ ✕  
1
Processor status register  
(32)  
(33)  
φ output control register  
(PCH)  
(PCL)  
FFFD16 contents  
FFFC16 contents  
Program counter  
Timer A (low-order)  
X: Not fixed  
Since the initial values for other than above mentioned registers and RAM contents are indefinite at reset, they must be set.  
In the M version, bit 0 of the port P5 direction register becomes “1.”  
Fig. 39 Internal status at reset  
36  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation control  
The 38C3 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance with  
the resonator manufacturer's recommended values. No external re-  
sistor is needed between XIN and XOUT since a feedback resistor  
exists on-chip. However, an external feedback resistor is needed be-  
tween XCIN and XCOUT.  
(1) Stop mode  
If the STP instruction is executed, the internal system clock stops at  
an “H” level, and XIN and XCIN oscillators stop. Timer 1 is set to “FF16”  
and timer 2 is set to “0116.”  
Either XIN divided by 16 or XCIN divided by 16 is input to timer 1 as  
count source, and the output of timer 1 is connected to timer 2. The  
bits of the timer 12 mode register are cleared to “0.” Set the interrupt  
enable bits of the timer 1 and timer 2 to disabled (“0”) before execut-  
ing the STP instruction. Oscillator restarts when an external interrupt  
is received, but the internal system clock is not supplied to the CPU  
until timer 2 underflows. This allows time for the clock circuit oscilla-  
tion to stabilize.  
Immediately after power on, only the XIN oscillation circuit starts os-  
cillating, and XCIN and XCOUT pins function as I/O ports.  
Frequency control  
(1) Middle-speed mode  
The internal system clock is the frequency of XIN divided by 8. After  
reset, this mode is selected.  
(2) Wait mode  
If the WIT instruction is ex, the internal system clock stops at  
an “H” level. The stateXCIN are the same as the state  
before executing thtion. The internal system clock re-  
starts at reset or errupt is received. Since the oscillator  
does not stopration can be started immediately after the  
clock is re
(2) High-speed mode  
The internal system clock is the frequency of XIN divided by 2.  
(3) Low-speed mode  
The internal system clock is the frequency of XCIN divided by 2.  
Notes on clock generating circuit  
If you switch the mode between middle/high-speed and low-speed,  
stabilize both XIN and XCIN oscillations. The sufficient time is required  
for the sub clock to stabilize, especially immediately after power on  
and at returning from stop mode. When switching the mode betwe
middle/high-speed and low-speed, set the frequency on co
that f(XIN) > 3f(XCIN).  
XCIN  
XCOUT  
XIN  
XOUT  
Rf  
Rd  
COUT  
CCIN  
CCOUT  
CIN  
Fig. 40 Ceramic resonator circuit  
X
CIN  
X
COUT  
X
IN  
XOUT  
Rf  
open  
External oscillation circuit  
Rd  
CCOUT  
CCIN  
VCC  
V
SS  
Fig. 41 External clock input circuit  
37  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCOUT  
XCIN  
“1”  
“0”  
Port XC switch bit  
Timer 1 count  
source selection  
bit  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
(Note)  
XIN  
XOUT  
Low-speed mode  
“1”  
“1”  
“0”  
Timer 1  
Timer 2  
1/2  
1/2  
1/4  
“0”  
Middle-/High-speed mode  
“0”  
“1”  
Main clock division ra
Middle-speed mod
“1”  
Timing φ  
(Internal system clock)  
“0”  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
Q
S
R
R
Q
S
R
W
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note : When using the low-speed mode, set the port XC switch bit to “1” .  
Fig. 42 Clock generating circuit block diagram  
38  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
High-speed mode  
(f( ) =4 MHz)  
Middle-speed mode  
(f(φ)=1 MHz)  
CM  
“1”  
6
φ
CM  
CM  
CM  
CM  
7
6
5
4
=0(8 MHz selected)  
=0(high-speed)  
=0(8 MHz oscillating)  
=0(32 kHz stopped)  
“0”  
CM7  
CM6  
CM5  
CM4  
=0(8 MHz selected)  
=1(middle-speed)  
=0(8 MHz oscillating)  
=0(32 kHz stopped)  
“0”  
CM  
4
“0”  
6
4
“1”  
CM  
CM  
“0”  
“1”  
6
CM  
“1”  
“1”  
“0”  
Middle-speed mode  
((f(φ)=1 MHz)  
High-speed mode  
(f( ) =4 MHz)  
CM  
6
φ
“1”  
“0”  
CM  
CM  
CM  
CM  
7
=0(8 MHz selected)  
=1(middle-speed)  
=0(8 MHz oscillating)  
=1(32 kHz oscillating)  
CM  
CM  
CM  
CM  
7
6
5
4
=0(8 MHz selected)  
=0(high-speed)  
=0(8 MHz oscillating
=1(32 kHz oscillat
6
5
4
Low-speed mode  
speed mode  
((f(φ)=16 kHz)  
(f(φ) =16 kHz)  
CM  
6
CM  
CM  
CM  
CM  
7
=1(32 kHz selected)  
=1(middle-speed)  
=0(8 MHz oscillating)  
“1”  
“0”  
M  
CM  
CM  
CM  
7
6
5
4
=1(32 kHz selected)  
=0(high-speed)  
=0(8 MHz oscillating)  
=1(32 kHz oscillating)  
6
5
4
b7  
b4  
CPU mode register  
=1(32 kHz oscillating)  
(CPUM : address 003B16  
)
CM  
CM  
CM  
CM  
4 : Port Xc switch bit  
0: I/O port function  
1: XCIN-XCOUT oscillating function  
“0”  
CM  
5
“0
6
5
“1”  
CM  
5
: Main clock (XIN- XOUT) stop bit  
“0”  
“1”  
6
“1”  
0: Oscillating  
1: Stopped  
CM  
“0”  
“1”  
6: Main clock division ratio selection bit  
Low-speed mode  
(f( ) =16 kHz)  
Low-speed mode  
((f(φ)=16 kHz)  
0: f(XIN)/2(High-speed mode)  
1: f(XIN)/8 (Middle-speed mode)  
φ
CM  
6
7: Internal system clock selection bit  
CM  
7
6
5
4
=1(32 kHz selected)  
=1(middle-speed)  
=1(8 MHz stopped)  
CM  
CM  
CM  
CM  
7
=1(32 kHz selected)  
=0(high-speed)  
=1(8 MHz stopped)  
“1”  
“0”  
0: XIN–XOUT selected (Middle-/High-speed mode)  
1: XCIN–XCOUT selected (Low-speed mode)  
CM  
CM  
CM  
6
5
4
=1(32 kHz oscillating)  
=1(32 kHz oscillating)  
Notes 1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2: The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is ended.  
3: Timer,LCD operate in the wait mode.  
4: When the stop mode is ended, a delay of approximately 1 ms occurs by connecting Timer 1 and Timer 2 in middle-/high-speed mode.  
5: When the stop mode is ended, a delay of approximately 0.25 s occurs in low-speed mode.  
6: Wait until oscillation stabilizes after oscillating the main clock X IN before the switching from the low-speed mode to middle/high-speed mode.  
7: The example assumes that 8 MHz is being applied to the X IN pin and 32 kHz to the X CIN pin. φ indicates the internal system clock.  
Fig. 43 State transitions of system clock  
39  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
A-D Converter  
Processor Status Register  
The comparator uses internal capacitors whose charge will be lost if  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1.” After a  
reset, initialize flags which affect program execution. In particular, it  
is essential to initialize the index X mode (T) and the decimal mode  
(D) flags because of their effect on calculations.  
the clock frequency is too low.  
Therefore, make sure that f(XIN) is at least on 500 kHz during an A-D  
conversion.  
Do not execute the STP or WIT instruction during an A-D conversion.  
Instruction Execution Time  
Interrupts  
The instruction execution time is obtained by multiplying the frequency  
of the internal system clock by the number of cycles needed to ex-  
ecute an instruction.  
The contents of the interrupt request bits do not change immediately  
after they have been written. After writing to an interrupt request reg-  
ister, execute at least one instruction before performing a BBC or  
BBS instruction.  
The number of cycles required to execute an instruction is shown in  
the list of machine instructions.  
The frequency of the internal system clock is the same half of the XIN  
frequency in high-speed mode.  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
“1,” then execute an ADC or SBC instruction. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
At STP Instructiase  
At the STP instructill bits of the timer 12 mode register  
are cleared.  
• In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
NOTES
Notelt-in EPROM Version  
The e One Time PROM version or the EPROM version  
he power source input pin of the internal EPROM.  
, this pin is set at low input impedance, thereby being af-  
easily by noise.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n+1).  
Multiplication and Division Instructions  
• The index X mode (T) and the decimal mode (D) flags do not
the MUL and DIV instruction.  
prevent a malfunction due to noise, insert a resistor (approx. 5 k)  
in series with the P51 pin.  
• The execution of these instructions does not change
of the processor status register.  
Ports  
The contents of the port direction registeread. The fol-  
lowing cannot be used:  
• The data transfer instruction (LDA
• The operation instruction when mode flag (T) is “1”  
• The addressing mode which usealue of a direction register  
as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a  
direction register.  
Use instructions such as LDM and STA, etc., to set the port direction  
registers.  
Serial I/O  
• Using an external clock  
When using an external clock, input “H” to the external clock input  
pin and clear the serial I/O interrupt request bit before executing  
serial I/O transfer and serial I/O automatic transfer.  
• Using an internal clock  
When using an internal clock, set the synchronous clock to the in-  
ternal clock, then clear the serial I/O interrupt request bit before  
executing a serial I/O transfer and serial I/O automatic transfer.  
40  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM production:  
1. Mask ROM Order Confirmation Form  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-in  
EPROM version can be read or programmed with a general-purpose  
PROM programmer using a special programming adapter.  
2. Mark Specification Form  
3. Data to be written to ROM, in EPROM form (three identical copies)  
Table 10 Programming adapter  
DATA REQUIRED FOR ROM WRITING ORDERS  
The following are necessary when ordering a ROM writing:  
1. ROM Writing Confirmation Form  
Package  
80P6N-A  
80D0  
Name of Programming Adapter  
PCA4738F-80A  
PCA4738L-80A  
2. Mark Specification Form  
3. Data to be written to ROM, in EPROM form (three identical copies)  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 44 is recommended to verify programming.  
mming with PROM  
programmer  
Screening (Caution)  
(150 °C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 44 Programming and testing of One Time PROM version  
41  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
Table 11 Absolute maximum ratings  
Symbol  
VCC  
Unit  
V
Parameter  
Power source voltage  
Conditions  
Ratings  
–0.3 to 7.0  
VI  
V
Input voltage P00–P07, P10–P17, P20–P27,  
P40–P47, P50–P57, P60–P67, P70,  
P71, P80–P87  
–0.3 to VCC+0.3  
All voltages are based on  
Vss. Output transistors  
are cut off.  
VI  
VI  
VI  
VI  
V
V
V
V
V
V
V
V
Input voltage  
Input voltage  
Input voltage  
VL1  
VL2  
VL3  
–0.3 to VL2  
VL1 to VL3  
VL2 to VCC+0.3  
–0.3 to VCC+0.3  
–0.3 to VCC+0.3  
–0.3 to VL3+0.3  
–0.3 to VL3+0.3  
–0.3 to VCC+0.3  
Input voltage RESET, XIN  
At output port  
VO  
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37  
At segment output  
VO  
VO  
Output voltage COM0–COM3  
Output voltage P40–P47, P50, P52–P57, P60–P67,  
P70, P71, P80–P87  
VO  
V
Output voltage XOUT  
Power dissipation  
3 to VCC+0.3  
300  
Pd  
mW  
°C  
Ta = 25°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–20 to 85  
–40 to 125  
°C  
Table 12 Recommended operating conditions (Vcc = 2.5 to 5.5 V, Ta = nless otherwise noted)  
Limits  
Typ.  
5.0  
5.0  
5.0  
0
Symbol  
VCC  
Parameter  
Unit  
Min.  
4.0  
2.5  
2.5  
Max.  
5.5  
Power source voltage  
Power source voltage  
High-speed mode f(XI
Middle-speed modHz  
Low-speed mod
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
5.5  
5.5  
VSS  
VREF  
AVSS  
VIA  
VIH  
VIH  
VIH  
VIH  
VIH  
VIL  
A-D converter reference voltage  
Analog power source voltage  
Analog input voltage AN0–AN
2.0  
VCC  
0
AVSS  
VCC  
VCC  
“H” input voltage  
“H” input voltage  
“H” input voltage  
“H” input voltage  
“H” input voltage  
“L” input voltage  
“L” input voltage  
“L” input voltage  
“L” input voltage  
“L” input voltage  
P007, P20–P27  
0.7VCC  
PP57, P60–P67, P70, P71 (CM4 = 0)  
0.8VCC  
VCC  
0.4VCC  
VCC  
0.8VCC  
VCC  
X
0.8VCC  
VCC  
P00–P07, P10–P17, P20–P27  
0
0
0
0
0
0.3VCC  
0.2VCC  
0.16VCC  
0.2VCC  
0.2VCC  
VIL  
P40–P47, P50–P57, P60–P67, P70, P71 (CM4 = 0)  
VIL  
P80–P87  
RESET  
XIN  
VIL  
VIL  
42  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 13 Recommended operating conditions (Vcc = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
mA  
Min.  
Max.  
–60  
“H” total peak output current (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37  
P80–P87, P50  
ΣIOH(peak)  
“H” total peak output current (Note 1)  
–30  
40  
mA  
mA  
mA  
mA  
mA  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
P40–P47, P52–P57, P60–P67, P70, P71  
“L” total peak output current (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37  
“L” total peak output current (Note 1)  
80  
P80–P87, P50  
“L” total peak output current (Note 1)  
40  
P40–P47, P52–P57, P60–P67, P70, P71  
“H” total average output current (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37  
P80–P87, P50  
–30  
“H” total average output current (Note 1)  
–15  
20  
mA  
mA  
mA  
mA  
mA  
mA  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
IOH(peak)  
IOH(peak)  
P40–P47, P52–P57, P60–P67, P70, P71  
“L” total average output current (Note 1)  
P00–P07, P10–P17, P20–P27, P30–P37  
“L” total average output current (Note 1)  
40  
P80–P87, P50  
“L” total average output current (Note 1)  
20  
P40–P47, P52–P57, P60–P67, P70, P71  
“H” peak output current (Note 2)  
–2.0  
–10  
P00–P07, P10–P17, P20–P27, P30–P37  
“H” peak output current (Note 2)  
P40–P47, P50, P52–P57, P60–P67, P70,
P80–P87  
“L” peak output current (Note 2)  
5.0  
10  
mA  
mA  
mA  
mA  
mA  
IOL(peak)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
IOH(avg)  
P00–P07, P10–P17, P20–P27, P
“L” peak output current (Note 2)  
P40–P47, P52–P57, P601  
“L” peak output current (N
30  
P80–P87, P50  
“H” average output c3)  
–2.0  
–5.0  
P00–P07, P127, P30–P37  
“H” average o(Note 3)  
P40–P4P57, P60–P67, P70, P71  
P80–P
“L” average oucurrent (Note 3)  
2.5  
5.0  
15  
mA  
mA  
mA  
IOL(avg)  
IOL(avg)  
IOL(avg)  
P00–P07, P10–P17, P20–P27, P30–P37  
“L” average output current (Note 3)  
P40–P47, P52–P57, P60–P67, P70, P71  
“L” average output current (Note 3)  
P80–P87, P50  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over  
100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is average value measured over 100 ms.  
43  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 14 Recommended operating conditions (Vcc = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Unit  
Parameter  
Min.  
Max.  
4.0  
f(CNTR0)  
f(CNTR1)  
f(XIN)  
Input frequency (duty cycle 50%)  
(4.0 V VCC 5.5 V)  
(VCC 4.0 V)  
MHz  
MHz  
MHz  
(2VCC)–4  
8.0  
Main clock input oscillation frequency (Note 4)  
High-speed mode  
(4.0 V VCC 5.5 V)  
High-speed mode  
(4VCC)–8  
MHz  
(VCC 4.0 V)  
Middle-speed mode  
8.0  
50  
MHz  
kHz  
f(XCIN)  
Sub-clock input oscillation frequency (Notes 4, 5)  
32.768  
Notes 4: When the oscillation frequency has a duty cycle of 50%.  
5: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3.  
44  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 15 Electrical characteristics (Vcc = 4.0 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Symbol Parameter Test conditions  
IOH = –2.0 mA  
Limits  
Typ.  
Unit  
Min.  
Max.  
VOH  
“H” output voltage  
VCC–2.0  
VCC–1.0  
V
V
P00–P07, P10–P17, P20–P27,  
P30–P37  
IOH = –0.6 mA  
VCC = 2.5 V  
VOH  
VOL  
VOL  
“H” output voltage  
P40–P47, P50, P52–P57,  
P60–P67, P70, P71,  
P80–P87  
IOH = –5 mA  
VCC–2.0  
VCC–0.5  
VCC–1.0  
V
V
V
IOH = –1.25 mA  
(Note) IOH = –1.25 mA  
VCC = 2.5 V  
“L” output voltage  
P00–P07, P10–P17, P20–P27,  
P30–P37  
IOL = 2.5 mA  
2.0  
0.5  
1.0  
V
V
V
IOL = 1.25 mA  
IOL = 1.25 mA  
VCC = 2.5 V  
“L” output voltage  
P40–P47, P52–P57, P60–P67,  
P70, P71  
IOL = 5.0 mA  
2.0  
0.5  
1.0  
V
V
V
IOL = 2.5 mA  
(Note) IOL = 2.5 mA  
VCC = 2.5 V  
VOL  
“L” output voltage P80–P87, P50  
Hysteresis  
IOL = 15 mA  
2.0  
V
V
VT+–VT-  
0.5  
INT0–INT2, CNTR0, CNTR1, P80–P87  
Hysteresis SCLK1, SIN  
Hysteresis RESET  
VT+–VT-  
VT+–VT-  
0.5  
0.5  
V
V
RES
V5.5 V  
IIH  
“H” input current  
5.0  
140  
45  
µA  
µA  
µA  
µA  
P00–P07, P10–P17, P20–P27  
wn “off”  
= 5.0 V, VI = VCC  
Pull-down “on”  
VCC = 3.0 V, VI = VCC  
Pull-down “on”  
VI = VCC  
30  
70  
25  
6.0  
IIH  
“H” input current  
5.0  
P40–P47, P50–P57, P
P70, P71, P80–P8
IIH  
IIH  
IIL  
“H” input current 
“H” input curren
“L” input current  
VI = VCC  
VI = VCC  
5.0  
–5.0  
–5.0  
–140  
–45  
–5  
µA  
µA  
µA  
4.0  
P00–P07, P107, P20–P27, P51  
“L” input current  
IIL  
VI = VSS  
µA  
µA  
µA  
P40–P47, P50, P52–P57,  
P60–P67, P70, P71, P80–P87  
Pull-up “off”  
VCC = 5.0 V, VI = VSS  
Pull-up “on”  
–30  
–6  
–70  
–25  
VCC = 3.0 V, VI = VSS  
Pull-up “on”  
IIL  
IIL  
“L” input current RESET  
“L” input current XIN  
VI = VSS  
µA  
µA  
VI = VSS  
–4  
Note: When “1” is set to the port XC switch bit (bit 4 of address 003B16) of the CPU mode register, the drive ability of Port P70 is different from the value above  
mentioned.  
45  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 16 Electrical characteristics (Vcc = 2.5 to 5.5 V, Ta = 20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
2.0  
Max.  
5.5  
VRAM  
ICC  
RAM hold voltage  
When clock is stopped  
V
Power source current  
High-speed mode, Vcc = 5 V  
f(XIN) = 8 MHz  
f(XCIN) = 32.768 kHz  
Output transistors “off”,  
A-D converter in operating  
6.4  
1.6  
15  
13  
mA  
High-speed mode, Vcc = 5 V  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
Output transistors “off”,  
A-D converter stopped  
3.2  
22  
mA  
µA  
µA  
Low-speed mode, VCC = 3 V,  
Ta 55 °C  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
Low-speed mode, VCC = 3 V,  
Ta = 25 °C  
4.5  
9.0  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
(in WIT state)  
Output transistors “off”  
All oscillation stopped  
(in STP state)  
0.1  
1.0  
10  
µA  
µA  
Ta
C  
Output transistors “off”  
46  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 17 A-D converter characteristics  
(Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = 20 to 85°C, 4 MHz f(XIN) 8 MHz, in middle-speed/high-speed mode)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
10  
Resolution  
Bits  
LSB  
tc(φ)  
µA  
Absolute accuracy (excluding quantization error)  
Conversion time  
VCC = VREF = 5.12 V  
VREF = 5 V  
±1  
±2.5  
62  
Tconv  
61  
50  
IVREF  
IIA  
Reference input current  
Analog port input current  
Ladder resistor  
150  
0.5  
35  
200  
5.0  
µA  
RLADDER  
kΩ  
47  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 18 Timing requirements 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0–INT2 input “H” pulse width  
INT0–INT2 input “L” pulse width  
Serial I/O clock input cycle time  
Serial I/O clock input “H” pulse width  
Serial I/O clock input “L” pulse width  
Serial I/O input setup time  
125  
45  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
250  
105  
105  
80  
twL(INT)  
80  
tc(SCLK)  
800  
370  
370  
2
twH(SCLK)  
twL(SCLK)  
tsu(SIN-SCLK)  
th(SCLK-SIN)  
Serial I/O input hold time  
Table 19 Timing requirements 2 (Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = –20 to 85°C, ise noted)  
Limits  
Symbol  
Parameter  
Reset input “L” pulse width  
Unit  
Min.  
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse wi
CNTR0, CNTR1 input “L” pulse
INT0–INT2 input “H” pulse w
INT0–INT2 input “L” puls
Serial I/O clock inpu
Serial I/O clock inwidth  
Serial I/O cloclse width  
Serial I/O ime  
125  
twH(XIN)  
45  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
twH(INT)  
500/(VCC–2)  
250/(VCC–2)–20  
250/(VCC–2)–20  
230  
230  
2000  
950  
950  
400  
200  
twL(INT)  
tc(SCLK)  
twH(SCLK)  
twL(SCLK)  
tsu(SIN-SCLK)  
th(SCLK-SIN)  
Serial I/O inptime  
48  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 20 Switching characteristics 1 (Vcc = 4.0 to 5.5 V, Vss = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
twH(SCLK)  
Parameter  
Unit  
Min.  
Typ.  
Max.  
140  
Serial I/O clock output “H” pulse width  
Serial I/O clock output “L” pulse width  
Serial I/O output delay time  
tc(SCLK)/2–30  
tc(SCLK)/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twL(SCLK)  
td(SCLK-SOUT)  
tV(SCLK-SOUT)  
tr(SCLK)  
(Note 1)  
(Note 1)  
Serial I/O output valid time  
–30  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time  
30  
30  
30  
30  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
(Note 2)  
(Note 2)  
10  
10  
CMOS output falling time  
Notes 1: When the P-channel output disable bit (bit 7 of address 001916) is “0.”  
2: The XOUT, XCOUT pins are excluded.  
Table 21 Switching characteristics 2 (Vcc = 2.5 to 4.0 V, Vss = 0 V, Ta = –20 to 85°C, unless otheoted)  
mits  
Symbol  
twH(SCLK)  
Parameter  
Unit  
Typ.  
Max.  
350  
Serial I/O clock output “H” pulse width  
Serial I/O clock output “L” pulse width  
Serial I/O output delay time  
50  
/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twL(SCLK)  
td(SCLK-SOUT)  
tV(SCLK-SOUT)  
tr(SCLK)  
(Note
(No
Serial I/O output valid time  
–30  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time  
50  
50  
50  
50  
tf(SCLK)  
tr(CMOS)  
tf(CMOS)  
2)  
ote 2)  
20  
20  
CMOS output falling time  
Notes 1: When the P-channel output disable bit (bit 7 of address 001
2: The XOUT, XCOUT pins are excluded.  
1 k  
Measurement output pin  
Measurement output pin  
100 pF  
100 pF  
N-channel open-drain output  
CMOS output  
Note: When bit 7 of the serial I/O control register 1 (address 0019 16) is “ 1.”  
(N-channel open-drain output mode)  
Fig. 45 Circuit for measuring output switching characteristics  
49  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
tC(CNTR)  
tWL(CNTR)  
0.2VCC  
tWH(CNTR)  
0.8VCC  
CNTR0,CNTR1  
twL(INT)  
0.2VCC  
twH(INT)  
INT0 – INT3  
0.8VCC  
tW(RESET)  
0.8VCC  
RESET  
0.2VCC  
tC(XIN)  
tWL(XIN)  
0.2VCC  
IN)  
XIN  
tC(SCLK)  
tr  
tf  
tWL(SCLK)  
tWH(SCLK)  
0.8VCC  
SCLK  
SIN  
0.2VCC  
tsu(SIN-SCLK)  
th(SCLK-SIN)  
0.8VCC  
0.2VCC  
td(SCLK-SOUT)  
tv(SCLK-SOUT)  
SOUT  
Fig. 46 Timing diagram  
50  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH52-95B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
Date:  
Section head Supervisor  
SINGLE-CHIP MICROCOMPUTER M38C34M6AXXXFP  
MITSUBISHI ELECTRIC  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROed.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain idewe will produce masks based on this data. We  
shall assume the responsibility for errors only if the mask Rthe products we produce differs from this data.  
Thus, extreme care must be taken to verify the data in the EPROMs.  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27256  
27512  
In the address space of the microcomputer,  
EPROM address  
000016  
Eess  
the internal ROM area is from address A08016  
to FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
Product name  
ASCII code :  
‘M38C34M6A’  
Product name  
ASCII code :  
‘M38C34M6A’  
0F16  
001016  
000F16  
001016  
A07F16  
A08016  
207F16  
208016  
Data  
Data  
ROM 24K-130 bytes  
ROM 24K-130 bytes  
FFFD16  
FFFE16  
FFFF16  
7FFD16  
7FFE16  
7FFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘C’ = 4316  
‘3’ = 3316  
‘4’ = 3416  
‘M’ = 4D16  
‘6’ = 3616  
‘ A ’ =4116  
FF16  
(2) The ASCII codes of the product name “M38C34M6A” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
51  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH52-95B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C34M6AXXXFP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27256  
27512  
*=$8000  
.BYTE‘M38C34M6A’  
*=$0000  
.BYTE‘M38C34M6A’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the M confirmation form, the ROM  
will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the pacordered. Fill out the appropriate mark  
specification form (80P6N) and attach it to the mask ROM confirmati
3. Usage conditions  
Please answer the following questions about usage for use ict inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz c
Othe
)
At what frequency?  
(2) Which function will you use the P70/XCIN anpins?  
Port P70 and P71 function  
f(XIN
MHz  
N-XCOUT function (external resonator)  
4. Comments  
(2/2)  
52  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH52-96B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
Date:  
Section head Supervisor  
SINGLE-CHIP MICROCOMPUTER M38C34M6MXXXFP  
MITSUBISHI ELECTRIC  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROed.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain idewe will produce masks based on this data. We  
shall assume the responsibility for errors only if the mask Rthe products we produce differs from this data.  
Thus, extreme care must be taken to verify the data in the EPROMs.  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27256  
27512  
In the address space of the microcomputer,  
EPROM address  
000016  
Eess  
the internal ROM area is from address A08016  
to FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
Product name  
ASCII code :  
‘M38C34M6M’  
Product name  
ASCII code :  
‘M38C34M6M’  
0F16  
001016  
000F16  
001016  
A07F16  
A08016  
207F16  
208016  
Data  
Data  
ROM 24K-130 bytes  
ROM 24K-130 bytes  
FFFD16  
FFFE16  
FFFF16  
7FFD16  
7FFE16  
7FFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘C’ = 4316  
‘3’ = 3316  
‘4’ = 3416  
‘M’ = 4D16  
‘6’ = 3616  
‘ M ’ =4D16  
FF16  
(2) The ASCII codes of the product name “M38C34M6M” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
53  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH52-96B<85A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C34M6MXXXFP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27256  
27512  
*=$8000  
.BYTE‘M38C34M6M’  
*=$0000  
.BYTE‘M38C34M6M’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the M confirmation form, the ROM  
will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the pacordered. Fill out the appropriate mark  
specification form (80P6N) and attach it to the mask ROM confirmati
3. Usage conditions  
Please answer the following questions about usage for use ict inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz c
Othe
)
At what frequency?  
(2) Which function will you use the P70/XCIN anpins?  
Port P70 and P71 function  
f(XIN
MHz  
N-XCOUT function (external resonator)  
4. Comments  
(2/2)  
54  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH52-97B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C37ECAXXXFP  
MITSUBISHI ELECTRIC  
Date:  
Section head Supervisor  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROed.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain idewe will produce ROM programming based on  
this data. We shall assume the responsibility for errors only programming data on the products we produce  
differs from this data. Thus, extreme care must be taken tdata in the submitted EPROMs.  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27512  
ddress space of the microcomputer,  
nternal ROM area is from address 408016  
FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
EPROM address  
000016  
Product name  
ASCII code :  
‘M38C37ECA’  
000F16  
001016  
407F16  
408016  
Data  
ROM 48K-132 bytes  
FFFD16  
FFFE16  
FFFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘C’ = 4316  
‘3’ = 3316  
‘7’ = 3716  
‘E’ = 4516  
‘C’ = 4316  
‘ A ’ =4116  
FF16  
(2) The ASCII codes of the product name “M38C37ECA” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
55  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH52-97B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C37ECAXXXFP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27512  
*=$0000  
.BYTE‘M38C37ECA’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the gramming confirmation form,  
the ROM will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the pacordered. Fill out the appropriate mark  
specification form (80P6N) and attach it to the ROM programming coform.  
3. Usage conditions  
Please answer the following questions about usage for use ict inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz c
Othe
)
At what frequency?  
(2) Which function will you use the P70/XCIN anpins?  
Port P70 and P71 function  
f(XIN
MHz  
N-XCOUT function (external resonator)  
4. Comments  
(2/2)  
56  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH52-98B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C37ECMXXXFP  
MITSUBISHI ELECTRIC  
Date:  
Section head Supervisor  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROed.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain idewe will produce ROM programming based on  
this data. We shall assume the responsibility for errors only programming data on the products we produce  
differs from this data. Thus, extreme care must be taken tdata in the submitted EPROMs.  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27512  
ddress space of the microcomputer,  
ternal ROM area is from address 408016  
FFFD16. The reset vector is stored in  
addresses FFFC16 and FFFD16.  
EPROM address  
000016  
Product name  
ASCII code :  
‘M38C37ECM’  
000F16  
001016  
407F16  
408016  
Data  
ROM 48K-132 bytes  
FFFD16  
FFFE16  
FFFF16  
(1) Set the data in the unused area (the shaded area of the  
diagram) to “FF16”.  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘C’ = 4316  
‘3’ = 3316  
‘7’ = 3716  
‘E’ = 4516  
‘C’ = 4316  
‘ M ’ =4D16  
FF16  
(2) The ASCII codes of the product name “M38C37ECM” must  
be entered in addresses 000016 to 000816. And set data  
“FF16” in addresses 000916 to 000F16. The ASCII codes  
and addresses are listed to the right in hesadecimal  
notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
57  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH52-98B<85A0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38C37ECMXXXFP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembier source program because  
ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27512  
*=$0000  
.BYTE‘M38C37ECM’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the gramming confirmation form,  
the ROM will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the pacordered. Fill out the appropriate mark  
specification form (80P6N) and attach it to the ROM programming coform.  
3. Usage conditions  
Please answer the following questions about usage for use ict inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz c
Othe
)
At what frequency?  
(2) Which function will you use the P70/XCIN anpins?  
Port P70 and P71 function  
f(XIN
MHz  
N-XCOUT function (external resonator)  
4. Comments  
(2/2)  
58  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
80P6N (80-PIN QFP) MARK SPECIFICATION FORM  
Mitsubishi IC catalog name  
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).  
A. Standard Mitsubishi Mark  
64  
41  
40  
65  
Mitsubishi IC catalog name  
Mitsubishi product number  
(6-digit, or 7-digit)  
80  
25  
1
24  
B. Customer’s Parts Number + Mitsubishi IC Catalog Name  
64  
41  
40  
65  
mer’s Parts Number  
ote : The fonts and size of characters are standard Mitsubishi type.  
Mitsubishi IC catalog name  
Notes 1 : The mark field should be written right aligned.  
2 : The fonts and size of characters are standard Mitsubishi type.  
80  
1
C. Special Mark Required  
Notes1 :If special mark is to be printed, indicate the desired lay-  
out of the mark in the left figure. The layout will be  
duplicated technically as close as possible.  
Mitsubishi product number (6-digit, or 7-digit) and Mask  
ROM number (3-digit) are always marked for sorting the  
products.  
64  
41  
40  
65  
2 : If special character fonts (e,g., customer’s trade mark  
logo) must be used in Special Mark, check the box be-  
low.  
80  
25  
For the new special character fonts, a clean font original  
(ideally logo drawing) must be submitted.  
1
24  
Special character fonts required  
59  
MITSUBISHI MICROCOMPUTERS  
38C3 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
80P6N-A  
Plastic 80pin 1420mm body QFP  
EIAJ Package Code  
QFP80-P-1420-0.80  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
M
D
HD  
D
80  
65  
1
64  
I2  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
A
Min  
0
0.3  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
Nom  
Max  
3.05  
0.2  
0.45  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.1  
10°  
A1  
0.1  
2.8  
0.35  
0.15  
14.0  
20.0  
0.8  
16.8  
22.8  
0.6  
1.4  
0.5  
14.6  
20.6  
c
D
E
e
24  
41  
25  
40  
A
H
H
D
E
L
L1  
y
0°  
1.3  
F
e
b
L
b2  
ail F  
I2  
y
M
M
D
E
80D0  
Glass seal 80pin QFN  
EIAJ Package Code  
JEDEC Code  
21.
18.4±0.15  
3.32MAX  
1.78TYP  
0.8TYP  
0.6TYP  
41  
64  
65  
40  
25  
80  
1
24 1.2TYP  
INDEX  
60  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1998 MITSUBISHI ELECTRIC CORP.  
New publication, effective Jun. 1998.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
38C3 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980602  
(1/1)  

相关型号:

M38C31E2MXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M38C31E2MXXXFP

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38C31E2MXXXFS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M38C31E2MXXXFS

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38C31E3A

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38C31E3AXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M38C31E3AXXXFP

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38C31E3AXXXFS

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M38C31E3AXXXFS

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38C31E3M

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38C31E3MXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M38C31E3MXXXFP

8-BIT SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS