R1Q5A3609ABG-40R [RENESAS]

IC,SYNC SRAM,DDR,4MX9,CMOS,BGA,165PIN,PLASTIC;
R1Q5A3609ABG-40R
型号: R1Q5A3609ABG-40R
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,SYNC SRAM,DDR,4MX9,CMOS,BGA,165PIN,PLASTIC

双倍数据速率 静态存储器
文件: 总26页 (文件大小:1537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1Q5A3636/R1Q5A3618/R1Q5A3609  
36-Mbit DDRII SRAM  
4-word Burst  
REJ03C0297-0002  
Preliminary  
Rev. 0.02  
Feb. 22, 2007  
Description  
The R1Q5A3636 is a 1,048,576-word by 36-bit, the R1Q5A3618 is a 2,097,152-word by 18-bit, and the R1Q5A3609 is  
a 4,194,304-word by 9-bit synchronous double data rate static RAM fabricated with advanced CMOS technology using  
full CMOS six-transistor memory cell. It integrates unique synchronous peripheral circuitry and a burst counter. All  
input registers controlled by an input clock pair (K and /K) and are latched on the positive edge of K and /K. These  
products are suitable for applications which require synchronous operation, high speed, low voltage, high density and  
wide bit configuration. These products are packaged in 165-pin plastic FBGA package.  
Features  
1.8 V 0.1 V power supply for core (VDD  
1.4 V to VDD power supply for I/O (VDDQ  
)
)
DLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Four-tick burst for reduced address frequency  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time and clock skew matching-clock and data delivered together to  
receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time: 3.0 ns (333 MHz)/3.3 ns (300 MHz)/4.0 ns (250 MHz)/  
5.0 ns (200 MHz)/6.0 ns (167 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
Preliminary: The specifications of this device are subject to change without notice. Please contact your nearest  
Renesas Technology's Sales Dept. regarding specifications.  
Rev.0.02 Feb. 22, 2007 page 1 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Ordering Information  
Type No.  
Organization  
Cycle time  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
Clock frequency  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
Package  
Notes  
R1Q5A3636ABG-30R  
R1Q5A3636ABG-33R  
R1Q5A3636ABG-40R  
R1Q5A3636ABG-50R  
R1Q5A3636ABG-60R  
R1Q5A3618ABG-30R  
R1Q5A3618ABG-33R  
R1Q5A3618ABG-40R  
R1Q5A3618ABG-50R  
R1Q5A3618ABG-60R  
R1Q5A3609ABG-30R  
R1Q5A3609ABG-33R  
R1Q5A3609ABG-40R  
R1Q5A3609ABG-50R  
R1Q5A3609ABG-60R  
Notes: 1. Type No.  
1-M word  
× 36-bit  
Plastic FBGA 165-pin  
PLBG0165FB-A  
2-M word  
× 18-bit  
4-M word  
× 9-bit  
(0:1) R1 : Renesas Memory prefix  
(2:3) Q2 : QDRII 2-word Burst SRAM  
Q3 : QDRII 4-word Burst SRAM  
Q4 : DDRII 2-word Burst SRAM  
Q5 : DDRII 4-word Burst SRAM  
Q6 : DDRII 2-word Burst SRAM Separate I/O  
A : VDD=1.8V  
(4)  
(5:6) 36 : Density = 36Mb  
72 : Density = 72Mb  
(7:8) 36 : Organization = x36  
18 : Organization = x18  
09 : Organization = x9  
Pin Arrangement  
R1Q5A3636 series  
1
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
/BW2  
/BW3  
SA  
6
7
8
9
SA  
10  
NC  
NC  
DQ17  
NC  
DQ15  
NC  
11  
CQ  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
VSS  
DQ27  
NC  
DQ29  
NC  
DQ30  
DQ31  
VREF  
NC  
NC  
DQ33  
NC  
DQ35  
NC  
TCK  
SA  
R-/W  
SA  
VSS  
/K  
K
/BW1  
/BW0  
SA1  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
/LD  
SA  
VSS  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
SA0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
VREF  
DQ13  
DQ12  
NC  
DQ11  
NC  
VSS  
SA  
SA  
VSS  
SA  
SA  
SA  
SA  
SA  
SA  
DQ9  
TMS  
/C  
(Top View)  
Rev.0.02 Feb. 22, 2007 page 2 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
R1Q5A3618 series  
1
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
VSS  
DQ9  
NC  
NC  
NC  
DQ12  
NC  
VREF  
NC  
NC  
DQ15  
NC  
3
4
5
/BW1  
NC  
SA  
6
7
NC  
8
9
SA  
10  
SA  
NC  
DQ7  
NC  
NC  
NC  
NC  
VREF  
DQ4  
NC  
NC  
DQ1  
NC  
NC  
TMS  
11  
CQ  
DQ8  
NC  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
SA  
NC  
NC  
R-/W  
SA  
VSS  
/K  
K
/LD  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
/BW0  
SA1  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
SA0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
DQ10  
DQ11  
NC  
DQ13  
VDDQ  
NC  
DQ14  
NC  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ6  
DQ5  
NC  
ZQ  
NC  
DQ3  
DQ2  
NC  
NC  
DQ0  
TDI  
NC  
NC  
TCK  
DQ16  
DQ17  
SA  
VSS  
SA  
SA  
VSS  
SA  
SA  
SA  
SA  
SA  
SA  
/C  
(Top View)  
R1Q5A3609 series  
1
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
DQ4  
NC  
NC  
DQ3  
NC  
NC  
ZQ  
NC  
NC  
DQ1  
NC  
NC  
DQ0  
TDI  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ7  
NC  
NC  
NC  
TCK  
SA  
R-/W  
SA  
VSS  
NC  
NC  
SA  
/K  
K
NC  
/BW  
SA  
/LD  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
DQ5  
NC  
DQ6  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ8  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ2  
NC  
NC  
NC  
NC  
NC  
TMS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
SA  
VSS  
SA  
SA  
SA  
SA  
SA  
SA  
/C  
(Top View)  
Notes: 1. Note that 7C is not SA1. The ×9 product does not permit random start address on the two least significant  
address bit. SA0, SA1 = 0 at the start of each address.  
:
2. Address expansion order for future higher density SRAMs (i.e. 72Mb 144Mb 288Mb): (9A 3A 10A)  
2A 7A 5B.  
Rev.0.02 Feb. 22, 2007 page 3 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Pin Description  
Name  
I/O type  
Descriptions  
Notes  
SAx  
Input  
Synchronous address inputs: These inputs are registered and must meet the setup  
and hold times around the rising edge of K. All transactions operate on a burst-of-four  
words (two clock periods of bus activity). SA0 and SA1 are used as the lowest two  
address bits for burst READ and burst WRITE operations permitting a random burst  
start address on ×18 and ×36 devices. These inputs are ignored when device is  
deselected or once burst operation is in progress.  
/LD  
Input  
Input  
Input  
Synchronous load: This input is brought low when a bus cycle sequence is to be  
defined. This definition includes address and READ / WRITE direction. All  
transactions operate on a burst-of-four data (two clock periods of bus activity).  
Synchronous read / write Input: When /LD is low, this input designates the access  
type (READ when R-/W is high, WRITE when R-/W is low) for the loaded address. R-  
/W must meet the setup and hold times around the rising edge of K.  
Synchronous byte writes: When low, these inputs cause their respective byte to be  
registered and written during WRITE cycles. These signals must meet setup and hold  
times around the rising edges of K and /K for each of the two rising edges comprising  
the WRITE cycle. See Byte Write Truth Table for signal to data relationship.  
R-/W  
/BWx  
K, /K  
C, /C  
Input  
Input  
Input clock: This input clock pair registers address and control inputs on the rising  
edge of K, and registers data on the rising edge of K and the rising edge of /K. /K is  
ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and  
hold times around the clock rising edges. These balls cannot remain VREF level.  
Output clock: This clock pair provides a user-controlled means of tuning device output  
data. The rising edge of /C is used as the output timing reference for first and third  
output data. The rising edge of C is used as the output timing reference for second  
and fourth output data. Ideally, /C is 180 degrees out of phase with C. C and /C may  
be tied high to force the use of K and /K as the output reference clocks instead of  
having to provide C and /C clocks. If tied high, C and /C must remain high and not to  
be toggled during device operation. These balls cannot remain VREF level.  
/DOFF  
ZQ  
Input  
Input  
DLL disable: When low, this input causes the DLL to be bypassed for stable, low  
frequency operation.  
Output impedance matching input: This input is used to tune the device outputs to the  
system data bus impedance. DQ and CQ output impedance are set to 0.2 × RQ,  
where RQ is a resistor from this ball to ground. This ball can be connected directly to  
V
DDQ, which enables the minimum impedance mode. This ball cannot be connected  
directly to VSS or left unconnected.  
TMS  
TDI  
TCK  
Input  
Input  
IEEE1149.1 test inputs: 1.8 V I/O levels. These balls may be left not connected if the  
JTAG function is not used in the circuit.  
IEEE1149.1 clock input: 1.8 V I/O levels. This ball must be tied to VSS if the JTAG  
function is not used in the circuit.  
DQ0 to  
DQn  
Input/  
output  
Synchronous data I/Os: Input data must meet setup and hold times around the rising  
edges of K and /K. Output data is synchronized to the respective C and /C, or to the  
respective K and /K if C and /C are tied high. The ×9 device uses DQ0 to DQ8.  
Remaining signals are not used. The ×18 device uses DQ0 to DQ17. Remaining  
signals are not used. The ×36 device uses DQ0 to DQ35.  
CQ,  
/CQ  
Output  
Synchronous echo clock outputs: The edges of these outputs are tightly matched to  
the synchronous data outputs and can be used as a data valid indication. These  
signals run freely and do not stop when DQ tristates.  
TDO  
VDD  
Output  
Supply  
IEEE 1149.1 test output: 1.8 V I/O level.  
Power supply: 1.8 V nominal. See DC Characteristics and Operating Conditions for  
range.  
VDDQ  
Supply  
Power supply: Isolated output buffer supply. Nominally 1.5 V. 1.8 V is also  
permissible. See DC Characteristics and Operating Conditions for range.  
VSS  
VREF  
Supply  
Power supply: Ground.  
HSTL input reference voltage: Nominally VDDQ/2, but may be adjusted to improve  
system noise margin. Provides a reference voltage for the HSTL input buffers.  
Rev.0.02 Feb. 22, 2007 page 4 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Name  
I/O type  
Descriptions  
Notes  
NC  
No connect: These signals are not internally connected. These signals can be left  
floating or connected to ground to improve package heat dissipation.  
Notes: 1. All power supply and ground balls must be connected for proper operation of the device.  
Block Diagram (R1Q5A3636 / R1Q5A3618 series)  
SA1  
SA0  
SA1'  
SA0'  
Burst  
Logic  
Output  
Control  
Logic  
20/21  
20/21  
SA  
SA0''  
SA0'''  
Address  
Registry  
and  
ZQ  
/LD  
R-/W  
K
Logic  
CQ, /CQ  
2
72  
/36  
72  
/36  
72  
/36  
R-/W  
/LD  
DQ  
36/18  
Memory  
Array  
4/2  
Data  
Registry  
and  
/BWx  
K
Logic  
/K  
36/18  
C,/C  
or  
K,/K  
C
K
Block Diagram (R1Q5A3609 series)  
20  
20  
SA  
Address  
Registry  
and  
ZQ  
/LD  
R-/W  
K
Logic  
CQ, /CQ  
2
R-/W  
/LD  
DQ  
9
18  
18  
18  
Memory  
Array  
1
Data  
Registry  
and  
/BWx  
K
Logic  
/K  
9
C,/C  
or  
K,/K  
C
K
Rev.0.02 Feb. 22, 2007 page 5 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
General Description  
Power-up and Initialization Sequence  
The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF then VIN.  
After the stable power, there are three possible sequences.  
1. Sequence when DLL disable (/DOFF pin fixed low)  
Just after the stable power and clock (K, /K, C, /C), 1024 NOP cycles (min.) are required for all operations,  
including JTAG functions, to become normal.  
2a. Sequence controlled by /DOFF pin when DLL enable Just after the stable power and clock (K, /K, C, /C), take  
/DOFF to be high.  
The additional 1024 NOP cycles (min.) are required to lock the DLL and for all operations to become normal.  
2b. Sequence controlled by Clock (/DOFF pin fixed high) when DLL enable If /DOFF pin is fixed high with  
unstable clock, the clock (K, /K, C, /C) must be stopped for 30ns (min.).  
The additional 1024 NOP cycles (min.) are required to lock the DLL and for all operations to become normal.  
Notes: 1. After K or C clock is stopped, clock recovery cycles (1024 NOP cycles (min.)) are required for read/write  
operations to become normal.  
2. When DLL is enable and the operating frequency is changed, DLL reset should be required again. After DLL  
reset again, the 1024 NOP cycles (min.) are needed to lock the DLL.  
1. Sequence when DLL disable (/DOFF pin fixed low)  
Unstable  
Stable  
Normal  
Status  
Power Up  
NOP Stage  
Clock Stage  
Clock Stage  
Operation  
VDD  
VDDQ  
VREF  
VIN  
1024cycle min.  
K, /K  
(C, /C)  
2a. Sequence controlled by /DOFF pin when DLL enable  
Unstable  
Stable  
NOP & DLL  
Normal  
Status  
Power Up  
Clock Stage  
Clock Stage  
Locking Stage  
Operation  
VDD  
VDDQ  
VREF  
/DOFF  
1024cycle min.  
K, /K  
(C, /C)  
Rev.0.02 Feb. 22, 2007 page 6 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
2b. Sequence controlled by Clock (/DOFF pin fixed high) when DLL enable  
Unstable  
Stop  
NOP & DLL  
Normal  
Status  
Power Up  
Clock Stage  
Clock Stage  
Locking Stage  
Operation  
VDD  
VDDQ  
VREF  
/DOFF  
30ns min.  
1024cycle min.  
K, /K  
(C, /C)  
DLL Constraints  
1. DLL uses either K or C clock as its synchronizing input, the input should have low phase jitter which is specified as  
TKC var.  
2. The lower end of the frequency at which the DLL can operate is 100MHz.  
Programmable Output Impedance  
1. Output buffer impedance can be programmed by terminating the ZQ ball to VSS through a precision resistor (RQ).  
The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance  
matching with a tolerance of 10% is 250 typical. The total external capacitance of ZQ ball must be less than 7.5  
pF.  
Burst Sequence  
Linear Burst Sequence Table (R1Q5A3636 / R1Q5A3618 series)  
SA1, SA0  
SA1, SA0  
SA1, SA0  
SA1, SA0  
Notes  
External address  
0, 0  
0, 1  
1, 0  
1, 1  
0, 1  
1, 0  
1, 1  
0, 0  
1, 0  
1, 1  
0, 0  
0, 1  
1, 1  
0, 0  
0, 1  
1, 0  
1st internal burst address  
2nd internal burst address  
3rd internal burst address  
Rev.0.02 Feb. 22, 2007 page 7 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
K Truth Table  
Operation  
Write Cycle:  
K
/R  
/W  
D or Q  
L
L
Data in  
Load address, input write data  
on consecutive K and /K rising  
edges  
Input  
D(A1)  
D(A2)  
D(A3)  
D(A4)  
data  
Output  
clock  
K(t+1)↑  
/K(t+1)↑  
K(t+2)↑  
/K(t+2)↑  
Read Cycle:  
L
H
Data out  
Load address, output read  
data on consecutive C and /C  
rising edges  
Output  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
data  
Output  
clock  
/C(t+1)↑  
C(t+2)↑  
/C(t+2)↑  
C(t+3)↑  
NOP (No operation)  
Standby (Clock stopped)  
H
×
×
×
High-Z  
Previous state  
Stopped  
Notes: 1. H: high level, L: low level, ×: don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges,  
except if C and /C are high, then data outputs are delivered at K and /K rising edges.  
3. /LD and R-/W must meet setup/hold times around the rising edges (low to high) of K and are registered at the  
rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. When clocks are stopped, the following cases are recommended; the case of K = low, /K = high, C = low and  
/C = high, or the case of K = high, /K = low, C = high and /C = low. This condition is not essential, but permits  
most rapid restart by overcoming transmission line charging symmetrically.  
7. A1 refers to the address input during a WRITE or READ cycle. A2, A3 and A4 refer to the 1st, 2nd and 3rd  
internal burst address, respectively, in accordance with the linear burst sequence.  
Byte Write Truth Table (x36)  
Operation  
Write D0 to D35  
K
/K  
/BW0  
L
L
L
L
H
H
H
H
H
H
H
H
/BW1  
L
L
H
H
L
L
H
H
H
H
H
H
/BW2  
L
L
H
H
H
H
L
L
H
H
H
H
/BW3  
L
L
H
H
H
H
H
H
L
L
H
H
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation  
provided that the setup and hold requirements are satisfied.  
Rev.0.02 Feb. 22, 2007 page 8 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Byte Write Truth Table (x18)  
Operation  
Write D0 to D17  
K
/K  
/BW0  
/BW1  
L
L
L
L
L
H
H
L
L
H
H
Write D0 to D8  
Write D9 to D17  
Write nothing  
L
H
H
H
H
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation  
provided that the setup and hold requirements are satisfied.  
Byte Write Truth Table (x9)  
Operation  
Write D0 to D8  
K
/K  
/BW  
L
L
H
H
Write nothing  
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation  
provided that the setup and hold requirements are satisfied.  
Rev.0.02 Feb. 22, 2007 page 9 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Bus Cycle State Diagram  
/LD = H & Count = 4  
Count  
= 2  
R-/W = L  
Write Double  
Count  
= Count + 2  
Advance  
Address  
by Two  
/LD = L  
&
Count = 4  
Always  
/LD = H  
/LD = L  
Load New  
Address  
Count = 0  
NOP  
Supply  
voltage  
provided  
Count  
= 2  
R-/W = H  
Read Double  
Count  
= Count + 2  
Advance  
Address  
by Two  
/LD = L  
&
Count = 4  
Power  
Up  
Always  
/LD = H & Count = 4  
Notes: 1. SA0 and SA1 are internally advanced in accordance with the burst order table. Bus cycle is terminated at  
the end of this sequence (burst count = 4).  
2. State machine control timing sequence is controlled by K.  
Absolute Maximum Ratings  
Parameter  
Input voltage on any ball  
Input/output voltage  
Core supply voltage  
Output supply voltage  
Junction temperature  
Storage temperature  
Symbol  
VIN  
VI/O  
VDD  
VDDQ  
Tj  
Rating  
0.5 to VDD + 0.5 (2.5 V max.)  
0.5 to VDDQ + 0.5 (2.5 V max.)  
0.5 to 2.5  
Unit  
V
V
V
V
Notes  
1, 4  
1, 4  
1, 4  
1, 4  
0.5 to VDD  
+125 (max)  
55 to +125  
°C  
°C  
TSTG  
Notes: 1. All voltage is referenced to VSS  
.
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted the Operation Conditions. Exposure to higher than recommended voltages for extended  
periods of time could affect device reliability.  
3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables  
after thermal equilibrium has been established.  
4. The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF then VIN.  
Remember, according to the Absolute Maximum Ratings table, VDDQ is not to exceed 2.5 V, whatever the  
instantaneous value of VDDQ  
.
Rev.0.02 Feb. 22, 2007 page 10 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Recommended DC Operating Conditions  
(Ta = 0 to +70°C)  
Parameter  
Power supply voltage --core  
Power supply voltage --I/O  
Input reference voltage --I/O  
Input high voltage  
Symbol  
VDD  
VDDQ  
VREF  
VIH (DC)  
VIL (DC)  
Min  
1.7  
1.4  
0.68  
REF + 0.1  
Typ  
1.8  
1.5  
0.75  
Max  
1.9  
VDD  
0.95  
DDQ + 0.3  
Unit  
Notes  
V
V
V
V
V
1
V
V
2, 3  
2, 3  
Input low voltage  
0.3  
VREF 0.1  
Notes: 1. Peak to peak AC component superimposed on VREF may not exceed 5% of VREF  
.
2. Overshoot: VIH (AC) VDDQ + 0.5 V for t tKHKH/2  
Undershoot: VIL (AC) ≥ −0.5 V for t tKHKH/2  
Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
During normal operation, VDDQ must not exceed VDD  
.
Control input signals may not have pulse widths less than tKHKL (min) or operate at cycle rates less than tKHKH  
(min).  
During normal operation, VIH(DC) must not exceed VDDQ and VIL(DC) must not be lower than VSS  
.
3. These are DC test criteria. The AC VIH / VIL levels are defined separately to measure timing parameters.  
DC Characteristics  
(Ta = 0 to +70°C, VDD = 1.8V 0.1V)  
60  
30  
Max  
700  
750  
800  
33  
Max  
650  
700  
750  
40  
Max  
600  
650  
700  
50  
Max  
550  
600  
650  
Parameter  
Symbol  
IDD  
Max  
500  
550  
600  
Unit  
mA  
mA  
mA  
Notes  
Operating  
(×9)  
(×18)  
(×36)  
1, 2, 3  
1, 2, 3  
1, 2, 3  
supply  
IDD  
IDD  
current  
(READ /  
WRITE)  
Standby  
supply  
current  
(NOP)  
(×9 /  
×18 /  
×36)  
ISB1  
350  
330  
300  
280  
260  
mA  
2, 4, 5  
Parameter  
Symbol  
Min  
Max  
Unit  
µA  
µA  
V
V
V
Test conditions  
Notes  
10  
11  
8, 9  
8, 9  
8, 9  
8, 9  
Input leakage current  
Output leakage current  
Output high voltage  
ILI  
ILO  
VOH (Low)  
VOH  
VOL (Low)  
VOL  
2  
5  
2
5
VDDQ  
V
DDQ 0.2  
VDDQ/2 0.08  
VSS  
|IOH| 0.1 mA  
VDDQ/2 +0.08  
0.2  
VDDQ/2 +0.08  
Note 6  
Output low voltage  
I
OL 0.1 mA  
VDDQ/2 0.08  
V
Note 7  
Notes: 1. All inputs (except ZQ, VREF) are held at either VIH or VIL.  
2. IOUT = 0 mA. VDD = VDD max, tKHKH = tKHKH min.  
3. Operating supply currents are measured at 100% bus utilization.  
4. All address / data inputs are static at either VIN > VIH or VIN < VIL.  
5. NOP currents are valid when entering NOP after all pending READ and WRITE cycles are completed.  
6. Outputs are impedance-controlled. |IOH| = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
7. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
8. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
9. HSTL outputs meet JEDEC HSTL Class I standards.  
10. 0 VIN VDDQ for all input balls (except VREF, ZQ, TCK, TMS, TDI ball).  
11. 0 VOUT VDDQ (except TDO ball), output disabled.  
Rev.0.02 Feb. 22, 2007 page 11 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Thermal Resistance  
Parameter  
Junction to Ambient  
Junction to Case  
Symbol  
θJA  
Typ  
24.5  
5.6  
Unit  
°C/W  
°C/W  
Notes  
θJC  
Note: These parameters are calculated under the condition of wind velocity = 1 m/s.  
Capacitance  
(Ta = +25°C, f=1.0MHz, VDD = 1.8V, VDDQ = 1.5V)  
Parameter  
Input capacitance  
Clock input capacitance  
Symbol  
CIN  
CCLK  
CI/O  
Min  
Typ  
Max  
Unit  
Test conditions  
Notes  
4
5
6
5
6
7
pF  
pF  
pF  
VIN = 0 V  
VCLK = 0 V  
VI/O = 0 V  
1, 2  
1, 2  
1, 2  
Input/output capacitance (D, Q, ZQ)  
Notes: 1. These parameters are sampled and not 100% tested.  
2. Except JTAG (TCK, TMS, TDI, TDO) pins.  
AC Test Conditions  
(Ta = 0 to +70°C, VDD = 1.8V ±0.1V)  
Input waveform (Rise/fall time 0.3 ns)  
1.25 V  
0.75 V  
Test points  
0.75 V  
0.25 V  
Output waveform  
VDDQ /2  
Test points  
VDDQ /2  
Output load condition  
0.75 V  
VDDQ /2  
VREF  
50 Ω  
Z0 = 50 Ω  
Q
SRAM  
250 Ω  
ZQ  
Rev.0.02 Feb. 22, 2007 page 12 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
AC Operating Conditions  
Parameter  
Input high voltage  
Input low voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Min  
VREF + 0.2  
Typ  
Max  
REF 0.2  
Unit  
V
V
Notes  
1, 2, 3, 4  
1, 2, 3, 4  
V
Notes: 1. All voltages referenced to VSS (GND).  
2. These conditions are for AC functions only, not for AC parameter test.  
3. Overshoot: VIH (AC) VDDQ + 0.5 V for t tKHKH/2  
Undershoot: VIL (AC) 0.5 V for t tKHKH/2  
Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
During normal operation, VDDQ must not exceed VDD. Control input signals may not have pulse widths less  
than tKHKL (min) or operate at cycle rates less than tKHKH (min).  
4. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through the target AC level, VIL (AC) or VIH (AC)  
.
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to maintain at least the target DC level, VIL (DC) or VIH (DC)  
.
Rev.0.02 Feb. 22, 2007 page 13 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
AC Characteristics  
(Ta = 0 to +70°C, VDD = 1.8V 0.1V)  
-30  
-33  
-40  
-50  
-60  
Parameter Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Average  
clock cycle  
time (K, /K,  
C, /C)  
tKHKH  
3.00  
3.47  
3.30  
4.20  
4.00  
5.25  
5.00  
6.30  
6.00  
7.88  
ns  
Clock  
phase jitter  
(K, /K, C,  
/C)  
tKC var  
0.20  
0.20  
0.20  
0.20  
0.20  
ns  
3
Clock high  
time (K, /K,  
C, /C)  
Clock low  
time (K, /K,  
C, /C)  
Clock to  
/clock (K to  
/K, C to /C)  
tKHKL  
tKLKH  
tKH/KH  
t/KHKH  
1.20  
1.20  
1.35  
1.35  
1.32  
1.32  
1.49  
1.49  
1.60  
1.60  
1.80  
1.80  
2.00  
2.00  
2.20  
2.20  
2.40  
2.40  
2.70  
2.70  
ns  
ns  
ns  
ns  
/Clock to  
clock (/K to  
K, /C to C)  
Clock to  
data clock  
(K to C, /K  
to /C)  
tKHCH  
0
1.30  
0
1.45  
0
1.80  
0
2.30  
0
2.80  
ns  
DLL lock  
tKC lock  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
Cycle  
ns  
2
7
time (K, C)  
K static to  
DLL reset  
tKC reset  
C, /C high  
to output  
valid  
C, /C high  
to output  
hold  
C, /C high  
to echo  
clock valid  
C, /C high  
to echo  
clock hold  
CQ, /CQ  
high to  
output valid  
CQ, /CQ  
high to  
output hold  
C, /C high  
to output  
high-Z  
C, /C high  
to output  
low-Z  
tCHQV  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.50  
0.50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHQX  
tCHCQV  
tCHCQX  
tCQHQV  
tCQHQX  
tCHQZ  
0.45  
0.45  
0.45  
0.45  
0.50  
0.45  
0.45  
0.45  
0.45  
0.50  
0.25  
0.27  
0.30  
0.35  
0.40  
4, 7  
4, 7  
5
0.25  
0.27  
0.30  
0.35  
0.40  
0.45  
0.45  
0.45  
0.45  
0.50  
tCHQX1  
0.45  
0.45  
0.45  
0.45  
0.50  
5
Rev.0.02 Feb. 22, 2007 page 14 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
-30  
-33  
-40  
-50  
-60  
Parameter Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Address  
valid to K  
rising edge  
tAVKH  
0.40  
0.40  
0.50  
0.60  
0.70  
ns  
1
Control  
inputs valid  
to K rising  
edge  
Data-in  
valid to K,  
/K rising  
edge  
K rising  
edge to  
address  
hold  
tIVKH  
0.40  
0.28  
0.40  
0.40  
0.28  
0.40  
0.30  
0.40  
0.40  
0.30  
0.50  
0.35  
0.50  
0.50  
0.35  
0.60  
0.40  
0.60  
0.60  
0.40  
0.70  
0.50  
0.70  
0.70  
0.50  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
tDVKH  
tKHAX  
tKHIX  
K rising  
edge to  
control  
inputs hold  
K, /K rising  
edge to  
data-in  
hold  
tKHDX  
Notes: 1. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold  
times for all latching clock edges.  
2. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD  
and input clock are stable. It is recommended that the device is kept inactive during these cycles.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a ±0.1 ns variation from echo  
clock to data. The datasheet parameters reflect tester guardbands and test setup variations.  
5. Transitions are measured ±100 mV from steady-state voltage.  
6. At any given voltage and temperature tCHQZ is less than tCHQX1 and tCHQZ less than tCHQV  
7. These parameters are sampled.  
.
Remarks:  
1. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.  
2. Control input signals may not be operated with pulse widths less than tKHKL (min).  
3. If C, /C are tied high, K, /K become the references for C, /C timing parameters.  
4. VDDQ is +1.5 V DC.  
5. Control signals are /LD, R-/W, /BW, /BW0, /BW1, /BW2 and /BW3.  
BWn signals must operate at the same timing as Data in.  
Rev.0.02 Feb. 22, 2007 page 15 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Timing Waveforms  
Read and Write Timing  
Rev.0.02 Feb. 22, 2007 page 16 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Notes: 1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0,  
etc.  
2. Outputs are disable (high-Z) one clock cycle after a NOP.  
3. In this example, if address A4 = A3, then data Q41 = D31, Q42 = D32, etc. Write data is forwarded  
immediately as read results.  
4. To control read and write operations, /BW signals must operate at the same timing as Data in.  
5. The second NOP cycle is not necessary for correct device operation; however, at high clock frequencies it  
may be required to prevent bus contention.  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS are designed so an  
undriven input will produce a response identical to the application of a logic 1,and may be left unconnected. But they  
may also be tied to VDD through a 1kresistor.TDO should be left unconnected.  
Test Access Port (TAP) Pins  
Symbol I/O  
Pin assignments  
Description  
Notes  
TCK  
2R  
Test clock input. All inputs are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test mode select. This is the command input for the TAP controller state  
machine.  
Test data input. This is the input side of the serial registers placed between  
TDI and TDO. The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the instruction that is  
currently loaded in the TAP instruction.  
TDO  
1R  
Test data output. Output changes in response to the falling edge of TCK.  
This is the output side of the serial registers placed between TDI and TDO.  
Notes: The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for  
five rising edges of TCK. The TAP controller state is also reset on SRAM POWER-UP.  
TAP DC Operating Characteristics  
(Ta = 0 to +70°C, VDD = 1.8V 0.1V)  
Parameter  
Input high voltage  
Input low voltage  
Input leakage current  
Output leakage current  
Symbol  
VIH  
Min  
+1.3  
0.3  
5.0  
5.0  
Typ  
Max  
VDD + 0.3  
+0.5  
Unit  
Notes  
V
V
VIL  
ILI  
ILO  
+5.0  
+5.0  
µA  
µA  
0 V VIN VDD  
0 V VIN VDD,  
output disabled  
IOLC = 100 µA  
IOLT = 2 mA  
|IOHC| = 100 µA  
|IOHT| = 2 mA  
Output low voltage  
Output high voltage  
VOL1  
VOL2  
VOH1  
VOH2  
1.6  
1.4  
0.2  
0.4  
V
V
V
V
Notes: 1. All voltages referenced to VSS (GND).  
2. Power-up: VIH VDDQ + 0.3 V and VDD +1.7 V and VDDQ +1.4 V for t 200 ms.  
3. In “EXTEST” mode and “SAMPLE” mode, VDDQ is nominally 1.5 V.  
4. ZQ: VIH = VDDQ  
.
Rev.0.02 Feb. 22, 2007 page 17 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
TAP AC Test Conditions  
Parameter  
Temperature  
Input timing measurement reference levels  
Input pulse levels  
Symbol  
Ta  
VREF  
VIL, VIH  
tr, tf  
Conditions  
0 Ta +70  
0.9  
0 to 1.8  
1.0  
0.9  
0.9  
See figures  
Unit  
°C  
V
V
ns  
V
Notes  
Input rise/fall time  
Output timing measurement reference levels  
Test load termination supply voltage (VTT)  
Output load  
V
Input waveform  
1.8 V  
0.9 V  
Test points  
0.9 V  
0 V  
Output waveform  
0.9 V  
Test points  
0.9 V  
Output load condition  
V
TT = 0.9 V  
DUT  
50 Ω  
Z0 = 50 Ω  
TDO  
20 pF  
External Load at Test  
Rev.0.02 Feb. 22, 2007 page 18 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
TAP AC Operating Characteristics  
(Ta = 0 to +70°C, VDD = 1.8V ±0.1V)  
Parameter  
Test clock (TCK) cycle time  
TCK high pulse width  
TCK low pulse width  
Test mode select (TMS) setup  
TMS hold  
Capture setup  
Capture hold  
TDI valid to TCK high  
TCK high to TDI invalid  
TCK low to TDO unknown  
TCK low to TDO valid  
Symbol  
tTHTH  
tTHTL  
tTLTH  
tMVTH  
tTHMX  
tCS  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Typ  
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1
1
tCH  
tDVTH  
tTHDX  
tTLQX  
tTLQV  
Notes: 1. tCS + tCH defines the minimum pause in RAM I/O pad transitions to assure pad data capture.  
TAP Controller Timing Diagram  
tTHTH  
tTHTL tTLTH  
TCK  
TMS  
TDI  
tMVTH  
tTHMX  
tTHDX  
tDVTH  
tTLQV  
TDO  
tTLQX  
tCH  
tCS  
PI  
(SRAM)  
Rev.0.02 Feb. 22, 2007 page 19 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Test Access Port Registers  
Register name  
Instruction register  
Bypass register  
Length  
3 bits  
1 bits  
Symbol  
IR [2:0]  
BP  
Notes  
ID register  
Boundary scan register  
32 bits  
109 bits  
ID [31:0]  
BS [109:1]  
TAP Controller Instruction Set  
IR2 IR1 IR0  
Instruction  
Description  
The EXTEST instruction allows circuitry external to the component  
Notes  
0
0
0
EXTEST  
1, 2, 3  
package to be tested. Boundary scan register cells at output balls are  
used to apply test vectors, while those at input balls capture test results.  
Typically, the first test vector to be applied using the EXTEST instruction  
will be shifted into the boundary scan register using the PRELOAD  
instruction. Thus, during the Update-IR state of EXTEST, the output  
driver is turned on and the PRELOAD data is driven onto the output balls.  
0
0
0
1
1
0
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID  
register when the controller is in capture-DR mode and places the ID  
register between the TDI and TDO balls in shift-DR mode. The IDCODE  
instruction is the default instruction loaded in at power up and any time  
the controller is placed in the Test-Logic-Reset state.  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM  
outputs are forced to an inactive drive state (high-Z), moving the TAP  
controller into the capture-DR state loads the data in the RAMs input into  
the boundary scan register, and the boundary scan register is connected  
between TDI and TDO when the TAP controller is moved to the shift-DR  
state.  
SAMPLE-Z  
3, 4  
0
1
1
0
1
0
RESERVED  
SAMPLE  
The RESERVED instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
When the SAMPLE instruction is loaded in the instruction register,  
3
(/PRELOAD) moving the TAP controller into the capture-DR state loads the data in the  
RAMs input and I/O buffers into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for  
the TAP to attempt to capture the I/O ring contents while the input buffers  
are in transition (i.e., in a metastable state). Although allowing the TAP to  
SAMPLE metastable input will not harm the device, repeatable results  
cannot be expected. Moving the controller to shift-DR state then places  
the boundary scan register between the TDI and TDO balls.  
1
1
1
0
1
1
1
0
1
RESERVED  
RESERVED  
BYPASS  
The BYPASS instruction is loaded in the instruction register when the  
bypass register is placed between TDI and TDO. This occurs when the  
TAP controller is moved to the shift-DR state. This allows the board level  
scan path to be shortened to facilitate testing of other devices in the scan  
path.  
Notes: 1. Data in output register is not guaranteed if EXTEST instruction is loaded.  
2. After performing EXTEST, power-up conditions are required in order to return part to normal operation.  
3. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold  
time (tCS plus tCH). The RAMs clock inputs need not be paused for any other TAP operation except capturing  
the I/O ring contents into the boundary scan register.  
4. Clock recovery initialization cycles are required to return from the SAMPLE-Z instruction.  
Rev.0.02 Feb. 22, 2007 page 20 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Boundary Scan Order Boundary Scan Order  
Signal names  
Signal names  
x18  
Bit #  
1
Ball ID  
6R  
x9  
x18  
/C  
C
SA  
SA  
SA  
SA  
SA  
SA  
x36  
/C  
C
SA  
SA  
SA  
SA  
SA  
SA  
Bit #  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
Ball ID  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
x9  
SA  
SA  
DNU  
/LD  
DNU  
/BW  
K
x36  
SA  
/C  
SA  
SA1  
SA0  
/LD  
DNU  
/BW0  
K
2
6P  
C
SA1  
3
6N  
SA  
SA0  
4
7P  
SA  
/LD  
5
6
7
7N  
7R  
8R  
SA  
SA  
SA  
/BW1  
/BW0  
K
8
8P  
SA  
/K  
/K  
/K  
9
9R  
SA  
SA  
SA  
DNU  
DNU  
R-/W  
SA  
SA  
SA  
DNU  
/BW1  
R-/W  
SA  
SA  
SA  
/BW3  
/BW2  
R-/W  
SA  
SA  
SA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
11P  
10P  
10N  
9P  
10M  
11N  
9M  
DQ0  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ1  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ2  
DNU  
ZQ  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ3  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ4  
DNU  
DNU  
DNU  
CQ  
DQ0  
DNU  
DNU  
DNU  
DQ1  
DNU  
DNU  
DNU  
DQ2  
DNU  
DNU  
DNU  
DQ3  
DNU  
DNU  
DNU  
DQ4  
DNU  
ZQ  
DNU  
DNU  
DQ5  
DNU  
DNU  
DNU  
DQ6  
DNU  
DNU  
DNU  
DQ7  
DNU  
DNU  
DNU  
DQ8  
DNU  
DNU  
DNU  
CQ  
DQ0  
DQ9  
DNU  
DNU  
DQ11  
DQ10  
DNU  
DNU  
DQ2  
DQ1  
DNU  
DNU  
DQ3  
DQ12  
DNU  
DNU  
DQ13  
DQ4  
ZQ  
DNU  
DNU  
DQ5  
DQ14  
DNU  
DNU  
DQ6  
DQ15  
DNU  
DNU  
DQ17  
DQ16  
DNU  
DNU  
DQ8  
DQ7  
DNU  
DNU  
CQ  
VSS  
/CQ  
VSS  
/CQ  
VSS  
/CQ  
9N  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ5  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ6  
DNU  
/DOFF  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ7  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ9  
DNU  
DNU  
DNU  
DQ10  
DNU  
DNU  
DNU  
DQ11  
DNU  
DNU  
DNU  
DQ12  
DNU  
DNU  
DNU  
DQ13  
DNU  
/DOFF  
DNU  
DNU  
DQ14  
DNU  
DNU  
DNU  
DQ15  
DNU  
DNU  
DNU  
DQ16  
DNU  
DNU  
DNU  
DQ27  
DQ18  
DNU  
DNU  
DQ19  
DQ28  
DNU  
DNU  
DQ20  
DQ29  
DNU  
DNU  
DQ30  
DQ21  
DNU  
DNU  
DQ22  
DQ31  
/DOFF  
DNU  
DNU  
DQ23  
DQ32  
DNU  
DNU  
DQ33  
DQ24  
DNU  
DNU  
DQ25  
DQ34  
DNU  
DNU  
11L  
11M  
9L  
10L  
11K  
10K  
9J  
9K  
10J  
11J  
11H  
10G  
9G  
11F  
11G  
9F  
10F  
11E  
10E  
10D  
9E  
10C  
11D  
9C  
2J  
3K  
3J  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
2M  
9D  
11B  
11C  
9B  
10B  
11A  
10A  
9A  
SA  
SA  
SA  
SA  
DNU  
SA  
Rev.0.02 Feb. 22, 2007 page 21 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Signal names  
Signal names  
Bit #  
Ball ID  
x9  
x18  
DQ17  
DNU  
DNU  
DNU  
SA  
x36  
DQ26  
DQ35  
DNU  
DNU  
SA  
Bit #  
105  
106  
107  
108  
109  
Ball ID  
4P  
5P  
5N  
5R  
x9  
SA  
SA  
SA  
SA  
x18  
SA  
SA  
SA  
SA  
x36  
SA  
SA  
SA  
SA  
99  
3P  
2N  
2P  
1P  
3R  
4R  
DQ8  
DNU  
DNU  
DNU  
SA  
100  
101  
102  
103  
104  
INTERNAL INTERNAL INTERNAL  
SA  
SA  
SA  
Notes: In boundary scan mode,  
1. Clock balls (K, /K, C, /C) are referenced to each other and must be at opposite logic levels for reliable  
operation.  
2. CQ and /CQ data are synchronized to the respective C and /C (except EXTEST, SAMPLE-Z).  
3. If C and /C tied high, CQ is generated with respect to K and /CQ is generated with respect to /K (except  
EXTEST, SAMPLE-Z).  
4. ZQ must be driven to VDDQ supply to ensure consistent results.  
Rev.0.02 Feb. 22, 2007 page 22 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
ID Register  
Part  
Revision number  
(31:29)  
Type number  
(28:12)  
Vendor JEDEC code  
(11:1)  
Start bit  
(0)  
0 0MMM 0WW0 10Q0 B0S0  
0 0010 0110 1000 1000  
0 0010 0100 1000 1000  
0 0010 0000 1000 1000  
1
1
R1Q5A3636  
R1Q5A3618  
R1Q5A3609  
000  
000  
000  
0100 0100 011  
0100 0100 011  
0100 0100 011  
1
Notes: 1. Type number  
MMM :Density  
011:72Mb,  
11: x 36,  
010:36Mb,  
10: x 18,  
001:18Mb  
00: x 9,  
WW :Organization  
01: x 8  
Q
B
S
:QDR/DDR  
:Burst lengths  
:I/O  
1: QDR,  
1: 4-word burst,  
1: Separate I/O,  
0: DDR  
0: 2-word burst  
0: Common I/O  
TAP Controller State Diagram Package Dimensions  
1
Test Logic Reset  
0
1
1
1
0
Run Test/Idle  
Select DR Scan  
Select IR Scan  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
Shift IR  
1
0
Shift DR  
1
Exit1 DR  
0
1
1
Exit1 IR  
0
0
0
Pause DR  
1
Pause IR  
1
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Notes:  
The value adjacent to each state transition in this figure represents the signal present at TMS at  
the time of a rising edge at TCK.  
No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held  
high for at least five rising edges of TCK.  
Rev.0.02 Feb. 22, 2007 page 23 of 24  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Package Dimensions  
R1Q5A3636/R1Q5A3618/R1Q5A3609 (PLBG0165FB-A)  
JEITA Package Code  
RENESAS Code  
PLBG0165FB-A  
Previous Code  
BP-165A  
MASS[Typ.]  
0.7g  
P-LBGA165-15x17-1.00  
D
A
B
INDEX  
y1  
S
S
y
S
e
R
P
N
M
L
Dimension in Millimeters  
Reference  
Symbol  
Min  
Nom  
15.00  
17.00  
Max  
15.10  
17.10  
K
J
D
E
14.90  
16.90  
H
G
F
v
w
E
D
C
B
A
A
1.34  
0.27  
1.40  
0.32  
1.00  
0.50  
1.46  
0.37  
A1  
e
b
0.45  
0.55  
0.20  
0.15  
0.25  
x
1
2
3
4
5
6
7
8
9
10 11  
y
φ b  
φ
φ
×
M
S
A
S
B
y1  
SD  
SE  
ZD  
ZE  
0.07 M  
Rev.0.02 Feb. 22, 2007 page 24 of 24  
Revision History  
R1Q5A3636/R1Q5A3618/R1Q5A3609  
Data Sheet  
Rev.  
Date  
Contents of Modification  
Description  
Page  
0.01  
0.02  
Sep. 25, 2006  
Feb. 22, 2007  
Initial issue  
24  
Package Dimensions  
PLBG0165FC-A to PLBG0165FB-A  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Notes:  
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes  
warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property  
rights or any other rights of Renesas or any third party with respect to the information in this document.  
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,  
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.  
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass  
destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws  
and regulations, and procedures required by such laws and regulations.  
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this  
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document,  
please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be  
disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )  
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a  
result of errors or omissions in the information included in this document.  
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability  
of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular  
application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.  
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications  
or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality  
and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or  
undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall  
have no liability for damages arising out of the uses set forth above.  
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:  
(1) artificial life support devices or systems  
(2) surgical implantations  
(3) healthcare intervention (e.g., excision, administration of medication, etc.)  
(4) any other purposes that pose a direct threat to human life  
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing  
applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all  
damages arising out of such applications.  
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range,  
movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages  
arising out of the use of Renesas products beyond such specified ranges.  
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain  
rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage  
caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and  
malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software  
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.  
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as  
swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products.  
Renesas shall have no liability for damages arising out of such detachment.  
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.  
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have  
any other inquiries.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .7.0  

相关型号:

R1Q5A3609ABG-60R

IC,SYNC SRAM,DDR,4MX9,CMOS,BGA,165PIN,PLASTIC
RENESAS

R1Q5A3609ABG40RB0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG40RS0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG40RT0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG50RB0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG50RS0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG50RT0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG60RB0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG60RS0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609ABG60RT0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609RBG-40RB0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS

R1Q5A3609RBG-40RS0

36-Mbit QDR™II SRAM 2-word Burst
RENESAS