R5F10RGAG [RENESAS]

Ultra-Low Power Technology;
R5F10RGAG
型号: R5F10RGAG
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Ultra-Low Power Technology

文件: 总136页 (文件大小:1310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
R01DS0157EJ0210  
Rev.2.10  
RL78/L12  
RENESAS MCU  
Sep 30, 2016  
Integrated LCD controller/driver, True Low Power Platform (as low as 62.5 µA/MHz, and 0.64 µA for RTC + LVD),  
1.6 V to 5.5 V operation, 8 to 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Applications  
1. OUTLINE  
1.1 Features  
Ultra-Low Power Technology  
LCD Controller/Driver  
1.6 V to 5.5 V operation from a single supply  
Stop (RAM retained): 0.23 µA, (LVD enabled): 0.31 µA  
Halt (RTC + LVD): 0.64 µA  
Supports snooze  
Operating: 62.5 µA/MHz  
LCD operating current (Capacitor split method): 0.12 µA  
LCD operating current (Internal voltage boost method):  
0.63 µA (VDD = 3.0 V)  
Up to 35 seg x 8 com or 39 seg x 4 com  
Supports capacitor split method, internal voltage boost  
method and resistance division method  
Supports waveform types A and B  
Supports LCD contrast adjustment (16 steps)  
Supports LCD blinking  
Direct Memory Access (DMA) Controller  
Up to 2 fully programmable channels  
Transfer unit: 8- or 16-bit  
16-bit RL78 CPU Core  
Delivers 31 DMIPS at maximum operating frequency of  
24 MHz  
Instruction Execution: 86% of instructions can be  
executed in 1 to 2 clock cycles  
CISC Architecture (Harvard) with 3-stage pipeline  
Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1  
clock cycle  
Multiple Communication Interfaces  
Up to 1 × I2C multi-master  
Up to 2 × CSI/SPI (7-, 8-bit)  
Up to 1 × UART (7-, 8-, 9-bit)  
Up to 1 × LIN  
Extended-Function Timers  
MAC: 16 x 16 to 32-bit result in 2 clock cycles  
16-bit barrel shifter for shift & rotate in 1 clock cycle  
1-wire on-chip debug function  
Multi-function 16-bit timers: Up to 8 channels  
Real-time clock (RTC): 1 channel (full calendar and  
alarm function with watch correction function)  
Interval Timer: 12-bit, 1 channel  
15 kHz watchdog timer: 1 channel (window function)  
Code Flash Memory  
Density: 8 KB to 32 KB  
Rich Analog  
ADC: Up to 10 channels, 10-bit resolution, 2.1 µs  
conversion time  
Supports 1.6 V  
Internal reference voltage (1.45 V)  
On-chip temperature sensor  
Block size: 1 KB  
On-chip single voltage flash memory with protection  
from block erase/writing  
Self-programming with flash shield window function  
Data Flash Memory  
Data flash with background operation  
Data flash size: 2 KB size  
Erase cycles: 1 Million (typ.)  
Erase/programming voltage: 1.8 V to 5.5 V  
Safety Features (IEC or UL 60730 compliance)  
Flash memory CRC calculation  
RAM parity error check  
RAM write protection  
SFR write protection  
RAM  
Illegal memory access detection  
Clock frequency detection  
ADC self-test  
1 KB and 1.5 KB size options  
Supports operands or instructions  
Back-up retention in all modes  
General Purpose I/O  
5V tolerant, high-current (up to 20 mA per pin)  
Open-Drain, Internal Pull-up support  
High-speed On-chip Oscillator  
24 MHz with +/1% accuracy over voltage (1.8 V to 5.5  
V) and temperature (20°C to 85°C)  
Pre-configured settings: 24 MHz, 16 MHz, 12 MHz, 8  
Operating Ambient Temperature  
TA: 40 °C to +85 °C (A: Consumer applications)  
TA: 40 °C to +105 °C (G: Industrial applications)  
MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz & 1 MHz  
Reset and Supply Management  
Package Type and Pin Count  
From 7mm x 7mm to 12mm x 12mm  
QFP: 32, 44, 48, 52, 64  
Power-on reset (POR) monitor/generator  
Low voltage detection (LVD) with 14 setting options  
(Interrupt and/or reset function)  
Page 1 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
ROM, RAM capacities  
Flash ROM Data flash  
RAM  
RL78/L12  
48 pins  
32 pins  
44 pins  
52 pins  
64 pins  
R5F10RLC  
R5F10RLA  
Note  
1.5 KB  
32 KB  
16 KB  
8KB  
2 KB  
2 KB  
2 KB  
R5F10RBC  
R5F10RBA  
R5F10RB8  
R5F10RFC  
R5F10RFA  
R5F10RF8  
R5F10RGC  
R5F10RGA  
R5F10RG8  
R5F10RJC  
R5F10RJA  
R5F10RJ8  
Note  
1 KB  
1 KB  
Note  
Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash  
function is used.  
Remark The functions mounted depend on the product. See 1.6 Outline of Functions.  
Page 2 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.2 List of Part Numbers  
Figure 1-1 Part Number, Memory Size, and Package of RL78/L12  
Part No. R 5 F 1 0 R L C A x x x F B  
Package type:  
FP : LQFP, 0.80 mm pitch  
FA : LQFP, 0.65 mm pitch  
FB : LQFP, 0.50 mm pitch  
NB : WQFN, 0.40 mm pitch  
ROM number (Omitted with blank products)  
Classification:  
A : Consumer applications, T  
A
= -40˚C to 85˚C  
G : Industrial applications, T  
A
= -40˚C to 105˚C  
ROM capacity:  
8 : 8 KB  
A : 16 KB  
C : 32 KB  
Pin count:  
B : 32-pin  
F : 44-pin  
G : 48-pin  
J : 52-pin  
L : 64-pin  
RL78/L12 group  
Memory type:  
F : Flash memory  
Renesas MCU  
Renesas semiconductor product  
Page 3 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
Pin count  
Package  
Fields of  
Part Number  
Application Note  
32-pin plastic LQFP (7 × 7)  
44-pin plastic LQFP (10 × 10)  
R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP  
32 pins  
44 pins  
48 pins  
52 pins  
64 pins  
A
R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP  
R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP  
R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP  
R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB  
R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB  
R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA  
R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA  
R5F10RLAANB, R5F10RLCANB  
G
A
G
48-pin plastic LQFP (fine pitch)  
(7 × 7)  
A
G
52-pin plastic LQFP (10 × 10)  
A
G
64-pin plastic WQFN (8 × 8)  
A
R5F10RLAGNB, R5F10RLCGNB  
G
64-pin plastic LQFP (fine pitch)  
(10 × 10)  
R5F10RLAAFB, R5F10RLCAFB  
A
R5F10RLAGFB, R5F10RLCGFB  
G
64-pin plastic LQFP (12 × 12)  
R5F10RLAAFA, R5F10RLCAFA  
A
R5F10RLAGFA, R5F10RLCGFA  
G
Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/L12.  
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering  
part numbers, refer to the target product page of the Renesas Electronics website.  
Page 4 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.3 Pin Configuration (Top View)  
1.3.1 32-pin products  
32-pin plastic LQFP (7 × 7)  
<R>  
2423222120191817  
25  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P14/ANI19/SEG32  
P30/TI01/TO01/SEG19  
16  
15  
14  
13  
12  
11  
10  
9
VL4  
VL2  
VL1  
26  
27  
28  
29  
30  
31  
32  
P13/ANI18/TI00/SEG31  
RL78/L12  
(Top View)  
P12/SO00/TXD0/TOOLTxD/KR0/SEG30/(TI02)/(TO02)  
P11/SI00/RXD0/TOOLRxD/KR1/SEG29/(INTP2)  
P10/SCK00/TI07/TO07/KR2/SEG28/(INTP1)  
P140/TO00/PCLBUZ0/KR3/SEG27  
P126/CAPL  
P127/CAPH  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1 2 3 4 5 6 7 8  
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR).  
Page 5 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.3.2 44-pin products  
44-pin plastic LQFP (10 × 10)  
<R>  
33 32 31 30 29 28 27 26 25 24 23  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P143/ANI21/SEG34  
P142/ANI20/SEG33  
P14/ANI19/SEG32  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P32/TI03/TO03/INTP4/SEG17  
P31/INTP3/RTC1HZ/SEG18  
P30/TI01/TO01/SEG19  
P125/VL3  
VL4  
VL2  
VL1  
RL78/L12  
(Top View)  
P13/ANI18/SEG31  
P12/SO00/TxD0/TOOLTxD/KR0/SEG30/(TI02)/(TO02)  
P11/SI00/RxD0/TOOLRxD/KR1/SEG29/(INTP2)  
P10/SCK00/TI07/TO07/KR2/SEG28/(INTP1)  
P140/TO00/PCLBUZ0/KR3/SEG27  
P141/TI00/PCLBUZ1/SEG26  
P126/CAPL  
P127/CAPH  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1 2 3 4  
5 6 7 8 9 10 11  
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR).  
Page 6 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.3.3 48-pin products  
48-pin plastic LQFP (fine pitch) (7 × 7)  
<R>  
36 35 34 33 32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P144/ANI22/SEG35  
P143/ANI21/SEG34  
P142/ANI20/SEG33  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P70/KR0/SEG16  
P32/TI03/TO03/INTP4/KR1/SEG17  
P31/INTP3/RTC1HZ/KR2/SEG18  
P30/TI01/TO01/KR3/SEG19  
P125/VL3  
P14/ANI19/SEG32  
P13/ANI18/SEG31  
VL4  
VL2  
VL1  
RL78/L12  
(Top View)  
P12/SO00/TxD0/TOOLTxD/SEG30/(TI02)/(TO02)  
P11/SI00/RxD0/TOOLRxD/SEG29/(INTP2)  
P10/SCK00/TI07/TO07/SEG28/(INTP1)  
P140/TO00/PCLBUZ0/SEG27  
P141/TI00/PCLBUZ1/SEG26  
P126/CAPL  
P127/CAPH  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1 2 3 4  
5 6 7 8 9 10 11 12  
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR).  
Page 7 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.3.4 52-pin products  
52-pin plastic LQFP (10 × 10)  
<R>  
39 38 37 36 35 34 33 32 31 30 29 28 27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
P71/KR1/SEG15  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P70/KR0/SEG16  
P32/TI03/TO03/INTP4/SEG17  
P31/INTP3/RTC1HZ/KR2/SEG18  
P30/TI01/TO01/KR3/SEG19  
P125/VL3  
P145/ANI23/SEG36  
P144/ANI22/SEG35  
P143/ANI21/SEG34  
P142/ANI20/SEG33  
RL78/L12  
(Top View)  
V
V
V
L4  
L2  
L1  
P14/ANI19/SEG32  
P13/ANI18/SEG31  
P12/SO00/TxD0/TOOLTxD/SEG30/(TI02)/(TO02)  
P11/SI00/RxD0/TOOLRxD/SEG29/(INTP2)  
P10/SCK00/TI07/TO07/SEG28/(INTP1)  
P140/TO00/PCLBUZ0/SEG27  
P141/TI00/PCLBUZ1/SEG26  
P126/CAPL  
P127/CAPH  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1
2
3
4
5
6
7
8 9 10 11 12 13  
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR).  
Page 8 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.3.5 64-pin products  
64-pin plastic WQFN (8 × 8)  
<R>  
exposed die pad  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P74/SEG12  
P73/KR3/SEG13  
P130  
P72/KR2/SEG14  
P147/SEG38  
P71/KR1/SEG15  
P146/SEG37  
P70/KR0/SEG16  
P145/ANI23/SEG36  
P32/TI03/TO03/INTP4/SEG17  
P31/INTP3/RTC1HZ/SEG18  
P30/TI01/TO01/SEG19  
P125/VL3  
P144/ANI22/SEG35  
P143/ANI21/SEG34  
RL78/L12  
(Top View)  
P142/ANI20/SEG33  
P14/ANI19/SEG32  
VL4  
VL2  
VL1  
P13/ANI18/SEG31  
P12/SO00/TxD0/TOOLTxD/SEG30  
P11/SI00/RxD0/TOOLRxD/SEG29  
P10/SCK00/SEG28  
P126/CAPL  
P127/CAPH  
P140/TO00/PCLBUZ0/SEG27/(INTP6)  
P141/TI00/PCLBUZ1/SEG26/(INTP7)  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16  
Cautions 1. Make EVSS pin the same potential as VSS pin.  
2. Make VDD pin the same potential as EVDD pin.  
3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. When using the microcontroller for an application where the noise generated inside the microcontroller  
must be reduced, it is recommended to supply separate powers to the VDD and EVDD pins and connect  
the VSS and EVSS pins to separate ground lines.  
3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O  
redirection register (PIOR).  
Page 9 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
64-pin plastic LQFP (fine pitch) (10 × 10)  
64-pin plastic LQFP (12 × 12)  
<R>  
P21/ANI1/AVREFM  
P20/ANI0/AVREFP  
P74/SEG12  
P73/KR3/SEG13  
P130  
P72/KR2/SEG14  
P147/SEG38  
P71/KR1/SEG15  
P146/SEG37  
P70/KR0/SEG16  
P145/ANI23/SEG36  
P32/TI03/TO03/INTP4/SEG17  
P31/INTP3/RTC1HZ/SEG18  
P30/TI01/TO01/SEG19  
P125/VL3  
P144/ANI22/SEG35  
P143/ANI21/SEG34  
RL78/L12  
(Top View)  
P142/ANI20/SEG33  
P14/ANI19/SEG32  
VL4  
VL2  
VL1  
P13/ANI18/SEG31  
P12/SO00/TxD0/TOOLTxD/SEG30  
P11/SI00/RxD0/TOOLRxD/SEG29  
P10/SCK00/SEG28  
P126/CAPL  
P127/CAPH  
P140/TO00/PCLBUZ0/SEG27/(INTP6)  
P141/TI00/PCLBUZ1/SEG26/(INTP7)  
P61/SDAA0/SEG20  
P60/SCLA0/SEG21  
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16  
Cautions 1. Make EVSS pin the same potential as VSS pin.  
2. Make VDD pin the same potential as EVDD pin.  
3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).  
Remarks 1. For pin identification, see 1.4 Pin Identification.  
2. When using the microcontroller for an application where the noise generated inside the microcontroller  
must be reduced, it is recommended to supply separate powers to the VDD and EVDD pins and connect  
the VSS and EVSS pins to separate ground lines.  
3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O  
redirection register (PIOR).  
Page 10 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.4 Pin Identification  
ANI0, ANI1,  
ANI16 to ANI23:  
AVREFM:  
P130, P137:  
Port 13  
Port 14  
Analog Input  
P140 to P147:  
Analog Reference  
Voltage Minus  
Analog Reference  
Voltage Plus  
PCLBUZ0, PCLBUZ1: Programmable Clock  
Output/Buzzer Output  
AVREFP:  
REGC:  
Regulator Capacitance  
Reset  
RESET:  
RTC1HZ:  
CAPH, CAPL:  
COM0 to COM7,  
EVDD:  
Capacitor for LCD  
Real-time Clock Correction Clock  
(1 Hz) Output  
Power Supply for Port  
Ground for Port  
External Clock Input  
(Main System Clock)  
External Clock Input  
(Subsystem Clock)  
Interrupt Request From  
Peripheral  
RxD0:  
Receive Data  
EVSS:  
SCK00, SCK01:  
SCLA0:  
Serial Clock Input/Output  
Serial Clock Input/Output  
Serial Data Input/Output  
LCD Segment Output  
Serial Data Input  
EXCLK:  
SDAA0:  
EXCLKS:  
SEG0 to SEG38:  
SI00, SI01:  
SO00, SO01:  
TI00 to TI07:  
TO00 to TO07:  
TOOL0:  
INTP0 to INTP7:  
Serial Data Output  
Timer Input  
KR0 to KR3:  
P10 to P17:  
P20, P21:  
Key Return  
Timer Output  
Port 1  
Data Input/Output for Tool  
Port 2  
TOOLRxD, TOOLTxD: Data Input/Output for External Device  
P30 to P32:  
P40 to P43:  
P50 to P54:  
P60, P61:  
Port 3  
TxD0:  
Transmit Data  
Port 4  
VDD:  
Power Supply  
Port 5  
VL1 to VL4:  
VSS:  
LCD Power Supply  
Port 6  
Ground  
P70 to P74:  
P120 to P127:  
Port 7  
X1, X2:  
XT1, XT2:  
Crystal Oscillator (Main System Clock)  
Crystal Oscillator (Subsystem Clock)  
Port 12  
Page 11 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.5 Block Diagram  
1.5.1 32-pin products  
TIMER ARRAY  
UNIT0 (8ch)  
TI00/P13  
TO00/P140  
ch0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
8
2
P10 to P17  
P20, P21  
P30  
TI01/TO01/P30  
ch1  
ch2  
ch3  
TI02/TO02/P17  
(TI02/TO02/P12)  
2
2
ANI0/P20, ANI1/P21  
ch4  
ch5  
ch6  
ch7  
P40  
ANI18/P13, ANI19/P14  
A/D CONVERTER  
AVREFP/P20  
AVREFM/P21  
PORT 6  
2
P60, P61  
TI07/TO07/P10  
REAL-TIME  
CLOCK  
2
2
P126, P127  
P121, P122  
PORT 12  
CODE FLASH MEMORY  
DATA FLASH MEMORY  
LOW-SPEED  
ON-CHIP  
OSCILLATOR  
RL78  
CPU  
CORE  
12- BIT INTERVAL  
TIMER  
PORT 13  
PORT 14  
P137  
P140  
WINDOW  
WATCHDOG  
TIMER  
BUZZER OUTPUT  
PCLBUZ0/P140  
CLOCK OUTPUT  
CONTROL  
SEG0, SEG4 to SEG6,  
SEG19 to SEG21, 13  
SEG27 to SEG32  
LCD  
CONTROLLER/  
DRIVER  
RAM  
3
KR0/P12 to KR2/P10  
KR3/P140  
COM0 to COM3  
4
KEY RETURN  
RAM SPACE  
FOR LCD DATA  
VL1, VL2, VL4  
CAPH  
CAPL  
POWER ON RESET/  
VOLTAGE  
POR/LVD  
CONTROL  
SERIAL ARRAY  
UNIT0 (2ch)  
DETECTOR  
V
DD  
V
SS TOOLRxD/P11,  
TOOLTxD/P12  
RxD0/P11  
TxD0/P12  
UART0  
RESET CONTROL  
ON-CHIP DEBUG  
SCK00/P10  
SI00/P11  
CSI00  
SO00/P12  
TOOL0/P40  
DIRECT MEMORY  
ACCESS CONTROL  
SCK01/P15  
SI01/P16  
CSI01  
SYSTEM  
CONTROL  
SO01/P17  
RESET  
X1/P121  
X2/EXCLK/P122  
HIGH-SPEED  
ON-CHIP  
OSCILLATOR  
SDAA0/P61  
SCLA0/P60  
SERIAL  
INTERFACE IICA0  
MULTIPLIER&  
DIVIDER,  
MULITIPLY-  
VOLTAGE  
REGULATOR  
REGC  
CRC  
ACCUMULATOR  
INTP0/P137  
INTP1/P15(INTP1/P10),  
INTP2/P16(INTP2/P11)  
2
INTERRUPT  
CONTROL  
BCD  
ADJUSTMENT  
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR)  
Page 12 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.5.2 44-pin products  
TIMER ARRAY  
UNIT0 (8ch)  
TI00/P141  
ch0  
TO00/P140  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
8
2
3
P10 to P17  
P20, P21  
P30 to P32  
P40  
TI01/TO01/P30  
ch1  
ch2  
ch3  
TI02/TO02/P17  
(TI02/TO02/P12)  
TI03/TO03/P32  
2
3
2
ANI0/P20, ANI1/P21  
ANI17/P120, ANI18/P13,  
ANI19/P14  
ch4  
ch5  
ch6  
ch7  
A/D CONVERTER  
ANI20/P142, ANI21/P143  
AVREFP/P20  
AVREFM/P21  
PORT 6  
2
P60, P61  
TI07/TO07/P10  
RTC1HZ/P31  
4
4
P120, P125 to P127  
P121 to P124  
REAL-TIME  
CLOCK  
PORT 12  
PORT 13  
CODE FLASH MEMORY  
DATA FLASH MEMORY  
RL78  
CPU  
CORE  
LOW-SPEED  
ON-CHIP  
OSCILLATOR  
P137  
12- BIT INTERVAL  
TIMER  
PORT 14  
4
P140 to P143  
WINDOW  
WATCHDOG  
TIMER  
BUZZER OUTPUT  
PCLBUZ0/P140,  
PCLBUZ1/P141  
2
3
SEG0 to SEG6,  
SEG17 to SEG21, 22  
SEG25 to SEG34  
CLOCK OUTPUT  
CONTROL  
LCD  
CONTROLLER/  
DRIVER  
RAM  
KR0/P12 to KR2/P10  
KR3/P140  
COM0 to COM7  
8
KEY RETURN  
V
L1 to VL4  
CAPH  
CAPL  
RAM SPACE  
FOR LCD DATA  
POWER ON RESET/  
VOLTAGE  
POR/LVD  
CONTROL  
SERIAL ARRAY  
UNIT0 (2ch)  
DETECTOR  
V
DD  
V
SS TOOLRxD/P11,  
RxD0/P11  
TxD0/P12  
UART0  
TOOLTxD/P12  
RESET CONTROL  
ON-CHIP DEBUG  
SCK00/P10  
SI00/P11  
CSI00  
SO00/P12  
TOOL0/P40  
DIRECT MEMORY  
ACCESS CONTROL  
SCK01/P15  
SI01/P16  
CSI01  
SO01/P17  
SYSTEM  
CONTROL  
RESET  
X1/P121  
X2/EXCLK/P122  
HIGH-SPEED  
ON-CHIP  
OSCILLATOR  
SDAA0/P61  
SCLA0/P60  
SERIAL  
INTERFACE IICA0  
XT1/P123  
XT2/EXCLKS/P124  
MULTIPLIER&  
DIVIDER,  
MULITIPLY-  
VOLTAGE  
REGULATOR  
REGC  
CRC  
ACCUMULATOR  
INTP0/P137  
INTP1/P15(INTP1/P10),  
INTP2/P16(INTP2/P11)  
2
INTERRUPT  
CONTROL  
INTP3/P31,  
INTP4/P32  
BCD  
ADJUSTMENT  
2
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR)  
Page 13 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.5.3 48-pin products  
TIMER ARRAY  
UNIT0 (8ch)  
TI00/P141  
TO00/P140  
ch0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
8
2
3
2
P10 to P17  
P20, P21  
P30 to P32  
P40, P41  
P50  
TI01/TO01/P30  
ch1  
ch2  
ch3  
TI02/TO02/P17  
(TI02/TO02/P12)  
TI03/TO03/P32  
TI04/TO04/P41  
2
4
3
ANI0/P20, ANI1/P21  
ANI16/P41, ANI17/P120,  
ANI18/P13, ANI19/P14  
ch4  
ch5  
ch6  
ch7  
A/D CONVERTER  
ANI20/P142 to ANI22/P144  
AVREFP/P20  
AVREFM/P21  
2
P60, P61  
P70  
TI07/TO07/P10  
RTC1HZ/P31  
4
4
P120, P125 to P127  
P121 to P124  
REAL-TIME  
CLOCK  
PORT 12  
PORT 13  
CODE FLASH MEMORY  
DATA FLASH MEMORY  
RL78  
CPU  
CORE  
LOW-SPEED  
ON-CHIP  
OSCILLATOR  
P137  
12- BIT INTERVAL  
TIMER  
PORT 14  
5
2
P140 to P144  
WINDOW  
WATCHDOG  
TIMER  
BUZZER OUTPUT  
PCLBUZ0/P140  
(PCLBUZ0/P50),  
PCLBUZ1/P141  
CLOCK OUTPUT  
CONTROL  
SEG0 to SEG7,  
SEG16 to SEG21,  
SEG24 to SEG35  
26  
8
LCD  
RAM  
CONTROLLER/  
DRIVER  
KR0/P70  
KEY RETURN  
COM0 to COM7  
3
KR1/P32 to KR3/P30  
V
L1 to VL4  
CAPH  
CAPL  
RAM SPACE  
FOR LCD DATA  
POWER ON RESET/  
VOLTAGE  
POR/LVD  
CONTROL  
DETECTOR  
SERIAL ARRAY  
UNIT0 (2ch)  
V
DD  
V
SS TOOLRxD/P11,  
RxD0/P11  
TxD0/P12  
TOOLTxD/P12  
UART0  
RESET CONTROL  
ON-CHIP DEBUG  
SCK00/P10  
SI00/P11  
CSI00  
SO00/P12  
TOOL0/P40  
DIRECT MEMORY  
SCK01/P15  
ACCESS CONTROL  
CSI01  
SI01/P16  
SO01/P17  
SYSTEM  
CONTROL  
RESET  
X1/P121  
X2/EXCLK/P122  
HIGH-SPEED  
ON-CHIP  
SDAA0/P61  
SCLA0/P60  
SERIAL  
INTERFACE IICA0  
XT1/P123  
OSCILLATOR  
XT2/EXCLKS/P124  
MULTIPLIER&  
DIVIDER,  
MULITIPLY-  
VOLTAGE  
REGULATOR  
REGC  
CRC  
ACCUMULATOR  
INTP0/P137  
INTP1/P15(INTP1/P10),  
INTP2/P16(INTP2/P11)  
2
INTERRUPT  
CONTROL  
INTP3/P31,  
INTP4/P32  
BCD  
ADJUSTMENT  
2
INTP5/P50  
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR)  
Page 14 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.5.4 52-pin products  
TIMER ARRAY  
UNIT0 (8ch)  
TI00/P141  
ch0  
TO00/P140  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
8
2
3
3
2
2
2
P10 to P17  
P20, P21  
P30 to P32  
P40 to P42  
P50, P51  
P60, P61  
P70, P71  
TI01/TO01/P30  
ch1  
ch2  
ch3  
TI02/TO02/P17  
(TI02/TO02/P12)  
TI03/TO03/P32  
TI04/TO04/P41  
TI05/TO05/P42  
TI06/TO06/P51  
TI07/TO07/P10  
2
4
4
ANI0/P20, ANI1/P21  
ANI16/P41, ANI17/P120,  
ANI18/P13, ANI19/P14  
ch4  
ch5  
ch6  
ch7  
A/D CONVERTER  
ANI20/P142 to ANI23/P145  
AVREFP/P20  
AVREFM/P21  
RTC1HZ/P31  
4
4
P120, P125 to P127  
P121 to P124  
REAL-TIME  
CLOCK  
PORT 12  
PORT 13  
CODE FLASH MEMORY  
DATA FLASH MEMORY  
RL78  
CPU  
CORE  
LOW-SPEED  
ON-CHIP  
OSCILLATOR  
P137  
12- BIT INTERVAL  
TIMER  
PORT 14  
6
2
P140 to P145  
WINDOW  
WATCHDOG  
TIMER  
BUZZER OUTPUT  
PCLBUZ0/P140  
(PCLBUZ0/P50),  
PCLBUZ1/P141  
CLOCK OUTPUT  
CONTROL  
SEG0 to SEG8,  
SEG15 to SEG21, 30  
SEG23 to SEG36  
LCD  
CONTROLLER/  
DRIVER  
RAM  
2
2
KR0/P70, KR1/P71  
KR2/P31, KR3/P30  
COM0 to COM7  
8
KEY RETURN  
V
L1 to VL4  
CAPH  
CAPL  
RAM SPACE  
FOR LCD DATA  
POWER ON RESET/  
VOLTAGE  
POR/LVD  
CONTROL  
SERIAL ARRAY  
UNIT0 (2ch)  
DETECTOR  
V
DD  
V
SS TOOLRxD/P11,  
TOOLTxD/P12  
RxD0/P11  
TxD0/P12  
UART0  
RESET CONTROL  
ON-CHIP DEBUG  
SCK00/P10  
SO10/P17  
SI00/P11  
CSI00  
SO00/P12  
TOOL0/P40  
DIRECT MEMORY  
ACCESS CONTROL  
SCK01/P15  
SI01/P16  
CRC  
CSI01  
SYSTEM  
CONTROL  
RESET  
X1/P121  
X2/EXCLK/P122  
HIGH-SPEED  
ON-CHIP  
SDAA0/P61  
SCLA0/P60  
SERIAL  
INTERFACE IICA0  
XT1/P123  
OSCILLATOR  
XT2/EXCLKS/P124  
MULTIPLIER&  
DIVIDER,  
MULITIPLY-  
VOLTAGE  
REGULATOR  
REGC  
ACCUMULATOR  
INTP0/P137  
INTP1/P15(INTP1/P10),  
INTP2/P16(INTP2/P11)  
2
INTERRUPT  
CONTROL  
INTP3/P31,  
INTP4/P32  
BCD  
ADJUSTMENT  
2
INTP5/P50  
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR)  
Page 15 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.5.5 64-pin products  
TIMER ARRAY  
UNIT0 (8ch)  
TI00/P141  
ch0  
TO00/P140  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
8
2
3
4
5
2
5
P10 to P17  
TI01/TO01/P30  
ch1  
ch2  
ch3  
P20, P21  
TI02/TO02/P17  
(TI02/TO02/P54)  
P30 to P32  
P40 to P43  
P50 to P54  
P60, P61  
TI03/TO03/P32  
TI04/TO04/P41  
TI05/TO05/P42  
TI06/TO06/P51  
TI07/TO07/P53  
2
4
4
ANI0/P20, ANI1/P21  
ANI16/P41, ANI17/P120,  
ANI18/P13, ANI19/P14  
ch4  
ch5  
ch6  
ch7  
A/D CONVERTER  
ANI20/P142 to ANI23/P145  
AVREFP/P20  
AVREFM/P21  
P70 to P74  
RTC1HZ/P31  
REAL-TIME  
CLOCK  
4
4
P120, P125 to P127  
P121 to P124  
PORT 12  
PORT 13  
CODE FLASH MEMORY  
DATA FLASH MEMORY  
RL78  
CPU  
CORE  
P130  
P137  
LOW-SPEED  
ON-CHIP  
OSCILLATOR  
12- BIT INTERVAL  
TIMER  
PORT 14  
8
2
P140 to P147  
WINDOW  
WATCHDOG  
TIMER  
BUZZER OUTPUT  
PCLBUZ0/P140  
(PCLBUZ0/P50),  
PCLBUZ1/P141  
CLOCK OUTPUT  
CONTROL  
LCD  
CONTROLLER/  
DRIVER  
SEG0 to SEG38 39  
COM0 to COM7  
8
RAM  
KR0/P70 to  
KR3/P73  
4
KEY RETURN  
V
L1 to VL4  
CAPH  
CAPL  
RAM SPACE  
FOR LCD DATA  
POWER ON RESET/  
VOLTAGE  
POR/LVD  
CONTROL  
SERIAL ARRAY  
UNIT0 (2ch)  
DETECTOR  
RxD0/P11  
TxD0/P12  
V
DD  
,
V
SS  
,
TOOLRxD/P11,  
UART0  
EVDD EVSS TOOLTxD/P12  
RESET CONTROL  
ON-CHIP DEBUG  
SCK00/P10  
SI00/P11  
CSI00  
SO00/P12  
TOOL0/P40  
SCK01/P15  
SI01/P16  
DIRECT MEMORY  
ACCESS CONTROL  
CRC  
CSI01  
SO01/P17  
SYSTEM  
CONTROL  
RESET  
X1/P121  
X2/EXCLK/P122  
SDAA0/P61  
SCLA0/P60  
SERIAL  
INTERFACE IICA0  
HIGH-SPEED  
ON-CHIP  
OSCILLATOR  
XT1/P123  
XT2/EXCLKS/P124  
MULTIPLIER&  
DIVIDER,  
MULITIPLY-  
VOLTAGE  
REGULATOR  
REGC  
ACCUMULATOR  
INTP0/P137  
INTP1/P15(INTP1/P53),  
INTP2/P16(INTP2/P54)  
2
INTERRUPT  
CONTROL  
INTP3/P31,  
INTP4/P32  
BCD  
ADJUSTMENT  
2
INTP5/P50  
INTP6/P52(INTP6/P140)  
INTP7/P43(INTP7/P141)  
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection  
register (PIOR)  
Page 16 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
1.6 Outline of Functions  
Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set  
to 00H.  
(1/2)  
Item  
32-pin  
44-pin  
48-pin  
52-pin  
64-pin  
R5F10RBx  
R5F10RFx  
R5F10RGx  
R5F10RJx  
R5F10RLx  
Code flash memory (KB)  
Data flash memory (KB)  
RAM (KB)  
8 to 32  
2
1, 1.5 Note 1  
8 to 32  
2
1, 1.5 Note 1  
8 to 32  
2
1, 1.5 Note 1  
8 to 32  
2
1, 1.5 Note 1  
16, 32  
2
1, 1.5Note 1  
Memory space  
1 MB  
Main  
High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)  
HS (high-speed main) operation: 1 to 20 MHz (VDD = 2.7 to 5.5 V),  
HS (high-speed main) operation: 1 to 16 MHz (VDD = 2.4 to 5.5 V),  
LS (low-speed main) operation: 1 to 8 MHz (VDD = 1.8 to 5.5 V),  
<R>  
system  
clock  
LV (low-voltage main) operation: 1 to 4 MHz (VDD = 1.6 to 5.5 V)  
High-speed on-chip  
oscillator clock  
HS (high-speed main) operation: 1 to 24 MHz (VDD = 2.7 to 5.5 V),  
HS (high-speed main) operation: 1 to 16 MHz (VDD = 2.4 to 5.5 V),  
LS (low-speed main) operation: 1 to 8 MHz (VDD = 1.8 to 5.5 V),  
LV (low-voltage main) operation: 1 to 4 MHz (VDD = 1.6 to 5.5 V)  
Subsystem clock  
XT1 (crystal) oscillation , external subsystem clock input (EXCLKS)  
32.768 kHz (TYP.): VDD = 1.6 to 5.5 V  
Low-speed on-chip oscillator clock  
Internal oscillation  
15 kHz (TYP.): VDD = 1.6 to 5.5 V  
General-purpose register  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
Minimum instruction execution time 0.04167 μs (High-speed on-chip oscillator clock: fIH = 24 MHz operation)  
0.05 μs (High-speed system clock: fMX = 20 MHz operation)  
30.5 μs (Subsystem clock: fSUB = 32.768 kHz operation)  
Instruction set  
Data transfer (8/16 bits)  
Adder and subtractor/logical operation (8/16 bits)  
Multiplication (8 bits × 8 bits)  
Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean  
operation), etc.  
Total number of I/O port pins and  
pins dedicated to drive an LCD  
28  
40  
44  
48  
58  
47  
I/O  
Total  
20  
29  
33  
37  
port  
CMOS I/O  
15  
3
22  
5
26  
5
30  
5
39  
5
CMOS input  
CMOS output  
1
N-ch open-drain I/O  
(EVDD tolerance)  
2
2
2
2
2
Pins dedicated to drive an LCD  
LCD controller/driver  
8
11  
11  
11  
11  
Internal voltage boosting method, capacitor split method, and external resistance  
division method are switchable.  
22 (18) Note 2  
26 (22) Note 2  
30 (26) Note 2  
39 (35) Note 2  
Segment signal output  
Common signal output  
13  
4
4 (8) Note 2  
Notes 1. In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data  
flash function is used.  
2. The values in parentheses are the number of signal outputs when 8 com is used.  
Page 17 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
1. OUTLINE  
(2/2)  
Item  
32-pin  
44-pin  
48-pin  
52-pin  
64-pin  
R5F10RLx  
R5F10RBx  
R5F10RFx  
R5F10RGx  
R5F10RJx  
Timer  
16-bit timer  
8 channels  
8 channels (with 1 channel remote control output function)  
Watchdog timer  
Real-time clock (RTC)  
12-bit interval timer (IT)  
Timer output  
1 channel  
1 channel  
1 channel  
4 channels  
5 channels  
6 channels  
8 channels (PWM outputs: 7 Note 1  
)
(PWM outputs: (PWM outputs: (PWM outputs:  
3 Note 1 4 Note 1 5 Note 1  
1
)
)
)
RTC output  
1 Hz (subsystem clock: fSUB = 32.768 kHz or )  
Clock output/buzzer output  
1
2
2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz  
(Main system clock: fMAIN = 20 MHz operation)  
256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz,  
32.768 kHz  
(Subsystem clock: fSUB = 32.768 kHz operation)  
8/10-bit resolution A/D converter  
Serial interface  
4 channels  
CSI: 2 channel/UART (LIN-bus supported): 1 channel  
1 channel 1 channel 1 channel 1 channel  
7 channels  
9 channels  
10 channels  
10 channels  
1 channel  
I2C bus  
Multiplier and divider/multiply-  
accumulator  
16 bits × 16 bits = 32 bits (Unsigned or signed)  
32 bits ÷ 32 bits = 32 bits (Unsigned)  
16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)  
DMA controller  
2 channels  
Vectored interrupt Internal  
23  
4
23  
6
23  
7
23  
7
23  
9
sources  
External  
Key interrupt  
Reset  
4
Reset by RESET pin  
Internal reset by watchdog timer  
Internal reset by power-on-reset  
Internal reset by voltage detector  
Internal reset by illegal instruction execution Note 2  
Internal reset by RAM parity error  
Internal reset by illegal-memory access  
Power-on-reset circuit  
Voltage detector  
• Power-on-reset:  
1.51 0.04 V  
• Power-down-reset: 1.50 0.04 V  
• Rising edge : 1.67 V to 4.06 V (14 stages)  
• Falling edge : 1.63 V to 3.98 V (14 stages)  
On-chip debug function  
Power supply voltage  
Provided  
VDD = 1.6 to 5.5 V  
TA = 40 to +85 °C  
Operating ambient temperature  
Notes 1. The number of PWM outputs varies depending on the setting of channels in use (the number of masters  
and slaves).  
2. The illegal instruction is generated when instruction code FFH is executed.  
Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip  
debug emulator.  
Page 18 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2. ELECTRICAL SPECIFICATIONS (A, G: T = -40 to +85°C)  
A
This chapter describes the electrical specifications for the products "A: Consumer applications (TA = -40 to +85°C)" and  
"G: Industrial applications (with TA = -40 to +85°C)".  
Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and  
evaluation. Do not use the on-chip debug function in products designated for mass production,  
because the guaranteed number of rewritable times of the flash memory may be exceeded when  
this function is used, and product reliability therefore cannot be guaranteed. Renesas  
Electronics is not liable for problems occurring when the on-chip debug function is used.  
2. With products not provided with an EVDD, or EVSS pin, replace EVDD with VDD, or replace EVSS with  
VSS.  
Page 19 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.1 Absolute Maximum Ratings  
Absolute Maximum Ratings (TA = 25°C)  
(1/3)  
Parameter  
Symbols  
Conditions  
Ratings  
Unit  
V
Supply voltage  
VDD  
VDD = EVDD  
VDD = EVDD  
0.5 to +6.5  
0.5 to +6.5  
0.5 to +0.3  
EVDD  
EVSS  
V
V
REGC pin input voltage VIREGC  
REGC  
0.3 to +2.8  
V
and 0.3 to VDD + 0.3Note 1  
Input voltage  
VI1  
VI2  
VI3  
P10 to P17, P30 to P32, P40 to P43, P50 to P54,  
P70 to P74, P120, P125 to P127,P140 to P147  
0.3 to EVDD +0.3  
V
V
V
and 0.3 to VDD + 0.3Note 2  
P60, P61 (N-ch open-drain)  
0.3 to EVDD +0.3  
and 0.3 to VDD + 0.3Note 2  
P20, P21, P121 to P124, P137, EXCLK,  
EXCLKS, RESET  
0.3 to VDD + 0.3Note 2  
Output voltage  
VO1  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P60, P61, P70 to P74, P120,  
P125 to P127, P130, P140 to P147  
P20, P21  
0.3 to EVDD + 0.3  
V
and 0.3 to VDD + 0.3Note 2  
VO2  
VAI1  
0.3 to VDD + 0.3 Note 2  
0.3 to EVDD + 0.3 and  
V
V
Analog input voltage  
ANI16 to ANI23  
0.3 to AVREF(+) + 0.3  
Notes 2, 3  
VAI2  
ANI0, ANI1  
0.3 to VDD + 0.3 and  
V
0.3 to AVREF(+) + 0.3  
Notes 2, 3  
Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute  
maximum rating of the REGC pin. Do not use this pin with voltage applied to it.  
2. Must be 6.5 V or lower.  
3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the  
port pins.  
2. AVREF(+) : + side reference voltage of the A/D converter.  
3. VSS : Reference voltage  
Page 20 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Absolute Maximum Ratings (TA = 25°C)  
(2/3)  
Parameter  
LCD voltage  
Symbols  
Conditions  
Ratings  
Unit  
V
VL1  
VL1 voltageNote 1  
0.3 to +2.8  
and 0.3 to VL4 + 0.3  
VL2  
VL2 voltageNote 1  
VL3 voltageNote 1  
VL4 voltageNote 1  
0.3 to VL4 + 0.3 Note 2  
0.3 to VL4 + 0.3 Note 2  
0.3 to +6.5  
0.3 to VL4 + 0.3 Note 2  
0.3 to VDD + 0.3 Note 2  
V
V
V
V
V
VL3  
VL4  
VLCAP  
VLOUT  
CAPL, CAPH voltageNote 1  
COM0 to COM7, External resistance division  
SEG0 to  
method  
0.3 to VDD + 0.3 Note 2  
0.3 to VL4 + 0.3 Note 2  
SEG38,  
Capacitor split method  
Internal voltage boosting method  
output voltage  
Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3,  
and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using  
the internal voltage boosting method or capacitance split method, connect these pins to VSS via a  
capacitor (0.47 μ F 30%) and connect a capacitor (0.47 μ F 30%) between the CAPL and CAPH  
pins.  
2. Must be 6.5 V or lower.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure that  
the absolute maximum ratings are not exceeded.  
Remark VSS : Reference voltage  
Page 21 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Absolute Maximum Ratings (TA = 25°C)  
(3/3)  
Parameter  
Symbols  
Conditions  
Ratings  
Unit  
mA  
Output current, high  
IOH1  
Per pin  
P10 to P17, P30 to P32,  
P40 to P43, P50 to P54,  
P70 to P74, P120, P125 to P127,  
P130, P140 to P147  
40  
Total of all pins  
P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
70  
mA  
mA  
170 mA  
P15 to P17, P30 to P32,  
P50 to P54, P70 to P74,  
P125 to P127  
100  
IOH2  
IOL1  
Per pin  
P20, P21  
0.5  
1  
mA  
mA  
mA  
Total of all pins  
Per pin  
Output current, low  
P10 to P17, P30 to P32,  
P40 to P43, P50 to P54, P60,  
P61, P70 to P74, P120,  
P125 to P127, P130,  
P140 to P147  
40  
Total of all pins  
170 mA  
P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
70  
mA  
mA  
P15 to P17, P30 to P32,  
P50 to P54, P60, P61,  
P70 to P74, P125 to P127  
100  
IOL2  
TA  
Per pin  
P20, P21  
1
2
mA  
mA  
°C  
Total of all pins  
Operating ambient  
temperature  
In normal operation mode  
40 to +85  
In flash memory programming mode  
Storage temperature  
Tstg  
65 to +150  
°C  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 22 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.2 Oscillator Characteristics  
2.2.1 X1, XT1 oscillator characteristics  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Resonator  
Conditions  
2.7 V VDD 5.5 V  
MIN. TYP. MAX. Unit  
X1 clock oscillation frequency Ceramic resonator/  
1.0  
1.0  
1.0  
1.0  
20.0 MHz  
(fX)Note  
crystal resonator  
2.4 V VDD 2.7 V  
1.8 V VDD < 2.7 V  
1.6 V VDD <1.8 V  
16.0 MHz  
8.0  
4.0  
MHz  
MHz  
kHz  
XT1 clock oscillation  
frequency (fXT)Note  
Crystal resonator  
32 32.768 35  
Note  
Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction  
execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check  
the oscillator characteristics.  
Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1  
clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC)  
by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation  
stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time  
with the resonator to be used.  
2.2.2 On-chip oscillator characteristics  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Oscillators  
Parameters  
fIH  
Conditions  
MIN.  
1
TYP. MAX.  
24  
Unit  
High-speed on-chip oscillator  
clock frequency Notes 1, 2  
MHz  
High-speed on-chip oscillator  
clock frequency accuracy  
20 to +85°C  
40 to 20°C  
1.8 V VDD 5.5 V  
1.6 V VDD < 1.8 V  
1.8 V VDD 5.5 V  
1.6 V VDD < 1.8 V  
1  
5  
+1  
+5  
%
%
1.5  
5.5  
+1.5  
%
+5.5  
%
Low-speed on-chip oscillator  
clock frequency  
fIL  
15  
kHz  
Low-speed on-chip oscillator  
clock frequency accuracy  
15  
+15  
%
Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of  
HOCODIV register.  
2. This indicates the oscillator characteristics only. Refer to 2.4 AC Characteristics for instruction execution  
time.  
Page 23 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.3 DC Characteristics  
2.3.1 Pin characteristics  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(1/5)  
Items  
Symbol  
IOH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
mA  
Output current,  
highNote 1  
Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54,  
P70 to P74, P120, P125 to P127, P130, P140 to P147  
10.0  
Note 2  
Total of P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
1.8 V EVDD < 2.7 V  
1.6 V EVDD < 1.8 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
1.8 V EVDD < 2.7 V  
1.6 V EVDD < 1.8 V  
40.0  
8.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(When duty = 70% Note 3  
)
4.0  
2.0  
Total of P15 to P17, P30 to P32,  
60.0  
15.0  
8.0  
P50 to P54, P70 to P74, P125 to P127  
(When duty = 70% Note 3  
)
4.0  
Total of all pins  
100.0  
(When duty = 70%Note 3  
P20, P21 Per pin  
Total of all pins  
)
IOH2  
0.1  
0.2  
mA  
mA  
1.6 V VDD 5.5 V  
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD and  
EVDD pins to an output pin.  
2. Do not exceed the total current value.  
3. Specification under conditions where the duty factor 70%.  
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the  
following expression (when changing the duty factor from 70% to n%).  
Total output current of pins = (IOH × 0.7)/(n × 0.01)  
<Example> Where n = 80% and IOH = 40.0 mA  
Total output current of pins = (40.0 × 0.7)/(80 × 0.01) ≅ −35.0 mA  
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A  
current higher than the absolute maximum rating must not flow into one pin.  
Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 24 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(2/5)  
Items  
Symbol  
IOL1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Output current,  
lowNote 1  
Per pin for P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P70 to P74, P120, P125 to P127, P130,  
P140 to P147  
20.0  
Note 2  
mA  
Per pin for P60, P61  
15.0 Note 2  
70.0  
15.0  
9.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Total of P10 to P14, P40 to P43,  
P120, P130, P140 to P147  
(When duty = 70% Note 3  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
1.8 V EVDD < 2.7 V  
1.6 V EVDD < 1.8 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
1.8 V EVDD < 2.7 V  
1.6 V EVDD < 1.8 V  
)
4.5  
Total of P15 to P17, P30 to P32,  
P50 to P54, P60, P61, P70 to P74,  
P125 to P127  
(When duty = 70% Note 3  
80.0  
35.0  
20.0  
10.0  
150.0  
)
Total of all pins  
(When duty = 70% Note 3  
)
IOL2  
P20, P21 Per pin  
0.4  
0.8  
mA  
mA  
Total of all pins  
1.6 V VDD 5.5 V  
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD and  
EVDD pins to an output pin.  
2. Do not exceed the total current value.  
3. Specification under conditions where the duty factor 70%.  
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the  
following expression (when changing the duty factor from 70% to n%).  
Total output current of pins = (IOH × 0.7)/(n × 0.01)  
<Example> Where n = 80% and IOL = 70.0 mA  
Total output current of pins = (70.0 × 0.7)/(80 × 0.01) 61.25 mA  
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A  
current higher than the absolute maximum rating must not flow into one pin.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 25 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(3/5)  
Items  
Symbol  
VIH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Input voltage,  
high  
P10 to P17, P30 to P32, P40 to P43, Normal input buffer  
P50 to P54, P70 to P74, P120,  
0.8EVDD  
EVDD  
V
P125 to P127, P140 to P147  
VIH2  
P10, P11, P15, P16  
TTL input buffer  
4.0 V 5.5 V  
TTL input buffer  
3.3 V 4.0 V  
TTL input buffer  
1.6 V 3.3 V  
2.2  
2.0  
EVDD  
EVDD  
EVDD  
V
V
V
EVDD ≤  
EVDD <  
1.50  
EVDD <  
VIH3  
VIH4  
VIH5  
VIL1  
P20, P21  
P60, P61  
0.7VDD  
0.7EVDD  
0.8VDD  
0
VDD  
EVDD  
V
V
V
V
P121 to P124, P137, EXCLK, EXCLKS, RESET  
VDD  
Input voltage,  
low  
P10 to P17, P30 to P32, P40 to P43, Normal input buffer  
P50 to P54, P70 to P74, P120,  
0.2EVDD  
P125 to P127, P140 to P147  
VIL2  
P10, P11, P15, P16  
TTL input buffer  
4.0 V 5.5 V  
TTL input buffer  
3.3 V 4.0 V  
TTL input buffer  
1.6 V 3.3 V  
0
0
0
0.8  
0.5  
V
V
V
EVDD ≤  
EVDD <  
0.32  
EVDD <  
VIL3  
VIL4  
VIL5  
P20, P21  
P60, P61  
0
0
0
0.3VDD  
0.3EVDD  
0.2VDD  
V
V
V
P121 to P124, P137, EXCLK, EXCLKS, RESET  
Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 26 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(4/5)  
Items  
Symbol  
VOH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Output voltage,  
high  
P10 to P17, P30 to P32, P40 to P43, 4.0 V  
EVDD  
5.5 V, EVDD1.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
P50 to P54, P70 to P74, P120,  
I
OH1  
= 10 mA  
P125 to P127, P130, P140 to P147  
4.0 V  
EVDD  
5.5 V, EVDD0.7  
5.5 V, EVDD0.6  
5.5 V, EVDD0.5  
5.5 V, EVDD0.5  
I
OH1  
= 3.0 mA  
2.7 V  
EVDD ≤  
I
OH1  
= 2.0 mA  
1.8 V  
EVDD ≤  
I
OH1  
= 1.5 mA  
1.6 V  
EVDD ≤  
I
OH1  
=
1.0 mA  
1.6 V VDD 5.5 V,  
100 μ A  
VOH2  
P20, P21  
VDD0.5  
I
OH2  
=
Output voltage,  
low  
VOL1  
P10 to P17, P30 to P32, P40 to P43, 4.0 V  
EVDD  
5.5 V,  
5.5 V,  
5.5 V,  
5.5 V,  
5.5 V,  
1.3  
0.7  
0.6  
0.4  
0.4  
0.4  
0.4  
2.0  
0.4  
0.4  
0.4  
0.4  
P50 to P54, P70 to P74, P120,  
I
OL1  
= 20 mA  
P125 to P127, P130, P140 to P147  
4.0 V  
EVDD  
I
OL1  
= 8.5 mA  
2.7 V  
EVDD  
I
OL1  
= 3.0 mA  
2.7 V  
EVDD  
I
OL1  
= 1.5 mA  
1.8 V  
EVDD  
I
OL1  
=
0.6 mA  
EVDD < 5.5 V,  
0.3 mA  
1.6 V VDD 5.5 V,  
400 μ A  
1.6 V  
I
OL1  
=
VOL2  
VOL3  
P20, P21  
P60, P61  
I
OL2  
=
4.0 V  
EVDD  
5.5 V,  
5.5 V,  
5.5 V,  
5.5 V,  
I
OL3  
= 15.0 mA  
4.0 V  
EVDD  
I
OL3  
= 5.0 mA  
2.7 V  
EVDD  
I
OL3  
= 3.0 mA  
1.8 V  
EVDD  
I
OL3  
=
2.0 mA  
EVDD < 5.5 V,  
= 1.0 mA  
1.6 V  
I
OL3  
Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 27 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(5/5)  
Items  
Symbol  
ILIH1  
Conditions  
MIN.  
TYP.  
MAX.  
1
Unit  
Input leakage  
current, high  
P10 to P17, P30 to P32,  
VI = EVDD  
μA  
P40 to P43, P50 to P54, P60,  
P61, P70 to P74, P120,  
P125 to P127, P140 to P147  
ILIH2  
ILIH3  
P20, P21, P137, RESET  
VI = VDD  
VI = VDD  
1
1
μA  
μA  
P121 to P124  
In input port or  
external clock  
input  
(X1, X2, XT1, XT2, EXCLK,  
EXCLKS)  
In resonator  
connection  
10  
μA  
μA  
Input leakage  
current, low  
ILIL1  
P10 to P17, P30 to P32,  
P40 to P43, P50 to P54, P60,  
P61, P70 to P74, P120,  
VI = EVSS  
1  
P125 to P127, P140 to P147  
ILIL2  
ILIL3  
P20, P21, P137, RESET  
VI = VSS  
VI = VSS  
1  
1  
μA  
μA  
P121 to P124  
In input port or  
external clock  
input  
(X1, X2, XT1, XT2, EXCLK,  
EXCLKS)  
In resonator  
connection  
10  
μA  
On-chip pll-up  
resistance  
RU1  
VI = EVSS  
SEGxx port  
2.4 V  
1.6 V  
EVDD = VDD  
5.5 V  
10  
10  
10  
20  
30  
20  
100  
100  
100  
kΩ  
kΩ  
kΩ  
EVDD = VDD < 2.4 V  
RU2  
Ports other than above  
(Except for P60, P61, and  
P130)  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 28 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.3.2 Supply current characteristics  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(1/3)  
Parameter Symbol  
Conditions  
fIH = 24 MHzNote 3  
MIN.  
TYP.  
1.5  
1.5  
3.3  
3.3  
2.5  
2.5  
1.2  
1.2  
MAX.  
Unit  
Supply  
IDD1  
Operating HS (high-  
Basic  
operation  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
current  
Note 1  
mode  
speed main)  
modeNote 5  
Normal  
operation  
5.0  
5.0  
3.7  
3.7  
1.8  
1.8  
fIH = 16 MHzNote 3  
Normal  
operation  
LS (low-speed fIH = 8 MHzNote 3  
Normal  
operation  
main) modeNote  
5
LV (low-  
fIH = 4 MHzNote 3  
Normal  
operation  
VDD = 3.0 V  
VDD = 2.0 V  
1.2  
1.2  
1.7  
1.7  
mA  
mA  
voltage main)  
modeNote 5  
HS (high-  
fMX = 20 MHzNote 2  
VDD = 5.0 V  
fMX = 20 MHzNote 2  
,
,
,
,
Normal  
operation  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
2.8  
3.0  
2.8  
3.0  
1.8  
1.8  
1.8  
1.8  
1.1  
1.1  
1.1  
1.1  
3.5  
3.6  
4.4  
4.6  
4.4  
4.6  
2.6  
2.6  
2.6  
2.6  
1.7  
1.7  
1.7  
1.7  
4.9  
5.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
speed main)  
modeNote 5  
Normal  
operation  
VDD = 3.0 V  
fMX = 10 MHzNote 2  
VDD = 5.0 V  
fMX = 10 MHzNote 2  
Normal  
operation  
Normal  
operation  
VDD = 3.0 V  
LS (low-speed fMX = 8 MHzNote 2  
,
Normal  
operation  
main) modeNote  
VDD = 3.0 V  
5
fMX = 8 MHzNote 2  
,
Normal  
operation  
VDD = 2.0 V  
Subsystem  
clock  
operation  
fSUB = 32.768 kHzNote Normal  
4
operation  
μA  
T = 40°C  
A
fSUB = 32.768 kHzNote Normal  
Square wave input  
3.6  
3.7  
4.9  
5.0  
μA  
μA  
4
operation  
Resonator connection  
T = +25°C  
A
fSUB = 32.768 kHzNote Normal  
Square wave input  
3.7  
3.8  
5.5  
5.6  
μA  
μA  
4
operation  
Resonator connection  
T = +50°C  
A
fSUB = 32.768 kHzNote Normal  
Square wave input  
3.8  
3.9  
6.3  
6.4  
μA  
μA  
4
operation  
Resonator connection  
T = +70°C  
A
fSUB = 32.768 kHzNote Normal  
Square wave input  
4.1  
4.2  
7.7  
7.8  
μA  
μA  
4
operation  
Resonator connection  
TA = +85°C  
(Notes and Remarks are listed on the next page.)  
Page 29 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input  
pin is fixed to VDD, EVDD or VSS, EVSS. The values below the MAX. column include the peripheral operation  
current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip  
pull-up/pull-down resistors and the current flowing during data flash rewrite.  
2. When high-speed on-chip oscillator and subsystem clock are stopped.  
3. When high-speed system clock and subsystem clock are stopped.  
4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low  
power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer,  
watchdog timer, and LCD controller/driver.  
5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.  
HS (high-speed main) mode: 2.7 V VDD 5.5 V@1 MHz to 24 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
LS (low-speed main) mode: 1.8 V VDD 5.5 V@1 MHz to 8 MHz  
LV (low-voltage main) mode: 1.6 V VDD 5.5 V@1 MHz to 4 MHz  
Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock  
frequency)  
2. fIH: High-speed on-chip oscillator clock frequency  
3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C  
Page 30 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(2/3)  
Parameter Symbol  
Conditions  
fIH = 24 MHz Note 4  
MIN.  
TYP.  
0.44  
0.44  
0.40  
0.40  
260  
MAX.  
1.28  
1.28  
1.00  
1.00  
530  
Unit  
mA  
mA  
mA  
mA  
μA  
Supply  
current  
IDD2  
HALT  
mode  
HS (high-  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
Note 2  
speed main)  
Note 1  
modeNote 7  
fIH = 16 MHz Note 4  
fIH = 8 MHz Note 4  
LS (low-  
speed main)  
260  
530  
μA  
modeNote 7  
LV (low-  
voltage  
fIH = 4 MHz Note 4  
VDD = 3.0 V  
VDD = 2.0 V  
420  
420  
640  
640  
μA  
μA  
main) mode  
Note 7  
HS (high-  
fMX = 20 MHzNote 3  
VDD = 5.0 V  
fMX = 20 MHzNote 3  
,
,
,
,
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
0.28  
0.45  
0.28  
0.45  
0.19  
0.26  
0.19  
0.26  
95  
1.00  
1.17  
1.00  
1.17  
0.60  
0.67  
0.60  
0.67  
330  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
speed main)  
modeNote 7  
VDD = 3.0 V  
fMX = 10 MHzNote 3  
VDD = 5.0 V  
fMX = 10 MHzNote 3  
VDD = 3.0 V  
LS (low-  
fMX = 8 MHzNote 3  
VDD = 3.0 V  
,
speed main)  
145  
380  
modeNote 7  
fMX = 8 MHzNote 3  
,
95  
330  
VDD = 2.0 V  
145  
380  
Subsystem  
clock  
operation  
fSUB = 32.768 kHzNote 5  
TA = 40°C  
fSUB = 32.768 kHzNote 5  
0.31  
0.50  
0.37  
0.56  
0.46  
0.65  
0.57  
0.76  
0.85  
1.04  
0.17  
0.23  
0.32  
0.43  
0.71  
0.57  
0.76  
0.57  
0.76  
1.17  
1.36  
1.97  
2.16  
3.37  
3.56  
0.50  
0.50  
1.10  
1.90  
3.30  
TA = +25°C  
fSUB = 32.768 kHzNote 5  
TA = +50°C  
fSUB = 32.768 kHzNote 5  
TA = +70°C  
fSUB = 32.768 kHzNote 5  
TA = +85°C  
Note 6  
IDD3  
STOP  
TA = 40°C  
TA = +25°C  
TA = +50°C  
TA = +70°C  
TA = +85°C  
mode Note 8  
(Notes and Remarks are listed on the next page.)  
Page 31 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input  
pin is fixed to VDD, EVDD or VSS, EVSS. The values below the MAX. column include the peripheral operation  
current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip  
pull-up/pull-down resistors and the current flowing during data flash rewrite.  
2. During HALT instruction execution by flash memory.  
3. When high-speed on-chip oscillator and subsystem clock are stopped.  
4. When high-speed system clock and subsystem clock are stopped.  
5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting  
ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not  
including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.  
6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.  
7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.  
HS (high-speed main) mode: 2.7 V VDD 5.5 V@1 MHz to 24 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
LS (low-speed main) mode: 1.8 V VDD 5.5 V@1 MHz to 8 MHz  
LV (low-voltage main) mode: 1.6 V VDD 5.5 V@1 MHz to 4 MHz  
8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.  
Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock  
frequency)  
2. fIH: High-speed on-chip oscillator clock frequency  
3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C  
Page 32 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(3/3)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
0.20  
MAX.  
Unit  
Note 1  
Low-speed on-  
chip oscillator  
operating  
IFIL  
μA  
current  
RTC operating  
current  
IRTC  
fMAIN is stopped  
0.08  
0.08  
0.24  
μA  
μA  
μA  
Notes 1, 2, 3  
12-bit interval  
timer current  
IIT  
Notes 1, 2, 4  
Watchdog timer IWDT  
fIL = 15 kHz  
Notes 1, 2, 5  
operating  
current  
A/D converter  
operating  
current  
IADC  
Notes 1, 6  
When conversion  
at maximum speed  
Normal mode, AVREFP = VDD = 5.0 V  
1.3  
0.5  
1.7  
0.7  
mA  
mA  
Low voltage mode, AVREFP = VDD = 3.0 V  
Note 1  
A/D converter  
reference  
IADREF  
75.0  
μA  
μA  
voltage current  
Note 1  
Temperature  
sensor  
ITMPS  
75.0  
operating  
current  
LVD operating  
current  
ILVD  
0.08  
2.50  
μA  
Notes 1, 7  
mA  
Self-  
IFSP  
12.20  
12.20  
Notes 1, 9  
programming  
operating  
current  
mA  
μA  
μA  
μA  
μA  
BGO operating  
current  
IBGO  
2.00  
Notes 1, 8  
LCD operating  
current  
ILCD1  
Notes 11, 12  
VDD = EVDD = 5.0 V  
VL4 = 5.0 V  
External resistance division method  
Internal voltage boosting method  
0.04  
1.12  
0.63  
0.12  
0.20  
3.70  
2.20  
0.50  
Note 11  
ILCD2  
VDD = EVDD = 5.0 V  
VL4 = 5.1 V (VLCD = 12H)  
VDD = EVDD = 3.0 V  
VL4 = 3.0 V (VLCD = 04H)  
VDD = EVDD = 3.0 V  
VL4 = 3.0 V  
Note 11  
Note 1  
ILCD3  
Capacitor split method  
SNOOZE  
operating  
current  
ISNOZ  
ADC operation  
The mode is performed Note 10  
0.50  
1.20  
0.60  
1.44  
mA  
mA  
The A/D conversion operations are  
performed, Low voltage mode, AVREFP = VDD  
= 3.0 V  
CSI/UART operation  
0.70  
0.84  
mA  
(Notes and Remarks are listed on the next page.)  
Page 33 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. Current flowing to VDD.  
2. When high speed on-chip oscillator and high-speed system clock are stopped.  
3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip  
oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of  
either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the  
low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the  
operational current of the real-time clock.  
4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip  
oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of  
either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the  
low-speed on-chip oscillator is selected, IFIL should be added.  
5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).  
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog  
timer is in operation.  
6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or  
IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.  
7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2  
or IDD3 and ILVD when the LVD circuit is in operation.  
8. Current flowing only during data flash rewrite.  
9. Current flowing only during self programming.  
10. For shift time to the SNOOZE mod.  
11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the  
sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD  
controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the  
LCD panel.  
The TYP. value and MAX. value are following conditions.  
When fSUB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)  
4-Time-Slice, 1/3 Bias Method  
12. Not including the current that flows through the external divider resistor when the external resistance division  
method is used.  
Remarks 1. fIL: Low-speed on-chip oscillator clock frequency  
2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
3. fCLK: CPU/peripheral hardware clock frequency  
4. Temperature condition of the TYP. value is TA = 25°C  
Page 34 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.4 AC Characteristics  
2.4.1 Basic operation  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Items  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
μs  
Instruction cycle (minimum  
instruction execution time)  
TCY  
Main  
system  
clock (fMAIN)  
operation  
HS (high-speed 2.7 V  
V
DD  
5.5 V 0.04167  
1
1
1
main) mode  
2.4 V  
VDD < 2.7 V 0.0625  
μs  
LV (low voltage 1.6 V  
main) mode  
VDD  
5.5 V 0.25  
5.5 V 0.125  
5.5 V 28.5  
5.5 V 0.04167  
μs  
LS (low-speed 1.8 V  
main) mode  
V
DD  
1
μs  
μs  
Subsystem clock (fSUB)  
operation  
1.8 V  
VDD  
30.5  
31.3  
In the self  
programmin main) mode  
g mode  
HS (high-speed 2.7 V  
V
DD  
1
1
1
μs  
μs  
μs  
2.4 V  
VDD < 2.7 V 0.0625  
LV (low voltage 1.8 V  
main) mode  
VDD  
5.5 V 0.25  
LS (low-speed 1.8 V  
main) mode  
VDD  
5.5 V 0.125  
1
μs  
External main system clock  
frequency  
fEX  
2.7 V VDD 5.5 V  
1.0  
1.0  
1.0  
1.0  
32  
20.0  
16.0  
8.0  
MHz  
MHz  
MHz  
MHz  
kHz  
ns  
2.4 V VDD < 2.7 V  
1.8 V VDD < 2.4 V  
1.6 V VDD < 1.8 V  
4.0  
fEXS  
35  
External main system clock input tEXH, tEXL 2.7 V VDD 5.5 V  
high-level width, low-level width  
24  
2.4 V VDD < 2.7 V  
30  
60  
ns  
ns  
ns  
μs  
1.8 V VDD < 2.4 V  
1.6 V VDD < 1.8 V  
120  
13.7  
tEXHS,  
tEXLS  
TI00 to TI07 input high-level  
width, low-level width  
tTIH,  
tTIL  
1/fMCK+10  
ns  
TO00 to TO07 output frequency  
fTO  
HS (high-speed  
main) mode  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
1.8 V EVDD 5.5 V  
16  
8
MHz  
MHz  
MHz  
MHz  
4
LS (low-speed  
main) mode  
4
LV (low voltage  
main) mode  
1.6 V EVDD 5.5 V  
2
MHz  
PCLBUZ0, PCLBUZ1 output  
frequency  
fPCL  
HS (high-speed  
main) mode  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
1.8 V EVDD 5.5 V  
16  
8
MHz  
MHz  
MHz  
MHz  
4
LS (low-speed  
main) mode  
4
LV (low-voltage  
main) mode  
1.8 V EVDD 5.5 V  
1.6 V EVDD < 1.8 V  
1.6 V VDD 5.5 V  
1.6 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD < 1.8 V  
4
2
MHz  
MHz  
μs  
Interrupt input high-level width,  
low-level width  
tINTH,  
tINTL  
INTP0  
1
1
INTP1 to INTP7  
KR0 to KR3  
μs  
Key interrupt input low-level width tKR  
250  
1
ns  
μs  
RESET low-level width  
tRSL  
10  
μs  
Remark fMCK: Timer array unit operation clock frequency  
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))  
Page 35 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Minimum Instruction Execution Time during Main System Clock Operation  
TCY vs VDD (HS (high-speed main) mode)  
10  
1.0  
When the high-speed on-chip oscillator clock is selected  
During self programming  
When high-speed system clock is selected  
0.1  
0.0625  
0.04167  
0.01  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
2.4 2.7  
5.5  
Supply voltage VDD [V]  
TCY vs VDD (LS (low-speed main) mode)  
10  
1.0  
When the high-speed on-chip oscillator clock is selected  
During self programming  
When high-speed system clock is selected  
0.125  
0.1  
0.01  
0
5.5  
1.0  
2.0  
1.8  
3.0  
4.0  
5.0  
6.0  
Supply voltage VDD [V]  
Page 36 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
TCY vs VDD (LV (low-voltage main) mode)  
10  
1.0  
When the high-speed on-chip oscillator clock is selected  
During self programming  
When high-speed system clock is selected  
0.25  
0.1  
0.01  
5.5  
0
1.0  
2.0  
1.6 1.8  
3.0  
4.0  
5.0  
6.0  
Supply voltage VDD [V]  
AC Timing Test Points  
V
IH/VOH  
V
IH/VOH  
Test points  
VIL/VOL  
VIL/VOL  
External System Clock Timing  
1/fEX/  
1/fEXS  
t
t
EXL  
/
t
t
EXH  
/
EXLS  
EXHS  
EXCLK/EXCLKS  
Page 37 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
TI/TO Timing  
t
TIL  
tTIH  
TI00 to TI07  
1/fTO  
TO00 to TO07  
Interrupt Request Input Timing  
t
INTL  
tINTH  
INTP0 to INTP7  
Key Interrupt Input Timing  
t
KR  
KR0 to KR3  
RESET Input Timing  
t
RSL  
RESET  
Page 38 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.5 Peripheral Functions Characteristics  
AC Timing Test Points  
VIH/VOH  
VIH/VOH  
Test points  
VIL/VOL  
VIL/VOL  
2.5.1 Serial array unit  
(1) During communication at same potential (UART mode)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed LS (low-speed LV (low-voltage  
main) Mode main) Mode main) Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
Unit  
Transfer rate Note 1  
2.4 V EVDD = VDD 5.5 V  
fMCK/6  
fMCK/6  
fMCK/6  
bps  
Theoretical value of the  
maximum transfer rate  
4.0  
1.3  
0.6  
Mbps  
Note 2  
fMCK = fCLK  
1.8 V EVDD = VDD 5.5 V  
fMCK/6  
fMCK/6  
bps  
Theoretical value of the  
maximum transfer rate  
1.3  
0.6  
Mbps  
Note 2  
fMCK = fCLK  
1.6 V EVDD = VDD 5.5 V  
fMCK/6  
bps  
Theoretical value of the  
maximum transfer rate  
0.6  
Mbps  
Note 2  
fMCK = fCLK  
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.  
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:  
HS (high-speed main) mode:  
24 MHz (2.7 V VDD 5.5 V)  
16 MHz (2.4 V VDD 5.5 V)  
8 MHz (1.8 V VDD 5.5 V)  
4 MHz (1.6 V VDD 5.5 V)  
LS (low-speed main) mode:  
LV (low-voltage main) mode:  
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using  
port input mode register g (PIMg) and port output mode register g (POMg).  
Page 39 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
UART mode connection diagram (during communication at same potential)  
TxDq  
RL78 microcontroller  
RxDq  
Rx  
Tx  
User's device  
UART mode bit width (during communication at same potential) (reference)  
1/Transfer rate  
High-/Low-bit width  
Baud rate error tolerance  
TxDq  
RxDq  
Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 40 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed LS (low-speed LV (low-voltage  
main) Mode main) Mode main) Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
Unit  
SCKp cycle time  
tKCY1  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
167  
500  
1000  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
250  
500  
1000  
Note 1  
Note 1  
Note 1  
500  
1000  
Note 1  
Note 1  
1000  
Note 1  
SCKp high-/low-level width tKH1,  
tKL1  
4.0 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
tKCY1/2  
tKCY1/2  
tKCY1/2  
ns  
ns  
ns  
ns  
ns  
12  
50  
50  
tKCY1/2  
tKCY1/2  
tKCY1/2  
18  
50  
50  
tKCY1/2  
tKCY1/2  
tKCY1/2  
38  
50  
50  
tKCY1/2  
tKCY1/2  
50  
50  
tKCY1/2  
100  
SIp setup time (to SCKp)  
tSIK1  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
44  
75  
110  
110  
110  
110  
110  
110  
220  
19  
ns  
ns  
ns  
ns  
ns  
Note 2  
SIp hold time (from SCKp) tKSI1  
19  
19  
19  
Note 3  
19  
19  
Delay time from SCKpto  
tKSO1  
C = 30 pF 2.4 V EVDD 5.5 V  
Note 5  
25  
25  
25  
25  
25  
25  
ns  
SOp output Note 4  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
Notes 1. For CSI00, set a cycle of 2/fMCK or longer. For CSI01, set a cycle of 4/fMCK or longer.  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
5. C is the load capacitance of the SCKp and SOp output lines.  
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin  
by using port input mode register g (PIMg) and port output mode register g (POMg).  
(Remarks are listed on the next page.)  
Page 41 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM numbers (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn).  
m: Unit number, n: Channel number (mn = 00, 01))  
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)  
(1/2)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed LS (low-speed LV (low-voltage Unit  
main) Mode  
main) Mode  
main) Mode  
MIN. MAX. MIN.  
MAX. MIN. MAX.  
SCKp cycle timeNote  
5
tKCY2  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD 5.5 V  
20 MHz < fMCK  
8/fMCK  
ns  
fMCK 20 MHz  
16 MHz < fMCK  
fMCK 16 MHz  
6/fMCK  
8/fMCK  
6/fMCK  
6/fMCK  
6/fMCK  
ns  
ns  
ns  
ns  
6/fMCK  
6/fMCK  
6/fMCK  
6/fMCK  
and  
6/fMCK  
500  
1.8 V EVDD < 2.4 V  
1.6 V EVDD < 1.8 V  
4.0 V EVDD 5.5 V  
6/fMCK  
6/fMCK  
6/fMCK  
ns  
ns  
ns  
SCKp high-/low-  
level width  
tKH2,  
tKCY2/2  
tKCY2/2  
tKCY2/2  
tKL2  
7  
7  
7  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
1.8 V EVDD < 2.4 V  
1.6 V EVDD < 1.8 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD < 2.7 V  
1.8 V EVDD < 2.4 V  
1.6 V EVDD < 1.8 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD < 2.4 V  
1.6 V EVDD < 1.8 V  
tKCY2/2  
tKCY2/2  
tKCY2/2  
ns  
ns  
ns  
ns  
ns  
8  
8  
8  
tKCY2/2  
tKCY2/2  
tKCY2/2  
18  
18  
18  
tKCY2/2  
tKCY2/2  
18  
18  
tKCY2/2  
66  
SIp setup time  
(to SCKp)Note 1  
tSIK2  
1/fMCK  
+ 20  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
1/fMCK  
+ 30  
ns  
ns  
ns  
ns  
ns  
1/fMCK  
+ 40  
SIp hold time  
(from SCKp)Note 2  
tKSI2  
1/fMCK  
+ 31  
1/fMCK  
+ 31  
1/fMCK  
+ 31  
1/fMCK  
+ 31  
1/fMCK  
+ 31  
1/fMCK  
+
250  
(Notes, Caution, and Remarks are listed on the next page.)  
Page 42 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)  
(2/2)  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS LS (low- LV (low- Unit  
(high- speed voltage  
Para Symbol Conditions  
meter  
speed main)  
main)  
Mode  
main)  
Mode  
Mode  
Delay time from  
SCKpto SOp  
output Note 3  
tKSO2  
C = 30 pF Note 4 4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2/fMCK  
+ 44  
2/fMCK  
+ 110  
2/fMCK  
+ 110  
ns  
ns  
ns  
ns  
ns  
2/fMCK  
+ 44  
2/fMCK  
+ 110  
2/fMCK  
+ 110  
2.4 V EVDD < 2.7 V  
2/fMCK  
+ 75  
2/fMCK  
+ 110  
2/fMCK  
+ 110  
1.8 V EVDD < 2.4 V  
2/fMCK  
+ 110  
2/fMCK  
+ 110  
1.6 V EVDD < 1.8 V  
2/fMCK  
+ 220  
Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. C is the load capacitance of the SCKp and SOp output lines.  
5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps  
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin  
by using port input mode register g (PIMg) and port output mode register g (POMg).  
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0),  
n: Channel number (n = 0, 1), g: PIM number (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 43 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
CSI mode connection diagram (during communication at same potential)  
SCKp  
SIp  
SCK  
SO  
RL78  
microcontroller  
User's device  
SOp  
SI  
CSI mode serial transfer timing (during communication at same potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
t
KCY1,2  
t
KL1,2  
t
KH1,2  
SCKp  
t
SIK1,2  
t
KSI1, 2  
SIp  
Input data  
t
KSO1,2  
Output data  
SOp  
CSI mode serial transfer timing (during communication at same potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY1, 2  
t
KH1, 2  
t
KL1, 2  
SCKp  
t
SIK1, 2  
t
KSI1, 2  
SIp  
Input data  
t
KSO1, 2  
Output data  
SOp  
Remarks 1. p: CSI number (p = 00, 01)  
2. m: Unit number, n: Channel number (mn = 00, 01)  
Page 44 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)  
(1/2)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed  
main) Mode  
LS (low-speed  
main) Mode  
LV (low-voltage Unit  
main) Mode  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Transfer rate  
Reception 4.0 V EVDD 5.5 V,  
2.7 V Vb 4.0 V  
fMCK/6  
fMCK/6  
Note 1  
fMCK/6  
Note 1  
bps  
Note 1  
Theoretical value of the  
4.0  
1.3  
0.6  
Mbps  
maximum transfer rate  
Note 3  
fMCK = fCLK  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
fMCK/6  
fMCK/6  
Note 1  
fMCK/6  
Note 1  
bps  
Note 1  
Theoretical value of the  
4.0  
1.3  
0.6  
Mbps  
maximum transfer rate  
Note 3  
fMCK = fCLK  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
fMCK/6  
fMCK/6  
Note 1  
fMCK/6  
Note 1  
bps  
Note 1  
Theoretical value of the  
4.0  
1.3  
0.6  
Mbps  
maximum transfer rate  
Note 3  
fMCK = fCLK  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
Theoretical value of the  
fMCK/6  
fMCK/6  
bps  
Notes 1, 2  
Notes 1, 2  
1.3  
0.6  
Mbps  
maximum transfer rate  
Note 3  
fMCK = fCLK  
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.  
2. Use it with EVDD Vb.  
3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:  
HS (high-speed main) mode:  
24 MHz (2.7 V VDD 5.5 V)  
16 MHz (2.4 V VDD 5.5 V)  
8 MHz (1.8 V VDD 5.5 V)  
4 MHz (1.6 V VDD 5.5 V)  
LS (low-speed main) mode:  
LV (low-voltage main) mode:  
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode  
register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics  
with TTL input buffer selected.  
Remarks 1. Vb[V]: Communication line voltage  
2. q: UART number (q = 0), g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)  
Page 45 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)  
(2/2)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed  
main) Mode  
LS (low-speed  
main) Mode  
LV (low-voltage  
main) Mode  
Unit  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Transfer rate  
Transmissio 4.0 V EVDD 5.5 V,  
Note 1  
Note 1  
Note 1 bps  
n
2.7 V Vb 4.0 V  
Theoretical value of the  
maximum transfer rate  
= 50 pF, R = 1.4 k  
= 2.7 V  
2.8Note 2  
2.8Note 2  
2.8Note 2 Mbps  
C
b
b
Ω,  
Vb  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
Note 3  
Note 3  
Note 3 bps  
Theoretical value of the  
maximum transfer rate  
1.2Note 4  
1.2Note 4  
1.2Note 4 Mbps  
Cb  
= 50 pF, R  
b
= 2.7 kΩ  
Vb  
= 2.3 V  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
Note 6  
Note 6  
Note 6 bps  
Theoretical value of the  
maximum transfer rate  
0.43Note 7  
0.43Note 7  
0.43Note 7 Mbps  
Cb  
= 50 pF, R  
b
= 5.5 kΩ  
Vb  
= 1.6 V  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
Notes  
5, 6  
Notes  
5, 6  
bps  
Theoretical value of the  
maximum transfer rate  
0.43Note 7  
0.43Note 7 Mbps  
Cb  
= 50 pF, R  
b
= 5.5 kΩ,  
Vb  
= 1.6 V  
Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 4.0 V EVDD 5.5 V and 2.7 V Vb 4.0 V  
1
Maximum transfer rate =  
[bps]  
2.2  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
2.2  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
2. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.  
Page 46 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 2.7 V EVDD < 4.0 V and 2.3 V Vb 2.7 V  
1
Maximum transfer rate =  
[bps]  
2.0  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
2.0  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
4. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.  
5. Use it with EVDD Vb.  
6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 1.8 V EVDD < 3.3 V and 1.6 V Vb 2.0 V  
1
Maximum transfer rate =  
[bps]  
1.5  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
1.5  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
7. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.  
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode  
register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics  
with TTL input buffer selected.  
Page 47 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
UART mode connection diagram (during communication at different potential)  
Vb  
R
b
TxDq  
RL78 microcontroller  
Rx  
Tx  
User's device  
RxDq  
UART mode bit width (during communication at different potential) (reference)  
1/Transfer rate  
Low-bit width  
High-bit width  
Baud rate error tolerance  
TxDq  
1/Transfer rate  
High-/Low-bit width  
Baud rate error tolerance  
RxDq  
Remarks 1. Rb[Ω]:Communication line (TxDq) pull-up resistance,  
Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage  
2. q: UART number (q = 0, 1), g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 48 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output,  
corresponding CSI00 only)  
(TA = 40 to +85°C, 2.7 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high- LS (low-speed  
speed main) main) Mode voltage main)  
Mode Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LV (low-  
Unit  
SCKp cycle time  
tKCY1  
tKCY1 2/fCLK 4.0 V EVDD 5.5 V,  
2.7 V Vb 4.0 V,  
200  
1150  
1150  
ns  
ns  
Note 1  
Note 1  
Note 1  
Cb = 20 pF, Rb = 1.4 kΩ  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V,  
300  
Note 1  
1150  
Note 1  
1150  
Note 1  
Cb = 20 pF, Rb = 2.7 kΩ  
SCKp high-level width  
SCKp low-level width  
tKH1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V, tKCY1/2  
tKCY1/2  
tKCY1/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
50  
Cb = 20 pF, Rb = 1.4 kΩ  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V, tKCY1/2  
tKCY1/2  
tKCY1/2  
120  
120  
120  
Cb = 20 pF, Rb = 2.7 kΩ  
tKL1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V, tKCY1/2  
tKCY1/2  
tKCY1/2  
7  
50  
50  
Cb = 20 pF, Rb = 1.4 kΩ  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V, tKCY1/2  
tKCY1/2  
tKCY1/2  
10  
50  
50  
Cb = 20 pF, Rb = 2.7 kΩ  
SIp setup time  
(to SCKp) Note 2  
tSIK1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
58  
479  
479  
10  
479  
479  
10  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V, 121  
Cb = 20 pF, Rb = 2.7 kΩ  
SIp hold time  
(from SCKp) Note 2  
tKSI1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
10  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 20 pF, Rb = 2.7 kΩ  
10  
10  
10  
Delay time from SCKpto tKSO1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
60  
60  
60  
SOp output Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 20 pF, Rb = 2.7 kΩ  
130  
130  
130  
SIp setup time  
(to SCKp) Note 3  
tSIK1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
23  
33  
10  
10  
110  
110  
10  
110  
110  
10  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 20 pF, Rb = 2.7 kΩ  
SIp hold time  
(from SCKp) Note 3  
tKSI1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 20 pF, Rb = 2.7 kΩ  
10  
10  
Delay time from SCKpto tKSO1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 20 pF, Rb = 1.4 kΩ  
10  
10  
10  
10  
10  
10  
SOp output Note 3  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 20 pF, Rb = 2.7 kΩ  
(Notes, Caution and Remarks are listed on the next page.)  
Page 49 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. For CSI00, set a cycle of 2/fMCK or longer. For CSI01, set a cycle of 4/fMCK or longer.  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.  
3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load  
capacitance, Vb[V]: Communication line voltage  
2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)  
Page 50 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high- LS (low-speed  
speed main) main) Mode voltage main)  
Mode Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LV (low-  
Unit  
SCKp cycle time  
tKCY1  
tKCY1 4/fCLK  
4.0 V EVDD 5.5 V,  
2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
300  
1150  
1150  
1150  
1150  
1150  
1150  
1150  
1150  
ns  
ns  
ns  
ns  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
500  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1150  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note  
,
Cb = 30 pF, Rb = 5.5 kΩ  
SCKp high-level width tKH1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
75  
75  
75  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
170  
170  
170  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V, 1.6 V Vb 2.0 VNote  
Cb = 30 pF, Rb = 5.5 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
458  
458  
458  
,
tKCY1/2  
tKCY1/2  
458  
458  
SCKp low-level width  
tKL1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
12  
50  
50  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
18  
50  
50  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V, 1.6 V Vb 2.0 VNote  
Cb = 30 pF, Rb = 5.5 kΩ  
tKCY1/2  
tKCY1/2  
tKCY1/2  
50  
50  
50  
,
tKCY1/2  
tKCY1/2  
50  
50  
Note  
Use it with EVDD Vb.  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
Page 51 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
Unit  
HS (high-  
speed main) speed main) voltage main)  
Mode Mode Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LS (low-  
LV (low-  
SIp setup time  
tSIK1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
81  
479  
479  
479  
479  
479  
479  
479  
479  
ns  
ns  
ns  
ns  
(to SCKp) Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
177  
479  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 VNote 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
SIp hold time  
tKSI1  
tKSO1  
tSIK1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
ns  
ns  
ns  
ns  
(from SCKp) Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 VNote 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
Delay time from SCKpto  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
100  
195  
483  
100  
195  
483  
483  
100  
195  
483  
483  
ns  
ns  
ns  
ns  
SOp output Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 VNote 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
SIp setup time  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
44  
44  
110  
110  
110  
110  
110  
110  
110  
110  
ns  
ns  
ns  
ns  
(to SCKp) Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
110  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 VNote 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
Notes  
1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.  
2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. Use it with EVDD Vb.  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
Page 52 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
Unit  
HS (high-  
speed main) speed main) voltage main)  
Mode Mode Mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LS (low-  
LV (low-  
SIp hold time  
tKSI1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
ns  
ns  
ns  
ns  
(from SCKp) Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
Delay time from SCKpto  
tKSO1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
ns  
ns  
ns  
ns  
SOp output Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note 3  
,
Cb = 30 pF, Rb = 5.5 kΩ  
Notes  
1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.  
2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. Use it with EVDD Vb.  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-  
pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
Page 53 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
CSI mode connection diagram (during communication at different potential)  
<Master>  
Vb  
Vb  
R
b
Rb  
SCKp  
SIp  
SCK  
SO  
User's device  
RL78  
microcontroller  
SOp  
SI  
Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load  
capacitance, Vb[V]: Communication line voltage  
2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM  
number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)  
Page 54 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
CSI mode serial transfer timing (master mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
t
KCY1  
t
KL1  
t
KH1  
SCKp  
t
SIK1  
t
KSI1  
SIp  
Input data  
t
KSO1  
SOp  
Output data  
CSI mode serial transfer timing (master mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY1  
t
KL1  
t
KH1  
SCKp  
t
SIK1  
t
KSI1  
SIp  
Input data  
t
KSO1  
Output data  
SOp  
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
Page 55 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter Symbol Conditions  
(1/2)  
Unit  
HS (high-  
speed main) main) mode voltage main)  
mode mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LS (low-speed  
LV (low-  
SCKp cycle time Note 1 tKCY2  
4.0 V  
2.7 V  
EVDD  
5.5 V,  
20 MHz < fMCK  
24 MHz 12/fMCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Vb 4.0 V  
8 MHz < fMCK  
4 MHz < fMCK  
20 MHz  
8 MHz  
10/fMCK  
8/fMCK  
6/fMCK  
16/fMCK  
10/fMCK  
fMCK  
4 MHz  
10/fMCK  
2.7 V  
2.3 V  
EVDD < 4.0 V,  
2.7 V  
20 MHz < fMCK  
16 MHz < fMCK  
24 MHz 16/fMCK  
20 MHz 14/fMCK  
V ≤  
b
8 MHz < fMCK  
4 MHz < fMCK  
16 MHz  
8 MHz  
12/fMCK  
8/fMCK  
6/fMCK  
16/fMCK  
10/fMCK  
fMCK  
4 MHz  
10/fMCK  
2.4 V  
1.6 V  
EVDD < 3.3 V,  
2.0 V  
20 MHz < fMCK  
16 MHz < fMCK  
24 MHz 36/fMCK  
20 MHz 32/fMCK  
V ≤  
b
8 MHz < fMCK  
4 MHz < fMCK  
16 MHz  
26/fMCK  
16/fMCK  
10/fMCK  
8 MHz  
8 MHz  
16/fMCK  
10/fMCK  
16/fMCK  
10/fMCK  
f
MCK  
4 MHz  
4 MHz < fMCK  
4 MHz  
10/fMCK  
10/fMCK  
1.8 V  
1.6 V  
EVDD < 3.3 V,  
2.0 VNote 2  
V ≤  
b
fMCK  
SCKp high-/low-level  
width  
tKH2,  
tKL2  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V  
tKCY2/2  
tKCY2/2  
tKCY2/2  
12  
50  
50  
tKCY2/2  
tKCY2/2  
tKCY2/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
18  
50  
50  
tKCY2/2  
tKCY2/2  
tKCY2/2  
50  
50  
50  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note 2  
tKCY2/2  
tKCY2/2  
50  
50  
SIp setup time  
(to SCKp) Note 3  
tSIK2  
4.0 V EVDD < 5.5 V, 2.7 V Vb 4.0 V  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V  
1/fMCK  
20  
+
+
+
1/fMCK  
30  
+
+
+
+
+
+
+
+
1/fMCK  
30  
+
+
+
+
+
+
+
+
1/fMCK  
20  
1/fMCK  
30  
1/fMCK  
30  
1/fMCK  
30  
1/fMCK  
30  
1/fMCK  
30  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note 2  
1/fMCK  
30  
1/fMCK  
30  
SIp hold time  
(from SCKp) Note 4  
tKSI2  
4.0 V EVDD < 5.5 V, 2.7 V Vb 4.0 V  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V  
1/fMCK  
31  
+
+
+
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1/fMCK  
31  
1.8 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V Note 2  
1/fMCK  
31  
1/fMCK  
31  
(Notes, Caution and Remarks are listed on the next page.)  
Page 56 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(2/2)  
Parameter  
Symbol  
Conditions  
Unit  
HS (high-  
speed main) main) mode voltage main)  
mode mode  
MIN. MAX. MIN. MAX. MIN. MAX.  
LS (low-speed  
LV (low-  
Delay time from SCKptKSO2  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
2/fMCK  
+ 120  
2/fMCK  
2/fMCK  
ns  
ns  
ns  
ns  
to SOp output Note 5  
+ 573  
+ 573  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2/fMCK  
+ 214  
2/fMCK  
2/fMCK  
+ 573  
+ 573  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
2/fMCK  
+ 573  
2/fMCK  
2/fMCK  
+ 573  
+ 573  
1.8 V EVDD < 3.3 V,  
2/fMCK  
+ 573  
2/fMCK  
1.6 V Vb 2.0 V Note 2  
,
+ 573  
Cb = 30 pF, Rb = 5.5 kΩ  
Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps  
2. Use it with EVDD Vb.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance  
(32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
CSI mode connection diagram (during communication at different potential)  
<Slave>  
V
b
R
b
SCKp  
SIp  
SCK  
SO  
User's device  
RL78  
microcontroller  
SOp  
SI  
Remarks 1. Rb[Ω]:Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance,  
Vb[V]: Communication line voltage  
2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 57 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
CSI mode serial transfer timing (slave mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
t
KCY2  
t
KL2  
t
KH2  
SCKp  
t
SIK2  
t
KSI2  
SIp  
Input data  
t
KSO2  
Output data  
SOp  
CSI mode serial transfer timing (slave mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY2  
t
KL2  
t
KH2  
SCKp  
t
SIK2  
t
KSI2  
SIp  
Input data  
t
KSO2  
Output data  
SOp  
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
Page 58 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.5.2 Serial interface IICA  
(1) I2C standard mode  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high- LS (low-speed  
speed main) main) Mode voltage main)  
Mode Mode  
MIN. MAX. MIN. MIN. MAX. MIN.  
LV (low-  
Unit  
kHz  
Standard  
mode:  
SCLA0 clock frequency  
fSCL  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
0
0
100  
100  
0
0
0
100  
100  
100  
0
100  
100  
100  
100  
0
fCLK 1 MHz  
0
0
Setup time of restart condition  
tSU:STA  
tHD:STA  
tLOW  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
1.6 V EVDD 5.5 V  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.0  
4.0  
4.0  
4.0  
4.7  
4.7  
4.7  
4.7  
4.0  
4.0  
4.0  
4.0  
250  
250  
250  
250  
0
μs  
μs  
μs  
μs  
ns  
μs  
μs  
μs  
Hold time Note 1  
4.0  
4.0  
4.0  
4.0  
4.0  
Hold time when SCLA0 = “L”  
Hold time when SCLA0 = “H”  
Data setup time (reception)  
Data hold time (transmission)Note 2  
Setup time of stop condition  
Bus-free time  
4.7  
4.7  
4.7  
4.7  
4.7  
tHIGH  
4.0  
4.0  
4.0  
4.0  
4.0  
tSU:DAT  
tHD:DAT  
tSU:STO  
tBUF  
250  
250  
250  
250  
250  
0
0
3.45  
3.45  
0
0
0
3.45  
3.45  
3.45  
3.45  
3.45  
3.45  
3.45  
0
0
0
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
(Notes and Remark are listed on the next page.)  
Page 59 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.  
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK  
(acknowledge) timing.  
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up  
resistor) at that time in each mode are as follows.  
Standard mode: Cb = 400 pF, Rb = 2.7 kΩ  
Page 60 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(2) I2C fast mode  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high- LS (low-speed  
speed main) main) Mode voltage main)  
Mode Mode  
MIN. MAX. MIN. MIN. MAX. MIN.  
LV (low-  
Unit  
Fast mode:  
SCLA0 clock frequency  
Setup time of restart condition  
Hold time Note 1  
fSCL  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
0
0
400  
400  
0
0
400  
400  
400  
0
400  
400  
400  
kHz  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
μs  
fCLK 3.5  
MHz  
0
0
0
tSU:STA  
tHD:STA  
tLOW  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
1.8 V EVDD 5.5 V  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
1.3  
1.3  
1.3  
0.6  
0.6  
0.6  
100  
100  
100  
0
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
1.3  
1.3  
1.3  
0.6  
0.6  
0.6  
100  
100  
100  
0
0.6  
0.6  
Hold time when SCLA0 = “L”  
Hold time when SCLA0 = “H”  
Data setup time (reception)  
Data hold time (transmission)Note 2  
Setup time of stop condition  
Bus-free time  
1.3  
1.3  
tHIGH  
0.6  
0.6  
tSU:DAT  
tHD:DAT  
tSU:STO  
tBUF  
100  
100  
0
0
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0
0
0
0
0.6  
0.6  
0.6  
0.6  
0.6  
1.3  
1.3  
1.3  
0.6  
0.6  
0.6  
1.3  
1.3  
1.3  
1.3  
1.3  
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.  
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK  
(acknowledge) timing.  
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up  
resistor) at that time in each mode are as follows.  
Fast mode:  
Cb = 320 pF, Rb = 1.1 kΩ  
Page 61 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(3) I2C fast mode plus  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed LS (low-speed LV (low-voltage Unit  
main) Mode main) Mode main) Mode  
MIN. MAX. MIN. MAX.  
MIN.  
0
MAX.  
1000  
Fast mode plus:  
SCLA0 clock frequency  
fSCL  
2.7 V EVDD 5.5 V  
kHz  
fCLK 10 MHz  
Setup time of restart  
condition  
tSU:STA  
2.7 V EVDD 5.5 V  
0.26  
μs  
Hold timeNote 1  
tHD:STA  
2.7 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
0.26  
0.5  
μs  
μs  
Hold time when SCLA0 =  
“L”  
tLOW  
Hold time when SCLA0 =  
“H”  
tHIGH  
2.7 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
0.26  
50  
μs  
μs  
μs  
μs  
μs  
Data setup time  
(reception)  
tSU:DAT  
tHD:DAT  
tSU:STO  
tBUF  
Data hold time  
(transmission)Note 2  
0
0.45  
Setup time of stop  
condition  
0.26  
0.5  
Bus-free time  
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.  
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK  
(acknowledge) timing.  
Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection  
register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in  
the redirect destination.  
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up  
resistor) at that time in each mode are as follows.  
Fast mode plus: Cb = 120 pF, Rb = 1.1 kΩ  
IICA serial transfer timing  
t
LOW  
SCLA0  
SDAA0  
t
HD:DAT  
t
HIGH  
SU:DAT  
t
SU:STA  
t
HD:STA  
t
SU:STO  
t
HD:STA  
t
t
LOW  
Stop  
Start  
Restart  
condition  
Stop  
condition  
condition condition  
Page 62 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.6 Analog Characteristics  
2.6.1 A/D converter characteristics  
Classification of A/D converter characteristics  
Reference Voltage  
Reference voltage (+) = AVREFP Reference voltage (+) = VDD  
Reference voltage () = AVREFM Reference voltage () = VSS  
Reference voltage (+) = VBGR  
Input channel  
ANI0, ANI1  
Reference voltage () = AVREFM  
Refer to 2.6.1 (3).  
Refer to 2.6.1 (4).  
ANI16 to ANI23  
Refer to 2.6.1 (2).  
Refer to 2.6.1 (1).  
Internal reference voltage  
Temperature sensor output voltage  
(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1  
(ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage  
(TA = 40 to +85°C, 2.4 V EVDD = VDD 5.5 V, 1.6 V AVREFP VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) =  
AVREFP, Reference voltage () = AVREFM = 0 V)  
Parameter  
Resolution  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
MAX.  
10  
Unit  
bit  
Overall errorNote 1  
AINL  
10-bit resolution  
1.8 V VDD 5.5 V  
1.2  
1.2  
3.5  
7.0  
39  
LSB  
LSB  
μs  
Note 3  
1.6 V VDD 5.5 V Note 4  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
2.4 V VDD 5.5 V  
AVREFP = VDD  
Conversion time  
tCONV  
10-bit resolution  
2.375  
3.5625  
17  
Target pin: Internal reference  
voltage, and temperature  
sensor output voltage (HS  
(high-speed main) mode)  
39  
μs  
39  
μs  
Zero-scale errorNotes 1, 2 EZS  
Full-scale errorNotes 1, 2 EFS  
1.8 V AVREFP 5.5 V  
1.6 V AVREFP 5.5 V Note 4  
1.8 V AVREFP 5.5 V  
1.6 V AVREFP 5.5 V Note 4  
1.8 V VDD 5.5 V  
0.25  
0.50  
0.25  
0.50  
2.5  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
10-bit resolution  
Note 3  
AVREFP = VDD  
10-bit resolution  
Note 3  
AVREFP = VDD  
Integral linearity  
errorNote 1  
ILE  
10-bit resolution  
Note 3  
1.6 V VDD 5.5 V Note 4  
5.0  
LSB  
AVREFP = VDD  
Differential linearity  
errorNote 1  
DLE  
10-bit resolution  
1.8 V VDD 5.5 V  
1.6 V VDD 5.5 V Note 4  
1.5  
LSB  
Note 3  
AVREFP = VDD  
2.0  
LSB  
Note 5  
Analog input voltage  
VAIN  
VBGR  
Internal reference voltage  
VBGR  
V
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Note 5  
Temperature sensor output voltage  
VTMPS25  
V
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. When AVREFP < VDD, the MAX. values are as follows.  
Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD.  
Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD.  
Integral linearity error/Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD.  
4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).  
5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.  
Page 63 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1  
(ADREFM = 1), target pin : ANI16 to ANI23  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, 1.6 V AVREFP VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) =  
AVREFP, Reference voltage () = AVREFM = 0 V)  
Parameter  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
MAX.  
10  
Unit  
bit  
Resolution  
Overall errorNote 1  
Conversion time  
AINL  
10-bit resolution  
1.8 V AVREFP 5.5 V  
1.2  
1.2  
5.0  
LSB  
LSB  
AVREFP = EVDD = VDD  
1.6 V AVREFP 5.5 V  
8.5  
Note 3  
Note 4  
tCONV  
10-bit resolution  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
1.8 V VDD 5.5 V  
1.6 V VDD 5.5 V  
1.8 V AVREFP 5.5 V  
2.125  
3.1875  
17  
39  
μs  
μs  
AVREFP = EVDD = VDD  
39  
Note 3  
39  
μs  
57  
95  
μs  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
Integral linearity errorNote 1  
EZS  
0.35  
0.60  
%FSR  
%FSR  
10-bit resolution  
Note  
Note  
AVREFP = EVDD = VDD  
1.6 V AVREFP 5.5 V  
3
Note 4  
10-bit resolution  
EFS  
1.8 V AVREFP 5.5 V  
0.35  
0.60  
%FSR  
%FSR  
AVREFP = EVDD = VDD  
1.6 V AVREFP 5.5 V  
3
Note 4  
ILE  
DLE  
VAIN  
10-bit resolution  
1.8 V AVREFP 5.5 V  
3.5  
6.0  
LSB  
LSB  
AVREFP = EVDD = VDD  
1.6 V AVREFP 5.5 V  
Note 3  
Note 4  
Differential linearity error  
10-bit resolution  
1.8 V AVREFP 5.5 V  
2.0  
2.5  
LSB  
LSB  
Note 1  
AVREFP = EVDD = VDD  
1.6 V AVREFP 5.5 V  
Note 3  
Note 4  
Analog input voltage  
0
AVREFP  
and  
V
EVDD  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. When AVREFP < EVDD = VDD, the MAX. values are as follows.  
Overall error: Add 4.0 LSB to the MAX. value when AVREFP = VDD  
.
Zero-scale error/Full-scale error: Add 0.20%FSR to the MAX. value when AVREFP = VDD  
.
Integral linearity error/Differential linearity error: Add 2.0 LSB to the MAX. value when AVREFP = VDD  
.
4. When the conversion time is set to 57 μs (min.) and 95 μs (max.).  
Page 64 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage () = VSS (ADREFM = 0),  
target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage  
(TA = 40 to +85°C, 1.6 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) = VDD, Reference voltage ()  
= VSS)  
Parameter  
Resolution  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
MAX. Unit  
10 bit  
Overall errorNote 1  
AINL  
10-bit resolution  
10-bit resolution  
1.8 V VDD 5.5 V  
1.2  
1.2  
7.0 LSB  
10.5 LSB  
1.6 V VDD 5.5 V  
Note 3  
Conversion time  
tCONV  
3.6 V VDD 5.5 V  
2.125  
39  
39  
39  
95  
39  
39  
39  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
2.7 V VDD 5.5 V 3.1875  
1.8 V VDD 5.5 V  
1.6 V VDD 5.5 V  
3.6 V VDD 5.5 V  
17  
57  
10-bit resolution  
2.375  
Target pin: Internal  
reference voltage, and  
temperature sensor output  
voltage (HS (high-speed  
main) mode)  
2.7 V VDD 5.5 V 3.5625  
2.4 V VDD 5.5 V  
17  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
Integral linearity errorNote 1  
EZS  
EFS  
ILE  
1.8 V VDD 5.5 V  
0.60 %FSR  
0.85 %FSR  
10-bit resolution  
10-bit resolution  
10-bit resolution  
10-bit resolution  
1.6 V VDD 5.5 V  
Note 3  
1.8 V VDD 5.5 V  
0.60 %FSR  
0.85 %FSR  
1.6 V VDD 5.5 V  
Note 3  
1.8 V VDD 5.5 V  
4.0 LSB  
6.5 LSB  
1.6 V VDD 5.5 V  
Note 3  
Differential linearity error Note 1 DLE  
1.8 V VDD 5.5 V  
2.0 LSB  
2.5 LSB  
1.6 V VDD 5.5 V  
Note 3  
Analog input voltage  
VAIN  
ANI0, ANI1  
0
0
VDD  
V
V
V
ANI16 to ANI23  
EVDD  
Note 4  
Internal reference voltage  
VBGR  
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Note 4  
Temperature sensor output voltage  
VTMPS25  
V
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).  
4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.  
Page 65 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage () =  
AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23  
(TA = 40 to +85°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) = VBGR Note 3, Reference  
voltage () = AVREFM Note 4 = 0 V, HS (high-speed main) mode)  
Parameter  
Symbol  
RES  
tCONV  
EZS  
Conditions  
MIN.  
TYP.  
8
MAX.  
Unit  
bit  
Resolution  
Conversion time  
8-bit resolution  
8-bit resolution  
8-bit resolution  
8-bit resolution  
2.4 V VDD 5.5 V  
17  
39  
μs  
Zero-scale errorNotes 1, 2  
Integral linearity errorNote 1  
Differential linearity error Note 1  
Analog input voltage  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
0.60  
2.0  
1.0  
%FSR  
LSB  
LSB  
V
ILE  
DLE  
VAIN  
Note 3  
0
VBGR  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.  
4. When reference voltage () = VSS, the MAX. values are as follows.  
Zero-scale error: Add 0.35%FSR to the MAX. value when reference voltage () = AVREFM.  
Integral linearity error: Add 0.5 LSB to the MAX. value when reference voltage () = AVREFM.  
Differential linearity error: Add 0.2 LSB to the MAX. value when reference voltage () = AVREFM.  
2.6.2 Temperature sensor/internal reference voltage characteristics  
(TA = 40 to +85°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V) (HS (high-speed main) mode)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
1.05  
1.45  
3.6  
MAX.  
1.5  
Unit  
Temperature sensor output voltage VTMPS25 Setting ADS register = 80H, TA = +25°C  
V
V
Internal reference voltage  
Temperature coefficient  
VBGR  
Setting ADS register = 81H  
1.38  
FVTMPS  
Temperature sensor that depends on the  
temperature  
mV/°C  
Operation stabilization wait time  
tAMP  
5
μs  
Page 66 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.6.3 POR circuit characteristics  
(TA = 40 to +85°C, VSS = 0 V)  
Parameter  
Detection voltage  
Symbol  
VPOR  
Conditions  
Power supply rise time  
Power supply fall time  
MIN.  
1.47  
1.46  
300  
TYP.  
1.51  
1.50  
MAX.  
1.55  
1.54  
Unit  
V
VPDR  
V
Minimum pulse widthNote  
TPW  
μs  
Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a  
POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main  
system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control  
register (CSC).  
TPW  
Supply voltage (VDD  
)
V
POR  
VPDR or 0.7 V  
Page 67 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.6.4 LVD circuit characteristics  
(TA = 40 to +85°C, VPDR EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
VLVD0  
Conditions  
Power supply rise time  
MIN.  
3.98  
3.90  
3.68  
3.60  
3.07  
3.00  
2.96  
2.90  
2.86  
2.80  
2.76  
2.70  
2.66  
2.60  
2.56  
2.50  
2.45  
2.40  
2.05  
2.00  
1.94  
1.90  
1.84  
1.80  
1.74  
1.70  
1.64  
1.60  
300  
TYP.  
4.06  
3.98  
3.75  
3.67  
3.13  
3.06  
3.02  
2.96  
2.92  
2.86  
2.81  
2.75  
2.71  
2.65  
2.61  
2.55  
2.50  
2.45  
2.09  
2.04  
1.98  
1.94  
1.88  
1.84  
1.77  
1.73  
1.67  
1.63  
MAX.  
4.14  
4.06  
3.82  
3.74  
3.19  
3.12  
3.08  
3.02  
2.97  
2.91  
2.87  
2.81  
2.76  
2.70  
2.66  
2.60  
2.55  
2.50  
2.13  
2.08  
2.02  
1.98  
1.91  
1.87  
1.81  
1.77  
1.70  
1.66  
Unit  
V
Detection  
voltage  
Supply voltage level  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
μs  
μs  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
VLVD8  
VLVD9  
VLVD10  
VLVD11  
VLVD12  
VLVD13  
Minimum pulse width  
Detection delay time  
tLW  
tLD  
300  
Page 68 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
LVD Detection Voltage of Interrupt & Reset Mode  
(TA = 40 to +85°C, VPDR EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
1.60  
1.74  
1.70  
1.84  
1.80  
2.86  
2.80  
1.80  
1.94  
1.90  
2.05  
2.00  
3.07  
3.00  
2.40  
2.56  
2.50  
2.66  
2.60  
3.68  
3.60  
2.70  
2.86  
2.80  
2.96  
2.90  
3.98  
3.90  
TYP.  
1.63  
1.77  
1.73  
1.88  
1.84  
2.92  
2.86  
1.84  
1.98  
1.94  
2.09  
2.04  
3.13  
3.06  
2.45  
2.61  
2.55  
2.71  
2.65  
3.75  
3.67  
2.75  
2.92  
2.86  
3.02  
2.96  
4.06  
3.98  
MAX.  
1.66  
1.81  
1.77  
1.91  
1.87  
2.97  
2.91  
1.87  
2.02  
1.98  
2.13  
2.08  
3.19  
3.12  
2.50  
2.66  
2.60  
2.76  
2.70  
3.82  
3.74  
2.81  
2.97  
2.91  
3.08  
3.02  
4.14  
4.06  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Interrupt and reset VLVDA0  
VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling reset voltage  
LVIS1, LVIS0 = 1, 0 Rising release reset voltage  
Falling interrupt voltage  
mode  
VLVDA1  
VLVDA2  
VLVDA3  
LVIS1, LVIS0 = 0, 1 Rising release reset voltage  
Falling interrupt voltage  
LVIS1, LVIS0 = 0, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDB1  
VLVDB2  
VPOC2, VPOC1, VPOC0 = 0, 0, 1, falling reset voltage  
LVIS1, LVIS0 = 1, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDB3  
VLVDB4  
LVIS1, LVIS0 = 0, 1 Rising release reset voltage  
Falling interrupt voltage  
LVIS1, LVIS0 = 0, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDC0  
VLVDC1  
VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage  
LVIS1, LVIS0 = 1, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDC2  
VLVDC3  
LVIS1, LVIS0 = 0, 1 Rising release reset voltage  
Falling interrupt voltage  
LVIS1, LVIS0 = 0, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDD0  
VLVDD1  
VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage  
LVIS1, LVIS0 = 1, 0 Rising release reset voltage  
Falling interrupt voltage  
VLVDD2  
VLVDD3  
LVIS1, LVIS0 = 0, 1 Rising release reset voltage  
Falling interrupt voltage  
LVIS1, LVIS0 = 0, 0 Rising release reset voltage  
Falling interrupt voltage  
2.6.5 Supply voltage rise time  
(TA = 40 to +85°C, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
54  
Unit  
Power supply voltage rising slope  
SVDD  
V/ms  
Caution  
Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the  
operating voltage range shown in 30.4 AC Characteristics.  
Page 69 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.7 LCD Characteristics  
2.7.1 Resistance division method  
(1) Static display mode  
(TA = 40 to +85°C, VL4 (MIN.) VDD 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.0  
TYP.  
TYP.  
TYP.  
MAX.  
Unit  
V
VL4  
VDD  
(2) 1/2 bias method, 1/4 bias method  
(TA = 40 to +85°C, VL4 (MIN.) VDD 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.7  
MAX.  
Unit  
V
VL4  
VDD  
(3) 1/3 bias method  
(TA = 40 to +85°C, VL4 (MIN.) VDD 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.5  
MAX.  
Unit  
V
VL4  
VDD  
Page 70 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.7.2 Internal voltage boosting method  
(1) 1/3 bias method  
(TA = 40 to +85°C, 1.8 V VDD 5.5 V, VSS = 0 V)  
Parameter Symbol Conditions  
LCD output voltage variation range VL1  
C1 to C4Note 1  
= 0.47 μF  
MIN.  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
TYP.  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
2 VL1  
MAX.  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VLCD = 04H  
VLCD = 05H  
VLCD = 06H  
VLCD = 07H  
VLCD = 08H  
VLCD = 09H  
VLCD = 0AH  
VLCD = 0BH  
VLCD = 0CH  
VLCD = 0DH  
VLCD = 0EH  
VLCD = 0FH  
VLCD = 10H  
VLCD = 11H  
VLCD = 12H  
VLCD = 13H  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
1.53  
1.58  
1.63  
1.68  
1.73  
1.78  
1.83  
Doubler output voltage  
Tripler output voltage  
VL2  
VL4  
C1 to C4Note 1 = 0.47 μF  
2 VL1  
2 VL1  
0.1  
C1 to C4Note 1 = 0.47 μF  
3 VL1  
3 VL1  
3 VL1  
V
0.15  
Reference voltage setup time Note 2  
Voltage boost wait timeNote 3  
tVWAIT1  
tVWAIT2  
5
ms  
ms  
C1 to C4Note 1 = 0.47 μF  
500  
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF 30%  
2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or  
when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the  
LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).  
3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
Page 71 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
(2) 1/4 bias method  
(TA = 40 to +85°C, 1.8 V VDD 5.5 V, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
C1 to C5Note 1  
= 0.47 μF  
MIN.  
0.90  
TYP.  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
2 VL1  
3 VL1  
4 VL1  
MAX.  
Unit  
V
Note 4  
LCD output voltage variation range VL1  
VLCD = 04H  
VLCD = 05H  
VLCD = 06H  
VLCD = 07H  
VLCD = 08H  
VLCD = 09H  
VLCD = 0AH  
VLCD = 0BH  
VLCD = 0CH  
VLCD = 0DH  
VLCD = 0EH  
VLCD = 0FH  
VLCD = 10H  
VLCD = 11H  
VLCD = 12H  
VLCD = 13H  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
1.53  
1.58  
1.63  
1.68  
1.73  
1.78  
0.95  
V
1.00  
V
1.05  
V
1.10  
V
1.15  
V
1.20  
V
1.25  
V
1.30  
V
1.35  
V
1.40  
V
1.45  
V
1.50  
V
1.55  
V
1.60  
V
1.65  
V
1.83  
Doubler output voltage  
VL2  
VL3  
VL4  
C1 to C5Note 1 = 0.47 μF  
C1 to C5Note 1 = 0.47 μF  
C1 to C5Note 1 = 0.47 μF  
2 VL1 0.08  
3 VL1 0.12  
4 VL1 0.16  
5
2 VL1  
V
Tripler output voltage  
3 VL1  
4 VL1  
V
Note 4  
Quadruply output voltage  
Reference voltage setup time Note 2  
Voltage boost wait timeNote 3  
V
tVWAIT1  
tVWAIT2  
ms  
ms  
C1 to C5Note 1 = 0.47 μF  
500  
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL3 and GND  
C5: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = C5 = 0.47 μF 30%  
2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when  
the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0  
register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).  
3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
4. VL4 must be 5.5 V or lower.  
2.7.3 Capacitor split method  
1/3 bias method  
(TA = 40 to +85°C, 2.2 V VDD 5.5 V, VSS = 0 V)  
Parameter  
Symbol  
VL4  
Conditions  
C1 to C4 = 0.47 μ FNote 2  
C1 to C4 = 0.47 μ FNote 2  
MIN.  
TYP.  
VDD  
MAX.  
Unit  
V
VL4 voltage  
VL2 voltage  
VL2  
2/3 VL4  
2/3 VL4  
2/3 VL4  
+ 0.1  
V
0.1  
VL1 voltage  
VL1  
C1 to C4 = 0.47 μ FNote 2  
1/3 VL4  
1/3 VL4  
1/3 VL4  
+ 0.1  
V
0.1  
Capacitor split wait timeNote 1  
tVWAIT  
100  
ms  
Page 72 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).  
2. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF 30%  
Page 73 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
<R>  
2.8 RAM Data Retention Characteristics  
(TA = 40 to +85°C, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention supply voltage  
VDDDR  
1.46Note  
<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage  
reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.  
Operation mode  
STOP mode  
<R>  
RAM Data retention mode  
VDD  
VDDDR  
STOP instruction execution  
Standby release signal  
(interrupt request)  
2.9 Flash Memory Programming Characteristics  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
fCLK  
Conditions  
1.8 V VDD 5.5 V  
MIN.  
1
TYP.  
MAX.  
24  
Unit  
MHz  
System clock frequency  
Number of code flash rewrites  
Cerwr  
Retained for 20 years  
1,000  
Times  
<R>  
<R>  
<R>  
<R>  
Note 1, 2, 3  
TA = 85°C  
Number of data flash rewrites  
Note 1, 2, 3  
Retained for 1 year  
1,000,000  
TA = 25°C  
Retained for 5 years  
100,000  
10,000  
TA = 85°C  
Retained for 20 years  
TA = 85°C  
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.  
The retaining years are until next rewrite after the rewrite.  
2. When using flash memory programmer and Renesas Electronics self programming library  
3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.  
Remark When updating data multiple times, use the flash memory as one for updating data.  
2.10 Dedicated Flash Memory Programmer Communication (UART)  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
Transfer rate  
During flash memory programming  
115,200  
1,000,000  
Page 74 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
2. ELECTRICAL SPECIFICATIONS (A, G: TA = -40 to +85°C)  
2.11 Timing Specifications for Switching Flash Memory Programming Modes  
(TA = 40 to +85°C, 1.8 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
tSUINIT  
Conditions  
MIN.  
TYP.  
MAX.  
100  
Unit  
ms  
Time to complete the  
POR and LVD reset must be released before  
the external reset is released.  
communication for the initial setting  
after the external reset is released  
Time to release the external reset tSU  
after the TOOL0 pin is set to the  
low level  
POR and LVD reset must be released before  
the external reset is released.  
10  
1
μ s  
Time to hold the TOOL0 pin at the tHD  
low level after the external reset is  
released  
POR and LVD reset must be released before  
the external reset is released.  
ms  
(excluding the processing time of  
the firmware to control the flash  
memory)  
<1>  
<4>  
<2>  
<3>  
RESET  
TOOL0  
t
HD+  
soft processing  
time  
1-byte data for mode setting  
t
SU  
tSUINIT  
<1> The low level is input to the TOOL0 pin.  
<2> The external reset is released (POR and LVD reset must be released before the external  
reset is released.).  
<3> The TOOL0 pin is set to the high level.  
<4> Setting of the flash memory programming mode by UART reception and complete the baud  
rate setting.  
Remark tSUINIT: Communication for the initial setting must be completed within 100 ms after a reset is released during this  
period.  
t
SU  
:
Time to release the external reset after the TOOL0 pin is set to the low level  
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing  
time of the firmware to control the flash memory)  
tHD:  
Page 75 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3. ELECTRICAL SPECIFICATIONS (G: T = -40 to +105°C)  
A
This chapter describes the electrical specifications for the products "G: Industrial applications (TA = -40 to  
+105°C)".  
Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development  
and evaluation. Do not use the on-chip debug function in products designated for mass  
production, because the guaranteed number of rewritable times of the flash memory may be  
exceeded when this function is used, and product reliability therefore cannot be guaranteed.  
Renesas Electronics is not liable for problems occurring when the on-chip debug function is  
used.  
2. With products not provided with an EVDD or EVSS pin, replace EVDD with VDD, or replace EVSS with  
VSS.  
3. For derating with TA = +85 to +105°C, contact our Sales Division or the vender's sales division.  
Derating means the specified reduction in an operating parameter to improve reliability.  
Page 76 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
There are following differences between the products "G: Industrial applications (TA = -40 to +105°C)" and the products “A:  
Consumer applications, and G: Industrial applications (TA = -40 to +85°C)”.  
Parameter  
Application  
A: Consumer applications,  
G: Industrial applications  
(with TA = -40 to +85°C)  
G: Industrial applications  
Operating ambient temperature  
Operating mode  
TA = -40 to +85°C  
TA = -40 to +105°C  
HS (high-speed main) mode:  
2.7 V VDD 5.5 V@1 MHz to 32 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
LS (low-speed main) mode:  
1.8 V VDD 5.5 V@1 MHz to 8 MHz  
LV (low-voltage main) mode:  
1.6 V VDD 5.5 V@1 MHz to 4 MHz  
1.8 V VDD 5.5 V:  
HS (high-speed main) mode only:  
Operating voltage range  
2.7 V VDD 5.5 V@1 MHz to 32 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
High-speed on-chip oscillator clock  
accuracy  
2.4 V VDD 5.5 V:  
1.0%@ TA = -20 to +85°C  
1.5%@ TA = -40 to -20°C  
1.6 V VDD < 1.8 V:  
2.0%@ TA = +85 to +105°C  
1.0%@ TA = -20 to +85°C  
1.5%@ TA = -40 to -20°C  
5.0%@ TA = -20 to +85°C  
5.5%@ TA = -40 to -20°C  
UART  
Serial array unit  
UART  
CSI00: fCLK/2 (supporting 16 Mbps), fCLK/4  
CSI00: fCLK/4  
CSI01  
CSI01  
Simplified I2C communication  
Normal mode  
Simplified I2C communication  
Normal mode  
Fast mode  
IICA  
Fast mode  
Fast mode plus  
Voltage detector  
Rise detection voltage: 1.67 V to 4.06 V  
(14 levels)  
Rise detection voltage: 2.61 V to 4.06 V  
(8 levels)  
Fall detection voltage: 1.63 V to 3.98 V  
(14 levels)  
Fall detection voltage: 2.55 V to 3.98 V  
(8 levels)  
Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to +105°C) are different from  
those of the products “A: Consumer applications, and G: Industrial applications (only with TA = -40 to +85°C)”.  
For details, refer to 3.1 to 3.10.  
Page 77 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.1 Absolute Maximum Ratings  
Absolute Maximum Ratings (TA = 25°C)  
(1/3)  
Parameter  
Supply voltage  
Symbols  
Conditions  
Ratings  
Unit  
V
VDD  
VDD = EVDD  
VDD = EVDD  
0.5 to +6.5  
0.5 to +6.5  
0.5 to +0.3  
EVDD  
EVSS  
VIREGC  
V
V
REGC pin input voltage  
Input voltage  
REGC  
0.3 to +2.8  
V
and 0.3 to VDD + 0.3 Note 1  
VI1  
VI2  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P70 to P74, P120, P125 to P127, P140  
to P147  
0.3 to EVDD + 0.3  
and 0.3 to VDD + 0.3Note 2  
V
V
P60, P61 (N-ch open-drain)  
0.3 to EVDD + 0.3  
and 0.3 to VDD + 0.3Note 2  
0.3 to VDD + 0.3Note 2  
VI3  
P20, P21, P121 to P124, P137, EXCLK, EXCLKS,  
RESET  
V
V
Output voltage  
VO1  
P10 to P17, P30 to P32, P40 to P43, P50 to P54,  
P60, P61, P70 to P74, P120, P125 to P127, P130,  
P140 to P147  
0.3 to EVDD + 0.3  
and 0.3 to VDD + 0.3 Note 2  
VO2  
VAI1  
P20, P21  
0.3 to VDD + 0.3 Note 2  
V
V
Analog input voltage  
ANI16 to ANI23  
0.3 to EVDD + 0.3  
and 0.3 to AVREF(+) + 0.3Notes 2, 3  
VAI2  
ANI0, ANI1  
0.3 to VDD + 0.3  
V
and 0.3 to AVREF(+) + 0.3Notes 2, 3  
Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute  
maximum rating of the REGC pin. Do not use this pin with voltage applied to it.  
2. Must be 6.5 V or lower.  
3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure that  
the absolute maximum ratings are not exceeded.  
Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
2. AVREF (+) : + side reference voltage of the A/D converter.  
3.  
VSS : Reference voltage  
Page 78 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Absolute Maximum Ratings (TA = 25°C)  
(2/3)  
Parameter  
LCD voltage  
Symbols  
Conditions  
Ratings  
Unit  
V
VL1  
VL1 voltageNote 1  
0.3 to +2.8  
and 0.3 to VL4 + 0.3  
VL2  
VL2 voltageNote 1  
VL3 voltageNote 1  
VL4 voltageNote 1  
0.3 to VL4 + 0.3 Note 2  
0.3 to VL4 + 0.3 Note 2  
0.3 to +6.5  
0.3 to VL4 + 0.3 Note 2  
0.3 to VDD + 0.3 Note 2  
V
V
V
V
V
VL3  
VL4  
VLCAP  
VLOUT  
CAPL, CAPH voltageNote 1  
COM0 to COM7, External resistance division  
SEG0 to  
method  
0.3 to VDD + 0.3 Note 2  
0.3 to VL4 + 0.3 Note 2  
SEG38,  
Capacitor split method  
Internal voltage boosting method  
output voltage  
Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3,  
and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using  
the internal voltage boosting method or capacitance split method, connect these pins to VSS via a  
capacitor (0.47 μ F 30%) and connect a capacitor (0.47 μ F 30%) between the CAPL and CAPH  
pins.  
2. Must be 6.5 V or lower.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure that  
the absolute maximum ratings are not exceeded.  
Remark  
VSS : Reference voltage  
Page 79 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Absolute Maximum Ratings (TA = 25°C)  
(3/3)  
Parameter  
Symbols  
Conditions  
Ratings  
Unit  
mA  
Output current, high  
IOH1  
Per pin  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P70 to P74, P120,  
40  
P125 to P127, P130, P140 to P147  
Total of all pins  
P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
70  
mA  
mA  
170 mA  
P15 to P17, P30 to P32,  
P50 to P54, P70 to P74,  
P125 to P127  
100  
IOH2  
IOL1  
Per pin  
P20, P21  
0.5  
1  
mA  
mA  
mA  
Total of all pins  
Per pin  
Output current, low  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P60, P61, P70 to P74,  
P120, P125 to P127, P130,  
P140 to P147  
40  
Total of all pins  
170 mA  
P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
70  
mA  
mA  
P15 to P17, P30 to P32, P50 to P54,  
P60, P61, P70 to P74, P125 to P127  
100  
IOL2  
TA  
Per pin  
P20, P21  
1
mA  
mA  
°C  
Total of all pins  
2
Operating ambient  
temperature  
In normal operation mode  
40 to +105  
In flash memory programming mode  
Storage temperature  
Tstg  
65 to +150  
°C  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge  
of suffering physical damage, and therefore the product must be used under conditions that ensure that  
the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.  
Page 80 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.2 Oscillator Characteristics  
3.2.1 X1, XT1 oscillator characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Resonator  
Conditions  
2.7 V VDD 5.5 V  
2.4 V VDD < 2.7 V  
MIN.  
1.0  
1.0  
32  
TYP.  
MAX.  
20.0  
16.0  
35  
Unit  
MHz  
MHz  
kHz  
X1 clock oscillation  
frequency (fX)Note  
Ceramic resonator/  
crystal resonator  
XT1 clock oscillation  
frequency (fXT)Note  
Crystal resonator  
32.768  
Note Indicates only permissible oscillator frequency ranges. Refer to 3.4 AC Characteristics for instruction execution  
time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator  
characteristics.  
Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1  
clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC)  
by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation  
stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time  
with the resonator to be used.  
3.2.2 On-chip oscillator characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Oscillators  
Parameters  
fIH  
Conditions  
MIN.  
1
TYP.  
MAX.  
24  
Unit  
High-speed on-chip oscillator  
clock frequency Notes 1, 2  
MHz  
High-speed on-chip oscillator  
clock frequency accuracy  
20 to +85°C  
40 to 20°C  
+85 to +105°C  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
1  
+1  
%
%
1.5  
2.0  
+1.5  
+2.0  
%
Low-speed on-chip oscillator  
clock frequency  
fIL  
15  
kHz  
Low-speed on-chip oscillator  
clock frequency accuracy  
15  
+15  
%
Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of  
HOCODIV register.  
2. This indicates the oscillator characteristics only. Refer to 3.4 AC Characteristics for instruction execution  
time.  
Page 81 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.3 DC Characteristics  
3.3.1 Pin characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(1/5)  
Items  
Symbol  
IOH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Output current,  
highNote 1  
Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54,  
P70 to P74, P120, P125 to P127, P130, P140 to P147  
-3.0 Note 2 mA  
Total of P10 to P14, P40 to P43, P120,  
P130, P140 to P147  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
-30.0  
8.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(When duty = 70% Note 3  
)
4.0  
Total of P15 to P17, P30 to P32,  
-30.0  
15.0  
8.0  
P50 to P54, P70 to P74, P125 to P127  
(When duty = 70% Note 3  
)
Total of all pins  
-60.0  
(When duty = 70%Note 3  
P20, P21  
)
IOH2  
Per pin  
Total of all pins  
0.1  
0.2  
mA  
mA  
2.4 V VDD 5.5 V  
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD and  
EVDD pins to an output pin.  
2. Do not exceed the total current value.  
3. Specification under conditions where the duty factor 70%.  
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the  
following expression (when changing the duty factor from 70% to n%).  
Total output current of pins = (IOH × 0.7)/(n × 0.01)  
<Example> Where n = 80% and IOH = 30.0 mA  
Total output current of pins = (30.0 × 0.7)/(80 × 0.01) ≅ −26.25 mA  
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A  
current higher than the absolute maximum rating must not flow into one pin.  
Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 82 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(2/5)  
Items  
Symbol  
IOL1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Output current,  
lowNote 1  
Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54,  
P70 to P74, P120, P125 to P127, P130, P140 to P147  
8.5 Note 2  
mA  
Per pin for P60, P61  
15.0 Note 2  
40.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Total of P10 to P14, P40 to P43, P120, 4.0 V EVDD 5.5 V  
P130, P140 to P147  
(When duty = 70% Note 3  
2.7 V EVDD < 4.0 V  
15.0  
)
2.4 V EVDD < 2.7 V  
9.0  
Total of P15 to P17, P30 to P32, P50 4.0 V EVDD 5.5 V  
to P54, P60, P61, P70 to P74,  
40.0  
2.7 V EVDD < 4.0 V  
35.0  
P125 to P127  
(When duty = 70% Note 3  
2,4 V EVDD < 2.7 V  
20.0  
)
Total of all pins  
80.0  
mA  
(When duty = 70% Note 3  
P20, P21 Per pin  
Total of all pins  
)
IOL2  
0.4  
0.8  
mA  
mA  
2.4 V VDD 5.5 V  
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD and  
EVDD pins to an output pin.  
2. Do not exceed the total current value.  
3. Specification under conditions where the duty factor 70%.  
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the  
following expression (when changing the duty factor from 70% to n%).  
Total output current of pins = (IOL × 0.7)/(n × 0.01)  
<Example> Where n = 80% and IOL = 40.0 mA  
Total output current of pins = (40.0 × 0.7)/(80 × 0.01) 35.0 mA  
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A  
current higher than the absolute maximum rating must not flow into one pin.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 83 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(3/5)  
Items  
Symbol  
VIH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Input voltage,  
high  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P70 to P74, P120,  
P125 to P127, P140 to P147  
Normal input buffer  
0.8EVDD  
EVDD  
V
VIH2  
P10, P11, P15, P16  
TTL input buffer  
2.2  
2.0  
EVDD  
EVDD  
EVDD  
V
V
V
4.0 V  
TTL input buffer  
3.3 V 4.0 V  
TTL input buffer  
2.4 V 3.3 V  
EVDD 5.5 V  
EVDD <  
1.50  
EVDD <  
VIH3  
VIH4  
VIH5  
P20, P21  
P60, P61  
0.7VDD  
0.7EVDD  
0.8VDD  
0
VDD  
EVDD  
V
V
V
V
P121 to P124, P137, EXCLK, EXCLKS, RESET  
VDD  
Input voltage, low VIL1  
P10 to P17, P30 to P32, P40 to P43,  
P50 to P54, P70 to P74, P120,  
P125 to P127, P140 to P147  
Normal input buffer  
0.2EVDD  
VIL2  
P10, P11, P15, P16  
TTL input buffer  
0
0
0
0.8  
0.5  
V
V
V
4.0 V  
TTL input buffer  
3.3 V 4.0 V  
TTL input buffer  
2.4 V 3.3 V  
EVDD 5.5 V  
EVDD <  
0.32  
EVDD <  
VIL3  
VIL4  
VIL5  
P20, P21  
P60, P61  
0
0
0
0.3VDD  
0.3EVDD  
0.2VDD  
V
V
V
P121 to P124, P137, EXCLK, EXCLKS, RESET  
Caution The maximum value of VIH of pins P10, P12, P15, and P17 is EVDD, even in the N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 84 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(4/5)  
Items  
Symbol  
VOH1  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Output voltage,  
high  
P10 to P17, P30 to P32, P40 to P43, 4.0 V  
EVDD  
5.5 V,  
5.5 V,  
5.5 V,  
EVDD −  
0.7  
V
V
V
V
V
V
V
V
V
V
V
V
V
P50 to P54, P70 to P74, P120,  
I
OH1  
=
3.0 mA  
P125 to P127, P130, P140 to P147  
2.7 V  
EVDD  
EVDD −  
0.6  
I
OH1  
=
2.0 mA  
2.4 V  
EVDD  
EVDD −  
0.5  
I
OH1  
=
1.5 mA  
VOH2  
P20, P21  
2.4 V VDD 5.5 V,  
IOH2 = 100 μ A  
VDD 0.5  
Output voltage,  
low  
VOL1  
P10 to P17, P30 to P32, P40 to P43, 4.0 V  
EVDD  
5.5 V,  
5.5 V,  
5.5 V,  
5.5 V,  
0.7  
0.6  
0.4  
0.4  
0.4  
2.0  
0.4  
0.4  
0.4  
P50 to P54, P70 to P74, P120,  
IOL1 = 8.5 mA  
P125 to P127, P130, P140 to P147  
2.7 V  
EVDD  
EVDD  
I
OL1 = 3.0 mA  
2.7 V  
I
OL1 = 1.5 mA  
2.4 V  
OL1 = 0.6 mA  
EVDD  
I
VOL2  
VOL3  
P20, P21  
P60, P61  
2.4 V VDD 5.5 V,  
IOL2 = 400 μ A  
4.0 V  
EVDD  
5.5 V,  
5.5 V,  
5.5 V,  
5.5 V,  
I
OL3 = 15.0 mA  
4.0 V  
EVDD  
I
OL3 = 5.0 mA  
2.7 V  
EVDD  
I
OL3 = 3.0 mA  
2.4 V  
EVDD  
I
OL3 = 2.0 mA  
Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 85 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(5/5)  
Items  
Symbol  
ILIH1  
Conditions  
MIN.  
TYP.  
MAX.  
1
Unit  
Input leakage  
current, high  
P10 to P17, P30 to P32,  
VI = EVDD  
μA  
P40 to P43, P50 to P54, P60,  
P61, P70 to P74, P120,  
P125 to P127, P140 to P147  
ILIH2  
ILIH3  
P20, P21, P137, RESET  
VI = VDD  
VI = VDD  
1
1
μA  
μA  
P121 to P124  
In input port or  
external clock  
input  
(X1, X2, XT1, XT2, EXCLK,  
EXCLKS)  
In resonator  
connection  
10  
μA  
μA  
Input leakage  
current, low  
ILIL1  
P10 to P17, P30 to P32,  
P40 to P43, P50 to P54, P60,  
P61, P70 to P74, P120,  
VI = EVSS  
1  
P125 to P127, P140 to P147  
ILIL2  
ILIL3  
P20, P21, P137, RESET  
VI = VSS  
VI = VSS  
1  
1  
μA  
μA  
P121 to P124  
In input port or  
external clock  
input  
(X1, X2, XT1, XT2, EXCLK,  
EXCLKS)  
In resonator  
connection  
10  
μA  
On-chip pll-up  
resistance  
RU1  
VI = EVSS  
SEGxx port  
2.4 V  
EVDD = VDD  
5.5 V  
10  
10  
20  
20  
100  
100  
kΩ  
kΩ  
RU2  
Ports other than above  
(Except for P60, P61, and  
P130)  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port  
pins.  
Page 86 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.3.2 Supply current characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(1/3)  
Parameter Symbol  
Conditions  
fIH = 24 MHz Note 3  
MIN.  
TYP.  
1.5  
1.5  
3.3  
3.3  
2.5  
2.5  
2.8  
3.0  
2.8  
3.0  
1.8  
1.8  
1.8  
1.8  
3.5  
3.6  
MAX.  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
Supply  
IDD1  
Operating HS (high-  
Basic  
operation  
VDD = 5.0 V  
current  
Note 1  
mode  
speed main)  
VDD = 3.0 V  
mode Note 5  
Normal  
operation  
VDD = 5.0 V  
5.3  
5.3  
3.9  
3.9  
4.7  
4.8  
4.7  
4.8  
2.8  
2.8  
2.8  
2.8  
4.9  
5.0  
VDD = 3.0 V  
fIH = 16 MHz Note 3  
Normal  
operation  
VDD = 5.0 V  
VDD = 3.0 V  
HS (high-  
fMX = 20 MHzNote 2  
VDD = 5.0 V  
fMX = 20 MHzNote 2  
,
,
,
,
Normal  
operation  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
speed main)  
mode Note 5  
Normal  
operation  
VDD = 3.0 V  
fMX = 10 MHzNote 2  
VDD = 5.0 V  
fMX = 10 MHzNote 2  
Normal  
operation  
Normal  
operation  
VDD = 3.0 V  
Subsystem  
clock  
operation  
fSUB = 32.768 kHz  
Normal  
operation  
Note 4  
μA  
TA = 40°C  
fSUB = 32.768 kHz  
Normal  
operation  
Square wave input  
3.6  
3.7  
4.9  
5.0  
μA  
μA  
Note 4  
Resonator connection  
TA = +25°C  
fSUB = 32.768 kHz  
Note 4  
Normal  
operation  
Square wave input  
3.7  
3.8  
5.5  
5.6  
μA  
μA  
Resonator connection  
TA = +50°C  
fSUB = 32.768 kHz  
Note 4  
Normal  
operation  
Square wave input  
3.8  
3.9  
6.3  
6.4  
μA  
μA  
Resonator connection  
TA = +70°C  
fSUB = 32.768 kHz  
Note 4  
Normal  
operation  
Square wave input  
4.1  
4.2  
7.7  
7.8  
μA  
μA  
Resonator connection  
TA = +85°C  
fSUB = 32.768 kHz  
Note 4  
Normal  
operation  
Square wave input  
6.4  
6.5  
19.7  
19.8  
μA  
μA  
Resonator connection  
TA = +105°C  
(Notes and Remarks are listed on the next page.)  
Page 87 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input  
pin is fixed to VDD, EVDD or VSS, EVSS. The values below the MAX. column include the peripheral operation  
current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip  
pull-up/pull-down resistors and the current flowing during data flash rewrite.  
2. When high-speed on-chip oscillator and subsystem clock are stopped.  
3. When high-speed system clock and subsystem clock are stopped.  
4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low  
power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer,  
watchdog timer, and LCD controller/driver.  
5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.  
HS (high-speed main) mode: 2.7 V VDD 5.5 V@1 MHz to 24 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock  
frequency)  
2. fIH: High-speed on-chip oscillator clock frequency  
3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C  
Page 88 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(2/3)  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
Parameter Symbol  
Conditions  
MIN.  
TYP.  
0.44  
0.44  
0.40  
0.40  
0.28  
0.45  
0.28  
0.45  
0.19  
0.26  
0.19  
0.26  
0.31  
0.50  
0.37  
0.56  
0.46  
0.65  
0.57  
0.76  
0.85  
1.04  
3.04  
3.23  
0.17  
0.23  
0.32  
0.43  
0.71  
2.90  
MAX.  
2.3  
HS (high-  
Supply  
IDD2  
Note 2  
HALT  
mode  
fIH = 24 MHz Note 4  
VDD = 5.0 V  
speed main)  
current  
Note 1  
mode Note 7  
VDD = 3.0 V  
2.3  
fIH = 16 MHz Note 4  
VDD = 5.0 V  
1.7  
VDD = 3.0 V  
1.7  
fMX = 20 MHzNote 3  
VDD = 5.0 V  
,
,
,
,
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
Square wave input  
Resonator connection  
1.9  
HS (high-  
speed main)  
mode Note 7  
2.0  
fMX = 20 MHzNote 3  
1.9  
VDD = 3.0 V  
2.0  
fMX = 10 MHzNote 3  
VDD = 5.0 V  
1.02  
1.10  
1.02  
1.10  
0.57  
0.76  
0.57  
0.76  
1.17  
1.36  
1.97  
2.16  
3.37  
3.56  
15.37  
15.56  
0.50  
0.50  
1.10  
1.90  
3.30  
15.30  
fMX = 10 MHzNote 3  
VDD = 3.0 V  
Subsystem  
clock  
fSUB = 32.768 kHzNote 5  
TA = 40°C  
fSUB = 32.768 kHzNote 5  
μA  
operation  
μA  
TA = +25°C  
μA  
fSUB = 32.768 kHzNote 5  
TA = +50°C  
fSUB = 32.768 kHzNote 5  
μA  
μA  
μA  
TA = +70°C  
μA  
fSUB = 32.768 kHzNote 5  
TA = +85°C  
fSUB = 32.768 kHzNote 5  
μA  
μA  
μA  
TA = +105°C  
μA  
Note 6  
IDD3  
STOP  
modeNote 8  
TA = 40°C  
TA = +25°C  
TA = +50°C  
TA = +70°C  
TA = +85°C  
TA = +105°C  
μA  
μA  
μA  
μA  
μA  
μA  
(Notes and Remarks are listed on the next page.)  
Page 89 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input  
pin is fixed to VDD, EVDD or VSS, EVSS. The values below the MAX. column include the peripheral operation  
current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip  
pull-up/pull-down resistors and the current flowing during data flash rewrite.  
2. During HALT instruction execution by flash memory.  
3. When high-speed on-chip oscillator and subsystem clock are stopped.  
4. When high-speed system clock and subsystem clock are stopped.  
5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting  
ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not  
including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.  
6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.  
7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.  
HS (high-speed main) mode: 2.7 V VDD 5.5 V@1 MHz to 24 MHz  
2.4 V VDD 5.5 V@1 MHz to 16 MHz  
8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.  
Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock  
frequency)  
2. fIH: High-speed on-chip oscillator clock frequency  
3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C  
Page 90 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
(3/3)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
0.20  
MAX.  
Unit  
Note 1  
Low-speed on-  
chip oscillator  
operating  
IFIL  
μA  
current  
RTC operating  
current  
IRTC  
fMAIN is stopped  
0.08  
0.08  
0.24  
μA  
μA  
μA  
Notes 1, 2, 3  
12-bit interval  
timer current  
IIT  
Notes 1, 2, 4  
Watchdog timer IWDT  
fIL = 15 kHz  
Notes 1, 2, 5  
operating  
current  
A/D converter  
operating  
current  
IADC  
Notes 1, 6  
When conversion  
at maximum speed  
Normal mode, AVREFP = VDD = 5.0 V  
1.3  
0.5  
1.7  
0.7  
mA  
mA  
Low voltage mode, AVREFP = VDD = 3.0 V  
A/D converter  
reference  
IADREF  
Note 1  
75.0  
μA  
μA  
voltage current  
Temperature  
sensor  
ITMPS  
Note 1  
75.0  
operating  
current  
LVD operating  
current  
ILVD  
0.08  
2.50  
μA  
Notes 1, 7  
mA  
Self-  
IFSP  
12.20  
12.20  
Notes 1, 9  
programming  
operating  
current  
mA  
μA  
μA  
μA  
μA  
BGO operating  
current  
IBGO  
2.50  
Notes 1, 8  
LCD operating  
current  
ILCD1  
Notes 11, 12  
VDD = EVDD = 5.0 V  
VL4 = 5.0 V  
External resistance division method  
Internal voltage boosting method  
0.04  
1.12  
0.63  
0.12  
0.20  
3.70  
2.20  
0.50  
ILCD2  
VDD = EVDD = 5.0 V  
VL4 = 5.1 V (VLCD = 12H)  
VDD = EVDD = 3.0 V  
VL4 = 3.0 V (VLCD = 04H)  
VDD = EVDD = 3.0 V  
VL4 = 3.0 V  
Note 11  
Note 11  
ILCD3  
Capacitor split method  
Note 1  
SNOOZE  
operating  
current  
ISNOZ  
ADC operation  
The mode is performed Note 10  
0.50  
1.20  
1.10  
2.04  
mA  
mA  
The A/D conversion operations are  
performed, Low voltage mode, AVREFP = VDD  
= 3.0 V  
CSI/UART operation  
0.70  
1.54  
mA  
(Notes and Remarks are listed on the next page.)  
Page 91 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Notes 1. Current flowing to VDD.  
2. When high speed on-chip oscillator and high-speed system clock are stopped.  
3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip  
oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of  
either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the  
low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the  
operational current of the real-time clock.  
4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip  
oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of  
either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the  
low-speed on-chip oscillator is selected, IFIL should be added.  
5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).  
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog  
timer is in operation.  
6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or  
IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.  
7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2  
or IDD3 and ILVD when the LVD circuit is in operation.  
8. Current flowing only during data flash rewrite.  
9. Current flowing only during self programming.  
10. For shift time to the SNOOZE mode.  
11. Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the  
sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD  
controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the  
LCD panel.  
The TYP. value and MAX. value are following conditions.  
When fSUB is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)  
4-Time-Slice, 1/3 Bias Method  
12. Not including the current that flows through the external divider resistor when the external resistance division  
method is used.  
Remarks 1. fIL: Low-speed on-chip oscillator clock frequency  
2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)  
3. fCLK: CPU/peripheral hardware clock frequency  
4. Temperature condition of the TYP. value is TA = 25°C  
Page 92 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.4 AC Characteristics  
3.4.1 Basic operation  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Items  
Symbol  
Conditions  
MIN.  
TYP.  
30.5  
MAX.  
Unit  
μs  
Instruction cycle (minimum  
instruction execution time)  
TCY  
Main  
system  
clock (fMAIN)  
operation  
2.7 V  
2.4 V  
V
DD  
5.5 V 0.04167  
1
1
HS (high-speed  
main) mode  
V
DD < 2.7 V 0.0625  
μs  
Subsystem clock (fSUB)  
operation  
2.4 V  
VDD  
5.5 V  
28.5  
31.3  
μs  
In the self  
programming  
mode  
2.7 V  
2.4 V  
VDD  
5.5 V 0.04167  
1
1
μs  
μs  
HS (high-speed  
main) mode  
V
DD < 2.7 V 0.0625  
External system clock frequency  
fEX  
2.7 V VDD 5.5 V  
2.4 V VDD < 2.7 V  
1.0  
1.0  
32  
20.0  
16.0  
35  
MHz  
MHz  
kHz  
ns  
fEXS  
External system clock input high- tEXH, tEXL 2.7 V VDD 5.5 V  
level width, low-level width  
24  
2.4 V VDD < 2.7 V  
30  
ns  
tEXHS,  
tEXLS  
13.7  
μs  
TI00 to TI07 input high-level width, tTIH,  
1/fMCK+10  
ns  
low-level width  
tTIL  
TO00 to TO07 output frequency  
fTO  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
2.4 V VDD 5.5 V  
2.4 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
16  
8
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
μs  
HS (high-speed  
main) mode  
4
PCLBUZ0, PCLBUZ1 output  
frequency  
fPCL  
HS (high-speed  
main) mode  
16  
8
4
Interrupt input high-level width,  
low-level width  
tINTH,  
tINTL  
INTP0  
1
1
INTP1 to INTP7  
KR0 to KR3  
μs  
Key interrupt input low-level width tKR  
RESET low-level width  
250  
10  
ns  
tRSL  
μs  
Remark fMCK: Timer array unit operation clock frequency  
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n).  
n: Channel number (n = 0 to 7))  
Page 93 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Minimum Instruction Execution Time during Main System Clock Operation  
TCY vs VDD (HS (high-speed main) mode)  
10  
1.0  
0.1  
When the high-speed on-chip oscillator clock is selected  
During self programming  
When high-speed system clock is selected  
0.0625  
0.05  
0.0417  
0.01  
5.5  
0
1.0  
2.0  
2.4  
3.0  
2.7  
4.0  
5.0  
6.0  
Supply voltage VDD [V]  
AC Timing Test Points  
V
IH/VOH  
V
IH/VOH  
Test points  
VIL/VOL  
VIL/VOL  
External System Clock Timing  
1/fEX  
/
1/fEXS  
t
t
EXL  
/
t
t
EXH  
/
EXLS  
EXHS  
EXCLK/EXCLKS  
Page 94 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
TI/TO Timing  
t
TIL  
tTIH  
TI00 to TI07  
1/fTO  
TO00 to TO07  
Interrupt Request Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP7  
Key Interrupt Input Timing  
t
KR  
KR0 to KR3  
RESET Input Timing  
t
RSL  
RESET  
Page 95 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.5 Peripheral Functions Characteristics  
AC Timing Test Points  
VIH/VOH  
VIH/VOH  
Test points  
VIL/VOL  
VIL/VOL  
3.5.1 Serial array unit  
(1) During communication at same potential (UART mode)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
MAX.  
fMCK/12  
2.0  
Transfer rate Note 1  
bps  
Theoretical value of the  
maximum transfer rate  
Mbps  
Note 2  
fMCK = fCLK  
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.  
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:  
HS (high-speed main) mode:  
24 MHz (2.7 V VDD 5.5 V)  
16 MHz (2.4 V VDD 5.5 V)  
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using  
port input mode register g (PIMg) and port output mode register g (POMg).  
UART mode connection diagram (during communication at same potential)  
TxDq  
RL78 microcontroller  
RxDq  
Rx  
Tx  
User's device  
UART mode bit width (during communication at same potential) (reference)  
1/Transfer rate  
High-/Low-bit width  
Baud rate error tolerance  
TxDq  
RxDq  
Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 96 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
334 Note 1  
500 Note 1  
tKCY1/2 24  
tKCY1/2 36  
tKCY1/2 76  
66  
MAX.  
SCKp cycle time  
tKCY1  
2.7 V EVDD 5.5 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.4 V EVDD 5.5 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
C = 30 pF Note 5  
SCKp high-/low-level width  
tKH1,  
tKL1  
SIp setup time (to SCKp) Note 2  
SIp hold time (from SCKp) Note 3  
tSIK1  
113  
tKSI1  
38  
Delay time from SCKpto  
tKSO1  
2.4 V EVDD 5.5 V  
50  
SOp output Note 4  
Notes 1. Set a cycle of 4/fMCK or longer.  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
5. C is the load capacitance of the SCKp and SOp output lines.  
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin  
by using port input mode register g (PIMg) and port output mode register g (POMg).  
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM numbers (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 97 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
16/fMCK  
MAX.  
SCKp cycle time Note 5  
tKCY2  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
20 MHz < fMCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fMCK 20 MHz  
16 MHz < fMCK  
fMCK 16 MHz  
12/fMCK  
16/fMCK  
12/fMCK  
2.4 V EVDD 5.5 V  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD < 2.7 V  
2.4 V EVDD 5.5 V  
12/fMCK and 1000  
tKCY2/2 14  
tKCY2/2 16  
tKCY2/2 36  
1/fMCK + 40  
1/fMCK + 60  
1/fMCK + 62  
SCKp high-/low-level  
width  
tKH2,  
tKL2  
SIp setup time  
(to SCKp) Note 1  
tSIK2  
SIp hold time  
(from SCKp) Note 2  
tKSI2  
Delay time from SCKp↓  
tKSO2  
C = 30 pF Note 4  
4.0 V EVDD 5.5 V  
2.7 V EVDD < 4.0 V  
2.4 V EVDD < 2.7 V  
2/fMCK + 66  
2/fMCK + 66  
2/fMCK + 113  
ns  
ns  
Ns  
to SOp output Note 3  
Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. C is the load capacitance of the SOp output lines.  
5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps  
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin  
by using port input mode register g (PIMg) and port output mode register g (POMg).  
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM number (g = 1)  
2. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
CSI mode connection diagram (during communication at same potential)  
SCKp  
SIp  
SCK  
SO  
RL78  
microcontroller  
User's device  
SOp  
SI  
Page 98 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
CSI mode serial transfer timing (during communication at same potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
tKCY1,2  
tKL1,2  
tKH1,2  
SCKp  
tSIK1,2  
tKSI1, 2  
SIp  
Input data  
tKSO1,2  
Output data  
SOp  
CSI mode serial transfer timing (during communication at same potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY1, 2  
t
KH1, 2  
t
KL1, 2  
SCKp  
t
SIK1, 2  
t
KSI1, 2  
SIp  
Input data  
t
KSO1, 2  
Output data  
SOp  
Remarks 1. p: CSI number (p = 00, 01)  
2. m: Unit number, n: Channel number (mn = 00, 01)  
Page 99 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)  
(1/2)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
MAX.  
Transfer rate  
Reception 4.0 V EVDD 5.5 V,  
fMCK/12 Note 1  
bps  
2.7 V Vb 4.0 V  
Theoretical value of the  
maximum transfer rate  
2.0  
Mbps  
Note 2  
fMCK = fCLK  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
fMCK/12 Note 1  
2.0  
bps  
Theoretical value of the  
maximum transfer rate  
Mbps  
Note 2  
fMCK = fCLK  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
fMCK/12  
Note 1  
bps  
Theoretical value of the  
maximum transfer rate  
2.0  
Mbps  
Note 2  
fMCK = fCLK  
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.  
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:  
HS (high-speed main) mode:  
24 MHz (2.7 V VDD 5.5 V)  
16 MHz (2.4 V VDD 5.5 V)  
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin  
products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g  
(PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL  
input buffer selected.  
Remarks 1. Vb[V]: Communication line voltage  
2. q: UART number (q = 0), g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)  
Page 100 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)  
(2/2)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode Unit  
MIN.  
MAX.  
Transfer rate  
Transmission 4.0 V EVDD 5.5 V,  
Note 1  
bps  
2.0 Note 2  
Mbps  
2.7 V Vb 4.0 V  
Theoretical value of the  
maximum transfer rate  
C
b
= 50 pF, R  
b
= 1.4 k  
Ω
, V  
b
= 2.7 V  
= 2.3 V  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
Note 3  
bps  
Theoretical value of the  
maximum transfer rate  
1.2 Note 4  
Mbps  
Cb  
= 50 pF, R  
b
= 2.7 kΩ  
, V  
b
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
Note 5  
bps  
Theoretical value of the  
maximum transfer rate  
0.43  
Note 6  
Mbps  
Cb  
= 50 pF, R  
b
= 5.5 k  
Ω
, V  
b
= 1.6 V  
Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 4.0 V EVDD 5.5 V and 2.7 V Vb 4.0 V  
1
Maximum transfer rate =  
[bps]  
2.2  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
2.2  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
2. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.  
3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 2.7 V EVDD < 4.0 V and 2.3 V Vb 2.7 V  
1
Maximum transfer rate =  
[bps]  
2.0  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
2.0  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
4. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.  
Page 101 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum  
transfer rate.  
Expression for calculating the transfer rate when 1.8 V EVDD < 3.3 V and 1.6 V Vb 2.0 V  
1
Maximum transfer rate =  
[bps]  
1.5  
Vb  
{Cb × Rb × ln (1 −  
)} × 3  
1
1.5  
Vb  
{Cb × Rb × ln (1 −  
)}  
Transfer rate × 2  
Baud rate error (theoretical value) =  
× 100 [%]  
1
(
) × Number of transferred bits  
Transfer rate  
* This value is the theoretical value of the relative difference between the transmission and reception sides.  
6. This value as an example is calculated when the conditions described in the “Conditions” column are met.  
Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.  
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32- to 52-pin  
products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g  
(PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL  
input buffer selected.  
UART mode connection diagram (during communication at different potential)  
Vb  
R
b
TxDq  
RL78 microcontroller  
Rx  
Tx  
User's device  
RxDq  
Page 102 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
UART mode bit width (during communication at different potential) (reference)  
1/Transfer rate  
Low-bit width  
High-bit width  
Baud rate error tolerance  
TxDq  
1/Transfer rate  
High-/Low-bit width  
Baud rate error tolerance  
RxDq  
Remarks 1. Rb[Ω]:Communication line (TxDq) pull-up resistance,  
Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage  
2. q: UART number (q = 0, 1), g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 103 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock  
output)  
(1/2)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
600  
MAX.  
SCKp cycle time  
tKCY1  
tKCY1 4/fCLK 4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
600  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
2300  
SCKp high-level width  
tKH1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
tKCY1/2 150  
tKCY1/2 340  
tKCY1/2 916  
tKCY1/2 24  
tKCY1/2 36  
tKCY1/2 100  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
SCKp low-level width  
tKL1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin  
products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
Page 104 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock  
output)  
(2/2)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
162  
MAX.  
SIp setup time  
tSIK1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(to SCKp) Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
354  
958  
38  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
SIp hold time  
tKSI1  
tKSO1  
tSIK1  
tKSI1  
tKSO1  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
(from SCKp) Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
38  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
38  
Delay time from SCKpto  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
200  
390  
966  
SOp output Note 1  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
SIp setup time  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
88  
88  
(to SCKp) Note  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
220  
38  
SIp hold time  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
(from SCKp) Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
38  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
38  
Delay time from SCKpto  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
50  
50  
50  
SOp output Note 2  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V,  
Cb = 30 pF, Rb = 5.5 kΩ  
(Notes, Caution and Remarks are listed on the page after the next page.)  
Page 105 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.  
2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32- to 52-pin  
products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
CSI mode connection diagram (during communication at different potential)  
<Master>  
Vb  
Vb  
R
b
Rb  
SCKp  
SIp  
SCK  
SO  
User's device  
RL78  
microcontroller  
SOp  
SI  
Remarks 1. Rb[Ω]:Communication line (SCKp, SOp) pull-up resistance,  
Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage  
2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))  
Page 106 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
CSI mode serial transfer timing (master mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
t
KCY1  
t
KL1  
t
KH1  
SCKp  
t
SIK1  
t
KSI1  
SIp  
Input data  
t
KSO1  
SOp  
Output data  
CSI mode serial transfer timing (master mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY1  
t
KL1  
t
KH1  
SCKp  
t
SIK1  
t
KSI1  
SIp  
Input data  
t
KSO1  
Output data  
SOp  
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
Page 107 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
MAX.  
SCKp cycle time Note 1  
tKCY2  
4.0 V  
2.7 V  
EVDD  
5.5 V, 20 MHz < fMCK 24 MHz  
24/fMCK  
20/fMCK  
16/fMCK  
12/fMCK  
32/fMCK  
28/fMCK  
24/fMCK  
16/fMCK  
12/fMCK  
72/fMCK  
64/fMCK  
52/fMCK  
32/fMCK  
20/fMCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Vb 4.0 V  
8 MHz < fMCK 20 MHz  
4 MHz < fMCK 8 MHz  
fMCK 4 MHz  
2.7 V  
2.3 V  
EVDD < 4.0 V, 20 MHz < fMCK 24 MHz  
Vb 2.7 V  
16 MHz < fMCK 20 MHz  
8 MHz < fMCK 16 MHz  
4 MHz < fMCK 8 MHz  
fMCK 4 MHz  
2.4 V  
1.6 V  
EVDD < 3.3 V, 20 MHz < fMCK 24 MHz  
Vb 2.0 V  
16 MHz < fMCK 20 MHz  
8 MHz < fMCK 16 MHz  
4 MHz < fMCK 8 MHz  
fMCK 4 MHz  
SCKp high-/low-level width  
tKH2,  
tKL2  
4.0 V EVDD 5.5 V,  
2.7 V Vb 4.0 V  
tKCY2/2 24  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
t
KCY2/2 36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
t
KCY2/2 100  
1/fMCK + 40  
1/fMCK + 40  
1/fMCK + 60  
1/fMCK + 62  
1/fMCK + 62  
1/fMCK + 62  
SIp setup time  
tSIK2  
tKSI2  
tKSO2  
4.0 V EVDD < 5.5 V,  
2.7 V Vb 4.0 V  
(to SCKp) Note2  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
SIp hold time  
(from SCKp) Note 3  
4.0 V EVDD < 5.5 V,  
2.7 V Vb 4.0 V  
2.7 V EVDD < 4.0 V,  
2.3 V Vb 2.7 V  
2.4 V EVDD < 3.3 V,  
1.6 V Vb 2.0 V  
Delay time from SCKpto  
4.0 V EVDD 5.5 V, 2.7 V Vb 4.0 V,  
Cb = 30 pF, Rb = 1.4 kΩ  
2/fMCK + 240  
2/fMCK + 428  
2/fMCK + 1146  
SOp output Note 4  
2.7 V EVDD < 4.0 V, 2.3 V Vb 2.7 V,  
Cb = 30 pF, Rb = 2.7 kΩ  
2.4 V EVDD < 3.3 V, 1.6 V Vb 2.0 V  
Cb = 30 pF, Rb = 5.5 kΩ  
(Notes, Caution and Remarks are listed on the page after the next page.)  
Page 108 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps  
2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp”  
when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes  
“from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.  
Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance  
(32- to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input  
mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC  
characteristics with TTL input buffer selected.  
CSI mode connection diagram (during communication at different potential)  
<Slave>  
V
b
R
b
SCKp  
SIp  
SCK  
SO  
User's device  
RL78  
microcontroller  
SOp  
SI  
Remarks 1. Rb[Ω]:Communication line (SOp) pull-up resistance,  
Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage  
2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),  
g: PIM and POM number (g = 1)  
3. fMCK: Serial array unit operation clock frequency  
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode  
register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))  
Page 109 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
CSI mode serial transfer timing (slave mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)  
t
KCY2  
t
KL2  
t
KH2  
SCKp  
t
SIK2  
t
KSI2  
SIp  
Input data  
t
KSO2  
Output data  
SOp  
CSI mode serial transfer timing (slave mode) (during communication at different potential)  
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)  
t
KCY2  
t
KL2  
t
KH2  
SCKp  
t
SIK2  
t
KSI2  
SIp  
Input data  
t
KSO2  
Output data  
SOp  
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0),  
n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)  
Page 110 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.5.2 Serial interface IICA  
(1) I2C standard mode  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
SCLA0 clock frequency  
Setup time of restart condition  
Hold timeNote 1  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
MIN.  
0
MAX.  
100  
fSCL  
Standard mode: 2.7 V EVDD 5.5 V  
kHz  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
fCLK 1 MHz  
2.4 V EVDD 5.5 V  
0
100  
tSU:STA  
tHD:STA  
tLOW  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
4.7  
4.7  
4.0  
4.0  
4.7  
4.7  
4.0  
4.0  
250  
250  
0
Hold time when SCLA0 = “L”  
Hold time when SCLA0 = “H”  
Data setup time (reception)  
Data hold time (transmission)Note 2  
Setup time of stop condition  
Bus-free time  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STO  
tBUF  
3.45  
3.45  
0
4.0  
4.0  
4.7  
4.7  
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.  
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK  
(acknowledge) timing.  
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up  
resistor) at that time in each mode are as follows.  
Standard mode: Cb = 400 pF, Rb = 2.7 kΩ  
Page 111 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(2) I2C fast mode  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
HS (high-speed main) Mode  
Unit  
kHz  
μs  
MIN.  
0
MAX.  
400  
Fast mode:  
SCLA0 clock frequency  
Setup time of restart condition  
Hold time Note 1  
fSCL  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
fCLK 3.5 MHz  
0
400  
tSU:STA  
tHD:STA  
tLOW  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
2.7 V EVDD 5.5 V  
2.4 V EVDD 5.5 V  
0.6  
0.6  
0.6  
0.6  
1.3  
1.3  
0.6  
0.6  
100  
100  
0
μs  
Hold time when SCLA0 = “L”  
Hold time when SCLA0 = “H”  
Data setup time (reception)  
μs  
tHIGH  
μs  
tSU:DAT  
ns  
Data hold time (transmission)Note 2 tHD:DAT  
0.9  
0.9  
μs  
0
Setup time of stop condition  
Bus-free time  
tSU:STO  
tBUF  
0.6  
0.6  
1.3  
1.3  
μs  
μs  
Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.  
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK  
(acknowledge) timing.  
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up  
resistor) at that time in each mode are as follows.  
Fast mode:  
Cb = 320 pF, Rb = 1.1 kΩ  
Page 112 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.6 Analog Characteristics  
3.6.1 A/D converter characteristics  
Classification of A/D converter characteristics  
Reference Voltage  
Reference voltage (+) = AVREFP  
Reference voltage () = AVREFM  
Reference voltage (+) = VDD  
Reference voltage () = VSS  
Refer to 3.6.1 (3).  
Reference voltage (+) = VBGR  
Reference voltage () = AVREFM  
Refer to 3.6.1 (4).  
Input channel  
ANI0, ANI1  
ANI16 to ANI23  
Refer to 3.6.1 (2).  
Refer to 3.6.1 (1).  
Internal reference voltage  
Temperature sensor output  
voltage  
(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1  
(ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, 2.4 V AVREFP VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+)  
= AVREFP, Reference voltage () = AVREFM = 0 V)  
Parameter  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
MAX.  
10  
Unit  
bit  
Resolution  
Overall errorNote 1  
Conversion time  
AINL  
10-bit resolution  
2.4 V AVREFP 5.5 V  
1.2  
3.5  
LSB  
Note 3  
AVREFP = VDD  
tCONV  
10-bit resolution  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.375  
3.5625  
17  
39  
39  
39  
μs  
μs  
μs  
Target pin: Internal reference  
voltage, and temperature  
sensor output voltage (HS  
(high-speed main) mode)  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
EZS  
EFS  
ILE  
0.25  
0.25  
2.5  
%FSR  
%FSR  
LSB  
10-bit resolution  
1.8 V AVREFP 5.5 V  
1.8 V AVREFP 5.5 V  
1.8 V AVREFP 5.5 V  
Note 3  
AVREFP = VDD  
10-bit resolution  
Note 3  
AVREFP = VDD  
Integral linearity error  
Note 1  
10-bit resolution  
Note 3  
AVREFP = VDD  
1.8 V AVREFP 5.5 V  
Differential linearity error  
DLE  
10-bit resolution  
1.5  
LSB  
V
Note 1  
Note 3  
AVREFP = VDD  
Note 4  
Analog input voltage  
VAIN  
Internal reference voltage  
VBGR  
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Note 4  
Temperature sensor output voltage  
VTMPS25  
V
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. When AVREFP < VDD, the MAX. values are as follows.  
Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD.  
Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD.  
Integral linearity error/ Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD.  
4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.  
Page 113 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1  
(ADREFM = 1), target pin : ANI16 to ANI23  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, 2.4 V AVREFP VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+)  
= AVREFP, Reference voltage () = AVREFM = 0 V)  
Parameter  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
MAX.  
10  
Unit  
bit  
Resolution  
Overall errorNote 1  
Conversion time  
AINL  
10-bit resolution  
2.4 V AVREFP 5.5 V  
1.2  
5.0  
LSB  
Note 3  
Note 3  
AVREFP = EVDD = VDD  
tCONV  
10-bit resolution  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V AVREFP 5.5 V  
2.125  
3.1875  
17  
39  
39  
μs  
μs  
AVREFP = EVDD = VDD  
39  
μs  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
EZS  
EFS  
0.35  
%FSR  
10-bit resolution  
Note 3  
Note 3  
AVREFP = EVDD = VDD  
10-bit resolution  
2.4 V AVREFP 5.5 V  
2.4 V AVREFP 5.5 V  
0.35  
3.5  
%FSR  
LSB  
AVREFP = EVDD = VDD  
Integral linearity errorNote 1 ILE  
10-bit resolution  
Note 3  
Note 3  
AVREFP = EVDD = VDD  
Differential linearity error  
Note 1  
DLE  
10-bit resolution  
2.4 V AVREFP 5.5 V  
2.0  
LSB  
V
AVREFP = EVDD = VDD  
Analog input voltage  
VAIN  
ANI16 to ANI23  
0
AVREFP  
and EVDD  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. When AVREFP < EVDD = VDD, the MAX. values are as follows.  
Overall error: Add 4.0 LSB to the MAX. value when AVREFP = VDD.  
Zero-scale error/Full-scale error: Add 0.20%FSR to the MAX. value when AVREFP = VDD.  
Integral linearity error/ Differential linearity error: Add 2.0 LSB to the MAX. value when AVREFP = VDD.  
Page 114 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage () = VSS (ADREFM = 0),  
target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) = VDD, Reference voltage ()  
= VSS)  
Parameter  
Resolution  
Symbol  
RES  
Conditions  
MIN.  
8
TYP.  
1.2  
MAX.  
10  
Unit  
bit  
Overall errorNote 1  
AINL  
10-bit resolution  
10-bit resolution  
2.4 V VDD 5.5 V  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
2.4 V VDD 5.5 V  
3.6 V VDD 5.5 V  
2.7 V VDD 5.5 V  
2.4 V VDD 5.5 V  
7.0  
39  
LSB  
μs  
Conversion time  
tCONV  
2.125  
3.1875  
17  
39  
μs  
39  
μs  
10-bit resolution  
2.375  
3.5625  
17  
39  
μs  
Target pin: Internal reference  
voltage, and temperature  
sensor output voltage (HS  
(high-speed main) mode)  
39  
μs  
39  
μs  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
EZS  
EFS  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
0.60  
0.60  
4.0  
%FSR  
%FSR  
LSB  
10-bit resolution  
10-bit resolution  
10-bit resolution  
10-bit resolution  
Integral linearity errorNote 1 ILE  
Differential linearity error  
Note 1  
DLE  
2.0  
LSB  
Analog input voltage  
VAIN  
ANI0, ANI1  
0
0
VDD  
V
V
V
ANI16 to ANI23  
EVDD  
Note 3  
Internal reference voltage output  
VBGR  
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Note 3  
Temperature sensor output voltage  
VTMPS25  
V
(2.4 V VDD 5.5 V, HS (high-speed main) mode)  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.  
Page 115 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage () =  
AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V, Reference voltage (+) = VBGR Note 3, Reference  
voltage () = AVREFM Note 4 = 0 V, HS (high-speed main) mode)  
Parameter  
Symbol  
RES  
tCONV  
EZS  
Conditions  
MIN.  
TYP.  
8
MAX.  
Unit  
bit  
Resolution  
Conversion time  
8-bit resolution  
8-bit resolution  
8-bit resolution  
8-bit resolution  
2.4 V VDD 5.5 V  
17  
39  
μs  
Zero-scale errorNotes 1, 2  
Integral linearity errorNote 1  
Differential linearity error Note 1  
Analog input voltage  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
2.4 V VDD 5.5 V  
0.60  
2.0  
1.0  
%FSR  
LSB  
LSB  
V
ILE  
DLE  
VAIN  
Note 3  
0
VBGR  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.  
4. When reference voltage () = VSS, the MAX. values are as follows.  
Zero-scale error: Add 0.35%FSR to the MAX. value when reference voltage () = AVREFM.  
Integral linearity error: Add 0.5 LSB to the MAX. value when reference voltage () = AVREFM.  
Differential linearity error: Add 0.2 LSB to the MAX. value when reference voltage () = AVREFM.  
Page 116 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.6.2 Temperature sensor/internal reference voltage characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V, HS (high-speed main) mode)  
Parameter  
Symbol  
VTMPS25  
VBGR  
Conditions  
MIN.  
TYP.  
1.05  
1.45  
3.6  
MAX.  
1.5  
Unit  
V
Temperature sensor output voltage  
Internal reference voltage  
Temperature coefficient  
Setting ADS register = 80H, TA = +25°C  
Setting ADS register = 81H  
1.38  
V
FVTMPS  
Temperature sensor that depends on the  
temperature  
mV/°C  
Operation stabilization wait time  
tAMP  
5
μs  
3.6.3 POR circuit characteristics  
(TA = 40 to +105°C, VSS = 0 V)  
Parameter  
Detection voltage  
Symbol  
Conditions  
Power supply rise time  
Power supply fall time  
MIN.  
1.45  
1.44  
300  
TYP.  
1.51  
1.50  
MAX.  
1.57  
1.56  
Unit  
V
VPOR  
VPDR  
TPW  
V
Minimum pulse width  
μs  
Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a  
POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main  
system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control  
register (CSC).  
TPW  
Supply voltage (VDD  
)
V
POR  
VPDR or 0.7 V  
Page 117 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.6.4 LVD circuit characteristics  
(TA = 40 to +105°C, VPDR EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
VLVD0  
Conditions  
Power supply rise time  
MIN.  
3.90  
TYP.  
4.06  
3.98  
3.75  
3.67  
3.13  
3.06  
3.02  
2.96  
2.92  
2.86  
2.81  
2.75  
2.71  
2.65  
2.61  
2.55  
MAX.  
4.22  
4.13  
3.90  
3.81  
3.25  
3.18  
3.14  
3.07  
3.03  
2.97  
2.92  
2.86  
2.81  
2.75  
2.71  
2.65  
Unit  
V
Detection  
voltage  
Supply voltage level  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
μs  
μs  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
Power supply rise time  
Power supply fall time  
3.83  
3.60  
3.53  
3.01  
2.94  
2.90  
2.85  
2.81  
2.75  
2.70  
2.64  
2.61  
2.55  
2.51  
2.45  
300  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
tLW  
Minimum pulse width  
Detection delay time  
300  
LVD Detection Voltage of Interrupt & Reset Mode  
(TA = 40 to +105°C, VPDR EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
2.64  
2.81  
2.75  
2.90  
2.85  
3.90  
3.83  
TYP.  
2.75  
2.92  
2.86  
3.02  
2.96  
4.06  
3.98  
MAX.  
2.86  
3.03  
2.97  
3.14  
3.07  
4.22  
4.13  
Unit  
V
Interrupt and reset VLVDD0  
VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage  
LVIS1, LVIS0 = 1, 0 Rising release reset voltage  
Falling interrupt voltage  
mode  
V
VLVDD1  
V
V
VLVDD2  
VLVDD3  
LVIS1, LVIS0 = 0, 1 Rising release reset voltage  
Falling interrupt voltage  
V
V
LVIS1, LVIS0 = 0, 0 Rising release reset voltage  
Falling interrupt voltage  
V
3.6.5 Power supply voltage rising slope characteristics  
(TA = 40 to +105°C, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
54  
Unit  
Power supply voltage rising slope  
SVDD  
V/ms  
Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the  
operating voltage range shown in 31.4 AC Characteristics.  
Page 118 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.7 LCD Characteristics  
3.7.1 Resistance division method  
(1) Static display mode  
(TA = 40 to +105°C, VL4 (MIN.) VDDNote 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.0  
TYP.  
MAX.  
Unit  
V
VL4  
VDD  
Note Must be 2.4 V or higher.  
(2) 1/2 bias method, 1/4 bias method  
(TA = 40 to +105°C, VL4 (MIN.) VDD 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.7  
TYP.  
TYP.  
MAX.  
Unit  
V
VL4  
VDD  
(3) 1/3 bias method  
(TA = 40 to +105°C, VL4 (MIN.) VDD 5.5 V, VSS = 0 V)  
Parameter  
LCD drive voltage  
Symbol  
Conditions  
MIN.  
2.5  
MAX.  
Unit  
V
VL4  
VDD  
Page 119 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.7.2 Internal voltage boosting method  
(1) 1/3 bias method  
(TA = 40 to +105°C, 2.4 V VDD 5.5 V, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
C1 to C4Note 1  
= 0.47 μF  
MIN.  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
TYP.  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
2 VL1  
MAX.  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
1.53  
1.58  
1.63  
1.68  
1.73  
1.78  
1.83  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LCD output voltage variation range VL1  
VLCD = 04H  
VLCD = 05H  
VLCD = 06H  
VLCD = 07H  
VLCD = 08H  
VLCD = 09H  
VLCD = 0AH  
VLCD = 0BH  
VLCD = 0CH  
VLCD = 0DH  
VLCD = 0EH  
VLCD = 0FH  
VLCD = 10H  
VLCD = 11H  
VLCD = 12H  
VLCD = 13H  
Doubler output voltage  
Tripler output voltage  
VL2  
VL4  
C1 to C4Note 1 = 0.47 μF  
2 VL1  
2 VL1  
0.1  
C1 to C4Note 1 = 0.47 μF  
3 VL1  
3 VL1  
3 VL1  
V
0.15  
Reference voltage setup time Note 2  
Voltage boost wait timeNote 3  
tVWAIT1  
tVWAIT2  
5
ms  
ms  
C1 to C4Note 1 = 0.47 μF  
500  
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF 30%  
2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or  
when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the  
LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).  
3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
Page 120 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
(2) 1/4 bias method  
(TA = 40 to +105°C, 2.4 V VDD 5.5 V, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
C1 to C5Note 1  
= 0.47 μF  
MIN.  
0.90  
TYP.  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
2 VL1  
3 VL1  
4 VL1  
MAX.  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
1.53  
1.58  
1.63  
1.68  
1.73  
1.78  
1.83  
2 VL1  
3 VL1  
4 VL1  
Unit  
V
Note 4  
LCD output voltage variation range VL1  
VLCD = 04H  
VLCD = 05H  
VLCD = 06H  
VLCD = 07H  
VLCD = 08H  
VLCD = 09H  
VLCD = 0AH  
VLCD = 0BH  
VLCD = 0CH  
VLCD = 0DH  
VLCD = 0EH  
VLCD = 0FH  
VLCD = 10H  
VLCD = 11H  
VLCD = 12H  
VLCD = 13H  
0.95  
V
1.00  
V
1.05  
V
1.10  
V
1.15  
V
1.20  
V
1.25  
V
1.30  
V
1.35  
V
1.40  
V
1.45  
V
1.50  
V
1.55  
V
1.60  
V
1.65  
V
Doubler output voltage  
VL2  
VL3  
VL4  
C1 to C5Note 1 = 0.47 μF  
C1 to C5Note 1 = 0.47 μF  
C1 to C5Note 1 = 0.47 μF  
2 VL1 0.08  
3 VL1 0.12  
4 VL1 0.16  
5
V
Tripler output voltage  
V
Note 4  
Quadruply output voltage  
Reference voltage setup time Note 2  
Voltage boost wait timeNote 3  
V
tVWAIT1  
tVWAIT2  
ms  
ms  
C1 to C5Note 1 = 0.47 μF  
500  
Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL3 and GND  
C5: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = C5 = 0.47 μF 30%  
2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when  
the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0  
register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).  
3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
4. VL4 must be 5.5 V or lower.  
Page 121 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.7.3 Capacitor split method  
1/3 bias method  
(TA = 40 to +105°C, 2.4 V VDD 5.5 V, VSS = 0 V)  
Parameter  
Symbol  
VL4  
Conditions  
C1 to C4 = 0.47 μ FNote 2  
C1 to C4 = 0.47 μ FNote 2  
MIN.  
TYP.  
VDD  
MAX.  
Unit  
V
VL4 voltage  
VL2 voltage  
VL2  
2/3 VL4  
2/3 VL4  
2/3 VL4  
+ 0.1  
V
0.1  
VL1 voltage  
VL1  
C1 to C4 = 0.47 μ FNote 2  
1/3 VL4  
1/3 VL4  
1/3 VL4  
+ 0.1  
V
0.1  
Capacitor split wait timeNote 1  
tVWAIT  
100  
ms  
Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).  
2. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF 30%  
Page 122 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
<R>  
3.8 RAM Data Retention Characteristics  
(TA = 40 to +105°C, VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention supply voltage  
VDDDR  
1.44Note  
<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage  
reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.  
Operation mode  
STOP mode  
RAM Data retention mode  
<R>  
VDD  
VDDDR  
STOP instruction execution  
Standby release signal  
(interrupt request)  
3.9 Flash Memory Programming Characteristics  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
fCLK  
Conditions  
1.8 V VDD 5.5 V  
MIN.  
1
TYP.  
MAX.  
24  
Unit  
MHz  
System clock frequency  
Number of code flash rewrites  
Cerwr  
Retained for 20 years  
1,000  
Times  
<R>  
<R>  
<R>  
<R>  
Notes 1, 2, 3  
TA = 85°CNote 4  
Number of data flash rewrites  
Notes 1, 2, 3  
Retained for 1 year  
TA = 25°CNote 4  
1,000,000  
Retained for 5 years  
TA = 85°CNote 4  
100,000  
10,000  
Retained for 20 years  
TA = 85°CNote 4  
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.  
The retaining years are until next rewrite after the rewrite.  
2. When using flash memory programmer and Renesas Electronics self programming library  
3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.  
4. This temperature is the average value at which data are retained.  
<R>  
3.10 Dedicated Flash Memory Programmer Communication (UART)  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
bps  
Transfer rate  
During flash memory programming  
115,200  
1,000,000  
Page 123 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)  
3.11 Timing Specifications for Switching Flash Memory Programming Modes  
(TA = 40 to +105°C, 2.4 V EVDD = VDD 5.5 V, VSS = EVSS = 0 V)  
Parameter  
Symbol  
tSUINIT  
Conditions  
MIN.  
TYP.  
MAX.  
100  
Unit  
ms  
Time to complete the communication  
for the initial setting after the external  
reset is released  
POR and LVD reset must be released before  
the external reset is released.  
Time to release the external reset  
after the TOOL0 pin is set to the low  
level  
tSU  
POR and LVD reset must be released before  
the external reset is released.  
10  
1
μ s  
Time to hold the TOOL0 pin at the  
low level after the external reset is  
released  
tHD  
POR and LVD reset must be released before  
the external reset is released.  
ms  
(excluding the processing time of the  
firmware to control the flash memory)  
<1>  
<4>  
<2>  
<3>  
RESET  
TOOL0  
t
HD+  
soft processing  
time  
1-byte data for mode setting  
t
SU  
tSUINIT  
<1> The low level is input to the TOOL0 pin.  
<2> The external reset is released (POR and LVD reset must be released before the external  
reset is released.).  
<3> The TOOL0 pin is set to the high level.  
<4> Setting of the flash memory programming mode by UART reception and complete the baud  
rate setting.  
Remark tSUINIT: Communication for the initial setting must be completed within 100 ms after the external reset is released  
during this period.  
t
SU  
:
Time to release the external reset after the TOOL0 pin is set to the low level  
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing  
time of the firmware to control the flash memory)  
tHD:  
Page 124 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
4. PACKAGE DRAWINGS  
4.1 32-pin Products  
R5F10RB8AFP, R5F10RBAAFP, R5F10RBCAFP  
R5F10RB8GFP, R5F10RBAGFP, R5F10RBCGFP  
JEITA Package Code  
P-LQFP32-7x7-0.80  
RENESAS Code  
Previous Code  
MASS (TYP.) [g]  
0.2  
PLQP0032GB-A  
P32GA-80-GBT-1  
HD  
2D  
17  
16  
24  
25  
detail of lead end  
1
c
E
HE  
θ
L
32  
9
8
1
e
(UNIT:mm)  
3
b
ITEM DIMENSIONS  
M
x
D
E
7.00 0.10  
7.00 0.10  
9.00 0.20  
9.00 0.20  
1.70 MAX.  
0.10 0.10  
1.40  
A
A2  
HD  
HE  
A
A1  
A2  
b
0.37 0.05  
y
A1  
c
0.145 0.055  
0.50 0.20  
0° to 8°  
0.80  
L
θ
e
x
y
NOTE  
1.Dimensions “ 1” and “ 2” do not include mold flash.  
2.Dimension “ 3” does not include trim offset.  
0.20  
0.10  
Page 125 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
4.2 44-pin Products  
R5F10RF8AFP, R5F10RFAAFP, R5F10RFCAFP  
R5F10RF8GFP, R5F10RFAGFP, R5F10RFCGFP  
JEITA Package Code  
P-LQFP44-10x10-0.80  
RENESAS Code  
Previous Code  
MASS (TYP.) [g]  
0.36  
PLQP0044GC-A  
P44GB-80-UES-2  
HD  
D
detail of lead end  
A3  
c
23  
22  
33  
34  
L
Lp  
E
HE  
L1  
(UNIT:mm)  
ITEM DIMENSIONS  
12  
11  
44  
D
E
10.00 0.20  
10.00 0.20  
12.00 0.20  
12.00 0.20  
1.60 MAX.  
0.10 0.05  
1.40 0.05  
0.25  
1
HD  
HE  
A
ZE  
e
ZD  
A1  
A2  
A3  
b
M
b
x
S
A
A2  
+0.08  
0.37  
0.07  
+0.055  
0.145  
c
0.045  
S
L
0.50  
Lp  
L1  
0.60 0.15  
1.00 0.20  
y
S
A1  
+5°  
3°  
3°  
e
x
0.80  
0.20  
0.10  
1.00  
1.00  
NOTE  
y
Each lead centerline is located within 0.20 mm of  
its true position at maximum material condition.  
ZD  
ZE  
2012 Renesas Electronics Corporation. All rights reserved.  
Page 126 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
4.3 48-pin Products  
R5F10RG8AFB, R5F10RGAAFB, R5F10RGCAFB  
R5F10RG8GFB, R5F10RGAGFB, R5F10RGCGFB  
JEITA Package Code  
P-LFQFP48-7x7-0.50  
RENESAS Code  
Previous Code  
MASS (TYP.) [g]  
0.16  
PLQP0048KF-A  
P48GA-50-8EU-1  
HD  
D
detail of lead end  
36  
25  
24  
A3  
c
37  
L
Lp  
E
HE  
L1  
(UNIT:mm)  
13  
12  
48  
ITEM DIMENSIONS  
1
D
E
7.00 0.20  
7.00 0.20  
9.00 0.20  
9.00 0.20  
1.60 MAX.  
0.10 0.05  
1.40 0.05  
0.25  
ZE  
HD  
HE  
A
e
ZD  
A1  
A2  
M
b
x
S
A
A3  
b
A2  
0.22 0.05  
+0.055  
c
0.145  
0.50  
0.045  
L
S
Lp  
L1  
0.60 0.15  
1.00 0.20  
+5°  
3°  
3°  
y
S
A1  
e
x
0.50  
0.08  
0.08  
0.75  
0.75  
y
ZD  
ZE  
NOTE  
Each lead centerline is located within 0.08 mm of  
its true position at maximum material condition.  
2012 Renesas Electronics Corporation. All rights reserved.  
Page 127 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
4.4 52-pin Products  
R5F10RJ8AFA, R5F10RJAAFA, R5F10RJCAFA  
R5F10RJ8GFA, R5F10RJAGFA, R5F10RJCGFA  
JEITA Package Code  
P-LQFP52-10x10-0.65  
RENESAS Code  
Previous Code  
MASS (TYP.) [g]  
0.3  
PLQP0052JA-A  
P52GB-65-GBS-1  
HD  
2
D
39  
27  
26  
detail of lead end  
40  
c
1
E
HE  
L
14  
13  
52  
1
e
(UNIT:mm)  
3
b
ITEM  
D
DIMENSIONS  
10.00 0.10  
10.00 0.10  
12.00 0.20  
12.00 0.20  
1.70 MAX.  
0.10 0.05  
1.40  
M
x
A
E
A2  
HD  
HE  
A
A1  
A2  
y
A1  
b
c
0.32 0.05  
0.145 0.055  
0.50 0.15  
L
NOTE1.Dimensions “ 1” and “ 2” do not include mold flash.  
0° to 8°  
0.65  
e
x
y
2.Dimension “ 3” does not include trim offset.  
0.13  
0.10  
2012 Renesas Electronics Corporation. All rights reserved.  
Page 128 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
4.5 64-pin Products  
R5F10RLAAFA, R5F10RLCAFA  
R5F10RLAGFA, R5F10RLCGFA  
JEITA Package Code  
P-LQFP64-12x12-0.65  
RENESAS Code  
PLQP0064JA-A  
Previous Code  
MASS (TYP.) [g]  
0.51  
P64GK-65-UET-2  
HD  
D
detail of lead end  
48  
33  
49  
32  
A3  
c
L
Lp  
E
HE  
L1  
(UNIT:mm)  
ITEM DIMENSIONS  
D
E
12.00 0.20  
12.00 0.20  
14.00 0.20  
14.00 0.20  
1.60 MAX.  
0.10 0.05  
1.40 0.05  
0.25  
17  
e
64  
HD  
HE  
A
1
16  
ZE  
A1  
A2  
A3  
b
ZD  
M
b
x
S
+0.08  
0.32  
A
0.07  
+0.055  
0.145  
c
A2  
0.045  
L
0.50  
Lp  
L1  
0.60 0.15  
1.00 0.20  
S
+5°  
3°  
3°  
y
e
x
A1  
0.65  
S
0.13  
y
0.10  
ZD  
ZE  
1.125  
1.125  
NOTE  
Each lead centerline is located within 0.13 mm of  
its true position at maximum material condition.  
2012 Renesas Electronics Corporation. All rights reserved.  
Page 129 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
R5F10RLAAFB, R5F10RLCAFB  
R5F10RLAGFB, R5F10RLCGFB  
JEITA Package Code  
RENESAS Code  
PLQP0064KF-A  
Previous Code  
MASS (TYP.) [g]  
0.35  
P-LFQFP64-10x10-0.50  
P64GB-50-UEU-2  
HD  
D
detail of lead end  
48  
33  
A3  
c
49  
32  
L
Lp  
E
HE  
L1  
(UNIT:mm)  
ITEM DIMENSIONS  
17  
64  
D
E
10.00 0.20  
10.00 0.20  
12.00 0.20  
12.00 0.20  
1.60 MAX.  
0.10 0.05  
1.40 0.05  
0.25  
1
16  
HD  
HE  
A
ZE  
e
A1  
A2  
ZD  
M
b
x
S
A3  
b
A
0.22 0.05  
+0.055  
0.145  
A2  
c
0.045  
L
0.50  
Lp  
L1  
0.60 0.15  
1.00 0.20  
S
+5°  
3°  
3°  
e
x
0.50  
0.08  
0.08  
1.25  
1.25  
y
S
A1  
y
ZD  
ZE  
NOTE  
Each lead centerline is located within 0.08 mm of  
its true position at maximum material condition.  
2012 Renesas Electronics Corporation. All rights reserved.  
Page 130 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
RL78/L12  
4. PACKAGE DRAWINGS  
R5F10RLAANB, R5F10RLCANB  
R5F10RLAGNB, R5F10RLCGNB  
RENESAS Code  
Previous Code  
P64K8-40-9B5-4  
MASS (Typ) [g]  
JEITA Package Code  
<R>  
P-HWQFN64-8x8-0.40  
PWQN0064LA-A  
0.16  
Unit: mm  
D
33  
48  
32  
49  
DETAIL OF A PART  
E
A
A1  
c2  
64  
17  
16  
1
INDEX AREA  
A
S
y
S
D2  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
A
Lp  
EXPOSED DIE PAD  
16  
1
D
E
A
A1  
b
e
7.95  
7.95  
0.00  
0.17  
8.00 8.05  
8.00 8.05  
64  
17  
0.80  
B
E2  
0.20 0.23  
0.40  
Lp  
x
y
ZD  
ZE  
c2  
D2  
E2  
0.30  
0.40 0.50  
ZE  
32  
0.05  
0.05  
49  
48  
33  
1.00  
1.00  
ZD  
e
0.15  
M
b
S A B x  
0.20 0.25  
6.50  
6.50  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Page 131 of 131  
R01DS0157EJ0210 Rev.2.10  
Sep 30, 2016  
Revision History  
RL78/L12 Datasheet  
Description  
Summary  
Rev.  
Date  
Page  
0.01  
0.02  
Feb 20, 2012  
Sep 26, 2012  
-
First Edition issued  
7, 8  
Modification of caution 2 in 1.3.5 64-pin products  
15  
Modification of I/O port in 1.6 Outline of Functions  
Modification of 2. ELECTRICAL SPECIFICATIONS (TARGET)  
Update of package drawings in 3. PACKAGE DRAWINGS  
Modification of 1.5 Block Diagram  
-
-
11 to 15  
16  
1.00  
Jan 31, 2013  
Modification of Note 2 in 1.6 Outline of Functions  
Modification of 1.6 Outline of Functions  
17  
-
Deletion of target in 2. ELECTRICAL SPECIFICATIONS  
Addition of caution 2 to 2. ELECTRICAL SPECIFICATIONS  
Addition of description, note 3, and remark 2 to 2.1 Absolute Maximum Ratings  
18  
19  
20  
Modification of description and addition of note to 2.1 Absolute Maximum  
Ratings  
22, 23  
30  
Modification of 2.2 Oscillator Characteristics  
Modification of notes 1 to 4 in 2.3.2 Supply current characteristics  
Modification of notes 1, 3 to 6, 8 in 2.3.2 Supply current characteristics  
32  
34  
Modification of notes 7, 9, 11, and addition of notes 8, 12 to 2.3.2 Supply current  
characteristics  
36  
Addition of description to 2.4 AC Characteristics  
Modification of 2.5.1 Serial array unit  
38, 40 to  
42, 44 to  
46, 48 to  
52, 54, 55  
57, 58  
62  
Modification of 2.5.2 Serial interface IICA  
Modification of 2.6.2 Temperature sensor/internal reference voltage  
characteristics  
64  
69  
Addition of note and caution in 2.6.5 Supply voltage rise time  
Modification of 2.8 Data Memory STOP Mode Low Supply Voltage Data Retention  
Characteristics  
69  
70  
Modification of conditions in 2.9 Timing Specs for Switching Flash Memory  
Programming Modes  
Modification of 2.10 Timing Specifications for Switching Flash Memory  
Programming Modes  
2.00  
Jan 10, 2014  
1
3
Modification of 1.1 Features  
Modification of Figure 1-1  
4
Modification of part number, note, and caution  
Deletion of COMEXP pin in 1.3.1 to 1.3.5.  
5 to 10  
11  
Modification of description in 1.4 Pin Identification  
Deletion of COMEXP pin in 1.5.1 to 1.5.5  
12 to 16  
17  
Modification of table and note 2 in 1.6 Outline of Functions  
Modification of description in Absolute Maximum Ratings (TA = 25°C) (1/3)  
Modification of description and note 2 in Absolute Maximum Ratings (TA = 25°C)  
(2/3)  
20  
21  
23  
Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator  
characteristics  
23  
24  
Modification of table in 2.2.2 On-chip oscillator characteristics  
Modification of table, notes 2 and 3 in 2.3.1 Pin characteristics (1/5)  
Modification of notes 1 and 3 in 2.3.1 Pin characteristics (2/5)  
Modification of notes 1 and 4 in 2.3.2 Supply current characteristics (1/3)  
Modification of table, notes 1, 5, and 6 in 2.3.2 Supply current characteristics  
(2/3)  
25  
30  
31, 32  
33, 34  
Modification of table, notes 1, 3, 4, and 5 to 10 in 2.3.2 Supply current  
characteristics (3/3)  
C - 1  
Description  
Summary  
Rev.  
Date  
Page  
35  
2.00  
Jan 10, 2014  
Modification of table in 2.4 AC Characteristics  
36  
Addition of Minimum Instruction Execution Time during Main System Clock  
Operation  
37  
39  
39  
Modification of AC Timing Test Points and External System Clock Timing  
Modification of AC Timing Test Points  
Modification of description, notes 1 and 2 in (1) During communication at same  
potential (UART mode)  
41, 42  
42, 43  
45  
Modification of description, remark 2 in (2) During communication at same  
potential (CSI mode)  
Modification of description in (3) During communication at same potential (CSI  
mode)  
Modification of description, notes 1 and 3, and remark 3 in (4) Communication at  
different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)  
Modification of description, and remark 3 in (4) Communication at different  
potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)  
Modification of table, and note 1, caution, and remark 3 in (5) Communication at  
different potential (2.5 V, 3 V) (CSI mode)  
46, 48  
49, 50  
51  
Modification of table and note in (6) Communication at different potential (1.8 V,  
2.5 V, 3 V) (1/3)  
52  
Modification of table and notes 1 to 3 in (6) Communication at different potential  
(1.8 V, 2.5 V, 3 V) (2/3)  
53, 54  
56  
Modification of table, note 3, and remark 3 in (6) Communication at different  
potential (1.8 V, 2.5 V, 3 V) (3/3)  
Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V)  
(CSI mode) (1/2)  
57  
Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V)  
(CSI mode) (2/2)  
59, 60  
61  
Addition of (1) I2C standard mode  
Addition of (2) I2C fast mode  
Addition of (3) I2C fast mode plus  
62  
63  
Addition of table in 2.6.1 A/D converter characteristics  
Modification of description and notes 3 to 5 in 2.6.1 (1)  
Modification of description, notes 3 and 4 in 2.6.1 (2)  
Modification of description, notes 3 and 4 in 2.6.1 (3)  
Modification of description, notes 3 and 4 in 2.6.1 (4)  
Modification of the table in 2.6.2 Temperature sensor/internal reference voltage  
characteristics  
63, 64  
65  
66  
67  
67  
68  
70  
70  
Modification of the table and note in 2.6.3 POR circuit characteristics  
Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode  
Modification from VDD rise slope to Power supply voltage rising slope in 2.6.5  
Supply voltage rise time  
75  
76  
Modification of description in 2.10 Dedicated Flash Memory Programmer  
Communication (UART)  
Modification of the figure in 2.11 Timing Specifications for Switching Flash  
Memory Programming Modes  
77 to 126 Addition of products for industrial applications (G: TA = -40 to +105°C)  
127 to 133 Addition of product names for industrial applications (G: TA = -40 to +105°C)  
2.10  
Sep 30, 2016  
5
6
Modification of pin configuration in 1.3.1 32-pin products  
Modification of pin configuration in 1.3.2 44-pin products  
Modification of pin configuration in 1.3.3 48-pin products  
Modification of pin configuration in 1.3.4 52-pin products  
Modification of pin configuration in 1.3.5 64-pin products  
Modification of description of main system clock in 1.6 Outline of Functions  
Modification of title of 2.8 RAM Data Retention Characteristics, Note, and figure  
Modification of table of 2.9 Flash Memory Programming Characteristics  
Modification of title of 3.8 RAM Data Retention Characteristics, Note, and figure  
Modification of table of 3.9 Flash Memory Programming Characteristics and  
addition of Note 4  
7
8
9, 10  
17  
74  
74  
123  
123  
131  
Modification of 4.5 64-pin Products  
C - 2  
The mark “<R>” shows major revised points. The revised points can be easily searched by copying an “<R>” in the  
PDF file and specifying it in the “Find what:” field.  
All trademarks and registered trademarks are the property of their respective owners.  
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United  
States and Japan.  
Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.  
C - 3  
NOTES FOR CMOS DEVICES  
(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a  
reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL  
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise  
from entering the device when the input level is fixed, and also in the transition period when the input level  
passes through the area between VIL (MAX) and VIH (MIN).  
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If  
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be  
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling  
related to unused pins must be judged separately for each device and according to related specifications  
governing the device.  
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause  
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop  
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.  
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended  
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and  
transported in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work benches and floors should be grounded. The operator should be grounded using a wrist  
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken  
for PW boards with mounted semiconductor devices.  
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS  
device. Immediately after the power source is turned ON, devices with reset functions have not yet been  
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers.  
A
device is not initialized until the reset signal is received. A reset operation must be executed immediately  
after power-on for devices with reset functions.  
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal  
operation and external interface, as a rule, switch on the external power supply after switching on the internal  
power supply. When switching the power supply off, as a rule, switch off the external power supply and then  
the internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements  
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately  
for each device and according to related specifications governing the device.  
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply  
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up  
power supply may cause malfunction and the abnormal current that passes in the device at this time may  
cause degradation of internal elements. Input of signals during the power off state must be judged  
separately for each device and according to related specifications governing the device.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the  
use of these circuits, software, or information.  
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics  
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.  
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or  
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or  
third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.  
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on  
the product's quality grade, as indicated below.  
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; and industrial robots etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.  
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical  
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it  
in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses  
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.  
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage  
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the  
use of Renesas Electronics products beyond such specified ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and  
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,  
please evaluate the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics  
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes  
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.  
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or  
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the  
development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and  
regulations and follow the procedures required by such laws and regulations.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the  
contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics  
products.  
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.  
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
© 2016 Renesas Electronics Corporation. All rights reserved.  
Colophon 5.0  

相关型号:

R5F10RGC

PG-FP5
RENESAS

R5F10RGCA

Ultra-Low Power Technology
RENESAS

R5F10RGCAFB

Integrated LCD controller/driver, True Low Power Platform (as low as 75 μA/MHz, and 0.64 μA for RTC + LVD), 1.6 V to 5.5 V operation, 8 to 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Appli
RENESAS

R5F10RGCG

Ultra-Low Power Technology
RENESAS

R5F10RJ8

PG-FP5
RENESAS

R5F10RJ8A

Ultra-Low Power Technology
RENESAS

R5F10RJ8AFA

Integrated LCD controller/driver, True Low Power Platform (as low as 75 μA/MHz, and 0.64 μA for RTC + LVD), 1.6 V to 5.5 V operation, 8 to 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Appli
RENESAS

R5F10RJ8G

Ultra-Low Power Technology
RENESAS

R5F10RJA

PG-FP5
RENESAS

R5F10RJAA

Ultra-Low Power Technology
RENESAS

R5F10RJAAFA

Integrated LCD controller/driver, True Low Power Platform (as low as 75 μA/MHz, and 0.64 μA for RTC + LVD), 1.6 V to 5.5 V operation, 8 to 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All LCD Based Appli
RENESAS

R5F10RJAG

Ultra-Low Power Technology
RENESAS