R5F523E6AGNF [RENESAS]

32-MHz, 32-bit RX MCUs with up to 256-KB flash memory,;
R5F523E6AGNF
型号: R5F523E6AGNF
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

32-MHz, 32-bit RX MCUs with up to 256-KB flash memory,

文件: 总98页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
R01DS0330EJ0100  
Rev.1.00  
RX23E-A Group  
Renesas MCUs  
Aug 30, 2019  
32-MHz, 32-bit RX MCUs with up to 256-KB flash memory,  
2 low-noise and low-drift 24-bit delta-sigma A/D converters,  
rail-to-rail programmable gain instrumentation amplifiers,  
a low-drift voltage reference, and on-chip excitation current sources  
Features  
■ 32-bit RXv2 CPU core  
Max. operating frequency: 32 MHz  
PLQP0048KB-B 7 × 7 mm, 0.5 mm pitch  
Capable of 64 DMIPS in operation at 32 MHz  
Enhanced DSP: 32-bit multiply-accumulate and 16-bit multiply-  
subtract instructions supported  
Built-in FPU: 32-bit single-precision floating point (compliant to  
IEEE754)  
Divider (fastest instruction execution takes two CPU clock cycles)  
Fast interrupt  
PWQN0040KC-A 6 × 6 mm, 0.5 mm pitch  
CISC Harvard architecture with 5-stage pipeline  
Variable-length instructions, ultra-compact code  
On-chip debugging circuit  
■ Up to 12 extended-function timers  
Memory protection unit (MPU) supported  
16-bit MTU: input capture, output compare, complementary PWM  
output, phase counting mode (six channels)  
8-bit TMR (four channels)  
■ Low power design and architecture  
Operation from a single 1.8-V to 5.5-V supply  
Three low power consumption modes  
16-bit compare-match timers (two channels)  
Low power timer (LPT) that operates during the software standby state  
■ Analog functions  
Two 24-bit delta-sigma A/D converters  
A/D converter with up to 23-bit effective resolution (gain = 1, output  
data rate = 7.6 SPS)  
■ On-chip flash memory for code  
Read cycle of 31.25 ns in 32-MHz operation  
No waiting time when the CPU is reading at full speed  
128-Kbyte to 256-Kbyte capacities  
On-board or off-board user programming  
Programmable at 1.8 V  
For instructions and operands  
■ On-chip data flash memory  
High-precision programmable gain instrumentation amplifier,  
30 nV  
(gain = 128, output data rate = 7.6 SPS)  
RMS  
Rail-to-rail programmable gain instrumentation amplifier  
(gain = 1 to 128)  
Two operating modes and programmable data rates,  
Normal mode: Output data rate of 7.6 SPS to 15625 SPS,  
Low power mode: Output data rate of 1.9 SPS to 3906 SPS  
Offset drift 10 nV/°C (gain = 128)  
Gain drift 1 ppm/°C (gain = 1 (PGA), gain = 2 to 128)  
Up to six differential inputs, 11 single-ended inputs  
Fourth-order sinc filter  
8 Kbytes (1,000,000 program/erase cycles (typ.))  
BGO (Background Operation)  
■ On-chip SRAM, no wait states  
16- to 32-Kbyte size capacities  
■ Data transfer functions  
DMAC: Incorporates four channels  
DTC: Four transfer modes  
■ ELC  
Module operation can be initiated by event signals without using  
interrupts.  
Linked operation between modules is possible while the CPU is  
sleeping.  
Simultaneous 50 Hz/60 Hz rejection (output data rate = 10, 54 SPS)  
Offset error and gain error calibration  
Inter-unit A/D conversion synchronized start  
Delta-sigma A/D input disconnect detection assist  
Delta-sigma A/D reference voltage external input  
Voltage reference  
output voltage: 2.5 V ±0.1%,  
temperature drift: 4 ppm/°C, output current: ±10 mA  
Excitation current sources: Up to four,  
Output current: 50 μA to 1000 μA, current matching: ±0.2%, drift  
matching: 5 ppm/°C  
Bias voltage generator  
output voltage: (AVCC0 + AVSS0)/2  
■ Reset and supply management  
Seven types of reset, including the power-on reset (POR)  
Low voltage detection (LVD) with voltage settings  
■ Clock functions  
Main clock oscillator frequency: 1 MHz to 20 MHz  
External clock input frequency: Up to 20 MHz  
PLL circuit input: 4 MHz to 8 MHz  
On-chip low- and high-speed oscillators, dedicated on-chip low-speed  
oscillator for the IWDT  
Temperature sensor: Accuracy ±5°C  
Low-side switch: 10 Ω on-resistance  
Low power-supply-voltage detectors  
Delta-sigma A/D input voltage fault detectors  
Delta-sigma A/D reference voltage fault detectors and disconnect  
detectors  
Clock frequency accuracy measurement circuit (CAC)  
Excitation current source disconnect detectors  
■ Independent watchdog timer  
15-kHz on-chip oscillator produces a dedicated clock signal to drive  
■ 12-bit A/D converter  
Capable of conversion within 1.4 μs  
Six channels  
Sampling time can be set for each channel  
Self-diagnostic function and analog input disconnect detection  
assistance function  
IWDT operation.  
■ Useful functions for IEC60730 compliance  
Self-diagnostic and disconnect detection assistance functions for the A/  
D converter, clock frequency accuracy measurement circuit,  
independent watchdog timer, RAM test assistance functions using the  
DOC, etc.  
■ General I/O ports  
5-V tolerant, open drain, input pull-up, switching of driving capacity  
■ MPC  
Input/output functions selectable from multiple pins  
■ Operating temperature range  
–40°C to +85°C  
■ Up to eight communication functions  
CAN (one channel) compliant to ISO11898-1:  
Transfer at up to 1 Mbps  
–40°C to +105°C  
■ Applications  
General industrial and consumer equipment  
SCI with many useful functions (up to four channels),  
asynchronous mode, clock synchronous mode, smart card interface,  
reduction of errors in communications using the bit rate modulation  
function  
2
I C bus interface: Transfer at up to 400 kbps, capable of SMBus  
operation (one channel)  
RSPI (one channel): Transfer at up to 16 Mbps  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 1 of 98  
RX23E-A Group  
1. Overview  
1.  
Overview  
1.1  
Outline of Specifications  
Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different  
packages.  
Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will  
differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different  
Packages.  
Table 1.1  
Outline of Specifications (1/4)  
Classification Module/Function  
Description  
CPU  
CPU  
Maximum operating frequency: 32 MHz  
32-bit RX CPU (RX v2)  
Minimum instruction execution time: One instruction per clock cycle  
Address space: 4-Gbyte linear  
Register set  
General purpose: Sixteen 32-bit registers  
Control: Ten 32-bit registers  
Accumulator: Two 72-bit registers  
Basic instructions: 75 (variable-length instruction format)  
Floating-point instructions: 11  
DSP instructions: 23  
Addressing modes: 10  
Data arrangement  
Instructions: Little endian  
Data: Selectable as little endian or big endian  
On-chip 32-bit multiplier: 32-bit × 32-bit → 64-bit  
On-chip divider: 32-bit ÷ 32-bit → 32 bits  
Barrel shifter: 32 bits  
Memory protection unit (MPU)  
FPU  
Single precision (32-bit) floating point  
Data types and exceptions in conformance with the IEEE754 standard  
Memory  
ROM  
Capacity: 128/256 Kbytes  
32 MHz: No-wait access  
Programming/erasing method:  
Serial programming (asynchronous serial communication), self-programming  
RAM  
Capacity: 16/32 Kbytes  
32 MHz, no-wait memory access  
E2 DataFlash  
Capacity: 8 Kbytes  
Number of erase/write cycles: 1,000,000 (typ)  
MCU operating mode  
Single-chip mode  
Clock  
Clock generation circuit Main clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL  
frequency synthesizer, and IWDT-dedicated on-chip oscillator  
Oscillation stop detection: Available  
Clock frequency accuracy measurement circuit (CAC)  
Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and  
FlashIF clock (FCLK)  
The CPU and system sections such as other bus masters run in synchronization with the  
system clock (ICLK): 32 MHz (at max.)  
MTU2a runs in synchronization with the PCLKA: 32 MHz (at max.)  
The ADCLK for the S12AD runs in synchronization with the PCLKD: 32 MHz (at max.)  
Peripheral modules other than MTU2a and S12AD run in synchronization with the  
PCLKB: 32 MHz (at max.)  
The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.)  
Resets  
RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer  
reset, and software reset  
Voltage  
Voltage detection circuit When the voltage on VCC falls below the voltage detection level, an internal reset or  
detection  
(LVDAb)  
internal interrupt is generated.  
Voltage detection circuit 0 is capable of selecting the detection voltage from 4 levels  
Voltage detection circuit 1 is capable of selecting the detection voltage from 14 levels  
Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 2 of 98  
RX23E-A Group  
1. Overview  
Table 1.1  
Outline of Specifications (2/4)  
Classification Module/Function  
Description  
Low power  
Low power consumption Module stop function  
consumption  
functions  
Three low power consumption modes  
Sleep mode, deep sleep mode, and software standby mode  
Low power timer that operates during the software standby state  
Function for lower  
operating power  
consumption  
Operating power control modes  
High-speed operating mode and middle-speed operating mode  
Interrupt  
DMA  
Interrupt controller  
(ICUb)  
Interrupt vectors: 256  
External interrupts: 9 (NMI, IRQ0 to IRQ7 pins)  
Non-maskable interrupts: 5 (NMI pin, oscillation stop detection interrupt, voltage  
monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt)  
16 levels specifiable for the order of priority  
DMA controller  
(DMACA)  
4 channels  
Three transfer modes: Normal transfer, repeat transfer, and block transfer  
Activation sources: Software trigger, external interrupts, and interrupt requests from  
peripheral functions  
Data transfer controller  
(DTCa)  
Transfer modes: Normal transfer, repeat transfer, and block transfer  
Activation sources: Interrupts  
Chain transfer function  
I/O ports  
General I/O ports  
48-pin/40-pin  
I/O: 20/16  
Input: 1/1  
Pull-up resistors: 20/16  
Open-drain outputs: 20/16  
5-V tolerance: 2/2  
Event link controller (ELC)  
Event signals of 56 types can be directly connected to the module  
Operations of timer modules are selectable at event input  
Capable of event link operation for port B  
Multi-function pin controller (MPC)  
Capable of selecting the input/output function from multiple pins  
Timers  
Multi-function timer  
(16 bits × 6 channels) × 1 unit  
pulse unit 2 (MTU2a)  
Up to 16 pulse-input/output lines and three pulse-input lines are available based on the  
six 16-bit timer channels  
Select from among eight or seven counter-input clock signals for each channel (PCLK/1,  
PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC,  
MTCLKD) other than channel 5, for which only four signals are available.  
Input capture function  
21 output compare/input capture registers  
Pulse output mode  
PWM/complementary PWM/reset synchronous PWM  
Phase-counting mode  
Capable of generating conversion start triggers for the A/D converter  
Port output enable 2  
(POE2a)  
Controls the high-impedance state of the MTU’s waveform output pins  
Compare match timer  
(CMT)  
(16 bits × 2 channels) × 1 unit  
Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512)  
Independent watchdog  
timer (IWDTa)  
14 bits × 1 channel  
Count clock: Dedicated low-speed on-chip oscillator for the IWDT  
Frequency divided by 1, 16, 32, 64, 128, or 256  
Low power timer (LPT)  
8-bit timer (TMR)  
16 bits × 1 channel  
Clock source: Dedicated low-speed on-chip oscillator for the IWDT  
Frequency divided by 2, 4, 8, 16, or 32  
(8 bits × 2 channels) × 2 units  
Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and  
PCLK/8192) and an external clock can be selected  
Pulse output and PWM output with any duty cycle are available  
Two channels can be cascaded and used as a 16-bit timer  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 3 of 98  
RX23E-A Group  
1. Overview  
Table 1.1  
Outline of Specifications (3/4)  
Classification Module/Function  
Description  
Communication Serial communications  
4 channels (channel 1, 5, 6: SCIg, channel 12: SCIh)  
functions  
interfaces (SCIg, SCIh) SCIg  
Serial communications modes: Asynchronous, clock synchronous, and smart-card  
interface  
Multi-processor function  
On-chip baud rate generator allows selection of the desired bit rate  
Choice of LSB-first or MSB-first transfer  
Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12  
Start-bit detection: Level or edge detection is selectable.  
Simple I2C  
Simple SPI  
9-bit transfer mode  
Bit rate modulation  
Event linking by the ELC (only on channel 5)  
SCIh (The following functions are added to SCIg)  
Supports the serial communications protocol, which contains the start frame and  
information frame  
Supports the LIN format  
I2C bus interface  
(RIICa)  
1 channel  
Communications formats: I2C bus format/SMBus format  
Master mode or slave mode selectable  
Supports fast mode  
Serial peripheral  
interface (RSPIb)  
1 channel  
Transfer facility  
Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select),  
and RSPCK (RSPI clock) enables serial transfer through SPI operation (four lines) or  
clock-synchronous operation (three lines)  
Capable of handling serial transfer as a master or slave  
Data formats  
Choice of LSB-first or MSB-first transfer  
The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20,  
24, or 32 bits.  
128-bit buffers for transmission and reception  
Up to four frames can be transmitted or received in a single transfer operation (with each  
frame having up to 32 bits)  
Double buffers for both transmission and reception  
CAN module (RSCAN)  
1 channel  
Compliance with the ISO11898-1 specification (standard frame and extended frame)  
16 Message boxes  
24-bit delta-sigma A/D converter (DSAD) 24 bits (6 channels × 2 units)  
Type of A/D conversion: delta-sigma  
Post filter: Fourth-order sinc filter  
24-bit resolution  
Input types: Differential, pseudo-differential, or single-ended  
Operating modes  
Normal mode/low-power mode  
Modulator clock: 500 kHz (typ.; 125 kHz in low-power mode)  
Oversampling ratio: 32 to 65536 (only multiples of 16)  
Includes a programmable gain instrumentation amplifier (PGA)  
Gain settings: ×1, ×2, ×4, ×8, ×16, ×32, ×64, ×128  
PGA bypass function: with or without an analog input buffer  
Configuration settings per channel  
Conditions for starting A/D conversion:  
software trigger or ELC  
Disconnect detection assist  
Selectable reference voltage  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 4 of 98  
RX23E-A Group  
1. Overview  
Table 1.1  
Outline of Specifications (4/4)  
Classification Module/Function  
Description  
Analog front end (AFE)  
Voltage reference (VREF)  
Output voltage: 2.5V  
Output from bias voltage source (VBIAS)  
Output voltage: (AVCC0 + AVSS0)/2  
Internal temperature sensor (TEMPS)  
Excitation current sources (IEXC)  
Two channels (up to 1000 μA) or four channels (up to 500 μA)  
Output current settings: 50 μA, 100 μA, 250 μA, 500 μA, 750 μA, 1000 μA  
Analog multiplexer (AMUX)  
Select from among external pins, bias voltage sources, internal temperature sensor, or  
excitation current sources  
Low-side switch (LSW)  
On-resistance: 10 Ω (max.)  
Allowable current: 30 mA (max.)  
Voltage detector (VDET)  
Voltage monitoring of AVCC0  
Detection of abnormal voltages at analog inputs  
Detection of abnormal reference voltages and assistance in detecting disconnection  
Assistance in detecting disconnection for excitation current source output  
12-bit A/D converter (S12ADE)  
12 bits (6 channels × 1 unit)  
12-bit resolution  
Minimum conversion time: 1.4 µs per channel when the ADCLK is operating at 32 MHz  
Operating modes  
Scan mode (single scan mode, continuous scan mode, and group scan mode)  
Group A priority control (only for group scan mode)  
Sampling variable  
Sampling time can be set up for each channel.  
Self-diagnostic function  
Double trigger mode (A/D conversion data duplicated)  
Detection of analog input disconnection  
A/D conversion start conditions  
A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC  
Event linking by the ELC  
CRC calculator (CRC)  
CRC code generation for arbitrary amounts of data in 8-bit units  
Select any of three generating polynomials:  
X8 + X2 + X + 1, X16 + X15 + X2 + 1, or X16 + X12 + X5 + 1  
Generation of CRC codes for use with LSB-first or MSB-first communications is  
selectable.  
Data operation circuit (DOC)  
Comparison, addition, and subtraction of 16-bit data  
Power supply voltages/Operating  
frequencies  
VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 5.5 V: 32 MHz  
AVCC0 = 2.7 to 5.5 V (1.8 to 5.5 V when only S12AD is operating)  
Operating temperature range  
Packages  
D version: –40 to +85°C, G version: –40 to +105°C  
48-pin LFQFP (PLQP0048KB-B) 7 × 7 mm, 0.5 mm pitch  
40-pin HWQFN (PWQN0040KC-A) 6 × 6 mm, 0.5 mm pitch  
Debugging interface  
One-wire type FINE interface  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 5 of 98  
RX23E-A Group  
1. Overview  
Table 1.2  
Comparison of Functions for Different Packages  
RX23E-A Group  
48 Pins  
Module/Functions  
Interrupts  
40 Pins  
NMI, IRQ0 to IRQ7  
4 channels (DMAC0 to DMAC3)  
Available  
External interrupts  
DMA  
DMA controller  
Data transfer controller  
Multi-function timer pulse unit 2  
Port output enable 2  
8-bit timer  
Timers  
6 channels (MTU0 to MTU5)  
POE0# to POE3#, POE8#  
2 channels × 2 units  
2 channels × 1 unit  
1 channel  
Compare match timer  
Low power timer  
Independent watchdog timer  
Available  
Communication  
functions  
Serial communications interfaces  
(SCIg)  
3 channels  
(SCI1, 5, 6)  
2 channels  
(SCI1, 5)  
Serial communications interfaces  
(SCIh)  
1 channel (SCI12)  
I2C bus interface  
CAN module  
1 channel  
1 channel  
Serial peripheral interface  
1 channel  
24-bit delta-sigma A/D converter  
6 channels × 2 units  
Available  
Analog front end  
Voltage reference  
Excitation current sources  
Analog multiplexer  
Temperature sensor  
Voltage detector  
Available  
Available  
Available  
Available  
12-bit A/D converter  
6 channels  
4 channels  
(including high-precision channels)  
(6 channels)  
(4 channels)  
CRC calculator  
Available  
Available  
Event link controller  
Packages  
48-pin LFQFP  
40-pin HWQFN  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 6 of 98  
RX23E-A Group  
1. Overview  
1.2  
List of Products  
Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package  
type.  
Table 1.3  
List of Products  
ROM  
RAM  
Operating  
Operating  
Group  
Part No.  
Order Part No.  
Package  
Capacity  
Capacity  
E2 DataFlash Frequency Temperature  
RX23E-A  
R5F523E6ADFL  
R5F523E6ADNF  
R5F523E5ADFL  
R5F523E5ADNF  
R5F523E6AGFL  
R5F523E6AGNF  
R5F523E5AGFL  
R5F523E5AGNF  
R5F523E6ADFL#30 PLQP0048KB-B  
R5F523E6ADNF#U0 PWQN0040KC-A  
R5F523E5ADFL#30 PLQP0048KB-B  
R5F523E5ADNF#U0 PWQN0040KC-A  
R5F523E6AGFL#30 PLQP0048KB-B  
R5F523E6AGNF#U0 PWQN0040KC-A  
R5F523E5AGFL#30 PLQP0048KB-B  
R5F523E5AGNF#U0 PWQN0040KC-A  
256 Kbytes  
128 Kbytes  
256 Kbytes  
128 Kbytes  
32 Kbytes  
16 Kbytes  
32 Kbytes  
16 Kbytes  
8 Kbytes  
32 MHz  
–40 to +85°C  
–40 to +105°C  
R
5
F
5 2  
3 E  
6
A
D
F L  
Package type, number of pins, and pin pitch  
FL: LFQFP/48/0.50  
NF: HWQFN/40/0.50  
Range of ambient temperatures for guaranteed operation  
D: Operating ambient temperature: –40 to +85°C  
G: Operating ambient temperature: –40 to +105°C  
Target sensor  
A: Temperature (thermocouple or resistive temperature  
detector)  
ROM, RAM, and E2 DataFlash capacity  
6: 256 Kbytes/32 Kbytes/8 Kbytes  
5: 128 Kbytes/16 Kbytes/8 Kbytes  
Group name  
3E: RX23E Group  
Series name  
52: RX200 Series  
Type of memory  
F: Flash memory version  
Renesas MCU  
Renesas semiconductor product  
Figure 1.1  
How to Read the Product Part Number  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 7 of 98  
RX23E-A Group  
1. Overview  
1.3  
Block Diagram  
Figure 1.2 shows a block diagram.  
E2 DataFlash  
IWDTa  
RSCAN  
LPT  
ELC  
24-bit delta-sigma A/D converter × 6  
channels (unit 0)  
CRC  
24-bit delta-sigma A/D converter × 6  
channels (unit 1)  
SCIg × 3 channels  
SCIh × 1 channel  
RSPIb × 1 channel  
RIICa × 1 channel  
MTU2a × 6 channels  
POE2a  
Voltage reference  
Excitation current sources  
Analog multiplexer  
Voltage detector  
TMR ×2 channels (unit 0)  
TMR ×2 channels (unit 1)  
CMT ×2 channels (unit 0)  
12-bit A/D converter ×6 channels  
DOC  
ICUb  
ROM  
RAM  
DTCa  
CAC  
DMACA  
× 4 channels  
Port 1  
Port 2  
Port 3  
Port B  
Port C  
Port H  
RX CPU  
MPU  
Clock  
generation  
circuit  
LVDAb  
ICUb:  
Interrupt controller  
Data transfer controller  
DMA controller  
Independent watchdog timer  
Event link controller  
MTU2a:  
POE2a:  
CMT:  
DOC:  
CAC:  
MPU:  
TMR:  
RSCAN:  
LPT:  
Multi-function timer pulse unit 2  
Port output enable 2  
Compare match timer  
Data operation circuit  
Clock frequency accuracy measurement circuit  
Memory protection unit  
8-bit timer  
DTCa:  
DMACA:  
IWDTa:  
ELC:  
CRC:  
CRC (cyclic redundancy check) calculator  
SCIg/SCIh: Serial communications interface  
RSPIb:  
RIICa:  
Serial peripheral interface  
I2C bus interface  
CAN module  
Low power timer  
LVDAb:  
Voltage detection circuit  
Figure 1.2  
Block Diagram  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 8 of 98  
RX23E-A Group  
1. Overview  
1.4  
Pin Functions  
Table 1.4 lists the pin functions.  
Table 1.4  
Pin Functions (1/3)  
Classifications Pin Name  
I/O  
Description  
Power supply  
VCC  
VCL  
Input  
Power supply pin. Connect it to the system power supply.  
Connect this pin to the VSS pin via the 4.7 μF smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the pin.  
VSS  
Input  
Ground pin. Connect it to the system power supply (0 V).  
Clock  
XTAL  
Output Pins for connecting a crystal. An external clock can be input through the  
EXTAL pin.  
EXTAL  
CLKOUT  
Input  
Clock output pin.  
Output  
Input  
Operating mode MD  
control  
Pin for setting the operating mode. The signal levels on this pin must not  
be changed during operation.  
System control  
CAC  
RES#  
Input  
Input  
I/O  
Reset pin. This MCU enters the reset state when this signal goes low.  
Input pin for the clock frequency accuracy measurement circuit.  
FINE interface pin.  
CACREF  
FINED  
On-chip  
emulator  
Interrupts  
NMI  
Input  
Input  
I/O  
Non-maskable interrupt request pin.  
Interrupt request pins.  
IRQ0 to IRQ7  
MTIOC0A, MTIOC0B,  
Multi-function  
timer pulse unit 2 MTIOC0C, MTIOC0D  
The TGRA0 to TGRD0 input capture input/output compare output/PWM  
output pins.  
MTIOC1A, MTIOC1B  
I/O  
I/O  
I/O  
I/O  
The TGRA1 and TGRB1 input capture input/output compare output/PWM  
output pins.  
MTIOC2A, MTIOC2B  
The TGRA2 and TGRB2 input capture input/output compare output/PWM  
output pins.  
MTIOC3A, MTIOC3B,  
MTIOC3C, MTIOC3D  
The TGRA3 to TGRD3 input capture input/output compare output/PWM  
output pins.  
MTIOC4A, MTIOC4B,  
MTIOC4C, MTIOC4D  
The TGRA4 to TGRD4 input capture input/output compare output/PWM  
output pins.  
MTIC5U, MTIC5V, MTIC5W Input  
The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input  
pins.  
MTCLKA, MTCLKB,  
MTCLKC, MTCLKD  
Input  
Input  
Input pins for the external clock.  
Port output  
enable 2  
POE0# to POE3#, POE8#  
Input pins for request signals to place the MTU pins in the high impedance  
state.  
8-bit timer  
TMO0 to TMO3  
TMCI0 to TMCI3  
TMRI0 to TMRI3  
Output Compare match output pins.  
Input  
Input  
Input pins for the external clock to be input to the counter.  
Counter reset input pins.  
Serial  
Asynchronous mode/clock synchronous mode  
communications  
interface (SCIg)  
SCK1, SCK5, SCK6  
RXD1, RXD5, RXD6  
TXD1, TXD5, TXD6  
I/O  
Input/output pins for the clock.  
Input pins for received data.  
Input  
Output Output pins for transmitted data.  
Input Input pins for controlling the start of transmission and reception.  
Output Output pins for controlling the start of transmission and reception.  
CTS1#, CTS5#, CTS6#  
RTS1#, RTS5#, RTS6#  
Simple I2C mode  
SSCL1, SSCL5, SSCL6  
SSDA1, SSDA5, SSDA6  
I/O  
I/O  
Input/output pins for the I2C clock.  
Input/output pins for the I2C data.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 9 of 98  
RX23E-A Group  
1. Overview  
Table 1.4  
Pin Functions (2/3)  
Classifications Pin Name  
I/O  
Description  
Serial  
communications  
interface (SCIg)  
Simple SPI mode  
SCK1, SCK5, SCK6  
I/O  
Input/output pins for the clock.  
SMISO1, SMISO5, SMISO6 I/O  
SMOSI1, SMOSI5, SMOSI6 I/O  
Input/output pins for slave transmit data.  
Input/output pins for master transmit data.  
Slave-select input pins.  
SS1#, SS5#, SS6#  
Input  
Serial  
Asynchronous mode/clock synchronous mode  
communications  
interface (SCIh)  
SCK12  
I/O  
Input/output pin for the clock.  
Input pin for receiving data.  
RXD12  
Input  
TXD12  
Output Output pin for transmitting data.  
Input Input pin for controlling the start of transmission and reception.  
Output Output pin for controlling the start of transmission and reception.  
CTS12#  
RTS12#  
Simple I2C mode  
SSCL12  
I/O  
I/O  
Input/output pin for the I2C clock.  
Input/output pin for the I2C data.  
SSDA12  
Simple SPI mode  
SCK12  
I/O  
Input/output pin for the clock.  
SMISO12  
SMOSI12  
SS12#  
I/O  
Input/output pin for slave transmit data.  
Input/output pin for master transmit data.  
Slave-select input pin.  
I/O  
Input  
Extended serial mode  
RXDX12  
Input  
Input pin for data reception by SCIh.  
TXDX12  
Output Output pin for data transmission by SCIh.  
SIOX12  
I/O  
I/O  
Input/output pin for data reception or transmission by SCIh.  
I2C bus interface SCL  
Input/output pin for I2C bus interface clocks. Bus can be directly driven by  
the N-channel open drain output.  
SDA  
I/O  
Input/output pin for I2C bus interface data. Bus can be directly driven by  
the N-channel open drain output.  
Serial peripheral RSPCKA  
I/O  
I/O  
I/O  
I/O  
Input/output pin for the RSPI clock.  
interface  
MOSIA  
Input/output pin for transmitting data from the RSPI master.  
Input/output pin for transmitting data from the RSPI slave.  
Input/output pin to select the slave for the RSPI.  
MISOA  
SSLA0  
SSLA1 to SSLA3  
CRXD0  
Output Output pins to select the slave for the RSPI.  
Input Input pin  
Output Output pin  
CAN module  
CTXD0  
12-bit A/D con-  
verter  
AN000 to AN005  
ADTRG0#  
Input  
Input  
Input  
Analog input pins for the 12-bit A/D converter.  
Input pin for the external trigger signal that start the A/D conversion.  
Analog front end REF0P, REF1P  
REF0N, REF1N  
Positive input pins of the reference voltage for the 24-bit delta-sigma A/D  
converter.  
Input  
Negative input pins of the reference voltage for the 24-bit delta-sigma A/D  
converter.  
REFOUT  
Output Internal reference voltage output pin.  
Connect this to AVSS0 via a capacitor (0.47 µF) for stabilizing the internal  
reference voltage. Place the capacitor close to the pin.  
IEXC0 to IEXC3  
AIN0 to AIN11  
LSW  
Output Excitation current source output pins.  
I/O  
Analog input/output pins.  
Output Low-side-switch output pin.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 10 of 98  
RX23E-A Group  
1. Overview  
Table 1.4  
Pin Functions (3/3)  
Classifications Pin Name  
I/O  
Description  
Analog power  
supply  
AVCC0  
Input  
Input  
Input  
Input  
I/O  
Analog voltage supply pin. Connect this pin to VCC when not using.  
Analog ground pin. Connect this pin to VSS when not using.  
Analog reference voltage supply pin for the 12-bit A/D converter.  
Analog reference ground pin for the 12-bit A/D converter.  
4-bit input/output pins.  
AVSS0  
VREFH0  
VREFL0  
I/O ports  
P14 to P17  
P26, P27  
I/O  
2-bit input/output pins.  
P30, P31, P35 to P37  
PB0, PB1  
I/O  
5-bit input/output pins (P35 input pin).  
2-bit input/output pins.  
I/O  
PC4 to PC7  
PH0 to PH3  
I/O  
4-bit input/output pins.  
I/O  
4-bit input/output pins.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 11 of 98  
RX23E-A Group  
1. Overview  
1.5  
Pin Assignments  
Figure 1.3 and Figure 1.4 show the pin assignments. Table 1.5 and Table 1.6 show the lists of pins and pin functions.  
REF0N  
REF0P  
AIN0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
PH0  
PH1  
PH2  
PH3  
P14  
P15  
P16  
P17  
P26  
P27  
P30  
P31  
22  
21  
20  
19  
18  
AIN1  
RX23E-A Group  
PLQP0048KB-B  
(48-pin LFQFP)  
(Top view)  
AIN2  
AIN3  
AIN4/REF1N  
AIN5/REF1P  
AIN6  
17  
16  
15  
14  
13  
AIN7  
AIN8/VREFL0  
AIN9/VREFH0  
Note:  
This figure indicates the power supply pins and I/O port pins.  
For the pin configuration, see the table “List of Pins and Pin Functions (48-Pin LFQFP)”.  
Figure 1.3  
Pin Assignments of the 48-Pin LFQFP  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 12 of 98  
RX23E-A Group  
1. Overview  
REF0N 31  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PH0  
PH1  
P14  
P15  
P16  
P17  
P26  
P27  
P30  
P31  
32  
33  
34  
35  
REF0P  
AIN0  
RX23E-A Group  
PWQN0040KC-A  
(40-pin HWQFN)  
(Top view)  
AIN1  
AIN4/REF1N  
AIN5/REF1P 36  
AIN6 37  
AIN7  
38  
AIN8/VREFL0 39  
AIN9/VREFH0 40  
Note:  
Note:  
This figure indicates the power supply pins and I/O port pins.  
For the pin configuration, see the table “List of Pins and Pin Functions (40-Pin HWQFN)”.  
It is recommended that the exposed die pad of HWQFN should be connected to VSS.  
Figure 1.4  
Pin Assignments of the 40-Pin HWQFN  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 13 of 98  
RX23E-A Group  
1. Overview  
Table 1.5  
List of Pins and Pin Functions (48-Pin LFQFP) (1/2)  
Power Supply,  
Analog  
Pin  
No.  
Clock, System  
Control  
Timers  
Communications  
(SCIg, SCIh, RSPI, RIIC, CAN)  
(S12AD, VREF,  
IEXC, DSAD, AMUX) Others  
I/O Port  
(MTU, TMR, CMT, POE, CAC)  
1
AIN10/AN004/IEXC0  
to IEXC3  
2
AIN11/AN005/IEXC0  
to IEXC3  
3
AVSS0  
AVCC0  
RES#  
XTAL  
VSS  
4
5
6
P37  
P36  
7
8
EXTAL  
VCC  
9
10  
11  
12  
13  
14  
VCL  
MD  
FINED  
NMI  
P35  
P31  
P30  
MTIOC1A/MTIOC4D/TMO3  
CTS1#/RTS1#/SS1#  
IRQ1  
IRQ0  
MTIOC0A/MTIOC4B/TMCI3/  
POE8#  
RXD1/SMISO1/SSCL1  
15  
16  
17  
P27  
P26  
P17  
MTIOC2B/MTIOC4A/TMRI3  
MTIOC2A/MTIOC4C/TMO0  
SCK1  
IRQ3  
IRQ2  
IRQ7  
TXD1/SMOSI1/SSDA1  
SCK1/MISOA/SDA  
MTIOC3A/MTIOC3B/TMO1/  
POE8#  
18  
19  
20  
P16  
P15  
P14  
MTIOC3C/MTIOC3D/TMO2  
MTIOC0B/MTCLKB/TMCI2  
MTIOC3A/MTCLKA/TMRI2  
TXD1/SMOSI1/SSDA1/MOSIA/  
SCL  
IRQ6/ADTRG0#  
RXD1/SMISO1/SSCL1/SSLA1/  
CRXD0  
IRQ5  
IRQ4  
CTS1#/RTS1#/SS1#/SSLA3/  
CTXD0  
21  
22  
23  
24  
PH3  
PH2  
PH1  
PH0  
MTIC5W/MTCLKB/TMCI0/POE2# CTS6#/RTS6#/SS6#/RSPCKA  
MTIC5V/MTCLKA/TMRI0  
SCK5/MOSIA  
IRQ1  
MTIC5U/MTCLKD/TMO0/POE2#  
TXD5/SMOSI5/SSDA5/SSLA0  
RXD5/SMISO5/SSCL5/SSLA2  
IRQ0/CLKOUT  
MTIOC0D/MTCLKC/TMRI0/  
CACREF  
25  
PC7  
MTIOC3A/MTCLKB/TMO2/  
CACREF  
TXD6/SMOSI6/SSDA6/MISOA  
26  
27  
28  
PC6  
PC5  
PC4  
MTIOC3C/MTCLKA/TMCI2  
MTIOC3B/MTCLKD/TMRI2  
RXD6/SMISO6/SSCL6/MOSIA  
SCK5/SCK6/SCK12/RSPCKA  
MTIOC3D/MTCLKC/TMCI1/  
POE0#  
CTS5#/RTS5#/SS5#/CTS12#/  
RTS12#/SS12#/SSLA0  
29  
PB1  
PB0  
MTIOC1B/MTIOC2A/TMRI1/  
POE1#  
TXD12/TXDX12/SIOX12/  
SMOSI12/SSDA12  
30  
31  
VCC  
MTIOC0C/TMCI0/POE3#  
RXD12/RXDX12/SMISO12/  
SSCL12  
IRQ4  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
VSS  
AVCC0  
AVSS0  
REFOUT  
LSW  
REF0N  
REF0P  
AIN0/IEXC0 to IEXC3  
AIN1/IEXC0 to IEXC3  
AIN2/IEXC0 to IEXC3  
AIN3/IEXC0 to IEXC3  
AIN4/IEXC0 to  
IEXC3/REF1N  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 14 of 98  
RX23E-A Group  
1. Overview  
Table 1.5  
List of Pins and Pin Functions (48-Pin LFQFP) (2/2)  
Power Supply,  
Analog  
Pin  
No.  
Clock, System  
Control  
Timers  
Communications  
(SCIg, SCIh, RSPI, RIIC, CAN)  
(S12AD, VREF,  
IEXC, DSAD, AMUX) Others  
I/O Port  
(MTU, TMR, CMT, POE, CAC)  
44  
45  
46  
47  
48  
AIN5/IEXC0 to  
IEXC3/REF1P  
AIN6/AN000/IEXC0  
to IEXC3  
AIN7/AN001/IEXC0  
to IEXC3  
VREFL0  
VREFH0  
AIN8/AN002/IEXC0  
to IEXC3  
AIN9/AN003/IEXC0  
to IEXC3  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 15 of 98  
RX23E-A Group  
1. Overview  
Table 1.6  
List of Pins and Pin Functions (40-Pin HWQFN)  
Power Supply,  
Analog  
Pin  
No.  
Clock, System  
Control  
Timers  
Communications  
(SCIg, SCIh, RSPI, RIIC, CAN)  
(S12AD, VREF,  
IEXC, DSAD, AMUX) Others  
I/O Port  
(MTU, TMR, CMT, POE, CAC)  
1
AVSS0  
AVCC0  
RES#  
XTAL  
VSS  
2
3
4
P37  
P36  
5
6
EXTAL  
VCC  
7
8
VCL  
9
MD  
FINED  
NMI  
10  
11  
12  
P35  
P31  
P30  
MTIOC1A/MTIOC4D/TMO3  
CTS1#/RTS1#/SS1#  
IRQ1  
IRQ0  
MTIOC0A/MTIOC4B/TMCI3/  
POE8#  
RXD1/SMISO1/SSCL1  
13  
14  
15  
P27  
P26  
P17  
MTIOC2B/MTIOC4A/TMRI3  
MTIOC2A/MTIOC4C/TMO0  
SCK1  
IRQ3  
IRQ2  
IRQ7  
TXD1/SMOSI1/SSDA1  
SCK1/MISOA/SDA  
MTIOC3A/MTIOC3B/TMO1/  
POE8#  
16  
17  
18  
P16  
P15  
P14  
MTIOC3C/MTIOC3D/TMO2  
MTIOC0B/MTCLKB/TMCI2  
MTIOC3A/MTCLKA/TMRI2  
MTCLKD/TMO0/POE2#  
TXD1/SMOSI1/SSDA1/MOSIA/  
SCL  
IRQ6/ADTRG0#  
RXD1/SMISO1/SSCL1/SSLA1/  
CRXD0  
IRQ5  
CTS1#/RTS1#/SS1#/SSLA3/  
CTXD0  
IRQ4  
19  
20  
PH1  
PH0  
TXD5/SMOSI5/SSDA5/SSLA0  
RXD5/SMISO5/SSCL5/SSLA2  
IRQ0/CLKOUT  
MTIOC0D/MTCLKC/TMRI0/  
CACREF  
21  
22  
PC5  
PC4  
MTIOC3B/MTCLKD/TMRI2  
SCK5/SCK12/RSPCKA  
MTIOC3D/MTCLKC/TMCI1/  
POE0#  
CTS5#/RTS5#/SS5#/CTS12#/  
RTS12#/SS12#/SSLA0  
23  
PB1  
PB0  
MTIOC1B/MTIOC2A/TMRI1/  
POE1#  
TXD12/TXDX12/SIOX12/  
SMOSI12/SSDA12  
24  
25  
VCC  
MTIOC0C/TMCI0/POE3#  
RXD12/RXDX12/SMISO12/  
SSCL12  
IRQ4  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VSS  
AVCC0  
AVSS0  
REFOUT  
LSW  
REF0N  
REF0P  
AIN0/IEXC0 to IEXC3  
AIN1/IEXC0 to IEXC3  
AIN4/IEXC0 to  
IEXC3/REF1N  
36  
37  
38  
39  
40  
AIN5/IEXC0 to  
IEXC3/REF1P  
AIN6/AN000/IEXC0  
to IEXC3  
AIN7/AN001/IEXC0  
to IEXC3  
VREFL0  
VREFH0  
AIN8/AN002/IEXC0  
to IEXC3  
AIN9/AN003/IEXC0  
to IEXC3  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 16 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Absolute Maximum Ratings  
Conditions: VSS = AVSS0 = VREFL0 = 0 V  
Item  
Symbol  
VCC  
Vin  
Value  
Unit  
V
Power supply voltage  
–0.3 to +6.5  
–0.3 to +6.5  
Input voltage  
P16 and P17 (5-V tolerant)  
Ports other than above  
V
–0.3 to VCC + 0.3  
–0.3 to AVCC0 + 0.3  
–0.3 to +6.5  
Reference power supply voltage  
Analog power supply voltage  
VREFH0  
AVCC0  
V
V
V
V
Analog input voltage  
VAN  
–0.3 to AVCC0 + 0.3  
–0.3 to AVCC0 + 0.3  
–0.3 to AVCC0 + 0.3  
–40 to +105  
Reference voltage for 24-bit delta-sigma A/D converter  
REF0P, REF1P  
REF0N, REF1N  
Tj  
Junction temperature  
Storage temperature  
D version  
G version  
°C  
°C  
–40 to +112  
Tstg  
–55 to +125  
Caution: Exceeding absolute maximum ratings may permanently damage the MCU.  
To preclude malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and  
VSS pins, between the AVCC0 and AVSS0 pins, and between the VREFH0 and VREFL0 pins. Place capacitors with values of  
about 0.1 μF as close as possible to every power supply pin and use the shortest and widest possible traces.  
Connect the VCL pin to a VSS pin via a 4.7-μF capacitor. The capacitor must be placed close to the pin. For details, refer to  
section 2.12.1, Connecting VCL Capacitor and Bypass Capacitors.  
Do not input signals to ports other than 5-V tolerant ports while power is not being supplied to the MCU.  
The current injection that results from the input of such a signal may lead to malfunctions and the abnormal current that passes  
through the MCU at such times may cause degradation of internal elements.  
However, even if –0.3 to +6.5 V is input to a 5-V tolerant port, this will not cause problems such as damage to the MCU.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 17 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.2  
Recommended Operating Conditions  
Table 2.2  
Recommended Operating Conditions (1)  
Item  
Symbol  
VCC*1, *2  
VSS  
Min.  
1.8  
Typ.  
0
Max.  
5.5  
Unit  
V
Power supply voltages  
Analog power supply voltages  
AVCC0*1, *2  
AVSS0  
1.8  
0
5.5  
V
VREFH0  
VREFL0  
Topr  
1.8  
0
AVCC0  
Operating temperature  
D version  
G version  
–40  
–40  
85  
°C  
105  
Note 1. Use AVCC0 and VCC under the following conditions:  
While VCC > 2.4 V: AVCC0 and VCC can be set independently when AVCC0 ≥ 2.4 V  
While VCC ≤ 2.4 V: AVCC0 and VCC can be set independently when AVCC0 ≥ VCC  
Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.  
Table 2.3  
Recommended Operating Conditions (2)  
Item  
VCL pin external capacitance  
Symbol  
CVCL  
Value  
4.7 µF ± 30%*1  
Note 1. Use a multilayer ceramic capacitor whose nominal capacitance is 4.7 µF and a capacitance tolerance is ±30% or better.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 18 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.3  
DC Characteristics  
Table 2.4  
DC Characteristics (1)  
Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
Item  
Symbol  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
Schmitt trigger  
input voltage  
RIIC input pin  
0.7 × VCC  
5.8  
(except for SMBus, 5-V tolerant)  
P16 and P17 (5-V tolerant)  
0.8 × VCC  
0.8 × VCC  
5.8  
P14, P15, P26, P27, P30, P31,  
P35 to P37, PB0, PB1,  
PC4 to PC7, PH0 to PH3, and  
RES#  
VCC + 0.3  
RIIC input pin (except for  
SMBus)  
VIL  
–0.3  
0.3 × VCC  
Other than RIIC input pin  
–0.3  
0.2 × VCC  
Hysteresis of  
Schmitt trigger  
input  
RIIC input pin (except for  
SMBus)  
ΔVT  
0.05 × VCC  
P16 and P17  
0.05 × VCC  
0.1 × VCC  
0.9 × VCC  
0.8 × VCC  
2.1  
Other than RIIC input pin  
MD  
High-level input  
voltage (except for  
Schmitt trigger  
input pins)  
VIH  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
0.1 × VCC  
0.2 × VCC  
0.8  
V
EXTAL (external clock input)  
RIIC input pin (SMBus)  
MD  
Low-level input  
voltage (except for  
Schmitt trigger  
input pins)  
VIL  
–0.3  
EXTAL (external clock input)  
RIIC input pin (SMBus)  
–0.3  
–0.3  
Table 2.5  
DC Characteristics (2)  
Conditions: 1.8 V ≤ VCC < 2.7 V, 1.8 V ≤ AVCC0 < 2.7 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
Item  
Symbol  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
Schmitt trigger  
input voltage  
P16 and P17 (5-V tolerant)  
0.8 × VCC  
0.8 × VCC  
5.8  
P14, P15, P26, P27, P30, P31,  
P35 to P37, PB0, PB1,  
PC4 to PC7, PH0 to PH3, and  
RES#  
VCC + 0.3  
P14 to P17, P26, P27, P30, P31,  
P35 to P37, PB0, PB1,  
PC4 to PC7, PH0 to PH3, and  
RES#  
VIL  
ΔVT  
VIH  
VIL  
–0.3  
0.2 × VCC  
Hysteresis of  
Schmitt trigger  
input  
P14 to P17, P26, P27, P30, P31,  
P35 to P37, PB0, PB1,  
PC4 to PC7, PH0 to PH3, and  
RES#  
0.01 × VCC  
High-level input  
voltage (except for  
Schmitt trigger  
input pins)  
MD  
0.9 × VCC  
0.8 × VCC  
VCC + 0.3  
VCC + 0.3  
V
EXTAL (external clock input)  
Low-level input  
voltage (except for  
Schmitt trigger  
input pins)  
MD  
–0.3  
–0.3  
0.1 × VCC  
0.2 × VCC  
EXTAL (external clock input)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 19 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.6  
DC Characteristics (3)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
|Iin|  
Min.  
Typ.  
Max.  
1.0  
1.0  
0.2  
15  
Unit  
μA  
Test Conditions  
Vin = 0 V, VCC  
Vin = 0 V, 5.8V  
Vin = 0 V, VCC  
Input leakage current  
RES#, MD, and P35  
P16 and P17  
Three-state leakage  
current (off-state)  
|ITSI  
|
μA  
Ports other than P16 and P17  
Input capacitance  
P14 to P17, P26, P27, P30, P31,  
P36, P37, PB0, PB1, PC4 to PC7,  
PH0 to PH3, MD, and RES#  
Cin  
pF  
V
Vin = 20 mV,  
f = 1 MHz,  
Ta = 25°C  
P35  
30  
Output voltage of the VCL pin  
VCL  
2.12  
Table 2.7  
DC Characteristics (4)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
RU  
Min.  
10  
Typ.  
20  
Max.  
50  
Unit  
kΩ  
Test Conditions  
Vin = 0 V  
Input pull-up resistor  
All ports (except for P35)  
Table 2.8  
DC Characteristics (5)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Typ.  
*
Test  
Conditions  
Item  
Symbol  
ICC  
Max. Unit  
4
Supply High-speed  
Normal  
No peripheral modules ICLK = 32 MHz  
current operating mode operating mode are operating.*2  
4.1  
2.9  
2.2  
1.9  
16.3  
9.1  
5.5  
3.7  
mA  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 4 MHz  
1
*
All peripheral modules ICLK = 32 MHz*3  
are in normal  
ICLK = 16 MHz*3  
operation.  
ICLK = 8 MHz*3  
ICLK = 4 MHz*3  
All peripheral modules ICLK = 32 MHz*3  
are in full operation.  
30.3  
Sleep mode  
No peripheral modules ICLK = 32 MHz  
2.4  
1.9  
1.6  
1.5  
8.9  
5.4  
3.5  
2.5  
1.5  
1.3  
1.2  
1.2  
7.2  
4.4  
2.8  
2.1  
2.5  
are operating.*2  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 4 MHz  
All peripheral modules ICLK = 32 MHz*3  
are in normal  
ICLK = 16 MHz*3  
operation.  
ICLK = 8 MHz*3  
ICLK = 4 MHz*3  
Deep sleep  
mode  
No peripheral modules ICLK = 32 MHz  
are operating.*2  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 4 MHz  
All peripheral modules ICLK = 32 MHz*3  
are in normal  
ICLK = 16 MHz*3  
operation.  
ICLK = 8 MHz*3  
ICLK = 4 MHz*3  
Increase during BGO operation*5  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 20 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Typ.  
*
Test  
Conditions  
Item  
No peripheral modules ICLK = 12 MHz  
Symbol  
ICC  
Max. Unit  
4
Supply Middle-speed  
Normal  
2.1  
1.7  
1.4  
1.1  
6.8  
5.0  
3.1  
1.6  
mA  
current operating mode operating mode are operating.*6  
ICLK = 8 MHz  
ICLK = 4 MHz  
ICLK = 1 MHz  
1
*
All peripheral modules ICLK = 12 MHz  
are in normal  
ICLK = 8 MHz  
operation.*7  
ICLK = 4 MHz  
ICLK = 1 MHz  
All peripheral modules ICLK = 12 MHz  
are in full operation.*7  
13.5  
Sleep mode  
No peripheral modules ICLK = 12 MHz  
1.4  
1.2  
1.1  
1.0  
4.0  
3.0  
2.1  
1.3  
1.0  
0.9  
0.9  
0.8  
3.3  
2.6  
1.8  
1.2  
2.5  
are operating.*6  
ICLK = 8 MHz  
ICLK = 4 MHz  
ICLK = 1 MHz  
All peripheral modules ICLK = 12 MHz  
are in normal  
ICLK = 8 MHz  
operation.*7  
ICLK = 4 MHz  
ICLK = 1 MHz  
Deep sleep  
mode  
No peripheral modules ICLK = 12 MHz  
are operating.*6  
ICLK = 8 MHz  
ICLK = 4 MHz  
ICLK = 1 MHz  
All peripheral modules ICLK = 12 MHz  
are in normal  
ICLK = 8 MHz  
operation.*7  
ICLK = 4 MHz  
ICLK = 1 MHz  
Increase during BGO operation*5  
Note 1. Supply current values do not include the output charge/discharge current from all pins. The values apply when internal pull-up  
resistors are disabled.  
Note 2. Peripheral module clocks are stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set  
to divided by 64.  
Note 3. Peripheral module clocks are supplied. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are the  
same frequency as that of ICLK.  
Note 4. Conditions for typical values are at VCC = 3.3 V and Ta = 25°C.  
Note 5. The increase is caused by program/erase operation to the ROM or E2 DataFlash during the execution of a user program.  
Note 6. Peripheral module clocks are stopped. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK and  
PCLK are set to divided by 64.  
Note 7. Peripheral module clocks are supplied. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK and  
PCLK are the same frequency of that of the ICLK.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 21 of 98  
RX23E-A Group  
2. Electrical Characteristics  
40  
30  
20  
10  
0
Ta = 105°C, ICLK = 32 MHz  
Ta = 25°C, ICLK = 32 MHz  
Ta = 105°C, ICLK = 16 MHz  
Ta = 105°C, ICLK = 8 MHz  
Ta = 25°C, ICLK = 16 MHz  
Ta = 105°C, ICLK = 4 MHz  
Ta = 25°C, ICLK = 8 MHz  
Ta = 25°C, ICLK = 4 MHz  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC [V]  
Ta = 25°C, ICLK = 32 MHz*1  
Ta = 25°C, ICLK = 16 MHz*1  
Ta = 25°C, ICLK = 8 MHz *1  
Ta = 25°C, ICLK = 4 MHz *1  
Ta = 105°C, ICLK = 32 MHz*2  
Ta = 105°C, ICLK = 16 MHz*2  
Ta = 105°C, ICLK = 8 MHz*2  
Ta = 105°C, ICLK = 4 MHz*2  
Note 1. This result applies when all peripheral modules are in normal operation but BGO is not in use. Indicates the  
average of the typical samples through actual measurement during product evaluation.  
Note 2. This result applies when all peripheral modules are in full operation but BGO is not in use. Indicates the average  
of the upper-limit samples through actual measurement during product evaluation.  
Figure 2.1  
Voltage Dependence in High-Speed Operating Mode (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 22 of 98  
RX23E-A Group  
2. Electrical Characteristics  
20  
Ta = 105°C, ICLK = 12 MHz  
10  
Ta = 105°C, ICLK = 8 MHz  
Ta = 25°C, ICLK = 12 MHz  
Ta = 105°C, ICLK = 4 MHz  
Ta = 25°C, ICLK = 8 MHz  
Ta = 25°C, ICLK = 4 MHz  
Ta = 105°C, ICLK = 1 MHz  
Ta = 25°C, ICLK = 1 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC [V]  
Ta = 25°C, ICLK = 12 MHz*1  
Ta = 25°C, ICLK = 8 MHz*1  
Ta = 25°C, ICLK = 4 MHz*1  
Ta = 105°C, ICLK = 12 MHz*2  
Ta = 105°C, ICLK = 8 MHz*2  
Ta = 105°C, ICLK = 4 MHz*2  
Ta = 25°C, ICLK = 1 MHz*1  
Ta = 105°C, ICLK = 1 MHz*2  
Note 1. This result applies when all peripheral modules are in normal operation but BGO is not in use. Indicates the  
average of the typical samples through actual measurement during product evaluation.  
Note 2. This result applies when all peripheral modules are in full operation but BGO is not in use. Indicates the average  
of the upper-limit samples through actual measurement during product evaluation.  
Figure 2.2  
Voltage Dependence in Middle-Speed Operating Mode (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 23 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.9  
DC Characteristics (6)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
ICC  
Typ.*3  
0.4  
Max.  
2.6  
Unit  
μA  
Test Conditions  
Supply  
Software standby Ta = 25°C  
current*1 mode*2  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
0.8  
3.0  
2.5  
12.6  
31.2  
6.3  
Increment for IWDT operation  
Increment for LPT operation  
0.4  
0.4  
Use IWDT-Dedicated On-Chip Oscillator for  
clock source  
Note 1. Supply current values were obtained with no load on any output pin and all internal pull-up resistors disabled.  
Note 2. The IWDT and LVD are stopped.  
Note 3. Conditions for typical values are at VCC = 3.3 V.  
100  
Ta = 105°C *2  
10  
1
Ta = 85°C *2  
Ta = 105°C *1  
Ta = 85°C *1  
Ta = 55°C *2  
Ta = 55°C *1  
Ta = 25°C *2  
Ta = 25°C *1  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC [V]  
Ta = 25°C *1  
Ta = 25°C *2  
Ta = 55°C *1  
Ta = 55°C *2  
Ta = 85°C *1  
Ta = 85°C *2  
Ta = 105°C *1  
Ta = 105°C *2  
Note 1. Indicates the average of the typical samples through actual measurement during product evaluation.  
Note 2. Indicates the average of the upper-limit samples through actual measurement during product evaluation.  
Figure 2.3  
Voltage Dependence in Software Standby Mode (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 24 of 98  
RX23E-A Group  
2. Electrical Characteristics  
100  
10  
1
0.1  
–40  
–20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.4  
Table 2.10  
Temperature Dependence in Software Standby Mode (Reference Data)  
DC Characteristics (7)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
lLVD  
Min.  
Typ.*1  
0.10  
Max.  
Unit  
μA  
Test Conditions  
LVD  
LVD0  
LVD1  
LVD2  
0.10  
0.20  
Note 1. Conditions for typical values are at VCC = AVCC0 = 3.3 V and Ta = 25°C.  
Table 2.11  
DC Characteristics (8)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VRAM  
Min.  
1.8  
Typ.  
Max.  
Unit  
V
Test Conditions  
RAM standby voltage  
Table 2.12  
DC Characteristics (9)  
Conditions: 0 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
SrVCC  
Min.  
0.02  
0.02  
0.02  
Typ.  
Max.  
20.00  
2.00  
Unit  
ms/V  
Test Conditions  
VCC ramp-up rate at At normal startup*1  
power-on  
During fast startup time*2  
Voltage monitoring 0 reset  
enabled at startup*3,  
4
*
Note 1. When the OFS1.LVDAS and OFS1.FASTSTUP bits are 1  
Note 2. When the OFS1.LVDAS bit is 1 and the OFS1.FASTSTUP bit is 0  
Note 3. When the OFS1.LVDAS bit is 0  
Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the settings in the OFS1 register are  
not read in boot mode.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 25 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.13  
DC Characteristics (10)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
The result of any ripple must be within the limit on allowable ripple frequency f  
where the ripple voltage is within the range  
r (VCC)  
between the VCC upper limit and lower limit. The result of any ripple must be within the limit on the allowable VCC ramp rate in  
power fluctuation (dt/dVCC) where the change in VCC exceeds VCC ±10%.  
Item  
Symbol  
fr (VCC)  
Min.  
Typ.  
Max.  
10  
Unit  
kHz  
Test Conditions  
Allowable ripple frequency  
Figure 2.5  
Vr (VCC) ≤ 0.2 × VCC  
1
MHz  
MHz  
ms/V  
Figure 2.5  
Vr (VCC) ≤ 0.08 × VCC  
10  
Figure 2.5  
Vr (VCC) ≤ 0.06 × VCC  
Allowable VCC ramp rate at dt/dVCC  
power fluctuation  
1.0  
When VCC change exceeds VCC ±10%  
1 / fr (VCC)  
VCC  
Vr (VCC)  
Figure 2.5  
Ripple Waveform  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 26 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.14  
DC Characteristics (11)  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
Min.  
Typ.  
Max.  
660  
Unit  
µA  
Test Conditions  
Operating current of Gain = 1  
IAVCC0  
500*1  
Figure 2.6, Figure 2.7  
1 unit, external reference  
in use, reference buffer  
disabled,  
24-bit delta-sigma  
A/D converter  
(normal mode)  
(PGA disabled, BUF disabled)  
OPCR.DSADLVM bit = 0  
(DSAD)  
Gain = 1 to 16 (PGA enabled)  
OPCR.DSADLVM bit = 0  
840*1  
1050*1  
490*2  
1130  
1360  
850  
AVCC0 = 3.6 to 5.5 V  
Gain = 32 to 128  
OPCR.DSADLVM bit = 0  
Gain = 1  
(PGA disabled, BUF disabled)  
OPCR.DSADLVM bit = 1  
Figure 2.8, Figure 2.9  
1 unit, external reference  
in use, reference buffer  
disabled,  
Gain = 1 to 16 (PGA enabled)  
OPCR.DSADLVM bit = 1  
820*2  
1040*2  
250*1  
1320  
1560  
280  
AVCC0 = 2.7 to 5.5 V  
Gain = 32 to 128  
OPCR.DSADLVM bit = 1  
Operating current of Gain = 1  
µA  
Figure 2.10, Figure 2.11  
1 unit, external reference  
in use, reference buffer  
disabled,  
24-bit delta-sigma  
A/D converter  
(low power mode)  
(PGA disabled, BUF disabled)  
OPCR.DSADLVM bit = 0  
Gain = 1 to 16 (PGA enabled)  
OPCR.DSADLVM bit = 0  
390*1  
430*1  
240*2  
480  
520  
350  
AVCC0 = 3.6 to 5.5 V  
Gain = 32 to 128  
OPCR.DSADLVM bit = 0  
Gain = 1  
(PGA disabled, BUF disabled)  
OPCR.DSADLVM bit = 1  
Figure 2.12, Figure 2.13  
1 unit, external reference  
in use, reference buffer  
disabled,  
Gain = 1 to 16 (PGA enabled)  
OPCR.DSADLVM bit = 1  
380*2  
420*2  
45  
550  
590  
75  
AVCC0 = 2.7 to 5.5 V  
Gain = 32 to 128  
OPCR.DSADLVM bit = 1  
Operating current of voltage reference  
Operating current of temperature sensor  
Operating current of bias voltage generator  
Operating current of excitation current source  
Operating current of Normal mode  
IAVCC0  
(VREF)  
IAVCC0  
(TEMPS)  
IAVCC0  
(VBIAS)  
IAVCC0  
(IEXC)  
µA  
µA  
µA  
µA  
µA  
Figure 2.18  
Figure 2.19  
Figure 2.20  
Figure 2.21  
15  
40  
15  
25  
55  
70  
IAVCC0  
(BUF)  
85  
25  
85  
25  
5
130  
40  
130  
40  
9
Figure 2.14, 1 unit  
Figure 2.15, 1 unit  
Figure 2.16, 1 unit  
Figure 2.17, 1 unit  
1 unit  
analog input buffer  
Low power mode  
Operating current of Normal mode  
IAVCC0  
µA  
µA  
reference buffer  
(REFBUF)  
Low power mode  
Operating current of Low voltage detector for power  
IAVCC0  
(LVDET)  
IAVCC0  
voltage detector  
supply  
Excitation current source  
disconnect detector  
1
5
2
7
(IEXCDET)  
IAVCC0  
DSAD input voltage fault  
detector  
(DSIDET)  
IAVCC0  
DSAD reference voltage fault  
detector  
10  
15  
(DSRDET)  
Note 1. Conditions for this value is at AVCC0 = 5.0 V and Ta = 25°C.  
Note 2. Conditions for this value is at AVCC0 = 3.3 V and Ta = 25°C.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 27 of 98  
RX23E-A Group  
2. Electrical Characteristics  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 128  
Gain = 128  
–50 –25  
0
25  
50  
75  
100 125  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Temperature [°C]  
AVCC0 [V]  
Figure 2.6  
Temperature Dependence of Operating  
Current of 24-Bit Delta-Sigma A/D  
Converter (AVCC0 = 5.0 V, Normal Mode,  
OPCR.DSADLVM bit = 0)  
Figure 2.7  
Power-Supply Voltage Dependence of  
Operating Current of 24-Bit Delta-Sigma  
A/D Converter (Ta = 25°C, Normal Mode,  
OPCR.DSADLVM bit = 0)  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 128  
Gain = 128  
–50 –25  
0
25  
50  
75  
100 125  
2.5 3.0  
3.5 4.0  
4.5 5.0  
5.5 6.0  
Temperature [°C]  
AVCC0 [V]  
Figure 2.8  
Temperature Dependence of Operating  
Current of 24-Bit Delta-Sigma A/D  
Converter (AVCC0 = 5.0 V, Normal Mode,  
OPCR.DSADLVM bit = 1)  
Figure 2.9  
Power-Supply Voltage Dependence of  
Operating Current of 24-Bit Delta-Sigma  
A/D Converter (Ta = 25°C, Normal Mode,  
OPCR.DSADLVM bit = 1)  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 128  
Gain = 128  
–50 –25  
0
25  
50  
75  
100 125  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Temperature [°C]  
AVCC0 [V]  
Figure 2.10  
Temperature Dependence of Operating  
Current of 24-Bit Delta-Sigma A/D  
Converter (AVCC0 = 5.0 V, Low Power  
Mode, OPCR.DSADLVM bit = 0)  
Figure 2.11  
Power-Supply Voltage Dependence of  
Operating Current of 24-Bit Delta-Sigma  
A/D Converter (Ta = 25°C, Low Power  
Mode, OPCR.DSADLVM bit = 0)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 28 of 98  
RX23E-A Group  
2. Electrical Characteristics  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 16  
Gain = 128  
Gain = 128  
–50 –25  
0
25  
50  
75  
100 125  
2.5 3.0 3.5 4.0  
AVCC0 [V]  
Power-Supply Voltage Dependence of  
4.5 5.0  
5.5 6.0  
Temperature [°C]  
Figure 2.12  
Temperature Dependence of Operating  
Current of 24-Bit Delta-Sigma A/D  
Converter (AVCC0 = 5.0 V, Low Power  
Mode, OPCR.DSADLVM bit = 1)  
Figure 2.13  
Operating Current of 24-Bit Delta-Sigma  
A/D Converter (Ta = 25°C, Low Power  
Mode, OPCR.DSADLVM bit = 1)  
100  
90  
80  
70  
60  
50  
30  
20  
10  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
–50 –25  
0
25  
50 75 100 125 150  
–50 –25  
0
25 50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 2.14  
Temperature Dependence of Operating  
Current of Analog Input Buffer  
(Normal Mode)  
Figure 2.15  
Temperature Dependence of Operating  
Current of Analog Input Buffer  
(Low Power Mode)  
100  
90  
80  
70  
60  
50  
30  
20  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
10  
–50 –25  
0
25  
50  
75 100 125 150  
–50 –25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 2.16  
Temperature Dependence of Operating  
Current of Reference Buffer  
(Normal Mode)  
Figure 2.17  
Temperature Dependence of Operating  
Current of Reference Buffer  
(Low Power Mode)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 29 of 98  
RX23E-A Group  
2. Electrical Characteristics  
60  
50  
40  
30  
20  
10  
0
AVCC0 = 2.7 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
AVCC0 = 2.7 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
20  
–50 –25  
0
25  
50  
75 100 125 150  
–50 –25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 2.18  
Temperature Dependence of Operating  
Current of Voltage Reference  
Figure 2.19  
Temperature Dependence of Operating  
Current of Temperature Sensor  
30  
70  
20  
10  
0
60  
50  
40  
AVCC0 = 2.7 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
AVCC0 = 2.7 V  
AVCC0 = 3.3 V  
AVCC0 = 5.0 V  
AVCC0 = 5.5 V  
–50 –25  
0
25  
50  
75 100 125 150  
–50 –25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 2.20  
Temperature Dependence of Operating  
Current of Bias Voltage Generator  
Figure 2.21  
Temperature Dependence of Operating  
Current of Excitation Current Source  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 30 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.15  
DC Characteristics (12)  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 1.8 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
Min.  
Typ.*1  
1.1  
Max.  
1.8  
Unit  
Test Conditions  
12-bit A/D converter During A/D conversion  
IAVCC0  
mA  
operating current  
(in high-speed conversion)  
(S12AD)  
During A/D conversion  
(in low-current mode)  
0.6  
71  
1.1  
122  
60  
Reference power  
supply current  
During A/D conversion  
(in high-speed conversion)  
IREFH0  
µA  
nA  
µA  
Current while waiting for A/D  
conversion (all units)  
AVCC0 power down current  
ISTBY  
2.2  
Note 1. Conditions for typical values are at AVCC0 = 5.0 V and Ta = 25°C.  
Table 2.16  
Permissible Output Currents (1)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +85°C  
a
Item  
Symbol  
IOL  
Max.  
4.0  
Unit  
Permissible low-level output  
P36 and P37  
mA  
current (average value per pin)  
Ports other than above  
Normal drive output mode  
4.0  
High-drive output mode  
8.0  
Permissible low-level output  
P36 and P37  
4.0  
current (maximum value per pin)  
Ports other than above  
Normal drive output mode  
High-drive output mode  
4.0  
8.0  
Permissible low-level output  
current  
Total of P14 to P17, P26, P27, P30, P31, P36, and P37  
Total of PB0, PB1, PC4 to PC7, and PH0 to PH3  
Total of all output pins  
ΣIOL  
40  
40  
80  
Permissible high-level output  
current (average value per pin)  
P36 and P37  
IOH  
–4.0  
–4.0  
–8.0  
–4.0  
–4.0  
–8.0  
–40  
–40  
–80  
Ports other than above  
Normal drive output mode  
High-drive output mode  
Permissible high-level output  
current (maximum value per pin)  
P36 and P37  
Ports other than above  
Normal drive output mode  
High-drive output mode  
Permissible high-level output  
current  
Total of P14 to P17, P26, P27, P30, P31, P36, and P37  
Total of PB0, PB1, PC4 to PC7, and PH0 to PH3  
Total of all output pins  
ΣIOH  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 31 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.17  
Permissible Output Currents (2)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
IOL  
Max.  
4.0  
Unit  
mA  
Permissible low-level output  
P36 and P37  
current (average value per pin)  
Ports other than above  
Normal drive output mode  
High-drive output mode  
4.0  
8.0  
Permissible low-level output  
P36 and P37  
4.0  
current (maximum value per pin)  
Ports other than above  
Normal drive output mode  
High-drive output mode  
4.0  
8.0  
Permissible low-level output  
current  
Total of P14 to P17, P26, P27, P30, P31, P36, and P37  
Total of PB0, PB1, PC4 to PC7, and PH0 to PH3  
Total of all output pins  
ΣIOL  
30  
30  
60  
Permissible high-level output  
current (average value per pin)  
P36 and P37  
IOH  
–4.0  
–4.0  
–8.0  
–4.0  
–4.0  
–8.0  
–30  
–30  
–60  
Ports other than above  
Normal drive output mode  
High-drive output mode  
Permissible high-level output  
current (maximum value per pin)  
P36 and P37  
Ports other than above  
Normal drive output mode  
High-drive output mode  
Permissible high-level output  
current  
Total of P14 to P17, P26, P27, P30, P31, P36, and P37  
Total of PB0, PB1, PC4 to PC7, and PH0 to PH3  
Total of all output pins  
ΣIOH  
Table 2.18  
Output Voltage (1)  
Conditions: 1.8 V ≤ VCC = AVCC0 < 2.7 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Low-level output All output ports  
Symbol  
VOL  
Min.  
Max.  
Unit  
V
Test Conditions  
IOL = 0.5 mA  
Normal drive output mode  
High-drive output mode  
Normal drive output mode  
High-drive output mode  
0.3  
0.3  
voltage  
IOL = 1.0 mA  
High-level output All output ports  
voltage  
VOH  
VCC – 0.3  
VCC – 0.3  
V
IOH = –0.5 mA  
I
OH = –1.0 mA  
Table 2.19  
Output Voltage (2)  
Conditions: 2.7 V ≤ VCC = AVCC0 < 4.0 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Low-level output All output ports  
voltage (except for RIIC  
Symbol  
VOL  
Min.  
Max.  
0.5  
Unit  
V
Test Conditions  
Normal drive output mode  
High-drive output mode  
IOL = 1.0 mA  
0.5  
I
OL = 2.0 mA  
OL = 3.0 mA  
pins)  
RIIC pins  
Normal drive output mode  
High-drive output mode  
Normal drive output mode  
High-drive output mode  
0.4  
0.6  
I
IOL = 6.0 mA  
IOH = –1.0 mA  
IOH = –2.0 mA  
High-level output All output ports  
voltage  
VOH  
VCC – 0.5  
VCC – 0.5  
V
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 32 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.20  
Output Voltage (3)  
Conditions: 4.0 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Low-level output All output ports  
voltage (except for RIIC  
Symbol  
VOL  
Min.  
Max.  
0.8  
Unit  
V
Test Conditions  
IOL = 2.0 mA  
Normal drive output mode  
High-drive output mode  
0.8  
IOL = 4.0 mA  
pins)  
RIIC pins  
Normal drive output mode  
High-drive output mode  
Normal drive output mode  
High-drive output mode  
0.4  
0.6  
IOL = 3.0 mA  
IOL = 6.0 mA  
IOH = –2.0 mA  
High-level output All output ports  
voltage  
VOH  
VCC – 0.8  
VCC – 0.8  
V
I
OH = –4.0 mA  
Table 2.21  
Item  
Thermal resistance  
Thermal Resistance Value (Reference)  
Package  
Symbol  
Max.  
50.7  
18.8  
1.07  
0.07  
Unit  
Test Conditions  
48-pin LFQFP (PLQP0048KB-B)  
40-pin HWQFN (PWQN0040KC-A)  
48-pin LFQFP (PLQP0048KB-B)  
40-pin HWQFN (PWQN0040KC-A)  
ja  
°C/W  
JESD51-2 and  
JESD51-7 compliant  
jt  
°C/W  
JESD51-2 and  
JESD51-7 compliant  
Note:  
The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of  
the board. For details, refer to the JEDEC standards.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 33 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.3.1  
Typical I/O Pin Output Characteristics (1)  
Figure 2.22 to Figure 2.26 show the characteristics when normal drive output is selected by the drive capacity control  
register.  
IOH/IOL vs VOH/VOL  
50  
VCC = 5.5V  
40  
30  
VCC = 3.3V  
20  
VCC = 2.7V  
10  
VCC = 1.8V  
0
VCC = 1.8V  
–10  
VCC = 2.7V  
–20  
VCC = 3.3V  
–30  
–40  
–50  
VCC = 5.5V  
–60  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.22  
VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C When Normal Drive Output is Selected  
(Reference Data)  
IOH/IOL vs VOH/VOL  
8
6
Ta = –40°C  
Ta = 25°C  
4
Ta = 105°C  
2
0
–2  
Ta = 105°C  
–4  
–6  
–8  
Ta = 25°C  
Ta = –40°C  
1.6  
1.8  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
2.0  
VOH/VOL [V]  
Figure 2.23  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 1.8 V When Normal Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 34 of 98  
RX23E-A Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
20  
15  
10  
5
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
0
–5  
Ta = 105°C  
–10  
Ta = 25°C  
–15  
Ta = –40°C  
–20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH/VOL [V]  
Figure 2.24  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 2.7 V When Normal Drive Output is  
Selected (Reference Data)  
IOH/IOL vs VOH/VOL  
30  
20  
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
10  
0
–10  
Ta = 105°C  
–20  
–30  
Ta = 25°C  
Ta = –40°C  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
3.0  
2.5  
VOH/VOL [V]  
Figure 2.25  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 3.3 V When Normal Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 35 of 98  
RX23E-A Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
60  
40  
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
20  
0
–20  
Ta = 105°C  
–40  
Ta = 25°C  
Ta = –40°C  
–60  
0
1
2
5
3
4
6
VOH/VOL [V]  
Figure 2.26  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 5.5 V When Normal Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 36 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.3.2  
Typical I/O Pin Output Characteristics (2)  
Figure 2.27 to Figure 2.31 show the characteristics when high-drive output is selected by the drive capacity control  
register.  
IOH/IOL vs VOH/VOL  
150  
VCC = 5.5V  
100  
VCC = 3.3V  
50  
VCC = 2.7V  
VCC = 1.8V  
0
VCC = 1.8V  
VCC = 2.7V  
–50  
VCC = 3.3V  
–100  
VCC = 5.5V  
–150  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.27  
VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C When High-Drive Output is Selected  
(Reference Data)  
IOH/IOL vs VOH/VOL  
16  
12  
8
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
4
0
–4  
Ta = 105°C  
–8  
–12  
–16  
Ta = 25°C  
Ta = –40°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
VOH/VOL [V]  
Figure 2.28  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 1.8 V When High-Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 37 of 98  
RX23E-A Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
50  
40  
30  
20  
10  
0
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
–10  
–20  
Ta = 105°C  
Ta = 25°C  
–30  
–40  
–50  
Ta = –40°C  
3.0  
1.0  
1.5  
2.5  
0.0  
0.5  
2.0  
VOH/VOL [V]  
Figure 2.29  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 2.7 V When High-Drive Output is  
Selected (Reference Data)  
IOH/IOL vs VOH/VOL  
60  
40  
20  
0
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
–20  
Ta = 105°C  
–40  
Ta = 25°C  
Ta = –40°C  
–60  
3.0  
3.5  
1.0  
1.5  
2.5  
0.0  
0.5  
2.0  
VOH/VOL [V]  
Figure 2.30  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 3.3 V When High-Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 38 of 98  
RX23E-A Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
150  
100  
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
50  
0
–50  
Ta = 105°C  
–100  
–150  
Ta = 25°C  
Ta = –40°C  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.31  
VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 5.5 V When High-Drive Output is  
Selected (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 39 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.3.3  
Typical I/O Pin Output Characteristics (3)  
Figure 2.32 to Figure 2.35 show the characteristics of the RIIC output pin.  
IOL vs VOL  
120  
VCC = 5.5V  
100  
80  
60  
VCC = 3.3V  
40  
VCC = 2.7V  
20  
0
0
1
2
3
4
5
6
VOL [V]  
Figure 2.32  
VOL and IOL Voltage Characteristics of RIIC Output Pin at Ta = 25°C (Reference Data)  
IOL vs VOL  
40  
35  
30  
25  
20  
15  
10  
5
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
0
0.0  
2.5  
0.5  
1.0  
1.5  
2.0  
3.0  
VOL [V]  
Figure 2.33  
VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 40 of 98  
RX23E-A Group  
2. Electrical Characteristics  
IOL vs VOL  
60  
Ta = –40°C  
Ta = 25°C  
Ta = 105°C  
50  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL [V]  
Figure 2.34  
VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)  
IOL vs VOL  
140  
Ta = –40°C  
Ta = 25°C  
120  
100  
80  
Ta = 105°C  
60  
40  
20  
0
0
1
2
3
4
5
6
VOL [V]  
Figure 2.35  
VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 5.5 V (Reference Data)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 41 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.4  
AC Characteristics  
2.4.1  
Clock Timing  
Table 2.22  
Operating Frequency Value (High-Speed Operating Mode)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
VCC  
Item  
Symbol  
fmax  
Unit  
1.8 V ≤ VCC 2.4 V ≤ VCC 2.7 V ≤ VCC  
< 2.4 V  
< 2.7 V  
≤ 5.5 V  
Maximum operating  
frequency*3  
System clock (ICLK)  
8
8
8
8
8
16  
32  
MHz  
FlashIF clock (FCLK)*1,  
*
16  
32  
2
Peripheral module clock (PCLKA)  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
16  
32  
16  
32  
16  
32  
Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When FCLK is in use at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be within ±3.5%.  
Note 3. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For  
details on the range for the guaranteed operation, see Table 2.24, Clock Timing.  
Table 2.23  
Operating Frequency Value (Middle-Speed Operating Mode)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
VCC  
Item  
Symbol  
fmax  
Unit  
1.8 V ≤ VCC 2.4 V ≤ VCC 2.7 V ≤ VCC  
< 2.4 V  
< 2.7 V  
≤ 5.5 V  
Maximum operating  
frequency*3  
System clock (ICLK)  
8
8
8
8
8
12  
12  
MHz  
FlashIF clock (FCLK)*1,  
*
12  
12  
2
Peripheral module clock (PCLKA)  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
12  
12  
12  
12  
12  
12  
Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4  
MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be within ±3.5%.  
Note 3. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For  
details on the range for the guaranteed operation, see Table 2.24, Clock Timing.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 42 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.24  
Clock Timing  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
tXcyc  
tXH  
Min.  
50  
20  
20  
0.5  
1
Typ.  
3
Max.  
5
Unit  
ns  
Test Conditions  
Figure 2.36  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rise time  
ns  
tXL  
ns  
tXr  
ns  
EXTAL external clock fall time  
tXf  
5
ns  
EXTAL external clock input wait time*1  
tXWT  
fMAIN  
20  
8
μs  
Main clock oscillator oscillation  
frequency*2  
2.4 ≤ VCC ≤ 5.5  
1.8 ≤ VCC < 2.4  
MHz  
1
Main clock oscillation stabilization time (crystal)*2  
tMAINOSC  
tMAINOSC  
ms  
μs  
Figure 2.37  
Figure 2.38  
Main clock oscillation stabilization time (ceramic  
resonator)*2  
50  
LOCO clock oscillation frequency  
fLOCO  
tLOCO  
fILOCO  
tILOCO  
fHOCO  
3.44  
4.00  
4.56  
0.5  
MHz  
μs  
LOCO clock oscillation stabilization time  
IWDT-dedicated clock oscillation frequency  
IWDT-dedicated clock oscillation stabilization time  
HOCO clock oscillation frequency  
12.75  
15.00  
17.25  
50  
kHz  
μs  
Figure 2.39  
31.52  
31.68  
31.36  
32.00  
32.00  
32.00  
32.48  
32.32  
32.64  
41.3  
8
MHz  
Ta = –40 to +85°C  
Ta = –20 to +85°C  
Ta = –40 to +105°C  
Figure 2.41  
HOCO clock oscillation stabilization time  
PLL input frequency*3  
tHOCO  
fPLLIN  
fPLL  
μs  
4
MHz  
MHz  
μs  
PLL circuit oscillation frequency*3  
PLL clock oscillation stabilization time  
PLL free-running oscillation frequency  
24  
32  
tPLL  
74.4  
Figure 2.42  
fPLLFR  
8
MHz  
Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating).  
Note 2. Reference values when an 8-MHz resonator is used.  
When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is  
equal to or greater than the resonator-manufacturer-recommended value.  
After the MOSCCR.MOSTP bit is changed to enable the main clock oscillator, confirm that the OSCOVFSR.MOOVF flag has  
become 1, and then start using the main clock.  
Note 3. The VCC range should be 2.4 to 5.5 V when the PLL is used.  
tXcyc  
tXH  
tXL  
EXTAL external clock input  
0.5 × VCC  
tXr  
tXf  
Figure 2.36  
EXTAL External Clock Input Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 43 of 98  
RX23E-A Group  
2. Electrical Characteristics  
MOSCCR.MOSTP  
tMAINOSC  
Main clock oscillator output  
Figure 2.37  
Main Clock Oscillation Start Timing  
LOCOCR.LCSTP  
tLOCO  
LOCO clock oscillator output  
Figure 2.38  
LOCO Clock Oscillation Start Timing  
ILOCOCR.ILCSTP  
tILOCO  
IWDT-dedicated clock oscillator output  
Figure 2.39  
IWDT-Dedicated Clock Oscillation Start Timing  
RES#  
Internal reset  
tRESWT  
OFS1.HOCOEN  
HOCO clock  
Figure 2.40  
HOCO Clock Oscillation Start Timing  
(After Release from a Reset by Setting OFS1.HOCOEN Bit to 0)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 44 of 98  
RX23E-A Group  
2. Electrical Characteristics  
HOCOCR.HCSTP  
HOCO clock  
tHOCO  
Figure 2.41  
HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)  
MOSCCR.MOSTP  
tMAINOSC  
Main clock oscillator output  
PLLCR2.PLLEN  
tPLL  
PLL clock  
Figure 2.42  
PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Been  
Stabled)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 45 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.4.2  
Reset Timing  
Table 2.25  
Reset Timing  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
tRESWP  
tRESW  
Min.  
3
Typ. Max.  
Unit  
ms  
μs  
Test Conditions  
Figure 2.43  
Figure 2.44  
Figure 2.43  
RES# pulse width  
At power-on  
Other than above  
30  
Wait time after release At normal startup*1  
tRESWT  
tRESWT  
8.5  
650  
ms  
μs  
from the RES# pin  
During fast startup time*2  
reset (at power-on)  
Wait time after release from the RES# pin reset  
(from a warm start)  
tRESWT  
310  
1
μs  
Figure 2.44  
Independent watchdog timer reset period  
tRESWIW  
IWDT clock Figure 2.45  
cycle  
Software reset period  
tRESWSW  
tRESWT2  
1
ICLK cycle  
μs  
Wait time after release from the independent watchdog timer  
reset*3  
350  
Wait time after release from the software reset  
tRESWT2  
220  
μs  
Note 1. When the OFS1.LVDAS and OFS1.FASTSTUP bits are 1  
Note 2. When the OFS1.LVDAS and/or OFS1.FASTSTUP bits are 0  
Note 3. When the IWDTCR.CKS[3:0] bits are 0000b  
VCC  
RES#  
tRESWP  
Internal reset  
tRESWT  
Figure 2.43  
Figure 2.44  
Figure 2.45  
Reset Input Timing at Power-On  
tRESW  
RES#  
Internal reset  
tRESWT  
Reset Input Timing (1)  
tRESWIW, tRESWSW  
Independent watchdog timer reset  
Software reset  
Internal reset  
tRESWT2  
Reset Input Timing (2)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 46 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.4.3  
Timing of Recovery from Low Power Consumption Modes  
Table 2.26  
Timing of Recovery from Low Power Consumption Modes (1)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
Item  
Symbol Min.  
Typ. Max.  
Unit  
Recovery time  
from software  
standby mode*1  
High-speed  
mode  
Crystal connected to Main clock oscillator tSBYMC  
main clock oscillator operating*2  
2
3
ms Figure 2.46  
μs  
External clock input Main clock oscillator tSBYEX  
35  
50  
to main clock  
oscillator  
operating*3  
HOCO clock oscillator operating  
LOCO clock oscillator operating  
tSBYHO  
tSBYLO  
40  
40  
55  
55  
μs  
μs  
Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple  
oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the  
system clock source. The above table applies when only the corresponding clock is operating.  
Note 2. When the frequency of the crystal is 20 MHz  
When the main clock oscillator wait control register (MOSCWTCR) is set to 04h  
Note 3. When the frequency of the external clock is 20 MHz  
When the main clock oscillator wait control register (MOSCWTCR) is set to 00h  
Table 2.27  
Timing of Recovery from Low Power Consumption Modes (2)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
Item  
Symbol Min.  
Typ. Max.  
Unit  
Recovery time  
from software  
standby mode*1  
Middle-speed Crystal connected to Main clock oscillator tSBYMC  
mode  
main clock oscillator operating*2  
2
2
3
3
ms Figure 2.46  
ms  
Main clock oscillator tSBYPC  
and PLL circuit  
operating*3  
External clock input Main clock oscillator tSBYEX  
3
4
μs  
μs  
to main clock  
oscillator  
operating*4  
Main clock oscillator tSBYPE  
and PLL circuit  
65  
85  
operating*5  
HOCO clock oscillator operating*6  
LOCO clock oscillator operating  
tSBYHO  
tSBYLO  
40  
5
50  
7
μs  
μs  
Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple  
oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the  
system clock source. The above table applies when only the corresponding clock is operating.  
Note 2. When the frequency of the crystal is 12 MHz  
When the main clock oscillator wait control register (MOSCWTCR) is set to 04h  
Note 3. This is the case when PLL is selected as the system clock and its frequency division is set to be 12 MHz.  
When the main clock oscillator wait control register (MOSCWTCR) is set to 04h  
Note 4. When the frequency of the external clock is 12 MHz  
When the main clock oscillator wait control register (MOSCWTCR) is set to 00h  
Note 5. This is the case when PLL is selected as the system clock and its frequency division is set to be 12 MHz.  
When the main clock oscillator wait control register (MOSCWTCR) is set to 00h  
Note 6. This is the case when HOCO is selected as the system clock and its frequency division is set to be 8 MHz.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 47 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Oscillator  
ICLK  
IRQ  
Software standby mode  
tSBYMC, tSBYPC, tSBYEX,  
tSBYPE, tSBYHO, tSBYLO  
Figure 2.46  
Software Standby Mode Recovery Timing  
Table 2.28  
Timing of Recovery from Low Power Consumption Modes (3)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
tDSLP  
Min.  
Typ.  
2.0  
Max.  
3.5  
Unit  
μs  
Test Conditions  
Figure 2.47  
Recovery time from deep High-speed mode*2  
sleep mode*1  
Middle-speed mode*3  
tDSLP  
3.0  
4.0  
μs  
Note 1. Oscillators continue oscillating in deep sleep mode.  
Note 2. When the frequency of the system clock is 32 MHz  
Note 3. When the frequency of the system clock is 12 MHz  
Oscillator  
ICLK  
IRQ  
Deep sleep mode  
tDSLP  
Figure 2.47  
Table 2.29  
Deep Sleep Mode Recovery Timing  
Operating Mode Transition Time  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Transition Time  
Mode before Transition  
Mode after Transition  
ICLK Frequency  
Unit  
Min.  
Typ.  
10.0  
37.5  
Max.  
High-speed operating mode  
Middle-speed operating modes  
High-speed operating mode  
8 MHz  
8 MHz  
μs  
μs  
Middle-speed operating modes  
Note:  
Values when the frequencies of PCLKA, PCLKB, PCLKD, and FCLK are not divided.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 48 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.4.4  
Control Signal Timing  
Table 2.30  
Control Signal Timing  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
Min.  
200  
Typ. Max.  
Unit  
ns  
Test Conditions  
NMI pulse width tNMIW  
NMI digital filter is disabled  
(NMIFLTE.NFLTEN = 0)  
2 × tPcyc ≤ 200 ns  
2 × tPcyc > 200 ns  
3 × tNMICK ≤ 200 ns  
3 × tNMICK > 200 ns  
2 × tPcyc ≤ 200 ns  
2 × tPcyc > 200 ns  
3 × tIRQCK ≤ 200 ns  
3 × tIRQCK > 200 ns  
1
2 × tPcyc  
200  
*
NMI digital filter is enabled  
(NMIFLTE.NFLTEN = 1)  
2
3.5 × tNMICK  
*
IRQ pulse width tIRQW  
200  
ns  
IRQ digital filter is disabled  
(IRQFLTE0.FLTENi = 0)  
1
2 × tPcyc  
200  
*
IRQ digital filter is enabled  
(IRQFLTE0.FLTENi = 1)  
3
3.5 × tIRQCK  
*
Note:  
200 ns minimum in software standby mode.  
Note 1.  
Note 2.  
t
t
Pcyc indicates the cycle of PCLKB.  
NMICK indicates the cycle of the NMI digital filter sampling clock.  
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).  
NMI  
tNMIW  
tNMIW  
Figure 2.48  
NMI Interrupt Input Timing  
IRQi  
tIRQW  
tIRQW  
Figure 2.49  
IRQ Interrupt Input Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 49 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.4.5  
Timing of On-Chip Peripheral Modules  
Table 2.31  
Timing of On-Chip Peripheral Modules (1)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
*1  
Item  
Symbol  
Min.  
1.5  
1.5  
2.5  
Typ.  
Max.  
Unit  
Test Conditions  
I/O ports Input data pulse width  
t
t
t
Figure 2.50  
Figure 2.51  
PRW  
Pcyc  
Pcyc  
MTU  
Input capture input pulse  
width  
Single-edge setting  
Both-edge setting  
t
TICW  
Input capture input rise/fall time  
Timer clock pulse width  
t
,
0.1  
µs/V  
TICr  
t
TICf  
Single-edge setting  
Both-edge setting  
t
,
1.5  
2.5  
2.5  
t
Figure 2.52  
TCKWH  
Pcyc  
t
TCKWL  
Phase counting  
mode  
Timer clock rise/fall time  
t
,
0.1  
µs/V  
TCKr  
t
TCKf  
POE  
POE# input pulse width  
POE# input rise/fall time  
t
1.5  
t
Figure 2.53  
POEW  
Pcyc  
t
,
0.1  
µs/V  
POEr  
t
POEf  
Output disable time  
Transition of the  
POE# signal level  
t
5 PCLKB +  
0.24  
µs  
Figure 2.54  
POEDI  
When detecting falling  
edges (ICSRm.POEnM[1:0]  
= 00 (m = 1, 2; n = 0 to 3, 8))  
Simultaneous  
conduction of  
output pins  
t
3 PCLKB +  
0.2  
µs  
µs  
µs  
Figure 2.55  
POEDO  
Register setting  
t
1 PCLKB +  
0.2  
Figure 2.56  
Time for access to the  
register is not included.  
POEDS  
Oscillation stop  
detection  
t
21  
Figure 2.57  
POEDOS  
TMR  
SCI  
Timer clock pulse width  
Single-edge setting  
Both-edge setting  
t
t
,
1.5  
2.5  
t
Pcyc  
Figure 2.58  
TMCWH  
TMCWL  
Timer clock rise/fall time  
Input clock cycle time  
t
,
0.1  
µs/V  
TMCr  
t
TMCf  
Asynchronous  
t
4
6
t
t
Figure 2.59  
Figure 2.60  
Scyc  
Pcyc  
Clock synchronous  
Input clock pulse width  
Input clock rise time  
Input clock fall time  
t
0.4  
16  
4
0.6  
20  
20  
SCKW  
Scyc  
t
ns  
SCKr  
t
ns  
SCKf  
Output clock cycle time  
Asynchronous  
t
t
t
Scyc  
Pcyc  
Clock synchronous  
Output clock pulse width  
Output clock rise time  
Output clock fall time  
t
0.4  
0.6  
20  
20  
40  
SCKW  
Scyc  
t
ns  
SCKr  
t
ns  
ns  
SCKf  
Transmit data Clock synchronous  
t
TXD  
delay time  
(master)  
Transmit data Clock  
VCC ≥ 2.7 V  
65  
ns  
ns  
delay time  
(slave)  
synchronous  
VCC < 2.7 V  
100  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 50 of 98  
RX23E-A Group  
2. Electrical Characteristics  
*1  
Item  
Receive data Clock  
Symbol  
Min.  
65  
Typ.  
Max.  
Unit  
Test Conditions  
SCI  
VCC ≥ 2.7 V  
VCC < 2.7 V  
t
ns  
Figure 2.60  
RXS  
setup time  
(master)  
synchronous  
90  
ns  
Receive data Clock synchronous  
40  
ns  
setup time  
(slave)  
Receive data Clock synchronous  
hold time  
t
40  
ns  
RXH  
A/D  
converter  
Trigger input pulse width  
t
1.5  
t
Figure 2.61  
TRGW  
Pcyc  
2
2
CAC  
CACREF input pulse width  
t
t
≤ t  
> t  
*
t
4.5 t +  
cac  
ns  
Pcyc  
cac  
CACREF  
3 t  
Pcyc  
*
5 t  
+
cac  
Pcyc  
cac  
6.5 t  
Pcyc  
CACREF input rise/fall time  
t
t
,
0.1  
µs/V  
ns  
CACREFr  
CACREFf  
4
CLKOUT CLKOUT pin output cycle*  
VCC ≥ 2.7 V  
VCC < 2.7 V  
VCC ≥ 2.7 V  
VCC < 2.7 V  
VCC ≥ 2.7 V  
VCC < 2.7 V  
t
62.5  
125  
15  
Figure 2.62  
Ccyc  
CLKOUT pin high pulse  
t
ns  
ns  
ns  
ns  
CH  
3
width*  
30  
CLKOUT pin low pulse  
t
15  
CL  
3
width*  
30  
CLKOUT pin output rise time VCC ≥ 2.7 V  
VCC < 2.7 V  
t
12  
25  
12  
25  
Cr  
CLKOUT pin output fall time VCC ≥ 2.7 V  
VCC < 2.7 V  
t
Cf  
Note 1.  
Note 2.  
t
t
: PCLK cycle  
Pcyc  
: CAC count clock source cycle  
cac  
Note 3. When the LOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 000b), set the clock output division ratio  
selection to divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).  
Note 4. When the EXTAL external clock input or an oscillator is used with divided by 1 (the CKOCR.CKOSEL[2:0] bits are 010b and the  
CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 51 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.32  
Timing of On-Chip Peripheral Modules (2)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C, C = 30 pF, when high-drive output is  
a
selected by the drive capacity control register  
Item  
Master  
Test  
Conditions  
Symbol  
tSPcyc  
Min.  
Max.  
Unit  
1
RSPI RSPCK clock  
cycle  
2
6
4096  
tPcyc*  
Figure 2.63  
Slave  
RSPCK clock  
high pulse width  
Master  
tSPCKWH (tSPcyc – tSPCKr  
tSPCKf)/2 – 3  
ns  
Slave  
Master  
Slave  
(tSPcyc – tSPCKr  
t
SPCKf)/2  
tSPCKWL (tSPcyc – tSPCKr  
SPCKf)/2 – 3  
(tSPcyc – tSPCKr  
RSPCK clock  
low pulse width  
ns  
ns  
t
t
SPCKf)/2  
RSPCK clock  
rise/fall time  
Output VCC ≥ 2.7 V  
VCC < 2.7 V  
Input  
tSPCKr  
,
10  
15  
0.1  
tSPCKf  
μs/V  
Data input setup Master VCC ≥ 2.7 V  
time  
tSU  
10  
ns Figure 2.64  
to  
VCC < 2.7 V  
30  
Figure 2.67  
Slave  
25  
Data input hold Master RSPCK set to a division ratio  
tH  
tHF  
tH  
tPcyc  
ns  
time  
other than PCLKB divided by 2  
RSPCK set to PCLKB divided  
by 2  
0
Slave  
20  
SSL setup time Master  
Slave  
tLEAD –30 + N*2 × tSPcyc  
6
ns  
tPcyc  
ns  
SSL hold time  
Master  
Slave  
tLAG  
–30 + N*3 × tSPcyc  
6
0
tPcyc  
ns  
Data output  
delay time  
Master VCC ≥ 2.7 V  
VCC < 2.7 V  
tOD  
14  
30  
65  
105  
Slave VCC ≥ 2.7 V  
VCC < 2.7 V  
Data output hold Master  
tOH  
ns  
ns  
time  
Slave  
0
Successive  
transmission  
delay time  
Master  
tTD  
tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 ×  
tPcyc  
Slave  
6 × tPcyc  
10  
15  
1
MOSI and MISO Output VCC ≥ 2.7 V  
t
Dr, tDf  
ns  
rise/fall time  
VCC < 2.7 V  
Input  
μs  
ns  
ns  
μs  
SSL rise/fall  
time  
Output VCC ≥ 2.7 V  
VCC < 2.7 V  
Input  
tSSLr  
tSSLf  
,
10  
15  
1
Slave access time  
VCC ≥ 2.7 V  
VCC < 2.7 V  
tSA  
6
tPcyc Figure 2.66,  
Figure 2.67  
7
Slave output release  
time  
VCC ≥ 2.7 V  
VCC < 2.7 V  
tREL  
5
tPcyc  
6
Note 1. tPcyc: PCLK cycle  
Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)  
Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 52 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.33  
Timing of On-Chip Peripheral Modules (3)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Unit*1  
Item  
Symbol  
tSPcyc  
Min.  
Max.  
Conditions  
Simple SCK clock cycle output (master)  
4
6
65536  
tPcyc  
tPcyc  
tSPcyc  
tSPcyc  
ns  
Figure 2.63  
SPI  
SCK clock cycle input (slave)  
SCK clock high pulse width  
SCK clock low pulse width  
SCK clock rise/fall time  
tSPCKWH  
tSPCKWL  
tSPCKr, tSPCKf  
tSU  
0.4  
0.4  
65  
95  
40  
40  
3
0.6  
0.6  
20  
Data input setup time (master)  
VCC ≥ 2.7 V  
VCC < 2.7 V  
ns  
Figure 2.64,  
Figure 2.65  
Data input setup time (slave)  
Data input hold time  
tH  
ns  
SSL input setup time  
tLEAD  
tLAG  
tOD  
tSPcyc  
tSPcyc  
ns  
SSL input hold time  
3
Data output delay time (master)  
Data output delay time (slave)  
–10  
–20  
–10  
40  
65  
100  
VCC ≥ 2.7 V  
VCC < 2.7 V  
VCC ≥ 2.7 V  
VCC < 2.7 V  
Data output hold time (master)  
tOH  
ns  
Data output hold time (slave)  
Data rise/fall time  
t
Dr, tDf  
SSLr, tSSLf  
tSA  
20  
20  
6
ns  
ns  
SSL input rise/fall time  
Slave access time  
t
tPcyc  
tPcyc  
Figure 2.66,  
Figure 2.67  
Slave output release time  
tREL  
6
Note 1. tPcyc: PCLK cycle  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 53 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.34  
Timing of On-Chip Peripheral Modules (4)  
Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
2
Item  
Symbol  
Min.*1,  
*
Max.  
Unit  
RIIC  
(Standard  
mode, SMBus)  
SCL cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 1300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
Figure 2.68  
SCL high pulse width  
SCL low pulse width  
3 (6) × tIICcyc + 300  
3 (6) × tIICcyc + 300  
SCL, SDA rise time  
1000  
SCL, SDA fall time  
tSf  
300  
SCL, SDA spike pulse removal time  
SDA bus free time  
tSP  
0
1 (4) × tIICcyc  
tBUF  
tSTAH  
tSTAS  
tSTOS  
tSDAS  
tSDAH  
Cb  
3 (6) × tIICcyc + 300  
START condition hold time  
Repeated START condition setup time  
STOP condition setup time  
Data setup time  
tIICcyc + 300  
1000  
1000  
tIICcyc + 50  
Data hold time  
0
SCL, SDA capacitive load  
SCL cycle time  
400  
RIIC  
(Fast mode)  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 600  
Figure 2.68  
SCL high pulse width  
SCL low pulse width  
3 (6) × tIICcyc + 300  
3 (6) × tIICcyc + 300  
SCL, SDA rise time  
300  
SCL, SDA fall time  
tSf  
300  
SCL, SDA spike pulse removal time  
SDA bus free time  
tSP  
0
1 (4) × tIICcyc  
tBUF  
tSTAH  
tSTAS  
tSTOS  
tSDAS  
tSDAH  
Cb  
3 (6) × tIICcyc + 300  
START condition hold time  
Repeated START condition setup time  
STOP condition setup time  
Data setup time  
tIICcyc + 300  
300  
300  
tIICcyc + 50  
Data hold time  
0
SCL, SDA capacitive load  
400  
Note:  
tIICcyc: RIIC internal reference clock (IICφ) cycle  
Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE  
bit = 1.  
Note 2. Cb is the total capacitance of the bus lines.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 54 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.35  
Timing of On-Chip Peripheral Modules (5)  
Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Conditions  
Item  
Symbol  
Min.*1  
Max.  
Unit  
Simple I2C  
(Standard mode)  
SDA rise time  
tSr  
tSf  
0
1000  
300  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
ns  
ns  
ns  
ns  
pF  
Figure 2.68  
SDA fall time  
SDA spike pulse removal time  
Data setup time  
tSP  
4 × tPcyc  
tSDAS  
tSDAH  
Cb  
250  
0
Data hold time  
SCL, SDA capacitive load  
SDA rise time  
0
400  
Simple I2C  
(Fast mode)  
tSr  
300  
Figure 2.68  
SDA fall time  
tSf  
300  
SDA spike pulse removal time  
Data setup time  
tSP  
4 × tPcyc  
tSDAS  
tSDAH  
Cb  
100  
0
Data hold time  
SCL, SDA capacitive load  
400  
Note:  
tPcyc: PCLK cycle  
Note 1. Cb is the total capacitance of the bus lines.  
PCLK  
Port  
tPRW  
Figure 2.50  
I/O Port Input Timing  
PCLK  
Output  
compare output  
Input capture  
input  
tTICW  
tTICr  
tTICf  
Figure 2.51  
MTU Input/Output Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 55 of 98  
RX23E-A Group  
2. Electrical Characteristics  
PCLK  
MTCLKA to MTCLKD  
tTCKWL  
tTCKWH  
tTCKr  
tTCKf  
Figure 2.52  
MTU Clock Input Timing  
PCLK  
POEn# input  
tPOEW  
tPOEf  
tPOEr  
Figure 2.53  
POE Input Timing (n = 0 to 3, 8)  
POEn# input  
tPOEW  
Outputs disabled  
MTU PWM output pins  
tPOEDI  
Figure 2.54  
Output Disable Time for POE in Response to Transition of the POEn# Signal Level  
Simultaneous active-level outputs detected*1  
Outputs  
MTU PWM output pins  
disabled  
tPOEDO  
Note 1. When the active level is set to low.  
Figure 2.55  
Output Disable Time for POE in Response to the Simultaneous Conduction of Output Pins  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 56 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Corresponding bit in  
the SPOER register  
Outputs disabled  
MTU PWM output pins  
tPOEDS  
Figure 2.56  
Output Disable Time for POE in Response to the Register Setting  
Main clock  
Oscillation stop detection  
signal (internal signal)  
Outputs disabled  
MTU PWM output pins  
tPOEDOS  
Figure 2.57  
Output Disable Time for POE in Response to the Oscillation Stop Detection  
PCLK  
TMCI0 to TMCI3  
tTMCWL  
tTMCWH  
tTMCr  
tTMCf  
Figure 2.58  
TMR Clock Input Timing  
tSCKW  
tSCKr  
tSCKf  
SCKn  
tScyc  
Figure 2.59  
SCK Clock Input Timing (n = 1, 5, 6, 12)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 57 of 98  
RX23E-A Group  
2. Electrical Characteristics  
SCKn  
TXDn  
RXDn  
tTXD  
tRXS tRXH  
Figure 2.60  
SCI Input/Output Timing: Clock Synchronous Mode (n = 1, 5, 6, 12)  
PCLK  
ADTRG0#  
tTRGW  
Figure 2.61  
A/D Converter External Trigger Input Timing  
tCcyc  
tCH  
tCf  
CLKOUT pin output  
tCr  
tCL  
Test conditions: VOH = 0.7 × VCC, VOL = 0.3 × VCC, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF  
Figure 2.62  
CLKOUT Output Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 58 of 98  
RX23E-A Group  
2. Electrical Characteristics  
tSPCKr  
tSPCKf  
tSPCKWH  
RSPI  
Simple SPI  
VOH  
VOH  
VOL  
VOH  
VOH  
VOL  
tSPCKWL  
VOL  
RSPCKA  
Master select output  
SCKn  
Master select output  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
VIL  
tSPCKWL  
VIL  
RSPCKA  
Slave select input  
SCKn  
Slave select input  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.63  
RSPI Clock Timing and Simple SPI Clock Timing (n = 1, 5, 6, 12)  
RSPI  
Simple SPI  
tTD  
SSLA0 to  
SSLA3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKA  
CPOL = 0  
output  
SCKn  
CKPOL = 0  
output  
RSPCKA  
CPOL = 1  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOA  
input  
SMISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIA  
output  
SMOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Figure 2.64  
RSPI Timing (Master, CPHA = 0) and Simple SPI Clock Timing (Master, CKPH = 1) (n = 1, 5, 6, 12)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 59 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Simple SPI  
RSPI  
tTD  
SSLA0 to  
SSLA3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKA  
CPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
RSPCKA  
CPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOA  
input  
SMISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIA  
output  
SMOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Figure 2.65  
RSPI Timing (Master, CPHA = 1) and Simple SPI Clock Timing (Master, CKPH = 0) (n = 1, 5, 6, 12)  
RSPI  
Simple SPI  
tTD  
SSLA0  
input  
SSn#  
input  
tLEAD  
tLAG  
RSPCKA  
CPOL = 0  
input  
SCKn  
CKPOL = 0  
input  
RSPCKA  
CPOL = 1  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOA  
output  
SMISOn  
output  
MSB OUT  
tH  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIA  
input  
SMOSIn  
input  
MSB IN  
DATA  
Figure 2.66  
RSPI Timing (Slave, CPHA = 0) and Simple SPI Clock Timing (Slave, CKPH = 1) (n = 1, 5, 6, 12)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 60 of 98  
RX23E-A Group  
2. Electrical Characteristics  
RSPI  
Simple SPI  
tTD  
SSLA0  
input  
SSn#  
input  
tLEAD  
tLAG  
RSPCKA  
CPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
RSPCKA  
CPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
LSB OUT  
(Last data)  
MISOA  
output  
SMISOn  
output  
MSB OUT  
tH  
DATA  
LSB OUT  
MSB OUT  
tSU  
tDr, tDf  
MOSIA  
input  
SMOSIn  
input  
MSB IN  
DATA  
LSB IN  
MSB IN  
Figure 2.67  
RSPI Timing (Slave, CPHA = 1) and Simple SPI Clock Timing (Slave, CKPH = 0) (n = 1, 5, 6, 12)  
VIH  
VIL  
SDA  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL  
*1  
*1  
*1  
P
S
Sr*1  
P
tSCLL  
tSr  
tSf  
tSDAS  
tSCL  
tSDAH  
Test conditions  
VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Note 1. S, P, and Sr indicate the following conditions, respectively.  
S: START condition  
P: STOP condition  
Sr: Repeated START condition  
Figure 2.68  
RIIC Bus Interface Input/Output Timing and Simple I2C Bus Interface Input/Output Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 61 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.5  
Characteristics of Power-On Reset Circuit and Voltage Detection Circuit  
Table 2.36  
Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Power-on reset (POR)  
Symbol  
VPOR  
Min.  
1.35  
3.67  
2.70  
2.37  
1.80  
4.12  
3.98  
3.86  
3.68  
2.99  
2.89  
2.79  
2.68  
2.57  
2.47  
2.37  
2.10  
1.86  
1.80  
4.08  
3.95  
3.82  
3.62  
Typ.  
1.50  
3.84  
2.82  
2.51  
1.90  
4.29  
4.14  
4.02  
3.84  
3.10  
3.00  
2.90  
2.79  
2.68  
2.58  
2.48  
2.20  
1.96  
1.86  
4.29  
4.14  
4.02  
3.84  
Max.  
1.65  
3.97  
3.00  
2.67  
1.99  
4.42  
4.28  
4.16  
3.98  
3.29  
3.19  
3.09  
2.98  
2.87  
2.67  
2.57  
2.30  
2.06  
1.96  
4.48  
4.35  
4.22  
4.02  
Unit  
V
Test Conditions  
Voltage detection  
level  
Figure 2.69, Figure 2.70  
Voltage detection circuit  
(LVD0)*1  
Vdet0_0  
Vdet0_1  
Vdet0_2  
Vdet0_3  
Vdet1_0  
Vdet1_1  
Vdet1_2  
Vdet1_3  
Vdet1_4  
Vdet1_5  
Vdet1_6  
Vdet1_7  
Vdet1_8  
Vdet1_9  
Vdet1_A  
Vdet1_B  
Vdet1_C  
Vdet1_D  
Vdet2_0  
Vdet2_1  
Vdet2_2  
Vdet2_3  
V
Figure 2.71  
At falling edge VCC  
Voltage detection circuit  
(LVD1)*2  
V
Figure 2.72  
At falling edge VCC  
Voltage detection circuit  
(LVD2)*3  
V
Figure 2.73  
At falling edge VCC  
Note:  
These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage  
detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used  
for voltage detection.  
Note 1. n in the symbol Vdet0_n denotes the value of the OFS1.VDSEL[1:0] bits.  
Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.  
Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 62 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.37  
Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
tPOR  
Min.  
Typ.  
9.1  
Max.  
Unit  
ms  
Test Conditions  
Figure 2.70  
Wait time after  
release from the  
power-on reset  
At normal startup  
During fast startup time  
tPOR  
1.6  
Wait time after release from voltage monitoring 0  
reset  
tLVD0  
tLVD1  
tLVD2  
600  
150  
150  
μs  
μs  
μs  
Figure 2.71  
Figure 2.72  
Figure 2.73  
Figure 2.69  
Wait time after release from voltage monitoring 1  
reset  
Wait time after release from voltage monitoring 2  
reset  
Response delay time  
tdet  
350  
μs  
μs  
Minimum VCC down time*1  
tVOFF  
350  
Figure 2.69, VCC = 1.0 V or  
above  
Power-on reset enable time  
tW(POR)  
Td(E-A)  
1
ms  
μs  
Figure 2.70, VCC = below 1.0  
V
LVD operation stabilization time (after LVD is  
enabled)  
300  
Figure 2.72, Figure 2.73  
Hysteresis width (power-on rest (POR))  
VPORH  
VLVH  
110  
70  
mV  
mV  
Hysteresis width (voltage detection circuit: LVD0,  
LVD1 and LVD2)  
When Vdet1_0 to Vdet1_4 is  
selected  
60  
50  
40  
60  
When Vdet1_5 to Vdet1_9 is  
selected  
When Vdet1_A or Vdet1_B is  
selected  
When Vdet1_C or Vdet1_D is  
selected  
When LVD0 or LVD2 is  
selected  
Note:  
These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage  
detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used  
for voltage detection.  
Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0  
,
Vdet1, and Vdet2 for the POR/LVD.  
tVOFF  
VCC  
VPORH  
VPOR  
1.0V  
Internal reset signal  
(active-low)  
tdet  
tdet tPOR  
Figure 2.69  
Voltage Detection Reset Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 63 of 98  
RX23E-A Group  
2. Electrical Characteristics  
VPORH  
VPOR  
VCC  
1.0 V  
tw(POR)  
*1  
Internal reset signal  
(active-low)  
tdet tPOR  
Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the  
valid voltage (1.0 V).  
When turning the VCC on, maintain a voltage below 1.0V for at least 1.0ms.  
Figure 2.70  
Power-On Reset Timing  
tVOFF  
VLVH  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tLVD0  
tdet  
Figure 2.71  
Voltage Detection Circuit Timing (Vdet0)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 64 of 98  
RX23E-A Group  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVD1E  
Td(E-A)  
LVD1  
Comparator output  
LVD1CMPE  
LVD1MON  
Internal reset signal  
(active-low)  
When LVD1RN = L  
tdet  
tLVD1  
tdet  
When LVD1RN = H  
tLVD1  
Figure 2.72  
Voltage Detection Circuit Timing (Vdet1  
)
tVOFF  
VLVH  
VCC  
Vdet2  
LVD2E  
Td(E-A)  
LVD2  
Comparator output  
LVD2CMPE  
LVD2MON  
Internal reset signal  
(active-low)  
When LVD2RN = L  
tdet  
tdet  
tLVD2  
When LVD2RN = H  
tLVD2  
Figure 2.73  
Voltage Detection Circuit Timing (Vdet2)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 65 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.6  
Oscillation Stop Detection Timing  
Table 2.38  
Oscillation Stop Detection Timing  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
tdr  
Min.  
Typ.  
Max.  
1
Unit  
ms  
Test Conditions  
Figure 2.74  
Detection time  
Main clock  
Main clock  
tdr  
tdr  
OSTDSR.OSTDF  
PLL clock  
OSTDSR.OSTDF  
Low-speed clock  
ICLK  
Low-speed clock  
ICLK  
When the main clock is selected  
When the PLL clock is selected  
Figure 2.74  
Oscillation Stop Detection Timing  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 66 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.7  
ROM (Code Flash Memory) Characteristics  
Table 2.39  
ROM (Code Flash Memory) Characteristics (1)  
Item  
Program/erase cycles*1  
Symbol  
NPEC  
tDRP  
Min.  
Typ.  
Max.  
Unit  
Times  
Year  
Conditions  
1000  
3
Data retention  
After 1000 times of erase  
20*2,  
*
Ta = 85°C  
Note 1. Definition of program/erase cycle:  
The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block  
can be erased n times. For instance, when 4-byte program is performed 256 times for different addresses in a 1-Kbyte block and  
then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more  
than once before the next erase cycle (overwriting is prohibited).  
Note 2. Characteristic when using the flash programmer and the self-programming library provided from Renesas Electronics.  
Note 3. This result is obtained from reliability testing.  
Table 2.40  
ROM (Code Flash Memory) Characteristics (2) (High-Speed Operating Mode)  
Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V  
Temperature range for the programming/erasure operation: T = –40 to +105°C  
a
FCLK = 1 MHz  
FCLK = 32 MHz  
Item  
8-byte  
Symbol  
Unit  
Min.  
Typ.  
112.0  
8.7  
Max.  
967.0  
278.1  
9813.6  
Min.  
Typ.  
52.3  
5.5  
Max.  
490.5  
214.6  
1049.2  
Program time  
Erase time  
tP8  
tE2K  
μs  
ms  
ms  
2-Kbyte  
256-Kbyte  
tE256K  
469.1  
41.2  
(when block erase  
command is used)  
256-Kbyte  
tEA256K  
463.9  
9609.0  
36.0  
839.5  
ms  
(when all-block erase  
command is used)  
Blank check time  
8-byte  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
tDIS  
55.0  
1840.0  
18.0  
566.5  
566.5  
16.1  
135.7  
10.7  
433.5  
433.5  
μs  
μs  
μs  
ms  
ms  
μs  
μs  
2-Kbyte  
Erase operation forced stop time  
Start-up area switching time  
12.3  
12.3  
6.2  
6.2  
Access window setting time  
ROM mode transition wait time 1  
ROM mode transition wait time 2  
2.0  
5.0  
2.0  
5.0  
tMS  
Note:  
Note:  
The time until each operation of the flash memory is started after instructions are executed by software is not included.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be within ±3.5%.  
Note:  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 67 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.41  
ROM (Code Flash Memory) Characteristics (3) (Middle-Speed Operating Mode)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V  
Temperature range for the programming/erasure operation: T = –40 to +85°C  
a
FCLK = 1 MHz  
FCLK = 8 MHz  
Unit  
Item  
8-byte  
Symbol  
Min.  
Typ.  
152.0  
8.8  
Max.  
1367.0  
279.7  
Min.  
Typ.  
97.9  
5.9  
Max.  
936.0  
220.8  
2260.1  
Program time  
Erase time  
tP8  
tE2K  
μs  
ms  
ms  
2-Kbyte  
256-Kbyte  
tE256K  
469.2  
9816.9  
100.5  
(when block erase  
command is used)  
256-Kbyte  
tEA256K  
464.0  
9610.7  
95.3  
2053.7  
ms  
(when all-block erase  
command is used)  
Blank check time  
8-byte  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
tDIS  
85.0  
1870.0  
28.0  
573.3  
573.3  
50.9  
401.5  
21.3  
450.1  
450.1  
μs  
μs  
μs  
ms  
ms  
μs  
μs  
2-Kbyte  
Erase operation forced stop time  
Start-up area switching time  
13.0  
13.0  
7.7  
7.7  
Access window setting time  
ROM mode transition wait time 1  
ROM mode transition wait time 2  
2.0  
3.0  
2.0  
3.0  
tMS  
Note:  
Note:  
The time until each operation of the flash memory is started after instructions are executed by software is not included.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be within ±3.5%.  
Note:  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 68 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.8  
E2 DataFlash (Data Flash Memory) Characteristics  
Table 2.42  
E2 DataFlash Characteristics (1)  
Item Symbol  
Program/erase cycles*1  
NDPEC  
Data retention After 10000 times of erase tDDRP  
Min.  
Typ.  
1000000  
Max.  
Unit  
Conditions  
100000  
Times  
Year  
Year  
Year  
20*2,  
*
Ta = 85°C  
3
3
After 100000 times of erase  
After 1000000 times of erase  
5*2,  
*
3
1*2,  
*
Ta = 25°C  
Note 1. Definition of program/erase cycle:  
The program/erase cycle is the number of erasing for each block. When the number of program/erase cycle is n, each block can  
be erased n times. For instance, when 1-byte program is performed 1000 times for different addresses in a 1-Kbyte block and  
then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more  
than once before the next erase cycle (overwriting is prohibited).  
Note 2. Characteristic when the flash programmer is used and the self-programming library is provided from Renesas Electronics.  
Note 3. These results are obtained from reliability testing.  
Table 2.43  
E2 DataFlash Characteristics (2) (High-Speed Operating Mode)  
Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V  
Temperature range for the programming/erasure operation: T = –40 to +105°C  
a
FCLK = 1 MHz  
FCLK = 32 MHz  
Item  
Symbol  
Unit  
Min.  
Typ.  
95.0  
19.5  
119.8  
Max.  
797.0  
498.5  
2555.7  
55.0  
Min.  
Typ.  
40.8  
6.2  
12.9  
Max.  
375.5  
229.4  
367.2  
16.1  
Program time  
Erase time  
1 byte  
tDP1  
tDE1K  
tDE8K  
tDBC1  
tDBC1K  
tDSED  
tDSTOP  
μs  
ms  
ms  
μs  
μs  
μs  
μs  
1 Kbyte  
8 Kbyte  
1 byte  
Blank check time  
1 Kbyte  
7216.0  
16.0  
495.7  
10.7  
Erase operation forced stop time  
DataFlash STOP recovery time  
5.0  
5.0  
Note:  
Note:  
The time until each operation of the flash memory is started after instructions are executed by software is not included.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be within ±3.5%.  
Note:  
Table 2.44  
E2 DataFlash Characteristics (3) (Middle-Speed Operating Mode)  
Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V  
Temperature range for the programming/erasure operation: T = –40 to +85°C  
a
FCLK = 1 MHz  
FCLK = 8 MHz  
Item  
Programming time  
Symbol  
Unit  
Min.  
Typ.  
135.0  
19.6  
119.9  
Max.  
1197.0  
500.1  
2557.4  
85.0  
Min.  
Typ.  
86.5  
8.0  
27.7  
Max.  
822.5  
264.1  
668.2  
50.9  
1 byte  
tDP1  
tDE1K  
tDE8K  
tDBC1  
tDBC1K  
tDSED  
tDSTOP  
μs  
ms  
ms  
μs  
μs  
μs  
μs  
Erasure time  
1 Kbyte  
8 Kbyte  
1 byte  
Blank check time  
1 Kbyte  
7246.0  
28.0  
1457.5  
21.3  
Erase operation forced stop time  
DataFlash STOP recovery time  
0.72  
0.72  
Note:  
Note:  
The time until each operation of the flash memory is started after instructions are executed by software is not included.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be within ±3.5%.  
Note:  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 69 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.9  
24-Bit Delta-Sigma A/D Converter Characteristics  
Table 2.45  
24-Bit Delta-Sigma A/D Converter Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, V  
= 2.5 V, T = –40 to +105°C  
REF  
a
Unit  
Item  
Symbol  
Gain  
fDR  
Min.  
Typ.  
Max.  
Test Conditions  
Gain  
1, 2, 4, 8, 16, 32, 64, 128  
Output data  
rate  
Normal mode  
7.6  
15625  
SPS  
Low power mode  
1.9  
24  
3906  
Resolution (no missing codes)  
RMS noise  
Bits  
VN  
Table 2.46,  
Table 2.48  
Figure 2.75 to Figure 2.91  
Integral non- Gain = 1 (PGA enabled),  
INL  
±7  
±4  
±5  
±7  
±7  
±15  
±15  
±15  
±20  
±30  
ppmFSR Figure 2.92, Figure 2.93  
AVCC0 = 3.6 to 5.5 V  
linearity  
Normal/low power mode,  
OPCR.DSADLVM bit = 0  
Gain = 2 to 64,  
Normal/low power mode,  
OPCR.DSADLVM bit = 0  
Gain = 128,  
Normal mode,  
OPCR.DSADLVM bit = 0  
Gain = 128,  
Low power mode,  
OPCR.DSADLVM bit = 0  
Gain = 1 to 128  
AVCC0 = 2.7 to 5.5 V  
(PGA enabled),  
Normal/low power mode,  
OPCR.DSADLVM bit = 1  
Gain = 1  
(PGA disabled, BUF disabled)  
±7  
±7  
±20  
AVCC0 = 2.7 to 5.5 V,  
VI < 2.6 V  
Gain = 1  
(PGA disabled, BUF enabled)  
Offset error  
Offset drift  
Before calibration  
EO  
±10  
µV  
Figure 2.94  
AVCC0 = 5.0 V, Ta = 25°C,  
Normal mode, Gain = 2  
After calibration  
Less than or  
equal to the  
RMS noise  
Gain = 1 or 2 (PGA enabled)  
Gain = 4 to 8  
dEO  
60  
40  
15  
10  
50  
220  
140  
40  
nV/°C  
Figure 2.94  
Gain = 16 to 32  
Gain = 64 to 128  
25  
Gain = 1  
140  
(PGA disabled, BUF disabled)  
Gain error  
Gain = 1 to 64  
(PGA enabled)  
EG  
±0.01  
±0.03  
%
Figure 2.95  
Ta = 25°C  
Gain = 128  
±0.01  
±0.04  
±0.04  
Gain = 1  
±0.015  
(PGA disabled, BUF disabled)  
Gain = 1  
(PGA disabled, BUF enabled)  
±0.03  
After calibration of gain errors  
Less than or  
equal to the  
RMS noise  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 70 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Item  
Symbol  
dEG  
Min.  
Typ.  
1
Max.  
3
Unit  
Test Conditions  
Gain drift  
Gain = 1 to 128  
ppm/°C Figure 2.95  
(PGA enabled),  
OPCR.DSADLVM bit = 0  
Gain = 1 to 128  
(PGA enabled),  
OPCR.DSADLVM bit = 1  
1
5
AVCC0 = 3.0 to 5.5 V  
10  
AVCC0 < 3.0 V  
Gain = 1 (PGA disabled)  
1.4  
Figure 2.95  
VI < 2.6 V  
Power supply Gain = 1 (PGA enabled)  
PSRR  
80  
89  
88  
95  
dB  
VID = 1 V/Gain (DC)  
rejection ratio  
Gain = 2 to 16  
Gain = 32 to 128  
102  
68  
115  
88  
Gain = 1  
VID = 1 V (DC)  
(PGA disabled, BUF disabled)  
Gain = 1  
(PGA disabled, BUF enabled)  
95  
78  
100  
120  
130  
100  
120  
130  
88  
Common  
mode  
rejection ratio  
Gain = 1 to 8 (PGA enabled),  
OPCR.DSADLVM bit = 0  
CMRR  
dB  
VID = 1 V/Gain (DC)  
Gain = 16 to 32,  
OPCR.DSADLVM bit = 0  
110  
120  
80  
Gain = 64 to 128,  
OPCR.DSADLVM bit = 0  
Gain = 1 to 8 (PGA enabled),  
OPCR.DSADLVM bit = 1  
Gain = 16 to 32,  
OPCR.DSADLVM bit = 1  
88  
Gain = 64 to 128,  
OPCR.DSADLVM bit = 1  
100  
60  
Gain = 1  
(PGA disabled, BUF disabled)  
VID = 1 V (DC)  
Gain = 1  
(PGA disabled, BUF enabled)  
78  
Normal mode External clock, 50 Hz, 60 Hz  
rejection ratio  
NMRR  
120  
75  
dB  
10 SPS, 50 ± 1 Hz,  
60 ± 1 Hz  
54 SPS, 50 ± 1 Hz,  
60 ± 1 Hz  
External clock, 50 Hz  
External clock, 60 Hz  
120  
120  
110  
50SPS, 50 ± 1 Hz  
60 SPS, 60 ± 1 Hz  
Internal clock (HOCO),  
50 Hz, 60 Hz  
10 SPS, 50 ± 1 Hz,  
60 ± 1 Hz  
70  
54 SPS, 50 ± 1 Hz,  
60 ± 1 Hz  
Internal clock (HOCO), 50 Hz  
Internal clock (HOCO), 60 Hz  
Burnout current  
110  
110  
50 SPS, 50 ± 1 Hz  
60 SPS, 60 ± 1 Hz  
IBO  
0.5, 2, 4, 20  
500  
µA  
Modulator  
clock  
Normal mode  
fMOD  
430  
570  
kHz  
Low power mode  
107.5  
125.0  
142.5  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 71 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.46  
Conditions: AVCC0 = 5.0 V, T = 25°C, f  
Typical Noise Characteristics (Normal Mode)  
= 500 kHz, V = 0 V, V = 2.5 V  
REF  
a
MOD  
ID  
fDR  
(SPS)  
Gain = 1 Gain = 1 Gain = 1  
OSR  
Gain = 2 Gain = 4 Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128  
(Bypass)  
(BUF)  
(PGA)  
7.6  
10  
65536  
0.383  
(2.39)  
0.524  
(2.69)  
0.601  
(3.89)  
0.563  
(3.59)  
0.284  
(2.02)  
0.166  
(1.08)  
0.097  
(0.60)  
0.052  
(0.34)  
0.036  
(0.28)  
0.029  
(0.20)  
50048  
9984  
9216  
8320  
4992  
2560  
1024  
512  
0.426  
(2.64)  
0.671  
(3.96)  
0.680  
(4.40)  
0.618  
(4.18)  
0.322  
(2.53)  
0.185  
(1.15)  
0.108  
(0.71)  
0.056  
(0.40)  
0.041  
(0.27)  
0.033  
(0.20)  
50  
0.878  
(5.42)  
1.117  
(7.59)  
1.308  
(9.76)  
1.196  
(7.59)  
0.667  
(5.15)  
0.369  
(2.51)  
0.230  
(1.69)  
0.121  
(0.92)  
0.084  
(0.61)  
0.072  
(0.52)  
54  
0.929  
(6.35)  
1.225  
(9.71)  
1.359  
(10.5)  
1.254  
(9.52)  
0.702  
(4.85)  
0.392  
(2.85)  
0.240  
(1.70)  
0.127  
(0.88)  
0.090  
(0.59)  
0.076  
(0.51)  
60  
0.973  
(7.31)  
1.279  
(8.99)  
1.450  
(10.7)  
1.345  
(9.27)  
0.723  
(4.50)  
0.426  
(3.30)  
0.258  
(1.48)  
0.129  
(1.07)  
0.093  
(0.59)  
0.080  
(0.58)  
100  
195  
488  
977  
1953  
3906  
7813  
15625  
1.228  
(8.67)  
1.673  
(11.4)  
1.873  
(13.0)  
1.673  
(9.76)  
0.904  
(5.96)  
0.536  
(3.46)  
0.327  
(2.41)  
0.172  
(1.19)  
0.128  
(0.96)  
0.100  
(0.68)  
1.681  
(12.7)  
2.206  
(18.6)  
2.530  
(16.7)  
2.378  
(16.7)  
1.277  
(8.45)  
0.710  
(4.65)  
0.460  
(3.15)  
0.238  
(1.55)  
0.176  
(1.16)  
0.139  
(0.90)  
2.697  
(17.3)  
3.311  
(22.4)  
3.954  
(29.3)  
3.881  
(27.4)  
2.007  
(13.5)  
1.175  
(8.52)  
0.723  
(4.73)  
0.355  
(2.28)  
0.264  
(1.80)  
0.231  
(1.55)  
3.691  
(27.5)  
4.740  
(29.0)  
5.758  
(36.5)  
5.442  
(35.7)  
2.871  
(20.0)  
1.656  
(12.0)  
1.025  
(6.67)  
0.522  
(3.53)  
0.389  
(2.57)  
0.321  
(2.21)  
256  
5.734  
(35.3)  
6.572  
(42.5)  
8.535  
(55.3)  
7.438  
(48.9)  
4.130  
(28.2)  
2.308  
(15.8)  
1.434  
(9.34)  
0.768  
(4.85)  
0.567  
(4.05)  
0.476  
(2.71)  
128  
7.446  
(51.1)  
9.607  
(65.8)  
12.32  
(70.0)  
11.15  
(76.5)  
5.778  
(38.6)  
3.476  
(27.2)  
2.237  
(14.7)  
1.162  
(7.83)  
0.831  
(5.98)  
0.669  
(4.21)  
64  
13.60  
(102)  
15.91  
(110)  
21.39  
(143)  
19.22  
(120)  
10.43  
(67.6)  
5.971  
(39.0)  
3.760  
(26.4)  
2.161  
(13.9)  
1.482  
(11.0)  
1.112  
(6.96)  
32  
120.5  
(644)  
117.5  
(720)  
112.5  
(735)  
67.81  
(347)  
36.42  
(218)  
17.96  
(109)  
9.766  
(58.7)  
5.812  
(37.6)  
3.726  
(22.2)  
2.498  
(16.9)  
Note:  
Note:  
“Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF  
is enabled, and “PGA” indicates the state where PGA is enabled.  
The upper rows indicate RMS noise (µVRMS) and the lower rows (in parentheses) indicate peak-to-peak noise (µVPP).  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 72 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.47  
Conditions: AVCC0 = 5.0 V, T = 25°C, f  
Effective Resolution (Normal Mode)  
= 500 kHz, V = 0 V, V = 2.5 V  
REF  
a
MOD  
ID  
fDR  
(SPS)  
Gain = 1 Gain = 1 Gain = 1  
OSR  
Gain = 2 Gain = 4 Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128  
(Bypass)  
(BUF)  
(PGA)  
7.6  
10  
65536  
23.6  
(21.0)  
23.1  
(20.8)  
23.0  
(20.3)  
22.1  
(19.4)  
22.1  
(19.2)  
21.8  
(19.1)  
21.6  
(19.0)  
21.5  
(18.8)  
21.0  
(18.1)  
20.4  
(17.6)  
50048  
9984  
9216  
8320  
4992  
2560  
1024  
512  
23.5  
(20.9)  
22.8  
(20.2)  
22.8  
(20.1)  
22.0  
(19.2)  
21.9  
(18.9)  
21.7  
(19.1)  
21.5  
(18.7)  
21.4  
(18.6)  
20.9  
(18.2)  
20.2  
(17.6)  
50  
22.4  
(19.8)  
22.0  
(19.3)  
21.9  
(19.0)  
21.0  
(18.3)  
20.8  
(17.9)  
20.7  
(17.9)  
20.4  
(17.5)  
20.3  
(17.4)  
19.8  
(17.0)  
19.0  
(16.2)  
54  
22.4  
(19.6)  
21.9  
(18.9)  
21.8  
(18.9)  
20.9  
(18.0)  
20.8  
(18.0)  
20.6  
(17.7)  
20.3  
(17.5)  
20.2  
(17.5)  
19.7  
(17.0)  
19.0  
(16.2)  
60  
22.3  
(19.4)  
21.8  
(19.0)  
21.7  
(18.8)  
20.8  
(18.0)  
20.7  
(18.1)  
20.5  
(17.5)  
20.2  
(17.7)  
20.2  
(17.2)  
19.7  
(17.0)  
18.9  
(16.1)  
100  
195  
488  
977  
1953  
3906  
7813  
15625  
22.0  
(19.1)  
21.5  
(18.7)  
21.4  
(18.6)  
20.5  
(18.0)  
20.4  
(17.7)  
20.2  
(17.5)  
19.9  
(17.0)  
19.8  
(17.0)  
19.2  
(16.3)  
18.6  
(15.8)  
21.5  
(18.6)  
21.1  
(18.0)  
21.0  
(18.2)  
20.0  
(17.2)  
19.9  
(17.2)  
19.8  
(17.0)  
19.4  
(16.6)  
19.3  
(16.6)  
18.8  
(16.0)  
18.1  
(15.4)  
20.8  
(18.1)  
20.5  
(17.7)  
20.3  
(17.4)  
19.3  
(16.5)  
19.3  
(16.5)  
19.0  
(16.2)  
18.7  
(16.0)  
18.8  
(16.1)  
18.2  
(15.4)  
17.4  
(14.6)  
20.4  
(17.5)  
20.0  
(17.3)  
19.7  
(17.1)  
18.8  
(16.1)  
18.7  
(15.9)  
18.5  
(15.7)  
18.2  
(15.5)  
18.2  
(15.4)  
17.6  
(14.9)  
16.9  
(14.1)  
256  
19.7  
(17.1)  
19.5  
(16.8)  
19.2  
(16.5)  
18.4  
(15.6)  
18.2  
(15.4)  
18.1  
(15.3)  
17.7  
(15.0)  
17.6  
(15.0)  
17.1  
(14.2)  
16.3  
(13.8)  
128  
19.4  
(16.6)  
18.9  
(16.2)  
18.6  
(16.1)  
17.8  
(15.0)  
17.7  
(15.0)  
17.5  
(14.5)  
17.1  
(14.4)  
17.0  
(14.3)  
16.5  
(13.7)  
15.8  
(13.2)  
64  
18.5  
(15.6)  
18.2  
(15.4)  
17.8  
(15.1)  
17.0  
(14.3)  
16.9  
(14.2)  
16.7  
(14.0)  
16.3  
(13.5)  
16.1  
(13.5)  
15.7  
(12.8)  
15.1  
(12.5)  
32  
15.3  
15.3  
15.4  
15.2  
15.1  
15.1  
15.0  
14.7  
14.4  
13.9  
(12.9)  
(12.7)  
(12.7)  
(12.8)  
(12.5)  
(12.5)  
(12.4)  
(12.0)  
(11.8)  
(11.2)  
Effective resolution = log (full-scale voltage/RMS noise)  
2
Noise-free resolution = log (full-scale voltage/peak-to-peak noise)  
2
Note:  
“Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF  
is enabled, and “PGA” indicates the state where PGA is enabled.  
Note:  
The upper rows indicate effective resolution (bits) and the lower rows (in parentheses) indicate noise-free resolution (bits).  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 73 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.48  
Conditions: AVCC0 = 5.0 V, T = 25°C, f  
Typical Noise Characteristics (Low Power Mode)  
= 125 kHz, V = 0 V, V = 2.5 V  
REF  
a
MOD  
ID  
fDR  
(SPS)  
Gain = 1 Gain = 1 Gain = 1  
OSR  
Gain = 2 Gain = 4 Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128  
(Bypass)  
(BUF)  
(PGA)  
1.9  
10  
65536  
0.463  
(3.29)  
0.640  
(4.19)  
0.892  
(5.38)  
0.708  
(4.63)  
0.444  
(2.62)  
0.245  
(1.72)  
0.140  
(0.90)  
0.070  
(0.47)  
0.048  
(0.34)  
0.038  
(0.25)  
12512  
2496  
2304  
2080  
1248  
640  
1.053  
(7.03)  
1.313  
(8.79)  
1.596  
(11.4)  
1.492  
(10.6)  
0.797  
(5.27)  
0.437  
(2.86)  
0.286  
(1.79)  
0.143  
(1.00)  
0.109  
(0.72)  
0.085  
(0.61)  
50  
2.412  
(15.7)  
2.883  
(18.4)  
3.390  
(21.7)  
3.093  
(22.5)  
1.669  
(11.0)  
0.954  
(5.96)  
0.592  
(3.86)  
0.317  
(2.35)  
0.228  
(1.69)  
0.187  
(1.22)  
54  
2.558  
(19.4)  
3.098  
(20.5)  
3.544  
(23.9)  
3.139  
(19.4)  
1.719  
(11.3)  
0.962  
(6.39)  
0.637  
(3.92)  
0.333  
(2.12)  
0.242  
(1.81)  
0.199  
(1.39)  
60  
2.491  
(16.3)  
3.230  
(20.8)  
3.598  
(26.4)  
3.348  
(25.0)  
1.810  
(13.6)  
1.024  
(7.38)  
0.645  
(4.50)  
0.346  
(2.30)  
0.257  
(1.88)  
0.207  
(1.37)  
100  
195  
488  
977  
1953  
3906  
3.237  
(21.7)  
3.843  
(26.6)  
4.794  
(32.5)  
4.274  
(27.1)  
2.319  
(15.3)  
1.357  
(9.35)  
0.872  
(6.37)  
0.454  
(2.98)  
0.338  
(2.29)  
0.268  
(1.83)  
4.663  
(37.7)  
5.666  
(37.7)  
6.826  
(46.5)  
5.799  
(39.7)  
3.245  
(21.3)  
1.930  
(12.9)  
1.164  
(7.50)  
0.627  
(4.61)  
0.474  
(3.31)  
0.371  
(2.68)  
256  
7.451  
(46.6)  
9.151  
(62.5)  
10.30  
(70.9)  
9.404  
(59.6)  
5.216  
(35.7)  
2.934  
(20.2)  
1.869  
(13.6)  
1.006  
(6.13)  
0.729  
(5.46)  
0.599  
(4.56)  
128  
10.37  
(72.4)  
13.13  
(83.1)  
15.63  
(111)  
13.71  
(93.3)  
7.605  
(63.0)  
4.383  
(30.3)  
2.796  
(18.0)  
1.510  
(9.78)  
1.099  
(7.60)  
0.908  
(7.23)  
64  
16.80  
(117)  
19.92  
(153)  
25.41  
(177)  
22.23  
(138)  
12.30  
(94.9)  
7.226  
(50.9)  
4.520  
(30.6)  
2.531  
(16.2)  
1.927  
(13.6)  
1.499  
(11.1)  
32  
120.9  
(720)  
120.4  
(761)  
126.6  
(634)  
73.29  
(507)  
36.82  
(216)  
19.83  
(124)  
11.22  
(78.4)  
6.332  
(39.1)  
4.427  
(27.3)  
3.143  
(20.0)  
Note:  
Note:  
“Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF  
is enabled, and “PGA” indicates the state where PGA is enabled.  
The upper rows indicate RMS noise (µVRMS) and the lower rows (in parentheses) indicate peak-to-peak noise (µVPP).  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 74 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.49  
Conditions: AVCC0 = 5.0 V, T = 25°C, f  
Effective Resolution (Low Power Mode)  
= 125 kHz, V = 0 V, V = 2.5 V  
REF  
a
MOD  
ID  
fDR  
(SPS)  
Gain = 1 Gain = 1 Gain = 1  
OSR  
Gain = 2 Gain = 4 Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128  
(Bypass)  
(BUF)  
(PGA)  
1.9  
10  
65536  
23.4  
(20.5)  
22.8  
(20.1)  
22.4  
(19.8)  
21.8  
(19.0)  
21.4  
(18.9)  
21.3  
(18.5)  
21.1  
(18.4)  
21.1  
(18.4)  
20.6  
(17.8)  
20.0  
(17.3)  
12512  
2496  
2304  
2080  
1248  
640  
22.2  
(19.4)  
21.8  
(19.1)  
21.6  
(18.7)  
20.7  
(17.9)  
20.6  
(17.9)  
20.5  
(17.7)  
20.1  
(17.4)  
20.1  
(17.3)  
19.5  
(16.7)  
18.8  
(16.0)  
50  
21.0  
(18.3)  
20.7  
(18.0)  
20.5  
(17.8)  
19.6  
(16.8)  
19.5  
(16.8)  
19.3  
(16.7)  
19.0  
(16.3)  
18.9  
(16.0)  
18.4  
(15.5)  
17.7  
(15.0)  
54  
20.9  
(18.0)  
20.6  
(17.8)  
20.4  
(17.7)  
19.6  
(17.0)  
19.5  
(16.8)  
19.3  
(16.6)  
18.9  
(16.3)  
18.8  
(16.2)  
18.3  
(15.4)  
17.6  
(14.8)  
60  
20.9  
(18.2)  
20.5  
(17.8)  
20.4  
(17.5)  
19.5  
(16.6)  
19.4  
(16.5)  
19.2  
(16.4)  
18.9  
(16.1)  
18.8  
(16.1)  
18.2  
(15.3)  
17.5  
(14.8)  
100  
195  
488  
977  
1953  
3906  
20.6  
(17.8)  
20.3  
(17.5)  
20.0  
(17.2)  
19.2  
(16.5)  
19.0  
(16.3)  
18.8  
(16.0)  
18.5  
(15.6)  
18.4  
(15.7)  
17.8  
(15.1)  
17.2  
(14.4)  
20.0  
(17.0)  
19.7  
(17.0)  
19.5  
(16.7)  
18.7  
(15.9)  
18.6  
(15.8)  
18.3  
(15.6)  
18.0  
(15.4)  
17.9  
(15.1)  
17.3  
(14.5)  
16.7  
(13.8)  
256  
19.4  
(16.7)  
19.0  
(16.2)  
18.9  
(16.1)  
18.0  
(15.4)  
17.9  
(15.1)  
17.7  
(14.9)  
17.4  
(14.5)  
17.3  
(14.6)  
16.7  
(13.8)  
16.0  
(13.1)  
128  
18.9  
(16.1)  
18.5  
(15.8)  
18.3  
(15.4)  
17.5  
(14.7)  
17.3  
(14.3)  
17.1  
(14.3)  
16.8  
(14.1)  
16.7  
(14.0)  
16.1  
(13.3)  
15.4  
(12.4)  
64  
18.2  
(15.4)  
17.9  
(14.9)  
17.6  
(14.8)  
16.8  
(14.2)  
16.6  
(13.7)  
16.4  
(13.6)  
16.1  
(13.3)  
15.9  
(13.2)  
15.3  
(12.5)  
14.7  
(11.8)  
32  
15.3  
15.3  
15.3  
15.1  
15.1  
14.9  
14.8  
14.6  
14.1  
13.6  
(12.8)  
(12.6)  
(12.9)  
(12.3)  
(12.5)  
(12.3)  
(12.0)  
(12.0)  
(11.5)  
(10.9)  
Effective resolution = log (full-scale voltage/RMS noise)  
2
Noise-free resolution = log (full-scale voltage/peak-to-peak noise)  
2
Note:  
“Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF  
is enabled, and “PGA” indicates the state where PGA is enabled.  
Note:  
The upper rows indicate effective resolution (bits) and the lower rows (in parentheses) indicate noise-free resolution (bits).  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 75 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.50  
24-Bit Delta-Sigma A/D Converter Analog Input Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VIDR  
Min.  
−V  
Typ.  
Max.  
Unit  
V
Test Conditions  
V = V  
REF  
+V  
Differential input  
voltage range  
Gain = 1 (PGA disabled)  
Gain = 1 (PGA enabled)  
REF  
REF  
(REFnP)  
(REFnN)  
− V  
(n = 0, 1), or  
= V  
Whichever is  
greater of the values  
Whichever is  
smaller of the  
V
REF  
REFOUT  
of −V  
and  
values of +V  
and  
REF  
REF  
−(AVCC0 – AVSS0  
– 0.5V)  
+(AVCC0 – AVSS0  
– 0.5V)  
−V  
/ Gain  
+V  
/ Gain  
Gain ≥ 2  
REF  
REF  
Absolute input  
voltage range  
Gain = 1 (PGA disabled,  
BUF disabled)  
VI  
AVSS0 – 0.05  
AVSS0 + 0.1  
AVSS0 – 0.05  
AVCC0 + 0.05  
AVCC0 – 0.1  
AVCC0 + 0.05  
±25  
V
Gain = 1 (PGA disabled,  
BUF enabled)  
±5  
±1  
Gain = 1 to 128  
(PGA enabled)  
Input bias current Gain = 1 to 128  
(PGA enabled)  
IIB  
nA  
Figure 2.96  
Ta = 25°C  
Gain = 1 (PGA disabled,  
±5  
BUF disabled),  
OPCR.DSADLVM = 0  
Gain = 1 (PGA disabled,  
BUF enabled)  
±1  
±5  
Gain = 1 (PGA disabled,  
BUF disabled),  
±1.5  
±3.0  
μA  
nA  
OPCR.DSADLVM = 1  
Input offset  
current  
Gain = 1 to 128  
(PGA enabled)  
IIO  
±3  
±0.5  
5
±10  
±2.0  
10  
Figure 2.97  
Ta = 25°C  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 1 (PGA disabled,  
BUF disabled)  
μA/V  
Input bias current Gain = 1 to 16  
dIIB  
50  
180  
pA/°C  
drift  
(PGA enabled)  
Gain = 32 to 128  
70  
50  
200  
100  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 1 (PGA disabled,  
BUF disabled),  
OPCR.DSADLVM = 0  
50  
100  
500  
Gain = 1 (PGA disabled,  
BUF disabled),  
300  
OPCR.DSADLVM = 1  
Input offset  
current drift  
Gain = 1 to 128  
(PGA enabled)  
dIIO  
50  
45  
200  
80  
pA/°C  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 1 (PGA disabled,  
BUF disabled)  
170  
350  
pA/V/°C  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 76 of 98  
RX23E-A Group  
2. Electrical Characteristics  
350  
300  
250  
200  
150  
100  
50  
0.15  
0.10  
0.05  
0.00  
–0.05  
–0.10  
–0.15  
0
0
500  
1000  
1500  
2000  
–0.15 –0.10 –0.05  
0.00  
0.05  
0.10  
0.15  
sample  
Noise [µV]  
Figure 2.75  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
25°C, Normal Mode, Gain = 128, fDR = 7.6  
SPS, VID = 0V, VREF = 2.5V)  
Figure 2.76  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
Normal Mode, Gain = 128, fDR = 7.6 SPS,  
VID = 0V, VREF = 2.5V)  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0
–0.6  
500  
1000  
1500  
2000  
–0.4  
–0.2  
0.0  
0.2  
0.4  
0.6  
sample  
Noise [µV]  
Figure 2.77  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
25°C, Normal Mode, Gain = 16, fDR = 7.6  
SPS, VID = 0V, VREF = 2.5V)  
Figure 2.78  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
Normal Mode, Gain = 16, fDR = 7.6 SPS,  
VID = 0V, VREF = 2.5V)  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
1.5  
1.0  
0.5  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
500  
1000  
1500  
2000  
–2.4 –1.8 –1.2 –0.6 0.0  
0.6 1.2 1.8 2.4  
sample  
Noise [µV]  
Figure 2.79  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
Figure 2.80  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
25°C, Normal Mode, Gain = 1 (PGA  
disabled, BUF disabled), fDR = 7.6 SPS,  
Normal Mode, Gain = 1 (PGA disabled,  
BUF disabled), fDR = 7.6 SPS, VID = 0V,  
VID = 0V, VREF = 2.5V)  
VREF = 2.5V)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 77 of 98  
RX23E-A Group  
2. Electrical Characteristics  
350  
300  
250  
200  
150  
100  
50  
0.20  
0.15  
0.10  
0.05  
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
0
–0.24 –0.18 –0.12 –0.06 0.00 0.06 0.12 0.18 0.24  
0
500  
1000  
1500  
2000  
sample  
Noise [µV]  
Figure 2.81  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
25°C, Low Power Mode, Gain = 128, fDR  
1.9 SPS, VID = 0V, VREF = 2.5V)  
Figure 2.82  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
Low Power Mode, Gain = 128, fDR = 1.9  
SPS, VID = 0V, VREF = 2.5V)  
=
350  
300  
250  
200  
150  
100  
50  
0.8  
0.6  
0.4  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
0
0
–0.8 –0.6 –0.4 –0.2 0.0  
0.2 0.4 0.6 0.8  
500  
1000  
1500  
2000  
sample  
Noise [µV]  
Figure 2.83  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
25°C, Low Power Mode, Gain = 16, fDR  
1.9 SPS, VID = 0V, VREF = 2.5V)  
Figure 2.84  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
Low Power Mode, Gain = 16, fDR = 1.9  
SPS, VID = 0V, VREF = 2.5V)  
=
600  
500  
400  
300  
200  
100  
0
3
2
1
0
–1  
–2  
–3  
0
500  
1000  
1500  
2000  
–3.0 –2.4 –1.8 –1.2 –0.6 0.0 0.6 1.2 1.8 2.4 3.0  
sample  
Noise [µV]  
Figure 2.85  
Noise Histogram (AVCC0 = 5.0 V, Ta =  
25°C, Low Power Mode, Gain = 1 (PGA  
Figure 2.86  
Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C,  
Low Power Mode, Gain = 1 (PGA  
disabled, BUF disabled), fDR = 1.9 SPS,  
disabled, BUF disabled), fDR = 1.9 SPS,  
VID = 0V, VREF = 2.5V)  
VID = 0V, VREF = 2.5V)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 78 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Gain = 1 (PGA disabled,  
BUF disabled)  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 1  
(PGA enabled)  
Gain = 1 (PGA disabled,  
BUF disabled)  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 1  
(PGA enabled)  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 128  
Gain = 32  
Gain = 64  
Gain = 16  
Gain = 128  
Gain = 32  
Gain = 64  
24  
22  
20  
18  
16  
14  
12  
1000  
100  
10  
1
0.1  
0.01  
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Data rate [SPS]  
Data rate [SPS]  
Figure 2.87  
Data Rate Dependence of RMS Noise  
(AVCC0 = 5.0 V, Ta = 25°C, Normal Mode,  
Figure 2.88  
Data Rate Dependence of Effective  
Resolution (AVCC0 = 5.0 V, Ta = 25°C,  
V
ID = 0V, VREF = 2.5V)  
Normal Mode, VID = 0V, VREF = 2.5V)  
Gain = 1 (PGA disabled,  
BUF disabled)  
Gain = 2  
Gain = 16  
Gain = 128  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 4  
Gain = 1  
Gain = 1 (PGA disabled,  
BUF disabled)  
Gain = 2  
Gain = 16  
Gain = 128  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 4  
Gain = 1  
(PGA enabled )  
(PGA enabled )  
Gain = 8  
Gain = 64  
Gain = 8  
Gain = 64  
Gain = 32  
Gain = 32  
1000  
100  
10  
24  
22  
20  
18  
16  
14  
1
0.1  
12  
1
0.01  
1
10  
100  
1000  
10000  
10  
100  
Data rate [SPS]  
1000  
10000  
Data rate [SPS]  
Figure 2.89  
Data Rate Dependence of RMS Noise  
(AVCC0 = 5.0 V, Ta = 25°C, Low Power  
Figure 2.90  
Data Rate Dependence of Effective  
Resolution (AVCC0 = 5.0 V, Ta = 25°C,  
Mode, VID = 0V, VREF = 2.5V)  
Low Power Mode, VID = 0V, VREF = 2.5V)  
3.0  
2.5  
2.0  
1.5  
Gain = 1  
(PGA disabled, BUF disabled)  
Gain = 2  
1.0  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
Input voltage [% of FSR]  
Figure 2.91  
Input Voltage Dependence of RMS Noise  
(AVCC0 = 5.0 V, Ta = 25°C, Normal Mode,  
fDR = 122 SPS, VREF = 2.5V)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 79 of 98  
RX23E-A Group  
2. Electrical Characteristics  
8
6
8
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–2  
–4  
–6  
–8  
50 –40 30 –20 10  
0
10 20 30 40 50  
–50 40 –30 –20 –10  
0
10 20 30 40 50  
Input voltage[% of FSR]  
Input voltage[% of FSR]  
Figure 2.92  
Input Voltage Dependence of Integral  
Non-Linearity (AVCC0 = 5.0 V, Ta = 25°C,  
Figure 2.93  
Input Voltage Dependence of Integral  
Non-Linearity (AVCC0 = 5.0 V, Ta = 25°C,  
Normal Mode, Gain = 2,  
OPCR.DSADLVM bit = 0, VREF = 2.5V)  
Normal Mode, Gain = 1 (PGA disabled,  
BUF disabled), OPCR.DSADLVM bit = 0,  
VREF = 2.5V)  
0.03  
0.02  
15  
10  
5
0.01  
0.00  
0
–0.01  
–0.02  
–0.03  
–5  
–10  
Gain = 1  
Gain = 1  
Gain = 1  
(PGA enabled)  
Gain = 1  
Gain = 1  
(PGA disabled,  
BUF disabled)  
Gain = 2  
(PGA disabled,  
BUF enabled)  
Gain = 4  
Gain = 1  
(PGA disabled,  
BUF disabled)  
(PGA disabled,  
BUF enabled)  
(PGA enabled)  
Gain = 8  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 16  
Gain = 128  
Gain = 32  
Gain = 64  
Gain = 128  
–15  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 2.94  
Temperature Dependence of Offset  
Error (AVCC0 = 5.0 V, VID = 0V, VREF  
Figure 2.95  
Temperature Dependence of Gain Error  
(AVCC0 = 5.0 V, OPCR.DSADLVM bit = 0,  
VREF = 2.5V)  
=
2.5V)  
3
2
6
4
Gain = 1 (PGA disabled,  
BUF disabled)  
Gain = 1 (PGA enabled)  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 2  
Gain = 8  
Gain = 32  
Gain = 128  
Gain = 1 (PGA disabled,  
BUF enabled)  
Gain = 2  
Gain = 8  
Gain = 32  
Gain = 128  
Gain = 1 (PGA enabled)  
Gain = 4  
Gain = 16  
Gain = 64  
1
2
0
0
–1  
–2  
–2  
–4  
–3  
–50  
–6  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 2.96  
Temperature Dependence of Analog  
Input Bias Current (AVCC0 = 5.0 V)  
Figure 2.97  
Temperature Dependence of Analog  
Input Offset Current (AVCC0 = 5.0 V)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 80 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.10 Analog Front End Characteristics  
Table 2.51  
Voltage Reference Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VREFOUT  
Min.  
Typ.  
2.5  
Max.  
Unit  
V
Test Conditions  
Figure 2.98  
Output voltage  
Initial accuracy  
±0.1  
%
Figure 2.99  
Ta = 25°C  
Temperature drift  
4
5
10  
12  
ppm/°C  
Ta = –40 to +85°C  
Ta = –40 to +105°C  
Load current  
IL  
–35  
±10  
–50  
mA  
Load regulation  
μV/mA  
Figure 2.100  
IL= 0 to +10 mA  
250  
80  
400  
IL = –10 to 0 mA  
DC  
Power supply rejection ratio  
PSRR  
70  
dB  
Table 2.52  
Bias Voltage Generator Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Unit  
Item  
Symbol  
VBIAS  
Min.  
Typ.  
Max.  
Conditions  
Output voltage  
(AVCC0 + AVSS0)/2 (AVCC0 + AVSS0)/2 (AVCC0 + AVSS0)/2  
V
– 0.02  
+ 0.02  
20  
Startup time  
tSTART  
μs/nF  
Table 2.53  
Temperature Sensor Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Test  
Unit  
Item  
Symbol  
Min.  
Typ.  
Max.  
Conditions  
Accuracy  
±5  
°C  
°C/LSB2  
°C/LSB  
Figure 2.101  
Voltage sensitivity coefficient  
Second-order  
First-order  
TCSNS  
–6.2 × 10–13  
7.5 × 10–5  
Output code  
3D4F50h  
(4018000)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 81 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.54  
Excitation Current Source Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
2 channels mode  
4 channels mode  
Symbol  
IEXC  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
Figure 2.102  
Output  
current  
50, 100, 250, 500, 750, 1000  
μA  
50, 100, 250, 500  
±1  
Initial accuracy  
±5  
60  
%
Figure 2.103  
Ta = 25°C  
Temperature drift  
Current matching  
25  
ppm/°C  
%
±0.2  
±2.0  
Figure 2.104,  
Figure 2.105  
Ta = 25°C  
Drift matching  
5
30  
ppm/°C  
Matching between  
IEXC0 and IEXC1  
Matching between  
IEXC2 and IEXC3  
Line regulation  
0.05  
0.1  
0.30  
0.5  
%/V  
%/V  
V
Load regulation  
Compliance voltage  
VCOMP  
AVSS0 – 0.05  
AVCC0 – 0.5  
Figure 2.106  
Output current error =  
–2.0%  
Table 2.55  
External Reference Input Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VREF  
Min.  
1
Typ.  
2.5  
Max.  
Unit  
V
Test Conditions  
Differential input voltage range  
AVCC0  
VREF = V(REFnP)  
V(REFnN) (n = 0, 1)  
Absolute input  
voltage range  
Reference buffer  
disabled  
V(REF0P)  
,
AVSS0 – 0.05  
7
AVCC0 + 0.05  
V
V(REF1P),  
V(REF0N)  
V(REF1N)  
,
Reference buffer  
enabled  
AVSS0 + 0.1  
AVCC0 – 0.1  
Input current  
Reference buffer  
disabled  
Ib  
15  
±3  
μA/V  
nA  
Figure 2.107  
Ta = 25°C  
Reference buffer  
enabled  
±1  
0.8  
Figure 2.108  
Ta = 25°C  
Input current drift  
Reference buffer  
disabled  
dIb  
1.5  
nA/V/°C Ta = –40 to +105°C  
Reference buffer  
enabled  
70  
18  
30  
90  
60  
150  
pA/°C  
pA/°C  
dB  
Ta = –40 to +85°C  
Ta = –40 to +105°C  
Common mode  
rejection ratio  
Reference buffer  
disabled  
CMRR  
Reference buffer  
enabled  
70  
80  
Table 2.56  
Low Side Switch Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
On-state resistance  
Symbol  
RON  
Min.  
Typ.  
Max.  
10  
Unit  
Test Conditions  
Off-state leakage current  
Allowable current  
Ilkg  
0.1  
30  
μA  
mA  
ILIMIT  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 82 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.57  
Low Power-Supply Voltage Detector Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VDET0  
Min.  
1.88  
1.74  
Typ.  
2.00  
1.86  
Max.  
2.12  
1.98  
20  
Unit  
V
Test Conditions  
Detection voltage DET0LVL = 0  
Negative-going  
AVCC0  
(LVDET0)  
DET0LVL = 1  
Non-responsive period (LVDET0)  
tDET0  
μs  
V
Detection voltage DET1LVL[1:0] = 00b  
VDET1  
2.75  
2.65  
3.60  
3.50  
2.91  
2.82  
3.80  
3.70  
3.07  
2.99  
4.00  
3.90  
20  
Negative-going  
AVCC0  
(LVDET1)  
DET1LVL[1:0] = 01b  
DET1LVL[1:0] = 10b  
DET1LVL[1:0] = 11b  
Non-responsive period (LVDET1)  
tDET1  
μs  
Table 2.58  
Input Voltage Fault Detector Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VIDETH  
Min.  
Typ.  
Max.  
Unit  
V
Test Conditions  
Upper detection level for the analog  
input voltage  
AVCC0 + 0.05 AVCC0 + 0.2  
Lower detection level for the analog  
input voltage  
VIDETL  
tIDET  
AVSS0 – 0.2 AVSS0 – 0.05  
20  
V
Non-responsive period  
μs  
Table 2.59  
Reference Voltage Fault Detector Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
VRDET  
Min.  
0.70  
Typ.  
0.85  
Max.  
1.00  
Unit  
V
Test Conditions  
Detection level for external reference  
voltage differential  
Upper detection level for the external  
reference voltage  
VRDETH  
VRDETL  
tRDET  
AVCC0 – 0.5 AVCC0 – 0.4  
V
V
Lower detection level for the external  
reference voltage  
AVSS0 + 0.4 AVSS0 + 0.5  
20  
Non-responsive period  
μs  
Table 2.60  
Excitation Current Source Disconnect Detector Characteristics  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, T = –40 to +105°C  
a
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit  
V
Test Conditions  
Detection level for disconnection of the  
excitation current source  
VIEXCDET AVCC0 – 0.18 AVCC0 – 0.06  
Non-responsive period  
tIEXCDET  
20  
μs  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 83 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
10  
8
6
4
2
0
–50 –25  
0
25  
50  
75  
100 125  
–0.15 –0.10 –0.05  
0.00  
0.05  
0.10  
0.15  
Inital accuracy [%]  
Temperature [°C]  
Figure 2.98  
Temperature Dependence of Output  
Voltage of Voltage Reference  
(AVCC0 = 5.0 V)  
Figure 2.99  
Initial Accuracy of Voltage Reference  
(AVCC0 = 5.0 V, 30 samples)  
2.0  
1.5  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.0  
0.5  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–15  
–10  
–5  
0
5
10  
15  
–50  
–25  
0
25  
50  
75  
100  
125  
IL [mA]  
Temperature [°C]  
Figure 2.100 Load Regulation of Voltage Reference  
(AVCC0 = 5.0 V, Ta = 25°C)  
Figure 2.101 Accuracy of Temperature Sensor  
(AVCC0 = 5.0 V)  
1.5  
1.0  
0.5  
0.0  
30  
20  
10  
0
–0.5  
IEXC = 50 µA  
IEXC = 100 µA  
IEXC = 250 µA  
–1.0  
IEXC = 500 µA  
IEXC = 750 µA  
IEXC = 1000 µA  
–1.5  
–2.0 –1.6 1.2 –0.8 –0.4 0.0 0.4 0.8 1.2 1.6 2.0  
–50 –25  
0
25  
50  
75  
100 125  
Initial accuracy [%]  
Temperature [°C]  
Figure 2.102 Temperature Dependence of Output  
Current of Excitation Current Source  
(AVCC0 = 5.0 V)  
Figure 2.103 Initial Accuracy of Output Current of  
Excitation Current Source  
(AVCC0 = 5.0 V, Ta = 25°C, IEXC = 250  
µA, 93 samples)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 84 of 98  
RX23E-A Group  
2. Electrical Characteristics  
50  
40  
30  
20  
10  
0.4  
0.3  
IEXC = 50 µA  
IEXC = 100 µA  
IEXC = 250 µA  
IEXC = 500 µA  
IEXC = 750 µA  
IEXC = 1000 µA  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
0
–0.6  
–0.4  
0.2  
0.0  
0.2  
0.4  
0.6  
–50 –25  
0
25  
50  
75  
100 125  
Current matching [%]  
Temperature [°C]  
Figure 2.104 Matching of Output Current of Excitation Figure 2.105 Temperature Dependence of Matching  
Current Source (AVCC0 = 5.0 V, Ta =  
of Output Current of Excitation Current  
Source (AVCC0 = 5.0 V)  
25°C, IEXC = 250 µA, 93 samples)  
5
0
IEXC = 50 µA  
IEXC = 250 µA  
IEXC = 1000 µA  
–5  
–10  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Output voltage [V]  
Figure 2.106 IEXC Accuracy vs Compliance Voltage  
(AVCC0 = 5.0 V, Ta = 25°C)  
1.0  
0.8  
20  
16  
12  
REF0P  
REF0N  
0.6  
0.4  
8
REF0P  
REF0N  
0.2  
4
0
0.0  
–4  
–8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–12  
–16  
–20  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
Temperature [°C]  
Temperature [°C]  
Figure 2.107 Temperature Dependence of External  
Reference Input Current (AVCC0 = 5.0 V,  
Reference Buffer Disabled)  
Figure 2.108 Temperature Dependence of External  
Reference Input Current (AVCC0 = 5.0 V,  
Reference Buffer Enabled)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 85 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.11 12-Bit A/D Conversion Characteristics  
VREFH0  
5.5  
VREFH0  
5.5  
5.0  
5.0  
4.0  
3.0  
A/D Conversion  
Characteristics (1)  
A/D Conversion  
Characteristics (3)  
4.0  
3.0  
A/D Conversion  
Characteristics (4)  
2.7  
2.4  
2.7  
2.4  
A/D Conversion  
Characteristics (2)  
A/D Conversion  
Characteristics (5)  
2.0  
2.0  
1.8  
1.0  
1.0  
2.42.7  
3.0  
5.5  
AVCC0  
1.8 2.42.7  
2.0 3.0  
5.5  
AVCC0  
1.0  
2.0  
4.0  
5.0  
1.0  
4.0  
5.0  
ADCSR.ADHSC = 0  
ADCSR.ADHSC = 1  
Figure 2.109  
Table 2.61  
AVCC0 to VREFH0 Voltage Range  
12-Bit A/D Conversion Characteristics (1)  
Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0,  
VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C, Source impedance = 0.3 kΩ  
a
Item  
Min.  
1
Typ.  
Max.  
32  
Unit  
MHz  
Bit  
Test Conditions  
Frequency  
Resolution  
12  
Conversion time*1  
(Operation at PCLKD = 32 MHz)  
1.41  
μs  
ADCSR.ADHSC bit = 0  
ADSSTRn = 0Dh  
Analog input capacitance Cs  
0
25  
2.5  
pF  
kΩ  
Pin capacitance included  
Analog input resistance  
Rs  
Analog input effective range  
Offset error  
VREFH0  
±4.5  
±4.50  
V
±0.5  
±0.75  
± 0.5  
±1.25  
±1.0  
±1.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
±5.00  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±3.0  
Note:  
The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not  
include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling  
states is indicated.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 86 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.62  
Conditions: 2.4 V ≤ VCC ≤ 5.5 V, 2.4 V ≤ AVCC0 ≤ 5.5 V, 2.4 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0,  
VSS = AVSS0 = VREFL0 = 0 V, T = –40 to +105°C, Source impedance = 1.3 kΩ  
12-Bit A/D Conversion Characteristics (2)  
a
Item  
Min.  
1
Typ.  
Max.  
16  
Unit  
MHz  
Bit  
Test Conditions  
Frequency  
Resolution  
12  
Conversion time*1  
(Operation at PCLKD = 16 MHz)  
2.82  
μs  
ADCSR.ADHSC bit = 0  
ADSSTRn = 0Dh  
Analog input  
capacitance  
Cs  
25  
pF  
kΩ  
Pin capacitance included  
Analog input  
resistance  
Rs  
2.5  
Analog input effective range  
Offset error  
0
VREFH0  
±4.5  
±4.50  
V
±0.5  
±0.75  
±0.5  
±1.25  
±1.0  
±1.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
±5.00  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±4.5  
Note:  
The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not  
include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling  
states is indicated.  
Table 2.63  
12-Bit A/D Conversion Characteristics (3)  
Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0,  
VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 1.1 kΩ  
Item  
Min.  
1
Typ.  
Max.  
27  
Unit  
MHz  
Bit  
Test Conditions  
Frequency  
Resolution  
3
12  
Conversion time*1  
μs  
ADCSR.ADHSC bit = 1  
ADSSTRn = 28h  
(Operation at PCLKD = 27 MHz)  
Analog input  
capacitance  
Cs  
25  
pF  
kΩ  
Pin capacitance included  
Analog input  
resistance  
Rs  
2.5  
Analog input effective range  
Offset error  
0
VREFH0  
±4.5  
±4.50  
V
±0.5  
±0.75  
±0.5  
±1.25  
±1.0  
±1.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
±5.00  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±3.0  
Note:  
The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not  
include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling  
states is indicated.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 87 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.64  
12-Bit A/D Conversion Characteristics (4)  
Conditions: 2.4 V ≤ VCC ≤ 5.5 V, 2.4 V ≤ AVCC0 ≤ 5.5 V, 2.4 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0,  
VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 2.2 kΩ  
Item  
Min.  
1
Typ.  
Max.  
16  
Unit  
MHz  
Bit  
Test Conditions  
Frequency  
Resolution  
12  
Conversion time*1  
(Operation at PCLKD = 16 MHz)  
5.06  
μs  
ADCSR.ADHSC bit = 1  
ADSSTRn = 28h  
Analog input  
capacitance  
Cs  
25  
pF  
kΩ  
Pin capacitance included  
Analog input  
resistance  
Rs  
2.5  
Analog input effective range  
Offset error  
0
VREFH0  
±4.5  
±4.50  
V
±0.5  
±0.75  
±0.5  
±1.25  
±1.0  
±1.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
±5.00  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±3.0  
Note:  
The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not  
include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling  
states is indicated.  
Table 2.65  
12-Bit A/D Conversion Characteristics (5)  
Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 1.8 V ≤ AVCC0 ≤ 5.5 V, 1.8 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0,  
VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 5 kΩ  
Item  
Min.  
1
Typ.  
Max.  
8
Unit  
MHz  
Bit  
Test Conditions  
Frequency  
Resolution  
12  
Conversion time*1  
10.13  
μs  
ADCSR.ADHSC bit = 1  
ADSSTRn = 28h  
(Operation at PCLKD = 8 MHz)  
Analog input  
capacitance  
Cs  
25  
pF  
kΩ  
Pin capacitance included  
Analog input  
resistance  
Rs  
2.5  
Analog input effective range  
Offset error  
0
VREFH0  
±7.5  
±7.5  
V
±1.0  
±1.5  
±0.5  
±3.0  
±1.0  
±1.25  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
±8.0  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±3.00  
Note:  
The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not  
include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling  
states is indicated.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 88 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Table 2.66  
12-Bit A/D Converter Channel Classification  
Classification  
Analog input channel  
Channel  
Conditions  
Remarks  
AN000 to AN005  
AVCC0 = 1.8 to 5.5 V  
MCU  
R0  
Rs  
12b - ADC  
Cs  
Figure 2.110  
Equivalent Circuit  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 89 of 98  
RX23E-A Group  
2. Electrical Characteristics  
FFFh  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
000h  
Offset error  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.111  
Illustration of A/D Converter Characteristic Terms  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog  
input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference  
voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog  
input voltages.  
If analog input voltage is 6 mV, absolute accuracy = ±5 LSB means that the actual A/D conversion result is in the range  
of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale  
errors are zeroed, and the actual output code.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 90 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics  
and the width of the actual output code.  
Offset error  
Offset error is the difference between a transition point of the ideal first output code and the actual first output code.  
Full-scale error  
Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 91 of 98  
RX23E-A Group  
2. Electrical Characteristics  
2.12 Usage Notes  
2.12.1  
Connecting VCL Capacitor and Bypass Capacitors  
This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the  
internal MCU automatically to the optimum level. A 4.7-μF capacitor needs to be connected between this internal  
voltage-down power supply (VCL pin) and the VSS pin. Figure 2.112 and Figure 2.113 shows how to connect external  
capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin.  
Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a  
bypass capacitor as closer to the MCU power supply pins as possible. Use a recommended value of 0.1 μF as the  
capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit  
in the User’s Manual: Hardware. For the capacitors related to analog modules, also see section 33, Analog Front  
End (AFE), and section 35, 12-Bit A/D Converter (S12ADE) in the User’s Manual: Hardware.  
For notes on designing the printed circuit board, see the descriptions of the application note, the Hardware Design Guide  
(R01AN1411EJ). The latest version can be downloaded from the Renesas Electronics website.  
Bypass  
capacitor capacitor  
0.1 µF 0.1 µF  
Bypass  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
RX23E-A Group  
PLQP0048KB-B  
(48-pin LFQFP)  
(Top view)  
19  
18  
17  
16  
15  
14  
13  
Bypass  
capacitor  
0.1 µF  
Bypass  
capacitor  
External capacitor  
0.1 µF  
for power supply  
stabilization 4.7 µF  
Note:  
Do not apply the power supply voltage to the VCL pin.  
Use a 4.7-µF multilayer ceramic capacitor for the VCL pin and place it close to the pin.  
A recommended value is shown for the capacitance of the bypass capacitors.  
Figure 2.112  
Connecting Capacitors (48 Pins)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 92 of 98  
RX23E-A Group  
2. Electrical Characteristics  
Bypass  
capacitor capacitor  
0.1 µF 0.1 µF  
Bypass  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RX23E-A Group  
PWQN0040KC-A  
(40-pin HWQFN)  
(Top view)  
Bypass  
capacitor  
0.1 µF  
Bypass  
capacitor  
External capacitor  
0.1 µF  
for power supply  
stabilization 4.7 µF  
Note:  
Do not apply the power supply voltage to the VCL pin.  
Use a 4.7-µF multilayer ceramic capacitor for the VCL pin and place it close to the pin.  
A recommended value is shown for the capacitance of the bypass capacitors.  
Figure 2.113  
Connecting Capacitors (40 Pins)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 93 of 98  
RX23E-A Group  
Appendix 1. Package Dimensions  
Appendix 1. Package Dimensions  
Information on the latest version of the package dimensions or mountings has been displayed in “Packages” on Renesas  
Electronics Corporation website.  
Figure A 48-Pin LFQFP (PLQP0048KB-B)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 94 of 98  
RX23E-A Group  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
P-HWQFN40-6x6-0.50  
PWQN0040KC-A  
P40K8-50-4B4-5  
0.09  
D
21  
30  
20  
31  
DETAIL OF A PART  
E
A
40  
11  
A1  
c2  
10  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
6.00  
6.00  
Max  
6.05  
6.05  
0.80  
Min  
5.95  
5.95  
D
E
D2  
A
Lp  
EXPOSED DIE PAD  
A
1
10  
A1  
b
0.00  
0.18  
0.30  
11  
0.25  
0.50  
0.40  
40  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
0.75  
0.75  
0.20  
4.50  
4.50  
ZE  
20  
31  
0.25  
30  
21  
D2  
E2  
ZD  
e
M
b
x
S
A B  
Figure B 40-Pin HWQFN (PWQN0040KC-A)  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 95 of 98  
REVISION HISTORY  
RX23E-A Group  
REVISION HISTORY  
REVISION HISTORY  
RX23E-A Group Datasheet  
Classifications  
- Items with Technical Update document number: Changes according to the corresponding issued Technical Update  
- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued  
Description  
Rev.  
Date  
Classification  
Page  
Summary  
1.00 Aug 30, 2019  
First edition, issued  
All trademarks and registered trademarks are the property of their respective owners.  
R01DS0330EJ0100 Rev.1.00  
Aug 30, 2019  
Page 96 of 98  
General Precautions in the Handling of Microprocessing Unit and Microcontroller  
Unit Products  
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the  
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps  
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be  
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.  
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and  
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor  
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of  
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset  
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins  
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the  
level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O  
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal  
elements. Follow the guideline for input signal during power-off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are  
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of  
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal  
become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program  
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator  
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal  
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL  
(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the  
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these  
addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.  
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms  
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,  
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-  
evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics Corporation  
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia  
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2019 Renesas Electronics Corporation. All rights reserved.  
Colophon 8.0  

相关型号:

R5F523T3ADFD

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T3ADFL

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T3ADFM

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T3AGFD

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T3AGFL

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T3AGFM

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5ADFD

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5ADFL

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5ADFM

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5AGFD

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5AGFL

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS

R5F523T5AGFM

40-MHz 32-bit RX MCUs, built-in FPU, 65.6 DMIPS
RENESAS