R7FA6T1AB3CFM [RENESAS]

Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security and safety features, and advanced analog.;
R7FA6T1AB3CFM
型号: R7FA6T1AB3CFM
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security and safety features, and advanced analog.

静态存储器
文件: 总69页 (文件大小:990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cover  
Renesas RA6T1 Group  
32  
Datasheet  
32-Bit MCU  
Renesas Advanced (RA) Family  
Renesas RA6 Series  
All information contained in these materials, including products and product specifications,  
represents information on the product at the time of publication and is subject to change by  
Renesas Electronics Corp. without notice. Please review the latest information published by  
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.  
website (http://www.renesas.com).  
www.renesas.com  
Rev.1.00 May 2020  
RA6T1 Group  
Datasheet  
Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security  
and safety features, and advanced analog.  
Features  
Arm Cortex-M4 Core with Floating Point Unit (FPU)  
Armv7E-M architecture with DSP instruction set  
Maximum operating frequency: 120 MHz  
System and Power Management  
Low power modes  
Event Link Controller (ELC)  
DMA Controller (DMAC) × 8  
Data Transfer Controller (DTC)  
Key Interrupt Function (KINT)  
Power-on reset  
Support for 4-GB address space  
On-chip debugging system: JTAG, SWD, and ETM  
Boundary scan and Arm Memory Protection Unit (Arm MPU)  
Memory  
Low Voltage Detection (LVD) with voltage settings  
Up to 512-KB code flash memory (40 MHz zero wait states)  
8-KB data flash memory (125,000 erase/write cycles)  
64-KB SRAM  
Security and Encryption  
AES128/192/256  
3DES/ARC4  
Flash Cache (FCACHE)  
Memory Protection Units (MPU)  
Memory Mirror Function (MMF)  
128-bit unique ID  
SHA1/SHA224/SHA256/MD5  
GHASH  
RSA/DSA/ECC  
True Random Number Generator (TRNG)  
Connectivity  
Multiple Clock Sources  
Serial Communications Interface (SCI) with FIFO × 7  
Serial Peripheral Interface (SPI) × 2  
I2C bus interface (IIC) × 2  
CAN module (CAN) × 1  
Main clock oscillator (MOSC) (8 to 24 MHz)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
Clock out support  
IrDA interface  
Analog  
12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits  
each × 2  
12-bit D/A Converter (DAC12) × 2  
High-Speed Analog Comparator (ACMPHS) × 6  
Programmable Gain Amplifier (PGA) × 6  
Temperature Sensor (TSN)  
General-Purpose I/O Ports  
Up to 76 input/output pins  
- Up to 9 CMOS input  
- Up to 67 CMOS input/output  
- Up to 14 input/output 5 V tolerant  
- Up to 13 high current (20 mA)  
Timers  
General PWM Timer 32-bit Enhanced High Resolution  
(GPT32EH) × 4  
General PWM Timer 32-bit Enhanced (GPT32E) × 4  
General PWM Timer 32-bit (GPT32) × 5  
Asynchronous General-Purpose Timer (AGT) × 2  
Watchdog Timer (WDT)  
Operating Voltage  
VCC: 2.7 to 3.6 V  
Operating Temperature and Packages  
Ta = -40°C to +105°C  
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
Safety  
SRAM parity error check  
Flash area protection  
ADC self-diagnosis function  
Clock Frequency Accuracy Measurement Circuit (CAC)  
Cyclic Redundancy Check (CRC) calculator  
Data Operation Circuit (DOC)  
Port Output Enable for GPT (POEG)  
Independent Watchdog Timer (IWDT)  
GPIO readback level detection  
Register write protection  
Main oscillator stop detection  
Illegal memory access  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 2 of 69  
RA6T1 Datasheet  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set  
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.  
®
The MCU in this series incorporates a high-performance Arm Cortex -M4 core running up to 120 MHz with the  
following features:  
Up to 512-KB code flash memory  
64-KB SRAM  
Security and safety features  
12-bit A/D Converter (ADC12)  
12-bit D/A Converter (DAC12)  
Analog peripherals.  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M4 core  
Maximum operating frequency: up to 120 MHz  
Arm Cortex-M4 core:  
- Revision: r0p1-01rel0  
- Armv7E-M architecture profile  
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.  
Arm Memory Protection Unit (Arm MPU):  
- Armv7 Protected Memory System Architecture  
- 8 protect regions.  
SysTick timer:  
- Driven by SYSTICCLK (LOCO) or ICLK.  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Memory Mirror Function (MMF)  
Up to 512-KB code flash memory. See section 41, Flash Memory in User’s Manual.  
8-KB data flash memory. See section 41, Flash Memory in User’s Manual.  
The Memory Mirror Function (MMF) can be configured to mirror the target application image  
load address in code flash memory to the application image link address in the 23-bit unused  
memory space (memory mirror space addresses). Your application code is developed and  
linked to run from this MMF destination address. Your application code does not need to know  
the load location where it is stored in code flash memory. See section 5, Memory Mirror  
Function (MMF) in User’s Manual.  
Option-setting memory  
SRAM  
The option-setting memory determines the state of the MCU after a reset. See section 7,  
Option-Setting Memory in User’s Manual.  
On-chip high-speed SRAM. See section 40, SRAM in User’s Manual.  
Table 1.3  
Feature  
System (1 of 3)  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI boot mode.  
See section 3, Operating Modes in User’s Manual.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 3 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.3  
System (2 of 3)  
Feature  
Functional description  
Resets  
14 resets:  
RES pin reset  
Power-on reset  
Voltage monitor 0 reset  
Voltage monitor 1 reset  
Voltage monitor 2 reset  
Independent watchdog timer reset  
Watchdog timer reset  
Deep Software Standby reset  
SRAM parity error reset  
Bus master MPU error reset  
Bus slave MPU error reset  
Stack pointer error reset  
Software reset.  
See section 6, Resets in User’s Manual.  
Low Voltage Detection (LVD)  
Clocks  
The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and  
the detection level can be selected using a software program. See section 8, Low Voltage  
Detection (LVD) in User’s Manual.  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
PLL frequency synthesizer  
IDWT-dedicated on-chip oscillator  
Clock out support.  
See section 9, Clock Generation Circuit in User’s Manual.  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock to be used as a  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.  
When measurement is complete or the number of pulses within the time generated by the  
measurement reference clock is not within the allowable range, an interrupt request is  
generated.  
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.  
Interrupt Controller Unit (ICU)  
Key Interrupt Function (KINT)  
Low power modes  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC  
module and DMAC module. The ICU also controls NMI interrupts. See section 13, Interrupt  
Controller Unit (ICU) in User’s Manual.  
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting  
a rising or falling edge to the key interrupt input pins. See section 20, Key Interrupt Function  
(KINT) in User’s Manual.  
Power consumption can be reduced in multiple ways, such as by setting clock dividers,  
stopping modules, selecting power control mode in normal operation, and transitioning to low  
power modes. See section 11, Low Power Modes in User’s Manual.  
Register write protection  
Memory Protection Unit (MPU)  
Watchdog Timer (WDT)  
The register write protection function protects important registers from being overwritten  
because of software errors. See section 12, Register Write Protection in User’s Manual.  
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided  
for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual.  
The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.  
A refresh-permitted period can be set to refresh the counter and used as the condition for  
detecting when the system runs out of control. See section 25, Watchdog Timer (WDT) in  
User’s Manual.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 4 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.3  
Feature  
System (3 of 3)  
Functional description  
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be  
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset  
the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because  
the timer operates with an independent, dedicated clock source, it is particularly useful in  
returning the MCU to a known state as a fail-safe mechanism when the system runs out of  
control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by  
a refresh of the count value in the registers. See section 26, Independent Watchdog Timer  
(IWDT) in User’s Manual.  
Table 1.4  
Feature  
Event link  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral  
modules as event signals to connect them to different modules, enabling direct interaction  
between the modules without CPU intervention. See section 18, Event Link Controller (ELC)  
in User’s Manual.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request. See section 17, Data Transfer Controller (DTC) in User’s Manual.  
DMA Controller (DMAC)  
An 8-channel DMA Controller (DMAC) module is provided for transferring data without the  
CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the  
transfer source address to the transfer destination address. See section 16, DMA Controller  
(DMAC) in User’s Manual.  
Table 1.6  
Feature  
Timers  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with 13 channels. PWM waveforms can be  
generated by controlling the up-counter, down-counter, or up- and down-counter. In addition,  
PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be  
used as a general-purpose timer. See section 22, General PWM Timer (GPT) in User’s  
Manual.  
Port Output Enable for GPT (POEG)  
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)  
output pins in the output disable state. See section 21, Port Output Enable for GPT (POEG) in  
User’s Manual.  
Low Power Asynchronous General-  
Purpose Timer (AGT)  
The Low Power Asynchronous General-Purpose Timer (AGT) is a 16-bit timer that can be  
used for pulse output, external pulse width or period measurement, and counting of external  
events.  
This 16-bit timer consists of a reload register and a down-counter. The reload register and the  
down-counter are allocated to the same address, and can be accessed with the AGT register.  
See section 24, Low Power Asynchronous General-Purpose Timer (AGT) in User’s Manual.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 5 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.7  
Feature  
Communication interfaces  
Functional description  
Serial Communications Interface  
(SCI)  
The Serial Communications Interface (SCI) is configurable to five asynchronous and  
synchronous serial interfaces:  
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface.  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol.  
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data  
transfer speed can be configured independently using an on-chip baud rate generator. See  
section 27, Serial Communications Interface (SCI) in User’s Manual.  
IrDA Interface (IrDA)  
The IrDA interface sends and receives IrDA data communication waveforms in cooperation  
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 28,  
IrDA Interface in User’s Manual.  
I2C bus interface (IIC)  
The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C  
(Inter-Integrated Circuit) bus interface functions. See section 29, I2C Bus Interface (IIC) in  
User’s Manual.  
Serial Peripheral Interface (SPI)  
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-  
duplex synchronous serial communications with multiple processors and peripheral devices.  
See section 31, Serial Peripheral Interface (SPI) in User’s Manual.  
Controller Area Network (CAN)  
module  
The Controller Area Network (CAN) module provides functionality to receive and transmit data  
using a message-based protocol between multiple slaves and masters in electromagnetically-  
noisy applications.  
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports  
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox  
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are  
supported. See section 30, Controller Area Network (CAN) Module in User’s Manual.  
Table 1.8  
Feature  
Analog  
Functional description  
12-bit A/D Converter (ADC12)  
Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up  
to 11 analog input channels are selectable. In unit 1, up to eight analog input channels, the  
temperature sensor output, and an internal reference voltage are selectable for conversion.  
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it  
possible to optimize the tradeoff between speed and resolution in generating a digital value.  
See section 35, 12-Bit A/D Converter (ADC12) in User’s Manual.  
12-bit D/A Converter (DAC12)  
Temperature Sensor (TSN)  
A 12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section  
36, 12-Bit D/A Converter (DAC12) in User’s Manual.  
The on-chip Temperature Sensor (TSN) can determine and monitor the die temperature for  
reliable operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is linear.  
The output voltage is provided to the ADC12 for conversion and can also be used by the end  
application. See section 37, Temperature Sensor (TSN) in User’s Manual.  
High-Speed Analog Comparator  
(ACMPHS)  
The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference  
voltage and provides a digital output based on the conversion result.  
Both the test and reference voltages can be provided to the comparator from internal sources  
such as the DAC12 output and internal reference voltage, and an external source with or  
without an internal PGA.  
Such flexibility is useful in applications that require go/no-go comparisons to be performed  
between analog signals without necessarily requiring A/D conversion. See section 38, High-  
Speed Analog Comparator (ACMPHS) in User’s Manual.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 6 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.9  
Feature  
Data processing  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC-generating polynomials are available. The snoop  
function allows monitoring reads from and writes to specific addresses. This function is useful  
in applications that require CRC code to be generated automatically in certain events, such as  
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See  
section 32, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 39,  
Data Operation Circuit (DOC) in User’s Manual.  
Table 1.10  
Feature  
Security  
Functional description  
Secure Crypto Engine 7 (SCE7)  
Security algorithms:  
- Symmetric algorithms: AES, 3DES, and ARC4  
- Asymmetric algorithms: RSA, DSA, and ECC.  
Other support features:  
- TRNG (True Random Number Generator)  
- Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5  
- 128-bit unique ID.  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the  
features.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 7 of 69  
RA6T1 Datasheet  
1. Overview  
Memory  
Bus  
Arm Cortex-M4  
System  
Up to 512 KB code  
flash  
Clocks  
MPU  
DSP  
FPU  
POR/LVD  
Reset  
MOSC/SOSC  
(H/M/L) OCO  
PLL  
8 KB data flash  
64 KB SRAM  
MPU  
NVIC  
Mode control  
System timer  
Test and DBG interface  
Power control  
ICU  
CAC  
DMA  
DTC  
Register write  
protection  
KINT  
DMAC × 8  
Timers  
Communication interfaces  
SCI × 7  
IrDA × 1  
GPT32EH x 4  
GPT32E x 4  
GPT32 x 5  
IIC × 2  
SPI × 2  
CAN × 1  
AGT × 2  
WDT/IWDT  
Event link  
ELC  
Data processing  
Analog  
TSN  
ADC12 with  
PGA × 2  
CRC  
DOC  
DAC12  
ACMPHS × 6  
Security  
SCE7  
Figure 1.1  
Block diagram  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 8 of 69  
RA6T1 Datasheet  
1. Overview  
1.3  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.11 shows a  
list of products.  
R 7 F A 6 T 1 A D 3 C F P # A A 0  
Production identification code  
Packaging, Terminal material (Pb-free)  
#AA: Tray/Sn (Tin) only  
#AC: Tray/others  
Package type  
FP: LQFP 100 pins  
FM: LQFP 64 pins  
Quality Grade  
Operating temperature  
3: -40°C to 105°C  
Code flash memory size  
D: 512 KB, B: 256KB  
Feature set  
Group number  
Series name  
RA family  
Flash memory  
Renesas microcontroller  
Figure 1.2  
Table 1.11  
Part numbering scheme  
Product list  
Operating  
Product part number  
R7FA6T1AD3CFP  
R7FA6T1AB3CFP  
R7FA6T1AD3CFM  
R7FA6T1AB3CFM  
Orderable part number  
R7FA6T1AD3CFP#AA0  
R7FA6T1AB3CFP#AA0  
R7FA6T1AD3CFM#AA0  
R7FA6T1AB3CFM#AA0  
Package code  
PLQP0100KB-B  
PLQP0100KB-B  
PLQP0064KB-C  
PLQP0064KB-C  
Code flash Data flash SRAM  
temperature  
512 KB  
256 KB  
512 KB  
256 KB  
8 KB  
64 KB  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 9 of 69  
RA6T1 Datasheet  
1. Overview  
1.4  
Function Comparison  
Table 1.12  
Functional comparison  
Part numbers  
Function  
R7FA6T1AD3CFP  
R7FA6T1AB3CFP  
100  
R7FA6T1AD3CFM  
R7FA6T1AB3CFM  
64  
Pin count  
Package  
LQFP  
LQFP  
Code flash memory  
Data flash memory  
SRAM  
256 KB/512 KB  
8 KB  
64 KB  
Parity  
64 KB  
System  
CPU clock  
120 MHz  
512 Bytes  
Backup  
registers  
ICU  
Yes  
8
KINT  
Event link  
DMA  
ELC  
Yes  
Yes  
8
DTC  
DMAC  
GPT32EH  
GPT32E  
GPT32  
AGT  
Timers  
4
4
5
3
4
2
Yes  
7
WDT/IWDT  
SCI  
Communication  
IIC  
2
SPI  
2
CAN  
1
Analog  
ADC12  
DAC12  
ACMPHS  
TSN  
19  
10  
2
6
Yes  
Yes  
Yes  
SCE7  
Data processing CRC  
DOC  
Security  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 10 of 69  
RA6T1 Datasheet  
1. Overview  
1.5  
Pin Functions  
Table 1.13  
Pin functions (1 of 3)  
Function  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. This is used as the digital power supply for the respective  
modules and internal voltage regulator, and used to monitor the voltage of  
the POR/LVD. Connect this pin to the system power supply. Connect it to  
VSS by a 0.1-μF capacitor. Place the capacitor close to the pin.  
VCL0  
VCL  
Input  
Connect this pin to VSS through a 0.1-μF smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the pin.  
Input  
VSS  
Input  
Ground pin. Connect to the system power supply (0 V).  
Clock  
XTAL  
EXTAL  
XCIN  
XCOUT  
CLKOUT  
MD  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input through the  
EXTAL pin.  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal resonator  
between XCOUT and XCIN.  
Output  
Output  
Input  
Clock output pin  
Operating mode  
control  
Pin for setting the operating mode. The signal level on this pin must not be  
changed during operation mode transition on release from the reset state.  
System control  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this signal goes  
low.  
CAC  
CACREF  
Input  
Input  
Input  
Input  
Measurement reference clock input pin  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
Interrupt  
NMI  
IRQ0 to IRQ13  
KR00 to KR07  
KINT  
A key interrupt can be generated by inputting a falling edge to the key  
interrupt input pins  
On-chip emulator  
TMS  
I/O  
On-chip emulator or boundary scan pins  
TDI  
Input  
Input  
Output  
Output  
Output  
I/O  
TCK  
TDO  
TCLK  
This pin outputs the clock for synchronization with the trace data  
Trace data output  
TDATA0 to TDATA3  
SWDIO  
SWCLK  
SWO  
Serial wire debug data input/output pin  
Serial wire clock pin  
Input  
Output  
Input  
Serial wire trace output pin  
GPT  
GTETRGA,  
GTETRGB,  
GTETRGC,  
GTETRGD  
External trigger input pins  
GTIOC0A to  
GTIOC12A,  
GTIOC0B to  
GTIOC12B  
I/O  
Input capture, output compare, or PWM output pins  
GTIU  
Input  
Hall sensor input pin U  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
External event input enable signals  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
AGT  
AGTEE0, AGTEE1  
AGTIO0, AGTIO1  
AGTO0, AGTO1  
AGTOA0, AGTOA1  
AGTOB0, AGTOB1  
I/O  
External event input and pulse output pins  
Pulse output pins  
Output  
Output  
Output  
Output compare match A output pins  
Output compare match B output pins  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 11 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.13  
Pin functions (2 of 3)  
Function  
Signal  
I/O  
Description  
SCI  
SCK0 to SCK4,  
SCK8, SCK9  
I/O  
Input/output pins for the clock (clock synchronous mode)  
RXD0 to RXD4,  
RXD8, RXD9  
Input  
Output  
I/O  
Input pins for received data (asynchronous mode/clock synchronous mode)  
TXD0 to TXD4,  
TXD8, TXD9  
Output pins for transmitted data (asynchronous mode/clock synchronous  
mode)  
CTS0_RTS0 to  
CTS4_RTS4,  
CTS8_RTS8,  
CTS9_RTS9  
Input/output pins for controlling the start of transmission and reception  
(asynchronous mode/clock synchronous mode), active-low  
SCL0 to SCL4,  
SCL8, SCL9  
I/O  
Input/output pins for the IIC clock (simple IIC mode)  
Input/output pins for the IIC data (simple IIC mode)  
SDA0 to SDA4,  
SDA8, SDA9  
I/O  
SCK0 to SCK4,  
SCK8, SCK9  
I/O  
Input/output pins for the clock (simple SPI mode)  
MISO0 to MISO4,  
MISO8, MISO9  
I/O  
Input/output pins for slave transmission of data (simple SPI mode)  
Input/output pins for master transmission of data (simple SPI mode)  
Chip-select input pins (simple SPI mode), active-low  
MOSI0 to MOSI4,  
MOSI8, MOSI9  
I/O  
SS0 to SS4, SS8,  
SS9  
Input  
IIC  
SCL0, SCL1  
I/O  
Input/output pins for the clock  
SDA0, SDA1  
I/O  
Input/output pins for data  
SPI  
RSPCKA, RSPCKB  
MOSIA, MOSIB  
MISOA, MISOB  
SSLA0, SSLB0  
I/O  
Clock input/output pin  
I/O  
Input or output pins for data output from the master  
Input or output pins for data output from the slave  
Input or output pin for slave selection  
Output pins for slave selection  
I/O  
I/O  
SSLA1 to SSLA3,  
SSLB1 to SSLB3  
Output  
CAN  
CRX0  
CTX0  
Input  
Receive data  
Transmit data  
Output  
Input  
Analog power  
supply  
AVCC0  
Analog voltage supply pin. This is used as the analog power supply for the  
respective modules. Supply this pin with the same voltage as the VCC pin.  
AVSS0  
Input  
Input  
Analog ground pin. This is used as the analog ground for the respective  
modules. Supply this pin with the same voltage as the VSS pin.  
VREFH0  
Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin  
to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for  
AN000 to AN002.  
VREFL0  
VREFH  
VREFL  
Input  
Input  
Input  
Input  
Analog reference ground pin for the ADC12. Connect this pin to VSS when  
not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to  
AN002  
Analog reference voltage supply pin for the ADC12 (unit 1) and D/A  
Converter. Connect this pin to VCC when not using the ADC12 (unit 1),  
sample-and-hold circuit for AN100 to AN102, and D/A Converter.  
Analog reference ground pin for the ADC12 and D/A Converter. Connect this  
pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for  
AN100 to AN102, and D/A Converter.  
ADC12  
AN000 to AN003,  
AN005 to AN007,  
AN016 to AN018,  
AN020  
Input pins for the analog signals to be processed by the ADC12  
AN100 to AN102,  
AN105 to AN107,  
AN116, AN117  
Input  
ADTRG0  
ADTRG1  
Input  
Input  
Input  
Input pins for the external trigger signals that start the A/D conversion  
Pseudo-differential input pins  
PGAVSS000,  
PGAVSS100  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 12 of 69  
RA6T1 Datasheet  
1. Overview  
Table 1.13  
Pin functions (3 of 3)  
Function  
DAC12  
Signal  
I/O  
Description  
DA0, DA1  
Output  
Output  
Input  
Input  
Input  
I/O  
Output pins for the analog signals processed by the D/A converter  
Comparator output pin  
ACMPHS  
VCOUT  
IVREF0 to IVREF3  
IVCMP0 to IVCMP3  
P000 to P007  
P008, P014, P015  
P100 to P115  
P200  
Reference voltage input pins for comparator  
Analog voltage input pins for comparator  
General-purpose input pins  
I/O ports  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input pin  
I/O  
Input  
I/O  
P201, P205 to P214  
P300 to P307  
P400 to P415  
P500 to P504, P508  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
I/O  
I/O  
I/O  
P600 to P602,  
P608 to P610  
I/O  
P708  
I/O  
General-purpose input/output pin  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 13 of 69  
RA6T1 Datasheet  
1. Overview  
1.6  
Pin Assignments  
Figure 1.3 and Figure 1.4 show the pin assignments.  
R7FA6T1AD3CFP/  
R7FA6T1AB3CFP  
Figure 1.3  
Pin assignment for 100-pin LQFP (top view)  
Note 1. This pin should be left floating.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 14 of 69  
RA6T1 Datasheet  
1. Overview  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P300/TCK/SWCLK  
P301  
P501  
VCC  
P302  
VSS  
VCC  
P015  
VSS  
P014  
P200  
VREFL  
VREFH  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
P003  
P201/MD  
RES  
R7FA6T1AD3CFM/  
R7FA6T1AB3CFM  
P210  
P205  
P206  
P207  
VCC  
NC*1  
NC*1  
P002  
P001  
P000  
VSS  
Figure 1.4  
Pin assignment for 64-pin LQFP (top view)  
Note 1. This pin should be left floating.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 15 of 69  
RA6T1 Datasheet  
1. Overview  
1.7  
Pin Lists  
Pin number  
Timers  
Communication interfaces  
Analog  
1
2
1
2
-
-
IRQ0  
P400  
P401  
AGTIO1  
-
-
GTIOC6A  
GTIOC6B  
-
SCK4  
-
-
SCL0_A  
SDA0_A  
-
-
ADTRG1  
-
-
-
IRQ5-DS  
GTETRGA  
CTX0  
CTS4_RTS4/S  
S4  
3
4
3
-
CACREF  
-
IRQ4-DS  
-
P402  
P403  
AGTIO0/AGTI  
O1  
-
-
-
CRX0  
-
-
-
-
-
-
-
-
-
-
-
-
AGTIO0/AGTI  
O1  
GTIOC3A  
-
5
-
-
-
P404  
-
-
-
-
-
-
-
-
-
-
GTIOC3B  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
P405  
-
GTIOC1A  
-
7
-
-
-
P406  
-
GTIOC1B  
-
8
4
5
6
7
8
9
VCC  
VCL0  
XCIN  
XCOUT  
VSS  
XTAL  
-
-
-
-
-
9
-
-
-
-
-
10  
11  
12  
13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IRQ2  
P213  
GTETRGC  
GTIOC0A  
TXD1/MOSI1/S  
DA1  
ADTRG1  
14  
10  
EXTAL  
IRQ3  
P212  
AGTEE1  
GTETRGD  
GTIOC0B  
-
-
RXD1/MISO1/S -  
CL1  
-
-
-
15  
16  
11  
-
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CACREF  
IRQ11  
P708  
RXD1/MISO1/S -  
CL1  
SSLA3_B  
17  
18  
19  
-
-
-
-
-
-
IRQ8  
IRQ9  
-
P415  
P414  
P413  
-
-
-
-
GTIOC0A  
GTIOC0B  
-
-
-
-
-
-
-
-
-
-
-
-
SSLA2_B  
SSLA1_B  
SSLA0_B  
-
-
-
-
-
-
-
GTOUUP  
CTS0_RTS0/S  
S0  
20  
21  
-
-
-
-
P412  
P411  
AGTEE1  
AGTOA1  
GTOULO  
GTOVUP  
-
-
-
SCK0  
-
-
-
RSPCKA_B  
MOSIA_B  
-
-
-
-
12  
IRQ4  
GTIOC9A  
TXD0/MOSI0/S CTS3_RTS3/S  
DA0 S3  
22  
23  
24  
25  
13  
14  
15  
16  
-
-
-
-
IRQ5  
IRQ6  
IRQ7  
-
P410  
P409  
P408  
P407  
AGTOB1  
GTOVLO  
GTOWUP  
GTOWLO  
-
GTIOC9B  
GTIOC10A  
GTIOC10B  
-
-
-
-
-
-
RXD0/MISO0/S SCK3  
CL0  
-
-
MISOA_B  
-
-
-
-
-
-
-
TXD3/MOSI3/S  
DA3  
-
-
-
-
-
-
RXD3/MISO3/S SCL0_B  
CL3  
-
AGTIO0  
CTS4_RTS4/S  
S4  
-
SDA0_B  
ADTRG0  
26  
27  
28  
29  
30  
31  
17  
18  
19  
20  
21  
22  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCC  
-
-
-
-
-
-
-
P207  
P206  
-
-
IRQ0-DS  
GTIU  
RXD4/MISO4/S -  
CL4  
SDA1_A  
32  
23  
CLKOUT  
IRQ1-DS  
P205  
AGTO1  
GTIV  
GTIOC4A  
-
TXD4/MOSI4/S CTS9_RTS9/S SCL1_A  
-
-
-
DA4  
S9  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
-
TRCLK  
-
P214  
P211  
P210  
P209  
P208  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GTIU  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRDATA0  
-
GTIV  
-
-
-
24  
-
TRDATA1  
-
GTIW  
-
-
-
TRDATA2  
-
GTOVUP  
-
-
-
-
TRDATA3  
-
GTOVLO  
-
-
-
25  
26  
27  
-
RES  
-
-
-
-
-
MD  
-
P201  
P200  
P307  
P306  
P305  
P304  
-
-
-
-
-
-
NMI  
-
-
-
-
-
-
GTOUUP  
-
-
-
-
-
-
GTOULO  
-
-
-
-
-
IRQ8  
GTOWUP  
-
-
-
-
-
IRQ9  
GTOWLO  
GTIOC7A  
-
-
28  
29  
-
VSS  
-
-
-
-
-
VCC  
-
-
-
-
-
-
-
-
-
P303  
P302  
-
GTIOC7B  
GTIOC4A  
-
-
30  
IRQ5  
GTOUUP  
TXD2/MOSI2/S  
DA2  
-
SSLB3_B  
49  
31  
-
IRQ6  
P301  
AGTIO0  
GTOULO  
GTIOC4B  
-
RXD2/MISO2/S CTS9_RTS9/S  
-
SSLB2_B  
-
-
CL2  
S9  
50  
51  
32  
33  
TCK/SWCLK  
TMS/SWDIO  
-
-
P300  
P108  
-
-
GTOUUP  
GTOULO  
GTIOC0A_A  
GTIOC0B_A  
-
-
-
-
-
-
-
SSLB1_B  
SSLB0_B  
-
-
-
-
CTS9_RTS9/S  
S9  
52  
53  
34  
35  
CLKOUT/TDO/  
SWO  
-
P109  
P110  
-
-
GTOVUP  
GTOVLO  
GTIOC1A_A  
GTIOC1B_A  
-
-
-
TXD9/MOSI9/S  
DA9  
-
MOSIB_B  
MISOB_B  
-
-
-
TDI  
IRQ3  
CTS2_RTS2/S RXD9/MISO9/S -  
VCOUT  
S2  
CL9  
54  
55  
36  
37  
-
-
IRQ4  
-
P111  
P112  
-
-
-
-
GTIOC3A_A  
GTIOC3B_A  
-
-
SCK2  
SCK9  
-
-
RSPCKB_B  
SSLB0_B  
-
-
-
-
TXD2/MOSI2/S SCK1  
DA2  
56  
-
-
-
P113  
-
-
GTIOC2A  
-
RXD2/MISO2/S -  
CL2  
-
-
-
-
57  
58  
59  
-
-
-
-
-
-
-
-
-
P114  
P115  
P608  
-
-
-
-
-
-
GTIOC2B  
GTIOC4A  
GTIOC4B  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 16 of 69  
RA6T1 Datasheet  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analog  
60  
61  
62  
63  
64  
65  
66  
67  
-
-
-
-
-
-
-
-
-
-
P609  
P610  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GTIOC5A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GTIOC5B  
-
38  
39  
40  
-
VCC  
VSS  
VCL  
-
-
-
-
-
-
-
-
-
P602  
P601  
P600  
GTIOC7B  
GTIOC6A  
GTIOC6B  
TXD9  
RXD9  
SCK9  
-
-
-
CLKOUT/CAC  
REF  
68  
41  
-
KR07  
P107  
AGTOA0  
-
GTIOC8A  
-
CTS8_RTS8/S  
S8  
-
-
-
-
-
69  
70  
42  
43  
-
-
KR06  
P106  
AGTOB0  
-
-
GTIOC8B  
GTIOC1A  
-
-
SCK8  
-
-
-
-
SSLA3_A  
SSLA2_A  
-
-
-
-
IRQ0/KR05 P105  
IRQ1/KR04 P104  
GTETRGA  
TXD8/MOSI8/S  
DA8  
71  
72  
44  
45  
-
-
-
-
GTETRGB  
GTOWUP  
GTIOC1B  
-
RXD8/MISO8/S -  
CL8  
-
-
-
SSLA1_A  
SSLA0_A  
-
-
-
-
KR03  
P103  
GTIOC2A_A CTX0  
CTS0_RTS0/S  
S0  
-
73  
74  
46  
47  
-
-
KR02  
P102  
AGTO0  
GTOWLO  
GTETRGB  
GTIOC2B_A CRX0  
SCK0  
-
RSPCKA_A ADTRG0  
-
-
IRQ1/KR01 P101  
IRQ2/KR00 P100  
AGTEE0  
GTIOC5A  
GTIOC5B  
-
-
TXD0/MOSI0/S CTS1_RTS1/S SDA1_B  
DA0 S1  
MOSIA_A  
-
75  
48  
-
AGTIO0  
GTETRGA  
RXD0/MISO0/S SCK1  
CL0  
SCL1_B  
MISOA_A  
-
-
76  
77  
78  
79  
80  
81  
82  
83  
84  
49  
50  
-
-
-
P500  
P501  
P502  
P503  
P504  
P508  
-
AGTOA0  
GTIU  
GTIOC11A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN016  
AN116  
AN017  
AN117  
AN018  
AN020  
-
IVREF0  
-
IRQ11  
AGTOB0  
GTIV  
GTIOC11B  
IVREF1  
-
IRQ12  
-
-
-
-
-
-
-
GTIW  
GTIOC12A  
IVCMP0  
-
-
-
GTETRGC  
GTIOC12B  
-
-
-
-
-
-
-
-
GTETRGD  
-
-
-
-
-
-
-
-
-
-
-
-
51  
52  
53  
VCC  
VSS  
-
-
-
-
-
IRQ13  
P015  
AN006/AN106 DA1/  
IVCMP1  
AN005/AN105 DA0/  
IVREF3  
85  
54  
-
-
P014  
-
-
-
-
-
-
-
-
86  
87  
88  
89  
90  
91  
92  
93  
55  
56  
57  
58  
59  
60  
-
VREFL  
VREFH  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IRQ12-DS P008  
P007  
AN003  
-
-
-
PGAVSS100/  
AN107  
94  
95  
96  
97  
-
-
-
-
-
IRQ11-DS P006  
IRQ10-DS P005  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN102  
AN101  
AN100  
IVCMP2  
IVCMP2  
IVCMP2  
-
-
-
IRQ9-DS  
-
P004  
P003  
61  
PGAVSS000/  
AN007  
98  
62  
63  
64  
-
-
-
IRQ8-DS  
IRQ7-DS  
IRQ6-DS  
P002  
P001  
P000  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN002  
AN001  
AN000  
IVCMP2  
IVCMP2  
IVCMP2  
99  
100  
Note:  
Some pin names have the added suffix of _A and _B. When assigning the GPT, IIC, and SPI functionality, select the functional  
pins with the same suffix.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 17 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
VCC = AVCC0 = 2.7 to 3.6 V  
2.7 VREFH0/VREFH AVCC0  
VSS = AVSS0 = VREFL0/VREFL= 0 V  
T = T  
.
opr  
a
Figure 2.1 shows the timing conditions.  
For example P100  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
V
IH = VCC × 0.7, VIL = VCC × 0.3  
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The measurement conditions for the timing specification of each peripheral are recommended for the best peripheral  
operation. However, make sure to adjust the driving abilities of each pin to meet the conditions of your system.  
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function  
pin is mixed, the A/C specification of each function is not guaranteed.  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
V
Power supply voltage  
VCC  
-0.3 to +4.0  
Input voltage (except for 5 V-tolerant ports*1)  
Input voltage (5 V-tolerant ports*1)  
Reference power supply voltage  
Analog power supply voltage  
Analog input voltage (except for P000 to P007)  
Vin  
-0.3 to VCC + 0.3  
-0.3 to + VCC + 4.0 (max. 5.8)  
-0.3 to AVCC0 + 0.3  
-0.3 to +4.0  
V
Vin  
V
VREFH/VREFH0  
AVCC0 *2  
VAN  
V
V
-0.3 to AVCC0 + 0.3  
-0.3 to AVCC0 + 0.3  
V
Analog input voltage (P000 to P007) when PGA pseudo- VAN  
differential input is disabled  
V
Analog input voltage (P000 to P002, P004 to P006)  
when PGA pseudo-differential input is enabled  
VAN  
-1.3 to AVCC0 + 0.3  
-0.8 to AVCC0 + 0.3  
V
V
Analog input voltage (P003, P007) when PGA pseudo-  
differential input is enabled  
VAN  
4
Operating temperature*3,  
Storage temperature  
*
Topr  
Tstg  
-40 to +105  
-55 to +125  
°C  
°C  
Caution:  
Permanent damage to the MCU might result if absolute maximum ratings are exceeded.  
Note 1. Ports P205, P206, P400, P401, P407 to P415, and P708 are 5 V tolerant.  
Note 2. Connect AVCC0 to VCC.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 18 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Note 3. See section 2.2.1, Tj/Ta Definition.  
Note 4. Contact Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the  
systematic reduction of load for improved reliability.  
Table 2.2  
Recommended operating conditions  
Parameter  
Symbol  
VCC  
Min  
Typ  
Max  
Unit  
V
Power supply voltages  
2.7  
-
3.6  
VSS  
-
-
-
0
-
-
-
V
Analog power supply voltages  
AVCC0*1  
AVSS0  
VCC  
0
V
V
Note 1. Connect AVCC0 to VCC. When the A/D converter, the D/A converter, or the comparator are not in use, do not leave the  
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,  
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.  
2.2  
DC Characteristics  
T /T Definition  
2.2.1  
j
a
Table 2.3  
DC characteristics  
Conditions: Products with operating temperature (Ta) -40 to +105°C.  
Parameter  
Symbol Typ  
Tj  
Max  
Unit  
Test conditions  
Permissible junction temperature  
100-pin LQFP  
64-pin LQFP  
-
125  
°C  
High-speed mode  
Low-speed mode  
Subosc-speed mode.  
Note:  
Make sure that Tj = Ta + θja × total power consumption (W),  
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.  
2.2.2  
I/O V , V  
IH IL  
Table 2.4  
Parameter  
I/O VIH, VIL (1 of 2)  
Symbo  
l
Min  
Typ Max  
Unit  
Input voltage  
(except for  
Schmitt trigger pin  
input pins)  
Peripheral EXTAL(external clock input), SPI (except  
VIH  
VIL  
VIH  
VIL  
VIH  
VCC × 0.8  
-
-
-
-
-
-
V
function  
RSPCK)  
-
VCC × 0.2  
IIC (SMBus)*1  
2.1  
-
-
0.8  
IIC (SMBus)*2  
2.1  
VCC + 3.6  
(max 5.8)  
VIL  
-
-
-
-
-
-
0.8  
Schmitt trigger  
input voltage  
IIC (except for SMBus)*1  
VIH  
VIL  
VCC × 0.7  
-
-
VCC × 0.3  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.7  
IIC (except for SMBus)*2  
VCC + 3.6  
(max 5.8)  
VIL  
-
-
-
-
VCC × 0.3  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.8  
7
5 V-tolerant ports*3,  
*
VCC + 3.6  
(max 5.8)  
VIL  
-
-
-
VCC × 0.2  
-
ΔVT  
VCC × 0.05  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 19 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.4  
I/O VIH, VIL (2 of 2)  
Symbo  
l
Parameter  
Min  
Typ Max  
Unit  
Schmitt trigger Peripheral P402/AGTIO0,1  
VIH  
VIL  
VCC × 0.8  
-
-
-
-
-
-
-
-
VCC + 0.3  
V
input voltage  
function  
pin  
P403/AGTIO0,1  
VCC × 0.2  
ΔVT  
VIH  
VIL  
VCC × 0.05  
VCC × 0.8  
-
-
Other input pins*4  
-
VCC × 0.2  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.8  
7
Ports  
5 V-tolerant ports*5,  
Other input pins*6  
*
VCC + 3.6  
(max 5.8)  
VIL  
VIH  
VIL  
-
-
-
-
VCC × 0.2  
-
VCC × 0.8  
-
VCC × 0.2  
Note 1. SCL1_B, SDA1_B (total 2 pins).  
Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A (total 6 pins).  
Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P708 (total 15 pins).  
Note 4. All input pins except for the peripheral function pins already described in the table.  
Note 5. P205, P206, P400, P401, P407 to P415, P708 (total 14 pins).  
Note 6. All input pins except for the ports already described in the table.  
Note 7. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur  
because 5 V-tolerant ports are electrically controlled so as not to violate the breakdown voltage.  
2.2.3  
I/O I , I  
OH OL  
Table 2.5  
Parameter  
I/O IOH, IOL (1 of 2)  
Symbol  
Min  
Typ  
Max  
-2.0  
2.0  
-4.0  
4.0  
-2.0  
2.0  
-4.0  
4.0  
-20  
20  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current  
(average value per pin)  
Ports P008, P201  
Ports P014, P015  
-
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OH  
I
OL  
-
I
OH  
I
OL  
1
Ports P205, P206, P407 to P415,  
P602, P708 (total 13 pins)  
Low drive*  
I
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
4
1
Other output pins*  
Low drive*  
I
-2.0  
2.0  
-4.0  
4.0  
-16  
16  
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 20 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
Parameter  
I/O IOH, IOL (2 of 2)  
Symbol  
Min  
Typ  
Max  
-4.0  
4.0  
-8.0  
8.0  
-4.0  
4.0  
-8.0  
8.0  
-40  
40  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current  
(max value per pin)  
Ports P008, P201  
Ports P014, P015  
-
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OH  
I
OL  
-
I
OH  
I
OL  
1
Ports P205, P206, P407 to P415,  
P602, P708 (total 13 pins)  
Low drive*  
I
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
4
1
Other output pins*  
Low drive*  
I
-4.0  
4.0  
-8.0  
8.0  
-32  
32  
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
Permissible output current  
(max value of total of all pins)  
Maximum of all output pins  
ΣI  
-80  
80  
OH (max)  
ΣI  
OL (max)  
Caution:  
To protect the reliability of the MCU, the output current values should not exceed the values in this table. The  
average output current indicates the average value of current measured during 100 μs.  
Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving  
ability is retained in Deep Software Standby mode.  
Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected  
driving ability is retained in Deep Software Standby mode.  
Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected  
driving ability is retained in Deep Software Standby mode.  
Note 4. Except for P000 to P007, P200, which are input ports.  
2.2.4  
I/O V , V , and Other Characteristics  
OH OL  
Table 2.6  
I/O VOH, VOL, and other characteristics (1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
0.4  
Unit  
Test conditions  
Output voltage  
IIC  
V
V
V
-
-
-
-
-
-
V
I
I
I
= 3.0 mA  
= 6.0 mA  
= 15.0 mA  
OL  
OL  
OL  
OL  
OL  
OL  
0.6  
IIC*1  
0.4  
(ICFER.FMPE = 1)  
V
V
V
-
0.4  
-
I = 20.0 mA  
OL  
OH  
OL  
OH  
OL  
(ICFER.FMPE = 1)  
Ports P205, P206, P407 to P415,  
P602, P708 (total of 13 pins)*  
VCC - 1.0  
-
-
-
-
I
= -20 mA  
OH  
VCC = 3.3 V  
2
1.0  
I
= 20 mA  
OL  
VCC = 3.3 V  
Other output pins  
RES  
V
V
|I  
VCC - 0.5  
-
-
-
-
I
I
= -1.0 mA  
= 1.0 mA  
OH  
-
-
0.5  
5.0  
OL  
|
OL  
Input leakage current  
μA  
V
V
= 0 V  
= 5.5 V  
in  
in  
in  
Ports P000 to P002, P004 to P006,  
P200  
-
-
-
-
-
-
1.0  
V
V
= 0 V  
= VCC  
in  
in  
Ports P003, P007 Before  
45.0  
1.0  
V
V
= 0 V  
= VCC  
in  
in  
3
initialization*  
After  
initialization*  
V
V
= 0 V  
= VCC  
in  
in  
4
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 21 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.6  
Parameter  
I/O VOH, VOL, and other characteristics (2 of 2)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Three-state leakage  
current (off state)  
5 V-tolerant ports  
|I  
|
-
-
5.0  
μA  
V
V
= 0 V  
= 5.5 V  
TSI  
in  
in  
Other ports (except for ports P000  
to P007, P200)  
-
-
-
-
-
1.0  
-10  
16  
8
V
V
= 0 V  
= VCC  
in  
in  
Input pull-up MOS current  
Input capacitance  
Ports P0 to P7 (except for ports  
P000 to P007)  
I
-300  
μA  
VCC = 2.7 to 3.6 V  
= 0 V  
p
V
in  
Ports P003, P007, P014, P015,  
P400, P401  
C
-
-
pF  
Vbias = 0 V  
Vamp = 20 mV  
f = 1 MHz  
in  
Other input pins  
T
= 25°C  
a
Note 1. SCL0_A, SDA0_A (total 2 pins).  
Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.  
The selected driving ability is retained in Deep Software Standby mode.  
Note 3. P0nPFS.ASEL(n = 3 or 7) = 1  
Note 4. P0nPFS.ASEL(n = 3 or 7) = 0  
2.2.5  
Operating and Standby Current  
Table 2.7  
Operating and standby current (1 of 2)  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
Test conditions  
2
3
Supply  
Maximum*  
I
*
-
-
-
87  
-
mA  
ICLK = 120 MHz  
PCLKA = 120 MHz  
PCLKB = 60 MHz  
PCLKC = 60 MHz  
PCLKD = 120 MHz  
FCLK = 60 MHz  
CC  
current*1  
® 5  
CoreMark *  
17  
24  
Normal mode  
All peripheral clocks enabled,  
while (1) code executing from  
flash*  
-
4
All peripheral clocks disabled,  
while (1) code executing from  
-
12  
-
5,  
6
flash*  
*
5,  
6
Sleep mode*  
*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
33.5  
-
Increase during BGO  
operation  
Data flash P/E  
Code flash P/E  
6
8
-
Low-speed mode*5  
1.2  
1.0  
1.3  
1.3  
28  
-
ICLK = 1 MHz  
ICLK = 32.768 kHz  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
-
Subosc-speed mode*5  
Software Standby mode  
-
13  
21  
65  
93  
28  
32  
21  
26  
-
8
DPSBYCR.DEEPCUT[1:0] = 00b*  
DPSBYCR.DEEPCUT[1:0] = 01b*  
μA  
28  
8
11.6  
11.6  
4.9  
4.9  
4.4  
8
DPSBYCR.DEEPCUT[1:0] = 11b*  
Increase when the AGT  
is operating  
When the low-speed on-chip  
oscillator (LOCO) is in use  
When a crystal oscillator for  
low clock loads is in use  
-
-
1.0  
1.4  
-
-
-
-
When a crystal oscillator for  
standard clock loads is in use  
Analog  
power  
supply  
current  
During 12-bit A/D conversion  
AI  
-
-
-
-
-
-
-
-
-
0.8  
2.3  
1
1.1  
3.3  
3
mA  
mA  
mA  
µA  
-
-
-
-
-
-
-
-
-
CC  
During 12-bit A/D conversion with S/H amp  
PGA (1ch)  
ACMPHS (1 unit)  
100  
0.1  
0.1  
0.6  
0.9  
2
150  
0.2  
0.2  
1.1  
1.6  
8
Temperature sensor  
mA  
mA  
mA  
mA  
µA  
During D/A conversion (per unit)  
Without AMP output  
With AMP output  
Waiting for A/D, D/A conversion (all units)  
ADC12, DAC12 in standby modes (all units)*  
7
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 22 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.7  
Operating and standby current (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
70  
Max  
120  
0.5  
Unit  
μA  
Test conditions  
Reference  
power  
supply  
current  
(VREFH0)  
During 12-bit A/D conversion (unit 0)  
Waiting for 12-bit A/D conversion (unit 0)  
ADC12 in standby modes (unit 0)  
-
-
-
-
-
-
AIREFH0  
0.07  
0.07  
μA  
0.5  
µA  
Reference  
power  
supply  
current  
(VREFH)  
During 12-bit A/D conversion (unit 1)  
-
-
-
-
-
70  
120  
0.4  
0.4  
0.8  
0.8  
µA  
mA  
mA  
µA  
µA  
-
-
-
-
-
AIREFH  
During D/A conversion  
(per unit)  
Without AMP output  
With AMP ouput  
0.1  
0.1  
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion  
ADC12 unit 1 in standby modes  
0.07  
0.07  
Note 1. Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.  
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.  
Note 3.  
ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD = 2:2:1:1:2)  
ICC Max. = 0.53 x f + 23 (maximum operation in High-speed mode)  
ICC Typ. = 0.08 x f + 2.4 (normal operation in High-speed mode)  
ICC Typ. = 0.1 x f + 1.1 (Low-speed mode)  
ICC Max. = 0.09 x f + 23 (Sleep mode).  
Note 4. This does not include the BGO operation.  
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.  
Note 6. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).  
Note 7. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-bit A/D Converter 0 Module Stop bit) and  
MSTPCRD.MSTPD15 (12-bit A/D Converter 1 Module Stop bit) are in the module-stop state.  
See section 35.6.8, Available functions and register settings of AN000 to AN002, AN007, AN100 to AN102, and AN107 in  
User’s Manual.  
Note 8. For more information on the DBSBYCR register, see section 11.2.11, Deep Software Standby Control Register (DPSBYCR) in  
User’s Manual.  
Figure 2.2  
Temperature dependency in Software Standby mode (reference data)  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 23 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Figure 2.3  
Temperature dependency in Deep Software Standby mode, power-on reset circuit low power  
function disabled (reference data)  
Figure 2.4  
Temperature dependency in Deep Software Standby mode, power-on reset circuit low power  
function enabled (reference data)  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 24 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.2.6  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.8  
Parameter  
Rising gradient characteristics  
Symbol Min  
Typ  
Max  
20  
-
Unit  
Test conditions  
VCC rising gradient Voltage monitor 0 reset disabled at startup SrVCC  
Voltage monitor 0 reset enabled at startup  
SCI boot mode*1  
0.0084  
0.0084  
0.0084  
-
-
-
ms/V  
-
-
-
20  
Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.  
Table 2.9  
Rise and fall gradient and ripple frequency characteristics  
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit  
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple frequency  
fr (VCC)  
-
-
10  
kHz  
Figure 2.5  
V
r (VCC) VCC × 0.2  
Figure 2.5  
r (VCC) VCC × 0.08  
Figure 2.5  
r (VCC) VCC × 0.06  
When VCC change exceeds VCC ±10%  
-
-
-
-
1
MHz  
MHz  
ms/V  
V
-
10  
-
V
Allowable voltage change rising  
and falling gradient  
dt/dVCC  
1.0  
1/fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.5  
Ripple waveform  
2.3  
AC Characteristics  
Frequency  
2.3.1  
Table 2.10  
Parameter  
Operation frequency value in high-speed mode  
Symbol  
Min  
Typ  
Max  
120  
120  
60  
Unit  
Operation frequency  
System clock (ICLK*2)  
f
-
-
-
-
-
-
-
-
-
MHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2  
Peripheral module clock (PCLKD)*2  
Flash interface clock (FCLK)*2  
3
-*  
60  
-
120  
60  
1
-*  
Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, and FCLK frequencies.  
Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 25 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.11  
Operation frequency value in low-speed mode  
Parameter  
Symbol  
Min  
Typ  
Max  
1
Unit  
Operation frequency  
System clock (ICLK)*2  
f
-
-
-
-
-
-
-
MHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2,*3  
-
1
-
1
-*3  
-
1
Peripheral module clock (PCLKD)*2  
1
Flash interface clock (FCLK)*1,  
*
-
1
2
Note 1. Programming or erasing the flash memory is disabled in Low-speed mode.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, and FCLK frequencies.  
Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.  
Table 2.12  
Parameter  
Operation frequency value in Subosc-speed mode  
Symbol  
Min  
Typ  
Max  
36.1  
36.1  
36.1  
36.1  
36.1  
36.1  
Unit  
Operation frequency  
System clock (ICLK)*2  
f
29.4  
-
-
-
-
-
-
kHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2,*3  
-
-
-
Peripheral module clock (PCLKD)*2  
-
2
Flash interface clock (FCLK)*1,  
*
29.4  
Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, and FCLK frequencies.  
Note 3. The ADC12 cannot be used.  
2.3.2  
Clock Timing  
Table 2.13  
Clock timing except for sub-clock oscillator (1 of 2)  
Parameter  
Symbol  
tEXcyc  
tEXH  
Min  
Typ  
Max  
-
Unit  
ns  
Test conditions  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rise time  
EXTAL external clock fall time  
Main clock oscillator frequency  
41.66  
-
-
-
-
-
-
-
Figure 2.6  
15.83  
-
ns  
tEXL  
15.83  
-
ns  
tEXr  
-
5.0  
5.0  
24  
-*1  
ns  
tEXf  
-
ns  
fMAIN  
8
-
MHz  
ms  
-
Main clock oscillation stabilization wait time  
(crystal) *1  
tMAINOSCWT  
Figure 2.7  
LOCO clock oscillation frequency  
fLOCO  
29.4912  
32.768  
36.0448  
60.4  
kHz  
μs  
-
LOCO clock oscillation stabilization wait time  
ILOCO clock oscillation frequency  
tLOCOWT  
fILOCO  
FMOCO  
tMOCOWT  
-
-
Figure 2.8  
13.5  
6.8  
-
15  
8
-
16.5  
kHz  
MHz  
μs  
-
-
-
MOCO clock oscillation frequency  
9.2  
MOCO clock oscillation stabilization wait time  
15.0  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 26 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.13  
Parameter  
Clock timing except for sub-clock oscillator (2 of 2)  
Symbol  
fHOCO16  
fHOCO18  
fHOCO20  
fHOCO16  
fHOCO18  
fHOCO20  
fHOCO16  
fHOCO18  
fHOCO20  
Min  
Typ  
16  
18  
20  
16  
18  
20  
16  
18  
20  
Max  
Unit  
Test conditions  
HOCO clock oscillator  
oscillation frequency  
Without FLL  
15.78  
17.75  
19.72  
15.71  
17.68  
19.64  
15.955  
17.949  
19.944  
16.22  
18.25  
20.28  
16.29  
18.32  
20.36  
16.045  
18.051  
20.056  
MHz  
-20 Ta 105°C  
-40 Ta -20°C  
With FLL  
-40 Ta 105°C  
Sub-clock  
frequency accuracy  
is ±50 ppm.  
HOCO clock oscillation stabilization wait time*2  
FLL stabilization wait time  
tHOCOWT  
tFLLWT  
fPLL  
-
-
-
-
-
64.7  
1.8  
μs  
-
-
ms  
MHz  
μs  
-
PLL clock frequency  
120  
-
240  
-
PLL clock oscillation stabilization wait time  
tPLLWT  
174.9  
Figure 2.9  
Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as  
the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the  
recommended value.  
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm  
that it is 1, and then start using the main clock oscillator.  
Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed  
operation.  
Table 2.14  
Parameter  
Clock timing for the sub-clock oscillator  
Symbol  
Min  
Typ  
32.768  
-
Max  
-
Unit  
kHz  
s
Test conditions  
Sub-clock frequency  
fSUB  
-
-
-
Sub-clock oscillation stabilization wait time  
tSUBOSCWT  
-*1  
Figure 2.10  
Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the  
recommended oscillation stabilization time.  
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after  
the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is  
recommended.  
tEXcyc  
tEXH  
tEXL  
EXTAL external clock input  
VCC × 0.5  
tEXr  
tEXf  
Figure 2.6  
EXTAL external clock input timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 27 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
MOSCCR.MOSTP  
Main clock oscillator output  
Main clock  
tMAINOSCWT  
Figure 2.7  
Main clock oscillation start timing  
LOCOCR.LCSTP  
On-chip oscillator output  
tLOCOWT  
LOCO clock  
Figure 2.8  
LOCO clock oscillation start timing  
PLLCR.PLLSTP  
PLL circuit output  
tPLLWT  
OSCSF.PLLSF  
PLL clock  
Figure 2.9  
PLL clock oscillation start timing  
Note:  
Only operate the PLL after the main clock oscillation has stabilized.  
SOSCCR.SOSTP  
Sub-clock oscillator output  
tSUBOSCWT  
Sub-clock  
Figure 2.10  
Sub-clock oscillation start timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 28 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.3.3  
Reset Timing  
Table 2.15  
Reset timing  
Test  
Parameter  
Symbol  
tRESWP  
tRESWD  
tRESWS  
Min  
1
Typ  
Max  
Unit  
ms  
conditions  
Figure 2.11  
Figure 2.12  
RES pulse width  
Power-on  
-
-
-
-
-
-
Deep Software Standby mode  
0.6  
0.3  
ms  
Software Standby mode, Subosc-speed  
mode  
ms  
All other  
tRESW  
200  
-
-
μs  
μs  
μs  
Wait time after RES cancellation  
tRESWT  
tRESW2  
-
-
29  
320  
32  
390  
Figure 2.11  
-
Wait time after internal reset cancellation (IWDT reset, WDT  
reset, software reset, SRAM parity error reset, bus master MPU  
error reset, bus slave MPU error reset, stack pointer error reset)  
VCC  
RES  
tRESWP  
Internal reset signal  
(active-low)  
tRESWT  
Figure 2.11  
Power-on reset timing  
tRESWD, tRESWS, tRESW  
RES  
Internal reset signal  
(active-low)  
tRESWT  
Figure 2.12  
Reset input timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 29 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.3.4  
Wakeup Timing  
Table 2.16  
Parameter  
Timing of recovery from low power modes  
Test  
conditions  
Symbol  
tSBYMC  
Min  
Typ  
Max  
Unit  
Recovery time  
from Software  
Standby mode*1  
Crystal  
System clock source is main  
clock oscillator*2  
-
2.4*9  
2.8*9  
ms  
Figure 2.13  
The division  
ratio of all  
resonator  
connected  
to main  
clock  
System clock source is PLL  
with main clock oscillator*3  
tSBYPC  
-
2.7*9  
3.2*9  
ms  
oscillators is 1.  
oscillator  
External  
clock input  
to main  
clock  
System clock source is main  
clock oscillator*4  
tSBYEX  
tSBYPE  
-
-
230*9  
570*9  
280*9  
700*9  
μs  
μs  
System clock source is PLL  
with main clock oscillator*5  
oscillator  
System clock source is sub-clock  
oscillator*8  
tSBYSC  
-
1.2*9  
1.3*9  
1.4*9  
ms  
System clock source is LOCO*8  
System clock source is HOCO*6  
tSBYLO  
tSBYHO  
-
-
1.2*9  
ms  
µs  
240*9,  
*
300  
10  
9, 10  
*
*
System clock source is MOCO*7  
tSBYMO  
tDSBY  
tDSBYWT  
tSNZ  
-
220*9  
0.65  
-
300*9  
1.0  
µs  
Recovery time from Deep Software Standby mode  
-
ms  
tcyc  
μs  
Figure 2.14  
Figure 2.15  
Wait time after cancellation of Deep Software Standby mode  
34  
-
35  
10  
Recovery time  
from Software  
Standby mode to  
Snooze mode  
High-speed mode when system clock  
source is HOCO (20 MHz)  
35*9,  
*
70  
9, 10  
*
*
High-speed mode when system clock  
source is MOCO (8 MHz)  
tSNZ  
-
11*9  
14*9  
μs  
Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be  
determined with the following equation:  
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any  
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3  
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).  
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For  
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
05h))  
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other  
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
05h))  
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).  
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
00h))  
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other  
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
00h))  
Note 6. The HOCO frequency is 20 MHz.  
Note 7. The MOCO frequency is 8 MHz.  
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.  
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:  
STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)  
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).  
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 30 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Oscillator  
(system clock)  
tSBYOSCWT  
tSBYSEQ  
Oscillator  
(not the system clock)  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of the system clock oscillator is slower  
Oscillator  
(system clock)  
tSBYSEQ  
tSBYOSCWT  
Oscillator  
(not the system clock)  
tSBYOSCWT  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of an oscillator other than the system clock is slower  
Figure 2.13  
Software Standby mode cancellation timing  
Oscillator  
IRQ  
Deep Software Standby reset  
(active-low)  
Internal reset  
(active-low)  
Deep Software Standby mode  
tDSBY  
tDSBYWT  
Reset exception handling start  
Figure 2.14  
Deep Software Standby mode cancellation timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 31 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Oscillator  
ICLK(except DTC, SRAM)  
ICLK(to DTC, SRAM)*1 PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.15  
Recovery timing from Software Standby mode to Snooze mode  
2.3.5  
NMI and IRQ Noise Filter  
Table 2.17  
NMI and IRQ noise filter  
Parameter  
Symbol Min  
tNMIW 200  
Pcyc × 2*  
200  
NMICK × 3.5*  
200  
Pcyc × 2*  
200  
IRQCK × 3.5*  
Typ  
Max  
Unit  
Test conditions  
NMI pulse width  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
NMI digital filter disabled  
NMI digital filter enabled  
IRQ digital filter disabled  
IRQ digital filter enabled  
tPcyc × 2 200 ns  
1
t
tPcyc × 2 > 200 ns  
t
NMICK × 3 200 ns  
2
t
tNMICK × 3 > 200 ns  
tPcyc × 2 200 ns  
tPcyc × 2 > 200 ns  
IRQ pulse width  
tIRQW  
ns  
1
t
t
IRQCK × 3 200 ns  
3
t
tIRQCK × 3 > 200 ns  
Note:  
Note:  
Note 1.  
200 ns minimum in Software Standby mode.  
If the clock source is switched, add 4 clock cycles of the switched source.  
tPcyc indicates the PCLKB cycle.  
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.  
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock.  
NMI  
tNMIW  
Figure 2.16  
NMI interrupt input timing  
IRQ  
tIRQW  
Figure 2.17  
IRQ interrupt input timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 32 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.3.6  
I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing  
Table 2.18  
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing  
GPT32 conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
AGT conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
I/O ports  
POEG  
Symbol Min  
Max  
Unit  
conditions  
Figure 2.18  
Figure 2.19  
Figure 2.20  
Input data pulse width  
tPRW  
1.5  
-
tPcyc  
tPcyc  
tPDcyc  
POEG input trigger pulse width  
Input capture pulse width  
tPOEW  
tGTICW  
3
-
GPT32  
Single edge  
1.5  
-
Dual edge  
2.5  
-
1
GTIOCxY output skew  
(x = 0 to 7, Y= A or B)  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
tGTISK  
*
-
-
-
-
-
-
-
4
4
4
4
6
6
5
ns  
Figure 2.21  
GTIOCxY output skew  
(x = 8 to 12, Y = A or B)  
GTIOCxY output skew  
(x = 0 to 12, Y = A or B)  
OPS output skew  
GTOUUP, GTOULO, GTOVUP,  
GTOVLO, GTOWUP, GTOWLO  
tGTOSK  
ns  
ns  
Figure 2.22  
Figure 2.23  
2
GPT  
GTIOCxY_Z output skew  
tHRSK  
*
-
2.0  
(PWM Delay  
Generation  
Circuit)  
(x = 0 to 3, Y = A or B, Z = A)  
3
AGT  
AGTIO, AGTEE input cycle  
tACYC  
*
100  
40  
-
-
ns  
ns  
Figure 2.24  
AGTIO, AGTEE input high width, low width  
tACKWH  
tACKWL  
,
AGTIO, AGTO, AGTOA, AGTOB output cycle  
ADC12 trigger input pulse width  
tACYC2  
tTRGW  
62.5  
1.5  
-
-
ns  
ADC12  
KINT  
tPcyc  
Figure 2.25  
Figure 2.26  
KRn(n = 00 to 07) pulse width  
tKR  
250  
-
ns  
Note:  
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.  
Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not  
guaranteed.  
Note 2. The load is 30 pF.  
Note 3. Constraints on input cycle:  
When not switching the source clock: tPcyc × 2 < tACYC should be satisfied.  
When switching the source clock: tPcyc × 6 < tACYC should be satisfied.  
Port  
tPRW  
Figure 2.18  
I/O ports input timing  
POEG input trigger  
tPOEW  
Figure 2.19  
POEG input trigger timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 33 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Input capture  
tGTICW  
Figure 2.20  
GPT32 input capture timing  
PCLKD  
Output delay  
GPT32 output  
tGTISK  
Figure 2.21  
GPT32 output delay skew  
PCLKD  
Output delay  
GPT32 output  
tGTOSK  
Figure 2.22  
GPT32 output delay skew for OPS  
PCLKD  
Output delay  
GPT32 output  
(PWM delay  
generation circuit)  
tHRSK  
Figure 2.23  
GPT32 (PWM delay generation circuit) output delay skew  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 34 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.24  
AGT input/output timing  
ADTRG0,  
ADTRG1  
tTRGW  
Figure 2.25  
ADC12 trigger input timing  
KR00 to KR07  
tKR  
Figure 2.26  
Key interrupt input timing  
2.3.7  
PWM Delay Generation Circuit Timing  
Table 2.19  
PWM Delay Generation Circuit timing  
Parameter  
Operation frequency  
Resolution  
Min  
Typ  
-
Max  
Unit  
Test conditions  
80  
-
120  
MHz  
ps  
-
260  
±2.0  
-
-
PCLKD = 120 MHz  
-
DNL*1  
-
LSB  
Note 1. This value normalizes the differences between lines in 1-LSB resolution.  
2.3.8  
CAC Timing  
Table 2.20  
CAC timing  
Test  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
ns  
conditions  
2
2
CAC  
CACREF input pulse width  
tPBcyc tcac  
*
tCACREF 4.5 × tcac + 3 × tPBcyc  
5 × tcac + 6.5 × tPBcyc  
-
-
-
-
-
tPBcyc > tcac  
*
ns  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 35 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Note 1. tPBcyc: PCLKB cycle.  
Note 2. tcac: CAC count clock source cycle.  
2.3.9  
SCI Timing  
Table 2.21  
SCI timing (1)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,  
SCK8, SCK9.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
conditions  
Parameter  
Symbol Min  
Max  
Unit*1  
SCI  
Input clock cycle  
Asynchronous  
tScyc  
4
6
-
-
tPcyc  
Figure 2.27  
Clock  
synchronous  
Input clock pulse width  
Input clock rise time  
Input clock fall time  
Output clock cycle  
tSCKW  
tSCKr  
tSCKf  
tScyc  
0.4  
-
0.6  
5
tScyc  
ns  
-
5
ns  
Asynchronous  
6
-
tPcyc  
Clock  
4
-
synchronous  
Output clock pulse width  
Output clock rise time  
Output clock fall time  
Transmit data delay  
tSCKW  
tSCKr  
tSCKf  
tTXD  
0.4  
0.6  
5
tScyc  
ns  
-
-
-
5
ns  
Clock  
25  
ns  
Figure 2.28  
synchronous  
Receive data setup time  
Receive data hold time  
Clock  
synchronous  
tRXS  
tRXH  
15  
5
-
-
ns  
ns  
Clock  
synchronous  
Note 1. tPcyc: PCLKA cycle.  
tSCKW  
tSCKr  
tSCKf  
SCKn  
(n = 0 to 4, 8, 9)  
tScyc  
Figure 2.27  
SCK clock input/output timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 36 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
SCKn  
TxDn  
tTXD  
tRXS tRXH  
RxDn  
(n = 0 to 4, 8, 9)  
Figure 2.28  
Table 2.22  
SCI input/output timing in clock synchronous mode  
SCI timing (2)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,  
SCK8, SCK9.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol  
Min  
Max  
Unit  
conditions  
Simple SCK clock cycle output  
tSPcyc  
4 (PCLKA 60 MHz)  
65536  
tPcyc  
Figure 2.29  
SPI  
(master)  
8 (PCLKA > 60 MHz)  
SCK clock cycle input (slave)  
-
6 (PCLKA 60 MHz)  
65536  
12 (PCLKA > 60 MHz)  
SCK clock high pulse width  
SCK clock low pulse width  
SCK clock rise and fall time  
Data input setup time  
Data input hold time  
tSPCKWH  
tSPCKWL  
tSPCKr, tSPCKf  
tSU  
0.4  
0.6  
tSPcyc  
tSPcyc  
ns  
0.4  
0.6  
-
20  
33.3  
-
ns  
Figure 2.30 to  
Figure 2.33  
tH  
33.3  
-
ns  
SS input setup time  
tLEAD  
tLAG  
1
-
tSPcyc  
tSPcyc  
ns  
SS input hold time  
1
-
Data output delay  
tOD  
-
33.3  
-
Data output hold time  
Data rise and fall time  
SS input rise and fall time  
Slave access time  
tOH  
-10  
ns  
tDr, tDf  
-
-
-
16.6  
16.6  
ns  
tSSLr, tSSLf  
ns  
tSA  
4 (PCLKA 60 MHz)  
tPcyc  
Figure 2.33  
8 (PCLKA > 60 MHz)  
Slave output release time  
tREL  
-
5 (PCLKA 60 MHz)  
tPcyc  
10 (PCLKA > 60 MHz)  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 37 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
SCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
(n = 0 to 4, 8, 9)  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.29  
SCI simple SPI mode clock timing  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 4, 8, 9)  
Figure 2.30  
SCI simple SPI mode timing for master when CKPH = 1  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 4, 8, 9)  
Figure 2.31  
SCI simple SPI mode timing for master when CKPH = 0  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 38 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
(n = 0 to 4, 8, 9)  
Figure 2.32  
SCI simple SPI mode timing for slave when CKPH = 1  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
(n = 0 to 4, 8, 9)  
Figure 2.33  
Table 2.23  
SCI simple SPI mode timing for slave when CKPH = 0  
SCI timing (3) (1 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
tSr  
Min  
Max  
1000  
300  
Unit  
ns  
Test conditions  
Simple IIC  
(Standard mode)  
SDA input rise time  
-
Figure 2.34  
SDA input fall time  
tSf  
-
ns  
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
ns  
tSDAS  
tSDAH  
250  
-
ns  
Data input hold time  
0
-
-
ns  
1
SCL, SDA capacitive load  
Cb*  
400  
pF  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 39 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.23  
SCI timing (3) (2 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
tSr  
Min  
Max  
Unit  
ns  
Test conditions  
Simple IIC  
SDA input rise time  
-
300  
Figure 2.34  
(Fast mode)  
SDA input fall time  
tSf  
-
300  
ns  
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
ns  
tSDAS  
tSDAH  
100  
-
ns  
Data input hold time  
0
-
-
ns  
1
SCL, SDA capacitive load  
Cb*  
400  
pF  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle.  
Note 1. Cb indicates the total capacity of the bus line.  
VIH  
VIL  
SDAn  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
(n = 0 to 4, 8, 9)  
tSDAH  
tSDAS  
Note 1. S, P, and Sr indicate the following:  
S: Start condition  
Test conditions:  
IH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
V
P: Stop condition  
Sr: Restart condition  
Figure 2.34  
SCI simple IIC mode timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 40 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.3.10  
SPI Timing  
Table 2.24  
Conditions:  
SPI timing  
For RSPCKA and RSPCKB pins, high drive output is selected with the Port Drive Capability bit in the PmnPFS register.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
SPI RSPCK clock cycle  
Symbol Min  
tSPcyc 2 (PCLKA 60 MHz)  
Max  
Unit*1 Test conditions*2  
Master  
4096  
tPcyc  
Figure 2.35  
C = 30 pF  
4 (PCLKA > 60 MHz)  
Slave  
4
4096  
-
RSPCK clock high  
pulse width  
Master  
tSPCKWH (tSPcyc - tSPCKr  
SPCKf) / 2 - 3  
-
-
ns  
t
Slave  
2 × tPcyc  
-
-
RSPCK clock low pulse Master  
width  
tSPCKWL (tSPcyc - tSPCKr  
ns  
t
SPCKf) / 2 - 3  
Slave  
2 × tPcyc  
-
RSPCK clock rise and Master  
tSPCKr,  
tSPCKf  
-
5
1
-
ns  
µs  
ns  
fall time  
Slave  
-
Data input setup time  
Data input hold time  
Master  
Slave  
tSU  
4
5
0
Figure 2.36 to  
Figure 2.41  
C = 30 pF  
-
Master  
tHF  
-
ns  
(PCLKA division ratio  
set to 1/2)  
Master  
tH  
tPcyc  
-
(PCLKA division ratio  
set to a value other  
than 1/2)  
Slave  
tH  
20  
-
SSL setup time  
SSL hold time  
Master  
tLEAD  
N × tSPcyc - 10*3  
N ×  
tSPcyc  
100*3  
ns  
+
+
Slave  
6 x tPcyc  
-
ns  
ns  
Master  
tLAG  
N × tSPcyc - 10 *4  
N ×  
tSPcyc  
100*4  
Slave  
6 x tPcyc  
-
ns  
ns  
Data output delay  
Master  
Slave  
tOD  
tOH  
tTD  
-
6.3  
20  
-
-
Data output hold time  
Master  
Slave  
0
ns  
ns  
0
-
Successive  
Master  
tSPcyc + 2 × tPcyc  
8 ×  
transmission delay  
tSPcyc  
+
2 × tPcyc  
Slave  
Output  
Input  
6 × tPcyc  
MOSI and MISO rise  
and fall time  
tDr, tDf  
-
-
-
-
-
5
1
5
1
ns  
μs  
ns  
μs  
SSL rise and fall time  
Output  
Input  
tSSLr,  
tSSLf  
Slave access time  
tSA  
2 x tPcyc ns  
+ 28  
Figure 2.40 and  
Figure 2.41  
C = 30PF  
Slave output release time  
tREL  
-
2 x tPcyc  
+ 28  
Note 1. tPcyc: PCLKA cycle.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 41 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Note 2. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI  
interface, the AC portion of the electrical characteristics is measured for each group.  
Note 3. N is set to an integer from 1 to 8 by the SPCKD register.  
Note 4. N is set to an integer from 1 to 8 by the SSLND register.  
tSPCKr  
tSPCKf  
tSPCKWH  
SPI  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
VOL  
tSPCKWL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
VIL  
tSPCKWL  
tSPcyc  
n = A or B  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.35  
SPI clock timing  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.36  
SPI timing for master when CPHA = 0  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 42 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.37  
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.38  
SPI timing for master when CPHA = 1  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 43 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.39  
RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2  
SPI  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
MSB OUT  
tH  
MSB IN  
tOD  
tREL  
MSB IN  
MISOn  
output  
DATA  
LSB OUT  
LSB IN  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
DATA  
n = A or B  
Figure 2.40  
SPI timing for slave when CPHA = 0  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 44 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
SPI  
tTD  
SSLAn  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(last data)  
MSB OUT  
tH  
DATA  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
LSB IN  
n = A or B  
Figure 2.41  
SPI timing for slave when CPHA = 1  
2.3.11  
IIC Timing  
Table 2.25  
IIC timing (1) (1 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions*3  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 1300  
-
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.42  
(Standard mode,  
SMBus)  
ICFER.FMPE = 0  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 300  
-
3 (6) × tIICcyc + 300  
-
-
1000  
tSf  
-
300  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
when wakeup function is disabled  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
1000  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
1000  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 45 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.25  
IIC timing (1) (2 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions*3  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 600  
-
ns  
ns  
ns  
ns  
Figure 2.42  
(Fast mode)  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
3 (6) × tIICcyc + 300  
3 (6) × tIICcyc + 300  
-
-
20 × (external pullup  
voltage/5.5V)*2  
300  
SCL, SDA input fall time  
tSf  
20 × (external pullup  
voltage/5.5V)*2  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
when wakeup function is disabled  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
300  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
300  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Note 2. Only supported for SCL0_A, SDA0_A.  
Note 3. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC  
interface, the AC portion of the electrical characteristics is measured for each group.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 46 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.26  
IIC timing (2)  
Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol Min*1,*2  
Max  
Unit conditions  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 240  
-
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.42  
(Fast mode+)  
ICFER.FMPE = 1  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 120  
-
3 (6) × tIICcyc + 120  
-
-
120  
tSf  
-
120  
SCL, SDA input spike pulse removal  
time  
tSP  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 120  
-
-
-
-
ns  
ns  
ns  
ns  
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 120  
Start condition input hold time when  
wakeup function is disabled  
tSTAH  
tSTAH  
tIICcyc + 120  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
120  
+
Restart condition input setup time  
Stop condition input setup time  
Data input setup time  
tSTAS  
tSTOS  
tSDAS  
tSDAH  
Cb  
120  
-
ns  
ns  
ns  
ns  
pF  
120  
-
tIICcyc + 30  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
550  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Note 2. Cb indicates the total capacity of the bus line.  
VIH  
SDA0, SDA1  
VIL  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0, SCL1  
P*1  
P*1  
S*1  
Sr*1  
tSCLL  
tSr  
tSf  
tSDAS  
tSCL  
tSDAH  
Test conditions:  
Note 1. S, P, and Sr indicate the following:  
S: Start condition  
V
V
V
IH = VCC × 0.7, VIL = VCC × 0.3  
OL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)  
OL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1)  
P: Stop condition  
Sr: Restart condition  
Figure 2.42  
I2C bus interface input/output timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 47 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.4  
ADC12 Characteristics  
Table 2.27  
A/D conversion characteristics for unit 0 (1 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
60  
30  
-
Unit  
MHz  
pF  
Test conditions  
Frequency  
1
-
-
-
-
-
-
Analog input capacitance  
Quantization error  
Resolution  
-
-
±0.5  
LSB  
Bits  
μs  
-
-
-
12  
-
Channel-dedicated  
sample-and-hold  
circuits in use*3  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
1.06  
(0.4 + 0.25)*2  
Sampling of channel-  
dedicated sample-and-hold  
circuits in 24 states  
(AN000 to AN002)  
Sampling in 15 states  
Offset error  
-
-
±1.5  
±1.5  
±3.5  
±3.5  
LSB  
LSB  
AN000 to AN002 = 0.25 V  
Full-scale error  
AN000 to AN002 =  
VREFH0- 0.25 V  
Absolute accuracy  
-
-
-
-
±2.5  
±1.0  
±1.5  
-
±5.5  
±2.0  
±3.0  
20  
LSB  
LSB  
LSB  
μs  
-
-
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
Holding characteristics of sample-and hold  
circuits  
Dynamic range  
0.25  
-
-
VREFH0  
- 0.25  
V
-
Channel-dedicated  
sample-and-hold  
circuits not in use  
(AN000 to AN002)  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48 (0.267)*2  
-
μs  
Sampling in 16 states  
Offset error  
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
-
-
-
-
High-precision  
channels  
(AN003, AN005,  
AN006)  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48 (0.267)*2  
Sampling in 16 states  
Max. = 400 Ω  
0.40 (0.183)*2  
-
-
μs  
Sampling in 11 states  
VCC = AVCC0 = 3.0 to 3.6 V  
3.0 V VREFH0 AVCC0  
Offset error  
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
-
-
-
-
High-precision  
channels  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.75 (0.533)*2  
Sampling in 32 states  
(AN007)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 48 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.27  
A/D conversion characteristics for unit 0 (2 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Normal-precision  
channels  
(AN016 to AN018,  
AN020)  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.88 (0.667)*2  
-
-
μs  
Sampling in 40 states  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±5.5  
±5.5  
±7.5  
±4.5  
±5.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
Note:  
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during  
A/D conversion, the values might not fall within the indicated ranges.  
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage  
are stable.  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Note 3. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.29.  
Table 2.28  
A/D conversion characteristics for unit 1 (1 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
60  
30  
-
Unit  
MHz  
pF  
Test conditions  
Frequency  
1
-
-
-
-
-
-
Analog input capacitance  
Quantization error  
Resolution  
-
-
±0.5  
LSB  
Bits  
μs  
-
-
-
12  
-
Channel-dedicated Conversion time*1  
sample-and-hold  
circuits in use*3  
(AN100 to AN102)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
1.06  
(0.4 + 0.25)*2  
Sampling of channel-  
dedicated sample-and-hold  
circuits in 24 states  
(operation at  
PCLKC = 60 MHz)  
Sampling in 15 states  
Offset error  
-
-
±1.5  
±1.5  
±3.5  
±3.5  
LSB  
LSB  
AN100 to AN102 = 0.25 V  
Full-scale error  
AN100 to AN102 =  
VREFH - 0.25 V  
Absolute accuracy  
-
-
-
-
±2.5  
±1.0  
±1.5  
-
±5.5  
±2.0  
±3.0  
20  
LSB  
LSB  
LSB  
μs  
-
-
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
Holding characteristics of sample-and  
hold circuits  
Dynamic range  
0.25  
-
-
VREFH - 0.25  
-
V
-
Channel-dedicated Conversion time*1  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48  
(0.267)*2  
μs  
Sampling in 16 states  
sample-and-hold  
circuits not in use  
(AN100 to AN102)  
(Operation at  
PCLKC = 60 MHz)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 49 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.28  
A/D conversion characteristics for unit 1 (2 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
High-precision  
channels  
(AN105, AN106)  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48  
(0.267)*2  
-
-
μs  
Sampling in 16 states  
Max. = 400 Ω  
0.40  
(0.183)*2  
-
-
μs  
Sampling in 11 states  
VCC = AVCC0 = 3.0 to 3.6 V  
3.0 V VREFH AVCC0  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
-
-
High-precision  
channels  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.75  
(0.533)*2  
Sampling in 32 states  
(AN107)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
-
-
Normal-precision  
channels  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.88  
(0.667)*2  
Sampling in 40 states  
(AN116, AN117)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±5.5  
±5.5  
±7.5  
±4.5  
±5.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL pseudo-differential nonlinearity error  
INL integral nonlinearity error  
Note:  
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during  
A/D conversion, the values might not fall within the indicated ranges.  
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage  
are stable.  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Note 3. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.29.  
Table 2.29  
A/D conversion characteristics for simultaneous use of channel-dedicated sample-and-hold  
circuits in unit 0 and unit 1  
Conditions: PCLKC = 30/60 MHz  
Parameter  
Min  
Typ  
±1.5  
±2.5  
±4.0  
±1.5  
±2.5  
±4.0  
±1.5  
±1.5  
±3.0  
±1.5  
±1.5  
±3.0  
Max  
±5.0  
Test conditions  
-
-
-
-
-
-
-
-
-
-
-
-
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN000 to AN002)  
PCLKC = 60 MHz  
Sampling in 15 states  
Full-scale error  
±5.0  
Absolute accuracy  
±8.0  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN100 to AN102)  
±5.0  
Full-scale error  
±5.0  
Absolute accuracy  
±8.0  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN000 to AN002)  
±3.5  
PCLKC = 30 MHz  
Sampling in 7 states  
Full-scale error  
±3.5  
Absolute accuracy  
+4.5/-6.5  
±3.5  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN100 to AN102)  
Full-scale error  
±3.5  
Absolute accuracy  
+4.5/-6.5  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 50 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Note:  
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, setting the ADSHMSR.SHMD bit  
to 1 is recommended.  
Table 2.30  
A/D internal reference voltage characteristics  
Parameter  
Min  
1.13  
4.15  
Typ  
Max  
1.23  
-
Unit  
V
Test conditions  
A/D internal reference voltage  
Sampling time  
1.18  
-
-
-
μs  
FFFh  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Pseudo-differential nonlinearity  
error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Pseudo-differential nonlinearity  
error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
000h  
Offset error  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.43  
Illustration of ADC12 characteristic terms  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog  
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference  
voltage VREFH0 is 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the  
analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D  
conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical  
A/D conversion characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale  
errors are zeroed, and the actual output code.  
Pseudo-differential nonlinearity error (DNL)  
Pseudo-differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion  
characteristics and the width of the actual output code.  
Offset error  
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 51 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Full-scale error  
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.  
2.5  
DAC12 Characteristics  
Table 2.31  
D/A conversion characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Resolution  
-
-
12  
Bits  
-
Without output amplifier  
Absolute accuracy  
INL  
-
-
-
-
-
-
±24  
±8.0  
±2.0  
-
LSB  
LSB  
LSB  
kΩ  
Resistive load 2 MΩ  
±2.0  
±1.0  
8.5  
-
Resistive load 2 MΩ  
DNL  
-
-
Output impedance  
Conversion time  
3.0  
μs  
Resistive load 2 MΩ,  
Capacitive load 20 pF  
Output voltage range  
With output amplifier  
INL  
0
-
VREFH  
V
-
-
±2.0  
±4.0  
LSB  
LSB  
μs  
-
-
-
-
-
-
DNL  
-
±1.0  
±2.0  
Conversion time  
Resistive load  
Capacitive load  
Output voltage range  
-
-
-
-
-
4.0  
5
-
kΩ  
pF  
-
50  
0.2  
VREFH - 0.2  
V
2.6  
TSN Characteristics  
Table 2.32  
Parameter  
TSN characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Relative accuracy  
-
-
±1.0  
4.0  
1.24  
-
-
°C  
-
-
-
-
-
Temperature slope  
-
-
-
mV/°C  
V
Output voltage (at 25°C)  
Temperature sensor start time  
Sampling time  
-
-
-
tSTART  
-
-
30  
-
μs  
4.15  
-
μs  
2.7  
OSC Stop Detect Characteristics  
Table 2.33  
Oscillation stop detection circuit characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
tdr  
-
-
1
Figure 2.44  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 52 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Main clock  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
Figure 2.44  
Oscillation stop detection timing  
2.8  
POR and LVD Characteristics  
Table 2.34  
Parameter  
Power-on reset circuit and voltage detection circuit characteristics  
Test  
conditions  
Symbol  
DPSBYCR.DEEPCUT[1:0] = VPOR  
Min  
Typ  
Max  
Unit  
Voltage detection  
level  
Power-on reset  
(POR)  
2.5  
2.6  
2.7  
V
Figure 2.45  
00b or 01b  
DPSBYCR.DEEPCUT[1:0] =  
11b  
1.8  
2.25  
2.7  
Voltage detection circuit (LVD0)  
Voltage detection circuit (LVD1)  
Voltage detection circuit (LVD2)  
Vdet0_1  
Vdet0_2  
Vdet0_3  
Vdet1_1  
Vdet1_2  
Vdet1_3  
Vdet2_1  
Vdet2_2  
Vdet2_3  
tPOR  
2.84  
2.77  
2.70  
2.89  
2.82  
2.75  
2.89  
2.82  
2.75  
-
2.94  
2.87  
2.80  
2.99  
2.92  
2.85  
2.99  
2.92  
2.85  
4.5  
3.04  
2.97  
2.90  
3.09  
3.02  
2.95  
3.09  
3.02  
2.95  
-
Figure 2.46  
Figure 2.47  
Figure 2.48  
Internal reset time Power-on reset time  
LVD0 reset time  
ms  
Figure 2.45  
Figure 2.46  
Figure 2.47  
Figure 2.48  
tLVD0  
-
0.51  
0.38  
0.38  
-
-
LVD1 reset time  
tLVD1  
-
-
LVD2 reset time  
tLVD2  
-
-
Minimum VCC down time*1  
tVOFF  
200  
-
μs  
μs  
Figure 2.45,  
Figure 2.46  
Response delay  
tdet  
-
-
200  
Figure 2.45 to  
Figure 2.48  
LVD operation stabilization time (after LVD is enabled)  
Hysteresis width (LVD1 and LVD2)  
td(E-A)  
VLVH  
-
-
-
10  
-
μs  
Figure 2.47,  
Figure 2.48  
70  
mV  
Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR  
Vdet1, and Vdet2 for POR and LVD.  
,
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 53 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VPOR  
VCC  
Internal reset signal  
(active-low)  
tdet  
tPOR  
tdet  
tdet tPOR  
Figure 2.45  
Power-on reset timing  
tVOFF  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.46  
Voltage detection circuit timing (Vdet0)  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 54 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.47  
Voltage detection circuit timing (Vdet1)  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.48  
Voltage detection circuit timing (Vdet2)  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 55 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.9  
ACMPHS Characteristics  
Table 2.35  
Parameter  
ACMPHS characteristics  
Symbol  
VREF  
VI  
Min  
Typ  
-
Max  
Unit  
Test conditions  
Reference voltage range  
Input voltage range  
Output delay*1  
0
AVCC0  
AVCC0  
100  
V
-
0
-
V
-
Td  
-
50  
1.18  
ns  
V
VI = VREF ± 100 mV  
-
Internal reference voltage  
Vref  
1.13  
1.23  
Note 1. This value is the internal propagation delay.  
2.10 PGA Characteristics  
Table 2.36  
PGA characteristics in single mode  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
PGAVSS input voltage range  
PGAVSS  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
V
AIN0 (G = 2.000)  
AIN1 (G = 2.500)  
AIN2 (G = 2.667)  
AIN3 (G = 2.857)  
AIN4 (G = 3.077)  
AIN5 (G = 3.333)  
AIN6 (G = 3.636)  
AIN7 (G = 4.000)  
AIN8 (G = 4.444)  
AIN9 (G = 5.000)  
AIN10 (G = 5.714)  
AIN11 (G = 6.667)  
AIN12 (G = 8.000)  
AIN13 (G = 10.000)  
AIN14 (G = 13.333)  
Gerr0 (G = 2.000)  
Gerr1 (G = 2.500)  
Gerr2 (G = 2.667)  
Gerr3 (G = 2.857)  
Gerr4 (G = 3.077)  
Gerr5 (G = 3.333)  
Gerr6 (G = 3.636)  
Gerr7 (G = 4.000)  
Gerr8 (G = 4.444)  
Gerr9 (G = 5.000)  
Gerr10 (G = 5.714)  
Gerr11 (G = 6.667)  
Gerr12 (G = 8.000)  
Gerr13 (G = 10.000)  
Gerr14 (G = 13.333)  
Voff  
0.050 × AVCC0  
0.047 × AVCC0  
0.046 × AVCC0  
0.046 × AVCC0  
0.045 × AVCC0  
0.044 × AVCC0  
0.042 × AVCC0  
0.040 × AVCC0  
0.036 × AVCC0  
0.033 × AVCC0  
0.031 × AVCC0  
0.029 × AVCC0  
0.027 × AVCC0  
0.025 × AVCC0  
0.023 × AVCC0  
-1.0  
0.45 × AVCC0  
V
0.360 × AVCC0  
V
0.337 × AVCC0  
V
0.32 × AVCC0  
V
0.292 × AVCC0  
V
0.265 × AVCC0  
V
0.247 × AVCC0  
V
0.212 × AVCC0  
V
0.191 × AVCC0  
V
0.17 × AVCC0  
V
0.148 × AVCC0  
V
0.127 × AVCC0  
V
0.09 × AVCC0  
V
0.08 × AVCC0  
V
0.06 × AVCC0  
V
Gain error  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
8
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
mV  
-1.0  
-1.0  
-1.0  
-1.0  
-1.5  
-1.5  
-1.5  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
Offset error  
-8  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 56 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.37  
PGA characteristics in pseudo-differential mode  
Parameter  
Symbol  
Min  
-0.5  
-0.5  
-0.4  
-0.2  
-0.15  
-1.0  
-1.0  
-1.0  
-1.0  
Typ  
Max  
0.3  
0.5  
0.4  
0.2  
0.15  
1.0  
1.0  
1.0  
1.0  
Unit  
V
PGAVSS input voltage range  
PGAVSS  
-
-
-
-
-
-
-
-
-
Pseudo-differential  
input voltage range  
G = 1.500  
AIN-PGAVSS  
V
G = 2.333  
G = 4.000  
G = 5.667  
G = 1.500  
G = 2.333  
G = 4.000  
G = 5.667  
V
V
V
Gain error  
Gerr  
%
2.11 Flash Memory Characteristics  
2.11.1  
Code Flash Memory Characteristics  
Table 2.38  
Code flash memory characteristics  
Conditions: Program or erase: FCLK = 4 to 60 MHz  
Read: FCLK 60 MHz  
FCLK = 4 MHz  
20 MHz FCLK 60 MHz  
Test  
Parameter  
Symbol  
tP128  
tP8K  
Min  
Typ  
0.75  
49  
Max  
13.2  
Min  
Typ  
0.34  
22  
Max  
6.0  
80  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Times  
μs  
conditions  
Programming time  
NPEC 100 times  
128-byte  
8-KB  
-
-
-
176  
704  
15.8  
212  
848  
216  
864  
260  
1040  
-
-
32-KB  
128-byte  
8-KB  
tP32K  
tP128  
tP8K  
-
194  
0.91  
60  
-
88  
320  
7.2  
96  
Programming time  
-
-
0.41  
27  
NPEC > 100 times  
-
-
32-KB  
8-KB  
tP32K  
tE8K  
tE32K  
tE8K  
tE32K  
NPEC  
-
234  
78  
-
106  
43  
384  
120  
480  
144  
576  
-
Erasure time  
NPEC 100 times  
-
-
32-KB  
8-KB  
-
283  
94  
-
157  
52  
Erasure time  
-
-
NPEC > 100 times  
32-KB  
-
341  
-
-
189  
-
Reprogramming/erasure cycle*4  
10000*1  
10000*1  
Suspend delay during programming tSPD  
-
-
-
264  
216  
-
-
-
120  
120  
First suspend delay during erasure in tSESD1  
suspend priority mode  
-
-
μs  
Second suspend delay during  
erasure in suspend priority mode  
tSESD2  
-
-
-
-
1.7  
1.7  
-
-
-
-
1.7  
1.7  
ms  
ms  
Suspend delay during erasure in  
erasure priority mode  
tSEED  
Forced stop command  
Data hold time*2  
tFD  
-
-
-
-
32  
-
-
-
-
-
20  
-
μs  
3
3
tDRP  
10*2,  
30*2,  
*
10*2,  
30*2,  
*
Years  
3
3
*
-
*
-
Ta = +85°C  
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1  
to the minimum value.  
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 3. This result is obtained from reliability testing.  
Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10000),  
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different  
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 57 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
• Suspension during programming  
FCU command  
Program  
Ready  
Suspend  
tSPD  
FSTATR0.FRDY  
Not Ready  
Ready  
Programming pulse  
Programming  
• Suspension during erasure in suspend priority mode  
FCU command  
Erase  
Suspend  
Suspend  
Not Ready  
Erasing  
Resume  
tSESD1  
tSESD2  
FSTATR0.FRDY  
Erasure pulse  
Ready  
Ready  
Not Ready  
Erasing  
• Suspension during erasure in erasure priority mode  
FCU command  
FSTATR0.FRDY  
Erasure pulse  
Erase  
Suspend  
Not Ready  
Erasing  
tSEED  
Ready  
Ready  
• Forced Stop  
Forced Stop  
Not Ready  
FACI command  
tFD  
FSTATR.FRDY  
Ready  
Figure 2.49  
Suspension and forced stop timing for flash memory programming and erasure  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 58 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.11.2  
Data Flash Memory Characteristics  
Table 2.39  
Data flash memory characteristics  
Conditions: Program or erase: FCLK = 4 to 60 MHz  
Read: FCLK 60 MHz  
FCLK = 4 MHz  
20 MHz FCLK 60 MHz  
Test  
Parameter  
Symbol  
tDP4  
Min  
Typ  
Max  
Min  
Typ  
Max  
1.7  
1.8  
2.0  
10  
Unit conditions  
Programming time  
4-byte  
-
0.36  
3.8  
4.0  
4.5  
18  
-
0.16  
ms  
8-byte  
tDP8  
-
0.38  
-
0.17  
16-byte  
64-byte  
128-byte  
256-byte  
4-byte  
tDP16  
-
0.42  
-
0.19  
Erasure time  
tDE64  
-
3.1  
-
1.7  
ms  
tDE128  
tDE256  
tDBC4  
NDPEC  
tDSPD  
-
4.7  
27  
-
2.6  
15  
-
8.9  
-
50  
-
4.9  
-
28  
Blank check time  
-
84  
-
30  
μs  
-
Reprogramming/erasure cycle*1  
125000*2  
-
-
125000*2  
-
-
Suspend delay during 4-byte  
-
-
264  
264  
264  
216  
216  
216  
300  
390  
570  
300  
390  
570  
32  
-
-
120  
120  
120  
120  
120  
120  
300  
390  
570  
300  
390  
570  
20  
μs  
programming  
8-byte  
-
-
-
-
16-byte  
-
-
-
-
First suspend delay  
during erasure in  
suspend priority mode  
64-byte  
tDSESD1  
tDSESD2  
tDSEED  
-
-
-
-
μs  
μs  
μs  
128-byte  
256-byte  
64-byte  
-
-
-
-
-
-
-
-
Second suspend  
delay during erasure  
in suspend priority  
mode  
-
-
-
-
128-byte  
256-byte  
-
-
-
-
-
-
-
-
Suspend delay during 64-byte  
-
-
-
-
erasing in erasure  
priority mode  
128-byte  
-
-
-
-
256-byte  
Forced stop command  
Data hold time*3  
-
-
-
-
tFD  
-
-
-
-
μs  
tDRP  
10*3,*4  
30*3,*4  
-
-
10*3,*4  
30*3,*4  
-
-
Year  
-
-
-
-
Ta = +85°C  
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125000),  
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different  
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.  
Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1  
to the minimum value.  
Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 4. This result is obtained from reliability testing.  
2.12 Boundary Scan  
Table 2.40  
Boundary scan characteristics (1 of 2)  
Test  
Parameter  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
Min  
100  
45  
45  
-
Typ  
Max  
Unit  
ns  
conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
-
-
-
-
-
-
Figure 2.50  
-
ns  
-
ns  
tTCKr  
5
5
ns  
tTCKf  
-
ns  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 59 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
Table 2.40  
Boundary scan characteristics (2 of 2)  
Test  
Parameter  
Symbol  
tTMSS  
tTMSH  
tTDIS  
Min  
20  
Typ  
Max  
Unit  
conditions  
TMS setup time  
TMS hold time  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
-
Figure 2.51  
20  
-
TDI setup time  
20  
-
TDI hold time  
tTDIH  
20  
-
TDO data delay  
Boundary scan circuit startup time*1  
tTDOD  
TBSSTUP  
-
40  
-
tRESWP  
Figure 2.52  
Note 1. Boundary scan does not function until the power-on reset becomes negative.  
tTCKcyc  
tTCKH  
tTCKf  
TCK  
tTCKr  
tTCKL  
Figure 2.50  
Boundary scan TCK timing  
TCK  
TMS  
TDI  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOD  
TDO  
Figure 2.51  
Boundary scan input/output timing  
VCC  
RES  
tBSSTUP  
(= tRESWP)  
Boundary scan  
execute  
Figure 2.52  
Boundary scan circuit startup timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 60 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.13 Joint Test Action Group (JTAG)  
Table 2.41  
Parameter  
JTAG  
Test  
conditions  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
tTCKr  
Min  
40  
15  
15  
-
Typ  
Max  
Unit  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.50  
-
-
5
5
-
tTCKf  
-
tTMSS  
tTMSH  
tTDIS  
8
Figure 2.51  
TMS hold time  
8
-
TDI setup time  
8
-
TDI hold time  
tTDIH  
8
-
TDO data delay time  
tTDOD  
-
20  
tTCKcyc  
tTCKH  
TCK  
tTCKf  
tTCKr  
tTCKL  
Figure 2.53  
JTAG TCK timing  
TCK  
tTMSS  
tTMSH  
TMS  
tTDIS  
tTDIH  
TDI  
tTDOD  
TDO  
Figure 2.54  
JTAG input/output timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 61 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.14 Serial Wire Debug (SWD)  
Table 2.42  
Parameter  
SWD  
Test  
conditions  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
tSWCKf  
tSWDS  
Min  
40  
15  
15  
-
Typ  
Max  
Unit  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.55  
-
-
5
5
-
-
8
Figure 2.56  
SWDIO hold time  
tSWDH  
8
-
SWDIO data delay time  
tSWDD  
2
28  
tSWCKcyc  
tSWCKH  
SWCLK  
tSWCKL  
Figure 2.55  
SWD SWCLK timing  
SWCLK  
tSWDS  
tSWDH  
SWDIO  
(input)  
tSWDD  
SWDIO  
(output)  
tSWDD  
SWDIO  
(output)  
tSWDD  
SWDIO  
(output)  
Figure 2.56  
SWD input/output timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 62 of 69  
RA6T1 Datasheet  
2. Electrical Characteristics  
2.15 Embedded Trace Macro Interface (ETM)  
Table 2.43  
ETM  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol  
tTCLKcyc  
tTCLKH  
tTCLKL  
tTCLKr  
Min  
33.3  
13.6  
13.6  
-
Typ  
Max  
Unit  
conditions  
TCLK clock cycle time  
TCLK clock high pulse width  
TCLK clock low pulse width  
TCLK clock rise time  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.57  
-
-
3
3
-
TCLK clock fall time  
tTCLKf  
-
TDATA[3:0] output setup time  
TDATA[3:0] output hold time  
tTRDS  
3.5  
2.5  
Figure 2.58  
tTRDH  
-
tTCLKcyc  
tTCLKH  
TCLK  
tTCLKf  
tTCLKr  
tTCLKL  
Figure 2.57  
ETM TCLK timing  
TCLK  
tTRDS  
tTRDH  
tTRDS  
tTRDH  
TDATA[3:0]  
Figure 2.58  
ETM output timing  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 63 of 69  
RA6T1 Datasheet  
Appendix 1. Package Dimensions  
Appendix 1.Package Dimensions  
Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas  
Electronics Corporation website.  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.6  
P-LFQFP100-14x14-0.50  
PLQP0100KB-B  
HD  
Unit: mm  
*1  
D
75  
51  
76  
50  
100  
26  
1
25  
NOTE 4  
NOTE)  
Index area  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
NOTE 3  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
y
S
*3  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
13.9  
13.9  

14.0 14.1  
14.0 14.1  
1.4  

15.8  
15.8  

16.0 16.2  
16.0 16.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.1  
100-pin LQFP  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 64 of 69  
RA6T1 Datasheet  
Appendix 1. Package Dimensions  
JEITA Package Code  
P-LFQFP64-10x10-0.50  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.3  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
9.9  
9.9  

10.0 10.1  
10.0 10.1  
1.4  

11.8  
11.8  

12.0 12.2  
12.0 12.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.2  
64-pin LQFP  
R01DS0375EU0100 Rev.1.00  
May 29, 2020  
Page 65 of 69  
Revision History  
RA6T1 Group Datasheet  
Rev.  
1.00  
Date  
Summary  
May 29, 2020 First release  
Proprietary Notice  
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in  
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and  
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no  
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,  
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior  
written consent from Renesas.  
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.  
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.  
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.  
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States  
and Japan.  
Bluetooth® is a trademark of the Bluetooth SIG, Inc.  
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective  
holders.  
Colophon  
RA6T1 Group Datasheet  
Publication Date:  
Published by:  
Rev.1.00  
May 29, 2020  
Renesas Electronics Corporation  
Notice  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
1.
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
Renesas Electronicshereby expressly disclaimsanywarranties against andliability for infringementor any otherclaimsinvolvingpatents,copyrights, or otherintellectualpropertyrights of third parties, byor
2.  
arisin  
g
fro  
m
t
heuse  
o
f
R
en  
e
sa  
s
E
lec  
t
ro  
nics  
p
ro  
duc  
t
s o  
r
te  
ch  
ni  
ca  
l
inf  
orm  
a
tio  
n
de  
sc  
ribe  
d
in  
t
his  
d
oc  
u
me  
n
t
, in  
cl  
udin  
g
b
ut  
no  
t li  
m
ite  
d
to,  
th  
e
p
ro  
du  
ct d  
at  
a,  
dra  
w
in  
g
s,  
ch  
a
rts  
, p  
ro  
gra  
m
s, a  
l
go  
ri  
th  
m
s
, a  
n
d a  
p
pli  
c
atio  
n
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
Renesas Electronics products are classifiedaccordingtothefollowingtwoqualitygrades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
5.  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
seriouspropertydamage(spacesystem; undersearepeaters; nuclearpower controlsystems;aircraft control systems;keyplant systems;militaryequipment;etc.). Renesas Electronicsdisclaims anyand all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage causedbyfire,and/ordanger to the publicintheeventofafailure ormalfunctionof Renesas Electronicsproducts,suchas safetydesignforhardwareand software, includingbutnotlimited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws andregulations.
Renesas Electronicsproductsandtechnologiesshall notbeusedfor or incorporatedinto anyproducts or systemswhosemanufacture, use,orsale is prohibited under anyapplicable domestic or foreignlaws
9.  
regulations. with applicable controland administered by parties
or  
comply  
any  
laws  
regulations promulgated  
the governments of any countries asserting  
over the  
or  
Youshallexportandjurisdiction
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12.  
Please contact aRenesasElectronicssalesofficeifyouhaveanyquestionsregardingthe information containedinthis document or RenesasElectronicsproducts.
(Note 1) 
“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) 
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
Renesas Electronics Corporation  
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel:
+1-408-432-8888, Fax: +1-408-434-5351  
Renesas ElectronicsCanadaLimited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0,Fax:+49-211-6503-1327
Renesas Electronics (China) Co., Ltd.  
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China  
Tel: +86-10-8235-1155,Fax:+86-10-8235-7679
Renesas Electronics(Shanghai)Co.,Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas ElectronicsHongKongLimited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas ElectronicsTaiwanCo., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia  
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 20ꢀꢁ Renesas Electronics Corporation. All rights reserved.ꢂ  
Colophon .0  
Back cover  
Renesas RA Family  
RA6T1 Group  
R01DS0375EU0100  

相关型号:

R7FA6T1AB3CFP

Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security and safety features, and advanced analog.
RENESAS

R7FA6T1AD3CFM

Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security and safety features, and advanced analog.
RENESAS

R7FA6T1AD3CFP

Leading performance 120-MHz Arm® Cortex®-M4 core, up to 512 KB of code flash memory, 64-KB SRAM, security and safety features, and advanced analog.
RENESAS

R7FBAU

Audio/RCA Connector, 7 Pole(s),
SWITCH

R7FBAUZ

Audio/RCA Connector, 7 Pole(s), ROHS COMPLIANT
SWITCH

R7FBZ

Audio/RCA Connector, 7 Pole(s), ROHS COMPLIANT
SWITCH

R7FN-DA16

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM

R7FN-DA16-R

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM

R7FN-DA16-R/Q

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM

R7FN-DAC16A

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM

R7FN-DAC16A-R

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM

R7FN-DAC16A-R/Q

Remote I/O R7 Series FLEX NETWORK I/O MODULE
MSYSTEM