R8C/15 [RENESAS]

16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES; 16位单片机M16C族/ R8C / Tiny系列
R8C/15
型号: R8C/15
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES
16位单片机M16C族/ R8C / Tiny系列

计算机
文件: 总277页 (文件大小:3716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Hardware Manual  
16  
RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER  
M16C FAMILY / R8C/Tiny SERIES  
All information contained in these materials, including products and product specifications,  
represents information on the product at the time of publication and is subject to change by  
Renesas Technology Corp. without notice. Please review the latest information published  
by Renesas Technology Corp. through various means, including the Renesas Technology  
Corp. website (http://www.renesas.com).  
Rev.2.10  
Revision Date:Jan 19, 2006  
www.renesas.com  
Keep safety first in your circuit designs!  
1.  
Renesas Technology Corp. puts the maximum effort into making semiconductor products  
better and more reliable, but there is always the possibility that trouble may occur with  
them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with ap-  
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-  
flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1.  
These materials are intended as a reference to assist our customers in the selection of the  
Renesas Technology Corp. product best suited to the customer's application; they do not  
convey any license under any intellectual property rights, or any other rights, belonging to  
Renesas Technology Corp. or a third party.  
2.  
3.  
Renesas Technology Corp. assumes no responsibility for any damage, or infringement of  
any third-party's rights, originating in the use of any product data, diagrams, charts, pro-  
grams, algorithms, or circuit application examples contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, pro-  
grams and algorithms represents information on products at the time of publication of these  
materials, and are subject to change by Renesas Technology Corp. without notice due to  
product improvements or other reasons. It is therefore recommended that customers con-  
tact Renesas Technology Corp. or an authorized Renesas Technology Corp. product dis-  
tributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other  
loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by vari-  
ous means, including the Renesas Technology Corp. Semiconductor home page (http://  
www.renesas.com).  
4.  
5.  
When using any or all of the information contained in these materials, including product  
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-  
tion as a total system before making a final decision on the applicability of the information  
and products. Renesas Technology Corp. assumes no responsibility for any damage, liabil-  
ity or other loss resulting from the information contained herein.  
Renesas Technology Corp. semiconductors are not designed or manufactured for use in a  
device or system that is used under circumstances in which human life is potentially at  
stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology  
Corp. product distributor when considering the use of a product contained herein for any  
specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
6.  
7.  
The prior written approval of Renesas Technology Corp. is necessary to reprint or repro-  
duce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions,  
they must be exported under a license from the Japanese government and cannot be im-  
ported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/  
or the country of destination is prohibited.  
8.  
Please contact Renesas Technology Corp. for further details on these materials or the  
products contained therein.  
How to Use This Manual  
1. Introduction  
This hardware manual provides detailed information on the R8C/14 Group, R8C/15 Group of  
microcomputers.  
Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.  
2. Register Diagram  
The symbols, and descriptions, used for bit function in each register are shown below.  
*1  
Symbol  
XXX Register  
b7 b6 b5 b4 b3 b2 b1 b0  
*5  
Address  
XXX  
After Reset  
00h  
0
XXX  
Bit Symbol  
XXX0  
RW  
RW  
Bit Name  
XXX Bit  
Function  
*2  
b1 b0  
1 0: XXX  
0 1: XXX  
1 0: Avoid this setting  
1 1: XXX  
XXX1  
(b2)  
RW  
Nothing is assigned.  
When write, should set to “0”. When read, its content is indeterminate.  
*3  
Reserved Bit  
XXX Bit  
Must set to “0”  
RW  
RW  
WO  
(b3)  
XXX4  
XXX5  
*4  
Function varies depending on each operation  
mode  
RW  
RO  
XXX6  
XXX7  
0: XXX  
1: XXX  
XXX Bit  
*1  
*2  
Blank:Set to “0” or “1” according to the application  
0: Set to “0”  
1: Set to “1”  
X: Nothing is assigned  
RW: Read and write  
RO: Read only  
WO: Write only  
: Nothing is assigned  
*3  
*4  
Reserved bit  
Reserved bit. Set to specified value.  
Nothing is assigned  
Nothing is assigned to the bit concerned. As the bit may be use for future functions,  
set to “0” when writing to this bit.  
Do not set to this value  
The operation is not guaranteed when a value is set.  
Function varies depending on mode of operation  
Bit function varies depending on peripheral function mode.  
Refer to respective register for each mode.  
*5  
Follow the text in each manual for binary and hexadecimal notations.  
3. M16C Family Documents  
(1)  
The following documents were prepared for the M16C family.  
Document  
Contents  
Short Sheet  
Hardware overview  
Data Sheet  
Hardware overview and electrical characteristics  
Hardware specifications (pin assignments, memory maps, peripheral  
specifications, electrical characteristics, timing charts).  
*Refer to the application note for how to use peripheral functions.  
Detailed description of assembly instructions and microcomputer  
performance of each instruction  
Hardware Manual  
Software Manual  
Application Note  
• Usage and application examples of peripheral functions  
• Sample programs  
• Introduction to the basic functions in the M16C family  
• Programming method with Assembly and C languages  
RENESAS TECHNICAL UPDATE Preliminary report about the specification of a product, a document,  
etc.  
NOTES:  
1. Before using this material, please visit the our website to verify that this is the most updated  
document available.  
Table of Contents  
SFR Page Reference  
1. Overview  
B - 1  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Applications.................................................................................................1  
Performance Overview................................................................................2  
Block Diagram.............................................................................................4  
Product Information.....................................................................................5  
Pin Assignments..........................................................................................7  
Pin Description ............................................................................................8  
2. Central Processing Unit (CPU)  
10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Data Registers (R0, R1, R2 and R3).........................................................11  
Address Registers (A0 and A1).................................................................11  
Frame Base Register (FB) ........................................................................11  
Interrupt Table Register (INTB).................................................................11  
Program Counter (PC) ..............................................................................11  
User Stack Pointer (USP) and Interrupt Stack Pointer (ISP).....................11  
Static Base Register (SB)..........................................................................11  
Flag Register (FLG)...................................................................................11  
Carry Flag (C).....................................................................................11  
Debug Flag (D)...................................................................................11  
Zero Flag (Z).......................................................................................11  
Sign Flag (S).......................................................................................11  
Register Bank Select Flag (B) ............................................................11  
Overflow Flag (O) ...............................................................................11  
Interrupt Enable Flag (I Flag)..............................................................12  
Stack Pointer Select Flag (U Flag) .....................................................12  
Processor Interrupt Priority Level (IPL) ..............................................12  
2.8.1  
2.8.2  
2.8.3  
2.8.4  
2.8.5  
2.8.6  
2.8.7  
2.8.8  
2.8.9  
2.8.10 Reserved Bit.......................................................................................12  
3. Memory  
13  
R8C/14 Group ...........................................................................................13  
R8C/15 Group ...........................................................................................14  
3.1  
3.2  
A - 1  
4. Special Function Register (SFR)  
5. Reset  
15  
19  
5.1  
5.1.1  
5.1.2  
5.2  
Hardware Reset ........................................................................................21  
When the power supply is stable........................................................21  
Power on ............................................................................................21  
Power-On Reset Function.........................................................................23  
Voltage Monitor 1 Reset ...........................................................................24  
Voltage Monitor 2 Reset............................................................................24  
Watchdog Timer Reset..............................................................................24  
Software Reset..........................................................................................24  
5.3  
5.4  
5.5  
5.6  
6. Voltage Detection Circuit  
25  
6.1  
6.1.1  
6.1.2  
6.2  
6.3  
Monitoring VCC Input Voltage...................................................................31  
Monitoring Vdet1 ................................................................................31  
Monitoring Vdet2 ................................................................................31  
Voltage Monitor 1 Reset............................................................................32  
Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset .........................33  
7. Processor Mode  
35  
7.1  
Types of Processor Mode .........................................................................35  
8. Bus  
37  
9. Clock Generation Circuit  
38  
9.1  
9.2  
Main Clock.................................................................................................45  
On-Chip Oscillator Clock...........................................................................46  
Low-Speed On-Chip Oscillator Clock.................................................46  
High-Speed On-Chip Oscillator Clock ................................................46  
CPU Clock and Peripheral Function Clock................................................47  
System Clock......................................................................................47  
CPU Clock..........................................................................................47  
Peripheral Function Clock (f1, f2, f4, f8, f32)......................................47  
fRING and fRING128..........................................................................47  
fRING-fast...........................................................................................47  
fRING-S..............................................................................................47  
Power Control............................................................................................48  
9.2.1  
9.2.2  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.4  
A - 2  
9.4.1  
9.4.2  
9.4.3  
Normal Operating Mode .....................................................................48  
Wait Mode ..........................................................................................49  
Stop Mode ..........................................................................................51  
Oscillation Stop Detection Function ..........................................................53  
How to Use Oscillation Stop Detection Function................................53  
9.5  
9.5.1  
10. Protection  
11. Interrupt  
55  
56  
11.1 Interrupt Overview.....................................................................................56  
11.1.1 Types of Interrupts..............................................................................56  
11.1.2 Software Interrupts .............................................................................57  
11.1.3 Special Interrupts................................................................................58  
11.1.4 Peripheral Function Interrupt..............................................................58  
11.1.5 Interrupts and Interrupt Vector............................................................59  
11.1.6 Interrupt Control..................................................................................61  
11.2 INT Interrupt ..............................................................................................69  
11.2.1 INT0 Interrupt .....................................................................................69  
11.2.2 INT0 Input Filter..................................................................................70  
11.2.3 INT1 Interrupt .....................................................................................71  
11.2.4 INT3 Interrupt .....................................................................................72  
11.3 Key Input Interrupt.....................................................................................74  
11.4 Address Match Interrupt............................................................................76  
12. Watchdog Timer  
78  
12.1 When Count Source Protection Mode Disabled........................................81  
12.2 When Count Source Protection Mode Enabled.........................................82  
13. Timers  
83  
13.1 Timer X......................................................................................................84  
13.1.1 Timer Mode ........................................................................................87  
13.1.2 Pulse Output Mode.............................................................................88  
13.1.3 Event Counter Mode...........................................................................90  
13.1.4 Pulse Width Measurement Mode .......................................................92  
13.1.5 Pulse Period Measurement Mode ......................................................95  
13.2 Timer Z......................................................................................................98  
13.2.1 Timer Mode ......................................................................................103  
A - 3  
13.2.2 Programmable Waveform Generation Mode....................................105  
13.2.3 Programmable One-shot Generation Mode .....................................108  
13.2.4 Programmable Wait One-shot Generation Mode .............................111  
13.3 Timer C....................................................................................................115  
13.3.1 Input Capture Mode..........................................................................121  
13.3.2 Output Compare Mode.....................................................................123  
14. Serial Interface  
125  
14.1 Clock Synchronous Serial I/O Mode .......................................................130  
14.1.1 Polarity Select Function....................................................................133  
14.1.2 LSB First/MSB First Select Function ................................................133  
14.1.3 Continuous Receive Mode ...............................................................134  
14.2 Clock Asynchronous Serial I/O (UART) Mode ........................................135  
14.2.1 CNTR0 Pin Select Function..............................................................138  
14.2.2 Bit Rate.............................................................................................139  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
140  
15.1 Transfer Clock.........................................................................................149  
15.1.1 Association between Transfer Clock Polarity, Phase and Data .......149  
15.2 SS Shift Register (SSTRSR)...................................................................151  
15.2.1 Association between Data I/O Pin and SS Shift Register.................151  
15.3 Interrupt Requests...................................................................................152  
15.4 Communication Modes and Pin Functions..............................................153  
15.5 Clock Synchronous Communication Mode .............................................154  
15.5.1 Initialization in Clock Synchronous Communication Mode...............154  
15.5.2 Data Transmit...................................................................................155  
15.5.3 Data Receive....................................................................................157  
15.5.4 Data Transmit/Receive.....................................................................159  
15.6 Operation in 4-Wire Bus Communication Mode......................................161  
15.6.1 Initialization in 4-Wire Bus Communication Mode ............................161  
15.6.2 Data Transmit...................................................................................163  
15.6.3 Data Receive....................................................................................165  
15.6.4 SCS Pin Control and Arbitration.......................................................167  
16. A/D Converter  
168  
16.1 One-Shot Mode.......................................................................................172  
A - 4  
16.2 Repeat Mode...........................................................................................174  
16.3 Sample and Hold.....................................................................................176  
16.4 A/D Conversion Cycles ...........................................................................176  
16.5 Internal Equivalent Circuit of Analog Input ..............................................177  
16.6 Inflow Current Bypass Circuit..................................................................178  
17. Programmable I/O Ports  
179  
17.1 Functions of Programmable I/O Ports.....................................................179  
17.2 Effect on Peripheral Functions ................................................................179  
17.3 Pins Other than Programmable I/O Ports................................................179  
17.4 Port setting ..............................................................................................186  
17.5 Unassigned Pin Handling........................................................................190  
18. Flash Memory Version  
191  
18.1 Overview .................................................................................................191  
18.2 Memory Map ...........................................................................................193  
18.3 Functions To Prevent Flash Memory from Rewriting ..............................195  
18.3.1 ID Code Check Function ..................................................................195  
18.3.2 ROM Code Protect Function ............................................................196  
18.4 CPU Rewrite Mode..................................................................................197  
18.4.1 EW0 Mode........................................................................................198  
18.4.2 EW1 Mode........................................................................................198  
18.4.3 Software Commands........................................................................205  
18.4.4 Status Register.................................................................................209  
18.4.5 Full Status Check .............................................................................210  
18.5 Standard Serial I/O Mode........................................................................212  
18.5.1 ID Code Check Function ..................................................................212  
18.6 Parallel I/O Mode.....................................................................................216  
18.6.1 ROM Code Protect Function ............................................................216  
19. Electrical Characteristics  
20. Precautions  
217  
235  
20.1 Stop Mode and Wait Mode......................................................................235  
20.1.1 Stop Mode ........................................................................................235  
20.1.2 Wait Mode ........................................................................................235  
20.2 Interrupts .................................................................................................236  
A - 5  
20.2.1 Reading Address 00000h.................................................................236  
20.2.2 SP Setting.........................................................................................236  
20.2.3 External Interrupt and Key Input Interrupt ........................................236  
20.2.4 Watchdog Timer Interrupt.................................................................236  
20.2.5 Changing Interrupt Factor.................................................................237  
20.2.6 Changing Interrupt Control Register.................................................238  
20.3 Clock Generation Circuit .........................................................................239  
20.3.1 Oscillation Stop Detection Function..................................................239  
20.3.2 Oscillation Circuit Constants.............................................................239  
20.4 Timers .....................................................................................................240  
20.4.1 Timers X and Z.................................................................................240  
20.4.2 Timer X.............................................................................................240  
20.4.3 Timer Z .............................................................................................241  
20.4.4 Timer C.............................................................................................241  
20.5 Serial Interface ........................................................................................242  
20.6 Clock Synchronous Serial I/O (SSU) with Chip Select............................243  
20.6.1 Access Registers Associated with SSU ...........................................243  
20.7 A/D Converter..........................................................................................244  
20.8 Flash Memory Version ............................................................................245  
20.8.1 CPU Rewrite Mode...........................................................................245  
20.9 Noise .......................................................................................................248  
20.9.1 Insert a bypass capacitor between VCC and VSS pins as the  
countermeasures against noise and latch-up...................................248  
20.9.2 Countermeasures against Noise Error of Port Control Registers.....248  
21. Precaution for On-chip Debugger  
Appendix 1. Package Dimensions  
249  
250  
Appendix 2. Connecting Example between Serial Writer and On-Chip  
Debugging Emulator  
251  
252  
253  
Appendix 3. Example of Oscillation Evaluation Circuit  
Register Index  
A - 6  
SFR Page Reference  
Address  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
Register  
Symbol  
Page  
Address  
0040h  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
0058h  
0059h  
Register  
Symbol  
Page  
Processor Mode Register 0  
Processor Mode Register 1  
System Clock Control Register 0  
System Clock Control Register 1  
PM0  
35  
36  
40  
41  
PM1  
CM0  
CM1  
Address Match Interrupt Enable Register  
Protect Register  
AIER  
PRCR  
77  
55  
Oscillation Stop Detection Register  
Watchdog Timer Reset Register  
Watchdog Timer Start Register  
Watchdog Timer Control Register  
Address Match Interrupt Register 0  
OCD  
42  
80  
80  
79  
77  
WDTR  
WDTS  
WDC  
Key Input Interrupt Control Register  
A/D Conversion Interrupt Control Register  
SSU Interrupt Control Register  
Compare 1 Interrupt Control Register  
UART0 Transmit Interrupt Control Register  
UART0 Receive Interrupt Control Register  
KUPIC  
ADIC  
SSUAIC  
CMP1IC  
S0TIC  
61  
61  
61  
61  
61  
61  
RMAD0  
S0RIC  
Address Match Interrupt Register 1  
RMAD1  
77  
Timer X Interrupt Control Register  
TXIC  
61  
Timer Z Interrupt Control Register  
INT1 Interrupt Control Register  
TZIC  
INT1IC  
61  
61  
005Ah  
INT3IC  
61  
INT3 Interrupt Control Register  
Timer C Interrupt Control Register  
Compare 0 Interrupt Control Register  
005Bh  
005Ch  
005Dh  
TCIC  
CMP0IC  
INT0IC  
61  
61  
62  
Count Source Protection Mode Register  
INT0 Input Filter Select Register  
CSPR  
INT0F  
80  
69  
INT0 Interrupt Control Register  
005Eh  
005Fh  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
0067h  
0068h  
0069h  
006Ah  
006Bh  
006Ch  
006Dh  
006Eh  
006Fh  
0070h  
0071h  
0072h  
0073h  
0074h  
0075h  
0076h  
0077h  
0078h  
0079h  
007Ah  
007Bh  
007Ch  
007Dh  
007Eh  
007Fh  
001Fh  
0020h  
High-Speed On-Chip Oscillator Control  
Register 0  
High-Speed On-Chip Oscillator Control  
Register 1  
High-Speed On-Chip Oscillator Control  
Register 2  
HRA0  
HRA1  
HRA2  
43  
44  
44  
0021h  
0022h  
0023h  
0024h  
0025h  
0026h  
0027h  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
VCA1  
VCA2  
28  
28  
Voltage Detection Register 1  
Voltage Detection Register 2  
Voltage Monitor 1 Circuit Control Register  
Voltage Monitor 2 Circuit Control Register  
VW1C  
VW2C  
29  
30  
NOTES:  
1. Blank columns are all reserved space. No access is  
allowed.  
B - 1  
Address Register  
Timer Z Mode Register  
Symbol  
TZMR  
Page  
99  
Address Register  
A/D Register  
Symbol  
AD  
Page  
171  
0080h  
0081h  
0082h  
0083h  
0084h  
0085h  
0086h  
0087h  
0088h  
0089h  
008Ah  
008Bh  
008Ch  
008Dh  
008Eh  
008Fh  
0090h  
0091h  
0092h  
0093h  
0094h  
0095h  
0096h  
0097h  
0098h  
0099h  
009Ah  
009Bh  
009Ch  
009Dh  
009Eh  
009Fh  
00A0h  
00A1h  
00A2h  
00A3h  
00A4h  
00A5h  
00A6h  
00A7h  
00A8h  
00A9h  
00AAh  
00ABh  
00ACh  
00ADh  
00AEh  
00AFh  
00B0h  
00B1h  
00B2h  
00B3h  
00B4h  
00B5h  
00B6h  
00B7h  
00B8h  
00B9h  
00BAh  
00BBh  
00BCh  
00BDh  
00BEh  
00BFh  
00C0h  
00C1h  
00C2h  
00C3h  
00C4h  
00C5h  
00C6h  
00C7h  
00C8h  
00C9h  
00CAh  
00CBh  
00CCh  
00CDh  
00CEh  
00CFh  
00D0h  
00D1h  
00D2h  
00D3h  
00D4h  
00D5h  
00D6h  
00D7h  
00D8h  
00D9h  
00DAh  
00DBh  
00DCh  
00DDh  
00DEh  
00DFh  
00E0h  
00E1h  
00E2h  
00E3h  
00E4h  
00E5h  
00E6h  
00E7h  
00E8h  
00E9h  
00EAh  
00EBh  
00ECh  
00EDh  
00EEh  
00EFh  
00F0h  
00F1h  
00F2h  
00F3h  
00F4h  
00F5h  
00F6h  
00F7h  
00F8h  
00F9h  
00FAh  
00FBh  
00FCh  
00FDh  
00FEh  
00FFh  
Timer Z Waveform Output Control Register  
Prescaler Z  
Timer Z Secondary  
PUM  
101  
100  
100  
100  
PREZ  
TZSC  
TZPR  
Timer Z Primary  
Timer Z Output Control Register  
Timer X Mode Register  
Prescaler X  
TZOC  
TXMR  
PREX  
TX  
101  
85  
86  
86  
86,102  
Timer X  
Timer Count Source Set Register  
TCSS  
Timer C  
TC  
117  
A/D Control Register 2  
ADCON2  
171  
External Input Enable Register  
Key Input Enable Register  
INTEN  
KIEN  
69  
75  
A/D Control Register 0  
A/D Control Register 1  
ADCON0  
ADCON1  
170  
170  
Timer C Control Register 0  
Timer C Control Register 1  
Capture, Compare 0 Register  
TCC0  
TCC1  
TM0  
118  
119  
117  
Compare 1 Register  
TM1  
117  
UART0 Transmit/Receive Mode Register  
UART0 Bit Rate Register  
UART0 Transmit Buffer Register  
U0MR  
U0BRG  
U0TB  
128  
127  
127  
Port P1 Register  
P1  
184  
184  
184  
Port P1 Direction Register  
Port P3 Register  
PD1  
P3  
UART0 Transmit/Receive Control Register 0 U0C0  
UART0 Transmit/Receive Control Register 1 U0C1  
UART0 Receive Buffer Register  
128  
129  
127  
U0RB  
Port P3 Direction Register  
Port P4 Register  
PD3  
P4  
184  
184  
Port P4 Direction Register  
PD4  
184  
UART Transmit/Receive Control Register 2  
UCON  
129  
SS Control Register H  
SS Control Register L  
SS Mode Register  
SS Enable Register  
SS Status Register  
SS Mode Register 2  
SS Transmit Data Register  
SS Receive Data Register  
SSCRH  
SSCRL  
SSMR  
SSER  
SSSR  
SSMR2  
SSTDR  
SSRDR  
142  
143  
144  
145  
146  
147  
148  
148  
Pull-Up Control Register 0  
Pull-Up Control Register 1  
Port P1 Drive Capacity Control Register  
Timer C Output Control Register  
PUR0  
PUR1  
DRR  
185  
185  
185  
120  
TCOUT  
NOTES:  
01B3h  
01B4h  
01B5h  
01B6h  
01B7h  
Flash Memory Control Register 4  
Flash Memory Control Register 1  
Flash Memory Control Register 0  
FMR4  
FMR1  
FMR0  
OFS  
201  
201  
1. Blank columns, 0100h to 01AFh and 01C0h to 02FFh are  
all reserved. No access is allowed.  
200  
0FFFFh Optional Function Select Register  
79,196  
B - 2  
R8C/14 Group, R8C/15 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
REJ09B0164-0210  
Rev.2.10  
Jan 19, 2006  
1. Overview  
This MCU is built using the high-performance silicon gate CMOS process using a R8C/Tiny Series CPU  
core and is packaged in a 20-pin plastic molded LSSOP. This MCU operates using sophisticated  
instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of  
executing instructions at high speed.  
Furthermore, the data flash ROM (1KB × 2blocks) is embedded in the R8C/15 group.  
The difference between R8C/14 and R8C/15 groups is only the existence of the data flash ROM. Their  
peripheral functions are the same.  
1.1  
Applications  
Electric household appliance, office equipment, housing equipment (sensor, security), general industrial  
equipment, audio, etc.  
Rev.2.10 Jan 19, 2006 Page 1 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
1.2  
Performance Overview  
Table 1.1 lists the Performance Outline of the R8C/14 Group and Table 1.2 lists the Performance Outline  
of the R8C/15 Group.  
Table 1.1  
Performance Outline of the R8C/14 Group  
Item  
Performance  
CPU  
Number of Basic Instructions 89 instructions  
Minimum Instruction  
Execution Time  
Operating Mode  
Memory Space  
Memory Capacity  
Port  
50ns(f(XIN)=20MHz, VCC=3.0 to 5.5V)  
100ns(f(XIN)=10MHz, VCC=2.7 to 5.5V)  
Single-chip  
1 Mbyte  
See Table 1.3 R8C/14 Group Product Information  
I/O port : 13 pins (including LED drive port),  
Input : 2 pins  
Peripheral  
Function  
LED Drive Port  
Timer  
I/O port: 4 pins  
Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel  
(Each timer equipped with 8-bit prescaler)  
Timer C: 16 bits × 1 channel  
(Circuits of input capture and output compare)  
1 channel  
Serial Interface  
Clock synchronous serial I/O, UART  
1 channel  
Chip-Select Clock  
Synchronous Serial I/O  
(SSU)  
A/D Converter  
Watchdog Timer  
10-bit A/D converter: 1 circuit, 4 channels  
15 bits ×1 channel (with prescaler)  
Reset start selectable, Count source protection mode  
Internal: 9 factors, External: 4 factors, Software: 4 factors,  
Priority level: 7 levels  
Interrupt  
Clock Generation Circuit  
2 circuits  
• Main clock oscillation circuit (Equipped with a built-in  
feedback resistor)  
• On-chip oscillator (high speed, low speed)  
Equipped with frequency adjustment function on high-  
speed on-chip oscillator  
Oscillation Stop Detection  
Function  
Main clock oscillation stop detection function  
Voltage Detection Circuit  
Power-On Reset Circuit  
Supply Voltage  
Included  
Included  
Electric  
Characteristics  
VCC=3.0 to 5.5V (f(XIN)=20MHz)  
VCC=2.7 to 5.5V (f(XIN)=10MHz)  
Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)  
Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)  
Typ. 35µA (VCC=3.0V, wait mode, peripheral clock off)  
Typ. 0.7µA (VCC=3.0V, stop mode)  
VCC=2.7 to 5.5V  
Power Consumption  
Flash Memory Program/Erase Supply  
Voltage  
Program/Erase Endurance  
Operating Ambient Temperature  
100 times  
-20 to 85°C  
-40 to 85°C (D Version)  
20-pin plastic mold LSSOP  
Package  
Rev.2.10 Jan 19, 2006 Page 2 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
Table 1.2  
Performance Outline of the R8C/15 Group  
Item  
Performance  
CPU  
Number of Basic Instructions 89 instructions  
Minimum Instruction  
Execution Time  
Operating Mode  
Memory Space  
Memory Capacity  
Port  
50ns (f(XIN)=20MHz, VCC=3.0 to 5.5V)  
100ns (f(XIN)=10MHz, VCC=2.7 to 5.5V)  
Single-chip  
1 Mbyte  
See Table 1.4 R8C/15 Group Product Information  
I/O : 13 pins (including LED drive port),  
Input : 2 pins  
Peripheral  
Function  
LED drive port  
Timer  
I/O port: 4 pins  
Timer X: 8 bits × 1 channel, Timer Z: 8 bits × 1 channel  
(Each timer equipped with 8-bit prescaler)  
Timer C: 16 bits × 1 channel  
(Circuits of input capture and output compare)  
1 channel  
Serial Interface  
Clock synchronous serial I/O, UART  
1 channel  
Chip-select clock  
synchronous serial I/O (SSU)  
A/D Converter  
Watchdog Timer  
10-bit A/D converter: 1 circuit, 4 channels  
15 bits × 1 channel (with prescaler)  
Reset start selectable, Count source protection mode  
Internal: 9 factors, External: 4 factors, Software: 4 factors  
Priority level: 7 levels  
Interrupt  
Clock Generation Circuit  
2 circuits  
• Main clock generation circuit (Equipped with a built-in  
feedback resistor)  
• On-chip oscillator (high speed, low speed)  
Equipped with frequency adjustment function on high-  
speed on-chip oscillator  
Oscillation Stop Detection  
Function  
Main clock oscillation stop detection function  
Voltage Detection Circuit  
Power on Reset Circuit  
Supply Voltage  
Included  
Included  
Electric  
Characteristics  
VCC=3.0 to 5.5V (f(XIN)=20MHz)  
VCC=2.7 to 5.5V (f(XIN)=10MHz)  
Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)  
Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)  
Typ. 35µA (VCC=3.0V, wait mode, peripheral clock off)  
Typ. 0.7µA (VCC=3.0V, stop mode)  
VCC=2.7 to 5.5V  
Power Consumption  
Flash Memory Program/Erase Supply  
Voltage  
Program/Erase Endurance  
10,000 times (Data flash)  
1,000 times (Program ROM)  
-20 to 85°C  
-40 to 85°C (D Version)  
20-pin plastic mold LSSOP  
Operating Ambient Temperature  
Package  
Rev.2.10 Jan 19, 2006 Page 3 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
1.3  
Block Diagram  
Figure 1.1 shows a Block Diagram.  
8
1
2
4
I/O port  
Port P1  
Port P3  
Port P4  
Peripheral Function  
System Clock Generator  
A/D Converter  
(10 bits × 4 channels)  
Timer  
XIN-XOUT  
High-Speed On-Chip  
Oscillator  
Low-Speed On-Chip  
Oscillator  
Timer X (8 bits)  
Timer Z (8 bits)  
Timer C (16 bits)  
UART or  
Clock Synchronous Serial I/O  
(8 bits × 1 channel)  
Chip-Select Clock  
Synchronous Serial I/O  
(8 bits × 1 channel)  
Watchdog Timer  
(15 bits)  
Memory  
R8C/Tiny Series CPU Core  
ROM(1)  
R0H  
R1H  
R0L  
R1L  
SB  
USP  
ISP  
INTB  
PC  
FLG  
R2  
R3  
RAM(2)  
A0  
A1  
FB  
Multiplier  
NOTES:  
1. ROM size depends on MCU type.  
2. RAM size depends on MCU type.  
Figure 1.1  
Block Diagram  
Rev.2.10 Jan 19, 2006 Page 4 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
1.4  
Product Information  
Table 1.3 lists the Product Information of R8C/14 Group and Table 1.4 lists the Product Information of  
R8C/15 Group.  
Table 1.3  
Product Information of R8C/14 Group  
ROM capacity RAM capacity Package type  
As of Jan 2006  
Remarks  
Type No.  
R5F21142SP  
R5F21143SP  
R5F21144SP  
R5F21142DSP  
R5F21143DSP  
R5F21144DSP  
8 Kbytes  
12 Kbytes  
16 Kbytes  
8 Kbytes  
12 Kbytes  
16 Kbytes  
512 bytes  
768 bytes  
1 Kbyte  
PLSP0020JB-A Flash memory version  
PLSP0020JB-A  
PLSP0020JB-A  
512 bytes  
768 bytes  
1 Kbyte  
PLSP0020JB-A D version  
PLSP0020JB-A  
PLSP0020JB-A  
Type No. R 5 F 21 14 4 D SP  
Package type:  
SP : PLSP0020JB-A  
Grouping  
D : Operating Ambient Temperature -40°C to 85°C  
No Symbol : Operating Ambient Temperature -20°C to 85°C  
ROM capacity  
2 : 8KB  
3 : 12KB  
4 : 16KB  
R8C/14 Group  
R8C/Tiny Series  
Memory Type  
F : Flash Memory Version  
Renesas MCU  
Renesas Semiconductors  
Figure 1.2  
Part Number, Memory Size and Package of R8C/14 Group  
Rev.2.10 Jan 19, 2006 Page 5 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
Table 1.4  
Type No.  
Product Information of R8C/15 Group  
As of Jan 2006  
ROM capacity  
RAM  
Package type  
Remarks  
capacity  
Program ROM Data flash  
R5F21152SP  
R5F21153SP  
R5F21154SP  
R5F21152DSP  
R5F21153DSP  
R5F21154DSP  
8 Kbytes  
12 Kbytes  
16 Kbytes  
8 Kbytes  
12 Kbytes  
16 Kbytes  
1 Kbyte × 2 512 bytes  
1 Kbyte × 2 768 bytes  
1 Kbyte × 2 1 Kbyte  
1 Kbyte × 2 512 bytes  
1 Kbyte × 2 768 bytes  
1 Kbyte × 2 1 Kbyte  
PLSP0020JB-A Flash memory version  
PLSP0020JB-A  
PLSP0020JB-A  
PLSP0020JB-A D version  
PLSP0020JB-A  
PLSP0020JB-A  
Type No. R 5 F 21 15 4 D SP  
Package type:  
SP : PLSP0020JB-A  
Grouping  
D : Operating Ambient Temperature -40°C to 85°C  
No Symbol : Operating Ambient Temperature -20°C to 85°C  
ROM Capacity  
2 : 8KB  
3 : 12KB  
4 : 16KB  
R8C/15 Group  
R8C/Tiny Series  
Memory Type  
F : Flash Memory Version  
Renesas MCU  
Renesas Semiconductors  
Figure 1.3  
Part Number, Memory Size and Package of R8C/15 Group  
Rev.2.10 Jan 19, 2006 Page 6 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
1.5  
Pin Assignments  
Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).  
PIN Assignment (top view)  
P3_5/SSCK/CMP1_2  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P3_4/SCS/CMP1_1  
1
2
3
4
5
6
7
8
9
10  
P3_3/TCIN/INT3/SSI/CMP1_0  
P1_0/KI0/AN8/CMP0_0  
P1_1/KI1/AN9/CMP0_1  
AVCC/VREF  
P3_7/CNTR0/SSO  
RESET  
XOUT/P4_7(1)  
VSS/AVSS  
XIN/P4_6  
P1_2/KI2/AN10/CMP0_2  
P1_3/KI3/AN11/TZOUT  
P1_4/TXD0  
VCC  
MODE  
P4_5/INT0  
P1_5/RXD0/CNTR01/INT11  
P1_6/CLK0  
P1_7/CNTR00/INT10  
NOTES:  
1. P4_7 is a port for the input.  
Package: PLSP0020JB-A(20P2F-A)  
Figure 1.4  
PLSP0020JB-A Package Pin Assignment (top view)  
Rev.2.10 Jan 19, 2006 Page 7 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
1.6  
Pin Description  
Table 1.5 lists the Pin Description and Table 1.6 lists the Pin Name Information by Pin Number.  
Table 1.5  
Function  
Power Supply Input  
Pin Description  
Pin name  
I/O type  
I
Description  
VCC  
VSS  
Apply 2.7V to 5.5V to the VCC pin. Apply 0V to  
the VSS pin  
Analog Power Supply AVCC  
I
Power supply input pins to A/D converter.  
Connect AVCC to VCC. Apply 0V to AVSS.  
Connect a capacitor between AVCC and AVSS.  
Input  
AVSS  
Reset Input  
RESET  
MODE  
XIN  
I
I
Input “L” on this pin resets the MCU  
Connect this pin to VCC via a resistor  
MODE  
Main Clock Input  
Main Clock Output  
I
These pins are provided for the main clock  
generation circuit I/O. Connect a ceramic  
resonator or a crystal oscillator between the XIN  
and XOUT pins. To use an externally derived  
clock, input it to the XIN pin and leave the XOUT  
pin open.  
XOUT  
O
INT Interrupt  
Key Input Interrupt  
Timer X  
INT0, INT1, INT3  
KI0 to KI3  
CNTR0  
I
I
INT interrupt input pins  
Key input interrupt input pins  
Timer X I/O pin  
I/O  
O
O
I
CNTR0  
Timer X output pin.  
Timer Z output pin  
Timer Z  
Timer C  
TZOUT  
TCIN  
Timer C input pin  
CMP0_0 to CMP0_2,  
CMP1_0 to CMP1_2  
O
Timer C output pins.  
Serial Interface  
SSU  
CLK0  
RXD0  
TXD0  
SSI  
I/O  
I
Transfer clock I/O pin.  
Serial data input pin.  
Serial data output pin.  
Data I/O pin.  
O
I/O  
I/O  
I/O  
I/O  
I
SCS  
Chip-select signal I/O pin.  
Clock I/O pin.  
SSCK  
SSO  
Data I/O pin.  
Reference Voltage  
Input  
VREF  
Reference voltage input pin to A/D converter  
Connect VREF to VCC  
A/D Converter  
I/O Port  
AN8 to AN11  
I
Analog input pins to A/D converter  
P1_0 to P1_7, P3_3  
to P3_5, P3_7, P4_5  
I/O  
These are CMOS I/O ports. Each port contains  
an I/O select direction register, allowing each pin  
in that port to be directed for input or output  
individually.  
Any port set to input can select whether to use a  
pull-up resistor or not by program.  
P1_0 to P1_3 also function as LED drive ports.  
Input Port  
P4_6, P4_7  
I
Port for input-only  
I: Input  
O: Output  
I/O: Input and output  
Rev.2.10 Jan 19, 2006 Page 8 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
1.Overview  
Table 1.6  
Pin Name Information by Pin Number  
I/O Pin of Peripheral Function  
Clock  
Synchronous  
Pin  
Number  
Control  
Pin  
Port  
Serial  
A/D  
Interrupt  
Timer  
Interface Serial I/O with Converter  
Chip Select  
SSCK  
1
2
P3_5  
P3_7  
CMP1_2  
CNTR0  
SSO  
3
RESET  
XOUT  
4
5
6
7
8
9
P4_7  
P4_6  
VSS/AVSS  
XIN  
VCC  
MODE  
P4_5  
P1_7  
INT0  
10  
CNTR00  
CNTR01  
INT10  
11  
12  
P1_6  
P1_5  
CLK0  
RXD0  
INT11  
13  
14  
P1_4  
P1_3  
TXD0  
TZOUT  
AN11  
KI3  
KI2  
15  
P1_2  
CMP0_2  
AN10  
16  
17  
AVCC/VREF  
P1_1  
P1_0  
P3_3  
P3_4  
CMP0_1  
CMP0_0  
AN9  
KI1  
KI0  
18  
19  
20  
AN8  
TCIN/CMP1_0  
CMP1_1  
SSI  
INT3  
SCS  
Rev.2.10 Jan 19, 2006 Page 9 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
2. Central Processing Unit (CPU)  
2. Central Processing Unit (CPU)  
Figure 2.1 shows the CPU Register. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1 and  
FB comprise a register bank. Two sets of register banks are provided.  
b31  
b15  
b8b7  
b0  
R0H (high-order of R0) R0L (low-order of R0)  
R1H (high-order of R1) R1L (low-order of R1)  
R2  
R2  
R3  
Data Registers (1)  
R3  
A0  
Address Registers (1)  
A1  
FB  
Frame Bass Register (1)  
b19  
b15  
b0  
Interrupt Table Register  
Program Counter  
INTBH  
INTBL  
The 4-high order bits of INTB are INTBH and  
the 16-low bits of INTB are INTBL.  
b19  
b0  
PC  
b15  
b0  
User Stack Pointer  
Interrupt Stack Pointer  
Static Base Register  
USP  
ISP  
SB  
b15  
b0  
b0  
Flag Register  
FLG  
b15  
b8  
b7  
IPL  
U I O B S Z D C  
Carry Flag  
Debug Flag  
Zero Flag  
Sign Flag  
Register Bank Select Flag  
Overflow Flag  
Interrupt Enable Flag  
Stack Pointer Select Flag  
Reserved Bit  
Processor Interrupt Priority Level  
Reserved Bit  
NOTES:  
1. A register bank comprises these registers. Two sets of register banks are provided  
Figure 2.1  
CPU Register  
Rev.2.10 Jan 19, 2006 Page 10 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
2. Central Processing Unit (CPU)  
2.1  
Data Registers (R0, R1, R2 and R3)  
R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The  
R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data  
registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used  
as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.  
2.2  
Address Registers (A0 and A1)  
A0 is a 16-bit register for address register indirect addressing and address register relative addressing.  
They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can  
be combined with A0 to be used as a 32-bit address register (A1A0).  
2.3  
Frame Base Register (FB)  
FB is a 16-bit register for FB relative addressing.  
2.4  
Interrupt Table Register (INTB)  
INTB is a 20-bit register indicates the start address of an interrupt vector table.  
2.5  
Program Counter (PC)  
PC, 20 bits wide, indicates the address of an instruction to be executed.  
2.6  
User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)  
The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch  
between USP and ISP.  
2.7  
Static Base Register (SB)  
SB is a 16-bit register for SB relative addressing.  
2.8  
Flag Register (FLG)  
FLG is a 11-bit register indicating the CPU state.  
2.8.1  
Carry Flag (C)  
The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.  
2.8.2  
Debug Flag (D)  
The D flag is for debug only. Set to “0”.  
2.8.3  
Zero Flag (Z)  
The Z flag is set to “1” when an arithmetic operation resulted in 0; otherwise, “0”.  
2.8.4  
Sign Flag (S)  
The S flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, “0”.  
2.8.5  
Register Bank Select Flag (B)  
The register bank 0 is selected when the B flag is “0”. The register bank 1 is selected when this flag is set  
to “1”.  
2.8.6  
Overflow Flag (O)  
The O flag is set to “1” when the operation resulted in an overflow; otherwise, “0”.  
Rev.2.10 Jan 19, 2006 Page 11 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
2. Central Processing Unit (CPU)  
2.8.7  
Interrupt Enable Flag (I Flag)  
The I flag enables a maskable interrupt.  
An interrupt is disabled when the I flag is set to “0”, and are enabled when the I flag is set to “1”. The I  
flag is set to “0” when an interrupt request is acknowledged.  
2.8.8  
Stack Pointer Select Flag (U Flag)  
ISP is selected when the U flag is set to “0”, USP is selected when the U flag is set to “1”.  
The U flag is set to “0” when a hardware interrupt request is acknowledged or the INT instruction of  
software interrupt numbers 0 to 31 is executed.  
2.8.9  
Processor Interrupt Priority Level (IPL)  
IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7.  
If a requested interrupt has greater priority than IPL, the interrupt is enabled.  
2.8.10 Reserved Bit  
When write to this bit, set to “0”. When read, its content is indeterminate.  
Rev.2.10 Jan 19, 2006 Page 12 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
3.Memory  
3. Memory  
3.1  
R8C/14 Group  
Figure 3.1 is a Memory Map of R8C/14 Group. The R8C/14 group provides 1-Mbyte address space from  
addresses 00000h to FFFFFh.  
The internal ROM is allocated lower addresses beginning with address 0FFFFh. For example, a 16-  
Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.  
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting  
address of each interrupt routine.  
The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-  
Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for  
storing data but for calling subroutines and stacks when interrupt request is acknowledged.  
Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function  
control registers are allocated them. All addresses, which have nothing allocated within the SFR, are  
reserved area and cannot be accessed by users.  
00000h  
SFR  
(See 4. Special Function  
Register (SFR))  
002FFh  
00400h  
Internal RAM  
0XXXXh  
0FFDCh  
Undefined Instruction  
Overflow  
BRK Instruction  
Address Match  
Single Step  
Watchdog Timer•Oscillation Stop Detection•Voltage Monitor 2  
0YYYYh  
Address Break  
(Reserved)  
Reset  
Internal ROM  
0FFFFh  
0FFFFh  
FFFFFh  
Expansion Area  
NOTES:  
1. Blank spaces are reserved. No access is allowed.  
Internal ROM  
Internal RAM  
Part Number  
Size  
0YYYYh  
0C000h  
0D000h  
0E000h  
Size  
0XXXXh  
007FFh  
006FFh  
005FFh  
R5F21144SP, R5F21144DSP  
R5F21143SP, R5F21143DSP  
R5F21142SP, R5F21142DSP  
16 Kbytes  
12 Kbytes  
8 Kbytes  
1 Kbytes  
768 bytes  
512 bytes  
Figure 3.1  
Memory Map of R8C/14 Group  
Rev.2.10 Jan 19, 2006 Page 13 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
3.Memory  
3.2  
R8C/15 Group  
Figure 3.2 is a Memory Map of R8C/15 Group. The R8C/15 group provides 1-Mbyte address space from  
addresses 00000h to FFFFFh.  
The internal ROM (program ROM) is allocated lower addresses beginning with address 0FFFFh. For  
example, a 16-Kbyte internal ROM is allocated addresses 0C000h to 0FFFFh.  
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting  
address of each interrupt routine.  
The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.  
The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-  
Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for  
storing data but for calling subroutines and stacks when interrupt request is acknowledged.  
Special function registers (SFR) are allocated addresses 00000h to 002FFh. The peripheral function  
control registers are allocated them. All addresses, which have nothing allocated within the SFR, are  
reserved area and cannot be accessed by users.  
00000h  
SFR  
(See 4. Special Function  
Register (SFR))  
002FFh  
00400h  
Internal RAM  
0XXXXh  
02400h  
Internal ROM  
0FFDCh  
(Data Flash)(1)  
Undefined Instruction  
02BFFh  
Overflow  
BRK Instruction  
Address Match  
Single Step  
Watchdog Timer • Oscillation Stop Detection • Voltage Monitor 2  
0YYYYh  
Address Break  
Internal ROM  
(Reserved)  
(Program ROM)  
Reset  
0FFFFh  
FFFFFh  
0FFFFh  
Expansion Area  
NOTES:  
1. The data flash block A (1 Kbyte) and block B (1 Kbyte) are shown.  
2. Blank spaces are reserved. No access is allowed.  
Internal ROM  
Part Number  
Internal RAM  
Size  
0YYYYh  
0C000h  
0D000h  
0E000h  
Size  
0XXXXh  
007FFh  
006FFh  
005FFh  
R5F21154SP, R5F21154DSP  
R5F21153SP, R5F21153DSP  
R5F21152SP, R5F21152DSP  
16K bytes  
12K bytes  
8K bytes  
1K byte  
768 bytes  
512 bytes  
Figure 3.2  
Memory Map of R8C/15 Group  
Rev.2.10 Jan 19, 2006 Page 14 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
4. Special Function Register (SFR)  
4. Special Function Register (SFR)  
SFR (Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR  
information.  
Table 4.1  
(1)  
SFR Information(1)  
Address  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
Register  
Symbol  
After reset  
Processor Mode Register 0  
Processor Mode Register 1  
System Clock Control Register 0  
System Clock Control Register 1  
PM0  
PM1  
CM0  
CM1  
00h  
00h  
01101000b  
00100000b  
Address Match Interrupt Enable Register  
Protect Register  
AIER  
PRCR  
00h  
00h  
Oscillation Stop Detection Register  
Watchdog Timer Reset Register  
Watchdog Timer Start Register  
Watchdog Timer Control Register  
Address Match Interrupt Register 0  
OCD  
00000100b  
XXh  
WDTR  
WDTS  
WDC  
XXh  
00011111b  
00h  
RMAD0  
00h  
X0h  
Address Match Interrupt Register 1  
RMAD1  
00h  
00h  
X0h  
Count Source Protection Mode Register  
INT0 Input Filter Select Register  
CSPR  
INT0F  
00h  
00h  
001Fh  
0020h  
0021h  
0022h  
0023h  
High-Speed On-Chip Oscillator Control Register 0  
High-Speed On-Chip Oscillator Control Register 1  
High-Speed On-Chip Oscillator Control Register 2  
HRA0  
HRA1  
HRA2  
00h  
When shipping  
00h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
0031h  
0032h  
(2)  
VCA1  
VCA2  
00001000b  
Voltage Detection Register 1  
(2)  
(3)  
Voltage Detection Register 2  
00h  
(4)  
01000000b  
0033h  
0034h  
0035h  
0036h  
(2)  
(3)  
VW1C  
VW2C  
Voltage Monitor 1 Circuit Control Register  
0000X000b  
(4)  
0100X001b  
00h  
(5)  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
Voltage Monitor 2 Circuit Control Register  
X: Undefined  
NOTES:  
1. Blank spaces are reserved. No access is allowed.  
2. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect this register.  
3. Owing to Hardware reset.  
4. Owing to Power-on reset or the voltage monitor 1 reset.  
5. Software reset, the watchdog timer reset or the voltage monitor 2 reset does not affect the b2 and b3.  
Rev.2.10 Jan 19, 2006 Page 15 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
4. Special Function Register (SFR)  
(1)  
Table 4.2  
SFR Information(2)  
Address  
0040h  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
0058h  
0059h  
Register  
Symbol  
After reset  
Key Input Interrupt Control Register  
KUPIC  
ADIC  
SSUAIC  
CMP1IC  
S0TIC  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
A/D Conversion Interrupt Control Register  
SSU Interrupt Control Register  
Compare 1 Interrupt Control Register  
UART0 Transmit Interrupt Control Register  
UART0 Receive Interrupt Control Register  
S0RIC  
Timer X Interrupt Control Register  
TXIC  
XXXXX000b  
Timer Z Interrupt Control Register  
INT1 Interrupt Control Register  
TZIC  
INT1IC  
XXXXX000b  
XXXXX000b  
005Ah  
INT3IC  
XXXXX000b  
INT3 Interrupt Control Register  
005Bh  
005Ch  
005Dh  
Timer C Interrupt Control Register  
Compare 0 Interrupt Control Register  
TCIC  
CMP0IC  
INT0IC  
XXXXX000b  
XXXXX000b  
XX00X000b  
INT0 Interrupt Control Register  
005Eh  
005Fh  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
0067h  
0068h  
0069h  
006Ah  
006Bh  
006Ch  
006Dh  
006Eh  
006Fh  
0070h  
0071h  
0072h  
0073h  
0074h  
0075h  
0076h  
0077h  
0078h  
0079h  
007Ah  
007Bh  
007Ch  
007Dh  
007Eh  
007Fh  
X: Undefined  
NOTES:  
1. Blank spaces are reserved. No access is allowed.  
Rev.2.10 Jan 19, 2006 Page 16 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
4. Special Function Register (SFR)  
(1)  
Table 4.3  
SFR Information(3)  
Address  
0080h  
0081h  
0082h  
0083h  
0084h  
0085h  
0086h  
0087h  
0088h  
0089h  
008Ah  
008Bh  
008Ch  
008Dh  
008Eh  
008Fh  
0090h  
0091h  
0092h  
0093h  
0094h  
0095h  
0096h  
0097h  
0098h  
0099h  
009Ah  
009Bh  
009Ch  
009Dh  
009Eh  
009Fh  
00A0h  
00A1h  
00A2h  
00A3h  
00A4h  
00A5h  
00A6h  
00A7h  
00A8h  
00A9h  
00AAh  
00ABh  
00ACh  
00ADh  
00AEh  
00AFh  
00B0h  
00B1h  
00B2h  
00B3h  
00B4h  
00B5h  
00B6h  
00B7h  
00B8h  
00B9h  
00BAh  
00BBh  
00BCh  
00BDh  
00BEh  
00BFh  
Register  
Timer Z Mode Register  
Symbol  
TZMR  
After reset  
00h  
Timer Z Waveform Output Control Register  
Prescaler Z Register  
Timer Z Secondary Register  
Timer Z Primary Register  
PUM  
00h  
FFh  
FFh  
FFh  
PREZ  
TZSC  
TZPR  
Timer Z Output Control Register  
Timer X Mode Register  
Prescaler X Register  
Timer X Register  
Timer Count Source Setting Register  
TZOC  
TXMR  
PREX  
TX  
00h  
00h  
FFh  
FFh  
00h  
TCSS  
Timer C Register  
TC  
00h  
00h  
External Input Enable Register  
Key Input Enable Register  
INTEN  
KIEN  
00h  
00h  
Timer C Control Register 0  
Timer C Control Register 1  
Capture, Compare 0 Register  
TCC0  
TCC1  
TM0  
00h  
00h  
00h  
(2)  
00h  
Compare 1 Register  
TM1  
FFh  
FFh  
00h  
XXh  
XXh  
XXh  
00001000b  
00000010b  
XXh  
UART0 Transmit/Receive Mode Register  
UART0 Bit Rate Register  
UART0 Transmit Buffer Register  
U0MR  
U0BRG  
U0TB  
UART0 Transmit/Receive Control Register 0  
UART0 Transmit/Receive Control Register 1  
UART0 Receive Buffer Register  
U0C0  
U0C1  
U0RB  
XXh  
UART Transmit/Receive Control Register 2  
UCON  
00h  
SS Control Register H  
SS Control Register L  
SS Mode Register  
SS Enable Register  
SS Status Register  
SS Mode Register 2  
SS Transmit Data Register  
SS Receive Data Register  
SSCRH  
SSCRL  
SSMR  
SSER  
SSSR  
SSMR2  
SSTDR  
SSRDR  
00h  
7Dh  
18h  
00h  
00h  
00h  
FFh  
FFh  
X: Undefined  
NOTES:  
1. Blank spaces are reserved. No access is allowed.  
2. When output compare mode (the TCC13 bit in the TCC1 register = 1) is selected, the value after reset is “FFFFh”.  
Rev.2.10 Jan 19, 2006 Page 17 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
4. Special Function Register (SFR)  
(1)  
Table 4.4  
SFR Information(4)  
Address  
00C0h  
00C1h  
00C2h  
00C3h  
00C4h  
00C5h  
00C6h  
00C7h  
00C8h  
00C9h  
00CAh  
00CBh  
00CCh  
00CDh  
00CEh  
00CFh  
00D0h  
00D1h  
00D2h  
00D3h  
00D4h  
00D5h  
00D6h  
00D7h  
00D8h  
00D9h  
00DAh  
00DBh  
00DCh  
00DDh  
00DEh  
00DFh  
00E0h  
00E1h  
00E2h  
00E3h  
00E4h  
00E5h  
00E6h  
00E7h  
00E8h  
00E9h  
00EAh  
00EBh  
00ECh  
00EDh  
00EEh  
00EFh  
00F0h  
00F1h  
00F2h  
00F3h  
00F4h  
00F5h  
00F6h  
00F7h  
00F8h  
00F9h  
00FAh  
00FBh  
00FCh  
00FDh  
00FEh  
00FFh  
Register  
A/D Register  
Symbol  
AD  
After reset  
XXh  
XXh  
A/D Control Register 2  
ADCON2  
00h  
A/D Control Register 0  
A/D Control Register 1  
ADCON0  
ADCON1  
00000XXXb  
00h  
Port P1 Register  
P1  
XXh  
00h  
XXh  
Port P1 Direction Register  
Port P3 Register  
PD1  
P3  
Port P3 Direction Register  
Port P4 Register  
PD3  
P4  
00h  
XXh  
Port P4 Direction Register  
PD4  
00h  
Pull-Up Control Register 0  
Pull-Up Control Register 1  
Port P1 Drive Capacity Control Register  
Timer C Output Control Register  
PUR0  
PUR1  
DRR  
00XX0000b  
XXXXXX0Xb  
00h  
TCOUT  
00h  
01B3h  
01B4h  
01B5h  
01B6h  
01B7h  
Flash Memory Control Register 4  
Flash Memory Control Register 1  
Flash Memory Control Register 0  
Optional Function Select Register  
FMR4  
FMR1  
FMR0  
OFS  
01000000b  
1000000Xb  
00000001b  
(2)  
0FFFFh  
X: Undefined  
NOTES:  
1. Blank columns, 0100h to 01B2h and 01B8h to 02FFh are all reserved. No access is allowed.  
2. The OFS register cannot be changed by program. Use a flash programmer to write to it.  
Rev.2.10 Jan 19, 2006 Page 18 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
5. Reset  
There are resets: hardware reset, power-on reset, voltage monitor 1 reset, voltage monitor 2 reset,  
watchdog timer reset and software reset. Table 5.1 lists the Reset Name and Factor.  
Table 5.1  
Reset Name and Factor  
Reset Name  
Factor  
Hardware Reset  
Input voltage of RESET pin is held “L”  
VCC rises  
Power-On Reset  
Voltage Monitor 1 Reset  
Voltage Monitor 2 Reset  
Watchdog Timer Reset  
Software Reset  
VCC falls (monitor voltage : Vdet1)  
VCC falls (monitor voltage : Vdet2)  
Underflow of watchdog timer  
Write “1” to PM03 bit in PM0 register  
Hardware Reset  
RESET  
VCC  
SFR  
VCA26,  
VW1C0 and  
VW1C6 bits  
Power-On Reset  
Power-On  
Reset Circuit  
Voltage Monitor 1 Reset  
Voltage Monitor 2 Reset  
SFR  
VCA13, VCA27,  
VW1C1, VW1C2,  
VW1F0, VW1F1, VW1C7,  
VW2C2 and VW2C3 bits  
Voltage  
Detection  
Circuit  
Watchdog Timer  
Reset  
Watchdog  
Timer  
Pin, CPU and  
SFR other than  
above  
CPU  
Software Reset  
VCA13 : Bit in VCA1 register  
VCA26, VCA27 : Bits in VCA2 register  
VW1C0 to VW1C2, VW1F0, VW1F1, VW1C6, VW1C7 : Bits in VW1C register  
VW2C2, VW2C3 bits : Bits in VW2C register  
Figure 5.1  
Block Diagram of Reset Circuit  
Rev.2.10 Jan 19, 2006 Page 19 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
Table 5.2 shows the Pin Status after Reset, Figure 5.2 shows CPU Register Status after Reset and  
Figure 5.3 shows Reset Sequence.  
Table 5.2  
Pin Status after Reset  
Pin Name  
Pin Status  
P1  
Input Port  
Input Port  
Input Port  
P3_3 to P3_5, P3_7  
P4_5 to P4_7  
b15  
b0  
0000h  
Data Register(R0)  
0000h  
0000h  
Data Register(R1)  
Data Register(R2)  
Data Register(R3)  
0000h  
0000h  
0000h  
0000h  
Address Register(A0)  
Address Register(A1)  
Frame Base Register(FB)  
b19  
b0  
00000h  
Content of addresses 0FFFEh to 0FFFCh  
Interrupt Table register(INTB)  
Program Counter(PC)  
b15  
b0  
User Stack Pointer(USP)  
Interrupt Stack Pointer(ISP)  
Static Base Register(SB)  
0000h  
0000h  
0000h  
b15  
b0  
b0  
Flag Register(FLG)  
0000h  
b15  
b8  
b7  
IPL  
U I O B S Z D C  
Figure 5.2  
CPU Register Status after Reset  
fRING-S  
20 cycles or above are needed(1)  
Flash memory activated time  
Internal Reset  
Signal  
CPU Clock × 28 Cycles  
(CPU Clock × 72 Cycles)  
CPU Clock  
0FFFEh  
0FFFCh  
Address  
(Internal Address  
Signal)  
Content of Reset Vector  
0FFFDh  
NOTES:  
1. This shows hardware reset  
Figure 5.3  
Reset Sequence  
Rev.2.10 Jan 19, 2006 Page 20 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
5.1  
Hardware Reset  
A reset is applied using the RESET pin. When an “L” signal is applied to the RESET pin while the power  
supply voltage meets the recommended performance condition, the pins, CPU and SFR are reset (refer  
to Table 5.2 Pin Status after Reset). When the input level applied to the RESET pin changes “L” to “H”,  
the program is executed beginning with the address indicated by the reset vector. After reset, the low-  
speed on-chip oscillator clock divided-by-8 is automatically selected for the CPU clock.  
Refer to 4. Special Function Register (SFR) for the status of the SFR after reset.  
The internal RAM is not reset. If the RESET pin is pulled “L” during writing to the internal RAM, the  
internal RAM will be in indeterminate state.  
Figure 5.4 shows the Example of Hardware Reset Circuit and Operation and Figure 5.5 shows the  
Example of Hardware Reset Circuit (Use Example of External Power Supply Voltage Detection Circuit)  
and Operation.  
5.1.1  
When the power supply is stable  
(1) Apply an “L” signal to the RESET pin.  
(2) Wait for 500µs (1/fRING-S×20).  
(3) Apply an “H” signal to the RESET pin.  
5.1.2  
Power on  
(1) Apply an “L” signal to the RESET pin.  
(2) Let the power supply voltage increase until it meets the recommended performance condition.  
(3) Wait for td(P-R) or more until the internal power supply stabilizes (Refer to 19. Electrical  
Characteristics).  
(4) Wait for 500µs (1/fRING-S×20).  
(5) Apply an “H” signal to the RESET pin.  
Rev.2.10 Jan 19, 2006 Page 21 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
VCC  
2.7V  
VCC  
0V  
RESET  
RESET  
0V  
0.2VCC or below  
td(P-R)+500µs or above  
NOTES:  
1. Refer to 19. Electrical Characteristics.  
Figure 5.4  
Example of Hardware Reset Circuit and Operation  
5V  
Power Supply  
Voltage Detection  
Circuit  
VCC  
2.7V  
RESET  
VCC  
0V  
5V  
RESET  
0V  
td(P-R)+500µs or above  
Example when  
VCC=5V  
NOTES:  
1. Refer to 19. Electrical Characteristics.  
Figure 5.5  
Example of Hardware Reset Circuit (Use Example of External Power Supply Voltage  
Detection Circuit) and Operation  
Rev.2.10 Jan 19, 2006 Page 22 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
5.2  
Power-On Reset Function  
When the RESET pin is connected to the VCC pin via about 5kpull-up resistor and the VCC pin rises,  
the function is enabled and the microcomputer resets its pins, CPU, and SFR. When a capacitor is  
connected to the RESET pin, always keep the voltage to the RESET pin 0.8VCC or more.  
When the input voltage to the VCC pin reaches to the Vdet1 level or above, count operation of the low-  
speed on-chip oscillator clock starts. When the operation counts the low-speed on-chip oscillator clock  
for 32 times, the internal reset signal is held “H” and the microcomputer enters the reset sequence (See  
Figure 5.3). The low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU  
after reset.  
Refer to 4. Special Function Register (SFR) for the status of the SFR after power-on reset.  
The voltage monitor 1 reset is enabled after power-on reset.  
Figure 5.6 shows the Example of Power-On Reset Circuit and Operation.  
0.1V to 2.7V  
VCC  
0V  
VCC  
About  
5kΩ  
0.8VCC or above  
RESET  
0V  
RESET  
within td(P-R)  
(3)  
(3)  
Vdet1  
Vdet1  
Vccmin  
Vpor2  
Vpor1  
Sampling Time(1, 2)  
tw(Vpor1–Vdet1)  
tw(por1)  
tw(por2) tw(Vpor2–Vdet1)  
Internal Reset  
Signal  
(“L” Valid)  
1
1
× 32  
× 32  
fRING-S  
fRING-S  
NOTES:  
1. Hold the voltage of the microcomputer operation voltage range (Vccmin or above) within sampling time.  
2. A sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.  
3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 6. Voltage Detection Circuit for details.  
4. Refer to 19. Electrical Characteristics.  
Figure 5.6  
Example of Power-On Reset Circuit and Operation  
Rev.2.10 Jan 19, 2006 Page 23 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
5.Reset  
5.3  
Voltage Monitor 1 Reset  
A reset is applied using the built-in voltage detection 1 circuit. The voltage detection 1 circuit monitors  
the input voltage to the VCC pin. The voltage to monitor is Vdet1.  
When the input voltage to the VCC pin reaches to the Vdet1 level or below, the pins, CPU and SFR are  
reset.  
And when the input voltage to the VCC pin reaches to the Vdet1 level or above, count operation of the  
low-speed on-chip oscillator clock starts. When the operation counts the low-speed on-chip oscillator  
clock for 32 times, the internal reset signal is held “H” and the microcomputer enters the reset sequence  
(See Figure 5.3). The low-speed on-chip oscillator clock divide-by-8 is automatically selected for the  
CPU after reset.  
Refer to 4. Special Function Register (SFR) for the status of the SFR after voltage monitor 1 reset.  
The internal RAM is not reset. When the input voltage to the VCC pin reaches to the Vdet1 level or  
below during writing to the internal RAM, the internal RAM is in indeterminate state.  
Refer to 6. Voltage Detection Circuit for details of voltage monitor 1 reset.  
5.4  
Voltage Monitor 2 Reset  
A reset is applied using the built-in voltage detection 2 circuit. The voltage detection 2 circuit monitors  
the input voltage to the VCC pin. The voltage to monitor is Vdet2.  
When the input voltage to the VCC pin drops to the Vdet2 level or below, the pins, CPU and SFR are  
reset and the program is executed beginning with the address indicated by the reset vector. After reset,  
the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU clock.  
The voltage monitor 2 does not reset some SFRs. Refer to 4. Special Function Register (SFR) for  
details.  
The internal RAM is not reset. When the input voltage to the VCC pin reaches to the Vdet2 level or  
below during writing to the internal RAM, the internal RAM is in indeterminate state.  
Refer to 6. Voltage Detection Circuit for details of voltage monitor 2 reset.  
5.5  
Watchdog Timer Reset  
When the PM12 bit in the PM1 register is set to “1” (reset when watchdog timer underflows), the  
microcomputer resets its pins, CPU and SFR if the watchdog timer underflows. Then the program is  
executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip  
oscillator clock divide-by-8 is automatically selected for the CPU clock.  
After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the CPU  
clock.  
The watchdog timer reset does not reset some SFRs. Refer to 4. Special Function Register (SFR) for  
details.  
The internal RAM is not reset. When the watchdog timer underflows, the internal RAM is in  
indeterminate state.  
Refer to 12. Watchdog Timer for watchdog timer.  
5.6  
Software Reset  
When the PM03 bit in the PM0 register is set to “1” (microcomputer reset), the microcomputer resets its  
pins, CPU and SFR. The the program is executed beginning with the address indicated by the reset  
vector. After reset, the low-speed on-chip oscillator clock divide-by-8 is automatically selected for the  
CPU clock.  
The software reset does not reset some SFRs. Refer to 4. Special Function Register (SFR) for details.  
The internal RAM is not reset.  
Rev.2.10 Jan 19, 2006 Page 24 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
6. Voltage Detection Circuit  
The voltage detection circuit is a circuit to monitor the input voltage to the VCC pin. This circuit monitors the  
VCC input voltage by the program. And the voltage monitor 1 reset, voltage monitor 2 interrupt and voltage  
monitor 2 reset can be used.  
Table 6.1 lists the Specification of Voltage Detection Circuit and Figures 6.1 to 6.3 show the Block  
Diagrams. Figures 6.4 to 6.6 show the Associated Registers.  
Table 6.1  
Specification of Voltage Detection Circuit  
Item Voltage Detection 1  
Voltage to Monitor  
Voltage Detection 2  
Vdet2  
Whether passing  
VCC Monitor  
Vdet1  
Detection Target  
Whether passing  
through Vdet1 by rising through Vdet2 by rising  
or falling  
None  
or falling  
Monitor  
VCA13 bit in VCA1  
register  
Whether VCC is higher  
or lower than Vdet2  
Process When Voltage Is Reset  
Detected  
Voltage Monitor 1 Reset Voltage Monitor 2 Reset  
Reset at Vdet1 > VCC; Reset at Vdet2 > VCC  
Restart CPU operation at Restart CPU operation  
VCC > Vdet1  
None  
after a specified time  
Voltage Monitor 2  
Interrupt  
Interrupt  
Interrupt request at  
Vdet2 > VCC and VCC >  
Vdet2 when digital filter  
is enabled;  
Interrupt request at  
Vdet2 > VCC or VCC >  
Vdet2 when digital filter  
is disabled  
Digital Filter  
Switch  
Available  
Available  
Enabled / Disabled  
Sampling Time  
(Divide-by-n of fRING-S) (Divide-by-n of fRING-S)  
x 4  
x 4  
n : 1, 2, 4 and 8  
n : 1, 2, 4 and 8  
Rev.2.10 Jan 19, 2006 Page 25 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
VCA27  
VCC  
Voltage Detection 2  
Signal  
+
-
Noise Filter  
Internal  
Reference  
Voltage  
Vdet2  
VCA1 Register  
b3  
VCA26  
VCA13 Bit  
Voltage Detection 1  
Signal  
+
-
Vdet1  
Figure 6.1  
Block Diagram of Voltage Detection Circuit  
Voltage Monitor 1 Reset Generation Circuit  
VW1F1 to VW1F0  
=00b  
=01b  
Voltage Detection 1 Circuit  
=10b  
=11b  
fRING-S  
1/2  
1/2  
1/2  
VCA26  
VCC  
+
-
Digital  
Filter  
Internal  
Reference  
Voltage  
Voltage  
Detection 1  
Signal  
Voltage detection 1  
Voltage  
Monitor 1  
Reset  
signal is held “H” when  
VCA26 bit is set to “0”  
(disabled)  
VW1C1  
Signal  
VW1C0  
VW1C6  
VW1C7  
VW1C0 to VW1C1, VW1F0 to VW1F1, VW1C6, VW1C7 : Bits in VW1C register  
VCA26: Bit in VCA2 register  
Figure 6.2  
Block Diagram of Voltage Monitor 1 Reset Generation Circuit  
Rev.2.10 Jan 19, 2006 Page 26 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
Voltage Monitor 2 Interrupt / Reset Generation Circuit  
VW2F1 to VW2F0  
=00b  
=01b  
Voltage Detection 2 Circuit  
VCA27  
=10b  
=11b  
VW2C2 bit is set to “0” (not detected)  
by writing “0” by program.  
When VCA27 bit is set to “0” (voltage  
detection 2 circuit disabled), VW2C2  
bit is set to “0”  
fRING-S  
1/2  
1/2  
1/2  
Watchdog  
Timer Interrupt  
Signal  
VCA13  
VCC  
+
-
Digital  
Filter  
Noise Filter  
VW2C2  
Voltage  
Detection  
2 signal  
Internal  
Reference  
voltage  
(Filter Width: 200ns)  
Voltage detection 2 signal  
is held “H” when VCA27 bit  
is set to “0” (disabled)  
Voltage Monitor 2  
Interrupt Signal  
Non-Maskable  
Interrupt Signal  
VW2C1  
Oscillation Stop  
Detection  
Interrupt Signal  
Watchdog Timer Block  
VW2C3  
VW2C7  
Voltage  
Monitor 2  
Reset  
Watchdog Timer  
Underflow Signal  
VW2C0  
VW2C6  
This bit is set to “0” (not detected) by writing  
“0” by program.  
Signal  
VW2C0 to VW2C3, VW2F2, VW2F1, VW2C6, VW2C7: Bits in VW2C register  
VCA13: Bit in VCA1 register  
VCA27: Bit in VCA2 register  
Figure 6.3  
Block Diagram of Voltage Monitor 2 Interrupt / Reset Generation Circuit  
Rev.2.10 Jan 19, 2006 Page 27 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
Voltage Detection Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
0 0 0  
Symbol  
Address  
0031h  
After Reset(2)  
00001000b  
Function  
VCA1  
Bit Symbol  
Bit Name  
RW  
RW  
Reserved Bit  
Set to “0”  
(b2-b0)  
Voltage Detection 2 Signal Monitor  
Flag(1)  
0 : VCC < Vdet2  
1 : VCC Vdet2 or voltage detection 2  
VCA13  
RO  
circuit disabled  
(b7-b4)  
Reserved Bit  
Set to “0”  
RW  
NOTES :  
1. The VCA13 bit is enabled w hen the VCA27 bit in the VCA2 register is set to “1” (voltage detection 2 circuit enabled).  
The VCA13 bit is set to “1” (VCC Vdet 2) w hen the VCA27 bit in the VCA2 register is set to “0” (voltage detection 2  
circuit disabled).  
2. The softw are reset, w atchdog timer reset and voltage monitor 2 reset do not affect this register.  
Voltage Detection Register 2(1)  
After Reset(4)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0  
Hardw are Reset : 00h  
Symbol  
VCA2  
Address  
0032h  
Pow er-On Reset, Voltage Monitor 1Reset  
: 01000000b  
Bit Symbol  
(b5-b0)  
Bit Name  
Function  
Set to “0”  
RW  
RW  
Reserved Bit  
Voltage Detection 1 Enable Bit(2)  
Voltage Detection 2 Enable Bit(3)  
0 : Voltage detection 1 circuit disabled  
1 : Voltage detection 1 circuit enabled  
VCA26  
VCA27  
RW  
RW  
0 : Voltage detection 2 circuit disabled  
1 : Voltage detection 2 circuit enabled  
NOTES :  
1. Set the PRC3 bit in the PRCR register to “1” (w rite enable) before w riting to this register.  
2. When using the voltage monitor 1 reset, set the VCA26 bit to “1”.  
After the VCA26 bit is set from “0” to “1”, the voltage detection circuit elapses for td(E-A) before starting operation.  
3. When using the voltage monitor 2 interrupt / reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to “1”.  
After the VCA27 bit is from “0” to “1”, the voltage detection circuit elapses for td(E-A) before starting operation.  
4. The softw are reset, w atchdog timer reset and voltage monitor 2 reset do not affect this register.  
Figure 6.4  
VCA1 and VCA2 Registers  
Rev.2.10 Jan 19, 2006 Page 28 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
Voltage Monitor 1 Circuit Control Register (1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
VW1C  
Address  
0036h  
After Reset(2)  
Hardw are Reset : 0000X000b  
Pow er-On Reset, Voltage Monitor 1 Reset :  
0100X001b  
Bit Symbol  
VW1C0  
Bit Name  
Function  
RW  
RW  
Voltage Monitor 1 Reset Enable  
Bit(3)  
0 : Disable  
1 : Enable  
Voltage Monitor 1 Digital Filter  
Disable Mode Select Bit  
0 : Digital filter enabled mode  
(digital filter circuit enabled)  
1 : Digital filter disabled mode  
(digital filter circuit disabled)  
VW1C1  
VW1C2  
RW  
Reserved Bit  
Set to “0”.  
RW  
RO  
(b3)  
Reserved Bit  
When read, its content is indeterminate.  
Sampling Clock Select Bit  
b5 b4  
VW1F0  
VW1F1  
RW  
RW  
0 0 : fRING-S divide-by-1  
0 1 : fRING-S divide-by-2  
1 0 : fRING-S divide-by-4  
1 1 : fRING-S divide-by-8  
Voltage Monitor 1 Circuit Mode  
Select Bit  
When the VW1C0 bit is set to “1” (enables  
voltage monitor 1 reset), set to “1”.  
VW1C6  
VW1C7  
RW  
RW  
Voltage Monitor 1 Reset  
Generation Condition Select Bit  
When the VW1C1 bit is set to “1” (digital filter  
disabled mode), set to “1”.  
NOTES :  
1. Set the PRC3 bit in the PRCR register to “1” (w rite enable) before w riting to this register.  
When rew riting the VW1C register, the VW1C2 bit may be set to “1”. Set the VW1C2 bit to “0” after rew riting the  
VW1C register.  
2. The value after reset remains unchanged in softw are reset, w atchdogi timer reset and voltage monitor 2 reset.  
3. The VW1C0 bit is enabled w hen the VCA26 bit in the VCA2 register is set to “1” (voltage detection 1 circuit  
enabled). Set the VW1C0 bit to “0” (disable), w hen the VCA26 bit is set to “0” (voltage detection 1 circuit disabled).  
Figure 6.5  
VW1C Register  
Rev.2.10 Jan 19, 2006 Page 29 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
Voltage Monitor 2 Circuit Control Register (1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
VW2C  
Address  
After Reset(8)  
0037h  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Voltage Monitor 2 Interrupt /  
Reset Enable Bit(6, 10)  
0 : Disable  
1 : Enable  
VW2C0  
VW2C1  
Voltage Monitor 2 Digital Filter  
Disable Mode Select Bit(2)  
0 : Digital filter enabled mode  
(digital filter circuit enabled)  
1 : Digital filter disabled mode  
(digital filter circuit disabled)  
RW  
Voltage Change Detection  
Flag(3,4,8)  
WDT Detection Flag(4,8)  
0 : Not detected  
1 : Vdet2 pass detected  
VW2C2  
VW2C3  
RW  
RW  
0 : Not detected  
1 : Detected  
Sampling Clock Select Bit  
b5 b4  
VW2F0  
RW  
0 0 : fRING-S divide-by-1  
0 1 : fRING-S divide-by-2  
1 0 : fRING-S divide-by-4  
1 1 : fRING-S divide-by-8  
VW2F1  
VW2C6  
RW  
RW  
Voltage Monitor 2 Circuit Mode 0 : Voltage monitor 2 interrupt mode  
Select Bit(5)  
1 : Voltage monitor 2 reset mode  
Voltage Monitor 2 Interrupt /  
Reset Generation Condition  
Select Bit(7,9)  
0 : When VCC reaches Vdet2 or above  
1 : When VCC reaches Vdet2 or below  
VW2C7  
RW  
NOTES :  
1. Set the PRC3 bit in the PRCR register to “1” (rew rite enable) before w riting to this register.  
When rew riting the VW2C register, the VW2C2 bit may be set to “1”. Set the VW2C2 bit to “0” after rew riting the  
VW2C register.  
2. When the voltage monitor 2 interrupt is used to exit stop mode and to return again, w rite “0” to the VW2C1  
bit before w riting “1”.  
3. This bit is enabled w hen the VCA27 bit in the VCA2 register is set to “1” (voltage detection 2 circuit  
enabled).  
4. Set this bit to “0” by a program. When w riting “0” by a program, it is set to “0” (It remains unchanged even if it is set  
to “1”).  
5. This bit is enabled w hen the VW2C0 bit is set to “1” (voltage monitor 2 interrupt / enables reset).  
6. The VW2C0 bit is enabled w hen the VCA27 bit in the VCA2 register is set to “1” (voltage detection 2 circuit  
enabled). Set the VW2C0 bit to “0” (disable) w hen the VCA27 bit is set to “0” (voltage detection 2 circuit disabled).  
7. The VW2C7 bit is enabled w hen the VW2C1 bit is set to “1” (digital filter disabled mode).  
8. The VW2C2 and VW2C3 bits remain unchanged in the softw are reset, w atchdog timer reset and voltage monitor 2  
reset.  
9. When the VW2C6 bit is set to “1” (voltage monitor 2 reset mode), set the VW2C7 bit to “1” (w hen VCC  
reaches to Vdet2 or below )(do not set to “0”).  
10. Set the VW2C0 bit to “0” (disabled) under the conditions of the VCA13 bit in the VCA1 register set to “1” (VCC  
Vdet2 or voltage detection 2 circuit disabled), the VW2C1 bit set to “1” (digital filter disabled mode) and the VW2C7  
bit set to “0” (w hen VCC reaches Vdet2 or above).  
Set the VW2C0 bit to “0” (disabled) under the conditions of the VCA13 bit set to “0” (VCC < Vdet2), the VW2C1 bit  
set to “1” (digital filter disabled mode) and the VW2C7 bit set to “1” (w hen VCC reaches Vdet2 or below ).  
Figure 6.6  
VW2C Register  
Rev.2.10 Jan 19, 2006 Page 30 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
6.1  
6.1.1  
Monitoring VCC Input Voltage  
Monitoring Vdet1  
Vdet1 cannot be monitored.  
6.1.2  
Monitoring Vdet2  
Set the VCA27 bit in the VCA2 register to “1” (voltage detection 2 circuit enabled). After td(E-A) (refer  
to 19. Electrical Characteristics) elapse, Vdet2 can be monitored by the VCA13 bit in the VCA1  
register.  
Rev.2.10 Jan 19, 2006 Page 31 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
6.2  
Voltage Monitor 1 Reset  
Table 6.2 lists the Setting Procedure of Voltage Monitor 1 Reset Associated Bit and Figure 6.7 shows  
the Operating Example of Voltage Monitor 1 Reset. When using the voltage monitor 1 reset to exit stop  
mode, set the VW1C1 bit in the VW1C register to “1” (digital filter disabled).  
Table 6.2  
Procedure  
Setting Procedure of Voltage Monitor 1 Reset Associated Bit  
When Using Digital Filter  
When Not Using Digital Filter  
1
Set the VCA26 bit in the VCA2 register to “1” (voltage detection 1 circuit enabled)  
Wait for td(E-A)  
2
(1)  
Select the sampling clock of the digital filter Set the VW1C7 bit in the VW1C register to  
by the VW1F0 to VW1F1 bits in the VW1C “1”  
register  
3
(1)  
(1)  
Set the VW1C1 bit in the VW1C register to Set the VW1C1 bit in the VW1C register to  
4
“0” (digital f ilter enabled).  
“1” (digital filter disabled)  
Set the VW1C6 bit in the VW1C register to “1” (voltage monitor 1 reset mode)  
5
6
7
Set the VW1C2 bit in the VW1C register to “0”  
Set the CM14 bit in the CM1 register to “0” −  
(low-speed on-chip oscillator on)  
8
9
Wait for the sampling clock of the digital  
filter x 4 cycles  
(no wait time)  
Set the VW1C0 bit in the VW1C register to “1” (enables voltage monitor 1 reset)  
NOTES:  
1. When the VW1C0 bit is set to “0” (disabled), procedures 3, 4 and 5 can be executed simultaneously  
(with 1 instruction).  
VCC  
Vdet1  
(Typ. 2.85V)  
1
x 32  
Sampling Clock of  
Digital Filter x 4 Cycles  
fRING-S  
When the VW1C1 bit is set  
to “0” (digital filter enabled)  
Internal Reset Signal  
1
x 32  
fRING-S  
When the VW1C1 bit is set  
to “1” (digital filter disabled)  
and the VW1C7 bit is set  
to “1”  
Internal Reset Signal  
VW1C1 and VW1C7 : Bits in VW1C Register  
The above applies to the following conditions.  
• VCA26 bit in VCA2 register = 1 (voltage detection 1 circuit enabled)  
• VW1C0 bit in VW1C register = 1 (enables voltage monitor 1 reset )  
• VW1C6 bit in VW1C register = 1 (voltage monitor 1 reset mode)  
When the internal reset signal is held “L”, the pins, CPU and SFR are reset.  
The internal reset signal is changed from “L” to “H”, the program is executed beginning with the address indicated by the  
reset vector.  
Refer to 4. Special Function Register (SFR) for the SFR status after reset.  
Figure 6.7  
Operating Example of Voltage Monitor 1 Reset  
Rev.2.10 Jan 19, 2006 Page 32 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
6.3  
Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset  
Table 6.3 lists the Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset  
Associated Bit. Figure 6.8 shows the Operating Example of Voltage Monitor 2 Interrupt and Voltage  
Monitor 2 Reset. When using the voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop  
mode, set the VW2C1 bit in the VW2C register to “1” (digital filter disabled).  
Table 6.3  
Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset  
Associated Bit  
When Using Digital Filter  
When Not Using Digital Filter  
Voltage Monitor 2 Voltage Monitor 2  
Interrupt Reset  
Procedure  
Voltage Monitor 2  
Interrupt  
Voltage Monitor 2  
Reset  
1
2
Set the VCA27 bit in the VCA2 register to “1” (voltage detection 2 circuit enabled)  
Wait for td(E-A)  
(2)  
Select the sampling clock of the digital filter Select the timing of the interrupt and reset  
3
by the VW2F0 to VW2F1 bits in the VW2C  
register  
request by the VW2C7 bit in the VW2C  
(1)  
register  
(2)  
Set the VW2C1 bit in the VW2C register to Set the VW2C1 bit in the VW2C register to  
“0” (digital filter enabled) “1” (digital filter disabled)  
4
(2)  
Set the VW2C6 bit in Set the VW2C6 bit in Set the VW2C6 bit in Set the VW2C6 bit in  
the VW2C register to the VW2C register to the VW2C register to the VW2C register to  
“0” (voltage monitor 2 “1” (voltage monitor 2 “0” (voltage monitor 2 “1” (voltage monitor 2  
5
interrupt mode)  
reset mode)  
interrupt mode)  
reset mode)  
6
7
Set the VW2C2 bit in the VW2C register to “0” (passing of Vdet2 is not detected)  
Set the CM14 bit in the CM1 register to “0”  
(low-speed on-chip oscillator on)  
Wait for the sampling clock of the digital filter (no wait time)  
x 4 cycles  
8
9
Set the VW2C0 bit in the VW2C register to “1” (enables voltage monitor 2 interrupt / reset)  
NOTES:  
1. Set the VW2C7 bit to “1” (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.  
2. When the VW2C0 bit is set to “0” (disabled), procedures 3, 4 and 5 can be executed simultaneously  
(with 1 instruction).  
Rev.2.10 Jan 19, 2006 Page 33 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
6. Voltage Detection Circuit  
VCC  
Vdet2  
(Typ. 3.30V)  
2.7V(1)  
“1”  
VCA13 Bit  
VW2C2 Bit  
“0”  
Sampling Clock of Digital Filter  
x 4 Cycles  
Sampling Clock of Digital Filter  
x 4 Cycles  
“1”  
“0”  
Set to “0” by a program  
When the VW2C1 bit is set  
to “0” (digital filter enabled)  
Set to “0” by interrupt request  
acknowledgement  
Voltage Monitor 2  
Interrupt Request  
(VW2C6=0)  
Internal Reset Signal  
(VW2C6=1)  
Set to “0” by a program  
“1”  
“0”  
VW2C2 Bit  
When the VW2C1 bit is  
set to “1” (digital filter  
disabled) and the  
VW2C7 bit is set to “0”  
(Vdet2 or above)  
Set to “0” by interrupt  
request  
acknowledgement  
Voltage Monitor 2  
Interrupt Request  
(VW2C6=0)  
Set to “0” by a program  
“1”  
“0”  
VW2C2 Bit  
Set to “0” by interrupt  
When the VW2C1 bit is  
set to “1” (digital filter  
disabled) and the  
VW2C7 bit is set to “1”  
(Vdet2 or below)  
request acknowledgement  
Voltage Monitor 2  
Interrupt Request  
(VW2C6=0)  
Internal Reset Signal  
(VW2C6=1)  
VCA13 : Bit in VCA1 Register  
VW2C1, VW2C2, VW2C6, VW2C7 : Bit in VW2C Register  
The above applies to the following conditions.  
• VCA27 bit in VCA2 register = 1 (voltage detection 2 circuit enabled)  
• VW2C0 bit in VW2C register = 1 (enables voltage monitor 2 interrupt and voltage monitor 2 reset)  
NOTES:  
1. When the voltage monitor 1 reset is not used, set the power supply to VCC 2.7.  
Figure 6.8  
Operating Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset  
Rev.2.10 Jan 19, 2006 Page 34 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
7. Processor Mode  
7. Processor Mode  
7.1  
Types of Processor Mode  
Single-chip mode can be selected as processor mode. Table 7.1 lists Features of Processor Mode.  
Figure 7.1 shows the PM0 Register and Figure 7.2 shows the PM1 Register.  
Table 7.1  
Features of Processor Mode  
Pins to which I/O ports are  
assigned  
Processor Mode  
Access Area  
Single-Chip Mode  
SFR, Internal RAM, Internal ROM All pins are I/O ports or peripheral  
function I/O pins  
Processor Mode Register 0(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0  
Symbol  
PM0  
Address  
0004h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b2-b0)  
Reserved Bit  
Set to “0”  
Softw are Reset Bit  
The microcomputer is reset w hen this bit  
is set to “1”. When read, its content is “0”.  
PM03  
RW  
(b7-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. Set the PRC1 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
Figure 7.1  
PM0 Register  
Rev.2.10 Jan 19, 2006 Page 35 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
7. Processor Mode  
Processor Mode Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0
Symbol  
PM1  
Address  
0005h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
(b0)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
(b1)  
Reserved Bit  
Set to “0”  
RW  
RW  
WDT Interrupt/Reset Sw itch Bit  
0 : Watchdog Timer Interrupt  
1 : Watchdog Timer Reset(2)  
PM12  
(b6-b3)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
(b7)  
Reserved Bit  
Set to “0”  
RW  
NOTES :  
1. Set the PRC1 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. The PM12 bit is set to “1” by a program (It remains unchanged even if it is set to “0”).  
When the CSPRO bit in the CSPR register is set to “1” (selects count source protect mode), the PM12 bit is  
automatically set to “1”.  
Figure 7.2  
PM1 Register  
Rev.2.10 Jan 19, 2006 Page 36 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
8.Bus  
8. Bus  
During access, the ROM/RAM and SFR vary from bus cycles. Table 8.1 lists Bus Cycles for Access Space  
of the R8C/14 Group and Table 8.2 lists Bus Cycles for Access Space of the R8C/15 Group.  
The ROM/RAM and SFR are connected to the CPU through an 8-bit bus. When accessing in word-(16 bits)  
unit, these area are accessed twice in 8-bit unit. Table 8.3 lists Access Unit and Bus Operation.  
Table 8.1  
Bus Cycles for Access Space of the R8C/14 Group  
Access Area  
Bus Cycle  
2 cycles of CPU clock  
1 cycle of CPU clock  
SFR  
ROM/RAM  
Table 8.2  
Bus Cycles for Access Space of the R8C/15 Group  
Access Area  
Bus Cycle  
2 cycles of CPU clock  
1 cycle of CPU clock  
SFR/Data flash  
Program ROM/RAM  
Table 8.3  
Access Unit and Bus Operation  
SFR, Data flash  
Area  
ROM (Program ROM), RAM  
CPU Clock  
Even Address  
Byte Access  
CPU Clock  
Even  
Data  
Even  
Odd  
Address  
Data  
Address  
Data  
Data  
Odd Address  
Byte Access  
CPU Clock  
CPU Clock  
Address  
Data  
Odd  
Data  
Address  
Data  
Data  
Even Address  
Word Access  
CPU Clock  
CPU Clock  
Address  
Data  
Address  
Data  
Even  
Data  
Even+1  
Data  
Even  
Data  
Even+1  
Data  
Odd Address  
Word Access  
CPU Clock  
CPU Clock  
Address  
Data  
Odd  
Odd+1  
Data  
Odd  
Odd+1  
Data  
Address  
Data  
Data  
Data  
Rev.2.10 Jan 19, 2006 Page 37 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9. Clock Generation Circuit  
The MCU has two on-chip clock generation circuits:  
• Main clock oscillation circuit  
• On-chip oscillator (oscillation stop detection function)  
Table 9.1 lists Specification of Clock Generation Circuit. Figure 9.1 shows a Clock Generation Circuit.  
Figures 9.2 to 9.5 show clock-associated registers.  
Table 9.1  
Specification of Clock Generation Circuit  
On-Chip Oscillator  
Main Clock  
Oscillation Circuit  
Item  
Use of Clock  
High-Speed On-Chip Oscillator Low-Speed On-Chip Oscillator  
• CPU clock source • CPU clock source  
• CPU clock source  
• Peripheral  
function clock  
source  
• Peripheral function clock  
source  
• CPU and peripheral function  
clock sources when main  
clock stops oscillating  
• Peripheral function clock  
source  
• CPU and peripheral function  
clock sources when main  
clock stops oscillating  
Clock Frequency 0 to 20MHz  
Approx. 8MHz  
Approx. 125kHz  
Connectable  
Oscillator  
• Ceramic  
resonator  
• Crystal oscillator  
(1)  
Oscillator  
Connect Pins  
(Note 1)  
Usable  
Stop  
(Note 1)  
Usable  
Oscillate  
XIN, XOUT  
Oscillation Stop, Usable  
Restart Function  
Oscillator Status Stop  
After Reset  
Others  
Externally  
generated clock  
can be input  
NOTES:  
1. This pin can be used as P4_6 and P4_7 when using the on-chip oscillator clock for a CPU clock  
while the main clock oscillation circuit is not used.  
Rev.2.10 Jan 19, 2006 Page 38 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
HRA2 Register  
HRA1 Register  
Frequency Adjustable  
On-Chip Oscillator Clock  
High-Speed  
On-Chip  
fRING-fast  
HRA00  
Watchdog  
SSU  
Oscillator  
Timer  
fRING128  
fRING  
HRA01=1  
HRA01=0  
A/D  
INT0  
Timer C  
Timer X  
Timer Z  
UART0  
1/128  
Converter  
Low-Speed  
On-Chip  
Power-On  
CM14  
Reset Circuit  
Oscillator  
fRING-S  
Voltage  
Detection  
Circuit  
Q
Q
CM10=1(Stop Mode)  
S
R
f1  
b
RESET  
f2  
f4  
f8  
c
Power-on reset  
Software reset  
Interrupt request  
Oscillation  
Stop  
Detection  
d
S
R
e
Main Clock  
WAIT  
Instruction  
OCD2=1  
OCD2=0  
g
f32  
CM13  
a
h
CPU Clock  
Divider  
XIN  
XOUT  
CM13  
System Clock  
CM05  
CM02  
g
e
d
c
b
1/2  
1/2  
a
1/2  
1/2  
1/2  
CM06=0  
CM17 to CM16=11b  
CM06=1  
h
CM06=0  
CM17 to CM16=10b  
CM02, CM05, CM06: Bits in CM0 register  
CM10, CM13, CM14, CM16, CM17: Bits in CM1 register  
OCD0, OCD1, OCD2: Bits in OCD register  
HRA00, HRA01: Bits in HRA0 register  
CM06=0  
CM17 to CM16=01b  
CM06=0  
CM17 to CM16=00b  
Details of Divider  
Oscillation Stop Detection Circuit  
Forcible discharge when OCD0(1)=0  
Pulse generation  
circuit for clock  
edge detection and  
charge, discharge  
control circuit  
Charge,  
Discharge  
Circuit  
Main Clock  
Oscillation Stop Detection  
Interrupt Generation  
Circuit Detection  
Oscillation Stop  
Detection,  
OCD1(1)  
Watchdog  
Timer Interrupt  
Watchdog Timer,  
Voltage Monitor 2  
Interrupt  
Voltage Watch  
2 Interrupt  
OCD2 Bit Switch Signal  
CM14 Bit Switch Signal  
NOTES :  
1. Set the same value to the OCD1 and OCD0 bits.  
Figure 9.1  
Clock Generation Circuit  
Rev.2.10 Jan 19, 2006 Page 39 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
System Clock Control Register 0(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0 1  
0 0  
Symbol  
CM0  
Address  
0006h  
After Reset  
68h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b1-b0)  
Reserved Bit  
Set to “0”  
WAIT Peripheral Function Clock Stop 0 : Peripheral function clock does not  
Bit  
stop in w ait mode  
1 : Peripheral function clock stops  
in w ait mode  
CM02  
RW  
(b3)  
Reserved Bit  
Reserved Bit  
Set to “1”  
RW  
RW  
RW  
RW  
RW  
(b4)  
Set to “0”  
Main Clock (XIN-XOUT)  
Stop Bit(2,4)  
SystemClock Division Select Bit 0(5)  
0 : Main clock oscillates  
1 : Main clock stops(3)  
CM05  
CM06  
0 : Enables CM16, CM17  
1 : Divide-by-8 mode  
(b7)  
Reserved Bit  
Set to “0”  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. The CM05 bit is to stop the main clock w hen the on-chip oscillator mode is selected.  
Do not use this bit for w hether the main clock is stopped. To stop the main clock, set the bits in the follow ing  
orders:  
(a) Set the OCD1 to OCD0 bits in the OCD register to “00b” (oscillation stop detection function disabled).  
(b) Set the OCD2 bit to “1” (selects on-chip oscillator clock).  
3. Set the CM05 bit to “1” (main clock stops) and the CM13 bit in the CM1 register to “1”  
(XIN-XOUT pin) w hen the external clock is input.  
4. When the CM05 bit is set to “1” (stops main clock), P4_6 and P4_7 can be used as input ports.  
5. When entering stop mode from high or middle speed mode, the CM06 bit is set to “1” (divide-by-8 mode).  
Figure 9.2  
CM0 Register  
Rev.2.10 Jan 19, 2006 Page 40 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
System Clock Control Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
Symbol  
Address  
0007h  
After Reset  
20h  
CM1  
Bit Symbol  
Bit Name  
All Clock Stop Control Bit(4,7,8)  
Function  
RW  
RW  
0 : Oscillates clock  
1 : Stops all Clocks (stop mode)  
CM10  
(b1)  
Reserved Bit  
Set to “0”  
RW  
RW  
RW  
RW  
RW  
(b2)  
Reserved Bit  
Set to “0”  
Port XIN-XOUT Sw itch Bit(7)  
0 : Input port P4_6, P4_7  
1 : XIN-XOUT Pin  
CM13  
CM14  
CM15  
Low -Speed On-Chip Oscillation Stop 0 : Low -speed on-chip oscillator on  
Bit(5,6,8)  
1 : Low -speed on-chip oscillator off  
XIN-XOUT Drive Capacity Select Bit(2) 0 : LOW  
1 : HIGH  
SystemClock Division Select Bit 1(3) b7 b6  
0 0 : No division mode  
CM16  
CM17  
RW  
RW  
0 1 : Divide-by-2 mode  
1 0 : Divide-by-4 mode  
1 1 : Divide-by-16 mode  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. When entering stop mode from high or middle speed mode, this bit is set to “1” (drive capacity HIGH).  
3. When the CM06 bit is set to “0” (CM16, CM17 bits enabled), this bit becomes enabled.  
4. If the CM10 bit is “1” (stop mode), the internal feedback resistor becomes disabled.  
5. When the OCD2 bit is set to “0” (selects main clock), the CM14 bit is set to “1” (stops low -speed  
on-chip oscillator). When the OCD2 bit is set to “1” (selects on-chip oscillator clock), the CM14 bit is set to “0”  
(low -speed on-chip oscillator on). It remains unchanged even if it is set to “1”.  
6. When using the voltage detection interrupt, CM14 bit is set to “0” (low -speed on-chip oscillator on).  
7. When the CM10 bit is set to “1” (stop mode) or the CM05 bit in the CM0 register to “1” (main clock stops) and the  
CM13 bit is set to “1” (XIN-XOUT pin), the XOUT (P4_7) pin becomes “H”.  
When the CM13 bit is set to “0” (input ports, P4_6, P4_7), the P4_7 (XOUT) enters input mode.  
8. In count source protect mode (Refer to  
the CM10 and CM14 bits are set.  
), the value remains unchanged even if  
12.2 Count Source Protect Mode  
Figure 9.3  
CM1 Register  
Rev.2.10 Jan 19, 2006 Page 41 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
Oscillation Stop Detection Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
Symbol  
Address  
000Ch  
After Reset  
04h  
OCD  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Oscillation Stop Detection  
Enable Bit  
b1 b0  
0 0 : Oscillation stop detection function  
disabled  
OCD0  
OCD1  
0 1 : Do not set  
1 0 : Do not set  
RW  
RW  
1 1 : Oscillation stop detection function  
enabled(4,7)  
System Clock Select Bit(6)  
0 : Selects main clock(7)  
1 : Selects on-chip oscillator clock(2)  
OCD2  
OCD3  
Clock Monitor Bit(3,5)  
Reserved Bit  
0 : Main clock oscillates  
1 : Main clock stops  
RO  
(b7-b4)  
Set to “0”  
RW  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. The OCD2 bit is automatically set to “1” (selects on-chip oscillator clock) if a main clock oscillation stop is detected  
w hile the OCD1 to OCD0 bits are set to “11b” (oscillation stop detection function enabled). If the OCD3 bit is set to “1”  
(main clock stops), the OCD2 bit remains unchanged w hen w riting “0” (selects main  
clock).  
3. The OCD3 bit is enabled w hen the OCD1 to OCD0 bits are set to “11b”.  
4. Set the OCD1 to OCD0 bits to “00b” (oscillation stop detection function disabled) before entering stop and on-chip  
oscillator mode (main clock stops).  
5. The OCD3 bit remains “0” (main clock oscillates) if the OCD1 to OCD0 bits are set to “00b”.  
6. The CM14 bit is set to “0” (low -speed on-chip oscillator on) if the OCD2 bit is set to “1” (selects on-chip oscillator  
clock).  
7. Ref er to  
Figure 9.9 Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator to Main  
for the sw itching procedure w hen the main clock re-oscillates after detecting an oscillation stop.  
Clock  
Figure 9.4  
OCD Register  
Rev.2.10 Jan 19, 2006 Page 42 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
High-speed On-Chip Oscillator Control Register 0(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0  
Symbol  
HRA0  
Address  
0020h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
High-Speed On-Chip Oscillator  
Enable Bit  
High-speed On-Chip Oscillator Select 0 : Selects low -speed on-chip oscillator(3)  
0 : High-speed on-chip oscillator off  
1 : High-speed on-chip oscillator on  
HRA00  
HRA01  
RW  
RW  
Bit(2)  
1 : Selects high-speed on-chip oscillator  
(b7-b2)  
Reserved Bit  
Set to “0”  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. Change the HRA01 bit under the follow ing conditions.  
• HRA00 = 1 (high-speed on-chip oscillation)  
• The CM14 bit in the CM1 register = 0 (low -speed on-chip oscillator on)  
3. When setting the HRA01 bit to “0” (selects low -speed on-chip oscillator), do not set the HRA00 bit to “0” (high-speed  
on-chip oscillator off) at the same time.  
Set the HRA00 bit to “0” after setting the HRA01 bit to “0”.  
Figure 9.5  
HRA0 Register  
Rev.2.10 Jan 19, 2006 Page 43 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
High-speed On-Chip Oscillator Control Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
HRA1  
Address  
0021h  
After Reset  
When Shipping  
Function  
RW  
RW  
The frequency of high-speed on-chip oscillator is adjusted w ith bits 0 to 7.  
High-speed on-chip oscillator frequency = 8MHz  
(HRA1 register = value w hen shipping ; fRING-fast mode 0)  
Set the value of the HRA1 register to smaller (minimum value : 00h), the frequency w ill be  
higher  
Set the value of the HRA1 register to larger (maximum value : FFh), the frequecny w ill be  
low er  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
High-Speed On-Chip Oscillator Control Register 2(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0  
Symbol  
HRA2  
Address  
0022h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
High-Speed On-Chip Oscillator Mode  
Select Bit  
b1 b0  
0 0 : fRING-fast mode 0(2)  
0 1 : fRING-fast mode 1(3)  
1 0 : fRING-fast mode 2(4)  
1 1 : Do not set  
HRA20  
HRA21  
RW  
(b4-b2)  
Reserved Bit  
Set to “0”  
RW  
(b7-b5)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. Set the PRC0 bit in the PRCR register to “1” (w rite enable) before rew riting to this register.  
2. High-speed on-chip oscillator frequency = 8MHz (HRA1 register = value w hen shipping)  
3. If fRING-fast mode 0 is sw itched to fRING-fast mode 1, frequency w ill increase 1.5 times.  
4. If fRING-fast mode 0 is sw itched to fRING-fast mode 2, frequency w ill increase 0.5 times.  
Figure 9.6  
HRA1 and HRA2 Registers  
Rev.2.10 Jan 19, 2006 Page 44 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
The following describes the clocks generated by the clock generation circuit.  
9.1  
Main Clock  
This clock is supplied by a main clock oscillation circuit. This clock is used as the clock source for the  
CPU and peripheral function clocks. The main clock oscillation circuit is configured by connecting a  
resonator between the XIN and XOUT pins. The main clock oscillation circuit contains a feedback  
resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of  
power consumed in the chip. The main clock oscillation circuit may also be configured by feeding an  
externally generated clock to the XIN pin. Figure 9.7 shows the Examples of Main Clock Connection  
Circuit.  
During reset and after reset, the main clock stops.  
The main clock starts oscillating when the CM05 bit in the CM0 register is set to “0” (main clock on) after  
setting the CM13 bit in the CM1 register to “1” (XIN- XOUT pin).  
To use the main clock for the CPU clock source, set the OCD2 bit in the OCD register to “0” (select main  
clock) after the main clock is oscillating stably.  
The power consumption can be reduced by setting the CM05 bit in the CM0 register to “1” (stop main  
clock) if the OCD2 bit is set to “1” (select on-chip oscillator clock).  
When the clocks externally generated to the XIN pin are input, a main clock does not stop if setting the  
CM05 bit to “1”. If necessary, use an external circuit to stop the clock.  
In stop mode, all clocks including the main clock stop. Refer to 9.4 Power Control for details.  
Microcomputer  
Microcomputer  
(Built-In Feedback Resistor)  
(Built-In Feedback Resistor)  
XIN  
XIN  
XOUT  
XOUT  
Open  
Rd(1)  
Externally Derived Clock  
CIN  
COUT  
VCC  
VSS  
External Clock Input Clock  
Ceramic Resonator External Circuit  
NOTES :  
1. Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's  
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN  
and XOUT following the instruction.  
Figure 9.7  
Examples of Main Clock Connection Circuit  
Rev.2.10 Jan 19, 2006 Page 45 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.2  
On-Chip Oscillator Clock  
This clock is supplied by an on-chip oscillator. The on-chip oscillator contains a high-speed on-chip  
oscillator and a low-speed on-chip oscillator. Either an on-chip oscillator clock is selected by the HRA01  
bit in the HRA0 register.  
9.2.1  
Low-Speed On-Chip Oscillator Clock  
The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU  
clock, peripheral function clock, fRING, fRING128 and fRING-S.  
After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator by divide-by-8  
is selected for the CPU clock.  
If the main clock stops oscillating when the OCD1 to OCD0 bits in the OCD register are set to “11b”  
(oscillation stop detection function enabled), the low-speed on-chip oscillator automatically starts  
operating, supplying the necessary clock for the microcomputer.  
The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the  
operating ambient temperature. The application products must be designed with sufficient margin for  
the frequency change.  
9.2.2  
High-Speed On-Chip Oscillator Clock  
The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU  
clock, peripheral function clock, fRING, fRING128, and fRING1-fast.  
After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. The  
oscillation starts by setting the HRA00 bit in the HRA0 register to “1” (high-speed on-chip oscillator  
on). The frequency can be adjusted by the HRA1 and HRA2 registers.  
Since the difference in delay between the bits, adjust by changing each bit.  
Rev.2.10 Jan 19, 2006 Page 46 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.3  
CPU Clock and Peripheral Function Clock  
There are two type clocks: a CPU clock to operate the CPU and a peripheral function clock to operate  
the peripheral functions. Refer to Figure 9.1 Clock Generation Circuit.  
9.3.1  
System Clock  
The system clock is a clock source for the CPU and peripheral function clocks. The main clock or on-  
chip oscillator clock can be selected.  
9.3.2  
CPU Clock  
The CPU clock is an operating clock for the CPU and watchdog timer.  
The system clock can be the divide-by-1 (no division), 2, 4, 8 or 16 to produce the CPU clock. Use  
the CM06 bit in the CM0 register and the CM16 to CM17 bits in the CM1 register to select the value  
of the division.  
After reset, the low-speed on-chip oscillator clock divided-by-8 provides the CPU clock.  
When entering stop mode from high-speed or medium-speed mode, the CM06 bit is set to “1”  
(divide-by-8 mode).  
9.3.3  
Peripheral Function Clock (f1, f2, f4, f8, f32)  
The peripheral function clock is operating clock for the peripheral functions.  
The clock fi (i=1, 2, 4, 8, 32) is generated by the system clock divided-by-i. The clock fi is used for  
timers X, Y, Z, C, serial interface and A/D converter.  
When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to “1”  
(peripheral function clock stops in wait mode), the clock fi stops.  
9.3.4  
fRING and fRING128  
fRING and fRING128 are operating clocks for the peripheral functions.  
The fRING runs at the same frequency as the on-chip oscillator clock and can be used as the source  
for the timer X. The fRING128 is generated by the fRING by dividing it by 128 and can be used for  
the timer C.  
When the WAIT instruction is executed, the clocks fRING and fRING128 do not stop.  
9.3.5  
fRING-fast  
fRING-fast is used as the count source for the timer C. The fRING-fast is generated by the high-  
speed on-chip oscillator and provided by setting the HRA00 bit to “1”.  
When the WAIT instruction is executed, the clock fRING-fast does not stop.  
9.3.6  
fRING-S  
fRING-S is an operating clock for the watchdog timer and voltage detection circuit. When setting the  
CM14 bit to “0” (low-speed on-chip oscillator on) using the clock generated by the low-speed on-chip  
oscillator, the fRING-S can be provided. When the WAIT instruction is executed or in count source  
protect mode of the watchdog timer, fRING-S does not stop.  
Rev.2.10 Jan 19, 2006 Page 47 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.4  
Power Control  
There are three power control modes. All modes other than wait and stop modes are referred to as  
normal operating mode.  
9.4.1  
Normal Operating Mode  
Normal operating mode is further separated into four modes.  
In normal operating mode, the CPU clock and the peripheral function clock are supplied to operate  
the CPU and the peripheral function clocks. Power consumption control is enabled by controlling the  
CPU clock frequency. The higher the CPU clock frequency, the more processing power increases.  
The lower the CPU clock frequency, the more power consumption decreases. When unnecessary  
oscillator circuits stop, power consumption is further reduced.  
Before the clock sources for the CPU clock can be switched over, the new clock source after  
switching needs to be stabilized and oscillated. If the new clock source is the main clock, allow  
sufficient wait time in a program until an oscillation is stabilized before exiting.  
Table 9.2  
Setting and Mode of Clock Associated Bit  
OCD Register  
CM1 Register  
CM0 Register  
Modes  
OCD2  
CM17, CM16  
CM13  
CM06  
CM05  
High-Speed Mode  
0
0
0
0
0
1
1
1
1
1
00b  
01b  
10b  
1
1
1
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
Medium-  
Speed  
Mode  
divide-by-2  
divide-by-4  
divide-by-8  
divide-by-16  
no division  
divide-by-2  
divide-by-4  
divide-by-8  
divide-by-16  
11b  
00b  
01b  
10b  
High-Speed,  
Low-Speed  
On-Chip  
Oscillator  
(1)  
Mode  
11b  
NOTES:  
1. The low-speed on-chip oscillator is used as the on-chip oscillator clock when the CM14 bit in the  
CM1 register is set to “0” (low-speed on-chip oscillator on) and the HRA01 bit in the HRA0 register  
is set to “0”. The high-speed on-chip oscillator is used as the on-chip oscillator clock when the  
HRA00 bit in the HRA0 register is set to “1” (high-speed on-chip oscillator A on) and the HRA01 bit  
in the HRA0 register is set to “1”.  
Rev.2.10 Jan 19, 2006 Page 48 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.4.1.1  
High-Speed Mode  
The main clock divided-by-1 (no division) provides the CPU clock. If the CM14 bit is set to “0” (low-  
speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to “1” (high-speed on-chip  
oscillator on), the fRING and fRING128 can be used for timers X and C. When the HRA00 bit is set to  
“1”, fRING-fast can be used for timer C. When the CM14 bit is set to “0” (low-speed on-chip oscillator  
on), fRING-S can be used for the watchdog timer and voltage detection circuit.  
9.4.1.2  
Medium-Speed Mode  
The main clock divided-by-2, -4, -8 or -16 provides the CPU clock. If the CM14 bit is set to “0” (low-  
speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to “1” (high-speed on-chip  
oscillator on), the fRING and fRING128 can be used for timers X and C. When the HRA00 bit is set to  
“1”, fRING-fast can be used for timer C. When the CM14 bit is set to “0” (low-speed on-chip oscillator  
on), fRING-S can be used for the watchdog timer and voltage detection circuit.  
9.4.1.3  
High-Speed, Low-Speed On-Chip Oscillator Mode  
The on-chip oscillator clock divided-by-1 (no division), -2, -4, -8 or -16 provides the CPU clock. The  
on-chip oscillator clock is also the clock source for the peripheral function clocks. When the HRA00  
bit is set to “1”, fRING-fast can be used for timer C. When the CM14 bit is set to “0” (low-speed on-  
chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.  
9.4.2  
Wait Mode  
Since the CPU clock stops in wait mode, the CPU operated in the CPU clock and the watchdog timer  
when count source protection mode is disabled stops. The main clock and on-chip oscillator clock do  
not stop and the peripheral functions using these clocks maintain operating.  
9.4.2.1  
Peripheral Function Clock Stop Function  
If the CM02 bit is set to “1” (peripheral function clock stops in wait mode), the f1, f2, f4, f8 and f32  
clocks stop in wait mode. The power consumption can be reduced.  
9.4.2.2  
Entering Wait Mode  
The microcomputer enters wait mode by executing the WAIT instruction.  
9.4.2.3  
Pin Status in Wait Mode  
The status before entering wait mode is maintained.  
Rev.2.10 Jan 19, 2006 Page 49 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.4.2.4  
Exiting Wait Mode  
The microcomputer exits wait mode by a hardware reset or peripheral function interrupt. When using  
a hardware reset to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to  
“000b” (interrupts disabled) before executing the WAIT instruction.  
The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to “0”  
(peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used  
to exit wait mode. When the CM02 bit is set to “1” (peripheral function clock stops in wait mode), the  
peripheral functions using the peripheral function clock stop operating and the peripheral functions  
operated by external signals can be used to exit wait mode.  
Table 9.3 lists Interrupts to Exit Wait Mode and Usage Conditions.  
When using a peripheral function interrupt to exit wait mode, set up the following before executing  
the WAIT instruction.  
(1) Set the interrupt priority level to the ILVL2 to ILVL0 bits in the interrupt control register of the  
peripheral function interrupts to use for exiting wait mode. Set the ILVL2 to ILVL0 bits of the  
peripheral function interrupts not to use for exiting wait mode to “000b” (disables interrupt).  
(2) Set the I flag to “1”.  
(3) Operate the peripheral function to use for exiting wait mode.  
When an interrupt request is generated and the CPU clock supply is started if exiting by the  
peripheral function interrupt, an interrupt sequence is executed.  
The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the  
CPU clock when the WAIT instruction is executed.  
Table 9.3  
Interrupts to Exit Wait Mode and Usage Conditions  
Interrupt  
CM02=0  
Usable when operating with  
internal or external clock  
Usable in all modes  
Usable  
CM02=1  
Usable when operating with external  
clock  
Serial Interface Interrupt  
SSU Interrupt  
(Do not use)  
Key Input Interrupt  
A/D Conversion Interrupt  
Timer X Interrupt  
Timer Z Interrupt  
Timer C Interrupt  
Usable  
Usable in one-shot mode  
Usable in all modes  
Usable in all modes  
Usable in all modes  
Usable  
(Do not use)  
Usable in event counter mode  
(Do not use)  
(Do not use)  
INT Interrupt  
Usable (INT0 and INT3 can be used if  
there is no filter.  
Voltage Monitor 2 Interrupt Usable  
Usable  
Oscillation Stop Detection Usable  
(Do not use)  
Interrupt  
Watchdog Timer Interrupt Usable in count source protect  
mode  
Usable in count source protect mode  
Rev.2.10 Jan 19, 2006 Page 50 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.4.3  
Stop Mode  
Since the oscillator circuits stop in wait mode, the CPU clock and peripheral function clock stop and  
the CPU and peripheral functions clocked by these clocks stop operating. The least power required  
to operate the microcomputer is in stop mode. If the voltage applied to the VCC pin is VRAM or  
more, the internal RAM is maintained.  
The peripheral functions clocked by external signals maintain operating. Table 9.4 lists Interrupts to  
Exit Stop Mode and Usage Conditions.  
Table 9.4  
Interrupts to Exit Stop Mode and Usage Conditions  
Interrupt Usage Conditions  
Key Input Interrupt  
INT0 to INT1 Interrupts  
INT3 Interrupt  
INT0 can be used if there is no filter  
No filter. Interrupt request is generated at INT3 input. (TCC06 bit in  
TCC0 register is set to “1”)  
Timer X Interrupt  
When external pulse is counted in event counter mode  
When external clock is selected  
Serial Interface Interrupt  
Voltage Monitor 2 Interrupt  
Usable in digital filter disabled mode (VW2C1 bit in VW2C register is  
set to “1”)  
9.4.3.1  
Entering Stop Mode  
The microcomputer enters stop mode by setting the CM10 bit in the CM1 register to “1” (all clocks  
stop). At the same time, the CM06 bit in the CM0 register is set to “1” (divide-by-8 mode) and the  
CM15 bit in the CM10 register is set to “1” (drive capability HIGH of main clock oscillator circuit).  
When using stop mode, set the OCD1 to OCD0 bits to “00b” (oscillation stop detection function  
disabled) before entering stop mode.  
9.4.3.2  
Pin Status in Stop Mode  
The status before entering wait mode is maintained.  
However, when the CM13 bit in the CM1 register is set to “1” (XIN-XOUT pins), the XOUT(P4_7) pin  
is held “H”. When the CM13 bit is set to “0” (input port P4_6 and P4_7), the P4_7(XOUT) is held in  
input status.  
9.4.3.3  
Exiting Stop Mode  
The microcomputer exits stop mode by a hardware reset or peripheral function interrupt.  
When using a hardware reset to exit stop mode, set the ILVL2 to ILVL0 bits for the peripheral function  
interrupts to “000b” (disables interrupts) before setting the CM10 bit to “1”.  
When using a peripheral function interrupt to exit stop mode, set up the following before setting the  
CM10 bit to “1”.  
(1) Set the interrupt priority level to the ILVL2 to ILVL0 bits of the peripheral function interrupts to  
use for exiting stop mode. Set the ILVL2 to ILVL0 bits of the peripheral function interrupts not  
to use for exiting stop mode to “000b” (disables interrupt).  
(2) Set the I flag to “1”.  
(3) Operates the peripheral function to use for exiting stop mode.  
When an interrupt request is generated and the CPU clock supply is started if exiting by the  
peripheral function interrupt, an interrupt sequence is executed.  
The CPU clock, when exiting stop mode by a peripheral function interrupt, is the divide-by-8 of the  
clock which is used before entering stop mode.  
Rev.2.10 Jan 19, 2006 Page 51 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
Figure 9.8 shows the State Transition of Power Control.  
Reset  
Low-speed On-chip  
Oscillator Mode  
OCD2=1  
HRA01=0  
CM14=0  
There are six power control modes.  
(1) High-speed mode  
(2) Middle-speed mode  
(3) High-speed on-chip oscillator mode  
(4) Low-speed on-chip oscillator mode  
(5) Wait mode  
High-speed Mode,  
Middle-speed Mode  
(6) Stop mode  
OCD2=0  
CM05=0  
CM13=1  
High-speed On-chip  
Oscillator Mode  
OCD2=1  
CM05: Bit in CM0 register  
CM10, CM13, CM14: Bit in CM1 register  
OCD2: Bit in OCD register  
HRA01=1  
HRA00, HRA01: Bit in HRA0 register  
HRA00=1  
WAIT  
Instruction  
CM10=1  
(All oscillators stop)  
Interrupt  
Interrupt  
Wait Mode  
Stop Mode  
Figure 9.8  
State Transition of Power Control  
Rev.2.10 Jan 19, 2006 Page 52 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
9.5  
Oscillation Stop Detection Function  
The oscillation stop detection function is a function to detect the stop of the main clock oscillating circuit.  
The oscillation stop detection function can be enabled and disabled by the OCD1 to OCD0 bits in the  
OCD register.  
Table 9.5 lists the Specification of Oscillation Stop Detection Function.  
When the main clock is the CPU clock source and the OCD1 to OCD0 bits are set to “11b” (oscillation  
stop detection function enabled), the system is placed in the following state if the main clock stops.  
OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)  
OCD3 bit in OCD register = 1 (main clock stops)  
CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)  
Oscillation stop detection interrupt request is generated  
Table 9.5  
Specification of Oscillation Stop Detection Function  
Item Specification  
Oscillation Stop Detection Enable Clock f(XIN) 2 MHz  
and Frequency Bandwidth  
Enabled Condition for Oscillation Stop  
Detection Function  
Set OCD1 to OCD0 bits to “11b” (oscillation stop detection  
function enabled)  
Operation at Oscillation Stop Detection Oscillation stop detection interrupt is generated  
9.5.1  
How to Use Oscillation Stop Detection Function  
The oscillation stop detection interrupt shares the vector with the voltage monitor 2 interrupt and  
the watchdog timer interrupt. When using the oscillation stop detection interrupt and watchdog  
timer interrupt, the interrupt cause needs to be determined. Table 9.6 lists the Determine Interrupt  
Factor of Oscillation Stop Detection, Watchdog Timer and Voltage Monitor 2 Interrupts.  
When the main clock is re-oscillated after oscillation stop, switch the main clock to the clock  
source of the CPU clock and peripheral functions by a program.  
Figure 9.9 shows the Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator  
to Main Clock.  
To enter wait mode while using the oscillation stop detection function, set the CM02 bit to “0”  
(peripheral function clock does not stop in wait mode).  
Since the oscillation stop detection function is a function preparing to stop the main clock by the  
external cause, set the OCD1 to OCD0 bits to “00b” (oscillation stop detection function disabled)  
when the main clock stops or oscillates in the program, that is stop mode is selected or the CM05  
bit is changed.  
This function cannot be used when the main clock frequency is below 2 MHz. Set the OCD1 to  
OCD0 bits to “00b” (oscillation stop detection function disabled).  
When using the low-speed on-chip oscillator clock for the CPU clock and clock sources of  
peripheral functions after detecting the oscillation stop, set the HRA01 bit in the HRA0 register to  
“0” (low-speed on-chip oscillator selected) and the OCD1 to OCD0 bits to “11b” (oscillation stop  
detection function enabled).  
When using the high-speed on-chip oscillator clock for the CPU clock and clock sources of  
peripheral functions after detecting the oscillation stop, set the HRA01 bit to “1” (high-speed on-  
chip oscillator selected) and the OCD1 to OCD0 bits to “11b” (oscillation stop detection function  
enabled).  
Rev.2.10 Jan 19, 2006 Page 53 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
9. Clock Generation Circuit  
Table 9.6  
Determine Interrupt Factor of Oscillation Stop Detection, Watchdog Timer and  
Voltage Monitor 2 Interrupts  
Generated Interrupt Cause  
Oscillation Stop Detection  
( (a) or (b) )  
Bit Showing Interrupt Cause  
(a) OCD3 bit in OCD register = 1  
(b) OCD1 to OCD0 bits in OCD register = 11b and the OCD2 bit = 1  
VW2C3 bit in VW2C register = 1  
Watchdog Timer  
Voltage Monitor 2  
VW2C2 bit in VW2C register = 1  
Switch to Main clock  
Determine OCD3 Bit  
1(Main Clock Stop)  
0(Main Clock oscillate)  
Judge several times  
Determine several times that the main clock is supplied  
Set OCD1 to OCD0 bits to “00b”  
(oscillation stop detection function  
disabled)  
Set OCD2 bit to “0”  
(select Main Clock)  
End  
OCD3 to OCD0 bits: Bits in OCD register  
Figure 9.9  
Procedure of Switching Clock Source From Low-Speed On-Chip Oscillator to Main  
Clock  
Rev.2.10 Jan 19, 2006 Page 54 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
10.Protection  
10. Protection  
Protection function protects important registers from being easily overwritten when a program runs out of  
control. Figure 10.1 shows the PRCR Register. The following lists the registers protected by the PRCR  
register.  
• Registers protected by PRC0 bit : CM0, CM1, and OCD, HRA0, HRA1, HRA2 registers  
• Registers protected by PRC1 bit : PM0 and PM1 registers  
• Registers protected by PRC3 bit : VCA2, VW1C and VW2C registers  
Protect Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
0
Symbol  
PRCR  
Address  
000Ah  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Protect Bit 0  
Writing to the CM0, CM, OCD, HRA0, HRA1 and  
HRA2 registers is enabled.  
0 : Disables w riting  
PRC0  
PRC1  
1 : Enables w riting  
Protect Bit 1  
Writing to the PM0 and PM1 registers is enabled.  
0 : Disables w riting  
RW  
RW  
RW  
1 : Enables w riting  
(b2)  
Reserved Bit  
Protect Bit 3  
Set to “0”  
Writing to the VCA2, VW1C and VW2C registers is  
enabled.  
0 : Disables w riting  
1 : Enables w riting  
PRC3  
(b5-b4)  
Reserved Bit  
Reserved Bit  
Set to “0”  
RW  
RO  
(b7-b6)  
When read, its content is “0”.  
Figure 10.1  
PRCR Register  
Rev.2.10 Jan 19, 2006 Page 55 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11. Interrupt  
11.1 Interrupt Overview  
11.1.1 Types of Interrupts  
Figure 11.1 shows types of Interrupts.  
Undefined Instruction (UND Instruction)  
Overflow (INTO Instruction)  
BRK Instruction  
INT Instruction  
Software  
(Non-Maskable Interrupt)  
Interrupt  
Watchdog Timer  
Oscillation Stop Detection  
Voltage Monitor 2  
Single Step(2)  
Special  
(Non-Maskable Interrupt)  
Hardware  
Address Match  
Peripheral Function(1)  
(Maskable Interrupt)  
NOTES :  
1. Peripheral function interrupts in the microcomputer are used to generate the peripheral interrupt.  
2. Do not use this interrupt. For development tools only.  
Figure 11.1  
Interrupts  
Maskable Interrupt:  
The interrupt enable flag (I flag) enables or disables an interrupt. The  
interrupt priority order based on the interrupt priority level can be  
changed.  
Non-Maskable Interrupt: The interrupt enable flag (I flag) does not enable or disable an  
interrupt. The interrupt priority order based on interrupt priority level  
cannot be changed.  
Rev.2.10 Jan 19, 2006 Page 56 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.2 Software Interrupts  
A software interrupt is generated when an instruction is executed. The software interrupts are non-  
maskable interrupts.  
11.1.2.1 Undefined Instruction Interrupt  
The undefined instruction interrupt is generated when the UND instruction is executed.  
11.1.2.2 Overflow Interrupt  
The overflow interrupt is generated when the O flag is set to “1” (arithmetic operation overflow) and  
the INTO instruction is executed. Instructions to set the O flag are:  
ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB  
11.1.2.3 BRK Interrupt  
A BRK interrupt is generated when the BRK instruction is executed.  
11.1.2.4 INT Instruction Interrupt  
An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction  
can select software interrupt numbers 0 to 63. Software interrupt numbers 4 to 31 are assigned to the  
peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when  
the INT instruction is executed as when a peripheral function interrupt is generated. In software  
interrupt numbers 0 to 31, the U flag is saved to the stack during instruction execution and set the U  
flag to “0” (ISP selected) before executing an interrupt sequence. The U flag is restored from the  
stack when returning from the interrupt routine. In software interrupt numbers 32 to 63, the U flag  
does not change state during instruction execution, and the selected SP is used.  
Rev.2.10 Jan 19, 2006 Page 57 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.3 Special Interrupts  
Special interrupts are non-maskable interrupts.  
11.1.3.1 Watchdog Timer Interrupt  
The watchdog timer interrupt is generated by the watchdog timer. Reset the watchdog timer after the  
watchdog timer interrupt is generated. For details, refer to 12. Watchdog Timer.  
11.1.3.2 Oscillation Stop Detection Interrupt  
Oscillation Stop Detection Interrupt is generated by the oscillation stop detection function. For details  
of the oscillation stop detection function, refer to 9. Clock Generation Circuit.  
11.1.3.3 Voltage Monitor 2 Interrupt  
The voltage monitor 2 interrupt is generated by the voltage detection circuit. For details of the voltage  
detection circuit, refer to 6. Voltage Detection Circuit.  
11.1.3.4 Single-Step Interrupt, Address Break Interrupt  
Do not use the single-step interrupt. For development tools only.  
11.1.3.5 Address Match Interrupt  
The address match interrupt is generated immediately before executing an instruction that is stored  
into an address indicated by the RMAD0 to RMAD1 registers when the AIER0 or AIER1 bit in the  
AIER register which is set to “1” (address match interrupt enable). For details of the address match  
interrupt, refer to 11.4 Address Match Interrupt.  
11.1.4 Peripheral Function Interrupt  
The peripheral function interrupt is generated by the internal peripheral function of the  
microcomputer and a maskable interrupt. Refer to Table 11.2 Relocatable Vector Tables for the  
interrupt factor of the peripheral function interrupt. For details of the peripheral function, refer to the  
description of each peripheral function.  
Rev.2.10 Jan 19, 2006 Page 58 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.5 Interrupts and Interrupt Vector  
There are 4 bytes in one vector. Set the starting address of interrupt routine in each vector table.  
When an interrupt request is acknowledged, the CPU branches to the address set in the  
corresponding interrupt vector. Figure 11.2 shows the Interrupt Vector.  
MSB  
LSB  
Vector Address (L)  
Low Address  
Mid Address  
0 0 0 0  
0 0 0 0  
High Address  
0 0 0 0  
Vector Address (H)  
Figure 11.2  
Interrupt Vector  
11.1.5.1 Fixed Vector Tables  
The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh. Table 11.1 lists the Fixed Vector  
Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For  
details, refer to 18.3 Functions To Prevent Flash Memory from Rewriting.  
Table 11.1  
Fixed Vector Tables  
Vector Addresses  
Address (L) to (H)  
Undefined Instruction 0FFDCh to 0FFDFh  
Interrupt Source  
Remarks  
Reference  
Interrupt on UND  
instruction  
R8C/Tiny series software  
manual  
Overflow  
0FFE0h to 0FFE3h  
0FFE4h to 0FFE7h  
Interrupt on INTO  
instruction  
BRK Instruction  
If the content of address  
0FFE7h is FFh, program  
execution starts from the  
address shown by the  
vector in the relocatable  
vector table.  
Address Match  
0FFE8h to 0FFEBh  
11.4 Address Match  
Interrupt  
(1)  
0FFECh to 0FFEFh  
0FFF0h to 0FFF3h  
Single Step  
• Watchdog Timer  
• Oscillation Stop  
Detection  
• 12. Watchdog Timer  
• 9. Clock Generation  
Circuit  
• Voltage Monitor 2  
• 6. Voltage Detection  
Circuit  
(1)  
0FFF4h to 0FFF7h  
0FFF8h to 0FFFBh  
0FFFCh to 0FFFFh  
Address Break  
(Reserved)  
Reset  
5. Reset  
1. Do not use the single-step interrupt. For development tools only.  
Rev.2.10 Jan 19, 2006 Page 59 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.5.2 Relocatable Vector Tables  
The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register.  
Table 11.2 lists the Relocatable Vector Tables.  
Table 11.2  
Relocatable Vector Tables  
(1)  
Software  
Interrupt Number  
Vector Address  
Interrupt Factor  
Reference  
Address (L) to Address (H)  
+0 to +3(0000h to 0003h)  
(2)  
0
1 to 12  
13  
R8C/Tiny Series software  
manual  
BRK Instruction  
(Reserved)  
Key Input  
A/D Converter  
SSU  
+52 to +55(0034h to 0037h)  
+56 to +59(0038h to 003Bh)  
+60 to +63(003Ch to 003Fh)  
11.3 Key Input Interrupt  
16. A/D Converter  
15. Clock Synchronous  
Serial I/O with Chip Select  
(SSU)  
14  
15  
Compare 1  
UART0 Transmit  
UART0 Receive  
(Reserved)  
(Reserved)  
(Reserved)  
Timer X  
+64 to +67(0040h to 0043h)  
+68 to +71(0044h to 0047h)  
+72 to +75(0048h to 004Bh)  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
13.3 Timer C  
14. Serial Interface  
+88 to +91(0058h to 005Bh)  
13.1 Timer X  
(Reserved)  
Timer Z  
+96 to +99(0060h to 0063h)  
+100 to +103(0064h to 0067h)  
13.2 Timer Z  
INT1  
11.2 INT interrupt  
+104 to +107(0068h to 006Bh)  
26  
INT3  
Timer C  
Compare 0  
+108 to +111(006Ch to 006Fh)  
+112 to +115(0070h to 0073h)  
+116 to +119(0074h to 0077h)  
27  
28  
29  
13.3 Timer C  
INT0  
11.2 INT interrupt  
(Reserved)  
(Reserved)  
Software Interrupt  
30  
31  
(2)  
+128 to +131(0080h to 0083h) to  
+252 to +255(00FCh to 00FFh)  
32 to 63  
R8C/Tiny Series  
software manual  
NOTES:  
1. These addresses are relative to those in the INTB register.  
2. The I flag does not disable these interrupts.  
Rev.2.10 Jan 19, 2006 Page 60 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6 Interrupt Control  
The following describes enable/disable the maskable interrupts and set the priority order to  
acknowledge. The contents explained does not apply to the nonmaskable interrupts.  
Use the I flag in the FLG register, IPL and the ILVL2 to ILVL0 bits in each interrupt control register to  
enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in  
each interrupt control register.  
Figure 11.3 shows the Interrupt Control Register and Figure 11.4 shows the INT0IC Register  
Interrupt Control Register(2)  
Symbol  
KUPIC  
ADIC  
Address  
004Dh  
004Eh  
004Fh  
0050h  
0051h  
0052h  
0056h  
0058h  
0059h  
005Ah  
005Bh  
After Reset  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
XXXXX000b  
SSUAIC  
CMP1IC  
S0TIC  
S0RIC  
TXIC  
TZIC  
INT1IC  
INT3IC  
TCIC  
b7 b6 b5 b4 b3 b2 b1 b0  
CMP0IC  
005Ch  
XXXXX000b  
Bit Symbol  
ILVL0  
Bit Name  
Function  
RW  
RW  
b2 b1 b0  
Interrupt Priority Level Select Bit  
0 0 0 : Level 0 (interrupt disable)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
ILVL1  
RW  
RW  
ILVL2  
IR  
1 1 1 : Level 7  
Interrupt Request Bit  
0 : Requests no interrupt  
1 : Requests interrupt  
RW(1)  
(b7-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
NOTES :  
1. Only “0” can be w ritten to the IR bit. Do not w rite “ 1”.  
2. To rew rite the interrupt control register, rew rite it w hen the interrupt request w hich is applicable for its register is not  
generated. Refer to  
20.2.6 Changing Interrupt Control Registers.  
Figure 11.3  
Interrupt Control Register  
Rev.2.10 Jan 19, 2006 Page 61 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
INT0 Interrupt Control Register(2)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
Address  
005Dh  
After Reset  
XX00X000b  
Function  
INT01C  
Bit Symbol  
Bit Name  
RW  
RW  
b2 b1 b0  
Interrupt Priority Level Select Bit  
0 0 0 : Level 0 (interrupt disable)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
1 0 0 : Level 4  
ILVL0  
ILVL1  
ILVL2  
RW  
RW  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
Interrupt Request Bit  
Polarity Sw itch Bit(4)  
Reserved Bit  
0 : Requests no interrupt  
1 : Requests interrupt  
IR  
RW(1)  
RW  
RW  
0 : Selects falling edge  
1 : Selects rising edge(3)  
POL  
(b5)  
Set to “0”  
(b7-b6)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
NOTES :  
1. Only “0” can be w ritten to the IR bit. (Do not w rite “1”.)  
2. To rew rite the interrupt control register, rew rite it w hen the interrupt request w hich is applicable for its register is not  
generated. Refer to  
20.2.6 Changing Interrupt Control Registers.  
3. If the INTOPL bit in the INTEN register is set to “1” (both edges), set the POL bit to “0” (selects falling edge).  
4. The IR bit may be set to “1” (requests interrupt) w hen the POL bit is rew ritten. Refer to  
20.2.5 Changing Interrupt  
Factor.  
Figure 11.4  
INT0IC Register  
Rev.2.10 Jan 19, 2006 Page 62 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.1 I Flag  
The I flag enables or disables the maskable interrupt. Setting the I flag to “1” (enabled) enables the  
maskable interrupt. Setting the I flag to “0” (disabled) disables all maskable interrupts.  
11.1.6.2 IR Bit  
The IR bit is set to “1” (interrupt requested) when an interrupt request is generated. Then, when the  
interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the  
IR bit is set to “0” (= interrupt not requested).  
The IR bit can be set to “0” by a program. Do not write “1” to this bit.  
11.1.6.3 ILVL2 to ILVL0 Bits and IPL  
Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.  
Table 11.3 lists the Settings of Interrupt Priority Levels and Table 11.4 lists the Interrupt Priority  
Levels Enabled by IPL.  
The following are conditions under which an interrupt is acknowledged:  
I flag = 1  
IR bit = 1  
interrupt priority level > IPL  
The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. They do not affect one  
another.  
Table 11.3  
Settings of Interrupt Priority  
Levels  
Table 11.4  
Interrupt Priority Levels Enabled by  
IPL  
ILVL2 to ILVL0 Bits  
Interrupt Priority Level  
Priority Order  
IPL  
000b  
Enabled Interrupt Priority Levels  
Interrupt level 1 and above  
Interrupt level 2 and above  
Interrupt level 3 and above  
Interrupt level 4 and above  
Interrupt level 5 and above  
Interrupt level 6 and above  
Interrupt level 7 and above  
All maskable interrupts are disabled  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
Level 0 (interrupt disabled)  
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
Level 7  
Low  
001b  
010b  
011b  
100b  
101b  
110b  
High  
111b  
Rev.2.10 Jan 19, 2006 Page 63 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.4 Interrupt Sequence  
An interrupt sequence is performed between an interrupt request acknowledgement and interrupt  
routine execution.  
When an interrupt request is generated while an instruction is executed, the CPU determines its  
interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from  
the following cycle. However, in regards to the SMOVB, SMOVF, SSTR or RMPA instruction, if an  
interrupt request is generated while executing the instruction, the microcomputer suspends the  
instruction to start the interrupt sequence. The interrupt sequence is performed as follows. Figure  
11.5 shows the Time Required for Executing Interrupt Sequence.  
(1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading  
the address 00000h. The IR bit for the corresponding interrupt is set to “0” (interrupt not  
requested).  
(2) The FLG register immediately before entering the interrupt sequence is saved to the CPU  
(1)  
internal temporary register  
.
(3) The I, D and U flags in the FLG register are set as follows:  
The I flag is set to “0” (disables interrupts).  
The D flag is set to “0” (disables single-step interrupt).  
The U flag is set to “0” (ISP selected).  
However, the U flag does not change state if an INT instruction for software interrupt numbers  
32 to 63 is executed.  
(1)  
(4) The CPU’s internal temporary register is saved to the stack.  
(5) The PC is saved to the stack.  
(6) The interrupt priority level of the acknowledged interrupt is set in the IPL.  
(7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.  
After the interrupt sequence is completed, the instructions are executed from the starting address of  
the interrupt routine.  
NOTES:  
1. This register cannot be used by user.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CPU Clock  
Address Bus  
Data Bus  
RD  
Address  
0000h  
Indeterminate  
Indeterminate  
Indeterminate  
SP-2 SP-1 SP-4  
SP-3  
VEC  
VEC+1  
VEC+2  
PC  
Interrupt  
information  
SP-3  
contents  
VEC+1  
contents  
VEC+2  
contents  
SP-2  
SP-1  
SP-4  
VEC  
contents  
contents contents contents  
WR  
The indeterminate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is  
ready to acknowledge instructions.  
Figure 11.5  
Time Required for Executing Interrupt Sequence  
Rev.2.10 Jan 19, 2006 Page 64 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.5 Interrupt Response Time  
Figure 11.6 shows an Interrupt Response Time. The interrupt response time is the period between  
an interrupt request generation and the execution of the first instruction in an interrupt routine. An  
interrupt response time includes the period between an interrupt request generation and the  
completed execution of an instruction (see #a in Figure 11.6) and the period required to perform an  
interrupt sequence (20 cycles, see #b in Figure 11.6).  
Interrupt request is generated Interrupt request is acknowledged  
Time  
Instruction in  
interrupt routine  
Instruction  
Interrupt Sequence  
(a)  
20 Cycles (b)  
Interrupt Response Time  
(a) Period between an interrupt request generation and the completed execution of an  
instruction. The length of this time varies depending on the instruction being executed.  
The DIVX instruction requires the longest time; 30 cycles (no wait and when the register  
is set as the divisor)  
(b) 21 cycles for address match and single-step interrupts.  
Figure 11.6  
Interrupt Response Time  
11.1.6.6 IPL Change when Interrupt Request is Acknowledged  
When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the  
acknowledged interrupt is set in the IPL.  
When a software interrupt and special interrupt request are acknowledged, the level listed in Table  
11.5 is set to the IPL. Table 11.5 lists the IPL Value When Software or Special Interrupts Is  
Acknowledged.  
Table 11.5  
IPL Value When Software or Special Interrupts Is Acknowledged  
Interrupt Factor Value Set to IPL  
Watchdog Timer, Oscillation Stop Detection, Voltage Monitor 2 7  
Software, Address Match, Single-Step  
Not changed  
Rev.2.10 Jan 19, 2006 Page 65 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.7 Saving a Register  
In the interrupt sequence, the FLG register and PC are saved to the stack.  
After 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register,  
extended to 16 bits, are saved to the stack, the 16 low-order bits in the PC are saved. Figure 11.7  
shows the Stack State Before and After Acknowledgement of Interrupt Request.  
The other necessary registers are saved by a program at the beginning of the interrupt routine. The  
(1)  
PUSHM instruction can save several registers in the register bank being currently used with 1  
instruction.  
NOTES:  
1. Selectable from the R0, R1, R2, R3, A0, A1, SB and FB registers.  
Stack  
Stack  
Address  
Address  
MSB  
LSB  
MSB  
LSB  
[SP]  
New SP Value  
m4  
m3  
m4  
m3  
PCL  
PCM  
m2  
m1  
m
m2  
FLGL  
m1  
FLGH  
PCH  
[SP]  
m
SP value before  
interrupt is generated  
Content of Previous Stack  
Content of Previous Stack  
Content of Previous Stack  
Content of Previous Stack  
PCH  
PCM  
PCL  
: High-order 4 bits of PC  
: Middle-order 8 bits of PC  
: Low-order 8 bits of PC  
m+1  
m+1  
FLGH : High-order 4 bits of FLG  
FLGL : Low-order 8 bits of FLG  
Stack state before interrupt request  
is acknowledged  
Stack state after interrupt request  
is acknowledged  
NOTES  
1.When executing the software number 32 to 63 INT instructions,  
this SP is specified by the U flag. Otherwise it is ISP.  
Figure 11.7  
Stack State Before and After Acknowledgement of Interrupt Request  
The register saving operation which is performed in the interrupt sequence is saved in 8 bits every 4  
steps. Figure 11.8 shows the Operation of Saving Register.  
Stack  
Address  
Sequence in which  
order registers are  
saved  
[SP]5  
[SP]4  
[SP]3  
(3)  
(4)  
PCL  
PCM  
Saved, 8 bits at a time  
[SP]2  
[SP]1  
(1)  
(2)  
FLGL  
FLGH  
PCH  
PCH  
PCM  
PCL  
: High-order 4 bits of PC  
: Middle-order 8 bits of PC  
: Low-order 8 bits of PC  
[SP]  
FLGH : High-order 4 bits of FLG  
FLGL : Low-order 8 bits of FLG  
completed saving  
registers in four  
operations.  
NOTES :  
1. [SP] indicates the initial value of the SP when interrupt request is acknowledged.  
After registers are saved, the SP content is [SP] minus 4. When executing the  
software number 32 to 63 INT instructions, this SP is specified by the U  
flag. Otherwise it is ISP.  
Figure 11.8  
Operation of Saving Register  
Rev.2.10 Jan 19, 2006 Page 66 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.8 Returning from an Interrupt Routine  
When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC,  
which have been saved to the stack, are automatically returned. The program, executed before the  
interrupt request has been acknowledged, starts running again.  
Return the register saved by a program in an interrupt routine using the POPM instruction or others  
before the REIT instruction.  
11.1.6.9 Interrupt Priority  
If two or more interrupt requests are generated while executing one instruction, the interrupt with the  
higher priority is acknowledged.  
Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral  
functions). However, if two or more maskable interrupts have the same priority level, their interrupt  
priority is resolved by hardware, with the higher priority interrupt acknowledged in hardware.  
The priority levels of special interrupts such as reset (reset has the highest priority) and watchdog  
timer are set by hardware. Figure 11.9 shows the Interrupt Priority Levels of Hardware Interrupt.  
The interrupt priority does not affect software interrupts. The microcomputer jumps to the interrupt  
routine when the instruction is executed.  
Reset  
High  
Watchdog Timer  
Oscillation Stop Detection  
Voltage Monitor 2  
Peripheral Function  
Single Step  
Address Match  
Low  
Figure 11.9  
Interrupt Priority Levels of Hardware Interrupt  
Rev.2.10 Jan 19, 2006 Page 67 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.1.6.10 Interrupt Priority Judgement Circuit  
The interrupt priority judgement circuit selects the highest priority interrupt. Figure 11.10 shows the  
Judgement Circuit of Interrupts Priority Level.  
Priority Level of Each Interrupt  
Highest  
Level 0 (default value)  
Compare 0  
INT3  
Timer Z  
Timer X  
INT0  
Timer C  
INT1  
Priority of peripheral function interrupts  
(if priority levels are same)  
UART0 Receive  
Compare 1  
A/D Conversion  
UART0 Transmit  
SSU  
Key Input  
IPL  
Lowest  
Interrupt request level  
judgment output signal  
Interrupt  
request  
acknowledged  
I flag  
Address Match  
Watchdog Timer  
Oscillation Stop Detection  
Voltage Monitor 2  
Figure 11.10 Judgement Circuit of Interrupts Priority Level  
Rev.2.10 Jan 19, 2006 Page 68 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.2 INT Interrupt  
11.2.1 INT0 Interrupt  
The INT0 interrupt is generated by an INT0 input. When using the INT0 interrupt, the INT0EN bit in  
the INTEN register is set to “1” (enable). The edge polarity is selected using the INT0PL bit in the  
INTEN register and the POL bit in the INT0IC register.  
Inputs can be passed through a digital filter with three different sampling clocks.  
The INT0 pin is shared with the external trigger input pin of timer Z.  
Figure 11.11 shows the INTEN and INT0F Registers.  
External Input Enable Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0  
Symbol  
INTEN  
Address  
0096h  
After Reset  
00h  
Bit Symbol  
Bit Name  
INT0 Input Enable Bit(1)  
Function  
RW  
RW  
____  
0 : Disable  
1 : Enable  
INT0EN  
INT0PL  
____  
INT0 Input Polarity Select Bit(2,3)  
0 : One edge  
1 : Both edges  
RW  
RW  
(b7-b2)  
Reserved Bit  
Set to “0”  
NOTES :  
1. Set the INT0EN bit w hile the INOSTG bit in the PUM register is set to “0” (one-shot trigger disabled).  
2. When setting the INT0PL bit to “1” (both edges), set the POL bit in the INT0IC register to “0” (selects falling  
edge).  
3. The IR bit in the INT0IC register may be set to “1” (requests interrupt) w hen the INT0PL bit is rew ritten. Refer to  
20.2.5  
Changing Interrupt Factor.  
_______  
INT0 Input Filter Select Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
Address  
001Eh  
After Reset  
00h  
INT0F  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
_____  
b1 b0  
INT0 Input Filter Select Bit  
0 0 : No filter  
INT0F0  
INT0F1  
0 1 : Filter w ith f1 sampling  
1 0 : Filter w ith f8 sampling  
1 1 : Filter w ith f32 sampling  
RW  
(b2)  
Reserved Bit  
Set to “0”  
RW  
(b7-b3)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
Figure 11.11 INTEN and INT0F Registers  
Rev.2.10 Jan 19, 2006 Page 69 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.2.2 INT0 Input Filter  
The INT0 input contains a digital filter. The sampling clock is selected by the INT0F1 to INT0F0 bits  
in the INT0F register. The IR bit in the INT0IC register is set to “1” (interrupt requested) when the  
INT0 level is sampled for every sampling clock and the sampled input level matches three times.  
Figure 11.12 shows the Configuration of INT0 Input Filter. Figure 11.13 shows the Operating  
Example of INT0 Input Filter.  
INT0F1 to INT0F0  
=01b  
f1  
Sampling Clock  
=10b  
f8  
=11b  
INT0EN  
f32  
Other than  
INT0F1 to INT0F0  
=00b  
INT0  
INT0 Interrupt  
Digital Filter  
(input level  
matches 3x)  
Port P4_5  
Direction  
Register  
=00b  
INT0PL=0  
INT0PL=1  
Both Edges  
Detection  
Circuit  
INT0F0, INT0F1 : Bits in INT0F register  
INT0EN, INT0PL : Bits in INTEN register  
Figure 11.12 Configuration of INT0 Input Filter  
INT0 input  
Sampling  
timing  
IR bit in  
INT0IC register  
Set to “0” in program  
This is an operation example when the INT0F1 to INT0F0 bits in the  
INT0F register is set to “01b”, “10b”, or “11b” (passing digital filter).  
Figure 11.13 Operating Example of INT0 Input Filter  
Rev.2.10 Jan 19, 2006 Page 70 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.2.3 INT1 Interrupt  
The INT1 interrupt is generated by INT1 inputs. The edge polarity is selected by the R0EDG bit in the  
TXMR register.  
When the CNTRSEL bit in the UCON register is set to “0”, the INT10 pin becomes the INT1 input pin.  
When the CNTRSEL bit is set to “1”, the INT11 pin becomes the INT1 input pin.  
The INT10 pin is shared with the CNTR00 pin and the INT11 pin is shared with the CNTR01 pin.  
Figure 11.14 shows the TXMR Register when INT1 Interrupt is Used.  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Operating Mode Select Bit 0,  
1(1)  
Function  
RW  
RW  
b1 b0  
0 0 : Timer mode or pulse period measurement  
mode  
TXMOD0  
TXMOD1  
0 1 : Do not set  
1 0 : Event count mode  
1 1 : Pulse w idth measurement mode  
RW  
____  
0 : Rising edge  
1 : Falling edge  
INT1/CNTR0 Polarity Sw itch  
Bit(2)  
R0EDG  
TXS  
RW  
RW  
RW  
Timer X Count Start Flag(3)  
0 : Stops counting  
1 : Starts counting  
_______  
P3_7/CNTR0 Select Bit  
Function varies depending on operating mode  
TXOCNT  
Operating Mode Select  
Bit 2  
0 : Other than pulse period measurement mode  
1 : Pulse period measurement mode  
TXMOD2  
RW  
Active Edge Reception Flag Function varies depending on operating mode  
Timer X Underflow Flag Function varies depending on operating mode  
TXEDG  
TXUND  
RW  
RW  
NOTES :  
____  
1. When using INT1 interrupt, select modes other than pulse output mode.  
2. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten. Refer to  
20.2.5 Changing Interrupt Factor.  
3. Ref er to  
for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 11.14 TXMR Register when INT1 Interrupt is Used  
Rev.2.10 Jan 19, 2006 Page 71 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.2.4 INT3 Interrupt  
The INT3 interrupt is generated by the INT3 input. Set the TCC07 bit in the TCC0 register to “0”  
(INT3).  
When the TCC06 bit in the TCC0 register is set to “0”, the INT3 interrupt request is generated  
synchronizing with the count source of timer C. When the TCC06 bit is set to “1”, the INT3 interrupt  
request is generated when the INT3 is input.  
The INT3 input contains a digital filter. The IR bit in the INT3IC register is set to “1” (interrupt  
requested) when the INT3 level is sampled for every sampling clock and the sampled input level  
matches three times. The sampling clock is selected by the TCC11 to TCC10 bits in the TCC1  
register. When selecting “Filter”, the interrupt request is generated synchronizing with the sampling  
clock even if the TCC06 bit is set to “1”. The P3_3 bit in the P3 register indicates the previous value  
before filtering regardless of the contents set in the TCC11 to TCC10 bits.  
The INT3 pin is used with the TCIN pin.  
When setting the TCC07 bit to “1” (fRING128), the INT3 interrupt is generated by the fRING128  
clock. The IR bit in the INT3IC register is set to “1” (interrupt requested) every fRING128 clock cycle  
or every half fRING128 clock cycle.  
Figure 11.15 shows the TCC0 Register and Figure 11.16 shows the TCC1 Register.  
Timer C Control Register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
TCC0  
Address  
009Ah  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Timer C Count Start Bit  
0 : Stops counting  
1 : Starts counting  
TCC00  
TCC01  
Timer C Count Source Select Bit(1)  
b2 b1  
0 0 : f1  
0 1 : f8  
1 0 : f32  
1 1 : fRING-fast  
RW  
RW  
RW  
TCC02  
TCC03  
TCC04  
_____  
b4 b3  
INT3 Interrupt and Capture  
0 0 : Rising edge  
0 1 : Falling edge  
1 0 : Both edges  
1 1 : Do not set  
Polarity Select Bit(1,2)  
RW  
RW  
(b5)  
Reserved Bit  
Set to “0”  
____  
____  
INT3 Interrupt Request Generation  
0 : INT3 Interrupt is generated  
Timing Select Bit(2,3)  
synchronizing w ith Timer C count  
____  
TCC06  
RW  
RW  
1 : INT3 Interrupt is generated w hen  
____  
INT3 interrupt is input(4)  
____  
____  
INT3 Interrupt and Capture Input  
Sw itch Bit(1,2)  
0 : INT3  
TCC07  
1 : fRING128  
NOTES :  
1. Change this bit w hen the TCC00 bit is set to “0” (count stop).  
2. The IR bit in the INT3IC register may be set to “1” (requests interrupt) w hen the TCC03, TCC04, TCC06 and TCC07  
bits are rew ritten. Refer to  
20.2.5 Changing Interrupt Factor.  
____  
3. When the TCC13 bit is set to “1” (output compare mode) and INT3 interrupt is input, regardless of the  
setting value of the TCC06 bit, an interrupt request is generated.  
____  
____  
4. When using INT3 filter, the INT3 interrupt is generated synchronizing w ith the clock for the digital filter.  
Figure 11.15 TCC0 Register  
Rev.2.10 Jan 19, 2006 Page 72 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
Timer C Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
009Bh  
After Reset  
00h  
TCC1  
Bit Symbol  
Bit Name  
INT3 Filter Select Bit(1)  
Function  
RW  
RW  
____  
b1b0  
TCC10  
TCC11  
0 0 : No filter  
0 1 : Filter w ith f1 sampling  
1 0 : Filter w ith f8 sampling  
1 1 : Filter w ith f32 sampling  
RW  
RW  
Timer C Counter Reload Select 0 : No reload  
Bit(2,3)  
1 : Set TC register to “0000h” w hen compare 1  
is matched  
TCC12  
TCC13  
Compare 0 / Capture Select Bit 0 : Capture Select (input capture mode) (2)  
1 : Compare 0 Output Select  
RW  
RW  
(output compare mode)  
Compare 0 Output Mode Select  
b5 b4  
Bit(3)  
0 0 : CMPoutput remains unchanged even  
w hen compare 0 is matched  
0 1 : CMPoutput is reversed w hen compare  
0 signal is matched  
TCC14  
TCC15  
TCC16  
TCC17  
1 0 : CMPoutput is set to “L” w hen compare  
0 signal is matched  
1 1 : CMPoutput is set to “H” w hen compare  
0 signal is matched  
RW  
RW  
RW  
Compare 1 Output Mode Select  
Bit(3)  
b7 b6  
0 0 : CMPoutput remains unchanged even  
w hen compare 1 is matched  
0 1 : CMPoutput is reversed w hen compare  
1 signal is matched  
1 0 : CMPoutput is set to “L” w hen compare  
1 signal is matched  
1 1 : CMPoutput is set to “H” w hen compare  
1 signal is matched  
NOTES :  
1.  
____  
When the same value from the INT3 pin is sampled three times continuously, the input is determined.  
2. When the TCC00 bit in the TCC0 register is set to “0” (count stop), rew rite the TCC13 bit.  
3. When the TCC13 bit is set to “0” (input capture mode), set the TCC12, TCC14 to TCC17 bits to “0”.  
Figure 11.16 TCC1 Register  
Rev.2.10 Jan 19, 2006 Page 73 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.3 Key Input Interrupt  
A key input interrupt request is generated by one of the input edges of the K10 to K13 pins. The key  
input interrupt can be used as a key-on wake-up function to exit wait or stop mode.  
The KIiEN (i=0 to 3) bit in the KIEN register can select whether the pins are used as KIi input. The KIiPL  
bit in the KIEN register can select the input polarity.  
When inputting “L” to the KIi pin which sets the KIiPL bit to “0” (falling edge), the input of the other K10 to  
K13 pins are not detected as interrupts. Also, when inputting “H” to the KIi pin which sets the KIiPL bit to  
“1” (rising edge), the input of the other K10 to K13 pins are not detected as interrupts.  
Figure 11.17 shows a Block Diagram of Key Input Interrupt.  
PU02 bit in PUR0 register  
KUPIC Register  
Pull-Up  
Transistor  
PD1_3 bit in PD1 register  
KI3EN Bit  
PD1_3 Bit  
KI3PL=0  
KI3  
KI3PL=1  
KI2EN Bit  
Pull-Up  
Transistor  
PD1_2 Bit  
KI2PL=0  
Interrupt Control  
Circuit  
Key Input Interrupt  
Request  
KI2  
KI1  
KI0  
KI2PL=1  
KI1EN Bit  
PD1_1 Bit  
Pull-Up  
Transistor  
KI1PL=0  
KI1PL=1  
KI0EN, KI1EN, KI2EN, KI3EN,  
KI0PL, KI1PL, KI2PL, KI3PL: Bits in KIEN register  
PD1_0, PD1_1, PD1_2, PD1_3: Bits in PD1 register  
KI0EN Bit  
PD1_0 Bit  
Pull-Up  
Transistor  
KI0PL=0  
KI0PL=1  
Figure 11.17 Block Diagram of Key Input Interrupt  
Rev.2.10 Jan 19, 2006 Page 74 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
Key Input Enable Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
KIEN  
Address  
0098h  
After Reset  
00h  
Bit Symbol  
Bit Name  
KI0 Input Enable Bit  
Function  
RW  
RW  
0 : Disable  
1 : Enable  
KI0EN  
KI0PL  
KI1EN  
KI1PL  
KI2EN  
KI2PL  
KI3EN  
KI0 Input Polarity Select Bit  
KI1 Input Enable Bit  
0 : Falling edge  
1 : Rising edge  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0 : Disable  
1 : Enable  
KI1 Input Polarity Select Bit  
KI2 Input Enable Bit  
0 : Falling edge  
1 : Rising edge  
0 : Disable  
1 : Enable  
KI2 Input Polarity Select Bit  
KI3 Input Enable Bit  
0 : Falling edge  
1 : Rising edge  
0 : Disable  
1 : Enable  
KI3 Input Polarity Select Bit  
0 : Falling edge  
1 : Rising edge  
KI3PL  
NOTES :  
1. The IR bit in the KUPIC register may be set to “1” (requests interrupt) w hen the KIEN register is rew ritten.  
Ref er to  
20.2.5 Changing Interrupt Factor.  
Figure 11.18 KIEN Register  
Rev.2.10 Jan 19, 2006 Page 75 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
11.4 Address Match Interrupt  
An address match interrupt request is generated immediately before executing the instruction at the  
address indicated by the RMADi register (i=0, 1). This interrupt is used for a break function of the  
debugger. When using the on-chip debugger, do not set an address match interrupt (the registers of  
AIER, RMAD0, RMAD1 and the fixed vector tables) in a user system.  
Set the starting address of any instruction in the RMADi register. The AIER0 and AIER1 bits in the  
AIER0 register can select to enable or disable the interrupt. The I flag and IPL do not affect the address  
match interrupt.  
The value of the PC (Refer to 11.1.6.7 Saving a Register for the value of the PC) which is saved to the  
stack when an address match interrupt is acknowledged varies depending on the instruction at the  
address indicated by the RMADi register (The appropriate return address is not pushed on the stack).  
When returning from the address match interrupt, return by one of the following:  
Change the content of the stack and use the REIT instruction.  
Use an instruction such as POP to restore the stack as it was before an interrupt request was  
acknowledged. And then use a jump instruction.  
Table 11.6 lists the Value of PC Saved to Stack when Address Match Interrupt is Acknowledged.  
Figure 11.19 shows the AIER, RMAD0 to RMAD1 Registers.  
Table 11.6  
Value of PC Saved to Stack when Address Match Interrupt is Acknowledged  
Address Indicated by RMADi Register (i=0,1)  
(1)  
PC Value Saved  
• 16-bit operation code instruction  
• Instruction shown below among 8-bit operation code instructions  
Address indicated by  
RMADi register + 2  
ADD.B:S  
#IMM8,dest SUB.B:S #IMM8,dest AND.B:S #IMM8,dest  
OR.B:S  
#IMM8,dest MOV.B:S #IMM8,dest STZ.B:S #IMM8,dest  
STNZ.B:S #IMM8,dest STZX.B:S #IMM81,#IMM82,dest  
CMP.B:S  
JMPS  
MOV.B:S  
#IMM8,dest PUSHM src  
#IMM8 JSRS #IMM8  
#IMM,dest (However, dest = A0 or A1)  
POPM  
dest  
• Instructions other than the above  
Address indicated by  
RMADi register + 1  
NOTES:  
1. Refer to the 11.1.6.7 Saving a Register for the PC value saved.  
Table 11.7  
Between Address Match Interrupt Sources and Associated Registers  
Address Match Interrupt Factor Address Match Interrupt Enable Bit Address Match Interrupt Register  
Address Match Interrupt 0  
Address Match Interrupt 1  
AIER0  
AIER1  
RMAD0  
RMAD1  
Rev.2.10 Jan 19, 2006 Page 76 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
11.Interrupt  
Address Match Interrupt Enable Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
AIER  
Address  
0009h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Address Match Interrupt 0 Enable Bit 0 : Disable  
1 : Enable  
AIER0  
AIER1  
Address Match Interrupt 1 Enable Bit 0 : Disable  
1 : Enable  
RW  
(b7-b2)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Address Match Interrupt Register i(i=0,1)  
(b23)  
b7  
(b19)  
b3  
(b16) (b15)  
b0 b7  
(b8)  
b0 b7  
b0  
Symbol  
RMAD0  
RMAD1  
Address  
0012h-0010h  
0016h-0014h  
After Reset  
X00000h  
X00000h  
Function  
Setting Range  
RW  
RW  
Address setting register for address match interrupt  
00000h to FFFFFh  
(b7-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
Figure 11.19 AIER, RMAD0 to RMAD1 Registers  
Rev.2.10 Jan 19, 2006 Page 77 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
12. Watchdog Timer  
12. Watchdog Timer  
The watchdog timer is a function to detect when the program is out of control. To use the watchdog timer is  
recommend for improving reliability of a system. The watchdog timer contains a 15-bit counter and can  
select count source protection mode is enabled or disabled. Table 12.1 lists the Count Source Protection  
Mode is Enabled / Disabled  
Refer to 5.5 Watchdog Timer Reset for details of the watchdog timer reset.  
Figure 12.1 shows the Block Diagram of Watchdog Timer and Figures 12.2 to 12.3 show the OFS, WDC,  
WDTR, WDTS and CSPR Registers.  
Table 12.1  
Count Source Protection Mode is Enabled / Disabled  
When Count Source Protection  
When Count Source Protection  
Mode is Enabled  
Item  
Mode is Disabled  
Count Source  
CPU clock  
Low-speed on-chip oscillator  
clock  
Count Operation  
Reset Condition of Watchdog  
Timer  
Decrement  
Reset  
Write “00h” to the WDTR register before writing “FFh”  
Underflow  
Count Start Condition  
Either of following can be selected  
After reset, count starts automatically  
Count starts by writing to WDTS register  
Count Stop Condition  
Operation at the time of  
Underflow  
Stop mode, wait mode  
Watchdog timer interrupt or  
watchdog timer reset  
None  
Watchdog timer reset  
Prescaler  
WDC7=0  
WDC7=1  
1/16  
CSPRO=0  
CSPRO=1  
PM12=0  
Watchdog Timer  
Interrupt Request  
CPU Clock  
1/128  
Watchdog Timer  
PM12=1  
Watchdog  
Timer Reset  
fRING-S  
Set to  
“7FFFh”(1)  
Write to WDTR register  
Internal  
Reset Signal  
CSPRO : Bit in CSPR register  
WDC7 : Bit in WDC register  
NOTES:  
1. When the CSPRO bit is set to “1” (count source protection mode enabled), “0FFFh” is set.  
Figure 12.1  
Block Diagram of Watchdog Timer  
Rev.2.10 Jan 19, 2006 Page 78 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
12. Watchdog Timer  
Option Function Select Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
1 1 1  
1
Symbol  
OFS  
Address  
0FFFFh  
Before Shipment  
FFh(2)  
Bit Symbol  
Bit Name  
Function  
RW  
Watchdog Timer Start  
Select Bit  
0 : Watchdog timer starts automatically after reset  
1 : Watchdog timer is inactive after reset  
WDTON  
RW  
(b1)  
Reserved Bit  
Set to “1”  
RW  
RW  
RW  
RW  
ROM Code Protect  
Disabled Bit  
0 : ROM code protect disabled  
1 : ROMCP1 enabled  
ROMCR  
ROM Code Protect Bit  
0 : ROM code protect enabled  
1 : ROM code protect disabled  
ROMCP1  
(b6-b4)  
Reserved Bit  
Set to “1”  
Count Source Protection 0 : Count source protect mode enabled after reset  
Mode After Reset Select 1 : Count source protect mode disabled after reset  
Bit  
CSPROINI  
RW  
NOTES :  
1. The OFS register is on the flash memory. Write to the OFS register w ith a program.  
2. If the block including the OFS register is erased, “FFh” is set to the OFS register.  
Watchdog Timer Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
Symbol  
WDC  
Bit Symbol  
Address  
000Fh  
After Reset  
00011111b  
Function  
Bit Name  
RW  
RO  
(b4-b0)  
High-order Bit of Watchdog Timer  
(b5)  
Reserved Bit  
Set to “0”  
Set to “0”  
RW  
RW  
RW  
(b6)  
Reserved Bit  
Prescaler Select Bit  
0 : Divide-by-16  
1 : Divide-by-128  
WDC7  
Figure 12.2  
OFS and WDC Registers  
Rev.2.10 Jan 19, 2006 Page 79 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Watchdog Timer Reset Register  
12. Watchdog Timer  
b7  
b0  
Symbol  
WDTR  
Address  
000Dh  
After Reset  
Indeterminate  
Function  
When w riting “00h” before w riting “FFh”, the w atchdog timer is reset.(1)  
RW  
The default value of the w atchdog timer is set to “7FFFh” w hen count source protection  
mode is disabled and “0FFFh” w hen count source protection mode is enabled.(2)  
WO  
NOTES :  
1. Do not generate an interrupt betw een “00h” and the “FFh” w ritings.  
2. When the CSPRO bit in the CSPR register is set to “1” (count source protection mode enabled),  
“0FFFh” is set to the w atchdog timer.  
Watchdog Timer Start Register  
b7  
b0  
Symbol  
WDTS  
Address  
000Eh  
After Reset  
Indeterminate  
Function  
The w atchdog timer starts counting after a w rite instruction to this register.  
RW  
WO  
Count Source Protection Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0 0  
Symbol  
CSPR  
Address  
001Ch  
After Reset(1)  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b6-b0)  
Reserved Bit  
Set to “0”  
Count Source Protection Mode 0 : Count source protection mode disabled  
Select Bit(2)  
1 : Count source protection mode enabled  
CSPRO  
RW  
NOTES :  
1. When w riting “0” to the CSPROINI bit in the OFS register, the value after reset is set to “10000000b”.  
2. Write “0” before w riting “1” to set the CSPRO bit to “1”.  
“0” cannot be set by a program.  
Figure 12.3  
WDTR, WDTS and CSPR Registers  
Rev.2.10 Jan 19, 2006 Page 80 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
12. Watchdog Timer  
12.1 When Count Source Protection Mode Disabled  
The count source of the watchdog timer is the CPU clock when count source protection mode is  
disabled. Table 12.2 lists the Specification of Watchdog Timer (When Count Source Protection Mode is  
Disabled).  
Table 12.2  
Specification of Watchdog Timer (When Count Source Protection Mode is Disabled)  
Item Specification  
Count Source  
CPU clock  
Decrement  
Count Operation  
Period  
(1)  
Division ratio of prescaler(n) x count value of watchdog timer(32768)  
CPU clock  
n : 16 or 128 (selected by WDC7 bit in WDC register)  
e.g.When the CPU clock is 16MHz and prescaler is divided by 16, the  
period is approximately 32.8ms  
(2)  
Count Start Condition  
The WDTON bit in the OFS register (0FFFFh) selects the operation  
of watchdog timer after reset  
When the WDTON bit is set to “1” (watchdog timer is in stop state  
after reset)  
The watchdog timer and prescaler stop after reset and the count  
starts by writing to the WDTS register  
When the WDTON bit is set to “0” (watchdog timer starts  
automatically after exiting )  
The watchdog timer and prescaler start counting automatically after  
reset  
Reset Condition of Watchdog  
Timer  
Reset  
Write “00h” to the WDTR register before writing “FFh”  
Underflow  
Count Stop Condition  
Stop and wait modes (inherit the count from the held value after exiting  
modes)  
Operation at the time of  
Underflow  
When the PM12 bit in the PM1 register is set to “0”  
Watchdog timer interrupt  
When the PM12 bit in the PM1 register is set to “1”  
Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)  
NOTES:  
1. The watchdog timer is reset when writing “00h” to the WDTR register before writing “FFh”. The  
prescaler is reset after the microcomputer is reset. Some errors occur by the prescaler for the  
period of the watchdog timer.  
2. The WDTON bit cannot be changed by a program. When setting the WDTON bit, write “0” to the bit  
0 of the address 0FFFFh by a flash writer.  
Rev.2.10 Jan 19, 2006 Page 81 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
12. Watchdog Timer  
12.2 When Count Source Protection Mode Enabled  
The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source  
protection mode is enabled. If the CPU clock stops when the program is out of control, the clock can be  
supplied to the watchdog timer. Table 12.3 lists the Specification of Watchdog Timer (When Count  
Source Protection Mode is Enabled).  
Table 12.3  
Specification of Watchdog Timer (When Count Source Protection Mode is Enabled)  
Item Specification  
Low-speed on-chip oscillator clock  
Count Source  
Count Operation  
Period  
Decrement  
Count value of watchdog timer (4096)  
Low-speed on-chip oscillator clock  
e.g. Period is approximately 32.8ms when the low-speed on-chip  
oscillator clock is 125 kHz  
(1)  
Count Start Condition  
The WDTON bit in the OFS register (0FFFFh) selects the operation  
of the watchdog timer after reset.  
When the WDTON bit is set to “1” (watchdog timer is in stop state  
after reset)  
The watchdog timer and prescaler stop after reset and the count  
starts by writing to the WDTS register  
When the WDTON bit is set to “0” (watchdog timer starts  
automatically after reset)  
The watchdog timer and prescaler start counting automatically after  
reset  
Reset Condition of Watchdog  
Timer  
Reset  
Write “00h” to the WDTR register before writing “FFh”  
Underflow  
Count Stop Condition  
None (the count does not stop in wait mode after the count starts. The  
microcomputer does not enter stop mode)  
Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)  
Operation at the time of  
Underflow  
Register, Bit  
When setting the CSPPRO bit in the CSPR register to “1” (count  
(2)  
source protection mode is enabled) , the following are set  
automatically  
- Set 0FFFh to the watchdog timer  
- Set the CM14 bit in the CM1 register to “0” (low-speed on-chip  
oscillator on)  
- Set the PM12 bit in the PM1 register to “1” (The watchdog timer is  
reset when watchdog timer underflows)  
The following states are held in count source protection mode  
- Writing to the CM10 bit in the CM1 register disables (It remains  
unchanged even if it is set to “1”. The microcomputer does not  
enter stop mode)  
- Writing to the CM14 bit in the CM1 register disables (It remains  
unchanged even if it is set to “1”. The low-speed on-chip oscillator  
does not stop)  
NOTES:  
1. The WDTON bit cannot be changed by a program. When setting the WDTON bit, write “0” to the bit  
0 of the address 0FFFFh by a flash writer.  
2. Even if writing “0” to the CSPROINI bit in the OFS register, the CSPRO bit is set to “1”. The  
CSPROINI bit cannot be changed by a program. When setting the CSPROINI bit, write “0” to the bit  
7 of the address 0FFFFh by a flash writer.  
Rev.2.10 Jan 19, 2006 Page 82 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13. Timers  
The microcomputer contains two 8-bit timers with 8-bit prescaler and a 16-bit timer. The two 8-bit timers with  
the 8-bit prescaler contain Timer X and Timer Z. These timers contain a reload register to memorize the  
default value of the counter. The 16-bit timer is Timer C which contains the input capture and output  
compare. All these timers operate independently. The count source for each timer is the operating clock that  
regulates the timing of timer operations such as counting and reloading.  
Table 13.1 lists Functional Comparison of Timers.  
Table 13.1  
Functional Comparison of Timers  
Item Timer X  
8-bit timer with 8-bit 8-bit timer with 8-bit 16-bit free-run timer  
Timer Z  
Timer C  
Configuration  
prescaler (with  
reload register)  
Decrement  
prescaler (with  
reload register)  
Decrement  
(with input capture  
and output compare)  
Increment  
Count  
Count source  
• f1  
• f2  
• f8  
• f1  
• f2  
• f8  
• f1  
• f8  
• f32  
• fRING  
• Timer X underflow • fRING-fast  
Function Timer Mode  
Pulse Output Mode  
Event Counter Mode  
provided  
provided  
provided  
provided  
not provided  
not provided  
not provided  
not provided  
not provided  
not provided  
not provided  
Pulse Width Measurement provided  
Mode  
Pulse Period Measurement provided  
Mode  
not provided  
provided  
not provided  
not provided  
not provided  
not provided  
Programmable Waveform not provided  
Generation Mode  
Programmable one-shot  
generation mode  
not provided  
provided  
Programmable Wait One- not provided  
Shot Generation Mode  
provided  
Input Capture Mode  
not provided  
not provided  
CNTR0  
not provided  
not provided  
provided  
provided  
TCIN  
Output Compare Mode  
Input Pin  
INT0  
Output Pin  
CNTR0  
CNTR0  
TZOUT  
CMP0_0 to CMP0_2  
CMP1_0 to CMP1_2  
Timer C interrupt  
INT3 interrupt  
Compare 0 interrupt  
Compare 1 interrupt  
provided  
Related Interrupt  
Timer Stop  
Timer X interrupt  
INT1 interrupt  
Timer Y interrupt  
INT0 interrupt  
provided  
provided  
Rev.2.10 Jan 19, 2006 Page 83 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1 Timer X  
Timer X is an 8-bit timer with an 8-bit prescaler.  
The prescaler and timer consist of the reload register and counter. The reload register and counter are  
allocated at the same address. When accessing the PREX and TX registers, the reload register and  
counter can be accessed (Refer to Tables 13.2 to 13.6 the Specification of Each Modes).  
Figure 13.1 shows the Block Diagram of Timer X. Figures 13.2 and 13.3 show the registers associated  
with Timer X.  
Timer X contains five operating modes listed as follows:  
Timer mode:  
The timer counts an internal count source.  
Pulse output mode:  
The timer counts an internal count source and outputs the  
pulses which inverts the polarity by underflow of the timer.  
Event counter mode:  
The timer counts external pulses.  
Pulse width measurement mode: The timer measures the pulse width of an external pulse  
Pulse period measurement mode: The timer measures the pulse period of an external pulse.  
Data bus  
TXCK1 to TXCK0  
TXMOD1 to TXMOD0  
=00b  
Reload register  
Reload register  
f1  
f8  
fRING  
f2  
=00b or 01b  
=01b  
=10b  
=11b  
=11b  
Counter  
Counter  
Timer X interrupt  
INT1 interrupt  
=10b  
PREX register  
TX register  
CNTRSEL=1  
CNTRSEL=0  
TXS bit  
INT11/CNTR01  
INT10/CNTR00  
Polarity  
switching  
TXMOD1 to TXMOD0  
bits=01b  
R0EDG=1  
R0EDG=0  
Q
Q
Toggle flip-flop  
CK  
CLR  
TXOCNT bit  
Write to TX register  
TXMOD1 to TXMOD0 bits=01b  
CNTR0  
TXMOD0 to TXMOD1, R0EDG, TXS, TXOCNT : Bits in TXMR register  
TXCK0 to TXCK1 : Bits in TCSS register  
CNTRSEL : Bit in UCON register  
Figure 13.1  
Block Diagram of Timer X  
Rev.2.10 Jan 19, 2006 Page 84 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
008Bh  
After Reset  
00h  
TXMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Operating Mode Select Bit 0, 1  
b1 b0  
0 0 : Timer mode or pulse period measurement  
mode  
0 1 : Pulse output mode  
1 0 : Event counter mode  
1 1 : Pulse w idth measurement mode  
TXMOD0  
TXMOD1  
RW  
____  
Function varies depending on operating mode  
INT1/CNTR0 Signal  
R0EDG  
TXS  
RW  
RW  
RW  
Polarity Sw itch Bit(1)  
Timer X Count Start Flag(2)  
0 : Stops counting  
1 : Starts counting  
_______  
P3_7/CNTR0 Select Bit  
Function varies depending on operating mode  
TXOCNT  
Operating Mode Select Bit 2  
0 : Other than pulse period measurement mode  
1 : Pulse period measurement mode  
TXMOD2  
RW  
Active Edge Reception Flag  
Timer X Underflow Flag  
Function varies depending on operating mode  
Function varies depending on operating mode  
TXEDG  
TXUND  
RW  
RW  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
20.2.5 Changing Interrupt Factor.  
2. Refer to  
for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.2  
TXMR Register  
Rev.2.10 Jan 19, 2006 Page 85 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Prescaler X Register  
13.Timers  
b7  
b0  
Symbol  
PREX  
Address  
008Ch  
After Reset  
FFh  
Mode  
Timer Mode  
Function  
Setting Range  
00h to FFh  
00h to FFh  
RW  
RW  
RW  
Counts internal count source  
Counts internal count source  
Counts input pulses from external  
Pulse Output Mode  
Event Counter Mode  
00h to FFh  
RW  
Measures pulse w idth of input pulses from  
external (counts internal count source)  
Pulse Width  
Measurement Mode  
00h to FFh  
RW  
Measures pulse period of input pulses from  
external (counts internal count source)  
Pulse Period  
Measurement Mode  
00h to FFh  
RW  
Timer X Register  
b7  
b0  
Symbol  
TX  
Address  
008Dh  
After Reset  
FFh  
Function  
Setting Range  
RW  
RW  
Counts underflow of Prescaler X  
00h to FFh  
Timer Count Source Setting Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
0 0  
Symbol  
TCSS  
Address  
008Eh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Timer X Count Source Select  
Bit(1)  
b1 b0  
TXCK0  
TXCK1  
0 0 : f1  
0 1 : f8  
1 0 : fRING  
1 1 : f2  
RW  
(b3-b2)  
Reserved Bit  
Set to “0”  
RW  
RW  
Timer Z Count Source Select  
Bit(1)  
b5 b4  
TZCK0  
TZCK1  
0 0 : f1  
0 1 : f8  
1 0 : Selects Timer X underflow  
1 1 : f2  
RW  
RW  
(b7-b6)  
Reserved Bit  
Set to “0”  
NOTES :  
1. Do not sw itch a count source during a count operation. Stop the timer count before sw itching a count  
source.  
Figure 13.3  
PREX, TX and TCSS Registers  
Rev.2.10 Jan 19, 2006 Page 86 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1.1 Timer Mode  
Timer mode is mode to count the count source which is internally generated (See Table 13.2  
Specification of Timer Mode). Figure 13.4 shows the TXMR Register in Timer Mode.  
Table 13.2  
Specification of Timer Mode  
Item  
Specification  
Count Source  
f1, f2, f8, fRING  
Count Operation  
• Decrement  
• When the timer underflows, the contents in the reload register is reloaded and  
the count is inherited  
Divide Ratio  
1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register  
Count Start Condition Write “1” (count starts) to the TXS bit in the TXMR register  
Count Stop Condition Write “0” (count stops) to the TXS bit in the TXMR register  
Interrupt Request  
Generation Timing  
When Timer X underflows [Timer X interrupt]  
INT10/CNTR00,  
INT11/CNTR01 Pin  
Function  
Programmable I/O port, or INT1 interrupt input  
Programmable I/O port  
CNTR0 Pin Function  
Read from Timer  
Write to Timer  
The count value can be read by reading the TX and PREX registers  
• When writing to the TX and PREX registers while the count stops, the value is  
written to both the reload register and counter.  
• When writing to the TX and PREX registers during the count, the value is  
written to each reload register of the TX and PREX registers at the following  
count source input and the data is transferred to the counter at the second  
count source input and the count re-starts at the third count source input.  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0  
0 0  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Operating Mode Select Bit 0, 1  
b1 b0  
TXMOD0  
TXMOD1  
R0EDG  
TXS  
0 0 : Timer mode or pulse period measurement  
mode  
RW  
RW  
____  
0 : Rising edge  
1 : Falling edge  
INT1/CNTR0 Signal  
Polarity Sw itch Bit(1, 2)  
Timer X Count Start Flag(3)  
0 : Stops counting  
1 : Starts counting  
RW  
RW  
TXOCNT Set to “0” in timer mode  
TXMOD2 Operating Mode Select Bit 2  
0 : Other than pulse period measurement mode RW  
TXEDG  
TXUND  
Set to “0” in timer mode  
Set to “0” in timer mode  
RW  
RW  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
.
20.2.5 Changing Interrupt Factor  
____  
2. This bit is used to select the polarity of INT1 interrupt in timer mode.  
3. Refer to for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.4  
TXMR Register in Timer Mode  
Rev.2.10 Jan 19, 2006 Page 87 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1.2 Pulse Output Mode  
Pulse output mode is mode to count the count source internally generated and outputs the pulse  
which inverts the polarity from the CNTR0 pin each time the timer underflows (See Table 13.3  
Specification of Pulse Output Mode). Figure 13.5 shows TXMR Register in Pulse Output Mode.  
Table 13.3  
Specification of Pulse Output Mode  
Item  
Specification  
Count Source  
f1, f2, f8, fRING  
Count Operation  
• Decrement  
• When the timer underflows, the contents in the reload register is reloaded and  
the count is inherited  
Divide Ratio  
1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register  
Write “1” (count starts) to the TXS bit in the TXMR register  
Write “0” (count stops) to the TXS bit in the TXMR register  
When Timer X underflows [Timer X interrupt]  
Count Start Condition  
Count Stop Condition  
Interrupt Request  
Generation Timing  
Pulse output  
INT10/CNTR00 Pin  
Function  
Programmable I/O port or inverted output of CNTR0  
CNTR0 Pin Function  
The count value can be read by reading the TX and PREX registers.  
Read from timer  
Write to Timer  
• When writing to the TX and PREX registers while the count stops, the value is  
written to both the reload register and counter.  
• When writing to the TX and PREX registers during the count, the value is  
written to each reload register of the TX and PREX registers at the following  
count source input and the data is transferred to the counter at the second  
count source input and the count re-starts at the third count source input.  
Select Function  
• INT1/CNTR0 signal polarity switch function  
(1)  
The R0EDG bit can select the polarity level when the pulse output starts  
• Inverted pulse output function  
The pulse which inverts the polarity of the CNTR0 output can be output from  
the CNTR0 pin (selected by TXOCNT bit)  
NOTES:  
1. The level of the output pulse becomes the level when the pulse output starts when the TX register is  
written to.  
Rev.2.10 Jan 19, 2006 Page 88 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0  
0 1  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Operating Mode Select Bit 0, 1  
b1 b0  
TXMOD0  
TXMOD1  
R0EDG  
TXS  
0 1 : Pulse output mode  
RW  
RW  
RW  
RW  
____  
0 : CNTR0 signal output starts at “H”  
1 : CNTR0 signal output starts at “L”  
INT1/CNTR0 Signal  
Polarity Sw itch Bit(1)  
Timer X Count Start Flag(2)  
0 : Stops counting  
1 : Starts counting  
_______  
P3_7/CNTR0 Select Bit  
0 : Port P3_7  
_______  
TXOCNT  
1 : CNTR0 output  
TXMOD2 Set to “0” in pulse output mode  
RW  
RW  
RW  
TXEDG  
TXUND  
Set to “0” in pulse output mode  
Set to “0” in pulse output mode  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
.
20.2.5 Changing Interrupt Factor  
2. Refer to  
for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.5  
TXMR Register in Pulse Output Mode  
Rev.2.10 Jan 19, 2006 Page 89 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1.3 Event Counter Mode  
Event counter mode is mode to count an external signal which inputs from the INT1/CNTR0 pin (See  
Table 13.4 Specification of Event Counter Mode). Figure 13.6 shows TXMR Register in Event  
Counter Mode.  
Table 13.4  
Specification of Event Counter Mode  
Item  
Specification  
Count Source  
External signal which is input to CNTR0 pin (Active edge is selectable by  
software)  
Count Operation  
• Decrement  
• When the timer underflows, the contents in the reload register is reloaded and  
the count is inherited  
Divide Ratio  
1/(n+1)(m+1) n: setting value of PREX register, m: setting value of TX register  
Count Start Condition Write “1” (count starts) to the TXS bit in the TXMR register  
Count Stop Condition Write “0” (count stops) to the TXS bit in the TXMR register  
Interrupt Request  
Generation Timing  
• When Timer X underflows [Timer X interrupt]  
Count source input  
(INT1 interrupt input)  
INT10/CNTR00,  
INT11/CNTR01 Pin  
Function  
Programmable I/O port  
CNTR0 Pin Function  
Read from Timer  
Write to Timer  
The count value can be read by reading the TX and PREX registers.  
• When writing to the TX and PREX registers while the count stops, the value is  
written to both the reload register and counter.  
• When writing to the TX and PREX registers during the count, the value is written  
to each reload register of the TX and PREX registers at the following count  
source input and the data is transferred to the counter at the second count  
source input and the count re-starts at the third count source input.  
Select Function  
• INT1/CNTR0 signal polarity switch function  
The R0EDG bit can select the active edge of the count source.  
• Count source input pin select function  
The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin  
Rev.2.10 Jan 19, 2006 Page 90 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
1 0  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
RW  
b1 b0  
TXMOD0 Operating Mode Select Bit 0, 1  
1 0 : Event Counter Mode  
TXMOD1  
____  
0 : Rising edge  
1 : Falling edge  
INT1/CNTR0 Signal  
R0EDG  
RW  
RW  
Polarity Sw itch Bit(1)  
Timer X Count Start Flag(2)  
0 : Stops counting  
1 : Starts counting  
TXS  
TXOCNT Set to “0” in event counter mode  
TXMOD2 Set to “0” in event counter mode  
RW  
RW  
RW  
RW  
TXEDG  
TXUND  
Set to “0” in event counter mode  
Set to “0” in event counter mode  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
.
20.2.5 Changing Interrupt Factor  
2. Ref er to  
for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.6  
TXMR Register in Event Counter Mode  
Rev.2.10 Jan 19, 2006 Page 91 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1.4 Pulse Width Measurement Mode  
Pulse width measurement mode is mode to measure the pulse width of an external signal which  
inputs from the INT1/CNTR0 pin (See Table 13.5 Specification of Pulse Width Measurement  
Mode). Figure 13.7 shows the TXMR Register in Pulse Width Measurement Mode. Figure 13.8  
shows an Operating Example in Pulse Width Measurement Mode.  
Table 13.5  
Specification of Pulse Width Measurement Mode  
Item Specification  
Count Source  
f1, f2, f8, fRING  
Count Operation  
• Decrement  
• Continuously counts the selected signal only when the measurement pulse is  
“H” level, or conversely only “L” level.  
• When the timer underflows, the contents in the reload register is reloaded  
and the count is inherited  
Count Start Condition  
Count Stop Condition  
Interrupt Request  
Write “1” (count starts) to the TXS bit in the TXMR register  
Write “0” (count stops) to the TXS bit in the TXMR register  
• When Timer X underflows [Timer X interrupt]  
• Rising or falling of the CNTR0 input (end of measurement period) [INT1  
interrupt]  
Generation Timing  
Measurement pulse input (INT1 interrupt input)  
INT10/CNTR00,  
INT11/CNTR01 Pin  
Function  
Programmable I/O port  
CNTR0 Pin Function  
Read from Timer  
Write to Timer  
The count value can be read by reading the TX and PREX registers.  
• When writing to the TX and PREX registers while the count stops, the value  
is written to both the reload register and counter.  
• When writing to the TX and PREX registers during the count, the value is  
written to each reload register of the TX and PREX registers at the following  
count source input and the data is transferred to the counter at the second  
count source input and the count re-starts at the third count source input.  
Select Function  
• INT1/CNTR0 signal polarity switch function  
The R0EDG bit can select during “H” or “L” level as the input pulse  
measurement  
• Measurement pulse input pin select function  
The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01  
pin  
Rev.2.10 Jan 19, 2006 Page 92 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
1 1  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
RW  
TXMOD0 Operating Mode Select Bit 0, 1  
b1 b0  
1 1 : Pulse w idth measurement mode  
TXMOD1  
____  
[CNTR0]  
0 : Measures “L” level w idth  
INT1/CNTR0 Signal  
Polarity Sw itch Bit(1)  
R0EDG  
1 : Measures “H” level w idth  
______  
[INT1]  
RW  
RW  
0 : Rising edge  
1 : Falling edge  
Timer X Count Start Flag(2)  
0 : Stops counting  
1 : Starts counting  
TXS  
TXOCNT Set to “0” in pulse w idth measurement mode  
TXMOD2 Set to “0” in pulse w idth measurement mode  
RW  
RW  
RW  
RW  
TXEDG  
TXUND  
Set to “0” in pulse w idth measurement mode  
Set to “0” in pulse w idth measurement mode  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
.
20.2.5 Changing Interrupt Factor  
2. Ref er to  
for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.7  
TXMR Register in Pulse Width Measurement Mode  
Rev.2.10 Jan 19, 2006 Page 93 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
n = high-level: the contents of TX register, low-level: the contents of PREX register  
FFFFh  
n
Count Start  
Underflow  
Count Stop  
Count Stop  
Count Start  
Period  
0000h  
Set to “1” by program  
“1”  
“0”  
TXS Bit in  
TXMR Register  
“1”  
“0”  
Measurement Pulse  
(CNTR0i Pin Input)  
Set to “0” when interrupt request is acknowledged, or set by program  
“1”  
“0”  
IR Bit in INT1IC  
Register  
Set to “0” when interrupt request is acknowledged, or set by program  
“1”  
“0”  
IR Bit in TXIC  
Register  
Conditions: “H” level width of measurement pulse is measured. (R0EDG=1)  
i=0 to 1  
Figure 13.8  
Operating Example in Pulse Width Measurement Mode  
Rev.2.10 Jan 19, 2006 Page 94 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.1.5 Pulse Period Measurement Mode  
Pulse period measurement mode is mode to measure the pulse period of an external signal which  
inputs from the INT1/CNTR0 pin (See Table 13.6 Specification of Pulse Period Measurement  
Mode). Figure 13.9 shows the TXMR Register in Pulse Period Measurement Mode. Figure 13.10  
shows an Operating Example in Pulse Period Measurement Mode.  
Table 13.6  
Specification of Pulse Period Measurement Mode  
Item Specification  
Count Source  
f1, f2, f8, fRING  
Count Operation  
• Decrement  
• After an active edge of measurement pulse is input, contents for the read-out  
buffer are retained at the first underflow of prescaler X. Then timer X reloads  
contents in the reload register at the second underflow of prescaler X and  
continues counting.  
Count Start Condition  
Count Stop Condition  
Interrupt Request  
Write “1” (count start) to the TXS bit in the TXMR register  
Write “0” (count stop) to TXS bit in TXMR register  
• When timer X underflows or reloads [timer X interrupt]  
• Rising or falling of CNTR0 input (end of measurement period) [INT1 interrupt]  
Generation Timing  
(1)  
INT10/CNTR00,  
INT11/CNTR01 Pin  
Function  
Measurement pulse input (INT1 interrupt input)  
Programmable I/O port  
CNTR0 Pin Function  
Read from Timer  
Contents in the read-out buffer can be read by reading the TX register. The  
value retained in the read-out buffer is released by reading TX register.  
Write to Timer  
• When writing to the TX and PREX registers while the count stops, the value  
is written to both the reload register and counter.  
• When writing to the TX and PREX registers during the count, the value is  
written to each reload register of the TX and PREX registers at the following  
count source input and the data is transferred to the counter at the second  
count source input and the count re-starts at the third count source input.  
Select Function  
• INT1/CNTR0 polarity switch function  
The R0EDG bit can select the measurement period of input pulse.  
• Measurement pulse input pin select function  
The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01  
pin.  
NOTES:  
1. Input the pulse whose period is longer than twice of the prescaler X period. Input the longer pulse for  
“H” width and “L” width than the prescaler X period. If the shorter pulse than the period is input to the  
CNTR0 pin, the input may be disabled.  
Rev.2.10 Jan 19, 2006 Page 95 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer X Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
1 0  
0 0  
Symbol  
TXMR  
Address  
008Bh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Operating Mode Select Bit 0, 1  
b1 b0  
TXMOD0  
TXMOD1  
0 0 : Timer mode or pulse period measurement  
mode  
RW  
RW  
RW  
____  
[CNTR0]  
INT1/CNTR0 Signal  
Polarity Sw itch Bit(1)  
0 : Measures measurement pulse from one  
rising edge to next rising edge  
1 : Measures measurement pulse from one  
falling edge to next falling edge  
R0EDG  
_____  
[INT1]  
0 : Rising edge  
1 : Falling edge  
Timer X Count Start Flag(3)  
0 : Stops counting  
1 : Starts counting  
TXS  
TXOCNT Set to “0” in pulse w idth measurement mode  
RW  
RW  
TXMOD2 Operating Mode Select Bit 2  
1 : Pulse period measurement mode  
Active Edge Reception Flag  
TXEDG(2)  
0 : Active edge not received  
1 : Active edge received  
RW  
RW  
Timer X underflow flag  
0 : No underflow  
1 : Underflow  
(2)  
TXUND  
NOTES :  
1. The IR bit in the INT1IC register may be set to “1” (requests interrupt) w hen the R0EDG bit is rew ritten.  
Ref er to  
.
20.2.5 Changing Interrupt Factor  
2. This bit is set to “0” by w riting “0” in a program. (It remains unchanged even if w riting “1”)  
3. Refer to for precautions on the TXS bit.  
20.4.2 Timer X  
Figure 13.9  
TXMR Register in Pulse Period Measurement Mode  
Rev.2.10 Jan 19, 2006 Page 96 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Underflow Signal of  
Prescaler X  
Set to “1” by program  
TXS Bit in TXMR  
“1”  
Register  
“0”  
Starts  
counting  
“1”  
“0”  
CNTR0i Pin Input  
Timer X  
reloads  
Timer X  
reloads  
Timer X  
reloads  
Contents of Timer X  
0Fh 0Eh 0Fh 0Eh 0Dh 0Ch 0Bh 0Ah 09h 08h 0Fh 0Eh 0Dh  
01h 00h 0Fh 0Eh  
(7)  
Retained(7)  
Retained  
Contents of  
Read-Out Buffer1  
0Fh  
0Eh  
0Ah 09h  
08h  
0Dh  
Timer X read(3)  
01h 00h 0Fh 0Eh  
Timer X read(3)  
(2)  
(2)  
TXEDG Bit in  
TXMR Register  
“1”  
“0”  
Set to “0” by program(4)  
(6)  
TXUND Bit in  
TXMR Register  
“1”  
“0”  
Set to “0” by program(5)  
IR Bit in  
TXIC Register  
“1”  
“0”  
Set to “0” when interrupt request is acknowledged, or set by program  
IR Bit in INT1IC  
Register  
“1”  
“0”  
Set to “0” when interrupt request is acknowledged, or set by program  
Conditions: A period from one rising edge to the next rising edge of measurement pulse is measured (R0EDG=0)  
with the default value of the TX register as 0Fh.  
i=0 to 1  
NOTES :  
1. The contents of the read-out buffer can be read when the TX register is read in pulse period measurement mode.  
2. After an active edge of measurement pulse is input, the TXEDG bit in the TXMR register is set to “1” (active edge found)  
when the prescale X underflows for the second time.  
3. The TX register should be read before the next active edge is input after the TXEDG bit is set to “1” (active edge found).  
The contents in the read-out buffer is retained until the TX register is read. If the TX register is not read before the next  
active edge is input, the measured result of the previous period is retained.  
4. When set to “0” by program, use a MOV instruction to write “0” to the TXEDG in the TXMR register. At the same time,  
write “1” to the TXUND bit.  
5. When set to “0” by program, use a MOV instruction to write “0” to the TXUND in the TXMR register. At the same time,  
write “1” to the TXEDG bit.  
6. The TXUND and TXEDG bits are both set to “1” if the timer underflows and reloads on an active edge simultaneously.  
In this case, the validity of the TXUND bit should be determined by the contents of the read-out buffer.  
7. If the CNTR0 active edge is input, when the prescaler X underflow signal is “H” level, its count value is the one of the  
read buffer. If “L” level, the following count value is the one of the read buffer.  
Figure 13.10 Operating Example in Pulse Period Measurement Mode  
Rev.2.10 Jan 19, 2006 Page 97 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.2 Timer Z  
Timer Z is an 8-bit timer with an 8-bit prescaler. The prescaler and timer consist of the reload register and  
counter. The reload register and counter are allocated at the same address. Refer to the Tables 13.7 to  
13.12 for the Specification of Each Modes. Timer Z contains the timer Z primary and timer Z  
secondary as the reload register.  
Figure 13.11 shows the Block Diagram of Timer Z. Figures 13.12 to 13.15 show the TZMR, PREZ,  
TZSC, TZPR, TZOC, PUM, and TCSS registers.  
Timer Z contains the following four operating modes.  
Timer mode:  
The timer counts an internal count source or  
Timer X underflow.  
Programmable waveform generation mode:  
The timer outputs pulses of a given width  
successively  
Programmable one-shot generation mode:  
The timer outputs one-shot pulse.  
Programmable wait one-shot generation mode: The timer outputs delayed one-shot pulse.  
Data Bus  
TZSC Register  
Reload Register Reload Register  
TZPR Register  
Reload Register  
TZCK1 to TZCK0  
=00b  
f1  
=01b  
f8  
Counter  
Counter  
Timer Z Interrupt  
=10b  
Timer X Underflow  
PREZ Register  
=11b  
f2  
TZMOD1 to TZMOD0=10b, 11b  
TZOS  
TZS  
INT0 Interrupt  
Input polarity selected to  
be one edge or both edges  
INT0  
Digital Filter  
Polarity  
Select  
INT0PL  
INT0EN  
INOSEG  
TZMOD1 to TZMOD0=01b, 10b, 11b  
TZOCNT=0  
TZOPL=1  
Toggle  
Flip-Flop  
Q
Q
CK  
TZOUT  
CLR  
P1_3 bit in P1 Register  
TZOPL=0  
Write to TZMR Register  
TZMOD1 to TZMOD0  
=01b, 10b, 11b  
TZOCNT=1  
TZOPL, INOSTG : Bits in PUM register  
TZCK0 to TZCK1 : Bits in TCSS register  
INT0EN, INT0PL : Bits in INTEN register  
TZMOD0 to TZMOD1, TZS : Bits in TZMR register  
TZOS, TZOCNT : Bits in TZOC register  
Figure 13.11 Block Diagram of Timer Z  
Rev.2.10 Jan 19, 2006 Page 98 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer Z Mode Register  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
Symbol  
Address  
0080h  
After Reset  
00h  
TZMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b3-b0)  
Reserved Bit  
Set to “0”  
Timer Z Operating Mode  
Bit  
b5 b4  
0 0 : Timer mode  
TZMOD0  
TZMOD1  
RW  
RW  
0 1 : Programmable w aveform generation mode  
1 0 : Programmable one-shot generation mode  
1 1 : Programmable w ait one-shot generation mode  
Timer Z Write Control Bit Functions varies depending on operating mode  
TZWC  
TZS  
RW  
RW  
Timer Z Count Start  
Flag(1)  
0 : Stops counting  
1 : Starts counting  
NOTES :  
1. Refer to  
for precautions on the TZS bit.  
20.4.3 Timer Z  
Figure 13.12 TZMR Register  
Rev.2.10 Jan 19, 2006 Page 99 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Prescaler Z Register  
13.Timers  
b7  
b0  
Symbol  
PREZ  
Address  
0085h  
After Reset  
FFh  
Mode  
Function  
Counts internal count source or Timer X  
underflow  
Setting Range  
00h to FFh  
RW  
RW  
Timer Mode  
Programmable Waveform  
Generation Mode  
Counts internal count source or Timer X  
underflow  
00h to FFh  
00h to FFh  
00h to FFh  
RW  
RW  
RW  
Programmable One-shot  
Generation Mode  
Counts internal count source or Timer X  
underflow  
Programmable Wait One-  
shot Generation Mode  
Counts internal count source or Timer X  
underflow  
Timer Z Secondary Register  
b7  
b0  
Symbol  
TZSC  
Mode  
Address  
0086h  
Function  
After Reset  
FFh  
Setting Range  
RW  
Disabled  
Timer Mode  
Programmable Waveform  
Generation Mode  
Counts underflow of Prescaler Z(1)  
Disabled  
00h to FFh  
WO(2)  
Programmable One-shot  
Generation Mode  
Programmable Wait One-  
shot Generation Mode  
Counts underflow of Prescaler Z (one-shot  
w idth is counted)  
00h to FFh  
WO  
NOTES :  
1. Each value in the TZPR register and TZSC register is reloaded to the counter alternately and counted.  
2. The count value can be read out by reading the TZPR register even w hen the secondary period is being  
counted.  
Timer Z Primary Register  
b7  
b0  
Symbol  
TZPR  
Mode  
Address  
0087h  
After Reset  
FFh  
Function  
Counts underflow of Prescaler Z  
Setting Range  
00h to FFh  
RW  
RW  
Timer Mode  
Programmable Waveform  
Generation Mode  
Counts underflow of Prescaler Z(1)  
00h to FFh  
00h to FFh  
00h to FFh  
RW  
RW  
RW  
Programmable One-shot  
Generation Mode  
Counts underflow of Prescaler Z  
(counts one-shot w idth)  
Programmable Wait One-  
shot Generation Mode  
Counts underflow of Prescaler Z  
(counts w ait period)  
NOTES :  
1. Each value in the TZPR register and TZSC register is reloaded to the counter alternately and counted.  
Figure 13.13 PREZ, TZSC and TZPR Registers  
Rev.2.10 Jan 19, 2006 Page 100 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer Z Output Control Register(3)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
Address  
008Ah  
After Reset  
00h  
TZOC  
Bit Symbol  
Bit Name  
Timer Z One-shot Start Bit(1)  
Function  
RW  
RW  
0 : One-shot stops  
1 : One-shot starts  
TZOS  
(b1)  
Reserved Bit  
Set to “0”  
RW  
RW  
Timer Z Programmable Waveform  
Generation Output Sw itch Bit(2)  
0 : Outputs programmable w aveform  
1 : Outputs value in P1_3 port register  
TZOCNT  
(b7-b3)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. This bit is set to “0” w hen the output of one-shot w aveform is completed. Set the TZOS bit to “0” w hen the  
w aveform output is stopped by setting the TZS bit in the TZMR register to “0” (count stop) during the one-shot  
w aveform output.  
2. This bit is enabled only w hen operating in programmable w aveform generation mode.  
3. If executing an instruction w hich changes this register w hen the TZOS bit is set to “1” (during count), the TZOS bit is  
automatically set to “0” (one-shot stop) w hen the count is completed w hile the instruction is executed. If this causes  
some problems, execute an instruction w hich changes this register w hen the TZOS  
bit is set to “0” (one-shot stop).  
Timer Z Waveform Output Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0  
Symbol  
PUM  
Address  
0084h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b4-b0)  
Reserved Bit  
Set to “0”  
Timer Z Output Level Latch  
Function varies depending on operating  
TZOPL  
INOSTG  
INOSEG  
RW  
RW  
RW  
mode  
____  
____  
INT0 Pin One-shot Trigger Control  
0 : INT0 pin one-shot trigger disabled  
____  
Bit (Timer Z)(2)  
1 : INT0 pin one-shot trigger enabled  
0 : Falling edge trigger  
1 : Rising edge trigger  
____  
INT0 Pin One-shot Trigger Polarity  
Select Bit (Timer Z)(1)  
NOTES :  
1. When the INOSEG bit is enabled only w hen the INT0PL bit in the INTEN register is set to “0” (one edge).  
2. Set the INOSTG bit to “1” w hen setting the INT0EN bit in the INTEN register and the INOSEG bit in the PUM register.  
Figure 13.14 TZOC and PUM Registers  
Rev.2.10 Jan 19, 2006 Page 101 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer Count Source Setting Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
0 0  
Symbol  
TCSS  
Address  
008Eh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Timer X Count Source Select Bit(1)  
Function  
RW  
RW  
b1 b0  
TXCK0  
TXCK1  
0 0 : f1  
0 1 : f8  
1 0 : fRING  
1 1 : f2  
RW  
(b3-b2)  
Reserved Bit  
Set to “0”  
RW  
RW  
Timer Z Count Source Select Bit(1)  
b5 b4  
TZCK0  
TZCK1  
0 0 : f1  
0 1 : f8  
1 0 : Selects Timer X underflow  
1 1 : f2  
RW  
RW  
(b7-b6)  
Reserved Bit  
Set to “0”  
NOTES :  
1. Do not sw itch a count source during a count operation. Stop the timer count before sw itching a count  
source.  
Figure 13.15 TCSS Register  
Rev.2.10 Jan 19, 2006 Page 102 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.2.1 Timer Mode  
Timer mode is mode to count a count source which is internally generated or Timer X underflow (see  
Table 13.7 Specification of Timer Mode). The TZSC register is unused in timer mode. Figure 13.16  
shows the TZMR and PUM Registers in Timer Mode.  
Table 13.7  
Specification of Timer Mode  
Item  
Specification  
Count Source  
f1, f2, f8, Timer X underflow  
Count Operation  
• Decrement  
• When the timer underflows, it reloads the reload register contents before the  
count continues (When Timer Z underflows, the contents of Timer Z primary  
reload register is reloaded)  
Divide Ratio  
1/(n+1)(m+1) fi: Count source frequency  
n: setting value in PREZ register, m: setting value in TZPR register  
Count Start Condition Write “1” (count starts) to the TZS bit in the TZMR register  
Count Stop Condition Write “0” (count stops) to the TZS bit in the TZMR register  
Interrupt Request  
Generation Timing  
• When Timer Z underflows [Timer Z interrupt]  
TZOUT Pin Function Programmable I/O port  
INT0 Pin Function  
Read from Timer  
Programmable I/O port, or INT0 interrupt input  
The count value can be read out by reading the TZPR and PREZ registers  
(1)  
• When writing to the TZPR and PREZ registers while the count stops, the value is  
written to both the reload register and counter.  
Write to Timer  
• When writing to the TZPR and PREZ registers during the count while the TZWC  
bit is set to “0” (writing to the reload register and counter simultaneously), the  
value is written to each reload register of the TZPR and PREZ registers at the  
following count source input and the data is transferred to the counter at the  
second count source input and the count re-starts at the third count source input.  
When the TZWC bit is set to “1” (writing to only the reload register), the value is  
written to each reload register of the TZPR and PREZ registers (the data is  
transferred to the counter at the following reload).  
NOTES:  
1. The IR bit in the TZIC register is set to “1” (interrupt requested) when writing to the TZPR or PREZ  
register while both of the following conditions are met.  
<Conditions>  
TZWC bit in TZMR register is set to “0” (write to reload register and counter simultaneously)  
TZS bit in TZMR register is set to “1” (count starts)  
When writing to the TZPR or PREZ register in the above state, disable an interrupt before writing.  
Rev.2.10 Jan 19, 2006 Page 103 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer Z Mode Register  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0  
Symbol  
Address  
0080h  
After Reset  
00h  
TZMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b3-b0)  
Reserved Bit  
Set to “0”  
b5 b4  
TZMOD0 Timer Z Operating Mode Bit  
TZMOD1  
RW  
RW  
0 0 : Timer mode  
Timer Z Write Control Bit(1) 0 : Write to reload register and counter  
TZWC  
TZS  
RW  
RW  
1 : Write to reload register only  
Timer Z Count Start Flag(2) 0 : Stops counting  
1 : Starts counting  
NOTES :  
1. When the TZS bit is set to “1” (count start), the setting value in the TZWC bit is enabled. When the TZWC bit is set to  
“0”, Timer Z count value is w ritten to both reload register and counter. Timer Z count value is w ritten to the reload  
register only. When the TZS bit is set to “0” (count stop), Timer Z count value is w ritten to both reload register and  
counter regardless of the setting value in the TZWC bit.  
2. Refer to  
for precautions on the TZS bit.  
20.4.3 Timer Z  
Timer Z Waveform Output Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0 0 0 0  
Symbol  
PUM  
Address  
0084h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b4-b0)  
Reserved Bit  
Set to “0”  
Timer Z Output Level Latch Set to “0” in timer mode  
TZOPL  
INOSTG  
INOSEG  
RW  
RW  
RW  
____  
Set to “0” in timer mode  
Set to “0” in timer mode  
INT0 Pin One-shot Trigger  
Control Bit  
___  
INT0 Pin One-shot Trigger  
Polarity Select Bit  
Figure 13.16 TZMR and PUM Registers in Timer Mode  
Rev.2.10 Jan 19, 2006 Page 104 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.2.2 Programmable Waveform Generation Mode  
Programmable waveform generation mode is mode to invert the signal output from the TZOUT pin  
each time the counter underflows, while the values in the TZPR and TZSC registers are counted  
alternately (See Table 13.8 Specification of Programmable Waveform Generation Mode). A  
counting starts by counting the value set in the TZPR register. Figure 13.17 shows TZMR and PUM  
Registers in Programmable Waveform Generation Mode. Figure 13.18 shows Operating Example of  
Timer Z in Programmable Waveform Generation Mode.  
Table 13.8  
Specification of Programmable Waveform Generation Mode  
Item  
Specification  
Count Source  
f1, f2, f8, Timer X underflow  
Count Operation  
• Decrement  
• When the timer underflows, it reloads the contents of the primary reload and  
secondary reload registers alternately before the count continues.  
Width and Period of  
Output Waveform  
Primary period: (n+1)(m+1)/fi  
Secondary period: (n+1)(p+1)/fi  
Period: (n+1){(m+1)+(p+1)}/fi  
fi: Count source frequency  
n: Setting value in PREZ register, m: setting value in TZPR register, p: setting  
value in TZSC register  
Count Start Condition Write “1” (count start) to the TZS bit in the TZMR register  
Count Stop Condition Write “0” (count stop) to the TZS bit in the TZMR register  
Interrupt Request  
Generation Timing  
In half of count source, after Timer Z underflows during secondary period (at the  
same time as the TZout output change) [Timer Z interrupt]  
TZOUT Pin Function Pulse output  
(When using this function as a programmable I/O port, set to timer mode.)  
INT0 Pin Function  
Read from timer  
Write to timer  
Programmable I/O port, or INT0 interrupt input  
(1)  
The count value can be read out by reading the TZPR and PREZ registers  
.
The value written to the TZSC, PREZ and TZPR registers is written to the reload  
(2)  
register only  
Select function  
• Output level latch select function  
The TZOPL bit can select the output level during primary and secondary  
periods.  
• Programmable waveform generation output switch function  
When the TZOCNT bit in the TZOC register is set to “0”, the output from the  
TZOUT pin is inverted synchronously when Timer Z underflows. And when  
(3)  
setting to “1”, output the value in the P1_3 bit from the TZOUT pin  
NOTES:  
1. Even when counting the secondary period, read out the TZPR register.  
2. The setting value in the TZPR register and TZSC register are made effective by writing a value to  
the TZPR register. The set values are reflected to the waveform output beginning with the following  
primary period after writing to the TZPR register.  
3. The TZOCNT bit is enabled by the followings.  
When count starts.  
When the timer Z interrupt request is generated. The contents after the TZOCNT bit is changed  
are reflected from the output of the following primary period.  
Rev.2.10 Jan 19, 2006 Page 105 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer Z Mode Register  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
1 0 1 0 0 0 0  
Symbol  
Address  
0080h  
After Reset  
00h  
TZMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b3-b0)  
Reserved Bit  
Set to “0”  
b5 b4  
TZMOD0 Timer Z Operating Mode Bit  
TZMOD1  
RW  
RW  
0 1 : Programmable Waveform Generation Mode  
Timer Z Write Control Bit  
TZWC  
Set to “1” in programmable w aveform generation  
mode(1)  
RW  
RW  
Timer Z Count Start Flag(2)  
TZS  
0 : Stops counting  
1 : Starts counting  
NOTES :  
1. When the TZS bit is set to “1” (count start), The count value is w ritten to the reload register only. When the TZS bit is  
set to “0” (count stop), The count value is w ritten to both reload register and counter.  
2. Ref er to  
for precautions on the TZS bit.  
20.4.3 Timer Z  
Timer Z Waveform Output Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
0 0 0 0 0  
Symbol  
PUM  
Address  
0084h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b4-b0)  
Reserved Bit  
Set to “0”  
Timer Z Output Level Latch  
0 : Outputs “H” for primary period  
Outputs “L” for secondary period  
Outputs “L” w hen the timer is stopped  
1 : Outputs “L” for primary period  
Outputs “H” for secondary period  
Outputs “H” w hen the timer is stopped  
TZOPL  
RW  
____  
Set to “0” in programmable w aveform generation  
mode  
INT0 Pin One-shot Trigger  
INOSTG  
INOSEG  
RW  
RW  
Control Bit  
____  
Set to “0” in programmable w aveform generation  
mode  
INT0 Pin One-shot Trigger  
Polarity Select Bit  
Figure 13.17 TZMR and PUM Registers in Programmable Waveform Generation Mode  
Rev.2.10 Jan 19, 2006 Page 106 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Set to “1” by program  
“1”  
TZS Bit in  
TZMR Register  
“0”  
Count Source  
Prescaler Z  
Underflow Signal  
Timer Z  
secondary  
reloads  
Timer Z  
primary  
reloads  
01h  
00h  
02h  
01h  
00h  
01h  
00h  
02h  
Contents of Timer Z  
Set to “0” when interrupt request  
is acknowledged, or set by  
program  
“1”  
“0”  
IR Bit in  
TZIC Register  
Set to "0" by program  
“1”  
“0”  
TZOPL Bit in  
PUM Register  
Waveform  
output inverts  
Waveform  
output starts  
Waveform  
output inverts  
“H”  
“L”  
TZOUT Pin Output  
Primary period  
Secondary period  
Primary period  
The above applies to the following conditions.  
PREZ=01h, TZPR=01h, TZSC=02h  
TZOC register TZOCNT bit = 0  
Figure 13.18 Operating Example of Timer Z in Programmable Waveform Generation Mode  
Rev.2.10 Jan 19, 2006 Page 107 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.2.3 Programmable One-shot Generation Mode  
Programmable one-shot generation mode is mode to output the one-shot pulse from the TZOUT pin  
by a program or an external trigger input (input to the INT0 pin). (see Table 13.9 Specification of  
Programmable One-Shot Generation Mode). When a trigger is generated, the timer starts  
operating from the point only once for a given period equal to the set value in the TZPR register. The  
TZSC register is unused in this mode. Figure 13.19 shows the TZMR and PUM Registers in  
Programmable One-Shot Generation Mode. Figure 13.20 shows an Operating Example in  
Programmable One-Shot Generation Mode.  
Table 13.9  
Specification of Programmable One-Shot Generation Mode  
Item  
Specification  
Count Source  
f1, f2, f8, Timer X underflow  
Count Operation  
• Decrement the setting value in the TZPR register  
• When the timer underflows, it reloads the contents of the reload register before  
the count completes and the TZOS bit is set to “0” (one-shot stops).  
• When a count stops, the timer reloads the contents of the reload register before  
it stops.  
One-Shot Pulse  
Output Time  
(n+1)(m+1)/fi  
fi: Count source frequency, n: setting value in PREZ register, m: setting value in  
TZPR register  
(1)  
Count Start Condition  
• Set the TZOS bit in the TZOC register to “1” (one-shot starts)  
• Input active trigger to the INT0 pin  
(2)  
Count Stop Condition • When reloading completes after the count value is set to “00h”  
• When the TZS bit in the TZMR register is set to “0” (count stops)  
• When the TZOS bit in the TZOC register is set to “0” (one-shot stops)  
Interrupt Request  
Generation Timing  
In half cycles of count source, after the timer underflows (at the same time as the  
TZOUT output ends) [Timer Z interrupt]  
TZOUT Pin Function Pulse output  
(When using this function as a programmable I/O port, set to timer mode.)  
INT0 Pin Function  
• When the INOSTG bit in the PUM register is set to “0” (INT0 one-shot trigger  
disabled)  
programmable I/O port or INT0 interrupt input  
• When the INOSTG bit in the PUM register is set to “1” (INT0 one-shot trigger  
enabled)  
external trigger (INT0 interrupt input))  
Read from Timer  
Write to Timer  
The count value can be read out by reading the TZPR and PREZ registers.  
The value written to the TZPR and PREZ registers is written to the reload register  
(3)  
only  
.
Select Function  
• Output level latch select function  
The TZOPL bit can select the output level of the one-shot pulse waveform.  
• INT0 pin one-shot trigger control and polarity select functions  
The INOSTG bit can select the trigger input from the INT0 pin is active or  
inactive. Also, the INOSEG bit can select the active trigger polarity.  
NOTES:  
1. Set the TZS bit in the TZMR register to “1” (count starts).  
2. Set the TZS bit to “1” (count starts), the INT0EN bit in the INTEN register to “1” (enables INT0 input),  
and the INOSTG bit in the PUM register to “1” (INT0 one-shot trigger enabled). A trigger which is  
input during the count cannot be acknowledged, however the INT0 interrupt request is generated.  
3. The set value is reflected at the following one-shot pulse after writing to the TZPR register.  
Rev.2.10 Jan 19, 2006 Page 108 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer Z Mode Register  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
1 1 0 0 0 0 0  
Symbol  
Address  
0080h  
After Reset  
00h  
TZMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b3-b0)  
Reserved Bit  
Set to “0”  
TZMOD0 Timer Z Operating Mode Bit  
TZMOD1  
RW  
RW  
b5 b4  
1 0 : Programmable one-shot generation mode  
Timer Z Write Control Bit  
TZWC  
Set to “1” in programmable one-shot generation  
mode(1)  
RW  
RW  
Timer Z Count Start Flag(2) 0 : Stops counting  
TZS  
1 : Starts counting  
NOTES :  
1. When the TZS bit is set to “1” (count start), The count value is w ritten to the reload register only. When the TZS bit is  
set to “0” (count stop), The count value is w ritten to both reload register and counter.  
2. Refer to  
for precautions on the TZS bit.  
20.4.3 Timer Z  
Timer Z Waveform Output Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0  
Symbol  
PUM  
Address  
0084h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b4-b0)  
Reserved Bit  
Set to “0”  
Timer Z Output Level Latch 0 : Outputs one-shot pulse “H”  
Outputs “L” w hen the timer is stopped  
TZOPL  
RW  
1 : Outputs one-shot pulse “L”  
Outputs “H” w hen the timer is stopped  
____  
____  
INT0 Pin One-shot Trigger 0 : INT0 pin one-shot trigger disabled  
____  
INOSTG  
INOSEG  
RW  
RW  
Control Bit(1)  
1 : INT0 pin one-shot trigger enabled  
____  
INT0 Pin One-shot Trigger 0 : Falling edge trigger  
Polarity Select Bit(2)  
1 : Rising edge trigger  
NOTES :  
1. Set the INOSTG bit to “1” after the INT0EN bit in the INTEN register and the INOSEG bit in the PUM  
____  
register are set. When setting the INOSTG bit to “1” (INT0 pin_o__n_e-shot trigger enabled), set the INT0F0 to  
INT0F1 bits in the INT0F register. Set the INOSTG bit to “0” (INT0 pin one-shot trigger disabled) after the  
TZS bit in the TZMR register is set to “0” (count stop).  
2. The INOSEG bit is enabled only w hen the INT0PL bit in the INTEN register is set to “0” (one edge).  
Figure 13.19 TZMR and PUM Registers in Programmable One-Shot Generation Mode  
Rev.2.10 Jan 19, 2006 Page 109 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Set to "1" by program  
"1"  
TZS Bit in TZMR  
Register  
"0"  
Set to "0" when  
counting ends  
Set to "1" by INT0 pin  
input trigger  
Set to "1" by program  
"1"  
"0"  
TZOS Bit in TZOC  
Register  
Count Source  
Prescaler Z  
Underflow Signal  
"1"  
"0"  
INT0 Pin Input  
Count  
starts  
Count  
starts  
Timer Z  
primary  
reloads  
Timer Z  
primary  
reloads  
01h  
00h  
01h  
00h  
01h  
Contents of Timer Z  
Set to "0" when interrupt request i s  
acknowledged, or set to "0" by  
program  
"1"  
"0"  
IR Bit in TZIC  
Register  
Set to "0" by program  
"1"  
"0"  
TZOPL bit in PUM  
Register  
Waveform  
output ends  
Waveform  
output ends  
Waveform  
output starts  
Waveform  
output starts  
"H"  
"L"  
TZOUT Pin Input  
The above applies to the following conditions.  
PREZ=01h, TZPR=01h  
TZOPL bit in PUM register=0, INOSTG bit=1 (INT0 one-shot trigger enabled)  
INOSEG bit=1 (edge trigger at rising edge)  
Figure 13.20 Operating Example in Programmable One-Shot Generation Mode  
Rev.2.10 Jan 19, 2006 Page 110 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.2.4 Programmable Wait One-shot Generation Mode  
Programmable wait one-shot generation mode is mode to output the one-shot pulse from the TZOUT  
pin by the external trigger input (input to the INT0 pin) (see Table 13.10 Specification of  
Programmable Wait One-Shot Generation Mode Specifications). When a trigger is generated  
from this point, the timer starts outputting pulses only once for a given length of time equal to the  
setting value in the TZSC register after waiting for a given length of time equal to the setting value in  
the TZPR register. Figure 13.21 shows the TZMR and PUM Registers in Programmable Wait One-  
Shot Generation Mode. Figure 13.22 shows an Operating Example in Programmable Wait One-Shot  
Generation Mode.  
Rev.2.10 Jan 19, 2006 Page 111 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Table 13.10 Specification of Programmable Wait One-Shot Generation Mode Specifications  
Item Specification  
Count Source  
Count Operation  
f1, f2, f8, Timer X underflow  
• Decrement the setting value in Timer Z primary  
• When a count of TZPR register underflows, the timer reloads the  
contents of the TZSC register before the count continues.  
• When a count of the TZSC register underflows, the timer reloads the  
contents of the TZPR register before the count completes and the TZOS  
bit is set to “0”.  
• When a count stops, the timer reloads the contents of the reload register  
before it stops.  
Wait Time  
(n+1)(m+1)/fi  
fi: Count source frequency  
n: setting value in PREZ register, m: setting value in TZPR register  
One-Shot Pulse Output Time (n+1)(p+1)/fi  
fi: Count source frequency  
n: setting value in PREZ register, p: setting value in TZSC register  
(1)  
Count Start Condition  
Count Stop Condition  
• Set the TZOS bit in the TZOC register to “1” (one-shot starts)  
(2)  
• Input active trigger to the INT0 pin  
• When reloading completes after Timer Z underflows during secondary  
period  
• When the TZS bit in the TZMR register is set to “0” (count stops)  
• When the TZOS bit in the TZOC register is set to “0” (one-shot stops)  
Interrupt Request  
Generation Timing  
In half cycles of the count source after Timer Z underflows during  
secondary period (complete at the same time as waveform output from the  
TZOUT pin) [timer Z interrupt]  
TZOUT Pin Function  
INT0 Pin Function  
Pulse output  
(When using this function as a programmable I/O port, set to timer mode.)  
• When the INOSTG bit in the PUM register is set to “0” (INT0 one-shot  
trigger disabled), programmable I/O port or INT0 interrupt input  
• When the INOSTG bit in the PUM register is set to “1” (INT0 one-shot  
trigger enabled), external trigger (INT0 interrupt input)  
Read from Timer  
Write to Timer  
The count value can be read out by reading the TZPR and PREZ  
registers.  
The value written to the TZPR register, PREZ and TZSC register is written  
(3)  
to reload register only  
.
Select Function  
• Output level latch select function  
The output level for the one-shot pulse waveform is selected by the  
TZOPL bit.  
• INT0 pin one-shot trigger control function and polarity select function  
Trigger input from the INT0 pin can be set to active or inactive by the  
INOSTG bit. Also, an active trigger's polarity can be selected by the  
INOSEG bit.  
NOTES:  
1. Set the TZS bit in the TZMR register to “1” (count starts).  
2. Set the TZS bit to “1” (count starts), the INT0EN bit in the INTEN register to “1” (enables INT0 input),  
and the INOSTG bit in the PUM register to “1” (enabling INT0 one-shot trigger). A trigger which is  
input during the count cannot be acknowledged, however the INT0 interrupt request is generated.  
3. The setting values are reflected beginning with the following one-shot pulse after writing to the  
TZPR register.  
Rev.2.10 Jan 19, 2006 Page 112 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer Z Mode Register  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
1 1 1 0 0 0 0  
Symbol  
Address  
0080h  
After Reset  
00h  
TZMR  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b3-b0)  
Reserved Bit  
Set to “0”  
Timer Z Operating Mode Bit  
b5 b4  
TZMOD0  
TZMOD1  
TZWC  
TZS  
RW  
RW  
RW  
RW  
1 1 : Programmable w ait one-shot generation mode  
Timer Z Write Control Bit  
Set to “1” in programmable w ait one-shot generation  
mode(1)  
Timer Z Count Start Flag(2) 0 : Stops counting  
1 : Starts counting  
NOTES :  
1. When the TZS bit is set to “1” (count start), The count value is w ritten to the reload register only. When the TZS bit is  
set to “0” (count stop), The count value is w ritten to both reload register and counter.  
2. Ref er to  
for precautions on the TZS bit.  
20.4.3 Timer Z  
Timer Z Waveform Output Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0 0  
Symbol  
PUM  
Address  
0084h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
(b4-b0)  
Reserved Bit  
Set to “0”  
Timer Z Output Level Latch  
0 : Outputs one-shot pulse “H”  
Outputs “L” w hen the timer is stopped  
1 : Outputs one-shot pulse “L”  
TZOPL  
RW  
Outputs “H” w hen the timer is stopped  
____  
____  
INT0 Pin One-shot Trigger  
0 : INT0 pin one-shot trigger disabled  
____  
INOSTG  
INOSEG  
RW  
RW  
Control Bit(1)  
1 : INT0 pin one-shot trigger enabled  
0 : Falling edge trigger  
1 : Rising edge trigger  
____  
INT0 Pin One-shot Trigger  
Polarity Select Bit(2)  
NOTES :  
1. Set the INOSTG bit to “1” after the INT0EN bit in the INTEN register and the INOSEG bit in the PUM  
____  
register are set. When setting the INOSTG bit to “1” (INT0 pin one-shot trigger enabled), set the INT0F0 to  
____  
INT0F1 bits in the INT0F register. Set the INOSTG bit to “0” (INT0 pin one-shot trigger disabled) after the  
TZS bit in the TZMR register is set to “0” (count stop).  
2. The INOSEG bit is enabled only w hen the INT0PL bit in the INTEN register is set to “0” (one edge).  
Figure 13.21 TZMR and PUM Registers in Programmable Wait One-Shot Generation Mode  
Rev.2.10 Jan 19, 2006 Page 113 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Set to "1" by program  
TZS Bit TZMR  
Register  
"1"  
"0"  
Set to "1" by program, or set to "1" by INT0  
pin input trigger  
Set to "0" when  
counting ends  
TZOS Bit in TZOC  
Register  
"1"  
"0"  
Count Source  
Prescaler Z Underflow  
Signal  
"1"  
"0"  
INT0 Pin Input  
Timer Z secondary  
reloads  
Timer Z primary  
reloads  
Count starts  
01h  
00h  
02h  
01h  
00h  
01h  
Contents of Timer Z  
Set to "0" when interrupt request is  
accepted, or set by program  
"1"  
"0"  
IR Bit in TZIC  
Register  
Set to "0" by program  
TZOPL Bit in PUM  
Register  
"1"  
"0"  
Waveform output starts  
Waveform output ends  
Wait starts  
"H"  
"L"  
TZOUT Pin Output  
The above applies to the following conditions.  
PREZ=01h, TZPR=01h, TZSC=02h  
PUM register TZOPL bit=0, INOSTG bit=1 (INT0 one-shot trigger enabled)  
INOSEG bit= 1 (rising edge trigger)  
Figure 13.22 Operating Example in Programmable Wait One-Shot Generation Mode  
Rev.2.10 Jan 19, 2006 Page 114 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.3 Timer C  
Timer C is a 16-bit timer. Figure 13.23 shows the Block Diagram of Timer C. Figure 13.24 shows the  
Block Diagram of CMP Waveform Generation Unit. Figure 13.25 shows the Block Diagram of CMP  
Waveform Output Unit.  
Timer C has two modes: input capture mode and output compare mode. Figure 13.26 to 13.29 show the  
Timer C-associated registers.  
TCC11 to TCC10  
Sampling  
Clock  
=01b  
f1  
=10b  
f8  
=11b  
Other than  
00b  
f32  
TCC07=0  
Digital  
Filter  
Edge  
Detection  
INT3/TCIN  
INT3 Interrupt  
=00b  
TCC07=1  
fRING128  
Transfer Signal  
Higher 8 Bits  
Lower 8 Bits  
Capture and Compare 0 Register  
TM0 Register  
Compare Circuit 0  
Compare 0 Interrupt  
Timer C Interrupt  
TCC02 to TCC01  
=00b  
f1  
Higher 8 bits  
Lower 8 bits  
=01b  
f8  
=10b  
f32  
Counter  
=11b  
TC register  
fRING-fast  
TYC00  
TCC12  
=0  
TCC12=1  
Timer C Counter Reset Signal  
Compare 1 Interrupt  
Compare circuit 1  
Higher 8 bits  
Lower 8 bits  
Compare register 1  
TM1 register  
TCC01 to TCC02, TCC07: Bits in TCC0 register  
TCC10 to TCC12: Bits in TCC1 register  
Figure 13.23 Block Diagram of Timer C  
Rev.2.10 Jan 19, 2006 Page 115 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
TCC14  
TCC15  
Compare 0 Interrupt Signal  
Compare 1 Interrupt Signal  
TCC16  
TCC17  
TCC17 to TCC16  
=11b  
H
L
T
Latch  
R
CMP Output  
(internal Signal)  
D
Q
=10b  
=01b  
Reverse  
Reset  
TCC15 to TCC14  
=01b  
Reverse  
L
=10b  
=11b  
H
TCC14 to TCC17: Bits in TCC1 register  
Figure 13.24 Block Diagram of CMP Waveform Generation Unit  
PD1_0  
TCOUT6=0  
CMP Output  
(Internal Signal)  
TCOUT0  
TCOUT0=1  
TCOUT0=0  
Inverted  
TCOUT6=1  
CMP0_0  
P1_0  
Register  
Bit  
TCOUT  
P1  
TCOUT  
CMP0_0 Output  
TCOUT0  
P1_0  
TCOUT6  
Setting Value  
1
1
1
1
1
1
0
0
0
1
0
1
CMP0_0 waveform output  
CMP0_0 reversed waveform output  
“L” output  
“H” output  
This diagram is a block diagram of the CMP0_0 waveform output unit.  
The CMP0_1 to CMP0_2 and CMP1_0 to CMP1_2 waveform output units are the same configurations.  
Figure 13.25 Block Diagram of CMP Waveform Output Unit  
Rev.2.10 Jan 19, 2006 Page 116 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer C Register  
13.Timers  
(b15)  
b7  
(b8)  
b0  
b7  
b0  
Symbol  
TC  
Address  
0091h-0090h  
After Reset  
0000h  
Function  
RW  
RO  
Counts the internal count source.  
“0000h” can be read out by reading w hen the TCC00 bit is set to “0” (count stops).  
Count value can be read out by reading w hen the TCC00 bit is set to “1” (count starts).  
Capture and Compare 0 Register  
(b15)  
b7  
(b8)  
b0  
b7  
b0  
Symbol  
TM0  
Address  
009Dh-009Ch  
After Reset  
0000h(2)  
Mode  
Function  
RW  
RO  
When the active edge of measurement pulse is input, store  
the value in the TC register  
Input Capture Mode  
Mode  
Function  
Setting Range  
RW  
RW  
Output compare Mode(1)  
Store the value compared w ith Timer C 0000h to FFFFh  
NOTES :  
1. When setting the value to the TM0 register, set the TCC13 bit in the TCC1 register to “1” (compare 0 output selected).  
When the TCC13 bit is set to “0” (capture selected), the value cannot be w ritten.  
2. When setting the TCC13 bit in the TCC1 register to “1”, the value after reset is “FFFFh”.  
Compare 1 Register  
(b15)  
b7  
(b8)  
b0  
b7  
b0  
Symbol  
TM1  
Address  
After Reset  
FFFFh  
009Fh-009Eh  
Mode  
Function  
Setting Range  
RW  
RW  
Output Compare Mode  
Store the value compared w ith Timer C 0000h to FFFFh  
Figure 13.26 TC, TM0 and TM1 Registers  
Rev.2.10 Jan 19, 2006 Page 117 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Timer C Control Register 0  
13.Timers  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
Address  
009Ah  
After Reset  
00h  
TCC0  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Timer C Count Start Bit  
0 : Stops counting  
TCC00  
TCC01  
1 : Starts counting  
Timer C Count Source Select Bit(1)  
b2 b1  
RW  
RW  
RW  
RW  
RW  
0 0 : f1  
0 1 : f8  
1 0 : f32  
1 1 : fRING-fast  
TCC02  
TCC03  
TCC04  
____  
b4 b3  
INT3 Interrupt / Capture Polarity  
Select Bit(1, 2)  
0 0 : Rising edge  
0 1 : Falling edge  
1 0 : Both edges  
1 1 : Do not set  
(b5)  
Reserved Bit  
Set to “0”  
____  
____  
INT3 Interrupt / Capture Input  
0 : INT3 Interrupt is generated  
Bit(2, 3)  
synchronizing w ith Timer C count source  
____  
TCC06  
RW  
RW  
1 : INT3 Interrupt is generated w hen  
____  
INT3 interrupt is input(4)  
____  
____  
INT3 Interrupt / Capture Input  
Sw itch Bit(1, 2)  
0 : INT3  
TCC07  
1 : fRING128  
NOTES :  
1. Change this bit w hen the TCC00 bit is set to “0” (count stop).  
2. The IR bit in the INT3IC register may be set to “1” (requests interrupt) w hen the TCC03, TCC04, TCC06 and TCC07  
bits are rew ritten. Refer to  
20.2.5 Changing Interrupt Factor.  
____  
3. When the TCC13 bit is set to “1” (output compare mode) and INT3 interrupt is input, regardless of the  
setting value of the TCC06 bit, an interrupt request is generated.  
____  
____  
4. When using the INT3 filter, the INT3 interrupt is generated synchronizing w ith the clock for the digital filter.  
Figure 13.27 TCC0 Register  
Rev.2.10 Jan 19, 2006 Page 118 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer C Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
009Bh  
After Reset  
00h  
TCC1  
Bit Symbol  
Bit Name  
INT3 Filter Select Bit(1)  
Function  
RW  
RW  
____  
b1 b0  
TCC10  
TCC11  
0 0 : No filter  
0 1 : Filter w ith f1 sampling  
1 0 : Filter w ith f8 sampling  
1 1 : Filter w ith f32 sampling  
RW  
RW  
Timer C Counter Reload Select 0 : No reload  
Bit(3)  
1 : Set TC register to “0000h” w hen compare 1  
TCC12  
TCC13  
is matched  
Compare 0 / Capture Select  
Bit(2)  
0 : Select capture (input capture mode)(3)  
1 : Select compare 0 output  
RW  
(output compare mode)  
Compare 0 Output Mode Select  
Bit(3)  
b5 b4  
0 0 : CMPoutput remains unchanged even  
w hen compare 0 matches  
0 1 : CMPoutput is reversed w hen compare 0  
TCC14  
TCC15  
TCC16  
TCC17  
signal matches  
RW  
1 0 : CMPoutput is set to “L” w hen compare 0  
signal matches  
1 1 : CMPoutput is set to “H” w hen compare 0  
signal matches  
Compare 1 Output Mode Select  
Bit(3)  
b7 b6  
0 0 : CMPoutput remains unchanged even  
w hen compare 1 matches  
0 1 : CMPoutput is reversed w hen compare 1  
signal matches  
RW  
1 0 : CMPoutput is set to “L” w hen compare 1  
signal matches  
1 1 : CMPoutput is set to “H” w hen compare 1  
signal matches  
NOTES :  
____  
1. When the same value from the INT3 pin is sampled three times continuously, the input is determined.  
2. When the TCC00 bit in the TCC0 register is set to “0” (count stops), rew rite the TCC13 bit.  
3. When the TCC13 bit is set to “0” (input capture mode), set the TCC12, TCC14 to TCC17 bits to “0”.  
Figure 13.28 TCC1 Register  
Rev.2.10 Jan 19, 2006 Page 119 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Timer C Output Control Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TCOUT  
Address  
00FFh  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
CMPOutput Enable Bit 0  
CMPOutput Enable Bit 1  
CMPOutput Enable Bit 2  
CMPOutput Enable Bit 3  
CMPOutput Enable Bit 4  
CMPOutput Enable Bit 5  
0 : Disables CMPoutput from CMP0_0  
1 : Enables CMPoutput from CMP0_0  
TCOUT0  
TCOUT1  
TCOUT2  
TCOUT3  
TCOUT4  
TCOUT5  
0 : Disables CMPoutput from CMP0_1  
1 : Enables CMPoutput from CMP0_1  
RW  
RW  
RW  
RW  
RW  
0 : Disables CMPoutput from CMP0_2  
1 : Enables CMPoutput from CMP0_2  
0 : Disables CMPoutput from CMP1_0  
1 : Enables CMPoutput from CMP1_0  
0 : Disables CMPoutput from CMP1_1  
1 : Enables CMPoutput from CMP1_1  
0 : Disables CMPoutput from CMP1_2  
1 : Enables CMPoutput from CMP1_2  
CMPOutput Reverse Bit 0 0 : Not reverse CMPoutput from CMP0_0 to CMP0_2  
1 : Reverses CMPoutput from CMP0_0 to CMP0_2  
TCOUT6  
TCOUT7  
RW  
RW  
CMPOutput Reverse Bit 1 0 : Not reverse CMPoutput from CMP1_0 to CMP1_2  
1 : Reverses CMPoutput from CMP1_0 to CMP1_2  
NOTES :  
1. Set the bits w hich are not used for the CMPoutput to “0”  
Figure 13.29 TCOUT Register  
Rev.2.10 Jan 19, 2006 Page 120 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.3.1 Input Capture Mode  
Input capture mode is mode to input an edge to the TCIN pin or the fRING128 clock as trigger to latch  
the timer value and generates an interrupt request. The TCIN input contains a digital filter and this  
prevents an error caused by noise or so on from occurring. Table 13.11 shows Specification of Input  
Capture Mode. Figure 13.30 shows an Operating Example in Input Capture Mode.  
Table 13.11 Specification of Input Capture Mode  
Item  
Count Source  
Specification  
f1, f8, f32, fRING-fast  
• Increment  
Count Operation  
• Transfer the value in the TC register to the TM0 register at the active edge  
of measurement pulse  
• The value in the TC register is set to “0000h” when the count stops  
Count Start Condition  
Counter Stop Condition  
Interrupt Request  
The TCC00 bit in the TCC0 register is set to “1” (count starts)  
The TCC00 bit in the TCC0 register is set to “0” (count stops)  
(1)  
• When the active edge of measurement pulse is input [INT3 interrupt]  
Generation Timing  
• When Timer C overflows [Timer C interrupt]  
Programmable I/O port or measurement pulse input (INT3 interrupt input)  
Programmable I/O port  
INT3/TCIN Pin Function  
P1_0 to P1_2, P3_3 to  
P3_5 Pin Function  
Counter Value Reset  
Timing  
When the TCC00 bit in the TCC0 register is set to “0” (capture disabled)  
(2)  
• The count value can be read out by reading the TC register.  
• The count value at measurement pulse active edge input can be read out  
by reading the TM0 register  
Read from Timer  
Write to Timer  
Write to the TC and TM0 registers is disabled  
Select Function  
• INT3/TCIN polarity select function  
The TCC03 to TCC04 bits can select the active edge of measurement  
pulse  
• Digital filter function  
The TCC11 to TCC10 bits can select the digital filter sampling frequency  
• Trigger select function  
The TCC07 bit can select the TCIN input or the fRING128  
NOTES:  
1. The digital filter delay and one count source (max.) delay are generated for the INT3 interrupt.  
2. Read the TC and TM0 registers in 16-bit unit.  
Rev.2.10 Jan 19, 2006 Page 121 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
FFFFh  
Overflow  
Count Starts  
Measurement value 2  
Measurement  
value 3  
Measurement value 1  
0000h  
Period  
Set to "0" by  
program  
Set to "1" by program  
“1”  
“0”  
TCC00 Bit in  
TCC0 Register  
The delay caused by digital filter and  
one count source cycle delay (max.)  
Measurement Pulse  
(TCIN Pin Input)  
“1”  
“0”  
Transmit  
Transmit  
Transmit  
(Measurement  
value 3)  
(Measurement (Measurement  
value 1)  
value 2)  
Transmit Timing  
from Timer C  
Counter to TM0  
Register  
“1”  
“0”  
Indeterminate  
Indeterminate  
Measurement  
value 1  
Measurement  
value 3  
TM0 Register  
Measurement value 2  
Set to "0" when interrupt request is acknowledged, or set by program  
IR Bit in INT3IC  
Register  
“1”  
“0”  
Set to "0" when interrupt  
request is acknowledged, or set  
by program  
“1”  
“0”  
IR Bit in TCIC  
Register  
The above applies to the following conditions.  
TCC0 register TCC04 to TCC03 bits=01b (capture input polarity is set for falling edge),  
TCC07=0 (INT3/TCIN input as capture input trigger)  
Figure 13.30 Operating Example in Input Capture Mode  
Rev.2.10 Jan 19, 2006 Page 122 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
13.3.2 Output Compare Mode  
Output compare mode is mode to generate an interrupt request when the value of the TC register  
matches the value of the TM0 or TM1 register. Table 13.12 shows Specification of Output Compare  
Mode. Figure 13.31 shows an Operating Example in Output Compare Mode.  
Table 13.12 Specification of Output Compare Mode  
Item  
Count Source  
Specification  
f1, f8, f32, fRING-fast  
• Increment  
Count Operation  
• The value in the TC register is set to “0000h” when a count stops  
The TCC00 bit in the TCC0 register is set to “1” (count starts)  
The TCC00 bit in the TCC0 register is set to “0” (count stops)  
The TCOUT0 to TCOUT5 bits in the TCOUT register is set to “1” (enables  
Count Start Condition  
Counter Stop Condition  
Waveform Output Start  
Condition  
(2)  
CMP output).  
Waveform Output Stop  
Condition  
The TCOUT0 to TCOUT5 bits in the TCOUT register is set to “0” (disables  
CMP output).  
Interrupt Request  
Generation Timing  
• When a match occurs in the compare circuit 0 [compare 0 interrupt]  
• When a match occurs in the compare circuit 1 [compare 1 interrupt]  
• When Time C overflows [Timer C interrupt]  
INT3/TCIN Pin Function  
P1_0 to P1_2 Pins and  
P3_0 to P3_2 Pins  
Function  
Programmable I/O port or INT3 interrupt input  
(1)  
Programmable I/O port or CMP output  
Counter Value Reset  
Timing  
When the TCC00 bit in the TCC0 register is set to “0” (count stops)  
(1)  
• The value in the compare register can be read out by reading the TM0 and  
TM1 registers.  
Read from Timer  
• The count value can be read out by reading the TC register.  
(1)  
• Write to the TC register is disabled.  
Write to Timer  
• The values written to the TM0 and TM1 registers are stored in the compare  
register at the following timings:  
- When the TM0 and TM1 registers are written if the TCC00 bit is set to “0”  
(count stops)  
- When the counter overflows if the TCC00 bit is set to “1” (during  
counting) and the TCC12 bit in the TCC1 register is set to “0” (free-run)  
- When the compare 1 matches a counter if the TCC00 bit is set to “1” and  
the TCC12 bit is set to “1” (set the TC register to “0000h” when the  
compare 1 matches)  
Select Function  
• Timer C counter reload select function  
The TCC12 bit in the TCC1 register can select whether the counter value  
in the TC register is set to “0000h” when the compare circuit 1 matches or  
not.  
• The TCC14 to TCC15 bits in the TCC1 register can select the output level  
when the compare circuit 0 matches. The TCC16 to TCC17 bits in the  
TCC1 register can select the output level when the compare circuit 1  
matches.  
• The TCOUT6 to TCOUT7 bits in the TCOUT register can select whether  
the output is reversed or not.  
NOTES:  
1. When the corresponding port data is “1”, the waveform is output depending on the setting of the  
registers TCC1 and TCOUT. When the corresponding port data is “0”, the fixed level is output (refer  
to Figure 13.25 Block Diagram of CMP Waveform Output Unit).  
2. Access the TC, TM0, and TM1 registers in 16-bit units.  
Rev.2.10 Jan 19, 2006 Page 123 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
13.Timers  
Match  
Set value in TM1 register  
Set value in TM0 register  
0000h  
Count start  
Match  
Match  
Time  
Set to "1" by program  
“1”  
“0”  
TCC00 bit in  
TCC0 register  
Set to “0” when interrupt request is accepted, or set by program  
“1”  
“0”  
IR bit in CMP0IC  
register  
Set to “0” when interrupt request is  
accepted, or set by program  
“1”  
“0”  
IR bit in CMP1IC  
register  
“1”  
“0”  
CMP0_0 output  
“1”  
“0”  
CMP1_0 output  
Conditions :  
TCC12 bit in TCC1 register = 1 (TC register is set to 0000h” at Compare 1 match occurrence )  
TCC13 bit in TCC1 register = 1 (Compare 0 output selected)  
TCC15 to TCC14 bits in TCC1 register = 11b (CMP output level is set to high at Compare 0 match occurrence)  
TCC17 to TCC16 bits in TCC1 register = 10b (CMP output level is set to low at Compare 1 match occurrence)  
TCOUT6 bit in TCOUT register = 0 (not reversed)  
TCOUT7 bit in TCOUT register = 1 (reversed)  
TCOUT0 bit in TCOUT register = 1 (CMP0_0 output enabled)  
TCOUT3 bit in TCOUT register = 1 (CMP1_0 output enabled)  
P1_0 bit in P1 register = 1 (high)  
P3_0 bit in P3 register = 1 (high)  
Figure 13.31 Operating Example in Output Compare Mode  
Rev.2.10 Jan 19, 2006 Page 124 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14. Serial Interface  
Serial Interface is configured with one channels: UART0. UART0 has an exclusive timer to generate a  
transfer clock.  
Figure 14.1 shows a UART0 Block Diagram. Figure 14.2 shows a UART0 Transmit/Receive Unit.  
UART0 has two modes: clock synchronous serial I/O mode, and clock asynchronous serial I/O mode (UART  
mode).  
Figure 14.3 to 14.5 show the UART0-associated registers.  
(UART0)  
RXD0  
TXD0  
UART reception  
Receive  
clock  
1/16  
Reception control  
circuit  
CKDIR=0  
Internal  
CLK1 to CLK0=00b  
Clock  
Transmit/  
receive  
unit  
synchronous type  
f1  
f8  
=01b  
=10b  
U0BRG register  
1/(n0+1)  
UART transmission  
Transmit  
clock  
1/16  
1/2  
f32  
Transmission  
control circuit  
Clock  
synchronous type  
External  
CKDIR=1  
CKDIR=0  
CKDIR=1  
Clock synchronous type  
(when internal clock is selected)  
Clock synchronous type  
(when external clock is selected)  
Clock synchronous type  
(when internal clock is selected)  
CLK  
polarity  
reversing  
circuit  
CLK0  
Figure 14.1  
UART0 Block Diagram  
Rev.2.10 Jan 19, 2006 Page 125 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
Clock  
synchronous  
type  
PRYE=0  
PAR  
disabled  
Clock  
synchronous  
type  
UART (7 bits)  
UART (8 bits)  
1SP  
UART (7 bits)  
UART0 receive register  
SP  
PAR  
RXD0  
SP  
PAR  
Clock  
synchronous  
type  
UART  
2SP  
UART (9 bits)  
enabled  
PRYE=1  
UART (8 bits)  
UART (9 bits)  
U0RB register  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
D8  
MSB/LSB conversion circuit  
Data bus high-order bits  
Data bus low-order bits  
MSB/LSB conversion circuit  
U0TB register  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
UART (8 bits)  
UART (9 bits)  
Clock  
synchronous  
type  
PRYE=1  
PAR  
enabled  
UART (9 bits)  
UART  
2SP  
1SP  
SP  
PAR  
TXD0  
SP  
Clock  
synchronous  
type  
PAR  
UART (7 bits)  
UART (8 bits)  
UART0 transmit register  
UART (7 bits)  
disabled  
PRYE=0  
SP: Stop bit  
PAR: Parity bit  
Clock  
synchronous  
type  
"0"  
Note: Clock synchronous type is provide in UART0 only.  
Figure 14.2  
UART0 Transmit/Receive Unit  
Rev.2.10 Jan 19, 2006 Page 126 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
UART0 Transmit Buffer Register(1, 2)  
(b15)  
b7  
(b8)  
b0  
b7  
b0  
Symbol  
U0TB  
Address  
After Reset  
Indeterminate  
00A3h-00A2h  
Function  
RW  
WO  
Transmit data  
(b8-b0)  
(b15-b9)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
NOTES :  
1. When the transfer data length is 9-bit long, w rite to high-byte data first then low -byte data.  
2. Use the MOV instruction to w rite to this register.  
UART0 Receive Buffer Register(1)  
(b15)  
(b8)  
b7  
b0  
b7  
b0  
Symbol  
U0RB  
Address  
00A7h-00A6h  
After Reset  
Indeterminate  
Function  
Bit Symbol  
(b7-b0)  
Bit Name  
RW  
RO  
Receive data (D7 to D0)  
(b8)  
Receive data (D8)  
RO  
(b11-b9)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
Overrun Error Flag(2)  
Framing Error Flag(2)  
Parity Error Flag(2)  
Error SumFlag(2)  
0 : No overrun error  
1 : Overrun error  
OER  
FER  
PER  
SUM  
RO  
RO  
RO  
RO  
0 : No framing error  
1 : Framing error  
0 : No parity error  
1 : Parity error  
0 : No error  
1 : Error  
NOTES :  
1. Read out the UiRB register in 16-bit unit.  
2. The SUM, PER, FER and OER bits are set to “0” (no error) w hen the SMD2 to SMD0 bits in the UiMR register are set to  
“000b” (serial interface disabled) or the REbit in the U0C1 register is set to “0” (receive disable). The SUM bit is set to  
“0” (no error) w hen the PER, FER and OER bits are set to “0” (no error).  
The PER and FER bits are set to “0” even w hen the higher byte of the U0RB register is read out.  
UART0 Bit Rate Register(1, 2, 3)  
b7  
b0  
Symbol  
U0BRG  
Address  
00A1h  
After Reset  
Indeterminate  
Function  
Setting Range  
00h to FFh  
RW  
WO  
Assuming that set value is n, U0BRG divides the count source by  
n+1  
NOTES :  
1. Write to this register w hile the serial I/O is neither transmitting nor receiving.  
2. Use the MOV instruction to w rite to this register.  
3. After setting the CLK0 to CLK1 bits of the U0C0 register, w rite to the U0BRG register.  
Figure 14.3  
U0TB, U0RB and U0BRG Registers  
Rev.2.10 Jan 19, 2006 Page 127 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
UART0 Transmit / Receive Mode Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
U0MR  
Address  
00A0h  
Bit Name  
After Reset  
00h  
Bit Symbol  
Function  
RW  
RW  
Serial Interface Mode Select Bit  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
0 0 0 : Serial interface disabled  
0 0 1 : Clock synchronous serial I/O mode  
1 0 0 : UART mode transfer data 7 bits long  
1 0 1 : UART mode transfer data 8 bits long  
1 1 0 : UART mode transfer data 9 bits long  
Other than above : Do not set  
RW  
RW  
Internal / External Clock Select 0 : Internal clock  
Bit  
CKDIR  
STPS  
RW  
RW  
1 : External clock(1)  
Stop Bit Length Select Bit  
0 : 1 Stop Bit  
1 : 2 Stop Bits  
Odd / Even Parity Select Bit  
Enables w hen PRYE= 1  
0 : Odd parity  
PRY  
RW  
1 : Even parity  
Parity Enable Bit  
Reserved Bit  
0 : Parity disabled  
1 : Parity enabled  
PRY E  
RW  
RW  
(b7)  
Set to “0”  
NOTES :  
1. Set the PD1_6 bit in the PD1 register to “0” (input).  
UART0 Transmit / Receive Control Register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
0
Symbol  
U0C0  
Address  
00A4h  
After Reset  
08h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
BRG Count Source Select  
Bit(1)  
b1 b0  
0 0 : Selects f1  
0 1 : Selects f8  
1 0 : Selects f32  
1 1 : Do not set  
CLK0  
CLK1  
RW  
RW  
RO  
(b2)  
Reserved Bit  
Set to “0”  
Transmit Register Empty 0 : Data in transmit register (during transmit)  
Flag 1 : No data in transmit register (transmit completed)  
TXEPT  
(b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Data Output Select Bit  
0 : TXD0 pin is a pin of CMOS output  
1 : TXD0 pin is a pin of N-channel open drain output  
NCH  
RW  
CLK Polarity Select Bit  
0 : Transmit data is output at falling edge of transfer  
clock and receive data is input at rising edge  
1 : Transmit data is output at rising edge of transfer  
clock and receive data is input at falling edge  
CKPOL  
UFORM  
RW  
RW  
Transfer Format Select Bit 0 : LSB first  
1 : MSB first  
NOTES :  
1. If the BRG count source is sw itched, set the U0BRG register again.  
Figure 14.4  
U0MR and U0C0 Registers  
Rev.2.10 Jan 19, 2006 Page 128 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
UART0 Transmit / Receive Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U0C1  
Address  
00A5h  
After Reset  
02h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Transmit Enable Bit  
0 : Disables transmit  
1 : Enables transmit  
TE  
TI  
Transmit Buffer Empty Flag  
Receive Enable Bit  
0 : Data in U0TB register  
1 : No data in U0TB register  
RO  
RW  
RO  
0 : Disables receive  
1 : Enables receive  
RE  
RI  
Receive Complete Flag(1)  
0 : No data in U0RB register  
1 : Data in U0RB register  
(b7-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. The RI bit is set to “0” w hen the higher byte of the U0RB register is read out.  
UART Transmit / Receive Control Register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
0
Symbol  
UCON  
Address  
00B0h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
UART0 Transmit Interrupt  
Cause Select Bit  
0 : Transmit buffer empty (TI=1)  
1 : Transmit completed (TXEPT=1)  
U0IRS  
(b1)  
Reserved Bit  
Set to “0”  
RW  
RW  
RW  
UART0 Continuous Receive  
Mode Enable Bit  
0 : Disables continuous receive mode  
1 : Enables continuous receive mode  
U0RRM  
(b6-b3)  
Reserved Bit  
Set to “0”  
CNTR0 Signal Pin Select Bit(1)  
0 : P1_5/RXD0  
______  
P1_7/CNTR00/INT10  
_____  
CNTRSEL  
RW  
1 : P1_5/RXD0/CNTR01/INT11  
P1_7  
NOTES :  
____  
1. The CNTRSEL bit selects the input pin of CNTR0 (INTI) signal.  
When the CNTR0 signal is output, it is output from the CNTR00 pin despite the CNTRSEL bit setting.  
Figure 14.5  
U0C1 and UCON Registers  
Rev.2.10 Jan 19, 2006 Page 129 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14.1 Clock Synchronous Serial I/O Mode  
The clock synchronous serial I/O mode is mode to transmit and receive data using a transfer clock.  
Table 14.1 lists the Specification of Clock Synchronous Serial I/O Mode. Table 14.2 lists the Registers to  
Be Used and Settings in Clock Synchronous Serial I/O Mode(1).  
Table 14.1  
Specification of Clock Synchronous Serial I/O Mode  
Item Specification  
Transfer Data Format  
Transfer Clock  
• Transfer data length: 8 bits  
• CKDIR bit in U0MR register is set to “0” (internal clock): fi/(2(n+1))  
fi=f1, f8, f32 n=setting value in U0BRG register: 00h to FFh  
• The CKDIR bit is set to “1” (external clock): input from CLK0 pin  
(1)  
Transmit Start Condition  
Receive Start Condition  
• Before transmit starts, the following requirements are required  
- The TE bit in the U0C1 register is set to “1” (transmit enabled)  
- The TI bit in the U0C1 register is set to “0” (data in the U0TB register)  
(1)  
• Before receive starts, the following requirements are required  
- The RE bit in the U0C1 register is set to “1” (receive enabled)  
- The TE bit in the U0C1 register is set to “1” (transmit enabled)  
- The TI bit in the U0C1 register is set to “0” (data in the U0TB register)  
Interrupt Request  
Generation Timing  
• When transmit, one of the following conditions can be selected  
- The U0IRS bit is set to “0” (transmit buffer empty):  
when transferring data from the U0TB register to UART0 transmit register  
(when transmit starts)  
- The U0IRS bit is set to “1” (transmit completes):  
when completing transmit data from UARTi transmit register  
• When receive  
When transferring data from the UART0 receive register to the U0RB  
register (when receive completes)  
(2)  
Error Detection  
Select Function  
• Overrun error  
This error occurs if serial interface starts receiving the following data before  
reading the U0RB register and receives the 7th bit of the following data  
• CLK polarity selection  
Transfer data input/output can be selected to occur synchronously with the  
rising or the falling edge of the transfer clock  
• LSB first, MSB first selection  
Whether transmitting or receiving data beginning with the bit 0 or beginning  
with the bit 7 can be selected  
• Continuous receive mode selection  
Receive is enabled immediately by reading the U0RB register  
NOTES:  
1. When an external clock is selected, meet the conditions while the CKPOL bit in the U0C0 register is  
set to “0” (transmit data output at the falling edge and the receive data input at the rising edge of the  
transfer clock), the external clock is held “H”; if the CKPOL bit in the U0C0 register is set to “1”  
(transmit data output at the rising edge and the receive data input at the falling edge of the transfer  
clock), the external clock is held “L”.  
2. If an overrun error occurs, the value of the U0RB register will be indeterminate. The IR bit in the  
S0RIC register remains unchanged.  
Rev.2.10 Jan 19, 2006 Page 130 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
(1)  
Table 14.2  
Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode  
Bit Function  
Register  
U0TB  
0 to 7  
0 to 7  
OER  
Set transmit data  
Receive data can be read  
Overrun error flag  
Set bit rate  
U0RB  
U0BRG  
U0MR  
0 to 7  
Set to “001b”  
SMD2 to SMD0  
CKDIR  
CLK1 to CLK0  
TXEPT  
NCH  
Select the internal clock or external clock  
Select the count source in the U0BRG register  
Transmit register empty flag  
U0C0  
Select TXD0 pin output mode  
CKPOL  
UFORM  
TE  
Select the transfer clock polarity  
Select the LSB first or MSB first  
U0C1  
Set this bit to “1” to enable transmit/receive  
Transmit buffer empty flag  
TI  
RE  
Set this bit to “1” to enable reception  
Reception complete flag  
RI  
UCON  
U0IRS  
U0RRM  
CNTRSEL  
Select the factor of UART0 transmit interrupt  
Set this bit to “1” to use continuous receive mode  
Set this bit to “1” to select P1_5/RXD0/CNTR01/INT11  
NOTES:  
1. Set bits which are not in this table to “0” when writing to the registers in clock synchronous serial I/O  
mode.  
Table 14.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXD0 pin outputs “H”  
level between the operating mode selection of UART0 and transfer start, an “H” (If the NCH bit is set to  
“1” (the N-channel open-drain output), this pin is in a high-impedance state.)  
Table 14.3  
I/O Pin Functions in Clock Synchronous Serial I/O Mode  
Pin Name  
Function  
Selection Method  
TXD0(P1_4)  
Output serial data  
(Outputs dummy data when performing receive only)  
PD1_5 bit in PD1 register=0  
RXD0(P1_5) Input serial data  
(P1_5 can be used as an input port when performing transmit  
only)  
CLK0(P1_6)  
Output transfer clock CKDIR bit in U0MR register=0  
Input transfer clock  
CKDIR bit in U0MR register=1  
PD1_6 bit in PD1 register=0  
Rev.2.10 Jan 19, 2006 Page 131 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
• Example of Transmit Timing (when internal clock is selected)  
TC  
Transfer Clock  
"1"  
"0"  
TE Bit in U0C1  
Register  
Set data to U0TB register  
TI Bit in U0C1  
Register  
"1"  
"0"  
Transfer from U0TB register to UART0 transmit register  
TCLK  
Stop pulsing because the TE bit is set to “0”  
CLK0  
TXD0  
D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
TXEPT Bit in  
U0C0 Register  
"1"  
"0"  
IR Bit in S0TIC  
Register  
"1"  
"0"  
Set to "0" when interrupt request is acknowledged, or set by a program  
TC=TCLK=2(n+1)/fi  
fi: frequency of U0BRG count source (f1, f8, f32)  
n: setting value to U0BRG register  
The above applies to the following settings:  
• CKDIR bit in U0MR register = 0 (internal clock)  
• CKPOL bit in U0C0 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock)  
• U0IRS bit in UCON register = 0 (an interrupt request is generated when the transmit buffer is empty):  
• Example of Receive Timing (when external clock is selected)  
RE Bit in U0C1  
Register  
"1"  
"0"  
TE Bit in U0C1  
Register  
"1"  
"0"  
Write dummy data to U0TB register  
TI Bit in U0C1  
Register  
"1"  
"0"  
Transfer from U0TB register to UART0 transmit register  
1/fEXT  
CLK0  
RXD0  
Receive data is taken in  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5  
Read out from U0RB register  
Transfer from UART0 receive register to  
U0RB register  
RI Bit in U0C1  
Register  
"1"  
"0"  
"1"  
"0"  
IR Bit in S0RIC  
Register  
Set to "0" when interrupt request is acknowledged, or set by a program  
The above applies to the following settings:  
• CKDIR bit in U0MR register = 1 (external clock)  
• CKPOL bit in U0C0 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock)  
Meet the following conditions when “H” is applied to the CLK0 pin before receiving data:  
• TE bit in U0C1 register = 1 (enables transmit)  
• RE bit in U0C1 register = 1 (enables receive)  
• Write dummy data to the U0TB register  
fEXT: frequency of external clock  
Figure 14.6  
Transmit and Receive Operation  
Rev.2.10 Jan 19, 2006 Page 132 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14.1.1 Polarity Select Function  
Figure 14.7 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the  
transfer clock polarity.  
• When the CKPOL bit in the U0C0 register = 0 (output transmit data at the falling  
edge and input the receive data at the rising edge of the transfer clock)  
CLK0(1)  
TXD0  
RXD0  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
• When the CKPOL bit in the U0C0 register = 1 (output transmit data at the rising  
edge and input the receive data at the falling edge of the transfer clock)  
CLK0(2)  
TXD0  
RXD0  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
NOTES :  
1. When not transferring, the CLK0 pin level is “H”.  
2. When not transferring, the CLK0 pin level is “L”.  
Figure 14.7  
Transfer Clock Polarity  
14.1.2 LSB First/MSB First Select Function  
Figure 14.8 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the  
transfer format.  
• When UFORM bit in U0C0 register = 0 (LSB first)(1)  
CLK0  
TXD0  
RXD0  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
• When UFORM bit in U0C0 register = 1 (MSB first)(1)  
CLK0  
TXD0  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
RXD0  
NOTES :  
1. The above applies when the CKPOL bit in the U0C0 register is  
set to "0" (output transmit data at the falling edge and input receive  
data at the rising edge of the transfer clock).  
Figure 14.8  
Transfer Format  
Rev.2.10 Jan 19, 2006 Page 133 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14.1.3 Continuous Receive Mode  
Continuous receive mode is held by setting the U0RRM bit in the UCON register to “1” (enables  
continuous receive mode). In this mode, reading U0RB register sets the TI bit in the U0C1 register to  
“0” (data in the U0TB register). When the U0RRM bit is set to “1”, do not write dummy data to the  
U0TB register in a program.  
Rev.2.10 Jan 19, 2006 Page 134 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14.2 Clock Asynchronous Serial I/O (UART) Mode  
The UART mode allows transmit and receive data after setting the desired bit rate and transfer data  
format. Table 14.4 lists the Specification of UART Mode. Table 14.5 lists the Registers to Be Used and  
Settings in UART Mode.  
Table 14.4  
Specification of UART Mode  
Item  
Specification  
Transfer Data Format  
• Character bit (transfer data): selectable from 7, 8 or 9 bits  
• Start bit: 1 bit  
• Parity bit: selectable from odd, even, or none  
• Stop bit: selectable from 1 or 2 bits  
Transfer Clock  
• CKDIR bit in U0MR register is set to “0” (internal clock) : fj/(16(n+1))  
fj=f1, f8, f32 n=setting value in U0BRG register: 00h to FFh  
• CKDIR bit is set to “1” (external clock) : fEXT/(16(n+1))  
fEXT: input from CLK0 pin n=setting value in U0BRG register: 00h to FFh  
Transmit Start Condition  
Receive Start Condition  
• Before transmit starts, the following are required  
- TE bit in U0C1 register is set to “1” (transmit enabled)  
- TI bit in U0C1 register is set to “0” (data in U0TB register)  
• Before receive starts, the following are required  
- RE bit in U0C1 register is set to “1” (receive enabled)  
- Detects start bit  
Interrupt Request  
Generation Timing  
• When transmitting, one of the following conditions can be selected  
- U0IRS bit is set to “0” (transmit buffer empty):  
when transferring data from the U0TB register to UART0 transmit  
register (when transmit starts)  
- U0IRS bit is set to “1” (transfer ends):  
when serial interface completes transmitting data from the UART0  
transmit register  
• When receiving  
When transferring data from the UART0 receive register to U0RB  
register (when receive ends)  
(1)  
Error Detection  
• Overrun error  
This error occurs if serial interface starts receiving the following data  
before reading the U0RB register and receiving the bit one before the last  
stop bit of the following data  
• Framing error  
This error occurs when the number of stop bits set are not detected  
• Parity error  
This error occurs when parity is enabled, the number of 1’s in parity and  
character bits do not match the number of 1’s set  
• Error sum flag  
This flag is set is set to “1” when any of the overrun, framing, and parity  
errors is generated  
NOTES:  
1. If an overrun error occurs, the value in the U0RB register will be indeterminate. The IR bit in the  
S0RIC register remains unchanged.  
Rev.2.10 Jan 19, 2006 Page 135 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
Table 14.5  
Registers to Be Used and Settings in UART Mode  
Bit  
Register  
U0TB  
Function  
(1)  
0 to 8  
0 to 8  
Set transmit data  
Receive data can be read  
(1)  
U0RB  
OER,FER,PER,SUM Error flag  
U0BRG  
U0MR  
0 to 7  
Set a bit rate  
SMD2 to SMD0  
Set to “100b” when transfer data is 7-bit long  
Set to “101b” when transfer data is 8-bit long  
Set to “110b” when transfer data is 9-bit long  
Select the internal clock or external clock  
Select the stop bit  
CKDIR  
STPS  
PRY, PRYE  
CLK0, CLK1  
TXEPT  
Select whether parity is included and odd or even  
Select the count source for the U0BRG register  
Transmit register empty flag  
U0C0  
U0C1  
NCH  
Select TXD0 pin output mode  
CKPOL  
UFORM  
Set to “0”  
LSB first or MSB first can be selected when transfer data is 8-bit  
long. Set to “0” when transfer data is 7- or 9-bit long.  
Set to “1” to enable transmit  
TE  
TI  
Transmit buffer empty flag  
RE  
Set to “1” to enable receive  
RI  
Receive complete flag  
UCON  
U0IRS, U1IRS  
U0RRM  
CNTRSEL  
Select the factor of UART0 transmit interrupt  
Set to “0”  
Set to “1” to select P1_5/RXD0/CNTR01/INT11  
NOTES:  
1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7-bit long; bits  
0 to 7 when transfer data is 8-bit long; bits 0 to 8 when transfer data is 9-bit long.  
Table 14.6 lists the I/O Pin Functions in Clock Asynchronous Serial I/O Mode. After the UART0 operating  
mode is selected, the TXD0 pin outputs “H” level (If the NCH bit is set to “1” (N-channel open-drain  
outputs), this pin is in a high-impedance state) until transfer starts.  
Table 14.6  
I/O Pin Functions in Clock Asynchronous Serial I/O Mode  
Pin name  
Function  
Selection Method  
TXD0(P1_4)  
Output serial data  
(Cannot be used as a port when performing receive only)  
PD1_5 bit in PD1 register=0  
RXD0(P1_5) Input serial data  
(P1_5 can be used as an input port when performing transmit  
only)  
CLK0(P1_6)  
Programmable I/O Port CKDIR bit in U0MR register=0  
Input transfer clock  
CKDIR bit in U0MR register=1  
PD1_6 bit in PD1 register=0  
Rev.2.10 Jan 19, 2006 Page 136 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
• Transmit Timing When Transfer Data is 8-Bit Long (parity enabled, 1 stop bit)  
TC  
Transfer Clock  
TE Bit in U0C1  
Register  
“1”  
“0”  
Write data to U0TB register  
“1”  
“0”  
TI Bit in U0C1  
Register  
Stop pulsing  
because the TE bit is set to “0”  
Transfer from U0TB register to UART0 transmit register  
Parity Stop  
Start bit  
bit  
bit  
TXD0  
ST D0 D1 D2 D3 D4 D5 D6 D7  
P
ST D0 D1 D2 D3 D4 D5 D6 D7  
P
SP  
ST D0 D1  
SP  
“1”  
“0”  
TXEPT Bit in  
U0C0 Register  
IR Bit S0TIC  
Register  
“1”  
“0”  
Set to “0” when interrupt request is acknowledged, or set by a program  
TC=16 (n + 1) / fj or 16 (n + 1) / fEXT  
The above timing diagram applies to the following conditions:  
• PRYE bit in U0MR register = 1 (parity enabled)  
• STPS bit in U0MR register = 0 (1 stop bit)  
fj: Frequency of U0BRG count source (f1, f8, f32)  
fEXT: Frequency of U0BRG count source (external clock)  
• U0IRS bit in UCON register = 1 (an interrupt request is generated when transmit completes)  
n: Setting value to U0BRG register  
• Transmit Timing When Transfer Data is 9-Bit Long (parity disabled, 2 stop bits)  
TC  
Transfer Clock  
TE Bit in U0C1  
Register  
“1”  
“0”  
Write data to U0TB register  
“1”  
“0”  
TI Bit in U0C1  
Register  
Transfer from U0TB register to UART0 transmit register  
Stop  
bit  
Stop  
bit  
Start bit  
TXD0  
ST D0 D1 D2 D3 D4 D5 D6 D7 D8  
ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP SP  
ST D0 D1  
SP SP  
TXEPT Bit in  
U0C0 Register  
“1”  
“0”  
IR Bit in S0RIC  
Register  
“1”  
“0”  
Set to “0” when interrupt request is acknowledged, or set by a program  
The above timing diagram applies to the following conditions:  
• PRYE bit in U0MR register = 0 (parity disabled)  
• STPS bit in U0MR register = 1 (2 stop bits)  
TC=16 (n + 1) / fj or 16 (n + 1) / fEXT  
fj: Frequency of U0BRG count source (f1, f8, f32)  
fEXT: Frequency of U0BRG count source (external clock)  
n: Setting value to U0BRG register  
• U0IRS bit in UCON register = 0 (an interrupt request is generated when transmit buffer is empty)  
Figure 14.9  
Transmit Timing in UART Mode  
Rev.2.10 Jan 19, 2006 Page 137 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
• Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)  
U0BRG output  
"1"  
"0"  
U0C1 register  
RE bit  
Stop bit  
Start bit  
RXD0  
D0  
D1  
D7  
Sampled "L"  
Receive data taken in  
Transfer clock  
Reception triggered when transfer clock  
is generated by falling edge of start bit  
Transferred from UART0 receive  
register to U0RB register  
U0C1 register  
RI bit  
"1"  
"0"  
S0RIC register  
RI bit  
"1"  
"0"  
Set to "0" when interrupt request is accepted, or set by a program  
The above timing diagram applies to the following conditions.  
• PRYE bit in U0MR register = 0 (parity disabled)  
• STPS bit in U0MR register = 0 (1 stop bit)  
Figure 14.10 Receive Timing in UART Mode  
14.2.1 CNTR0 Pin Select Function  
The CNTRSEL bit in the UCON register selects whether P1_7 can be used as the CNTR00/INT10  
input pin or P1_5 can be used as the CNTR01/INT11 input pin.  
When the CNTRSEL bit is set to “0”, P1_7 is used as the CNTR00/INT10 pin and when the  
CNTRSEL bit is set to “1”, P1_5 is used as the CNTR01/INT11 pin.  
Rev.2.10 Jan 19, 2006 Page 138 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
14. Serial Interface  
14.2.2 Bit Rate  
Divided-by-16 of frequency by the U0BRG register in UART mode is a bit rate.  
<UART Mode>  
• When selecting internal clock  
Setting value to the U0BRG register =  
fj  
- 1  
Bit Rate × 16  
Fj : Count source frequency of the U0BRG register (f1, f8 and f32)  
• When selecting external clock  
Setting value to the U0BRG register =  
fEXT  
Bit Rate × 16  
- 1  
fEXT : Count source frequency of the U0BRG register (external clock)  
Figure 14.11 Calculation Formula of U0BRG Register Setting Value  
Table 14.7  
Bit Rate Setting Example in UART Mode  
System Clock = 20MHz  
System Clock = 8MHz  
BRG  
Count  
Source  
Bit Rate  
(bps)  
BRG Setting Actual Time  
BRG Setting  
Actual  
Time (bps)  
1201.92  
Error(%)  
Error(%)  
Value  
129(81h)  
64(40h)  
32(20h)  
129(81h)  
86(56h)  
64(40h)  
42(2Ah)  
39(27h)  
32(20h)  
23(17h)  
(bps)  
Value  
1200  
2400  
f8  
f8  
f8  
f1  
f1  
f1  
f1  
f1  
f1  
f1  
1201.92  
2403.85  
4734.85  
9615.38  
14367.82  
19230.77  
29069.77  
31250.00  
37878.79  
52083.33  
0.16  
0.16  
-1.36  
0.16  
-0.22  
0.16  
0.94  
0.00  
-1.36  
1.73  
51(33h)  
25(19h)  
12(0Ch)  
51(33h)  
34(22h)  
25(19h)  
16(10h)  
15(0Fh)  
12(0Ch)  
9(09h)  
0.16  
0.16  
0.16  
0.16  
-0.79  
0.16  
2.12  
0.00  
0.16  
-2.34  
2403.85  
4800  
4807.69  
9600  
9615.38  
14400  
19200  
28800  
31250  
38400  
51200  
14285.71  
19230.77  
29411.76  
31250.00  
38461.54  
50000.00  
Rev.2.10 Jan 19, 2006 Page 139 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
The serial data of the clock synchronous can communicate for the clock synchronous serial I/O with chip  
select (hereinafter referred to as SSU). Table 15.1 shows a SSU Specification and Figure 15.1 shows a  
Block Diagram of SSU.  
Figure 15.2 to 15.8 show SSU Associated Registers.  
Table 15.1  
SSU Specification  
Item  
Specification  
Transfer Data Format  
Operating Mode  
• Transfer-data length 8 bits  
Continuous transmit and receive of serial data are enabled since both  
(2)  
transmitter and receiver have buffer structure.  
• Clock synchronous communication mode  
• 4-wire bus communication mode (including bidirectional communication)  
Master / Slave Device  
I/O Pin  
Selectable  
SSCK (I/O) : Clock I/O pin  
SSI (I/O) : Data I/O pin  
SSO (I/O) : Data I/O pin  
SCS (I/O) : Chip-select I/O pin  
Transfer Clock  
• When the MSS bit in the SSCRH register is set to “0” (operates as slave  
device), external clock can be selected.  
• When the MSS bit in the SSCRH register is set to “1” (operates as master  
device), internal clock (selects from φ/256, φ/128, φ/64, φ/32, φ/16, φ/8 and φ/4  
and outputs from SSCK pin) can be selected.  
• Clock polarity and phase of SSCK can be selected.  
Receive Error Detection • Overrun error  
Overrun error occurs during receive and completes by error. While the RDRF  
bit in the SSSR register is set to “1” (data in the SSRDR register) and  
completing the next serial data receive, the ORER bit is set to “1”.  
Multimaster Error  
Detection  
• Conflict error  
While the SSUMS bit in the SSMR2 register is set to “1” (4-wire bus  
communication mode) and the MSS bit in the SSCRH register is set to “1”  
(operates as master device) and when starting a serial communication, the  
CE bit in the SSSR register is set to “1” if “L” applies to the SCS pin input.  
When the SSUMS bit in the SSMR2 register is set to “1” (4-wire bus  
communication mode), the MSS bit in the SSCRH register is set to “0”  
(operates as slave device) and the SCS pin input changes state from “L” to  
“H”, the CE bit in the SSSR register is set to “1”.  
Interrupt Request  
Select Function  
5 interrupt requests (transmit-end, transmit-data-empty, receive-data-full,  
(1)  
overrun error and conflict error).  
• Data transfer direction  
Selects MSB-first or LSB-first  
• SSCK clock polarity  
Selects “L” or “H” level when clock stops  
• SSCK clock phase  
Selects edge of data change and data download  
NOTES:  
1. The interrupt vector table is one of the SSU.  
2. When setting to the slave device, do not transmit continuously.  
Rev.2.10 Jan 19, 2006 Page 140 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
f1  
Internal Clock(f1/i)  
Internal Clock  
Generation  
Circuit  
Multiplexer  
SSCK  
SSMR Register  
SSCRL Register  
SSCRH Register  
SSER Register  
SSSR Register  
SSMR2 Register  
SSTDR Register  
Transmit / Receive  
Control Circuit  
SCS  
SSO  
SSI  
SSTRSR Register  
SSRDR Register  
Selector  
Interrupt Requests  
(TXI, TEI, RXI, OEI and CEI)  
i = 4, 8, 16, 32, 64, 128 and 256  
Figure 15.1  
Block Diagram of SSU  
Rev.2.10 Jan 19, 2006 Page 141 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Control Register H(4)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
00B8h  
After Reset  
00h  
SSCRH  
Bit Symbol  
Bit Name  
Transfer Clock Rate Select Bit(1)  
Function  
RW  
RW  
b2 b1 b0  
0 0 0 : f1/256  
0 0 1 : f1/128  
0 1 0 : f1/64  
0 1 1 : f1/32  
CKS0  
CKS1  
CKS2  
RW  
RW  
1 0 0 : f1/16  
1 0 1 : f1/8  
1 1 0 : f1/4  
1 1 1 : Do not set  
(b4-b3)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Master/Slave Device Select Bit(2)  
0 : Operates as slave device  
1 : Operates as master device  
MSS  
RW  
Receive Single Stop Bit(3)  
0 : Maintains receive operation after  
receiving 1-byte data  
RSSTP  
RW  
1 : Completes receive operation after  
receiving 1-byte data  
(b7)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. The set clock is used w hen the internal clock is selected.  
2. The SSCK pin functions as the transfer clock output pin w hen the MSS bit is set to “1” (operates as master device).  
The MSS bit is set to “0” (operates as slave device) w hen the CEbit in the SSSR register is set to “1” (conflict error  
occurs).  
3. The RSSTPbit is disabled w hen the MSS bit is set to “0” (operates as slave device).  
4. Ref er to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.2  
SSCRH Register  
Rev.2.10 Jan 19, 2006 Page 142 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Control Register L(4)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
00B9h  
After Reset  
01111101b  
SSCRL  
Bit Symbol  
Bit Name  
Function  
RW  
(b0)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “1”.  
SSUControl Part Reset When this bit is set to “1”, the SSU control part and  
Bit  
SSTRSR register are reset.  
The values of the registers(1) in the SSU register are  
SRES  
RW  
maintained.  
(b3-b2)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “1”.  
SOL Write Protect Bit(2) The output level can be changed by the SOL bit w hen  
“0” w hen this bit is set to “0”.  
SOLP  
RW  
Writing “1” is disabled. When read, its content is “1”.  
Serial Data Output  
Value Setting Bit  
When read,  
0 : The last bit of the serial data output is set to “L”  
1 : The last bit of the serial data output is set to “H”  
When w rite,(2,3)  
SOL  
RW  
0 : The data outputs “L” after the serial data output  
1 : The data outputs “H” after the serial data output  
(b6)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “1”.  
(b7)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. SSCRH, SSCRL, SSMR, SSER, SSSR, SSMR2, SSTDR and SSRDR registers.  
2. The data output after the serial data is output can be changed w hen w riting to the SOL bit before or after transfer.  
Set the SOLPbit to “0” and w rite to the SOLPand SOL bits by the MOV instruction w hen w riting to the SOL bit.  
3. Do not w rite to the SOL bit during the data transfer.  
4. Refer to  
for accessing registers associated with SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.3  
SSCRL Register  
Rev.2.10 Jan 19, 2006 Page 143 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
SS Mode Register (2)  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
b7 b6 b5 b4 b3 b2 b1 b0  
1
Symbol  
Address  
00BAh  
After Reset  
00011000b  
SSMR  
Bit Symbol  
Bit Name  
Function  
RW  
R
Bit Counter 2 to 0  
b2 b1 b0  
0 0 0 : 8-bit left  
0 0 1 : 1-bit left  
0 1 0 : 2-bit left  
0 1 1 : 3-bit left  
1 0 0 : 4-bit left  
1 0 1 : 5-bit left  
1 1 0 : 6-bit left  
1 1 1 : 7-bit left  
BC0  
BC1  
BC2  
R
R
(b3)  
Reserved Bit  
Set to “1”.  
When read, its content is “1”.  
RW  
(b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “1”.  
SSCK Clock Phase Select Bit (1)  
0 : Change data at odd edge  
(Dow nloads data at even edge)  
1 : Change data at even edge  
(Dow nloads data at odd edge)  
CPHS  
RW  
SSCK Clock Polarity Select Bit (1)  
MSB First/LSB First Select Bit  
0 : “H” w hen clock stops  
1 : “L” w hen clock stops  
CPOS  
MLS  
RW  
RW  
0 : Transfers data at MSB first  
1 : Transfers data at LSB first  
NOTES :  
1. Refer to  
for the setting of the CPHS and  
15.1.1 Association between Transfer Clock Polarity, Phase and Data  
CPOS bits.  
2. Refer to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.4  
SSMR Register  
Rev.2.10 Jan 19, 2006 Page 144 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Enable Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
00BBh  
After Reset  
00h  
SSER  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
Conflict Error Interrupt Enable Bit 0 : Disables conflict error interrupt request  
1 : Enables conflict error interrupt request  
CEIE  
(b2-b1)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Receive Enable Bit  
0 : Disables receive  
1 : Enables receive  
RE  
TE  
RW  
RW  
Transmit Enable Bit  
0 : Disables transmit  
1 : Enables transmit  
Receive Interrupt Enable Bit  
0 : Disables receive data full and overrun  
error interrupt request  
RIE  
TEIE  
TIE  
RW  
RW  
RW  
1 : Enables receive data full and overrun  
error interrupt request  
Transmit End Interrupt Enable Bit 0 : Disables transmit end interrupt request  
1 : Enables transmit end interrupt request  
Transmit Interrupt Enable Bit  
0 : Disables transmit data empty interrupt  
request  
1 : Enables transmit data empty interrupt  
request  
NOTES :  
1. Ref er to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.5  
SSER Register  
Rev.2.10 Jan 19, 2006 Page 145 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Status Register(7)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
00BCh  
After Reset  
00h  
SSSR  
Bit Symbol  
Bit Name  
Conflict Error Flag(1)  
Function  
RW  
RW  
0 : No conflict error occurs  
1 : Conflict error occurs(2)  
CE  
(b1)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
RW  
Overrun Error Flag(1)  
0 : No overrun error occurs  
1 : Overrun error occurs(3)  
ORER  
(b4-b3)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Receive Data Register Full(1, 4) 0 : No data in SSRDR register  
1 : Data in SSRDR register  
RDRF  
TEND  
RW  
Transmit End(1, 5)  
0 : The TDREbit is set to “0” w hen transmitting  
the end of the bit in transmit data  
1 : The TDREbit is set to “1” w hen transmitting  
the end of the bit in transmit data  
RW  
RW  
Transmit Data Empty(1, 5, 6)  
0 : Data is not transferred from the SSTDR  
to SSTRSR registers  
TDRE  
1 : Data is transferred fromthe SSTDR to  
SSTRSR registers  
NOTES :  
1. When reading “1” and w riting “0”, the CE, ORER, RDRF, TEND and TDREbits are set to “0”.  
2. When the serial communication is started w hile the SSUMS bit in the SSMR2 register is set to “1” (four-w ire  
bus communication mode) and the MSS bit in the SSCR__H_ register is set to “1” (operates as master  
device), the CEbit is set to “1” if “L” is applied to the SCS pin input. When the SSUMS bit in the SSMR2  
register is set to “1” (four-w ire bus communication mode), the MSS bit in the _S_S__CRH register is set to “0”  
(operates as slave device) is set to “0” (operates as slave device) and the SCS pin input changes the level  
from “L” to “H” during transfer, the CEbit is set to “1”.  
3. Indicates overrun error occurs and receive completes by error w hen receive. When the next serial data receive is  
completed w hile the RDRF bit is set to “1” (data in the SSRDR register), the ORER bit is set to “1”. After the ORER bit  
is set to “1” (overrun error occurs), do not transmit or receive while the ORERbit is set to “1”.  
4. The RDRF bit is set to “0” w hen reading out the data fromthe SSRDR register.  
5. The TEND and TDREbits are set to “0” w hen w riting the data to the SSTDR register.  
6. The TDREbit is set to “1” w hen setting the TEbit in the SSER register to “0” (disables transmit).  
7. Ref er to  
for accessing registers associated with SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.6  
SSSR Register  
Rev.2.10 Jan 19, 2006 Page 146 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Mode Register 2(5)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
00BDh  
After Reset  
00h  
SSMR2  
Bit Symbol  
Bit Name  
SSU Mode Select Bit(1)  
Function  
RW  
RW  
0 : Clock Synchronous Communication Mode  
1 : Four-Wire Bus Communication Mode  
SSUMS  
CSOS  
____  
0 : CMOS output  
SCS Pin Open Drain Output  
RW  
RW  
RW  
1 : NMOS open drain output  
Select Bit  
SSO Pin Open Drain Output  
Select Bit(1)  
0 : CMOS output  
SOOS  
SCKOS  
1 : NMOS open drain output  
SSCK Pin Open Drain Output  
0 : CMOS output  
Select Bit  
1 : NMOS open drain output  
____  
SCS Pin Select Bit(2)  
b5 b4  
0 0 : Functions as_p_o__rt  
CSS0  
RW  
0 1 : Function as SCS input pin  
____  
1 0 : Function as SCS output pin(3)  
____  
1 1 : Functions as SCS output pin(3)  
CSS1  
SCKS  
RW  
RW  
SSCK Pin Select Bit  
0 : Functions as port  
1 : Functions as serial clock pin  
Bidirectional Mode Enable Bit(1, 4) 0 : Standard mode (communicates using 2  
pins of data input and data output)  
BIDE  
RW  
1 : Bidirectional mode (communicates using  
1 pin of data input and data output)  
NOTES :  
1. Ref er to  
for the combination of the data  
15.2 Relationship between Data I/O Pin and SS Shift Register  
I/O pin.  
_____  
2. The SCS pin functions as a port, regardless of the contents of the CSS0 and CSS1 bits w hen the SSUMS  
bit is set to “0” (clock synchronous communication mode).  
____  
3. This bit functions as the SCS input pin before starting transfer.  
4. The BIDEbit is disabled w hen the SSUMS bit is set to “0” (clock synchronous communication mode).  
5. Refer to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.7  
SSMR2 Register  
Rev.2.10 Jan 19, 2006 Page 147 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
SS Transmit Data Register (2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SSTDR  
Address  
00BEh  
After Reset  
FFh  
Function  
RW  
RW  
Store the transmit data.  
The stored transmit data is transferred to the SSTRSR register and the transmit is started  
w hen detecting the SSTRSR register is empty.  
When the next transmit data is w ritten to the SSTDR register during the data transmit from the  
SSTRSR register, the data can be transmitted continuously.(1)  
When the MLS bit in the SSMR register is set to “1” (transfer data w ith LSB-first), the data in  
w hich MSB and LSB are reversed can be read, after w riting to the SSTDR register.  
NOTES :  
1. When setting to the slave device, do not transmit continuously.  
2. Ref er to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
SS Receive Data Register (2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
SSRDR  
Address  
00BFh  
After Reset  
FFh  
Function  
RW  
RO  
Store the receive data.(1)  
The receive data is transferred to the SSRDR register and the receive operation is completed  
w hen receiving 1-byte data to the SSTRSR register. At this time, the follow ing receive is  
possible. The continuous receive is possible by the SSTRSR and SSRDR registers.  
NOTES :  
1. The SSRDR register maintains the receive data before the overrun error occurs w hen the ORER bit in the SSSR  
register is set to “1” (overrun error occurs). When an overrun error occurs, the receive data may contain errors and  
therefore, should be discarded.  
2. Refer to  
for accessing registers associated w ith SSU.  
20.6.1 Access Registers Associated with SSU  
Figure 15.8  
SSTDR and SSRDR Register  
Rev.2.10 Jan 19, 2006 Page 148 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.1 Transfer Clock  
A transfer clock can be selected from 7 internal clocks (φ/256, φ/128, φ/64, φ/32, φ/16, φ/8 and φ/4) and  
an external clock.  
When using the SSU, set the SCKS bit in the SSMR2 register to “1” and select the SSCK pin as the  
serial clock pin.  
When the MSS bit in the SSCRH register is set to “1” (operates as master device), an internal clock can  
be selected and the SSCK pin functions as output. When transfer is started, the SSCK pin outputs clocks  
of the transfer rate selected in the CKS0 to CKS2 bits in the SSCRH register.  
When the MSS bit in the SSCRH register is set to “0” (operates as slave device), an external clock can  
be selected and the SSCK pin functions as input.  
15.1.1 Association between Transfer Clock Polarity, Phase and Data  
Association between transfer clock polarity, phase and data changes according to a combination of the  
SSUMS bit in the SSMR2 register and the CPHS and CPOS bits in the SSMR register. Figure 15.9  
shows the Association between Transfer Clock Polarity, Phase and Transfer Data.  
Also, the MSB-first transfer or LSB-first transfer can be selected by setting the MLS bit in the SSMR  
register. When the MLS bit is set to “1”, transfer is started from the LSB to MSB. When the MLS bit is set  
to “0”, transfer is started from the MSB to LSB.  
Rev.2.10 Jan 19, 2006 Page 149 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
• When SSUMS=0 (clock synchronous communication mode), CPHS bit=0 (data change at  
odd edge) and CPOS bit=0 (“H” when clock stops)  
SSCK  
SSO, SSI  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
• When SSUMS=1 (4-wire bus communication mode) and CPHS=0 (data change at odd edge)  
SSCK  
CPOS=0  
(“H” when clock stops)  
SSCK  
CPOS=1  
(“L” when clock stops)  
SSO, SSI  
SCS  
b0  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
• When SSUMS=1 (4-wire bus communication mode), CPHS=1 (data download at odd edge)  
SSCK  
CPOS=0  
(“H” when clock stops)  
SSCK  
CPOS=1  
(“L” when clock stops)  
SSO, SSI  
SCS  
b0  
b1  
b2  
b3  
b4  
b7  
b5  
b6  
CPHS and CPOS : bits in SSMR register, SSUMS : Bits in SSMR2 register  
Figure 15.9  
Association between Transfer Clock Polarity, Phase and Transfer Data  
Rev.2.10 Jan 19, 2006 Page 150 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.2 SS Shift Register (SSTRSR)  
The SSTRSR register is the shift register to transmit and receive the serial data.  
When the transmit data is transferred from the SSTDR register to the SSTRSR register and the MLS bit  
in the SSMR register is set to “0” (MSB-first), the bit 0 in the SSTDR register is transferred to the bit 0 in  
the SSTRSR register. When the MLS bit is set to “1” (LSB-first), the bit 7 in the SSTDR register is  
transferred to the bit 0 in the SSTRSR register.  
15.2.1 Association between Data I/O Pin and SS Shift Register  
Connecting association between the data I/O pin and SSTRSR register (SS shift register) changes  
according to a combination of the MSS bit in the SSCRH register and the SSUMS bit in the SSMR2  
register. Also, connecting association changes according to the BIDE bit in the SSMR2 register.  
Figure 15.10 shows a Connecting Association between Data I/O Pin and SSTRSR Register.  
• When SSUMS=1 (4-wire bus communication mode),  
BIDE=0 (standard mode) and MSS=1 (operates as  
master device)  
• When SSUMS=0  
(clock synchronous communication mode)  
SSTRSR Register  
SSTRSR Register  
SSO  
SSI  
SSO  
SSI  
• When SSUMS=1 (4-wire bus communication mode),  
BIDE=1 (bidirectional mode)  
• When SSUMS=1 (4-wire bus communication mode),  
BIDE=0 (standard mode) and MSS=0 (operates as  
slave device)  
SSTRSR Register  
SSO  
SSI  
SSTRSR Register  
SSO  
SSI  
Figure 15.10 Connecting Association between Data I/O Pin and SSTRSR Register  
Rev.2.10 Jan 19, 2006 Page 151 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.3 Interrupt Requests  
SSU has five interrupt requests : transmit data empty, transmit end, receive data full, overrun error and  
conflict error. Since these interrupt requests are assigned to the SSU interrupt vector table, determining  
interrupt sources by flags is required. Table 15.2 shows the SSU Interrupt Requests.  
Table 15.2  
SSU Interrupt Requests  
Abbreviation  
Interrupt Request  
Generation Condition  
TIE=1, TDRE=1  
Transmit Data Empty  
Transmit End  
TXI  
TEI  
RXI  
OEI  
CEI  
TEIE=1, TEND=1  
RIE=1, RDRF=1  
RIE=1, ORER=1  
CEIE=1, CE=1  
Receive Data Full  
Overrun Error  
Conflict Error  
CEIE, RIE, TEIE and TIE : Bits in SSER register  
ORER, RDRF, TEND and TDRE : Bits in SSSR register  
Generation conditions of Table 15.2 are met, a SSU interrupt request is generated.Set the each interrupt  
source to “0” by a SSU interrupt routine.  
However, the TDRE and TEND bits are automatically set to “0” by writing the transmit data to the SSTDR  
register and the RDRF bit is automatically set to “0” by reading the SSRDR register. When writing the  
transmit data to the SSTDR register, at the same time the TDRE bit is set to “1” (data is transmitted from  
the SSTDR to SSTRSR registers) again and when setting the TDRE bit to “0” (data is not transmitted  
from the SSTDR to SSTRSR registers), additional 1-byte data may be transmitted.  
Rev.2.10 Jan 19, 2006 Page 152 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.4 Communication Modes and Pin Functions  
SSU switches functions of the I/O pin in each communication mode according to the setting of the  
MSS bit in the SSCRH register and the RE and TE bits in the SSER register. Table 15.3 shows the  
Association between Communication Modes and I/O Pins.  
Table 15.3  
Association between Communication Modes and I/O Pins  
Bit Setting  
Pin State  
SSO  
Communication Mode  
SSUMS  
0
BIDE  
MSS  
TE  
RE  
SSI  
Input  
SSCK  
Input  
(1)  
Clock Synchronous  
Communication Mode  
Disabled 0  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
(1)  
Output Input  
Input  
Input  
Output Input  
(1)  
1
0
1
Output  
(1)  
Output Output  
Output Output  
Input  
(1)  
4-Wire Bus  
Communication Mode  
1
1
0
1
0
1
0
1
Input  
Input  
Input  
Input  
Output  
(1)  
Output  
Output Input  
(1)  
0
1
Input  
(1)  
Output Output  
Output Output  
Input  
(1)  
4-Wire Bus  
(Bidirectional)  
0
1
0
1
0
1
Input  
Input  
(1)  
Output Input  
(2)  
Communication Mode  
(1)  
Input  
Output  
(1)  
Output Output  
NOTES:  
1. This pin can be used as programmable I/O port.  
2. Do not set both the TE and RE bits to “1” in 4-wire bus (bidirectional) communication mode.  
SSUMS and BIDE : Bits in SSMR2 register  
MSS : Bit in SSCRH register  
TE and RE : Bits in SSER register  
Rev.2.10 Jan 19, 2006 Page 153 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.5 Clock Synchronous Communication Mode  
15.5.1 Initialization in Clock Synchronous Communication Mode  
Figure 15.11 shows an Initialization in Clock Synchronous Communication Mode. Set the TE bit in the  
SSER register to “0” (disables transmit) and the RE bit to “0” (disables receive) before data transmit /  
receive as an initialization.  
When communication mode and format are changed, set the TE bit to “0” and the RE bit to “0” before  
changing.  
Setting the RE bit to “0” does not change the contents of the RDRF and ORER flags, and the contents  
of the SSRDR register.  
Start  
SSER register RE bit 0  
TE bit 0  
SSMR2 register SSUMS bit 0  
SSMR register CPHS bit 0  
CPOS bit 0  
Set MLS bit  
SSCRH register Set MSS bit  
SSMR2 register  
SSCRH register  
SCKS bit 1  
Set SOOS bit  
Set CKS0 to CKS2 bits  
Set RSSTP bit  
SSSR register ORER bit 0(1)  
SSER register  
RE bit 1 (When receive)  
TE bit 1 (When transmit)  
Set RIE, TEIE and TIE bits  
End  
NOTES:  
1. Write “0” after reading “1” to set the ORER bit to “0”.  
Figure 15.11 Initialization in Clock Synchronous Communication Mode  
Rev.2.10 Jan 19, 2006 Page 154 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.5.2 Data Transmit  
Figure 15.12 shows an Example of SSU Operation for Data Transmit (Clock Synchronous  
Communication Mode). During the data transmit, the SSU operates as described below.  
When the SSU is set as a master device, it outputs a synchronous clock and data.  
When the SSU is set as a slave device, it outputs data synchronized with the input clock. When  
setting the TE bit to “1” (enables transmit) before writing the transmit data to the SSTDR register, the  
TDRE bit is automatically set to “0” (data is not transferred from the SSTDR to SSTRSR registers)  
and the data is transferred from the SSTDR to SSTRSR registers.  
After the TDRE bit is set to “1” (data is transferred from the SSTDR to SSTRSR registers), a transmit  
is started. When the TIE bit in the SSER register is set to “1”, the TXI interrupt request is generated.  
When one frame of data is transferred while the TDRE bit is set to “0”, data is transferred from the  
SSTDR to SSTRSR registers and a transmit of the next frame is started. If the 8th bit is transmitted  
while the TDRE bit is set to “1”, the TEND bit in the SSSR register is set to “1” (the TDRE bit is set to  
“1” when the last bit of the transmit data is transmitted) and the state is retained. The TEI interrupt  
request is generated when the TEIE bit in the SSER register is set to “1” (enables transmit-end  
interrupt request). The SSCK pin is retained “H” after transmit-end.  
Transmit can not be performed while the ORER bit in the SSRR register is set to “1” (overrun error  
occurs). Confirm that the ORER bit is set to “0” before transmit.  
When setting the microcomputer to the slave device, ensure the TEND bit is set to “1” (data transmit  
ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to  
the master device, continuous transmit is enabled.  
Figure 15.13 shows a Sample Flowchart for Data Transmit (Clock Synchronous Communication  
Mode).  
• When SSUMS=0 (clock synchronous communication mode), CPHS=0 (data change  
at odd numbers) and CPOS=0 (“H” when clock stops)  
SSCK  
SSO  
b0  
b1  
b7  
b0  
b1  
b7  
1 Frame  
1 Frame  
“1”  
“0”  
TDRE Bit in  
SSSR Register  
TEI interrupt request  
generation  
“1”  
“0”  
TXI interrupt request generation  
TEND Bit in  
SSSR Register  
Process by  
Program  
Write data to SSTDR register  
Figure 15.12 Example of SSU Operation for Data Transmit (Clock Synchronous Communication  
Mode)  
Rev.2.10 Jan 19, 2006 Page 155 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
Start  
Initialization  
(1)  
(1) After reading the SSSR register and confirming  
that the TDRE bit is set to “1”, write the transmit  
data to the SSTDR register. When write the  
transmit data to the SSTDR register, the TDRE bit  
is automatically set to “0”.  
Read TDRE bit in SSSR register  
No  
TDRE=1 ?  
Yes  
Write transmit data to SSTDR register  
Yes (2)  
Data transmit  
continued?  
(2)  
(3)  
(2) Determine whether data transmit is continued  
No  
Read TEND bit in SSSR register  
(3) When the data transmit is completed, the TEND  
bit is set to “1”. Set the TEND bit to “0” and the TE  
bit to “0” and complete transmit mode.  
No  
TEND=1 ?  
Yes  
SSSR register  
SSER register  
TEND bit 0(1)  
TE bit 0  
End  
NOTES:  
1. Write “0” after reading “1” to set the TEND bit to “0”.  
2. When setting the microcomputer to the slave device, ensure the TEND bit is set to “1” (data transmit ends)  
and write the following transmit data to the SSTDR register. When setting the microcomputer to the master  
device, continuous transmit is enabled.  
Figure 15.13 Sample Flowchart for Data Transmit (Clock Synchronous Communication Mode)  
Rev.2.10 Jan 19, 2006 Page 156 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.5.3 Data Receive  
Figure 15.14 shows an Example of Operation for Data Receive (Clock Synchronous Communication  
Mode).  
During the data receive, the SSU operates as described below. When the SSU is set as a master  
device, it outputs a synchronous clock and inputs data.  
When the SSU is set as a salve device, it outputs data synchronized with the input clock. When the  
SSU is set as a master device, it outputs a receive clock and starts receiving by performing dummy  
read on the SSRDR register.  
After the 8-bit data is received, the RDRF bit in the SSSR register is set to “1” (data in the SSRDR  
register) and receive data is stored in the SSRDR register. When the RIE bit in the SSER register is  
set to “1” (enables RXI and OEI interrupt request), the RXI interrupt request is generated. If the SSDR  
register is read, the RDRF bit is automatically set to “0” (no data in the SSRDR register).  
Read the receive data after setting the RSSTP bit in the SSCRH register to “1” (after receiving 1-byte  
data, the receive operation is completed). The SSU outputs a clock for receiving 8-bit data and stops.  
After that, set the RE bit in the SSER register to “0” (disables receive) and the RSSTP bit to “0”  
(receive operation is continued after receiving the 1-byte data) and read the receive data. If the  
SSRDR register is read while the RE bit is set to “1” (enables receive), a receive clock is output again.  
When the 8th clock rises while the RDRF bit is set to “1”, the ORER bit in the SSSR register is set to  
“1” (overrun error occurs : OEI) and the operation is stopped. When the ORER bit is set to “1”, receive  
can not be performed. Confirm that the ORER bit is set to “0” before restarting receive.  
Figure 15.15 shows a Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous  
Communication Mode).  
• When SSUMS=0 (clock synchronous communication mode), CPHS=0 (data download  
at even edges) and CPOS bit=0 (“H” when clock stops)  
SSCK  
b0  
b7  
b0  
b0  
SSI  
b7  
b7  
1 Frame  
1 Frame  
“1”  
RDRF Bit in  
SSSR Register  
“0”  
RXI interrupt request  
generation  
RXI interrupt request  
generation  
“1”  
“0”  
RSSTP Bit in  
SSCRH Register  
RXI interrupt request  
generation  
Dummy read in  
SSRDR register  
Read data in SSRDR  
register  
Read data in  
SSRDR register  
Process by  
program  
Set RSSTP bit to “1”  
Figure 15.14 Example of Operation for Data Receive (Clock Synchronous Communication Mode)  
Rev.2.10 Jan 19, 2006 Page 157 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
Start  
Initialization  
(1) After setting each register in the SSU register,  
dummy read on the SSRDR register is performed  
and receive operation is started.  
(1)  
(2)  
Dummy read on SSRDR register  
(2) Determine whether the last 1-byte data is received.  
When the last 1-byte data is received, set to stop  
after the data is received.  
Last data  
received?  
Yes  
No  
Read ORER bit in SSSR register  
Yes  
(3) When a receive error occurs, perform an error  
(6) process after reading the ORER bit. Then set the  
ORER bit to “0”. Transmit/receive can not be  
restarted while the ORER bit is set to “1”.  
(3)  
(4)  
ORER=1 ?  
No  
Read RDRF bit in SSSR register  
(4) Confirm that the RDRF bit is set to “1”. If the  
RDRF bit is set to “1”, read the receive data in the  
SSRDR register. If the SSRDR register is read,  
the RDRF bit is automatically set to “0”.  
No  
RDRF=1 ?  
Yes  
Read receive data in SSRDR register  
(5)Before the last 1-byte data is received, set the  
RSSTP bit to “1” and stop after the data is  
received.  
(5)  
(6)  
SSCRH register RSSTP bit 1  
Read ORER bit in SSSR register  
Yes  
ORER=1 ?  
No  
Read RDRF in SSSR register  
(7) Confirm that the RDRF bit is set to “1”. When the  
receive operation is completed, set the RSSTP bit to  
“0” and the RE bit to “0” before reading the last 1-  
byte data. If the SSRDR register is read before  
setting the RE bit to “0”, the receive operation is  
restarted again.  
No  
RDRF=1 ?  
(7)  
Yes  
SSCRH register RSSTP bit 0  
Overrun  
error  
SSER register  
RE bit 0  
process  
Read receive data in SSRDR register  
End  
Figure 15.15 Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous Communication  
Mode)  
Rev.2.10 Jan 19, 2006 Page 158 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.5.4 Data Transmit/Receive  
Data transmit/receive is a combined operation of data transmit and receive which are described  
before. Transmit/receive is started by writing data in the SSTDR register.  
When the 8th clock rises or the ORER bit is set to “1” (overrun error occurs) while the TDRE bit is set  
to “1” (data is transferred from the SSTDR to SSTRSR registers), the transmit/receive operation is  
stopped.  
When switching from transmit mode (TE=1) or receive mode (RE=1) to transmit/receive mode  
(Te=RE=1), set the TE bit to “0” and RE bit to “0” before switching. After confirming that the TEND bit  
is set to “0” (the TDRE bit is set to “0” when the last bit of the transmit data is transmitted), the RERF  
bit is set to “0” (no data in the SSRDR register) and the ORER bit is set to “0” (no overrun error), set  
the TE and RE bits to “1”.  
When setting the microcomputer to the slave device, ensure the TEND bit is set to “1” (data transmit  
ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to  
the master device, continuous transmit is enabled.  
Figure 15.16 shows a Sample Flowchart for Data Transmit/Receive (Clock Synchronous  
Communication Mode).  
Rev.2.10 Jan 19, 2006 Page 159 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
Start  
Initialization  
(1)  
(1) After reading the SSSR register and confirming  
that the TDRE bit is set to “1”, write the transmit  
data in the SSTDR register. When writing the  
transmit data to the SSTDR register, the TDRE bit  
is automatically set to “0”.  
Read TDRE bit in SSSR register  
No  
TDRE=1 ?  
Yes  
Write transmit data to SSTDR register  
Read RDRF bit in SSSR register  
(2)  
(2) Confirm that the RDRF bit is set to “1”. If the  
RDRF bit is set to “1”, read the receive data in the  
SSRDR register. When reading the SSRDR  
register, the RDRF bit is automatically set to “0”.  
No  
RDRF=1 ?  
Yes  
Read receive data in SSRDR register  
Yes  
Data transmit  
continued?  
(3)  
(4)  
(3) Determine whether the transmit data is continued.  
No  
(4) When the data transmit is completed, the TEND  
bit in the SSSR register is set to “1”.  
Read TEND bit in SSSR register  
No  
TEND=1 ?  
Yes  
(5) Set the TEND bit to “0” and the RE and TE bits in  
(6) the SSER register to “0” before ending transmit/  
receive mode.  
SSSR register  
TEND bit 0(1)  
(5)  
(6)  
SSER register  
RE bit 0  
TE bit 0  
End  
NOTES:  
1. Write “0” after reading “1” to set the TEND bit to “0”.  
Figure 15.16 Sample Flowchart for Data Transmit/Receive (Clock Synchronous Communication  
Mode)  
Rev.2.10 Jan 19, 2006 Page 160 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.6 Operation in 4-Wire Bus Communication Mode  
4-wire bus communication mode is a mode which communicates with the 4-wire bus; a clock line, data  
input line, data output line and chip select line. This mode includes bidirectional mode in which the data  
input line and data output line function as a single pin.  
The data input line and output line are changed according to the setting of the MSS bit in the SSCRH  
register and the BIDE bit in the SSMR2 register. For details, refer to 15.2.1 Association between Data  
I/O Pin and SS Shift Register. In this mode, association between the clock polarity, phase and data can  
be set by the CPOS and CPHS bits in the SSMR register. For details, refer to 15.1.1 Association  
between Transfer Clock Polarity, Phase and Data.  
When the SSU is set as a master device, the chip select line controls output. When the SSU is set as a  
slave device, the chip select line controls input. When the SSU is set as master device, the chip select  
line controls output of the SCS pin or controls output of a general port by setting the CSS1 bit in the  
SSMR2 register. When the SSU is set as a slave device, the chip select line set the SCS pin as an input  
pin by setting the CSS1 and CSS0 bits in the SSMR2 register to “01b”.  
In 4-wire bus communication mode, the MLS bit in the SSMR register is set to “0” and communication is  
performed using the MSB-first.  
15.6.1 Initialization in 4-Wire Bus Communication Mode  
Figure 15.17 shows an Initialization in 4-Wire Bus Communication Mode. Before the data transit/  
receive, set the TE bit in the SSER register to “0” (disables transmit) and the RE bit in the SSER  
register to “0” (disables receive) and initialize the SSU.  
When communication mode and format are changed, set the TE bit to “0” and the RE bit to “0” before  
changing.  
Setting the RE bit to “0” does not change the contents of the RDRF and ORER flags, and the contents  
of the SSRDR register.  
Rev.2.10 Jan 19, 2006 Page 161 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
Start  
SSER register  
RE bit 0  
TE bit 0  
SSMR2 register  
SSUMS bit 1  
(1) The MLS bit is set to “0” for the MSB-first  
transfer. The clock polarity and phase are set by  
the CPHS and CPOS bits.  
(1)  
SSMR register  
Set CPHS and CPOS bits  
MLS bits 0  
SSCRH register  
Set MSS bit  
(2) Set the BIDE bit to “1” in bidirectional mode and  
the I/O of the #SCS pin is set by the CSSO to  
CSS1 bits.  
SSMR2 register  
SCKS bit 1  
Set SOOS, CSS to  
CSS1 and BIDE bits  
(2)  
SSCRH register  
SSSR register  
SSCRH register  
Set CKS0 to CKS2 bits  
ORER bit 0(1)  
Set RSSTP bit  
SSER register  
RE bit 1 (when receive)  
TE bit 1 (when transmit)  
Set RIE, TEIE and TIE bits  
End  
NOTES:  
1. Write “0” after reading “1” to set the ORER bit to “0”.  
Figure 15.17 Initialization in 4-Wire Bus Communication Mode  
Rev.2.10 Jan 19, 2006 Page 162 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.6.2 Data Transmit  
Figure 15.18 shows an Example of Operation in Data Transmit (4-Wire Bus Communication Mode).  
During the data transmit, the SSU operates as described below.  
When the SSU is set as a master device, it outputs a synchronous clock and data. When the UUSA is  
set as a slave device, it outputs data in synchronized with the input clock while “L” applies to the SCS  
pin.  
When writing the transmit data to the SSTDR register after setting the TE bit to “1” (enables transmit),  
the TDRE bit is automatically set to “0” (data is not transferred from the SSTDR to SSTRSR registers)  
and the data is transferred from the SSTDR to SSTRSR registers. After the TDRE bit is set to “1”  
(data is transferred from the SSTDR to SSTRSR registers), a transmit is started. When the TIE bit in  
the SSER register is set to “1”, the TXI interrupt request is generated.  
When the 1-frame data is transferred while the TDRE bit is set to “0”, the data is transferred from the  
SSTDR to SSTRSR registers and the next frame transmit is started. If the 8th bit is transmitted while  
the TDRE is set to “1”, the TEND in the SSSR register is set to “1” (when the last bit of the transmit  
data is transmitted, the TDRE bit is set to “1”) and the state is retained. If the TEIE bit in the SSER  
register is set to “1” (enables transmit-end interrupt request), the TEI interrupt request is generated.  
The SSCK pin is retained “H” after transmit-end and the SCS pin is held “H”. When the SCS pin is  
transmitted When transmitting continuously while the SCS pin is held “L”, write the next transmit data  
to the SSTDR register before transmitting the 8th bit.  
Transmit can not be performed while the ORER bit in the SSSR register is set to “1” (overrun error  
occurs). Confirm that the ORER bit is set to “0” before transmit.  
When setting the microcomputer to the slave device, ensure the TEND bit is set to “1” (data transmit  
ends) and write the following transmit data to the SSTDR register. When setting the microcomputer to  
the master device, continuous transmit is enabled.  
The difference from the clock synchronous communication mode is that the SSO pin is placed in  
high-impedance state while the SCS pin is placed in high-impedance state when operating as a  
master device and the SSI pin is placed in high-impedance state while the SCS pin is placed in “H”  
input state when operating as a slave device.  
A sample flowchart is the same as the clock synchronous communication mode (Refer to Figure  
15.13 Sample Flowchart for Data Transmit (Clock Synchronous Communication Mode)).  
Rev.2.10 Jan 19, 2006 Page 163 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
• When CPHS bit=0 (data change at even edges), CPOS bit=0 (“H” when clock stops)  
High-Impedance  
SCS  
(Output)  
SSCK  
SSO  
b6  
b7  
b6  
b0  
b7  
b0  
1 Frame  
1 Frame  
“1”  
“0”  
TDRE Bit in  
SSSR Register  
TEI interrupt request is  
generated  
TXI interrupt request is  
generated  
TXI interrupt request is  
generated  
“1”  
“0”  
TEND Bit in  
SSSR Register  
Data write to SSTDR register  
Process by  
Program  
• When CPHS bit=1 (data change at even edges), CPOS bit=0 (“H” when clock stops)  
High-Impedance  
SCS  
(Output)  
SSCK  
b7  
SSO  
b6  
b0  
b7  
1 Frame  
b6  
b0  
1 Frame  
“1”  
TDRE Bit in  
SSSR Register  
TEI interrupt request is  
generated  
“0”  
TXI interrupt request is  
generated  
TXI interrupt request is  
generated  
“1”  
“0”  
TEND Bit in  
SSSR Register  
Data write to SSTDR register  
Process by  
Program  
CPHS, CPOS : Bits in SSMR register  
Figure 15.18 Example of Operation in Data Transmit (4-Wire Bus Communication Mode)  
Rev.2.10 Jan 19, 2006 Page 164 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.6.3 Data Receive  
Figure 15.19 shows an example of the SSU operation for the data receive. During the data receive,  
the SSU operates as described below.  
When the SSU is set as a master device, it outputs a synchronous clock and inputs data. When the  
SSU is set as a salve device, it outputs data synchronized with the input clock while the SCS pin is  
held “L” input. When the SSU is set as a master device, it outputs a receive clock and starts receiving  
by performing dummy read on the SSRDR register.  
After the 8-bit data is received, the RDRF bit in the SSSR register is set to “1” (data in the SSRDR  
register) and receive data is stored in the SSRDR register. When the RIE bit in the SSER register is  
set to “1” (enables RXI and OEI interrupt request), the RXI interrupt request is generated. If the  
SSRDR register is read, the RDRF bit is automatically set to “0” (no data in the SSRDR register).  
Read the receive data after setting the RSSTP bit in the SSCRH register to “1” (after receiving 1-byte  
data, the receive operation is completed). The SSU outputs a clock for receiving 8-bit data and stops.  
After that, set the RE bit in the SSER register to “0” (disables receive) and the RSSTP bit to “0”  
(receive operation is continued after receiving 1-byte data) and read the receive data. If the SSRDR  
register is read while the RE bit is set to “1” (enables receive), a receive clock is output again.  
When the 8th clock rises while the RDRF bit is set to “1”, the ORER bit in the SSSR register is set to  
“1” (overrun error occurs : OEI) and the operation is stopped. When the ORER bit is set to “1”, receive  
can not be performed. Confirm that the ORER bit is set to “0” before restarting receive.  
When the RDRF and ORER bits are set to “1”, it varies depending on setting the CPHS bit in the  
SSMR register. Figure 15.19 shows when the RDRF and ORER bits are set to “1”.  
When the CPHS bit is set to “1” (data download at the odd edges), the RDRF and ORER bits are set  
to “1” at one point of a frame.  
A sample flowchart is the same as the clock synchronous communication mode (Refer to Figure  
15.15 Sample Flowchart for Data Receive (MSS=1) (Clock Synchronous Communication  
Mode)).  
Rev.2.10 Jan 19, 2006 Page 165 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
• When CPHS bit=0 (data download at even edges) and CPOS bit=0 (“H” when clock stops)  
High-Impedance  
SCS  
(Output)  
SSCK  
SSI  
b7  
b0  
b7  
b0  
b7  
b0  
1 Frame  
1 Frame  
“1”  
“0”  
RDRF Bit in  
SSSR Register  
RXI interrupt request  
is generated  
RXI interrupt request  
is generated  
“1”  
“0”  
RSSTP Bit in  
SSCRH Register  
RXI interrupt request  
is generated  
Dummy read in  
SSRDR register  
Data read in SSRDR  
register  
Set RSSTP  
bit to “1”  
Data read in SSRDR  
register  
Process by  
Program  
• When CPHS bit=1 (data download at odd edges) and CPOS bit=0 (“H” when clock stops)  
High-Impedance  
SCS  
(Output)  
SSCK  
SSI  
b7  
b0  
b7  
b0  
b7  
b0  
1 Frame  
1 Frame  
“1”  
“0”  
RDRF Bit in  
SSSR Register  
RXI interrupt request  
is generated  
RXI interrupt request  
is generated  
“1”  
“0”  
RSSTP Bit in  
SSCRH Register  
RXI interrupt request  
is generated  
Dummy read in  
SSRDR register  
Data read in SSRDR  
register  
Set RSSTP  
bit to “1”  
Data read in SSRDR  
register  
Process by  
Program  
CPHS and CPOS : Bit in SSMR register  
Figure 15.19 Example of Operation in Data Receive (4-Wire Bus Communication Mode)  
Rev.2.10 Jan 19, 2006 Page 166 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
15. Clock Synchronous Serial I/O with Chip Select (SSU)  
15.6.4 SCS Pin Control and Arbitration  
When setting the SSUMS bit in the SSMR2 register to “1” (4-wire bus communication mode).and the  
CSS1 bit in the SSMR2 register to “1” (functions as SCS output pin), Set the MSS bit in the SSCRH  
register to “1” (operates as a master device) and check the arbitration of the SCS pin before starting  
serial transfer. If the SSU detects that the synchronized internal SCS signal is held “L” in this period,  
the CE bit in the SSSR register to “1” (a conflict error occurs) and the MSS bit is automatically set to  
“0” (operates as a slave device).  
Figure 15.20 shows an Arbitration Check Timing.  
A future transmit operation is not performed while the CE bit is set to “1”. Set the CE bit to “0” (a  
conflict error does not occur) before a transmit is started.  
SCS Input  
Internal SCS  
(Synchronization)  
“1”  
MSS Bit in  
SSCRH Register  
“0”  
Transfer Start  
Data Write to  
SSTDR Register  
CE  
High-Impedance  
SCS Output  
Maximum Time of SCS Internal  
Synchronization  
During Arbitration Detection  
Figure 15.20 Arbitration Check Timing  
Rev.2.10 Jan 19, 2006 Page 167 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16. A/D Converter  
The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive  
coupling amplifier. The analog input shares the pins with P1_0 to P1_3. Therefore, when using these pins,  
ensure the corresponding port direction bits are set to “0” (input mode).  
When not using the A/D converter, set the VCUT bit in the ADCON1 register to “0” (Vref unconnected), so  
that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption  
of the chip.  
The result of A/D conversion is stored in the AD register.  
Table 16.1 lists the Performance of A/D converter. Figure 16.1 shows the Block Diagram of A/D Converter.  
Figures 16.2 and 16.3 show the A/D converter-related registers.  
Table 16.1  
Performance of A/D converter  
Item  
Performance  
Successive approximation (with capacitive coupling amplifier)  
0V to Vref  
A/D Conversion Method  
(1)  
Analog Input Voltage  
(2)  
4.2V AVCC 5.5V f1, f2, f4  
2.7V AVCC < 4.2V f2, f4  
8 bit or 10 bit is selectable  
Operating Clock φAD  
Resolution  
Absolute Accuracy  
AVCC = Vref = 5V  
• 8-bit resolution ±2 LSB  
• 10-bit resolution ±3 LSB  
AVCC = Vref = 3.3 V  
• 8-bit resolution ±2 LSB  
• 10-bit resolution ±5 LSB  
(3)  
Operating Mode  
Analog Input Pin  
One-shot and repeat modes  
4 pins (AN8 to AN11)  
A/D Conversion Start Condition • Software trigger  
Set the ADST bit in the ADCON0 register to “1” (A/D conversion  
starts)  
• Capture  
Timer Z interrupt request is generated while the ADST bit is set to “1”  
Conversion Rate Per Pin  
• Without sample and hold function  
8-bit resolution: 49φAD cycles, 10-bit resolution: 59φAD cycles  
• With sample and hold function  
8-bit resolution: 28φAD cycles, 10-bit resolution: 33φAD cycles  
NOTES:  
1. Analog input voltage does not depend on use of sample and hold function.  
2. The frequency of φAD must be 10 MHz or below.  
Without sample and hold function, the φAD frequency should be 250 kHz or above.  
With the sample and hold function, the φAD frequency should be 1 MHz or above.  
3. In repeat mode, only 8-bit mode can be used.  
Rev.2.10 Jan 19, 2006 Page 168 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
A/D Conversion Rate Selection  
CKS1=1  
f1  
f2  
CKS0=1  
φAD  
CKS1=0  
f4  
CKS0=0  
VCUT=0  
VCUT=1  
AVSS  
VREF  
Resistor Ladder  
Successive Conversion Register  
Trigger  
ADCAP=0  
ADCON0  
Software Trigger  
Timer Z  
Interrupt Request  
ADCAP=1  
Vcom  
AD Register  
Data Bus  
Decoder  
Comparator  
VIN  
ADGSEL0=0  
ADGSEL0=1  
CH2 to CH0=100b  
CH2 to CH0=101b  
P1_0/AN8  
P1_1/AN9  
P1_2/AN10  
P1_3/AN11  
CH2 to CH0=110b  
CH2 to CH0=111b  
CH0 to CH2, CKS0 : Bits in ADCON0 register  
CKS1, VCUT: Bits in ADCON1 register  
Figure 16.1  
Block Diagram of A/D Converter  
Rev.2.10 Jan 19, 2006 Page 169 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
A/D Control Register 0(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
1
1
Symbol  
ADCON0  
Bit Symbol  
Address  
00D6h  
After Reset  
00000XXXb  
Function  
Bit Name  
RW  
RW  
Analog Input Pin Select  
Bit(2)  
b2 b1 b0  
CH0  
CH1  
1 0 0 : AN8  
1 0 1 : AN9  
1 1 0 : AN10  
1 1 1 : AN11  
RW  
RW  
RW  
RW  
RW  
RW  
CH2  
Other than above : Do not set  
A/D Operation Mode Select 0 : On-shot mode  
MD  
Bit(3)  
1 : Repeat mode  
A/D Input Group Select Bit 0 : Disabled  
1 : Enabled (AN8 to AN11)  
A/D Conversion Automatic 0 : Starts in softw are trigger (ADST bit)  
Start Bit 1 : Starts in capture (Requests Timer Z interrupt)  
ADGSEL0  
ADCAP  
ADST  
A/D Conversion Start Flag 0 : Disabes A/D conversion  
1 : Starts A/D conversion  
Frequency Select Bit 0  
[When CKS1 in ADCON1 register = 0]  
0 : Select f4  
1 : Select f2  
[When CKS1 in ADCON1 register = 1]  
0 : Select f1(4)  
CKS0  
RW  
1 : Do not set  
NOTES :  
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. CH0 to CH2 bits are enabled w hen the ADGSEL0 bit is set to “1”. After setting the ADGSEL0 bit to “1”, w rite to the  
CH0 to CH2 bits.  
3. When changing A/D operatio mode, set the analog input pin again.  
4. Set øAD frequency to 10MHz or below .  
A/D Control Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
0 0 0  
Symbol  
ADCON1  
Bit Symbol  
Address  
00D7h  
After Reset  
00h  
Bit Name  
Function  
RW  
RW  
(b2-b0)  
Reserved Bit  
Set to “0”  
8/10-bit Mode Select Bit(2) 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
CKS1  
VCUT  
RW  
RW  
RW  
RW  
Frequency Select Bit 1  
Vref Connect Bit(3)  
Reserved Bit  
Refer to a description of the CKS0 bit in the  
ADCON0 register function  
0 : Vref not connected  
1 : Vref connected  
(b6-b7)  
Set to “0”  
NOTES :  
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. Set the BITS bit to “0” (8-bit mode) in repeat mode.  
3. When the VCUT bit is set to “1”(connected) from “0” (not connected), w ait for 1µs or more before starting  
A/D conversion.  
Figure 16.2  
ADCON0 and ADCON1 Registers  
Rev.2.10 Jan 19, 2006 Page 170 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
A/D Control Register 2(1)  
16. A/D Converter  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0  
Symbol  
ADCON2  
Address  
00D4h  
After Reset  
00h  
Bit Symbol  
Bit Name  
Function  
RW  
RW  
A/D Conversion Method Select Bit  
0 : Without sample and hold  
1 : With sample and hold  
SMP  
(b3-b1)  
Reserved Bit  
Set to “0”  
RW  
(b7-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
NOTES :  
1. If the ADCON2 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
A/D Register  
(b15)  
b7  
(b8)  
b0  
b7  
b0  
Symbol  
AD  
Address  
00C1h-00C0h  
After Reset  
Indeterminate  
Function  
When BITS bit in ADCON1 register is set to “1” When BITS bit in ADCON1 register is set to “0”  
RW  
(10-bit mode).  
(8-bit mode).  
8 low -order bits in A/D conversion result  
A/D conversion result  
RO  
RO  
2 high-order bits in A/D conversion result  
When read, its content is indeterminate.  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is “0”.  
Figure 16.3  
ADCON2 and AD Registers  
Rev.2.10 Jan 19, 2006 Page 171 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16.1 One-Shot Mode  
In one-shot mode, the input voltage on one selected pin is A/D converted once. Table 16.2 lists the  
Specification of One-Shot Mode. Figure 16.4 shows the ADCON0 and ADCON1 Registers in One-Shot  
Mode.  
Table 16.2  
Specification of One-Shot Mode  
Item  
Specification  
Function  
The input voltage on one selected pin by the CH2 to CH0 bits is A/D  
converted once  
Start Condition  
• When the ADCAP bit is set to “0” (software trigger),  
set the ADST bit to “1” (A-D conversion starts)  
• When the ADCAP bit is set to “1” (capture),  
Timer Z interrupt request is generated while the ADST bit is set to “1”  
Stop Condition  
• A/D conversion completes (ADST bit is set to “0”)  
• Set the ADST bit to “0”  
Interrupt Request  
Generation Timing  
Input Pin  
A/D conversion completes  
Select one of AN8 to AN11  
Reading of A/D Conversion Read AD register  
Result  
Rev.2.10 Jan 19, 2006 Page 172 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
A/D Control Register 0(1)  
16. A/D Converter  
b7 b6 b5 b4 b3 b2 b1 b0  
1 0 1  
Symbol  
ADCON0  
Address  
00D6h  
After Reset  
00000XXXb  
Function  
Bit Symbol  
Bit Name  
RW  
RW  
Analog Input Pin Select  
Bit(2)  
b2 b1 b0  
CH0  
CH1  
1 0 0 : AN8  
1 0 1 : AN9  
1 1 0 : AN10  
1 1 1 : AN11  
RW  
RW  
RW  
RW  
RW  
RW  
CH2  
Other than above : Do not set  
A/D Operation Mode Select 0 : One-shot mode  
Bit(3)  
MD  
A/D Input Group Select Bit 0 : Disabled  
ADGSEL0  
ADCAP  
ADST  
1 : Enabled (AN8 to AN11)  
A/D Conversion Automatic 0 : Starts in softw are trigger (ADST bit)  
Start Bit 1 : Starts in capture (requests Timer Z interrupt)  
A/D Conversion Start Flag 0 : Disables A/D conversion  
1 : Starts A/D conversion  
Frequency Select Bit 0  
[When CKS1 in ADCON1 register = 0]  
0 : Select f4  
1 : Select f2  
[When CKS1 in ADCON1 register = 1]  
0 : Select f1(4)  
CKS0  
RW  
1 : Do not set  
NOTES :  
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. CH0 to CH2 bits are enabled w hen the ADGSEL0 bit is set to “1”. After setting the ADGSEL0 bit to “1”, w rite to the  
CH0 to CH2 bits.  
3. When changing A/D operation mode, set the analog input pin again.  
4. Set øAD frequency to 10MHz or below .  
A/D Control Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 1  
0 0 0  
Symbol  
ADCON1  
Bit Symbol  
Address  
00D7h  
After Reset  
00h  
Bit Name  
Function  
RW  
RW  
(b2-b0)  
Reserved Bit  
Set to “0”  
8/10-bit Mode Select Bit  
Frequency Select Bit 1  
Vref Connect Bit(2)  
Reserved Bit  
0 : 8-bit mode  
1 : 10-bit mode  
BITS  
CKS1  
VCUT  
RW  
RW  
RW  
RW  
Refer to a description of the CKS0 bit in the  
ADCON0 register function  
1 : Vref connected  
(b6-b7)  
Set to “0”  
NOTES :  
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. When the VCUT bit is set to “1”(connected) from “0” (not connected), w ait for 1µs or more before starting  
A/D conversion.  
Figure 16.4  
ADCON0 and ADCON1 Registers in One-Shot Mode  
Rev.2.10 Jan 19, 2006 Page 173 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16.2 Repeat Mode  
In repeat mode, the input voltage on one selected pin is A/D converted repeatedly. Table 16.3 lists the  
Repeat Mode Specifications. Figure 16.5 shows the ADCON0 and ADCON1 Registers in Repeat Mode.  
Table 16.3  
Repeat Mode Specifications  
Item  
Specification  
Function  
The Input voltage on one pin selected by CH2 to CH0 and ADGSEL0 bits  
is A/D converted repeatedly  
Start condition  
• When the ADCAP bit is set to “0” (software trigger)  
Set the ADST bit to “1” (A-D conversion starts)  
• When the ADCAP bit is set to “1” (capture)  
Timer Z interrupt request is generated while the ADST bit is set to “1”  
Stop condition  
Set the ADST bit to “0”  
Interrupt request generation Not generated  
timing  
Input pin  
Select one of AN8 to AN11  
Read AD register  
Reading of result of A/D  
converter  
Rev.2.10 Jan 19, 2006 Page 174 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
A/D Control Register 0(1)  
16. A/D Converter  
b7 b6 b5 b4 b3 b2 b1 b0  
1 1 1  
Symbol  
ADCON0  
Address  
00D6h  
After Reset  
00000XXXb  
Function  
Bit Symbol  
Bit Name  
Analog Input Pin Select  
Bit(2)  
RW  
RW  
b2 b1 b0  
CH0  
CH1  
1 0 0 : AN8  
1 0 1 : AN9  
1 1 0 : AN10  
1 1 1 : AN11  
RW  
RW  
RW  
RW  
RW  
RW  
CH2  
Other than above : Do not set  
A/D Operating Mode Select 1 : Repeat mode  
Bit(3)  
MD  
A/D Input Group Select Bit 0 : Disabled  
ADGSEL0  
ADCAP  
ADST  
1 : Enabled (AN8 to AN11)  
A/D Conversion Automatic 0 : Starts in softw are trigger (ADST bit)  
Start Bit 1 : Starts in capture (requests Timer Z interrupt)  
A/D Conversion Start Flag 0 : Disables A/D conversion  
1 : Starts A/D conversion  
Frequency Select Bit 0  
[When CKS1 in ADCON1 register = 0]  
0 : Select f4  
1 : Select f2  
CKS0  
RW  
[When CKS1 in ADCON1 register = 1]  
0 : Select f1(4)  
1 : Do not set  
NOTES :  
1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. CH0 to CH2 bits are enabled w hen the ADGSEL0 bit is set to “1”. After setting the ADGSEL0 bit to “1”, w rite to the  
CH0 to CH2 bits.  
3. When changing A/D operating mode, set the analog input pin again.  
4. Set øAD frequency to 10MHz or below .  
A/D Control Register 1(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 1  
0 0 0 0  
Symbol  
ADCON1  
Bit Symbol  
Address  
00D7h  
After Reset  
00h  
Bit Name  
Function  
RW  
RW  
(b2-b0)  
Reserved Bit  
Set to “0”  
8/10-bit Mode Select Bit(2) 0 : 8-bit mode  
BITS  
CKS1  
VCUT  
RW  
RW  
RW  
RW  
Frequency Select Bit 1  
Vref Connect Bit(3)  
Reserved Bit  
Refer to a description of the CKS0 bit in the  
ADCON0 register function  
1 : Vref connected  
(b6-b7)  
Set to “0”  
NOTES :  
1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is indeterminate.  
2. Set the BITS bit to “0” (8-bit mode) in repeat mode.  
3. When the VCUT bit is set to “1”(connected) from “0” (not connected), w ait for 1µs or more before starting  
A/D conversion.  
Figure 16.5  
ADCON0 and ADCON1 Registers in Repeat Mode  
Rev.2.10 Jan 19, 2006 Page 175 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16.3 Sample and Hold  
When the SMP bit in the ADCON2 register is set to “1” (with sample and hold function), A/D conversion  
rate per pin increases to 28φAD cycles for 8-bit resolution or 33φAD cycles for 10-bit resolution. The  
sample and hold function is available in all operating modes. Start the A/D conversion after selecting  
whether the sample and hold circuit is to be used or not.  
When performing the A/D conversion, charge the comparator capacitor in the microcomputer.  
Figure 16.6 shows the Timing Diagram of A/D Conversion.  
Sample & Hold  
Disabled  
Conversion time at the 1st bit  
at the 2nd bit  
Comparison  
Comparison  
Time  
Comparison  
Time  
Sampling Time  
4ø AD cycle  
Sampling Time  
2.5ø AD cycle  
Sampling Time  
2.5ø AD cycle  
Time  
* Repeat until conversion ends  
Sample & Hold  
Enabled  
at the 2nd bit  
Conversion time at the 1st bit  
Comparison Comparison Comparison Comparison  
Time Time Time Time  
Sampling Time  
4ø AD cycle  
* Repeat until conversion ends  
Figure 16.6  
Timing Diagram of A/D Conversion  
16.4 A/D Conversion Cycles  
Figure 16.7 shows the A/D Conversion Cycles.  
Conversion time at the 2nd  
bit and the follows  
Conversion time at the 1st bit  
End process  
Conversion Sampling Comparison Sampling Comparison  
End process  
A/D Conversion Mode  
Time  
Time  
4φAD  
4φAD  
4φAD  
4φAD  
Time  
Time  
Time  
Without Sample & Hold  
8 bits  
10 bits  
8 bits  
49φAD  
59φAD  
28φAD  
33φAD  
2.0φAD  
2.0φAD  
2.5φAD  
2.5φAD  
2.5φAD  
2.5φAD  
0.0φAD  
0.0φAD  
2.5φAD  
2.5φAD  
2.5φAD  
2.5φAD  
8.0φAD  
8.0φAD  
4.0φAD  
4.0φAD  
Without Sample & Hold  
With Sample & Hold  
With Sample & Hold  
10 bits  
Figure 16.7  
A/D Conversion Cycles  
Rev.2.10 Jan 19, 2006 Page 176 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16.5 Internal Equivalent Circuit of Analog Input  
Figure 16.8 shows the Internal Equivalent Circuit of Analog Input.  
VCC  
VCC VSS  
AVCC  
ON Resistor  
Approx. 0.6kΩ  
ON Resistor  
Approx. 2kΩ  
Parasitic Diode  
AN8  
Wiring Resistor  
Approx. 0.2kΩ  
C = Approx.1.5pF  
AMP  
Analog Input  
Voltage  
VIN  
SW1  
SW2  
ON Resistor  
Approx. 5kΩ  
Parasitic Diode  
Sampling  
Control Signal  
SW3  
SW4  
VSS  
i=4  
i Ladder-type  
Switches  
i Ladder-type  
Wiring Resistors  
Chopper-type  
Amplifier  
AVSS  
ON Resistor  
Wiring Resistor  
Approx. 2kΩ  
Approx. 0.2kΩ  
AN11  
SW1  
A/D Successive  
Conversion Register  
b2 b1 b0  
Reference  
Control Signal  
A/D Control Register 0  
Vref  
VREF  
Comparison  
voltage  
Approx. 0.6k f  
SW2  
Resistor  
ladder  
ON Resistor  
A/D Conversion  
Interrupt Request  
AVSS  
Comparison reference voltage  
(Vref) generator  
Sampling  
Connect to  
Comparison  
SW1 conducts only on the ports selected for analog input.  
SW2 and SW3 are open when A/D conversion is not in progress;  
Control signal  
for SW2  
their status varies as shown by the waveforms in the diagrams on the left.  
Connect to  
Connect to  
SW4 conducts only when A/D conversion is not in progress.  
Connect to  
Control signal  
for SW3  
NOTES:  
1. Use only as a standard for designing this data.  
Mass production may cause some changes in device characteristics.  
Figure 16.8  
Internal Equivalent Circuit of Analog Input  
Rev.2.10 Jan 19, 2006 Page 177 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
16. A/D Converter  
16.6 Inflow Current Bypass Circuit  
Figure 16.9 shows the Configuration of the Inflow Current Bypass Circuit, Figure 16.10 shows the Example of an  
Inflow Current Bypass Circuit where VCC or More is Applied.  
OFF  
OFF  
Fixed to GND level  
ON  
Unselected  
Channel  
To the internal logic  
of the A/D Converter  
ON  
ON  
External input  
latched into  
Selected  
Channel  
OFF  
Figure 16.9  
Configuration of the Inflow Current Bypass Circuit  
VCC or more  
Leakage Current  
Generated  
Unselected  
Channel  
OFF  
OFF  
Leakage Current  
Generated  
ON  
Unaffected  
by leakage  
To the internal logic  
of the A/D Converter  
Selected  
Channel  
ON  
ON  
Sensor Input  
OFF  
Figure 16.10 Example of an Inflow Current Bypass Circuit where VCC or More is Applied  
Rev.2.10 Jan 19, 2006 Page 178 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
17. Programmable I/O Ports  
Programmable Input/Output ports (hereafter referred to as “I/O ports”) have 13 ports of the P1, P3_3 to  
P3_5, P3_7, and P4_5. Also, the main clock oscillation circuit is not used, the P4_6 and P4_7 can be used  
as the input port only. Table 17.1 lists the Overview of Programmable I/O Ports.  
Table 17.1  
Ports  
Overview of Programmable I/O Ports  
I/O Output Form  
Internal Pull-Up  
Resistor  
Drive Capacity  
Selection  
I/O Setting  
(1)  
(2)  
P1  
I/O CMOS3 State  
Set every bit  
Set every 4 bits  
Set every bit  
of P1_0 to P1_3  
None  
(1)  
P3_3, P4_5  
I/O CMOS3 State  
Set every bit  
Set every bit  
Set every bit  
(1)  
P3_4, P3_5, P3_7 I/O CMOS3 State  
None  
Set every 3 bits  
None  
(3)  
I
(Without output function) None  
None  
P4_6, P4_7  
NOTES:  
1. In input mode, whether the internal pull-up resistor is connected or not can be selected by the PUR0  
and PUR1 registers.  
2. This port can be used as the LED drive port by setting the DRR register to “1” (High).  
3. When the main clock oscillation circuit is not used, these ports can be used as the input port only.  
17.1 Functions of Programmable I/O Ports  
The PDi_j (j=0 to 7) bit in the PDi (i=1,3 and 4) register controls I/O of the ports P1, P3_3 to P3_5, P3_7  
and P4_5. The Pi register consists of a port latch to hold output data and a circuit to read pin state.  
Figures 17.1 to 17.3 show the Configurations of Programmable I/O Ports.  
Table 17.2 lists the Functions of Programmable I/O Ports. Also, Figure 17.5 shows the PD1, PD3 and  
PD4 Registers. Figure 17.6 shows the P1, P3 and P4 Registers, Figure 17.7 shows the PUR0 and PUR1  
Registers and Figure 17.8 shows the DRR Register.  
Table 17.2  
Functions of Programmable I/O Ports  
(1)  
Operation When  
Accessing  
Pi Register  
Reading  
Value of PDi_j Bit in PDi Register  
When PDi_j bit is set to “0” (input mode) When PDi_j bit is set to “1” (output mode)  
Read pin input level  
Write to the port latch  
Read the port latch  
Writing  
Write to the port latch. The value written in  
the port latch, it is output from the pin.  
NOTES:  
1. Nothing is assigned to the PD3_0 to PD3_2, PD3_6, PD4_0 to PD4_4, PD4_6 and PD4_7 bits.  
17.2 Effect on Peripheral Functions  
Programmable I/O ports function as I/O of peripheral functions (Refer to Table 1.6 Pin Name Information  
by Pin Number). Table 17.3 lists the Setting of PDi_j Bit When Functioning as I/O of Peripheral  
Functions. Refer to descriptions of each function for how to set peripheral functions.  
Table 17.3  
Setting of PDi_j Bit When Functioning as I/O of Peripheral Functions  
I/O of Peripheral Functions  
PDi_j Bit Setting of Port shared with Pin  
Set this bit to “0” (input mode).  
This bit can be set to both “0” and “1” (output regardless of the port setting)  
Input  
Output  
17.3 Pins Other than Programmable I/O Ports  
Figure 17.4 shows the Configuration of I/O Pins.  
Rev.2.10 Jan 19, 2006 Page 179 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
P1_0 to P1_3  
17. Programmable I/O Ports  
Pull-up Selection  
"1"  
Direction  
Register  
Output from each peripheral function  
Data Bus  
Port Latch  
(Note 1)  
Drive Capacity Selection  
Input to each peripheral function  
Analog Input  
P1_4  
Pull-Up Selection  
Direction  
Register  
“1”  
Output from each peripheral function  
Data Bus  
Port Latch  
(Note 1)  
P1_5  
Pull-Up Selection  
Direction  
Register  
Data Bus  
Port Latch  
(Note 1)  
Input to each peripheral function  
symbolizes a parasitic diode.  
NOTES :  
1.  
Ensure the input voltage on each port will not exceed VCC.  
Figure 17.1  
Configuration of Programmable I/O Ports (1)  
Rev.2.10 Jan 19, 2006 Page 180 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
P1_6, P1_7  
17. Programmable I/O Ports  
Pull-Up Selection  
“1”  
Direction  
Register  
Output from each peripheral function  
Data Bus  
Port Latch  
(Note 1)  
Input to each peripheral function  
P3_3  
Pull-Up Selection  
Direction  
Register  
“1”  
Output from each peripheral function  
Data Bus  
Port Latch  
(Note 1)  
Digital  
Filter  
Input to each peripheral function  
P3_4, P3_5, P3_7  
Pull-Up Selection  
Direction  
Register  
“1”  
Output from each peripheral function  
Data Bus  
Port Latch  
(Note 1)  
Input to each peripheral function  
symbolizes a parasitic diode.  
NOTES :  
1.  
Ensure the input voltage on each port will not exceed VCC.  
Figure 17.2  
Configuration of Programmable I/O Ports (2)  
Rev.2.10 Jan 19, 2006 Page 181 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
P4_5  
Pull-Up Selection  
Direction  
Register  
Data Bus  
Port Latch  
(Note 4)  
Digital  
Filter  
Input to each peripheral function  
P4_6/XIN  
Data Bus  
(Note 4)  
Clocked Inverter(1)  
(Note 2)  
P4_7/XOUT  
(Note 3)  
Data Bus  
(Note 4)  
NOTES:  
1. When CM05=1, CM10=1, or CM13=0, the clocked inverter is cutoff.  
2. When CM10=1 or CM13=0, the feedback resistor is unconnected.  
3. When CM05=CM13=1 or CM10=CM13=1, this pin is pulled up.  
4.  
symbolizes a parasitic diode.  
Ensure the input voltage on each port will not exceed VCC.  
Figure 17.3  
Configuration of Programmable I/O Ports (3)  
Rev.2.10 Jan 19, 2006 Page 182 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
MODE  
MODE Signal Input  
(Note 1)  
RESET  
RESET Signal Input  
(Note 1)  
NOTES :  
1.  
symbolizes a parasitic diode.  
Ensure the input voltage on each port will not exceed VCC.  
Figure 17.4  
Configuration of I/O Pins  
Rev.2.10 Jan 19, 2006 Page 183 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
Port Pi Direction Register (i=1, 3, 4)(1, 2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PD1  
Address  
00E3h  
After Reset  
00h  
00h  
00E7h  
PD3  
00EAh  
Bit Name  
00h  
PD4  
Bit Symbol  
Function  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PDi_0  
PDi_1  
PDi_2  
PDi_3  
PDi_4  
PDi_5  
PDi_6  
PDi_7  
Port Pi0 Direc tion Bit  
Port Pi1 Direc tion Bit  
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
(Functions as an output port)  
Port Pi2 Direc tion Bit  
Port Pi3 Direction Bit  
Port Pi4 Direc tion Bit  
Port Pi5 Direc tion Bit  
Port Pi6 Direc tion Bit  
Port Pi7 Direction Bit  
NOTES :  
1. Bits PD3_0 to PD3_2 and PD3_6 in the PD3 register are unavailable on this MCU. If it is necessary to set bits PD3_0 to  
PD3_2 and PD3_6, set to “0” (input mode). When read, the content is “0”.  
2. Bits PD4_0 to PD4_4, PD4_6 and PD4_7 in the PD4 register are unavailable on this MCU. If it is necessary to set bits  
PD4_0 to PD4_4, PD4_6 and PD4_7, set to “0” (input mode). When read, the content is “0”.  
Figure 17.5  
PD1, PD3 and PD4 Registers  
Port Pi Register (i=1, 3, 4)(1, 2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P1  
Address  
00E1h  
After Reset  
Indeterminate  
Indeterminate  
Indeterminate  
Function  
00E5h  
P3  
00E8h  
P4  
Bit Symbol  
Pi_0  
Bit Name  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Port Pi0 Bit  
Port Pi1 Bit  
Port Pi2 Bit  
Port Pi3 Bit  
Port Pi4 Bit  
Port Pi5 Bit  
Port Pi6 Bit  
Port Pi7 Bit  
The pin level on any I/O port w hich is set  
for input mode can be read by reading the  
corresponding bit in this register. The pin  
level on any I/O port w hich is set for  
output mode can be controlled by w riting  
to the corresponding bit in this register.  
0 : “L” level  
Pi_1  
Pi_2  
Pi_3  
Pi_4  
Pi_5  
Pi_6  
1 : “H” level(1)  
Pi_7  
RW  
NOTES :  
1. Bits P3_0 to P3_2 and P3_6 in the P3 register are unavailable on this MCU. If it is necessary to set bits P3_0 to P3_2  
and P3_6, set to “0” (“L” level). When read, the content is “0”.  
2. Bits P4_0 to P4_4 in the P4 register are unavailable on this MCU. If it is necessary to set bits P4_0 to P4_4, set to  
“0” (“L” level). When read, the content is “0”.  
Figure 17.6  
P1, P3 and P4 Registers  
Rev.2.10 Jan 19, 2006 Page 184 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Pull-Up Control Register 0  
17. Programmable I/O Ports  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
Symbol  
Address  
00FCh  
After Reset  
00XX0000b  
Function  
PUR0  
Bit Symbol  
(b1-b0)  
PU02  
Bit Name  
RW  
RW  
RW  
RW  
Reserved Bit  
Set to “0”  
P1_0 to P1_3 pull-up(1)  
P1_4 to P1_7 pull-up(1)  
0 : Not pulled up  
1 : Pulled up  
PU03  
(b5-b4)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
PU06  
P3_3 pull-up(1)  
P3_4 to P3_5 and P3_7 pll-up(1)  
0 : Not pulled up  
1 : Pulled up  
RW  
RW  
PU07  
NOTES :  
1. When this bit is set to “1” (pulled up), the pin w hose direct bit is set to “0” (input mode) is pulled up.  
Pull-up Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR1  
Bit Symbol  
Address  
00FDh  
After Reset  
XXXXXX0Xb  
Function  
Bit Name  
RW  
(b0)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
P4_5 pull-up(1)  
0 : Not pulled up  
1 : Pulled up  
PU11  
RW  
(b7-b2)  
Nothing is assigned. When w rite, set to “0”.  
When read, its content is indeterminate.  
NOTES :  
1. When the PU11 bit is set to “1” (pulled up) and the PD4_5 bit is set to “0” (input mode), the P4_5 pin is  
pulled up.  
Figure 17.7  
PUR0 and PUR1 Registers  
Port P1 Drive Capacity Control Register  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0 0 0  
Symbol  
Address  
00FEh  
After Reset  
00h  
DRR  
Bit Symbol  
Bit Name  
Function  
RW  
DRR0  
DRR1  
DRR2  
DRR3  
(b7-b4)  
P1_0 Drive Capacity  
P1_1 Drive Capacity  
Set P1 N-channel output transistor drive  
RW  
RW  
RW  
RW  
RW  
capacity  
0 : Low  
1 : High  
P1_2 Drive Capacity  
P1_3 Drive Capacity  
Reserved Bit  
Set to “0”  
Figure 17.8  
DRR Register  
Rev.2.10 Jan 19, 2006 Page 185 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
17.4 Port setting  
Table 17.4 to Table 17.17 list the port setting.  
Table 17.4  
Port P1_0/KI0/AN8/CMP0_0 Setting  
Register  
Bit  
PD1  
PUR0  
DRR  
KIEN  
ADCON0  
TCOUT  
Function  
PD1_0  
PU02  
DRR0  
KI0EN  
CH2, CH1, CH0, ADGSEL0  
TCOUT0  
0
0
0
0
1
1
X
0
1
0
0
X
X
X
X
X
X
X
0
X
X
1
XXXXb  
XXXXb  
XXXXb  
1001b  
0
0
0
0
0
0
1
Input port (not pulled up)  
Input port (pulled up)  
KI0 input  
Setting  
Value  
X
X
X
X
A/D Converter input (AN8)  
Output port  
XXXXb  
XXXXb  
XXXXb  
1
Output port (High drive)  
CMP0_0 output  
X
X: “0” or “1”  
Table 17.5  
Port P1_1/KI1/AN9/CMP0_1 Setting  
Register  
Bit  
PD1  
PUR0  
DRR  
KIEN  
ADCON0  
TCOUT  
Function  
PD1_1  
PU02  
DRR1  
KI1EN CH2, CH1, CH0, ADGSEL0  
TCOUT1  
0
0
0
0
1
1
X
0
1
0
0
X
X
X
X
X
X
X
0
X
X
1
XXXXb  
XXXXb  
XXXXb  
1011b  
0
0
0
0
0
0
1
Input port (not pulled up)  
Input port (pulled up)  
KI1 input  
Setting  
Value  
X
X
X
X
A/D Converter input (AN9)  
Output port  
XXXXb  
XXXXb  
XXXXb  
1
Output port (High drive)  
CMP0_1 output  
X
X: “0” or “1”  
Table 17.6  
Port P1_2/KI2/AN10/CMP0_2 Setting  
Register  
Bit  
PD1  
PUR0  
DRR  
KIEN  
ADCON0  
TCOUT  
Function  
PD1_2  
PU02  
DRR2  
KI2EN CH2, CH1, CH0, ADGSEL0  
TCOUT2  
0
0
0
0
1
1
X
0
1
0
0
X
X
X
X
X
X
X
0
X
X
1
XXXXb  
XXXXb  
XXXXb  
1101b  
0
0
0
0
0
0
1
Input port (not pulled up)  
Input port (pulled up)  
KI2 input  
Setting  
Value  
X
X
X
X
A/D Converter input (AN10)  
Output port  
XXXXb  
XXXXb  
XXXXb  
1
Output port (High drive)  
CMP0_2 input  
X
X: “0” or “1”  
Rev.2.10 Jan 19, 2006 Page 186 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
Table 17.7  
Port P1_3/KI3/AN11/TZOUT Setting  
Register  
PD1  
PUR0  
PU02  
DRR  
KIEN  
ADCON0  
TZMR  
TZOC  
Function  
CH2, CH1, CH0,  
ADGSEL0  
TZMOD1,  
TZMOD0  
Bit  
PD1_3  
DRR3  
KI3EN  
TZOCNT  
0
0
0
0
1
1
X
X
X
X
0
1
X
X
X
X
0
X
X
1
XXXXb  
XXXXb  
XXXXb  
1111b  
00b  
00b  
00b  
00b  
00b  
00b  
01b  
01b  
01b  
1Xb  
X
X
X
X
X
X
1
Input port (not pulled up)  
Input port (pulled up)  
KI3 input  
0
0
X
X
X
X
X
X
X
A/D Converter input (AN11)  
Output port  
X
X
X
X
X
X
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
XXXXb  
Setting  
Value  
1
Output port (High drive)  
Output port  
0
1
1
Output port (High drive)  
TZOUT output  
X
X
0
X
TZOUT output  
X: “0” or “1”  
Table 17.8  
Port P1_4/TXD0 Setting  
Register  
Bit  
PD1  
PUR0  
U0MR  
U0C0  
Function  
PD1_4  
PU03  
SMD2, SMD1, SMD0  
NCH  
X
0
0
1
0
1
X
000b  
000b  
000b  
001b  
100b  
101b  
110b  
001b  
100b  
101b  
110b  
Input port (not pulled up)  
Input port (pulled up)  
Output port  
X
X
X
X
X
X
0
1
TXD0 output, CMOS output  
Setting  
Value  
TXD0 output, N-channel open output  
X: “0” or “1”  
Table 17.9  
Port P1_5/RXD0/CNTR01/INT11 Setting  
Register  
Bit  
PD1  
PUR0  
UCON  
TXMR  
Function  
PD1_5  
PU03  
CNTRSEL  
TXMOD1, TXMOD0  
XXb  
0
0
0
0
1
1
0
1
X
X
X
1
Input port (not pulled up)  
Input port (pulled up)  
RXD0 input  
XXb  
X
X
X
X
Other than 01b  
Other than 01b  
Other than 01b  
Other than 01b  
Setting  
Value  
CNTR01/INT11 input  
Output port  
X
1
CNTR01 output  
Rev.2.10 Jan 19, 2006 Page 187 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
Table 17.10 Port P1_6/CLK0/SSI Setting  
Register  
Bit  
PD1  
PUR0  
U0MR  
SMD2, SMD1, SMD0, CKDIR  
Other than 0X10b  
Other than 0X10b  
XXX1b  
Function  
PD1_6  
PU03  
0
0
0
1
X
0
1
0
X
X
Input port (not pulled up)  
Input port (pulled up)  
CLK0 (external clock) input  
Output port  
Setting  
Value  
Other than 0X10b  
0X10b  
CLK0 (internal clock) output  
X: “0” or “1”  
Table 17.11 Port P1_7/CNTR00/INT10 Setting  
Register  
Bit  
PD1  
PUR0  
TXMR  
UCON  
Function  
PD1_7  
PU03  
TXMOD1, TXMOD0  
Other than 01b  
Other than 01b  
Other than 01b  
Other than 01b  
Other than 01b  
CNTRSEL  
0
0
0
1
X
0
1
X
X
0
Input port (not pulled up)  
Input port (pulled up)  
CNTR00/INT10 input  
Output port  
Setting  
Value  
0
X
X
X
0
CNTR00 output  
X: “0” or “1”  
Table 17.12 Port P3_3/TCIN/INT3/SSI/CMP1_0 Setting  
SSU (Refer to Table 15.3 Association  
Register  
Bit  
PD3  
PUR0  
between Communication Modes and I/O  
Pins)  
TCOUT  
Function  
PD3_3  
PU06  
SSI Output Control  
SSI Input Control  
TCOUT3  
0
0
X
1
X
X
0
0
1
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
0
X
0
1
X
0
Input port (not pulled up)  
Input port (pulled up)  
SSI input  
0
Setting  
Value  
X
X
X
X
Output port  
CMP1_0 output  
SSI output  
TCIN input/INT3  
X: “0” or “1”  
Table 17.13 Port P3_4/SCS/CMP1_1 Setting  
SSU (Refer to Table 15.3 Association  
between Communication Modes and I/O  
Pins)  
Register  
Bit  
PD3  
PUR0  
TCOUT  
Function  
PD3_4  
PU07  
SCS Output Control SCS Input Control  
TCOUT4  
0
0
0
1
X
X
0
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
X
Input port (not pulled up)  
Input port (pulled up)  
SCS input  
0
Setting  
Value  
X
X
X
Output port  
CMP1_1 output  
SCS output  
X: “0” or “1”  
Rev.2.10 Jan 19, 2006 Page 188 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
Table 17.14 Port P3_5/SSCK/CMP1_2 Setting  
SSU (Refer to Table 15.3 Association  
Register  
Bit  
PD3  
PUR0  
between Communication Modes and I/O  
Pins)  
TCOUT  
Function  
PD3_5  
PU07  
SSCK Output Control SSCK Input Control  
TCOUT5  
0
0
0
1
X
X
0
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
X
Input port (not pulled up)  
Input port (pulled up)  
SSCK input  
0
Setting  
Value  
X
X
X
Output port  
CMP1_2 output  
SSCK output  
X: “0” or “1”  
Table 17.15 Port P3_7/CNTR0/SSO Setting  
SSU (Refer to Table 15.3 Association  
Register  
Bit  
PD3  
PUR0  
PU07  
between Communication Modes and  
I/O Pins)  
TXMR  
UCON  
Function  
SSO Output  
Control  
SSO Input  
Control  
U1SEL1,  
U1SEL0  
PD3_7  
TXOCNT  
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
X
X
0Xb  
0Xb  
0Xb  
XXb  
XXb  
XXb  
Input port (not pulled up)  
Input port (pulled up)  
Output port  
1
X
X
X
X
Setting  
Value  
X
X
X
CNTR0 output pin  
SSO input pin  
SSO output pin  
X: “0” or “1”  
Table 17.16 Port XIN/P4_6, XOUT/P4_7 Setting  
Register  
Bit  
CM1  
CM13  
1
CM1  
CM10  
1
CM0  
CM05  
1
Circuit Specification  
Function  
Oscillation  
Feedback  
Buffer  
Resistance  
OFF  
OFF  
ON  
XIN-XOUT oscillation stop  
External input to XIN pin, “H” output  
from XOUT pin  
1
0
1
OFF  
Setting  
Value  
1
1
0
0
0
1
0
OFF  
ON  
ON  
ON  
XIN-XOUT oscillation stop  
XIN-XOUT oscillation  
Input port  
X
X
OFF  
OFF  
X: “0” or “1”  
Table 17.17 Port P4_5/INT0 Setting  
Register  
Bit  
PD4  
PUR1  
INTEN  
Function  
PD4_5  
PU11  
INT0EN  
0
0
0
1
0
1
0
X
0
0
1
X
Input port (not pulled up)  
Input port (pulled up)  
INT0 input  
Setting  
Value  
Output port  
X: “0” or “1”  
Rev.2.10 Jan 19, 2006 Page 189 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
17. Programmable I/O Ports  
17.5 Unassigned Pin Handling  
Table 17.18 lists the Unassigned Pin Handling. Figure 17.9 show the Unassigned Pin Handling.  
Table 17.18 Unassigned Pin Handling  
Pin Name  
Ports P1, P3_3 to P3_5,  
P3_7, P4_5  
Connection  
• After setting to input mode, connect every pin to VSS via a resistor (pull-  
(2)  
down) or connect every pin to VCC via a resistor (pull-up).  
(1, 2)  
• After setting to output mode, leave these pins open.  
(2)  
Ports P4_6, P4_7  
AVCC, VREF  
Connect to VCC via a resistor (pull-up)  
Connect to VCC  
(3)  
(2)  
RESET  
Connect to VCC via a resistor (pull-up)  
NOTES:  
1. When setting these ports to output mode and leaving them open, they remain input mode until they  
are switched to output mode by a program. The voltage level of these pins may be indeterminate  
and the power current may increase while the ports remain input mode.  
The content of the direction registers may change due to noise or out of control caused by noise. In  
order to enhance program reliability, set the direction registers periodically by a program.  
2. Connect these unassigned pins to the microcomputer using the shortest wire length (within 2 cm)  
as possible.  
3. When power-on reset function is used.  
Microcomputer  
Port P1, P3_3 to P3_5, (Input mode)  
:
:
P3_7, P4_5  
:
:
(Input mode)  
(Output mode)  
Open  
Port P4_6, P4_7  
RESET(1)  
AVCC/VREF  
NOTES:  
1. When power-on reset function is used.  
Figure 17.9  
Unassigned Pin Handling  
Rev.2.10 Jan 19, 2006 Page 190 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18. Flash Memory Version  
18.1 Overview  
In the flash memory version, rewrite operations to the flash memory can be performed in three modes;  
CPU rewrite, standard serial I/O, parallel I/O modes.  
Table 18.1 lists the Flash Memory Version Performance (see Table 1.1 Performance Outline of the R8C/  
14 Group and Table 1.2 Performance Outline of the R8C/15 Group for the items not listed on Table  
18.1).  
Table 18.1  
Flash Memory Version Performance  
Item  
Specification  
Flash Memory Operating Mode 3 modes (CPU rewrite, standard serial I/O, and parallel I/O mode)  
Division of Erase Block  
Program Method  
Erase Method  
See Figure 18.1 and Figure 18.2  
Byte unit  
Block erase  
Program, Erase Control Method Program and erase control by software command  
Rewrite Control Method  
Rewrite control for Block 0 and 1 by FMR02 bit in FMR0 register  
Rewrite control for Block 0 by FMR16 bit and Block 1 by FMR16 bit  
5 commands  
Number of Commands  
Program and  
Erase  
Block0 and 1  
(Program ROM)  
R8C/14 Group : 100 times ; R8C/15 Group : 1,000 times  
(1)  
BlockA and B  
10,000 times  
Endurance  
(2)  
(Data flash)  
ID Code Check Function  
ROM Code Protect  
Standard serial I/O mode supported  
For parallel I/O mode supported  
NOTES:  
1. Definition of program and erase endurance.  
The program and erase endurance is defined to be per-block. When the program and erase  
endurance is n times (n=100 or 10,000 times), to erase n times per block is possible. For example, if  
performing one-byte write to the distinct addresses on Block A of 1K-byte block 1,024 times and  
then erasing that block, the program and erase endurance is counted as one time. If rewriting more  
than 100 times, execute the program until the blank areas are all used to reduce the substantial  
rewrite endurance and then erase. Do not rewrite only particular blocks and rewrite to average the  
program and erase endurance to each block. Also keep the erase endurance as information and set  
up the limit endurance.  
2. Blocks A and B are embedded only in the R8C/15 group.  
Rev.2.10 Jan 19, 2006 Page 191 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Standard Serial I/O Mode Parallel I/O mode  
Table 18.2  
Flash Memory Rewrite Modes  
Flash Memory  
Rewrite mode  
Function  
CPU Rewrite Mode  
User ROM area is rewritten by  
executing software commands  
from the CPU.  
User ROM area is rewritten User ROM area is  
by using a dedicated serial rewritten by using a  
programmer.  
dedicated parallel  
programmer.  
EW0 mode: Rewritable in any  
area other than  
flash memory  
EW1 mode: Rewritable in flash  
memory  
Areas which can User ROM area  
be rewritten  
User ROM area  
User ROM area  
Operating Mode Single chip mode  
Boot mode  
Parallel I/O mode  
ROM  
None  
Serial programmer  
Parallel programmer  
Programmer  
Rev.2.10 Jan 19, 2006 Page 192 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.2 Memory Map  
The flash memory contains a user ROM area and a boot ROM area (reserved area). Figure 18.1 shows  
the Flash Memory Block Diagram for R8C/14 Group. Figure 18.2 shows the Flash Memory Block  
Diagram for R8C/15 Group.  
The user ROM area of R8C/15 group contains an area (program ROM) which stores a microcomputer  
operating program and the 1-Kbyte Block A and B (data flash).  
The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite  
and standard serial I/O and parallel I/O modes.  
When rewriting the Block 0 and Block 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to  
“1” (rewrite enables), and when setting the FMR15 bit in the FMR1 register to “0” (rewrite enables),  
Block 0 is rewritable. When setting the FMR16 bit to “0” (rewrite enables), Block 1 is rewritable.  
The rewrite control program for standard serial I/O mode is stored in boot ROM area before shipment.  
The boot ROM area and the user ROM area share the same address, but have an another memory.  
16 Kbytes ROM Product  
0C000h  
12 Kbytes ROM Product  
Block 1 : 4 Kbytes(1)  
Block 1 : 8 Kbytes(1)  
Program ROM  
0E000h  
0D000h  
8 Kbytes ROM Product  
Block 0 : 8 Kbytes(1)  
0DFFFh  
0E000h  
0DFFFh  
0E000h  
0E000h  
0FFFFh  
Block 0 : 8 Kbytes(1)  
User ROM Area  
Block 0 : 8 Kbytes(1)  
User ROM Area  
8 Kbytes  
0FFFFh  
NOTES:  
0FFFFh  
0FFFFh  
User ROM Area  
Boot ROM Area  
(Reserved Area)(2)  
1. When setting the FMR02 bit in the FMR0 register to “1” (enables to rewrite) and the FMR15 bit in the FMR1 register to “0” (enable to rewrite),  
Block 0 is rewritable. When setting the FMR16 bit to “0” (enables to rewrite), Block 1 is rewritable (only for CPU rewrite mode).  
2. This area is to store the boot program provided by Renesas Technology.  
Figure 18.1  
Flash Memory Block Diagram for R8C/14 Group  
Rev.2.10 Jan 19, 2006 Page 193 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
16 Kbytes ROM Product  
12 Kbytes ROM Product  
Block A : 1 Kbyte  
8 Kbytes ROM Product  
Block A : 1 Kbyte  
02400h  
02400h  
02BFFh  
02400h  
02BFFh  
Block A : 1 Kbyte  
Data flash  
Block B : 1 Kbyte  
02BFFh  
Block B : 1 Kbyte  
Block B : 1 Kbyte  
0C000h  
Program ROM  
0E000h  
Block 1 : 8 Kbytes(1)  
0D000h  
Block 1 : 4 Kbytes(1)  
0DFFFh  
0E000h  
0DFFFh  
0E000h  
0E000h  
0FFFFh  
Block 0 : 8 Kbytes(1)  
User ROM Area  
Block 0 : 8 Kbytes(1)  
User ROM Area  
Block 0 : 8 Kbytes(1)  
8 Kbytes  
0FFFFh  
0FFFFh  
0FFFFh  
Boot ROM Area  
User ROM Area  
(Reserved Area)(2)  
NOTES:  
1. When setting the FMR02 bit in the FMR0 register to “1” (enables to rewrite) and the FMR15 bit in the FMR1 register to “0” (enables to  
rewrite), Block 0 is rewritable. When setting the FMR16 bit to “0” (enables to rewrite), Block 1 is rewritable (only for CPU rewrite mode).  
2. This area is to store the boot program provided by Renesas Technology.  
Figure 18.2  
Flash Memory Block Diagram for R8C/15 Group  
Rev.2.10 Jan 19, 2006 Page 194 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.3 Functions To Prevent Flash Memory from Rewriting  
Standard serial I/O mode contains an ID code check function, and the parallel I/O mode contains a ROM  
code protect function to prevent the flash memory from reading or rewriting easily.  
18.3.1 ID Code Check Function  
Use this function in standard serial I/O mode. Unless the flash memory is blank, the ID codes sent  
from the programmer and the ID codes written in the flash memory are determined whether they  
match. If the ID codes do not match, the commands sent from the programmer are not  
acknowledged. The ID code consists of 8-bit data, the areas of which, beginning with the first byte,  
are 00FFDFh, 00FFE3h, 00FFEBh, 00FFEFh, 00FFF3h, 00FFF7h, and 00FFFBh. Write a program in  
which the ID codes are set at these addresses and write it in the flash memory.  
Address  
00FFDFh to 00FFDCh  
00FFE3h to 00FFE0h  
00FFE7h to 00FFE4h  
00FFEBh to 00FFE8h  
00FFEFh to 00FFECh  
00FFF3h to 00FFF0h  
00FFF7h to 00FFF4h  
00FFFBh to 00FFF8h  
00FFFFh to 00FFFCh  
Undefined Instruction Vector  
ID1  
ID2 Overflow Vector  
BRK Instruction Vector  
ID3 Address Match Vector  
ID4 Single Step Vector  
Oscillation Stop Detection/Watchdog  
Timer/Voltage Monitor 2 Vector  
ID5  
ID6 Address Break  
ID7  
(Reserved)  
Reset Vector  
(Note 1)  
4 bytes  
NOTES:  
1. The OFS register is assigned to 00FFFFh. Refer to  
Figure 12.2 OFS, WDC, WDTR and WDTS registers for  
the OFS register details.  
Figure 18.3  
Address for ID Code Stored  
Rev.2.10 Jan 19, 2006 Page 195 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.3.2 ROM Code Protect Function  
The ROM code protect function disables to read and change the internal flash memory by the OFS  
register in parallel I/O mode. Figure 18.4 shows the OFS Register.  
The ROM code protect function is enabled by writing “0” to the ROMCP1 bit and “1” to the ROMCR bit  
and disables to read and change the internal flash memory. Once the ROM code protect is enabled,  
the content in the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM  
code protect, erase the block including the OFS register with CPU rewrite mode or standard serial I/O  
mode.  
Option Function Select Register(1)  
b7 b6 b5 b4 b3 b2 b1 b0  
1 1 1  
1
Symbol  
OFS  
Address  
0FFFFh  
Before Shipment  
FFh(2)  
Bit Symbol  
Bit Name  
Watchdog Timer Start  
Select Bit  
Function  
RW  
RW  
0 : Starts w atchdog timer automatically after reset  
1 : Watchdog timer is inactive after reset  
WDTON  
(b1)  
Reserved Bit  
Set to “1”  
RW  
RW  
RW  
RW  
ROM Code Protect  
Disabled Bit  
0 : ROM code protect disabled  
1 : ROMCP1enabled  
ROMCR  
ROM Code Protect Bit  
0 : ROM code protect enabled  
1 : ROM code protect disabled  
ROMCP1  
(b6-b4)  
Reserved Bit  
Set to “1”  
Count Source Protect  
0 : Count source protect mode after reset enabled  
Mode After Reset Select 1 : Count source protect mode after reset disabled  
Bit  
CSPROINI  
RW  
NOTES :  
1. The OFS register is on the flash memory. Write to the OFS register w ith a program.  
2. If the block including the OFS register is erased, “FFh” is set to the OFS register.  
Figure 18.4  
OFS Register  
Rev.2.10 Jan 19, 2006 Page 196 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4 CPU Rewrite Mode  
In CPU rewrite mode, user ROM area can be rewritten by executing software commands from the CPU.  
Therefore, the user ROM area can be rewritten directly while the microcomputer is mounted on a board  
without using such as a ROM programmer. Execute the program and block erase commands only to  
each block in user ROM area.  
When an interrupt request is generated during an erase operation in CPU rewrite mode, the flash  
module contains an erase-suspend function which performs the interrupt process after the erase  
operation is halted temporarily. During the erase-suspend, user ROM area can be read by a program.  
CPU rewrite mode contains erase write 0 mode(EW0 mode) and erase write 1 mode(EW1 mode). Table  
18.3 lists the Differences between EW0 Mode and EW1 Mode.  
Table 18.3  
Differences between EW0 Mode and EW1 Mode  
Item EW0 Mode  
Single chip mode  
EW1 Mode  
Single chip mode  
Operating Mode  
Area in which rewrite  
control program can be  
located  
User ROM area  
User ROM area  
Area in which rewrite  
control program can be  
executed  
Necessary to transfer to any areas  
other than the flash memory (e.g.,  
RAM) before executing  
Executing directly on user ROM area  
is possible  
Area which can be  
rewritten  
User ROM area  
User ROM area  
However, other than the blocks  
which contain a rewrite control  
(1)  
program  
Software Command  
Restriction  
None  
• Program, block erase command  
Disable to execute on any block  
which contains a rewrite control  
program  
• Disables to execute the read status  
register command  
Mode after Program or  
Erase  
Read status register mode  
Operating  
Read array mode  
CPU Status during Auto-  
Write and Auto-Erase  
Flash Memory Status  
Detection  
Hold state (I/O ports hold state  
before the command is executed)  
Read the FMR00, FMR06, and  
FMR07 bits in the FMR0 register by a  
program  
• Read the FMR00, FMR06, and  
FMR07 bits in the FMR0 register by  
a program  
• Execute the read status register  
command and read the SR7, SR5,  
and SR4 bits in the status register.  
Condition for Transition to Set the FMR40 and FMR41 bits in  
The FMR40 bit in the FMR4 register  
is set to “1” and the interrupt request  
of the enabled maskable interrupt is  
generated  
Erase-Suspend  
the FMR4 register to “1” by a  
program.  
CPU Clock  
NOTES:  
5MHz or below  
No restriction to the following (clock  
frequency to be used)  
1. When setting the FMR02 bit in the FMR0 register to “1” (rewrite enables) and rewriting Block 0 is  
enabled by setting the FMR15 bit in the FMR1 register to “0” (rewrite enables). Rewriting Block 1 is  
enabled by setting the FMR16 bit to “0” (rewrite enables).  
Rev.2.10 Jan 19, 2006 Page 197 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.1 EW0 Mode  
The microcomputer enters CPU rewrite mode and software commands can be acknowledged by  
setting the FMR01 bit in the FMR0 register to “1” (CPU rewrite mode enabled). In this case, since the  
FMR11 bit in the FMR1 register is set to “0”, EW0 mode is selected.  
Use software commands to control a program and erase operations. The FMR0 register or the status  
register can determine status when program and erase operation complete.  
When entering an erase-suspend, set the FMR40 bit to “1” (enables erase-suspend) and the FMR41  
bit to “1” (requests erase-suspend). Wait for td(SR-ES) and ensure that the FMR46 bit is set to “1”  
(enables reading) before accessing the user ROM area. The auto-erase operation restarts by setting  
the FMR41 bit to “0” (erase restarts).  
18.4.2 EW1 Mode  
The microcomputer enters EW1 mode by setting the FMR11 bit to “1” (EW1 mode) after setting the  
FMR01 bit to “1” (CPU rewrite mode enabled).  
The FMR0 register can determine status when program and erase operation complete. Do not  
execute the read status register command in EW1 mode.  
To enable the erase-suspend function, execute the block erase command after setting the FMR40 bit  
to “1” (enables erase-suspend). The interrupt to enter an erase-suspend should be in interrupt  
enabled status. After passing td(SR-ES) since the block erase command is executed, an interrupt  
request is acknowledged.  
When an interrupt request is generated, the FMR41 bit is automatically set to "1" (requests erase-  
suspend) and the auto-erase operation is halted. If the auto-erase operation does not complete  
(FMR00 bit is “0”) when the interrupt process completes, the auto-erase operation restarts by setting  
the FMR41 bit to “0” (erase restarts)  
Rev.2.10 Jan 19, 2006 Page 198 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Figure 18.5 shows the FMR0 Register. Figure 18.6 shows the FMR1 and FMR4 Registers.  
18.4.2.1 FMR00 Bit  
This bit indicates the operating status of the flash memory. The bit is “0” during programming, erasing,  
or erase-suspend mode; otherwise, the bit is “1”.  
18.4.2.2 FMR01 Bit  
The microcomputer is made ready to accept commands by setting the FMR01 bit to “1” (CPU rewrite  
mode).  
18.4.2.3 FMR02 Bit  
The Block1 and Block0 do not accept the Program and Block Erase commands if the FMR02 bit is set  
to “0” (rewrite disabled).  
The Block0 and Block1 are controlled rewriting in the FMR15 and FMR16 bits if the FMR02 bit is set  
to “1” (rewrite enabled).  
18.4.2.4 FMSTP Bit  
This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount  
of current consumed in the flash memory. The flash memory is disabled against access by setting the  
FMSTP bit to “1”. Therefore, the FMSTP bit must be written to by a program in other than the flash  
memory.  
In the following cases, set the FMSTP bit to “1”:  
When flash memory access resulted in an error while erasing or programming in EW0 mode  
(FMR00 bit not reset to “1” (ready))  
When entering on-chip oscillator mode (main clock stop)  
Figure 18.10 shows a flow chart to be followed before and after entering on-chip oscillator mode  
(main clock stop). Note that when going to stop or wait mode while the CPU rewrite mode is disabled,  
the FMR0 register does not need to be set because the power for the flash memory is automatically  
turned off and is turned back on again after returning from stop or wait mode.  
18.4.2.5 FMR06 Bit  
This is a read-only bit indicating the status of auto program operation. The bit is set to “1” when a  
program error occurs; otherwise, it is cleared to “0”. For details, refer to the description of the 18.4.5  
Full Status Check.  
18.4.2.6 FMR07 Bit  
This is a read-only bit indicating the status of auto erase operation. The bit is set to “1” when an erase  
error occurs; otherwise, it is set to “0”. Refer to 18.4.5 Full Status Check for the details.  
18.4.2.7 FMR11 Bit  
Setting this bit to “1” (EW1 mode) places the microcomputer in EW1 mode.  
18.4.2.8 FMR15 Bit  
When the FMR02 bit is set to “1” (rewrite enabled) and the FMR15 bit is set to “0” (rewrite enabled),  
the Block0 accepts the program command and block erase command.  
18.4.2.9 FMR16 Bit  
When the FMR02 bit is set to “1” (rewrite enabled) and the FMR16 bit is set to “0” (rewrite enabled),  
the Block1 accepts the program command and block erase command.  
Rev.2.10 Jan 19, 2006 Page 199 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.2.10 FMR40 bit  
The erase-suspend function is enabled by setting the FMR40 bit to “1” (enable).  
18.4.2.11 FMR41 bit  
In EW0 mode, the microcomputer enters erase-suspend mode when setting the FMR41 bit to “1” by a  
program. The FMR41 bit is automatically set to “1” (requests erase-suspend) when an interrupt  
request of an enabled interrupt is generated in EW1 mode, and then the microcomputer enters erase-  
suspend mode.  
Set the FMR41 bit to “0” (erase restart) when the auto-erase operation restarts.  
18.4.2.12 FMR46 bit  
The FMR46 bit is set to “0” (disable reading) during auto-erase execution and set to “1” (enables  
reading) in erase-suspend mode. Do not access to the flash memory while this bit is set to “0”.  
Flash Memory Control Register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
0 0  
Symbol  
FMR0  
Address  
01B7h  
After Reset  
00000001b  
Bit Symbol  
Bit Name  
Function  
RW  
RO  
___  
0 : Busy (During w riting or erasing)  
1 : READY  
RY/BY Status Flag  
FMR00  
FMR01  
FMR02  
CPU Rew rite Mode Select Bit(1)  
0 : CPU rew rite mode disabled  
1 : CPU rew rite mode enabled  
RW  
RW  
Block 0, 1 Rew rite Enable Bit(2, 6) 0 : Disables rew rite  
1 : Enables rew rite  
Flash Memory Stop Bit(3, 5)  
0 : Enables flash memory operation  
1 : Stops flash memory  
FMSTP  
RW  
(Enters low -pow er consumption state  
and flash memory is reset)  
(b5-b4)  
Reserved Bit  
Set to “0”  
RW  
RO  
RO  
Program Status Flag(4)  
Erase Status Flag(4)  
0 : Completed successfully  
1 : Terminated by error  
FMR06  
FMR07  
0 : Completed successfully  
1 : Terminated by error  
NOTES :  
1. When setting this bit to “1”, set to “1” immediately after setting it first to “0”. Do not generate an interrupt betw een  
setting the bit to “0” and setting it to “1”. Enter read array mode and set this bit to “0”.  
2. Set this bit to “1” immediately after setting this bit first to “0” w hile the FMR01 bit is set to “1”.  
Do not generate an interrupt betw een setting the bit to “0” and setting it to “1”.  
3. Set this bit by a program in a space other than the flash memory.  
4. This bit is set to “0” by executing the clear status command.  
5. This bit is enabled w hen the FMR01 bit is set to “1” (CPU rew rite mode). When the FMR01 bit is set to “0” and w riting  
“1” to the FMSTPbit, the FMSTPbit is set to “1”. The flash memory does not enter low -pow er  
consumption stat nor is reset.  
6. When setting the FMR01 bit to “0” (CPU rew rite mode disabled), the FMR02 bit is set to “0” (disables rew rite).  
Figure 18.5  
FMR0 Register  
Rev.2.10 Jan 19, 2006 Page 200 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Flash Memory Control Register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
1
0 0 0  
Symbol  
FMR1  
Bit Symbol  
Address  
01B5h  
After Reset  
1000000Xb  
Function  
Bit Name  
RW  
RO  
(b0)  
Reserved Bit  
When read, its content is indeterminate.  
EW1 Mode Select Bit(1, 2)  
Reserved Bit  
0 : EW0 mode  
1 : EW1 mode  
FMR11  
RW  
RW  
RW  
RW  
RW  
(b4-b2)  
Set to “0”  
Block 0 Rew rite Disable Bit(2,3)  
Block 1 Rew rite Disable Bit(2,3)  
Reserved Bit  
0 : Enables rew rite  
1 : Disables rew rite  
FMR15  
FMR16  
0 : Enables rew rite  
1 : Disables rew rite  
(b7)  
Set to “1”  
NOTES :  
1. When setting this bit to “1”, set to “1” immediately after setting it first to “0” w hile the FMR01 bit is set to “1” (CPU  
rew rite mode enable) . Do not generate an interrupt betw een setting the bit to “0” and setting it to “1”.  
2. This bit is set to “0” by setting the FMR01 bit to “0” (CPU rew rite mode disabled).  
3. When the FMR01 bit is set to “1” (CPU rew rite mode enabled), the FMR15 and FMR16 bits can be w ritten.  
When setting this bit to “0”, set to “0” immediately after setting it first to “1”.  
When setting this bit to “1”, set it to “1”.  
Flash Memory Control Register 4  
b7 b6 b5 b4 b3 b2 b1 b0  
0
0 0 0 0  
Symbol  
FMR4  
Bit Symbol  
Address  
01B3h  
After Reset  
01000000b  
Function  
Bit Name  
RW  
RW  
Erase-Suspend Function  
Enable Bit(1)  
0 : Disable  
1 : Enable  
FMR40  
FMR41  
Erase-Suspend Request  
Bit(2)  
0 : Erase restart  
1 : Erase-suspend request  
RW  
RO  
RO  
RW  
(b5-b2)  
Reserved Bit  
Set to “0”  
Read Status Flag  
Reserved Bit  
0 : Disables reading  
1 : Enables reading  
FMR46  
(b7)  
Set to “0”  
NOTES :  
1. When setting this bit to “1”, set to “1” immediately after setting it first to “0”. Do not generate an interrupt betw een  
setting the bit to “0” and setting it to “1”.  
2. This bit is enabled w hen the FMR40 bit is set to “1” (enable) and this bit can be w ritten during the period betw een  
issuing an erase command and completing an erase (This bit is set to “0” during the periods other than above).  
In EW0 mode, this can be set to “0” and “1” by a program.  
In EW1 mode, this bit is automatically set to “1” if a maskable interrupt is generated during an erase  
operation w hile the FMR40 bit is set to “1”. Do not set this bit to “1” by a program (“0” can be w ritten).  
Figure 18.6  
FMR1 and FMR4 Registers  
Rev.2.10 Jan 19, 2006 Page 201 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Figure 18.7 shows the Timing on Suspend Operation.  
Erase  
Starts  
Erase  
Suspends  
Erase  
Restarts  
Erase  
Ends  
During Erase  
During Erase  
“1”  
“0”  
FMR00 Bit in  
FMR0 Register  
FMR46 Bit in  
FMR4 Register  
“1”  
“0”  
Check the Status,  
and that the erase  
operation ends  
normally.  
Check that the  
FMR00 bit is set to  
“0”, and that the  
erase operation has  
not ended.  
Figure 18.7  
Timing on Suspend Operation  
Rev.2.10 Jan 19, 2006 Page 202 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Figure 18.8 shows the How to Set and Exit EW0 Mode. Figure 18.9 shows the How to Set and Exit  
EW1 Mode.  
EW0 Mode Operating Procedure  
Rewrite Control Program  
Set the FMR01 bit by writing “0” and then “1”  
(CPU rewrite mode enabled)(2)  
Set CM0 and CM1 registers(1)  
Execute software commands  
Transfer a rewrite control program which uses CPU  
rewrite mode to any areas other than the flash  
Execute the read array command(3)  
memory  
Write “0” to the FMR01 bit  
Jump to the rewrite control program which has been  
transferred to any areas other than the flash memory  
(The subsequent process is executed by the rewrite  
control program in any areas other than the flash  
memory)  
(CPU rewrite mode disabled)  
Jump to a specified address in the flash memory  
NOTES :  
1. Select 5MHz or below for the CPU clock by the CM06 bit in the CM0 register and the CM16 to CM17 bits in the CM1 register.  
2. When setting the FMR01 bit to “1”, write “0” to the FMR01 bit before writing “1”. Do not generate an interrupt between writing “0” and  
“1”.  
3. Disable the CPU rewrite mode after executing the read array command.  
Figure 18.8  
How to Set and Exit EW0 Mode  
EW1 Mode Operating Procedure  
Program in ROM  
Write “0” to the FMR01 bit before writing “1”  
(CPU rewrite mode enabled)(1)  
Write “0” to the FMR11 bit before writing “1”  
(EW1 mode)  
Execute Software Commands  
Write “0” to the FMR01 bit  
(CPU rewrite mode disabled)  
NOTES :  
1. When setting the FMR01 bit to “1”, write “0” to the FMR01 bit before writing “1”.  
Do not generate an interrupt between writing “0” and “1”.  
Figure 18.9  
How to Set and Exit EW1 Mode  
Rev.2.10 Jan 19, 2006 Page 203 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
On-Chip Oscillator Mode  
(Main Clock Stops) Program  
Transfer a on-chip oscillator mode (main clock stops)  
program to any areas other the flash memory  
Write “0” to the FMR01 bit before writing “1”  
(CPU rewrite mode enabled)  
Write “1” to the FMSTP bit (Flash memory  
stops. Low power consumption state)(1)  
Jump to the on-chip oscillator mode (main clock stops)  
program which has been transferred to any areas other  
the flash memory.  
(The subsequent processing is executed by a program  
in any areas other than the flash memory.)  
Switch the clock source for the CPU clock.  
Turn XIN off  
Process in on-chip oscillator mode (main  
clock stops)  
Turn main clock onwait until oscillation  
stabilizesswitch the clock source for CPU  
clock(2)  
Write “0” to the FMSTP bit  
(flash memory operation)(4)  
Write “0” to the FMR01 bit  
(CPU rewrite mode disabled)  
Wait until the flash memory circuit stabilizes  
(15ms)(3)  
Jump to a specified address in the flash memory  
NOTES :  
1. Set the FMR01 bit to “1” (CPU rewrite mode) before setting the FMSTP bit to “1” .  
2. Before the clock source for CPU clock can be changed, the clock to which to be changed must be stable.  
3. Insert a 15us wait time in a program. Do not access to the flash memory during this wait time.  
4. Ensure 10us until setting “0” (flash memory operates) after setting the FMSTP bit to “1” (flash memory stops).  
Figure 18.10 Process to Reduce Power Consumption in On-Chip Oscillator Mode (Main Clock  
Stops)  
Rev.2.10 Jan 19, 2006 Page 204 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.3 Software Commands  
Software commands are described below. Read or write commands and data from or to in 8-bit units.  
Table 18.4 Software Commands  
Command  
Read Array  
First Bus Cycle  
Address  
Second Bus Cycle  
Mode Address  
Data  
(D7 to D0)  
FFh  
Data  
(D7 to D0)  
Mode  
Write  
×
Read Status Register Write  
Clear Status Register Write  
×
70h  
Read  
×
SRD  
×
50h  
Program  
Write  
Write  
WA  
×
40h  
Write  
Write  
WA  
BA  
WD  
D0h  
Block Erase  
20h  
SRD: Status register data (D7 to D0)  
WA: Write address (Ensure the address specified in the first bus cycle is the same address as the  
address specified in the second bus cycle.)  
WD: Write data (8 bits)  
BA: Given block address  
×: Any specified address in the user ROM area  
18.4.3.1 Read Array Command  
The read array command reads the flash memory.  
The microcomputer enters read array mode by writing “FFh” in the first bus cycle. If entering the read  
address after the following bus cycles, the content of the specified address can be read in 8-bit units.  
Since the microcomputer remains in read array mode until another command is written, the contents  
of multiple addresses can be read continuously.  
18.4.3.2 Read Status Register Command  
The read status register command reads the status register.  
If writing “70h” in the first bus cycle, the status register can be read in the second bus cycle. (Refer to  
18.4.4 Status Register) When reading the status register, specify an address in the user ROM area.  
Do not execute this command in EW1 mode.  
18.4.3.3 Clear Status Register Command  
The clear status register command sets the status register to “0”.  
If writing “50hin the first bus cycle, the FMR06 to FMR07 bits in the FMR0 register and SR4 to SR5  
in the status register will be set to “0”.  
Rev.2.10 Jan 19, 2006 Page 205 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.3.4 Program Command  
The program command writes data to the flash memory in 1-byte units.  
Write “40h” in the first bus cycle and write data to the write address in the second bus cycle, and an  
auto program operation (data program and verify) will start. Make sure the address value specified in  
the first bus cycle is the same address as the write address specified in the second bus cycle.  
The FMR00 bit in the FMR0 register can determine whether auto programming has completed. The  
FMR00 bit is set to “0” during auto programming and set to “1” when auto programming completes.  
The FMR06 bit in the FMR0 register can determine the result of auto programming after it has been  
finished.(Refer to 18.4.5 Full Status Check)  
Do not write additions to the already programmed address.  
When the FMR02 bit in the FMR0 register is set to “0” (disable rewriting), or the FMR02 bit is set to  
“1” (rewrite enables) and the FMR15 bit in the FMR1 register is set to “1” (disable rewriting), the  
program command on Block 0 is not acknowledged. When the FMR16 bit is set to “1” (disable  
rewriting), the program command on Block 1 is not acknowledged.  
In EW1 mode, do not execute this command on any address at which the rewrite control program is  
allocated.  
In EW0 mode, the microcomputer enters read status register mode at the same time auto  
programming starts and the status register can be read. The status register bit 7 (SR7) is set to “0” at  
the same time auto programming starts and set back to “1” when auto programming completes. In  
this case, the microcomputer remains in read status register mode until a read array command is  
written next. Reading the status register can determine the result of auto programming after auto  
programming has completed.  
Start  
Write the command code ‘40h’ to  
the write address  
Write data to the write address  
No  
FMR00=1?  
Yes  
Full status check  
Program completed  
Figure 18.11 Program Command  
Rev.2.10 Jan 19, 2006 Page 206 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.3.5 Block Erase  
If writing ”20h” in the first bus cycle and “D0hto the given address of a block in the second bus cycle,  
and an auto erase operation (erase and verify) will start.  
The FMR00 bit in the FMR0 register can determine whether auto erasing has completed.  
The FMR00 bit is set to “0” during auto erasing and set to “1” when auto erasing completes.  
The FMR07 bit in the FMR0 register can determine the result of auto erasing after auto erasing has  
completed. (Refer to 18.4.5 Full Status Check)  
When the FMR02 bit in the FMR0 register is set to “0” (disable rewriting) or the FMR02 bit is set to “1”  
(rewrite enables) and the FMR15 bit in the FMR1 register is set to “1” (disable rewriting), the block  
erase command on Block 0 is not acknowledged. When the FMR16 bit is set to “1” (disable rewriting),  
the block erase command on Block 1 is not acknowledged.  
Figure 18.12 shows the Block Erase Command (When Not Using Erase-Suspend Function). Figure  
18.13 shows the Block Erase Command (When Using Erase-Suspend Function).  
In EW1 mode, do not execute this command on any address at which the rewrite control program is  
allocated.  
In EW0 mode, the microcomputer enters read status register mode at the same time auto erasing  
starts and the status register can be read. The status register bit 7 (SR7) is set to “0” at the same time  
auto erasing starts and set back to “1” when auto erasing completes. In this case, the microcomputer  
remains in read status register mode until the read array command is written next.  
Start  
Write the command code ‘20h’  
Write ‘D0h’ to the given block  
address  
No  
FMR00=1?  
Yes  
Full status check  
Block erase completed  
Figure 18.12 Block Erase Command (When Not Using Erase-Suspend Function)  
Rev.2.10 Jan 19, 2006 Page 207 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
<EW0 Mode>  
Start  
Maskable interrupt (1, 2)  
FMR41=1  
FMR40=1  
No  
Write the command code “20h”  
FMR46=1 ?  
Yes  
Write “D0h” to the any block  
address  
Access to flash memory  
FMR41=0  
No  
FMR00=1?  
Yes  
REIT  
Full status check  
Block erase completed  
<EW1 Mode>  
Start  
Maskable interrupt (2)  
Access to flash memory  
REIT  
FMR40=1  
Write the command code “20h”  
Write “D0h” to the any block  
address  
FMR41=0  
No  
FMR00=1 ?  
Yes  
Full status check  
Block erase completed  
NOTES :  
1. In EW0 mode, interrupt vector table and interrupt routine for an interrupt to be used should  
be allocated in RAM area.  
2. td(SR-ES) is needed until the interrupt request is acknowledged after it is generated. The interrupt  
to enter an erase-suspend should be in interrupt enabled status.  
Figure 18.13 Block Erase Command (When Using Erase-Suspend Function)  
Rev.2.10 Jan 19, 2006 Page 208 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.4 Status Register  
The status register indicates the operating status of the flash memory and whether an erasing or  
programming operation completes normally or in error. Status of the status register can be read by  
the FMR00, FMR06, and FMR07 bits in the FMR0 register.  
Table 18.5 lists the Status Register.  
In EW0 mode, the status register can be read in the following cases:  
When a given address in the user ROM area is read after writing the read status register  
command  
When a given address in the user ROM area is read after executing the program or block erase  
command but before executing the read array command.  
18.4.4.1 Sequencer Status (SR7 and FMR00 Bits)  
The sequencer status indicates operating status of the flash memory. SR7 = 0 (busy) during auto  
programming and auto erasing, and is set to “1” (ready) at the same time the operation completes.  
18.4.4.2 Erase Status (SR5 and FMR07 Bits)  
Refer to 18.4.5 Full Status Check.  
18.4.4.3 Program Status (SR4 and FMR06 Bits)  
Refer to 18.4.5 Full Status Check.  
Table 18.5  
Status  
Status Register  
FMR0  
Register  
Contents  
Value  
after  
Reset  
Status Name  
Register  
Bit  
“0”  
“1”  
Bit  
SR0 (D0)  
Reserved  
Reserved  
Reserved  
Reserved  
0
SR1 (D1)  
SR2 (D2)  
SR3 (D3)  
SR4 (D4)  
FMR06  
Program status Completed  
normally  
Error  
SR5 (D5)  
FMR07  
Erase status  
Completed  
normally  
Error  
0
SR6 (D6)  
SR7 (D7)  
Reserved  
Sequencer  
status  
FMR00  
Busy  
Ready  
0
• D0 to D7: Indicates the data bus which is read when the read status register command is executed.  
• The FMR07 (SR5) to FMR06 bits (SR4) are set to “0” by executing the clear status register command.  
• When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to “1”, the program and block erase command  
cannot be accepted.  
Rev.2.10 Jan 19, 2006 Page 209 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.4.5 Full Status Check  
When an error occurs, the FMR06 to FMR07 bits in the FMR0 register are set to “1”, indicating  
occurrence of each specific error. Therefore, Checking these status bits (full status check) can  
determine the executed result.  
Table 18.6 lists the Errors and FMR0 Register Status. Figure 18.14 shows the Full Status Check and  
Handling Procedure for Each Error.  
Table 18.6  
Errors and FMR0 Register Status  
FRM00 Register (Status  
Register) Status  
Error  
Error occurrence condition  
FMR07(SR5) FMR06(SR4)  
1
1
Command  
Sequence  
Error  
• When any command is not written correctly  
• When invalid data other than those that can be written  
in the second bus cycle of the block erase command is  
(1)  
written (i.e., other than “D0h” or “FFh”)  
• When executing the program command or block erase  
command while rewriting is disabled using the FMR02  
bit in the FMR0 register, the FMR15 or FMR16 bit in the  
FMR1 register.  
• When inputting and erasing the address in which the  
Flash memory is not allocated during the erase  
command input  
• When executing to erase the block which disables  
rewriting during the erase command input.  
• When inputting and writing the address in which the  
Flash memory is not allocated during the write  
command input.  
• When executing to write the block which disables  
rewriting during the write command input.  
1
0
0
1
Erase Error  
• When the block erase command is executed but not  
automatically erased correctly  
Program Error • When the program command is executed but not  
automatically programmed correctly.  
NOTES:  
1. The microcomputer enters read array mode by writing “FFh” in the second bus cycle of these  
commands, at the same time the command code written in the first bus cycle will disabled.  
Rev.2.10 Jan 19, 2006 Page 210 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Command sequence error  
Full status check  
Execute the clear status register command  
(set these status flags to 0)  
FMR06 = 1  
Yes  
and  
Command sequence error  
FMR07 = 1?  
Check if command is properly input  
Re-execute the command  
No  
Yes  
Erase error  
FMR07 = 0?  
Erase error  
No  
Execute the clear status register command  
(set these status flags to 0)  
Erase command  
re-execution times 3 times?  
No  
Block targeting for erasure  
cannot be used  
Yes  
Yes  
FMR06 = 0?  
Program error  
Re-execute block erase command  
No  
Program error  
Execute the clear status register  
command  
(set these status flags to 0)  
Full status check completed  
Specify the other address besides the  
write address where the error occurs for  
the program address(1)  
NOTE:  
1. To rewrite to the address where the program error occurs, check if the full  
status check is complete normally and write to the address after the block  
erase command is executed.  
Re-execute program command  
Figure 18.14 Full Status Check and Handling Procedure for Each Error  
Rev.2.10 Jan 19, 2006 Page 211 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.5 Standard Serial I/O Mode  
In standard serial I/O mode, the user ROM area can be rewritten while the microcomputer is mounted  
on-board by using a serial programmer which is applicable for this microcomputer.  
Standard serial I/O mode is used to connect with a serial writer using a special clock asynchronous serial  
I/O.  
There are three types of Standard serial I/O modes:  
Standard serial I/O mode 1.......... Clock synchronous serial I/O used to connect with a serial  
programmer  
Standard serial I/O mode 2.......... Clock asynchronous serial I/O used to connect with a serial  
programmer  
Standard serial I/O mode 3.......... Special clock asynchronous serial I/O used to connect with a serial  
programmer  
This microcomputer uses Standard serial I/O mode 2 and Standard serial I/O mode 3.  
Refer to Appendix 2. Connecting Example between Serial Writer and On-Chip Debugging  
Emulator. Contact the manufacturer of your serial programmer for serial programmer. Refer to the  
user’s manual of your serial programmer for details on how to use it.  
Table 18.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2), Table 18.8 lists the Pin  
Functions (Flash Memory Standard Serial I/O Mode 3). Figure 18.15 show Pin Connections for Standard  
Serial I/O Mode 3.  
After processing the pins shown in Table 18.8 and rewriting a flash memory using a writer, apply “H” to  
the MODE pin and reset a hardware if a program is operated on the flash memory in single-chip mode.  
18.5.1 ID Code Check Function  
The ID code check function determines whether the ID codes sent from the serial programmer and  
those written in the flash memory match (refer to 18.3 Functions To Prevent Flash Memory from  
Rewriting).  
Table 18.7  
Pin Functions (Flash Memory Standard Serial I/O Mode 2)  
Pin  
Name  
Power input  
I/O  
Description  
Apply the voltage guaranteed for program and erase to  
VCC pin and 0V to VSS pin.  
VCC,VSS  
Reset input  
I
Reset input pin.  
RESET  
P4_6/XIN  
P4_6 input/clock input  
I
Connect ceramic resonator or crystal oscillator  
between XIN and XOUT pins.  
P4_7/XOUT  
P4_7 input/clock output  
I/O  
AVCC, AVSS Analog power supply input I  
Connect AVSS to VSS and AVCC to VCC, respectively.  
Input “H” or “L” level signal or leave the pin open.  
Reference voltage input pin to A/D converter.  
P1_0 to P1_7 Input port P1  
I
I
I
VREF  
Reference voltage input  
P3_3 to P3_5 Input port P3  
Input “H” or “L” level signal or leave the pin open.  
MODE  
P3_7  
P4_5  
MODE  
I/O Input “L”.  
TXD output  
RXD input  
O
I
Serial data output pin.  
Serial data input pin.  
Rev.2.10 Jan 19, 2006 Page 212 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
Table 18.8  
Pin Functions (Flash Memory Standard Serial I/O Mode 3)  
Name I/O Description  
Power input  
Pin  
VCC,VSS  
Apply the voltage guaranteed for program and erase to  
VCC pin and 0V to VSS pin.  
Reset input  
I
Reset input pin.  
RESET  
P4_6/XIN  
P4_6 input/clock input  
I
Connect ceramic resonator or crystal oscillator  
between XIN and XOUT pins when connecting external  
oscillator. Apply “H” and “L” or leave the pin open when  
using as input port  
P4_7/XOUT  
P4_7 input/clock output  
I/O  
AVCC, AVSS Analog power supply input I  
Connect AVSS to VSS and AVCC to VCC, respectively.  
Reference voltage input pin to A/D converter.  
VREF  
Reference voltage input  
I
I
I
P1_0 to P1_7 Input port P1  
P3_3 to P3_5, Input port P3  
P3_7  
Input “H” or “L” level signal or leave the pin open.  
Input “H” or “L” level signal or leave the pin open.  
P4_5  
Input port P4  
MODE  
I
Input “H” or “L” level signal or leave the pin open.  
MODE  
I/O Serial data I/O pin. Connect to the flash programmer.  
Rev.2.10 Jan 19, 2006 Page 213 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
RESET  
Connect  
Oscillator  
Circuit(1)  
VSS  
VCC  
MODE  
Package: PLSP0020JB-A  
NOTES:  
1. No need to connect an oscillating circuit when  
operating with on-chip oscillator clock.  
Mode Setting  
Signal  
Value  
Voltage from programmer  
MODE  
VSS VCC  
RESET  
Figure 18.15 Pin Connections for Standard Serial I/O Mode 3  
Rev.2.10 Jan 19, 2006 Page 214 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.5.1.1 Example of Circuit Application in the Standard Serial I/O Mode  
Figure 18.16 show Pin Process in Standard Serial I/O Mode 2, Figure 18.17 show Pin Process in  
Standard Serial I/O Mode 3. Since the controlled pins vary depending on the programmer, refer to the  
manual of your serial programmer.  
Microcomputer  
Data Output  
Data Input  
TXD  
RXD  
MODE  
NOTES:  
1. In this example, modes are switched between single-chip mode and  
standard serial I/O mode by controlling the MODE input with a switch.  
2. Connecting the oscillation is necessary. Set the main clock frequency 1  
MHz to 20 MHz. Refer to Appendix 2.1 Connecting examples with M16C  
Flash Starter (M3A-0806).  
Figure 18.16 Pin Process in Standard Serial I/O Mode 2  
Microcomputer  
MODE  
MODE I/O  
Reset Input  
RESET  
User Reset Signal  
NOTES:  
1. Controlled pins and external circuits vary depending on the programmer.  
Refer to the programmer manual for details.  
2. In this example, modes are switched between single-chip mode and  
standard serial I/O mode by connecting a programmer.  
3. When operating with on-chip oscillator clock, connecting the oscillating  
circuit is not necessary.  
Figure 18.17 Pin Process in Standard Serial I/O Mode 3  
Rev.2.10 Jan 19, 2006 Page 215 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
18. Flash Memory Version  
18.6 Parallel I/O Mode  
Parallel I/O mode is used to input and output the required software command, address and data parallel  
to controls (read, program and erase) for internal flash memory. Use a parallel programmer which  
supports this microcomputer. Contact the manufacturer of your parallel programmer about the parallel  
programmer and refer to the user’s manual of your parallel programmer for details on how to use it.  
User ROM area can be rewritten shown in Figures 18.1 and 18.2 in parallel I/O mode.  
18.6.1 ROM Code Protect Function  
The ROM code protect function disables to read and rewrite the flash memory. (Refer to the 18.3  
Functions To Prevent Flash Memory from Rewriting.)  
Rev.2.10 Jan 19, 2006 Page 216 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
19. Electrical Characteristics  
Table 19.1  
Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
Supply Voltage  
Condition  
VCC = AVCC  
Rated value  
Unit  
V
-0.3 to 6.5  
-0.3 to 6.5  
AVCC  
Analog Supply Voltage  
VCC = AVCC  
V
VI  
Input Voltage  
-0.3 to VCC+0.3  
-0.3 to VCC+0.3  
300  
V
V
VO  
Pd  
Output Voltage  
Power Dissipation  
Topr = 25°C  
mW  
°C  
°C  
Topr  
Tstg  
Operating Ambient Temperature  
Storage Temperature  
-20 to 85 / -40 to 85 (D version)  
-65 to 150  
Table 19.2  
Recommended Operating Conditions  
Standard  
Symbol  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
5.5  
VCC  
Supply Voltage  
2.7  
V
V
(3)  
AVCC  
VSS  
Analog Supply Voltage  
Supply Voltage  
VCC  
0
V
AVSS  
VIH  
Analog Supply Voltage  
Input “H” Voltage  
0
V
0.8VCC  
VCC  
0.2VCC  
-60  
V
VIL  
Input “L” Voltage  
0
V
IOH(sum)  
Peak Sum  
Output “H”  
Current  
Sum of All  
Pins IOH (peak)  
mA  
IOH(peak)  
IOH(avg)  
IOL(sum)  
Peak Output “H” Current  
-10  
-5  
mA  
mA  
mA  
Average Output “H” Current  
Peak Sum  
Output “L”  
Currents  
Sum of All  
Pins IOL (peak)  
60  
IOL(peak)  
IOL(avg)  
Peak Output “L” Except P1_0 to P1_3  
0
0
10  
30  
10  
5
mA  
mA  
Currents  
P1_0 to P1_3  
Drive Capacity HIGH  
Drive Capacity LOW  
mA  
Average Output  
“L” Current  
Except P1_0 to P1_3  
P1_0 to P1_3  
mA  
Drive Capacity HIGH  
Drive Capacity LOW  
3.0V VCC 5.5V  
2.7V VCC < 3.0V  
15  
5
mA  
mA  
f(XIN)  
Main Clock Input Oscillation Frequency  
20  
10  
MHz  
MHz  
NOTES:  
1. VCC = AVCC = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.  
2. The typical values when average output current is 100ms.  
3. Hold VCC = AVCC.  
Rev.2.10 Jan 19, 2006 Page 217 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.3  
A/D Converter Characteristics  
Standard  
Unit  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
10  
±3  
±2  
±5  
±2  
40  
Resolution  
Vref = VCC  
Bits  
LSB  
LSB  
LSB  
LSB  
kΩ  
Absolute  
Accuracy  
10-Bit Mode  
φAD = 10MHz, Vref = VCC = 5.0V  
φAD = 10MHz, Vref = VCC = 5.0V  
φAD = 10MHz, Vref = VCC = 3.3V(3)  
φAD = 10MHz, Vref = VCC = 3.3V(3)  
Vref = VCC  
8-Bit Mode  
10-Bit Mode  
8-Bit Mode  
Rladder  
tconv  
Resistor Ladder  
10  
3.3  
2.8  
Conversion Time 10-Bit Mode  
8-Bit Mode  
µs  
φAD = 10MHz, Vref = VCC = 5.0V  
φAD = 10MHz, Vref = VCC = 5.0V  
µs  
(4)  
Vref  
VIA  
Reference voltage  
V
VCC  
Analog Input Voltage  
0
Vref  
10  
10  
V
A/D Operating  
Clock  
Frequency(2)  
Without Sample & Hold  
With Sample & Hold  
0.25  
1
MHz  
MHz  
NOTES:  
1. VCC = AVCC = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.  
2. If f1 exceeds 10MHz, divide the f1 and hold A/D operating clock frequency (φAD) 10MHz or below.  
3. If the AVcc is less than 4.2V, divide the f1 and hold A/D operating clock frequency (φAD) f1/2 or below.  
4. Hold VCC = Vref  
P1  
30pF  
P3  
P4  
Figure 19.1  
Port P1, P3 and P4 Measurement Circuit  
Rev.2.10 Jan 19, 2006 Page 218 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.4  
Flash Memory (Program ROM) Electrical Characteristics  
Standard  
Unit  
Symbol  
Parameter  
Conditions  
R8C/14 Group  
Min.  
100(3)  
Typ.  
Max.  
Program/Erase Endurance(2)  
times  
times  
µs  
1,000(3)  
R8C/15 Group  
Byte Program Time  
Block Erase Time  
VCC = 5.0 V at Topr = 25 °C  
VCC = 5.0 V at Topr = 25 °C  
50  
0.4  
400  
9
s
td(SR-ES)  
Time Delay from Suspend Request until  
Erase Suspend  
8
ms  
Erase Suspend Request Interval  
Program, Erase Voltage  
Read Voltage  
10  
2.7  
2.7  
0
ms  
V
5.5  
5.5  
60  
V
Program, Erase Temperature  
Data Hold Time(7)  
°C  
year  
Ambient temperature = 55 °C  
20  
NOTES:  
1. VCC = AVcc = 2.7 to 5.5V at Topr = 0 to 60 °C, unless otherwise specified.  
2. Definition of program and erase  
The program and erase endurance shows an erase endurance for every block.  
If the program and erase endurance is “n” times (n = 100, 10000), “n” times erase can be performed for every block.  
For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that  
block, program and erase endurance is counted as one time.  
However, do not perform multiple programs to the same address for one time ease.(disable overwriting).  
3. Endurace to guarantee all electrical characteristics after program and erase.(1 to “Min.” value can be guaranateed).  
4. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram  
endurance not to leave blank area as possible such as programming write addresses in turn . If programming a set of 16  
bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally,  
averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for  
every block as information and determine the restricted endurance are recommended.  
5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at  
least three times until the erase error does not occur.  
6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.  
7. The data hold time incudes time that the power supply is off or the clock is not supplied.  
Rev.2.10 Jan 19, 2006 Page 219 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.5  
Flash Memory (Data flash Block A, Block B) Electrical Characteristics  
Standard  
Unit  
Symbol  
Parameter  
Conditions  
Min.  
10,000(3)  
Typ.  
Max.  
Program/Erase Endurance(2)  
times  
Byte Program Time  
(Program/Erase Endurance 1,000 Times)  
VCC = 5.0 V at Topr = 25 °C  
VCC = 5.0 V at Topr = 25 °C  
VCC = 5.0 V at Topr = 25 °C  
VCC = 5.0 V at Topr = 25 °C  
50  
400  
µs  
Byte Program Time  
(Program/Erase Endurance > 1,000 Times)  
65  
0.2  
0.3  
9
8
µs  
s
Block Erase Time  
(Program/Erase Endurance 1,000 Times)  
Block Erase Time  
(Program/Erase Endurance > 1,000 Times)  
s
td(SR-ES)  
Time Delay from Suspend Request until  
Erase Suspend  
ms  
Erase Suspend Request Interval  
Program, Erase Voltage  
Read Voltage  
10  
2.7  
ms  
V
5.5  
5.5  
85  
2.7  
V
-20(8)  
20  
Program, Erase Temperature  
°C  
year  
Data Hold Time(9)  
Ambient temperature = 55 °C  
NOTES:  
1. VCC = AVcc = 2.7 to 5.5V at Topr = 20 to 85 °C / 40 to 85 °C, unless otherwise specified.  
2. Definition of program and erase  
The program and erase endurance shows an erase endurance for every block.  
If the program and erase endurance is “n” times (n = 100, 10000), “n” times erase can be performed for every block.  
For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that  
block, program and erase endurance is counted as one time.  
However, do not perform multiple programs to the same address for one time ease.(disable overwriting).  
3. Endurace to guarantee all electrical characteristics after program and erase.(1 to “Min.” value can be guaranateed).  
4. Standard of Block A and Block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000  
times aer the same as that in program area.  
5. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram  
endurance not to leave blank area as possible such as programming write addresses in turn . If programming a set of 16  
bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally,  
averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for  
every block as information and determine the restricted endurance are recommended.  
6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at  
least three times until the erase error does not occur.  
7. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.  
8. -40 °C for D version.  
9. The data hold time incudes time that the power supply is off or the clock is not supplied.  
Rev.2.10 Jan 19, 2006 Page 220 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Erase-Suspend Request  
(Maskable interrupt Request)  
FMR46  
td(SR-ES)  
Figure 19.2  
Time delay from Suspend Request until Erase Suspend  
Voltage Detection 1 Circuit Electrical Characteristics  
Table 19.6  
Standard  
Unit  
Symbol  
Parameter  
Voltage Detection Level(3)  
Condition  
Min.  
2.70  
Typ.  
2.85  
600  
Max.  
3.00  
Vdet1  
V
Voltage Detection Circuit Self Power Consumption  
Waiting Time until Voltage Detection Circuit Operation  
Starts(2)  
VCA26 = 1, VCC = 5.0V  
nA  
µs  
td(E-A)  
100  
Vccmin  
Microcomputer Operating Voltage Minimum Value  
2.7  
V
NOTES:  
1. The measurement condition is VCC = AVCC = 2.7V to 5.5V and Topr = -40°C to 85 °C.  
2. Necessary time until the voltage detection circuit operates when setting to “1” again after setting the VCA26 bit in the VCA2  
register to “0”.  
3. Hold Vdet2 > Vdet1.  
Table 19.7  
Voltage Detection 2 Circuit Electrical Characteristics  
Standard  
Typ.  
3.30  
40  
Symbol  
Parameter  
Voltage Detection Level(4)  
Voltage Monitor 2 Interrupt Request Generation Time(2)  
Voltage Detection Circuit Self Power Consumption  
Waiting Time until Voltage Detection Circuit Operation  
Starts(3)  
Condition  
Unit  
Min.  
3.00  
Max.  
3.60  
Vdet2  
V
µs  
nA  
µs  
VCA27 = 1, VCC = 5.0V  
600  
td(E-A)  
100  
NOTES:  
1. The measurement condition is VCC = AVCC = 2.7V to 5.5V and Topr = -40°C to 85 °C.  
2. Time until the voltage monitor 2 interrupt request is generated since the voltage passes Vdet1.  
3. Necessary time until the voltage detection circuit operates when setting to “1” again after setting the VCA27 bit in the VCA2  
register to “0”.  
4. Hold Vdet2 > Vdet1.  
Rev.2.10 Jan 19, 2006 Page 221 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.8  
Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset )  
Symbol  
Parameter  
Condition  
Standard  
Unit  
Min.  
Typ.  
Max.  
Vdet1  
100  
Vpor2  
Power-On Reset Valid Voltage  
-20°C Topr < 85°C  
V
tw(Vpor2-Vdet1) Supply Voltage Rising Time When Power-On Reset is -20°C Topr < 85°C,  
Deasserted(1) tw(por2) 0s(3)  
ms  
NOTES:  
1. This condition is not applicable when using with Vcc 1.0V.  
2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10s, refer to Table  
19.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).  
3. tw(por2) is time to hold the external power below effective voltage (Vpor2).  
Table 19.9  
Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)  
Symbol  
Parameter  
Condition  
Standard  
Unit  
Min.  
Typ.  
Max.  
0.1  
Vpor1  
Power-On Reset Valid Voltage  
-20°C Topr < 85°C  
0°C Topr 85°C,  
tw(por1) 10s(2)  
V
tw(Vpor1-Vdet1)  
tw(Vpor1-Vdet1)  
tw(Vpor1-Vdet1)  
tw(Vpor1-Vdet1)  
Supply Voltage Rising Time When Power-On Reset is  
Deasserted  
100  
ms  
Supply Voltage Rising Time When Power-On Reset is  
Deasserted  
-20°C Topr < 0°C,  
tw(por1) 30s(2)  
100  
1
ms  
ms  
ms  
Supply Voltage Rising Time When Power-On Reset is  
Deasserted  
-20°C Topr < 0°C,  
tw(por1) 10s(2)  
Supply Voltage Rising Time When Power-On Reset is  
Deasserted  
0°C Topr 85°C,  
tw(por1) 1s(2)  
0.5  
NOTES:  
1. When not using the voltage monitor 1 reset, use with Vcc2.7V.  
2. tw(por1) is time to hold the external power below effective voltage (Vpor1).  
(3)  
(3)  
Vdet1  
Vdet1  
Vccmin  
Vpor2  
Vpor1  
Sampling Time(1, 2)  
tw(Vpor1–Vdet1)  
tw(por1)  
tw(por2) tw(Vpor2–Vdet1)  
Internal Reset  
Signal  
(“L” Valid)  
1
1
× 32  
× 32  
fRING-S  
fRING-S  
NOTES:  
1. Hold the voltage of the microcomputer operation voltage range (Vccmin or above) within sampling time.  
2. A sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.  
3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 6. Voltage Detection Circuit for details.  
Figure 19.3  
Reset Circuit Electrical Characteristics  
Rev.2.10 Jan 19, 2006 Page 222 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics  
Standard  
Symbol  
Parameter  
Condition  
Unit  
Min.  
Typ.  
8
Max.  
High-Speed On-Chip Oscillator Frequency  
When the Reset is Deasserted  
VCC = 5.0V, Topr = 25 °C  
MHz  
0 to +60 °C / 5 V ± 5 %(2)  
High-Speed On-Chip Oscillator Frequency  
Temperature Supplay Voltage Dependence  
7.44  
7.04  
6.80  
MHz  
MHz  
MHz  
8.56  
8.96  
9.20  
20 to +85 °C / 2.7 to 5.5 V(2)  
40 to +85 °C / 2.7 to 5.5 V(2)  
NOTES:  
1. The measurement condition is VCC = AVCC = 5.0V and Topr = 25 °C.  
2. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to  
00h.  
Table 19.11 Power Supply Circuit Timing Characteristics  
Standard  
Symbol  
Parameter  
Condition  
Unit  
Min.  
1
Typ.  
Max.  
2000  
td(P-R)  
Time for Internal Power Supply Stabilization during  
Power-On(2)  
µs  
STOP Exit Time(3)  
td(R-S)  
150  
µs  
NOTES:  
1. The measurement condition is VCC = AVCC = 2.7 to 5.5V and Topr = 25 °C.  
2. Waiting time until the internal power supply generation circuit stabilizes during power-on.  
3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.  
(1)  
Table 19.12 Timing Requirements of Clock Synchronous Serial I/O (SSU) with Chip Select  
Standard  
Symbol  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
(2)  
tCYC  
tSUCYC  
SSCK Clock Cycle Time  
SSCK Clock “H” Width  
SSCK Clock “L” Width  
SSCK Clock Rising Time  
4
tHI  
0.4  
0.6  
0.6  
1
tSUCYC  
tSUCYC  
tLO  
0.4  
(2)  
tRISE  
Master  
Slave  
tCYC  
1
µs  
(2)  
tFALL  
SSCK Clock Falling Time  
Master  
Slave  
1
tCYC  
100  
1
µs  
tSU  
SSO, SSI Data Input Setup Time  
SSO, SSI Data Input Hold Time  
ns  
(2)  
tH  
1
tCYC  
tLEAD  
Slave  
Slave  
1tCYC+50  
ns  
ns  
SCS Setup Time  
SCS Hold Time  
tLAG  
1tCYC+50  
(2)  
tOD  
tSA  
tOR  
SSO, SSI Data Output Delay Time  
SSI Slave Access Time  
1
tCYC  
1.5tCYC+100  
1.5tCYC+100  
ns  
ns  
SSI Slave Out Open Time  
NOTES:  
1. VCC = AVCC = 2.7 to 5.5V, VSS = 0V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.  
2. 1tCYC = 1/f1(s)  
Rev.2.10 Jan 19, 2006 Page 223 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
4-wire bus communication mode, Master, CPHS = “1”  
VIH or VOH  
VIH or VOH  
SCS(Output)  
tHI  
tFALL  
tRISE  
SSCK(Output)  
(CPOS = “1”)  
tLO  
tHI  
SSCK(Output)  
(CPOS = “0”)  
tLO  
tSUCYC  
SSO(Output)  
SSI(Input)  
tOD  
tSU  
tH  
4-wire bus communication mode, Master, CPHS = “0”  
VIH or VOH  
SCS(Output)  
VIH or VOH  
tHI  
tFALL  
tRISE  
SSCK(Output)  
(CPOS = “1”)  
tLO  
tHI  
SSCK(Output)  
(CPOS = “0”)  
tLO  
tSUCYC  
SSO(Output)  
SSI(Input)  
tOD  
tSU  
tH  
CPHS, CPOS : Bits in SSMR register  
Figure 19.4  
I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Master)  
Rev.2.10 Jan 19, 2006 Page 224 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
4-wire bus communication mode, Slave, CPHS = “1”  
VIH or VOH  
SCS(Input)  
VIH or VOH  
tLEAD  
tHI  
tFALL  
tRISE  
tLAG  
SSCK(Input)  
(CPOS = “1”)  
tLO  
tHI  
SSCK(Input)  
(CPOS = “0”)  
tLO  
tSUCYC  
SSO(Input)  
tSU  
tH  
SSI(Output)  
tSA  
tOD  
tOR  
4-wire bus communication mode, Slave, CPHS = “0”  
VIH or VOH  
SCS(Input)  
VIH or VOH  
tHI  
tFALL  
tRISE  
tLEAD  
tLAG  
SSCK(Input)  
(CPOS = “1”)  
tLO  
tHI  
SSCK(Input)  
(CPOS = “0”)  
tLO  
tSUCYC  
SSO(Input)  
tSU  
tH  
SSI(Output)  
tSA  
tOD  
tOR  
CPHS, CPOS : Bits in SSMR register  
Figure 19.5  
I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Slave)  
Rev.2.10 Jan 19, 2006 Page 225 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
tHI  
VIH or VOH  
SSCK  
VIH or VOH  
tLO  
tSUCYC  
SSO(Output)  
SSI(Input)  
tOD  
tSU  
tH  
Figure 19.6  
I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip Select (Clock  
Synchronous Communication Mode)  
Rev.2.10 Jan 19, 2006 Page 226 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.13 Electrical Characteristics (1) [VCC = 5V]  
Standard  
Unit  
Symbol  
VOH  
Parameter  
Condition  
Min.  
Typ.  
Max.  
VCC  
VCC  
VCC  
Output “H” Voltage Except XOUT  
IOH = -5mA  
VCC 2.0  
VCC 0.3  
VCC 2.0  
V
V
V
IOH = -200µA  
XOUT  
Drive capacity  
HIGH  
IOH = -1mA  
Drive capacity  
LOW  
IOH = -500µA  
VCC 2.0  
VCC  
V
VOL  
Output “L” Voltage Except P1_0 to P1_3, IOL = 5mA  
2.0  
0.45  
2.0  
V
V
V
XOUT  
IOL = 200µA  
P1_0 to P1_3  
Drive capacity  
HIGH  
IOL = 15mA  
IOL = 5mA  
Drive capacity  
LOW  
2.0  
0.45  
2.0  
V
V
V
V
V
Drive capacity  
LOW  
IOL = 200µA  
IOL = 1mA  
XOUT  
Drive capacity  
HIGH  
Drive capacity  
LOW  
IOL = 500µA  
2.0  
VT+-VT-  
Hysteresis  
0.2  
1.0  
INT0, INT1, INT3,  
KI0, KI1, KI2, KI3,  
CNTR0, CNTR1,  
TCIN, RXD0, SSO  
0.2  
2.2  
V
RESET  
IIH  
IIL  
Input “H” current  
Input “L” current  
VI = 5V  
VI = 0V  
VI = 0V  
5.0  
-5.0  
167  
µA  
µA  
RPULLUP Pull-Up Resistance  
30  
50  
1.0  
kΩ  
MΩ  
RfXIN  
Feedback  
XIN  
Resistance  
fRING-S  
VRAM  
Low-Speed On-Chip Oscillator Frequency  
RAM Hold Voltage  
40  
125  
250  
kHz  
V
During stop mode  
2.0  
NOTES:  
1. VCC = AVCC = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz, unless otherwise specified.  
Rev.2.10 Jan 19, 2006 Page 227 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.14 Electrical Characteristics (2) [Vcc = 5V] (Topr = -40 to 85  
°C, unless otherwise specified.)  
Standard  
Unit  
Symbol  
ICC  
Parameter  
Condition  
Min.  
Typ.  
9
Max.  
15  
Power Supply  
Current  
High-Speed  
Mode  
XIN = 20MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
(VCC=3.3 to 5.5V)  
In single-chip mode,  
the output pins are  
open and other pins  
are VSS  
XIN = 16MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
8
5
14  
XIN = 10MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
Medium-  
XIN = 20MHz (square wave)  
4
Speed Mode High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
XIN = 16MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
3
XIN = 10MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
2
High-Speed  
On-Chip  
Oscillator  
Mode  
Main clock off  
4
8
High-speed on-chip oscillator on=8MHz  
Low-speed on-chip oscillator on=125kHz  
No division  
Main clock off  
1.5  
470  
40  
High-speed on-chip oscillator on=8MHz  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
Low-Speed  
On-Chip  
Oscillator  
Mode  
Main clock off  
900  
80  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
Wait Mode  
Wait Mode  
Stop Mode  
Main clock off  
µA  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
While a WAIT instruction is executed  
Peripheral clock operation  
VCA26 = VCA27 = 0  
Main clock off  
38  
76  
µA  
µA  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
While a WAIT instruction is executed  
Peripheral clock off  
VCA26 = VCA27 = 0  
Main clock off, Topr = 25 °C  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator off  
CM10 = 1  
0.8  
3.0  
Peripheral clock off  
VCA26 = VCA27 = 0  
Rev.2.10 Jan 19, 2006 Page 228 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Timing Requirements (Unless otherwise specified: VCC = 5V, VSS = 0V at Topr = 25 °C) [ VCC = 5V ]  
Table 19.15 XIN Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
50  
Max.  
tc(XIN)  
XIN Input Cycle Time  
XIN Input “H” Width  
XIN Input “L” Width  
ns  
ns  
ns  
tWH(XIN)  
tWL(XIN)  
25  
25  
Table 19.16 CNTR0 Input, CNTR1 Input, INT1 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
tc(CNTR0)  
CNTR0 Input Cycle Time  
CNTR0 Input “H” Width  
CNTR0 input “L” Width  
ns  
ns  
ns  
tWH(CNTR0)  
tWL(CNTR0)  
40  
Table 19.17 TCIN Input, INT3 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
400(1)  
200(2)  
200(2)  
tc(TCIN)  
TCIN Input Cycle Time  
TCIN Input “H” Width  
TCIN input “L” Width  
ns  
ns  
ns  
tWH(TCIN)  
tWL(TCIN)  
NOTES:  
1. When using Timer C input capture mode, adjust the cycle time ( 1/Timer C count source frequency x 3) or above.  
2. When using Timer C input capture mode, adjust the width ( 1/Timer C count source frequency x 1.5) or above.  
Table 19.18 Serial Interface  
Standard  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
tc(CK)  
CLKi Input Cycle Time  
CLKi Input “H” Width  
CLKi Input “L” Width  
TXDi Output Delay Time  
TXDi Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tW(CKH)  
tW(CKL)  
td(C-Q)  
th(C-Q)  
tsu(D-C)  
th(C-D)  
50  
0
RXDi Input Setup Time  
RCDi Input Hold Time  
50  
90  
Table 19.19 External Interrupt INT0 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
250(1)  
250(2)  
tW(INH)  
ns  
ns  
INT0 Input “H” Width  
INT0 Input “L” Width  
tW(INL)  
NOTES:  
1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either  
(1/digital filter clock frequency x 3) or the minimum value of standard.  
2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either  
(1/digital filter clock frequency x 3) or the minimum value of standard.  
Rev.2.10 Jan 19, 2006 Page 229 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
VCC = 5V  
tc(CNTR0)  
tWH(CNTR0)  
CNTR0 Input  
tWL(CNTR0)  
tc(TCIN)  
tWH(TCIN)  
TCIN Input  
tWL(TCIN)  
tc(XIN)  
tWH(XIN)  
XIN Input  
tWL(XIN)  
tc(CK)  
tW(CKH)  
CLKi  
tW(CKL)  
th(C-Q)  
TxDi  
RxDi  
th(C-D)  
td(C-Q)  
tsu(D-C)  
tW(INL)  
INTi Input  
tW(INH)  
Figure 19.7  
Timing Diagram When VCC = 5V  
Rev.2.10 Jan 19, 2006 Page 230 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.20 Electrical Characteristics (3) [VCC = 3V]  
Standard  
Unit  
Symbol  
VOH  
Parameter  
Condition  
Min.  
Typ.  
Max.  
VCC  
VCC  
Output “H” Voltage Except XOUT  
XOUT  
IOH = -1mA  
VCC 0.5  
VCC 0.5  
V
V
Drive capacity  
HIGH  
IOH = -0.1mA  
Drive capacity  
LOW  
IOH = -50µA  
VCC 0.5  
VCC  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
V
V
V
V
V
V
V
VOL  
Output “L” Voltage Except P1_0 to P1_3, IOL = 1mA  
XOUT  
P1_0 to P1_3  
Drive capacity  
HIGH  
IOL = 2mA  
IOL = 1mA  
IOL = 0.1mA  
IOL = 50µA  
Drive capacity  
LOW  
XOUT  
Drive capacity  
HIGH  
Drive capacity  
LOW  
VT+-VT-  
Hysteresis  
0.2  
INT0, INT1, INT3,  
KI0, KI1, KI2, KI3,  
CNTR0, CNTR1,  
TCIN, RXD0, SSO  
0.2  
1.8  
V
RESET  
IIH  
IIL  
Input “H” Current  
Input “L” Current  
VI = 3V  
VI = 0V  
VI = 0V  
4.0  
-4.0  
500  
µA  
µA  
RPULLUP Pull-Up Resistance  
66  
160  
3.0  
kΩ  
MΩ  
RfXIN  
Feedback  
XIN  
Resistance  
fRING-S  
VRAM  
Low-Speed On-Chip Oscillator Frequency  
RAM Hold Voltage  
40  
125  
250  
kHz  
V
During stop mode  
2.0  
NOTES:  
1. VCC = AVCC = 2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz, unless otherwise specified.  
Rev.2.10 Jan 19, 2006 Page 231 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Table 19.21 Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85  
°C, unless otherwise specified.)  
Standard  
Unit  
Symbol  
ICC  
Parameter  
Condition  
Min.  
Typ.  
8
Max.  
13  
Power Supply  
Current  
High-Speed  
Mode  
XIN = 20MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
(VCC=2.7 to 3.3V)  
In single-chip mode,  
the output pins are  
open and other pins  
are VSS  
XIN = 16MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
7
5
12  
XIN = 10MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
No division  
Medium-  
XIN = 20MHz (square wave)  
3
Speed Mode High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
XIN = 16MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
2.5  
1.6  
3.5  
1.5  
420  
37  
XIN = 10MHz (square wave)  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
High-Speed  
On-Chip  
Oscillator  
Mode  
Main clock off  
7.5  
High-speed on-chip oscillator on=8MHz  
Low-speed on-chip oscillator on=125kHz  
No division  
Main clock off  
High-speed on-chip oscillator on=8MHz  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
Low-Speed  
On-Chip  
Oscillator  
Mode  
Main clock off  
800  
74  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
Divide-by-8  
Wait Mode  
Wait Mode  
Stop Mode  
Main clock off  
µA  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
While a WAIT instruction is executed  
Peripheral clock operation  
VCA26 = VCA27 = 0  
Main clock off  
35  
70  
µA  
µA  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator on=125kHz  
While a WAIT instruction is executed  
Peripheral clock off  
VCA26 = VCA27 = 0  
Main clock off, Topr = 25 °C  
High-speed on-chip oscillator off  
Low-speed on-chip oscillator off  
CM10 = 1  
0.7  
3.0  
Peripheral clock off  
VCA26 = VCA27 = 0  
Rev.2.10 Jan 19, 2006 Page 232 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
Timing requirements (Unless otherwise specified: VCC = 3V, VSS = 0V at Topr = 25 °C) [VCC = 3V]  
Table 19.22 XIN Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
tc(XIN)  
XIN Input Cycle Time  
XIN Input “H” Width  
XIN Input “L” Width  
ns  
ns  
ns  
tWH(XIN)  
tWL(XIN)  
40  
Table 19.23 CNTR0 Input, CNTR1 Input, INT1 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
120  
120  
Max.  
tc(CNTR0)  
CNTR0 Input Cycle Time  
CNTR0 Input “H” Width  
CNTR0 Input “L” Width  
ns  
ns  
ns  
tWH(CNTR0)  
tWL(CNTR0)  
Table 19.24 TCIN Input, INT3 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
1,200(1)  
600(2)  
600(2)  
Max.  
tc(TCIN)  
TCIN Input Cycle Time  
TCIN Input “H” Width  
TCIN Input “L” Width  
ns  
ns  
ns  
tWH(TCIN)  
tWL(TCIN)  
NOTES:  
1. When using the Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.  
2. When using the Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.  
Table 19.25 Serial Interface  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
tc(CK)  
CLKi Input Cycle Time  
CLKi Input “H” Width  
CLKi Input “L” Width  
TXDi Output Delay Time  
TXDi Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tW(CKH)  
tW(CKL)  
td(C-Q)  
th(C-Q)  
tsu(D-C)  
th(C-D)  
80  
0
RXDi Input Setup Time  
RCDi Input Hold Time  
70  
90  
Table 19.26 External Interrupt INT0 Input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
380(1)  
380(2)  
tW(INH)  
ns  
ns  
INT0 Input “H” Width  
INT0 Input “L” Width  
tW(INL)  
NOTES:  
1. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input HIGH width to the greater value, either  
(1/digital filter clock frequency x 3) or the minimum value of standard.  
2. When selecting the digital filter by the INT0 input filter select bit, use the INT0 input LOW width to the greater value, either  
(1/digital filter clock frequency x 3) or the minimum value of standard.  
Rev.2.10 Jan 19, 2006 Page 233 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
19. Electrical Characteristics  
VCC = 3V  
tc(CNTR0)  
tWH(CNTR0)  
CNTR0 Input  
tWL(CNTR0)  
tc(TCIN)  
tWH(TCIN)  
TCIN Input  
tWL(TCIN)  
tc(XIN)  
tWH(XIN)  
XIN Input  
tWL(XIN)  
tc(CK)  
tW(CKH)  
CLK  
i
tW(CKL)  
th(C-Q)  
TxD  
i
td(C-Q)  
tsu(D-C)  
th(C-D)  
RxD  
i
tW(INL)  
INTi Input  
tW(INH)  
Figure 19.8  
Timing Diagram When VCC = 3V  
Rev.2.10 Jan 19, 2006 Page 234 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20. Precautions  
20.1 Stop Mode and Wait Mode  
20.1.1 Stop Mode  
When entering stop mode, set the FMR01 bit to “0” (CPU rewrite mode disabled) and the CM10 bit to  
“1” (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit  
in the CM1 register to “1” (stop mode) and the program stops. Insert at least 4 NOP instructions after  
inserting the JMP.B instruction immediately after the instruction which sets the CM10 bit to “1”.  
Use the next program to enter stop mode.  
Program to enter stop mode  
BCLR  
BSET  
BSET  
1,FMR0  
0,PRCR  
0,CM1  
; CPU rewrite mode disabled  
; Protect disabled  
; Stop mode  
JMP.B  
LABEL_001  
LABEL_001 :  
NOP  
NOP  
NOP  
NOP  
20.1.2 Wait Mode  
When entering wait mode, set the FMR01 bit to “0” (CPU rewrite mode disabled) and execute the  
WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program  
stops. Insert at least 4 NOP instructions after the WAIT instruction.  
Also, the value in the specific internal RAM area may be rewritten when exiting wait mode if writing to  
the internal RAM area before executing the WAIT instruction and entering wait mode. The area for a  
maximum of 3 bytes is rewritten from the following address of the internal RAM in which the writing is  
performed before the WAIT instruction. The rewritten value is the same value as the one which was  
written before the WAIT instruction. If this causes a problem, avoid by inserting the JMP.B instruction  
between the writing instruction to the internal RAM area and WAIT instruction as shown in the  
following program example.  
Example to execute the WAIT instruction  
Program Example  
MOV.B  
...  
JMP.B  
LABEL _001 :  
FSET  
#055h,0601h  
LABEL_001  
; Write to internal RAM area  
I
; Enable interrupt  
BCLR  
WAIT  
1,FMR0  
; CPU rewrite mode disabled  
; Wait mode  
NOP  
NOP  
NOP  
NOP  
When accessing any area other than the internal RAM area between the writing instruction to the  
internal RAM area and execution of the WAIT instruction, this situation will not occur.  
Rev.2.10 Jan 19, 2006 Page 235 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.2 Interrupts  
20.2.1 Reading Address 00000h  
Do not read the address 00000h by a program. When a maskable interrupt request is acknowledged,  
the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the  
interrupt sequence. At this time, the acknowledged interrupt IR bit is set to “0”.  
If the address 00000h is read in a program, the IR bit for the interrupt which has the highest priority  
among the enabled interrupts is set to “0”. This may cause a problem that the interrupt is canceled, or  
an unexpected interrupt is generated.  
20.2.2 SP Setting  
Set any value in the SP before an interrupt is acknowledged. The SP is set to “0000h” after reset.  
Therefore, if an interrupt is acknowledged before setting any value in the SP, the program may run  
out of control.  
20.2.3 External Interrupt and Key Input Interrupt  
Either an “L” level or an “H” level of at least 250ns width is necessary for the signal input to the INT0  
to INT3 pins and KI0 to KI3 pins regardless of the CPU clock.s  
20.2.4 Watchdog Timer Interrupt  
Reset the watchdog timer after a watchdog timer interrupt is generated.  
Rev.2.10 Jan 19, 2006 Page 236 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.2.5 Changing Interrupt Factor  
The IR bit in the interrupt control register may be set to “1” (interrupt requested) when the interrupt  
factor changes. When using an interrupt, set the IR bit to “0” (no interrupt requested) after changing  
the interrupt factor.  
In addition, the changes of interrupt factors include all factors that change the interrupt factors  
assigned to individual software interrupt numbers, polarities, and timing. Therefore, when a mode  
change of the peripheral functions involves interrupt factors, edge polarities, and timing, Set the IR bit  
to “0” (no interrupt requested) after the change. Refer to each peripheral function for the interrupts  
caused by the peripheral functions.  
Figure 20.1 shows an Example of Procedure for Changing Interrupt Factor.  
Interrupt Factor Change  
(2, 3)  
Disable Interrupt  
Change Interrupt Factor (including mode  
of peripheral functions)  
Set the IR bit to "0" (interrupt not requested) using  
(3)  
the MOV instruction  
(2, 3)  
Enable Interrupt  
Change Completed  
IR Bit: The interrupt control register bit of an  
interrupt whose factor is changed.  
NOTES :  
1. Execute the above setting individually. Do not execute  
2 or more settings at once (by one instruction).  
2. Use the I flag for the INTi (i=0 to 3) interupt.  
To prevent interrupt requests from being generated when  
using peripheral function interupts other than the INTi  
interrupt, disable the peripheral function before changing  
the interrupt factor. In this case, use the I flag when all  
maskable interrupts can be disabled. When all maskable  
interrupts cannot be disabled, use the ILVL0 to ILVL2 bits of  
interrupt whose factor is changed.  
3. Refer to the 21.2.6 Changing Interrupt Control Register  
for the instructions to be used and their usage notes.  
Figure 20.1  
Example of Procedure for Changing Interrupt Factor  
Rev.2.10 Jan 19, 2006 Page 237 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.2.6 Changing Interrupt Control Register  
(a) Each interrupt control register can only be changed while interrupt requests corresponding to  
that register are not generated. If interrupt requests may be generated, disable the interrupts  
before changing the interrupt control register.  
(b) When changing any interrupt control register after disabling interrupts, be careful with the  
instructions to be used.  
When changing any bit other than IR bit  
If an interrupt request corresponding to that register is generated while executing the  
instruction, the IR bit may not be set to “1” (interrupt requested), and the interrupt request may  
be ignored. If this causes a problem, use the following instructions to change the register.  
Instructions to use: AND, OR, BCLR, BSET  
When changing IR bit  
If the IR bit is set to “0” (interrupt not requested), it may not be set to “0” depending on the  
instruction to be used. Therefore, use the MOV instruction to set the IR bit to “0”.  
(c) When disabling interrupts using the I flag, set the I flag according to the following sample  
programs. Refer to (b) for the change of interrupt control registers in the sample programs.  
Sample programs 1 to 3 are preventing the I flag from being set to “1” (interrupt enables) before  
changing the interrupt control register for reasons of the internal bus or the instruction queue buffer.  
Example 1: Use NOP instructions to prevent I flag being set to “1” before interrupt control  
register is changed  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts  
AND.B #00H,0056H  
NOP  
NOP  
; Set TXIC register to “00h”  
;
FSET  
I
; Enable interrupts  
Example 2: Use dummy read to have FSET instruction wait  
INT_SWITCH2:  
FCLR  
AND.B #00H,0056H  
MOV.W MEM,R0  
I
; Disable interrupts  
; Set TXIC register to “00h”  
; Dummy read  
FSET  
I
; Enable interrupts  
Example 3: Use POPC instruction to change I flag  
INT_SWITCH3:  
PUSHC FLG  
FCLR  
I
; Disable interrupts  
AND.B #00H,0056H  
POPC FLG  
; Set TXIC register to “00h”  
; Enable interrupts  
Rev.2.10 Jan 19, 2006 Page 238 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.3 Clock Generation Circuit  
20.3.1 Oscillation Stop Detection Function  
Since the oscillation stop detection function cannot be used if the main clock frequency is below  
2MHz, set the OCD1 to OCD0 bits to “00b” (oscillation stop detection function disabled).  
20.3.2 Oscillation Circuit Constants  
Ask the maker of the oscillator to specify the best oscillation circuit constants on your system.  
Rev.2.10 Jan 19, 2006 Page 239 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.4 Timers  
20.4.1 Timers X and Z  
Timers X and Z stop counting after reset. Set the value to these timers and prescalers before the  
count starts.  
Even if the prescalers and timers are read out in 16-bit units, these registers are read by 1 byte in  
the microcomputer. Consequently, the timer value may be updated during the period these two  
registers are being read.  
20.4.2 Timer X  
Do not rewrite the TXMOD0 to TXMOD1 bits, the TXMOD2 and TXS bits simultaneously.  
In pulse period measurement mode, the TXEDG bit and TXUND bit in the TXMR register can be  
set to “0” by writing “0” to these bits by a program. However, these bits remain unchanged when  
“1” is written. When using the READ-MODIFY-WRITE instruction for the TXMR register, the  
TXEDG or TXUND bit may be set to “0” although these bits are set to while the instruction is  
executed. At the time, write “1” to the TXEDG or TXUND bit which is not supposed to be set to “0”  
with the MOV instruction.  
When changing to pulse period measurement mode from other mode, the contents of the TXEDG  
and TXUND bits are indeterminate. Write “0” to the TXEDG and TXUND bits before the count  
starts.  
The TXEDG bit may be set to “1” by the prescaler X underflow which is generated for the first  
time since the count starts.  
When using the pulse period measurement mode, leave two periods or more of the prescaler X  
immediately after count starts, and set the TXEDG bit to “0”.  
The TXS bit in the TXMR register has a function to instruct Timer X to start or stop counting, and  
a function to indicate the count starts or stops.  
“0” (count stops) can be read until the following count source is applied after “1” (count starts) is  
written to the TXS bit while the count is being stopped. If the following count source is applied, “1”  
can be read from the TXS bit. Do not access registers associated with Timer X (TXMR, PREX,  
TX, TCSS, TXIC registers) except for the TXS bit until “1” can be read from the TXS bit. The  
count starts at the following count source after the TXS bit is set to “1”.  
Also, when writing “0” (count stops) to the TXS bit during the count, Timer X stops counting at the  
following count source.  
“1” (count starts) can be read by reading the TXS bit until the count stops after writing “0” to the  
TXS bit. Do not access registers associated with Timer X other than the TXS bit until “0” can be  
read by the TXS bit after writing “0” to the TXS bit.  
Rev.2.10 Jan 19, 2006 Page 240 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.4.3 Timer Z  
Do not rewrite the TZMOD0 to TZMOD1 bits and the TZS bit simultaneously.  
In programmable one-shot generation mode and programmable wait one-shot generation mode,  
when setting the TZS bit in the TZMR register to “0” (stops counting) or setting the TZOS bit in  
the TZOC register to “0” (stops one-shot), the timer reloads the value of reload register and stops.  
Therefore, read the timer count value in programmable one-shot generation mode and  
programmable wait one-shot generation mode before the timer stops.  
The TZS bit in the TZMR register has a function to instruct Timer Z to start or stop counting, and  
a function to indicate the count starts or stops.  
“0” (count stops) can be read until the following count source is applied after “1” (count starts) is  
written to the TZS bit while the count is being stopped. If the following count source is applied, “1”  
can be read from the TZS bit. Do not access registers associated with Timer Z (TZMR, PREZ,  
TZSC, TZPR, TZOC, PUM, TCSC, TZIC registers) except for the TZS bit until “1” can be read  
from the TZS bit. The count starts at the following count source after the TZS bit is set to “1”.  
Also, when writing “0” (count stops) to the TZS bit during the count, Timer Z stops counting at the  
following count source.  
“1” (count starts) can be read by reading the TZS bit until the count stops after writing “0” to the  
TZS bit. Do not access registers associated with Timer Z other than the TZS bit until “0” can be  
read by the TZS bit after writing “0” to the TZS bit.  
20.4.4 Timer C  
Access the TC, TM0 and TM1 registers in 16-bit units.  
The TC register can be read in 16-bit units. This prevents the timer value from being updated  
between the low-order byte and high-order byte are being read.  
Example (when Timer C is read):  
MOV.W  
0090H,R0  
; Read out timer C  
Rev.2.10 Jan 19, 2006 Page 241 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.5 Serial Interface  
When reading data from the U0RB (i = 0, 1) register even in the clock asynchronous serial I/O mode  
or in the clock synchronous serial I/O mode. Ensure to read data in 16-bit unit. When the high-order  
byte of the U0RB register is read, the PER and FER bits in the U0RB register and the RI bit in the  
U0C1 register are set to “0”.  
Example (when reading receive buffer register):  
MOV.W  
00A6H,R0  
; Read the U0RB register  
When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer  
data length, write data high-order byte first, then low-order byte in 8-bit units.  
Example (when reading transmit buffer register):  
MOV.B  
MOV.B  
#XXH,00A3H ; Write the high-order byte of U0TB register  
#XXH,00A2H ; Write the low-order byte of U0TB register  
Rev.2.10 Jan 19, 2006 Page 242 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.6 Clock Synchronous Serial I/O (SSU) with Chip Select  
20.6.1 Access Registers Associated with SSU  
After the conditions of “3 instructions or more after writing to the registers associated with SSU  
(00B8h to 00BFh)“ or “4 cycles or more after writing to them” are met, read those registers.  
An example to wait for 3 instructions or more  
Program Example  
MOV.B  
#00h,00BBh  
; Set the SSER register to “00h”.  
NOP  
NOP  
NOP  
MOV.B  
00BBh,R0L  
An example to wait for 4 cycles or more  
Program Example  
BCLR  
4,00BBh  
NEXT  
: Disable transmit  
: Enable receive  
JMP.B  
NEXT:  
BEST  
3,00BBh  
Rev.2.10 Jan 19, 2006 Page 243 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.7 A/D Converter  
Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the  
SMP bit in the ADCON2 register when the A/D conversion stops (before a trigger occurs).  
When the VCUT bit in the ADCON1 register is changed from “0” (VREF not connected) to “1”  
(VREF connected), wait for at least 1µs or longer before the A/D conversion starts.  
When changing A/D operating mode, select an analog input pin again.  
When using in one-shot mode. Ensure that the A/D conversion is completed and read the AD  
register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can determine  
whether the A/D conversion is completed.  
When using In repeat mode, use the undivided main clock for the CPU clock.  
If setting the ADST bit in the ADCON0 register to “0” (A/D conversion stops) by a program and the A/  
D conversion is forcibly terminated during the A/D conversion operation, the conversion result of the  
A/D converter will be indeterminate. If the ADST bit is set to “0” by a program, do not use the value of  
AD register.  
Connect 0.1µF capacitor between the AVCC/VREF pin and AVSS pin.  
Rev.2.10 Jan 19, 2006 Page 244 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.8 Flash Memory Version  
20.8.1 CPU Rewrite Mode  
20.8.1.1 Operating Speed  
Before entering CPU rewrite mode (EW0 mode), select 5MHz or below for the CPU clock using the  
CM06 bit in the CM0 register and the CM16 to CM17 bits in the CM1 register. This usage note is not  
needed for EW1 mode.  
20.8.1.2 Instructions Inhibited Against Use  
The following instructions cannot be used in EW0 mode because the flash memory internal data is  
referenced: UND, INTO, and BRK instructions.  
20.8.1.3 Interrupts  
Table 20.1 lists the Interrupt in EW0 Mode and Table 20.2 lists the Interrupt in EW1 Mode.  
Table 20.1  
Interrupt in EW0 Mode  
When maskable  
When watchdog timer, oscillation stop detection and  
voltage monitor 2 interrupt request are acknowledged  
Mode  
Status  
interrupt request is  
acknowledged  
EW0 During automatic Any interrupt can be Once an interrupt request is acknowledged, the auto-  
erasing  
used by allocating a programming or auto-erasing is forcibly stopped  
vector to RAM  
immediately and resets the flash memory. An interrupt  
process starts after the fixed period and the flash  
memory restarts. Since the block during the auto-erasing  
or the address during the auto-programming is forcibly  
stopped, the normal value may not be read. Execute the  
auto-erasing again and ensure the auto-erasing is  
completed normally.  
Automatic writing  
Since the watchdog timer does not stop during the  
command operation, the interrupt request may be  
generated. Reset the watchdog timer regularly.  
NOTES:  
1. Do not use the address match interrupt while the command is executed because the vector of the  
address match interrupt is allocated on ROM.  
2. Do not use the non-maskable interrupt while Block 0 is automatically erased because the fixed  
vector is allocated Block 0.  
Rev.2.10 Jan 19, 2006 Page 245 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
Table 20.2  
Interrupt in EW1 Mode  
When watchdog timer, oscillation stop  
detection and voltage monitor 2 interrupt  
request are acknowledged  
Mod  
e
When maskable interrupt request  
is acknowledged  
Status  
EW1 During automatic The auto-erasing is suspended  
erasing (erase- after td(SR-ES) and the interrupt  
suspend function process is executed. The auto-  
is enabled)  
Once an interrupt request is acknowledged,  
the auto-programming or auto-erasing is  
forcibly stopped immediately and resets the  
erasing can be restarted by setting flash memory. An interrupt process starts  
the FMR41 bit in the FMR4 after the fixed period and the flash memory  
register to “0”(erase restart) after restarts. Since the block during the auto-  
the interrupt process completes.  
During automatic The auto-erasing has a priority  
erasing (erase- and the interrupt request  
suspend function acknowledgement is waited. The  
erasing or the address during the auto-  
programming is forcibly stopped, the  
normal value may not be read. Execute the  
auto-erasing again and ensure the auto-  
erasing is completed normally.  
Since the watchdog timer does not stop  
during the command operation, the  
interrupt request may be generated. Reset  
the watchdog timer regularly using the  
erase-suspend function.  
is disabled)  
interrupt process is executed after  
the auto-erasing completes. Refer  
to 20.8.1.9 Interrupt Request  
Generation during Auto-erase  
Operation in EW1 Mode.  
Auto  
programming  
The auto-programming has a  
priority and the interrupt request  
acknowledgement is waited. The  
interrupt process is executed after  
the auto-programming completes.  
NOTES:  
1. Do not use the address match interrupt while the command is executed because the vector of the  
address match interrupt is allocated on ROM.  
2. Do not use the non-maskable interrupt while Block 0 is automatically erased because the fixed  
vector is allocated Block 0.  
Rev.2.10 Jan 19, 2006 Page 246 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.8.1.4 How to Access  
Write “0” to the corresponding bits before writing “1” when setting the FMR01, FMR02, or FMR11 bit  
to “1”. Do not generate an interrupt between writing “0” and “1”.  
20.8.1.5 Rewriting User ROM Area  
In EW0 Mode, if the power supply voltage drops while rewriting any block in which the rewrite control  
program is stored, the flash memory may not be able to be rewritten because the rewrite control  
program cannot be rewritten correctly. In this case, use standard serial I/O mode.  
20.8.1.6 Program  
Do not write additions to the already programmed address.  
20.8.1.7 Reset Flash Memory  
When setting the FMSTP bit in the FMR0 register to “1” (flash memory stops) during erase-suspend  
in EW1 mode, a CPU stops and cannot return. Do not set the FMSTP bit to “1”.  
20.8.1.8 Entering Stop Mode or Wait Mode  
Do not enter stop mode or wait mode during erase-suspend.  
20.8.1.9 Interrupt Request Generation during Auto-erase Operation in EW1  
Mode  
When an interrupt request is generated during erasing with FMR01 = 1 (CPU rewrite mode enabled)  
in FMR0 register, FMR11 = 1 (EW1 mode) in FMR1 register and FMR40 = 0 (disable erase suspend  
function) in FMR4 register, the CPU may not operate properly.  
Select any of the following 3 processes as a software countermeasure:  
(a) Disable an interrupt by setting the priority level of all maskable interrupts to level 0. Note that  
disabling the interrupts by the I flag will not be in the software countermeasure  
(b) Set the FMR40 = 1 (enable erase suspend function) and the I flag = 1 (enable interrupt) when  
using the FMR11 = 1 (EW1 mode)  
(c) Use EW0 mode.  
Rev.2.10 Jan 19, 2006 Page 247 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
20.Precautions  
20.9 Noise  
20.9.1 Insert a bypass capacitor between VCC and VSS pins as the  
countermeasures against noise and latch-up  
Connect the bypass capacitor (at least 0.1µF) using the shortest and thickest as possible.  
20.9.2 Countermeasures against Noise Error of Port Control Registers  
During severe noise testing, mainly power supply system noise, and introduction of external noise,  
the data of port related registers may be changed.  
As a firmware countermeasure, it is recommended to periodically reset the port registers, port  
direction registers and pull-up control registers. However, examine fully before introducing the reset  
routine as conflicts may be created between this reset routine and interrupt routines.  
Rev.2.10 Jan 19, 2006 Page 248 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
21. Precaution for On-chip Debugger  
21. Precaution for On-chip Debugger  
When using the on-chip debugger to develop the R8C/14 and R8C/15 groups program and debug, pay the  
following attention.  
(1) Do not use from OC000h address to OC7FFh because the on-chip debugger uses these addresses.  
(2) Do not set the address match interrupt (the registers of AIER, RMAD0, RMAD1 and the fixed vector  
tables) in a user system.  
(3) Do not use the BRK instruction in a user system.  
(4) The stack pointer with up to 8 bytes is used during the user program break. Therefore, save space  
of 8 bytes for the stack area.  
Connecting and using the on-chip debugger has some peculiar restrictions. Refer to each on-chip debugger  
manual for on-chip debugger details.  
Rev.2.10 Jan 19, 2006 Page 249 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Appendix 1. Package Dimensions  
Appendix 1. Package Dimensions  
JEITA Package Code  
RENESAS Code  
PLSP0020JB-A  
Previous Code  
20P2F-A  
MASS[Typ.]  
0.1g  
P-LSSOP20-4.4x6.5-0.65  
11  
20  
NOTE)  
F
1. DIMENSIONS "*1" AND "*2"  
DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION "*3" DOES NOT  
INCLUDE TRIM OFFSET.  
1
10  
Index mark  
A2  
A1  
Dimension in Millimeters  
Reference  
Symbol  
*2  
D
Min Nom Max  
D
E
6.4 6.5 6.6  
4.3 4.4 4.5  
1.15  
A2  
A
1.45  
0.1 0.2  
0
A1  
bp  
c
*3  
bp  
e
0.17 0.22 0.32  
Detail F  
y
0.2  
10°  
0.13 0.15  
0°  
HE  
e
6.2 6.4 6.6  
0.53 0.65 0.77  
0.10  
y
L
0.3 0.5 0.7  
Rev.2.10 Jan 19, 2006 Page 250 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group Appendix 2. Connecting Example between Serial Writer and On-Chip Debugging  
Appendix 2. Connecting Example between Serial Writer and On-Chip  
Debugging Emulator  
Appendix Figure 2.1 shows the Connecting Example with M16C Flash Starter (M3A-0806) and Appendix  
Figure 2.2 shows the Connecting Example with Emulator E8 (R0E000080KCE00).  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
(2)  
TXD  
(3)  
3
RESET  
Connect Oscillation  
Circuit(1)  
VSS  
4
5
VCC  
6
7
8
MODE  
9
10  
10  
TXD  
7
1
VSS  
VCC  
RXD  
4
M16C Flash Starter  
(M3A-0806)  
(2)  
RXD  
NOTES:  
1. Need to connect an oscillation circuit, even when operating with the on-chip oscillator clock.  
2. For development tools only.  
3. Connect the external reset circuit.  
Appendix Figure 2.1  
Connecting Example with M16C Flash Starter (M3A-0806)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
Connect Oscillation  
Circuit(1)  
4
User Reset Signal  
5
VSS  
VCC  
6
7
8
9
4.7kΩ  
13  
14  
12  
10  
8
10  
RESET  
MODE  
7
MODE  
VCC  
6
4
2
VSS  
NOTES:  
Emulator E8  
(R0E000080KCE00)  
1. No need to connect an oscillation circuit when  
operating with the on-chip oscillator clock.  
Appendix Figure 2.2  
Connecting Example with Emulator E8 (R0E000080KCE00)  
Rev.2.10 Jan 19, 2006 Page 251 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Appendix 3. Example of Oscillation Evaluation Circuit  
Appendix 3. Example of Oscillation Evaluation Circuit  
Appendix Figure 3.1 shows the Example of Oscillation Evaluation Circuit.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
RESET  
VSS  
4
Connect  
Oscillation  
Circuit  
5
VCC  
6
7
8
9
10  
NOTES:  
1. Set a program before evaluating.  
Appendix Figure 3.1  
Example of Oscillation Evaluation Circuit  
Rev.2.10 Jan 19, 2006 Page 252 of 253  
REJ09B0164-0210  
R8C/14 Group, R8C/15 Group  
Register Index  
Register Index  
A
P
U
AD ..........................................171 P1 ..........................................184 U0BRG ...................................127  
ADCON0 .................................170 P3 ..........................................184 U0C0 ......................................128  
ADCON1 .................................170 P4 ..........................................184 U0C1 ......................................129  
ADCON2 .................................171 PD1 ........................................184 U0MR .....................................128  
ADIC ........................................61 PD3 ........................................184 U0RB ......................................127  
AIER .........................................77 PD4 ........................................184 U0TB ......................................127  
PM0 ..........................................35 UCON .....................................129  
PM1 ..........................................36  
PRCR .......................................55  
C
V
PREX .......................................86  
CM0 .........................................40  
PREZ ......................................100  
CM1 .........................................41  
CMP0IC ....................................61  
CMP1IC ....................................61  
CSPR .......................................80  
VCA1 ........................................28  
VCA2 ........................................28  
VW1C .......................................29  
VW2C .......................................30  
PUM .......................................101  
PUR0 ......................................185  
PUR1 ......................................185  
R
D
W
RMAD0 .....................................77  
RMAD1 .....................................77  
DRR .......................................185  
WDC .........................................79  
WDTR .......................................80  
WDTS .......................................80  
F
S
FMR0 .....................................200  
FMR1 .....................................201  
FMR4 .....................................201  
S0RIC .......................................61  
S0TIC .......................................61  
SSCRH ...................................142  
SSCRL ...................................143  
SSER .....................................145  
SSMR .....................................144  
H
HRA0 .......................................43 SSMR2 ...................................147  
HRA1 .......................................44 SSRDR ...................................148  
HRA2 .......................................44 SSSR .....................................146  
SSTDR ...................................148  
SSUAIC ....................................61  
I
T
INT0F .......................................69  
INT0IC ......................................62  
INT1IC ......................................61 TC ..........................................117  
INT3IC ......................................61 TCC0 ......................................118  
INTEN ......................................69 TCC1 ......................................119  
TCIC .........................................61  
TCOUT ...................................120  
TCSS ................................86, 102  
K
TM0 ........................................117  
TM1 ........................................117  
TX ............................................86  
KIEN .........................................75  
KUPIC ......................................61  
TXIC .........................................61  
TXMR .......................................85  
TZIC .........................................61  
O
OCD .........................................42 TZMR .......................................99  
OFS .................................79, 196 TZOC .....................................101  
TZPR ......................................100  
TZSC ......................................100  
Rev.2.10 Jan 19, 2006 Page 253 of 253  
REJ09B0164-0210  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
Date  
Page  
0.10  
0.20  
0.30  
May 17, 2004  
Jul 12, 2004  
First Edition issued  
Rev.0.20 issued  
Aug 06, 2004 all pages Words standardized (on-chip oscillator, serial interface, SSU)  
2
3
9
Table 1.1 revised  
Table 1.2 revised  
Table 1.5 revised  
Table 1.6 added  
10  
14,15 “Address Break” in Figures 3.1 and 3.2 ; notes added  
16  
18  
19  
Table 4.1, HRA2 Register at 0022h added ; NOTE2 to 6 revised  
Table 4.3 the value after reset to FFh at 009Ch to 009Fh revised  
Tabel 4.4, the value after reset to FFh at 009Ch to 009Fh revised ;  
NOTES added  
20-25 Compositions and contents of “5. Reset” modified  
26-35 Compositions and contents of “6. Voltage Detection Circuit” modified  
37  
40  
41  
42  
44  
47  
48  
Figure 7.2, function of b0 revised  
Figure 9.1 revised  
Figure 9.2, “System” at CM06 bit added  
Figure 9.3, “System” at CM16 and CM17 bits added  
Figure 9.5 revised  
9.2.2, “The oscillation starts...HRA2 registers” added  
9.3.1 added  
9.3.3 “The clock...divided-by-i”added  
Table 9.4 revised  
11.1.3.4, “Address Break Interrup” added ; the referred distination to “20.  
On-Chip Debugger” revised  
52  
60  
61  
62  
68  
72  
74  
75  
Table 11.1, some referred distinations revised  
Table 11.2, some referred distinations revised  
Figures 11.7 and 11.8 added  
11.2.1, “The INT0 pin...timer Z” added  
11.2.3, “The INT0 pin...CNTR01 pin” added  
11.2.4, “The INT3 pin is used with the TCIN pin” added  
80-84 Compositions and contents of “12. Watchdog Timer” modified  
87  
89  
90  
91  
92  
93  
94  
95  
97  
98  
99  
100  
105  
107  
Figure 13.2 revised  
Table 13.2 revised  
Table 13.3 revised  
Figure 13.5 revised  
Table 13.4 revised  
Figure 13.6 revised  
Table 13.5 revised  
Figure 13.7 revised  
Table 13.6 revised  
Figure 13.9 revised  
Figure 13.10 revised  
13.2 revised  
Table 13.7 revised  
Table 13.8 revised  
C - 1  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
0.30  
Date  
Page  
Aug 06, 2004  
110  
112  
114  
118  
119  
121  
123  
125  
130  
131  
136  
138  
140  
141  
143  
144  
146  
148  
152  
154  
159  
162  
164  
165  
167  
171  
174  
175  
176  
178  
179  
180  
184  
185  
186  
188  
89  
Table 13.9 revised  
Figure 13.20 revised  
Table 13.10 revised  
Figure 13.25 revised  
Figure 13.26 revised  
Figure 13.28 revised  
Table 13.11 revised  
Table 13.12 revised  
Figure 14.4 revised  
Figure 14.5 revised  
14.1.3 revised  
Table 14.5, NOTES revised  
Figure 14.10 revised ; 14.2.1 “input” added  
14.2.2 added  
Figure 15.1 revised  
Figure 15.2 revised  
Figure 15.4 revised  
Figure 15.6 revised  
Figure 15.9 revised  
15.3 revised  
Figure 15.14 revised  
15.6 revised  
15.6.2 revised  
Figure 15.18 revised  
Figure 15.19 revised  
Figure 16.2 revised  
Figure 16.4 revised  
Table 16.3 revised  
Figure 16.5 revised  
17.1.4 revised  
Figure 17.1 revised  
Figure 17.2 revised  
Figure 17.8 revised  
Table 17.1 revised  
Table 18.1 revised  
18.2 revised  
Figure 18.2, NOTES revised  
Figure 18.3 ID5 and 6 revised  
18.3.2 revised ; “After Reset” revised to “Before Shipment”  
18.4.1 and 18.4.2 revised  
18.4.2.11 and 18.4.2.12 revised  
Figure 18.5 revised  
Figure 18.6 revised  
Figure 18.9 revised  
Table 18.6 revised  
190  
191  
193  
195  
196  
198  
204  
210-223 “19. Electrical Characteristics” added  
230  
240  
21.1 “Stop Mode and Wait Mode” revised  
21.7.1.8 revised  
21.7.1.9 added  
244  
247  
“Appendix 2. Connecting Example between Serial Writer and On-Chip  
Debugging Emulator” added  
“Appendix 3. Example of Oscillation Evaluation Circuit” added  
C - 2  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
1.00  
Date  
Page  
Feb 25, 2005  
2-3  
5
6
7-8  
16  
Tables 1.1 and 1.2 revised  
Table 1.3 and figure 1.2 revised  
Table 1.4 and figure 1.3 revised  
Figures 1.4 and 1.5 revised  
Tabel 4.1, The value after reset to 000XXXXXb to 00011111b at 000Fh;  
and the value after reset to 00001000b to 0000X000b and 01001001b to  
0100X001b at 0036h revised  
Tabel 4.3, The value after reset to 0000h at 009Ch to 009Dh revised;  
NOTES2 added, and the value after reset to 00h at 00BCh revised  
Figure 5.1 revised  
18  
20  
22  
24  
5.1.1 (2) and 5.1.2 (4) revised  
5.2 revised  
Figure 5.6 revised  
25  
26  
27  
29  
30  
31  
32  
33  
34  
35  
37  
39  
40  
41  
42  
44  
51  
52  
55  
5.3 revised  
Table 6.1 revised  
Figures 6.1 and 6.2 revised  
Figure 6.4 revised  
Figure 6.5 revised  
Figure 6.6 revised  
6.1.1 revised  
Table 6.2 and figure 6.7 revised  
Table 6.3 revised  
Figure 6.8 revised  
Figure 7.2 revised  
Table 9.1 revised; NOTE2 added  
Figure 9.1 revised  
Figure 9.2 revised  
Figure 9.3 revised  
Figure 9.5 revised  
Table 9.3 revised  
Table 9.4 revised  
9.5 and 9.5.1 revised  
Table 9.5 revised  
60  
61  
68  
71  
11.1.3.5 revised  
Table 11.1 revised  
11.1.6.7 revised  
Figure 11.11 “INTEN Register” revised  
78-79 11.4 “Address Match Interrupt”, Table 11.6, 11.7 and Figure 11.19 added  
81  
83  
Figure 12.2 “WDC Register” revised  
Table 12.1 revised  
89-96 Table 13.2, 13.3, 13.4, 13.5 and 13.6 revised; “Write to Timer” revised  
104 Table 13.7 revised  
106-113 Table 13.8, 13.9 and 13.10 revised  
118  
126  
129  
130  
131  
137  
Figure 13.26 revised  
Figure 14.1 revised  
Figure 14.4 “U0C0 Register” revised  
Figure 14.5 “UCON Register” revised  
14.1 revised  
Table 14.6 revised  
C - 3  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Table 15.1 NOTE2 added  
Figure 15.4 NOTES added  
Figure 15.6 revised; The value after reset to 00h  
Figure 15.8 revised  
15.2 revised; “15.2 SS Shift Register” added and 15.2 revised to 15.5.2  
Figure 15.13 NOTE2 added  
Figure 15.14 revised  
Rev.  
1.00  
Date  
Page  
Feb 25, 2005  
141  
145  
147  
149  
152  
157  
158  
160  
162  
163  
164  
168  
169  
15.5.4 revised  
15.6 revised  
Figure 15.17 revised  
15.6.2 revised  
15.6.4 revised  
Table 16.1 revised  
171-176 Figures 16.2, 16.4 and 16.5 revised  
178  
185  
17.1, 17.2 and 17.3 revised; Tables 17.1, 17.2 and 17.3 added  
Table 17.4 revised  
Figure 17.9 added  
188-189 Figures 18.1 and 18.2 revised  
191  
192  
202  
207  
211  
212  
213  
214  
215  
18.3.2 revised  
Table 18.3 revised  
Figure 18.12 revised  
Figure 18.14 revised  
Table 19.3 revised  
Table 19.4 and 19.5 revised  
Figure 19.2, Tables 19.6 and 19.7 revised  
Tables 19.8 and 19.9 revised  
Table 19.10, 19.11 revised and Table 19.12 added  
216-218 Figures 19.4, 19.5 and 19.6 added  
219  
220  
Table 19.13 revised  
Table 19.14 revised  
221, 225 Table 19.16 and 19.23 revised: Table title ”INT2” “INT1”  
223  
224  
227  
232  
233  
235  
236  
239  
241  
242  
243  
Table 19.20 NOTE revised  
Table 19.21 revised  
20.1.1 and 20.1.2 revised  
20.4.2 revised  
20.4.3 revised  
20.6 added  
20.7 revised  
20.8.1.7 and 20.8.1.8 revised  
“20. On-chip Debugger” deleted  
Appendix Package Dimensions revised  
Appendix Figure 2.1 revised; “USB Flash Writer” deleted and “M16C  
Flash Starter” NOTE3 added  
C - 4  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
1
2
3
1. Overview; “20-pin plastic molded LSSOP or SDIP” “20-pin plastic  
molded LSSOP” revised  
Table 1.1 Performance Outline of the R8C/14 Group;  
Package:  
Table 1.2 Performance Outline of the R8C/15 Group;  
Package: “20-pin plastic molded SDIP” deleted,  
Flash Memory: (Data area) (Data flash)  
(Program area) (Program ROM) revised  
“20-pin plastic molded SDIP” deleted  
4
Figure 1.1 Block Diagram;  
“Peripheral Function” added,  
“System Clock Generation” “System Clock Generator” revised  
5, 6  
Table 1.3 Product Information of R8C/14 Group,  
Table 1.4 Product Information of R8C/15 Group; revised.  
Figure 1.2 Part Number, Memory Size and Package of R8C/14 Group,  
Figure 1.3 Part Number, Memory Size and Package of R8C/15 Group;  
Package type: “DD : PRDP0020BA-A” deleted  
8
Figure 1.5 PRDP0020BA-A Package Pin Assignment (top view) deleted  
Table 1.5 Pin Description;  
Timer C: “CMP0_0 to CMP0_3, CMP1_0 to CMP1_3” →  
“CMP0_0 to CMP0_2, CMP1_0 to CMP1_2” revised  
10  
12  
Figure 2.1 CPU Register;  
“Reserved Area” “Reserved Bit” revised  
2.8.10 Reserved Area;  
“Reserved Area” “Reserved Bit” revised  
13  
14  
15  
Figure 3.1 Memory Map of R8C/14 Group revised  
3.2 R8C/15 Group, Figure 3.2 Memory Map of R8C/15 Group revised  
Table 4.1 SFR Information(1);  
0009h:  
000Ah:  
001Eh:  
“XXXXXX00b” “00h”  
“00XXX000b” “00h”  
“XXXXX000b” “00h”  
17  
Table 4.3 SFR Information(3);  
0085h:  
0086h:  
0087h:  
008Ch:  
008Dh:  
“Prescaler Z” “Prescaler Z Register”  
“Timer Z Secondary” “Timer Z Secondary Register”  
“Timer Z Primary” “Timer Z Primary Register”  
“Prescaler X” “Prescaler X Register”  
“Timer X” “Timer X Register”  
0090h, 0091h:Timer C” “Timer C Register” revised  
20  
23  
Figure 5.3 Reset Sequence revised  
5.2 Power-On Reset Function;  
“When a capacitor is connected to ... 0.8VCC or more.” added  
29  
30  
Figure 6.5 VW1C Register revised  
Figure 6.6 VW2C Register NOTE10 added  
C - 5  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
32  
33  
37  
Table 6.2 Setting Procedure of Voltage Monitor 1 Reset Associated Bit  
revised  
Table 6.3 Setting Procedure of Voltage Monitor 2 Interrupt and Voltage  
Monitor 2 Reset Associated Bit revised  
Table 8.2 Bus Cycles for Access Space of the R8C/15 Group added,  
Table 8.3 Access Unit and Bus Operation;  
“SFR” “SFR, Data flash”,  
“ROM/RAM” “ROM (Program ROM), RAM” revised  
38  
39  
40  
42  
43  
45  
Table 9.1 Specification of Clock Generation Circuit NOTE2 deleted  
Figure 9.1 Clock Generation Circuit revised  
Figure 9.2 CM0 Register NOTE2 revised  
Figure 9.4 OCD Register NOTES 3, 4 revised  
Figure 9.5 HRA0 Register NOTE2 revised  
9.1 Main Clock;  
“After reset, ...” “During reset and after reset, ...” revised  
46  
9.2.1 Low-Speed On-Chip Oscillator Clock;  
“The application ... to accommodate the frequency range.” →  
“The application ... for the frequency change.”  
47  
48  
9.3.2 CPU Clock;  
“When changing the clock source ... the OCD2 bit.” deleted  
9.4.1 Normal Operating Mode;  
“... into three modes” “... into four modes” revised  
Table 9.2 Setting and Mode of Clock Associated Bit revised  
49  
9.4.1.1 High-Speed Mode, 9.4.1.2 Medium-Speed Mode;  
“Set the CM06 bit to “1” ... on-chip oscillator mode.” deleted  
9.4.1.3 High-Speed, Low-Speed On-Chip Oscillator Mode;  
“9.4.1.3 On-Chip Oscillator Mode” “9.4.1.3 High-Speed, Low-Speed  
On-Chip Oscillator Mode” revised,  
“Set the CM06 bit to “1” ... high-speed and medium-speed.” deleted  
52  
Figure 9.8 State Transition to Stop and Wait Modes;  
“Figure 9.8 State Transition to Stop and Wait Modes” “Figure 9.8  
State Transition of Power Control” revised  
Figure 9.9 State Transition in Normal Operating Mode deleted  
53  
54  
9.5.1 How to Use Oscillation Stop Detection Function;  
This function cannot ... is 2 MHz or below. ...” →  
This function cannot ... is below 2 MHz. ...” revised  
Figure 9.9 Procedure of Switching Clock Source From Low-Speed On-  
Chip Oscillator to Main Clock revised  
55  
68  
69  
Figure 10.1 PRCR Register “00XXX000b” ”00h” revised  
Figure 11.10 Judgement Circuit of Interrupts Priority Level NOTE1 deleted  
Figure 11.11 INTEN and INT0F Registers;  
INT0F Register “XXXXX000b” ”00h” revised  
C - 6  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
76  
11.4 Address Match Interrupt;  
“... , do not use an address match interrupt in a user system.” →  
“... , do not set an address match interrupt (the registers of AIER,  
RMAD0, RMAD1 and the fixed vector tables) in a user system.”  
revised  
77  
79  
Figure 11.19 AIER, RMAD0 to RMAD1 Registers;  
AIER Register revised  
Figure 12.2 OFS and WDC Registers;  
• Option Function Select Register NOTE1 revised, NOTE2 added  
• Watchdog Timer Control Register NOTE1 deleted  
83  
Table 13.1 Functional Comparison of Timers;  
DecrementIncrement”  
84  
87  
Figure 13.1 Block Diagram of Timer X revised  
Table 13.2 Specification of Timer Mode;  
• “INT1/CNTR0 Signal Pin Function”  
Pin Function” revised  
“INT10/CNTR00, INT11/CNTR01  
• “When writing ... registers (the data is transferred to the counter when  
the following count source is input).”  
When writing ... registers at the following count source input and the  
data is transferred to the counter at the second count source input and  
the count re-starts at the third count source input.” revised  
88  
Table 13.3 Specification of Pulse Output Mode;  
• “INT1/CNTR0 Signal Pin Function” “INT10/CNTR00 Pin Function”  
revised  
• “When writing ... registers (the data is transferred to the counter when  
the following count source is input).”  
When writing ... registers at the following count source input and the  
data is transferred to the counter at the second count source input and  
the count re-starts at the third count source input.” revised  
• NOTE1 added  
90, 92, 95 Table 13.4 Specification of Event Counter Mode,  
Table 13.5 Specification of Pulse Width Measurement Mode,  
Table 13.6 Specification of Pulse Period Measurement Mode;  
• “INT1/CNTR0 Signal Pin Function”  
Pin Function” revised  
“INT10/CNTR00, INT11/CNTR01  
• “When writing ... registers (the data is transferred to the counter when  
the following count source is input).”  
When writing ... registers at the following count source input and the  
data is transferred to the counter at the second count source input and  
the count re-starts at the third count source input.” revised  
98  
Figure 13.11 Block Diagram of Timer Z;  
“Peripheral Data Bus” “Data Bus” revised  
101  
Figure 13.14 TZOC and PUM Registers;  
Timer Z Output Control Register “Stops counting” “One-shot stops”,  
“Starts counting” “One-shot starts” revised  
C - 7  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
103  
Table 13.7 Specification of Timer Mode;  
When writing ... registers (the data is transferred to the counter  
when the following count source is input) while the TZWC bit is set to  
“0” (writing to the reload register and counter simultaneously).→  
When writing ... registers at the following count source input and the  
data is transferred to the counter at the second count source input and  
the count re-starts at the third count source input.” revised  
108, 112 Table 13.9 Specification of Programmable One-Shot Generation Mode,  
Table 13.10 Specification of Programmable Wait One-Shot Generation  
Mode Specifications;  
Count Operation; “When a count completes, ...” When a count  
stops, ...” revised  
112  
Table 13.10 Specification of Programmable Wait One-Shot Generation  
Mode Specifications;  
NOTE1, 2, 3 revised  
116  
123  
124  
Figure 13.25 Block Diagram of CMP Waveform Output Unit revised  
Table 13.12 Specification of Output Compare Mode NOTE1 revised  
Figure 13.31 Operating Example of Timer C in Output Compare Mode  
revised  
127  
128  
136  
169  
Figure 14.3 U0TB, U0RB and U0BRG Registers;  
U0TB and U0RB Registers revised, U0BRG Register NOTE3 added  
Figure 14.4 U0MR and U0C0 Registers;  
U0C0 Register NOTE1 added  
Table 14.5 Registers to Be Used and Settings in UART Mode;  
U0BRG: ““  
“0 to 7” revised  
Figure 16.1 Block Diagram of A/D Converter “Vref“  
“Vcom” revised  
170, 173, Figure 16.2 ADCON0 and ADCON1 Registers,  
175  
Figure 16.4 ADCON0 and ADCON1 Registers in One-Shot Mode,  
Figure 16.5 ADCON0 and ADCON1 Registers in Repeat Mode;  
ADCON0 Register revised  
176 to Figure 16.6 Timing Diagram of A/D Conversion revised and  
178  
16.4 A/D Conversion Cycles to 16.6 Inflow Current Bypass Circuit added  
180, 181 Figure 17.1 Configuration of Programmable I/O Ports (1),  
Figure 17.2 Configuration of Programmable I/O Ports (2); NOTE1 added  
182  
184  
Figure 17.3 Configuration of Programmable I/O Ports (3) NOTE4 added  
Figure 17.5 PD1, PD3 and PD4 Registers,  
Figure 17.6 P1, P3 and P4 Registers; NOTE1, 2 revised  
185  
Figure 17.7 PUR0 and PUR1 Registers revised  
186 to 17.4 Port setting added, Table 17.4 Port P1_0/KI0/AN8/CMP0_0 Setting  
189  
to Table 17.17 Port P4_5/INT0 Setting added  
191  
Table 18.1 Flash Memory Version Performance;  
Program and Erase Endurance: (Program area) (Program ROM),  
(Data area) (Data flash) revised  
C - 8  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
193  
18.2 Memory Map;  
“The user ROM ... area ... Block A and B.” →  
“The user ROM ... area (program ROM) ... Block A and B (data flash).”  
revised  
Figure 18.1 Flash Memory Block Diagram for R8C/14 Group revised  
194  
196  
200  
201  
202  
203  
Figure 18.2 Flash Memory Block Diagram for R8C/15 Group revised  
Figure 18.4 OFS Register; NOTE1 revised, NOTE2 added  
Figure 18.5 FMR0 Register; NOTE6 revised  
Figure 18.6 FMR1 and FMR4 Registers; FMR4 Register NOTE2 revised  
Figure 18.7 Timing on Suspend Operation added  
Figure 18.8 How to Set and Exit EW0 Mode and Figure 18.9 How to Set  
and Exit EW1 Mode revised  
208  
211  
Figure 18.13 Block Erase Command (When Using Erase-Suspend  
Function) revised  
Figure 18.14 Full Status Check and Handling Procedure for Each Error  
revised  
212 to 18.5 Standard Serial I/O Mode revised  
213  
214  
Figure 18.15 Pin Connections for Standard Serial I/O Mode 3;  
Figure title revised  
215  
Figure 18.16 Pin Process in Standard Serial I/O Mode Figure 18.16  
Pin Process in Standard Serial I/O Mode 2 revised,  
Figure 18.17 Pin Process in Standard Serial I/O Mode 3 added  
219  
220  
Table 19.4 Flash Memory (Program ROM) Electrical Characteristics;  
• NOTES 1 to 7 added  
• “Topr” = “Ambient temperature”  
Table 19.5 Flash Memory (Data flash Block A, Block B) Electrical  
Characteristics;  
• revised  
• “Topr” = “Ambient temperature”  
221  
222  
Figure 19.2 Time delay from Suspend Request until Erase Suspend  
revised  
Table 19.8 Reset Circuit Electrical Characteristics (When Using Voltage  
Monitor 1 Reset ) NOTE2 revised.  
Table 19.12 Timing Requirements of Clock Synchronous Serial I/O  
(SSU) with Chip Select revised.  
223  
224  
225  
227  
Table 19.10 High-speed On-Chip Oscillator Circuit Electrical  
Characteristics revised  
Figure 19.4 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip  
Select (Master) revised  
Figure 19.5 I/O Timing of Clock Synchronous Serial I/O (SSU) with Chip  
Select (Slave) revised  
Table 19.13 Electrical Characteristics (1) [VCC = 5V] revised  
C - 9  
REVISION HISTORY  
R8C/14 Group, R8C/15 Group Hardware  
Description  
Summary  
Rev.  
2.00  
Date  
Page  
Jan 12, 2006  
228  
229  
Table 19.14 Electrical Characteristics (2) [Vcc = 5V] NOTE1 deleted  
Table 19.18 Serial Interface;  
“35” “50”, “80” “50”  
231  
232  
233  
Table 19.20 Electrical Characteristics (3) [VCC = 3V] revised  
Table 19.21 Electrical Characteristics (4) [Vcc = 3V] NOTE1 deleted  
Table 19.25 Serial Interface;  
“55” “70”, “160” “80”  
239  
240  
241  
20.3.1 Oscillation Stop Detection Function;  
“Since ... is 2MHz or below, ..” “Since ... is below 2 MHz, ..” revised  
20.3.2 Oscillation Circuit Constants added  
20.4.2 Precautions on Timer X;  
... When writing “1” (count starts) to ... writing “1” to the TXS bit.’ →  
... “0” (count stops) can be ... after the TXS bit is set to “1”.’ revised  
20.4.3 Precautions on Timer Z;  
• “In programmable ... “0” and the timer ...→  
In programmable ... “0” (stops counting) or setting the TZOS bit in  
the TZOC register to “0” (stops one-shot), the timer ...” revised  
• ‘... When writing “1” (count starts) to ... writing “1” to the TZS bit.’  
... “0” (count stops) can be ... after the TZS bit is set to “1”.’ revised  
246  
247  
Table 20.2 Interrupt in EW1 Mode revised  
20.8.1.9 Interrupt Request Generation During Auto-erase Operation in  
EW1 Mode added  
249  
250  
21. Precaution for On-chip Debugger (2) revised, (4) added  
Appendix 1. Package Dimensions;  
Package “PRDP0020BA-A” deleted  
251  
Appendix Figure 2.1 Connecting Example with M16C Flash Starter  
(M3A-0806);  
• NOTE1 revised  
• Pulled up added  
2.10  
Jan 19, 2006  
223  
Table 19.10 High-speed On-Chip Oscillator Circuit Electrical  
Characteristics;  
High-Speed On-Chip Oscillator Frequency Temperature Supplay  
Voltage Dependence 0 to +60 °C / 5 V ± 5 % Standard Max.  
“8.16” “8.56”  
247  
20.8.1.9 Interrupt Request Generation during Auto-erase Operation in  
EW1 Mode; (b) revised  
C - 10  
R8C/14 Group, R8C/15 Group Hardware Manual  
Publication Data : Rev.0.10 May 17, 2004  
Rev.2.10 Jan 19, 2006  
Published by : Sales Strategic Planning Div.  
Renesas Technology Corp.  
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan  
R8C/14 Group, R8C/15 Group  
Hardware Manual  
2-6-2, Ote-machi, Chiyoda-ku, Tokyo,100-0004, Japan  

相关型号:

R8C/16

16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES
RENESAS

R8C/17

16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES
RENESAS

R8C/18

SINGLE-CHIP 16-BIT CMOS MCU
RENESAS

R8C/19

SINGLE-CHIP 16-BIT CMOS MCU
RENESAS

R8C/1A

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER R8C FAMILY / R8C/1x SERIES
RENESAS

R8C/1B

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER R8C FAMILY / R8C/1x SERIES
RENESAS
RENESAS
RENESAS
RENESAS
RENESAS

R8C/24

RENESAS 16-BIT SINGLE-CHIP MCU R8C FAMILY / R8C/2x SERIES
RENESAS

R8C/25

RENESAS 16-BIT SINGLE-CHIP MCU R8C FAMILY / R8C/2x SERIES
RENESAS