RMHE41A184AGBG [RENESAS]

1.1G-BIT Low Latency DRAM-III Common I/O Burst Length of 4;
RMHE41A184AGBG
型号: RMHE41A184AGBG
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1.1G-BIT Low Latency DRAM-III Common I/O Burst Length of 4

动态存储器
文件: 总52页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
RMHE41A184AGBG  
RMHE41A364AGBG  
R10DS0250EJ0100  
Rev. 1.00  
1.1G-BIT Low Latency DRAM-III  
Common I/O Burst Length of 4  
Jun. 19, 2015  
Description  
The RMHE41A184AGBG is a 67,108,864-word by 18-bit and the RMHE41A364AGBG is a 33,554,432-word by 36-bit  
synchronous double data rate Low Latency RAM fabricated with advanced CMOS technology using DRAM memory cell.  
The Low Latency DRAM-III chip is a 1.1Gb DRAM capable of a sustained throughput of approximately 57.6 Gbps for  
burst length of 4 (approximately 51.2 Gbps for applications implementing error correction), excluding refresh overhead  
and data bus turn-around  
With a bus speed of 800 MHz, a burst length of 4, and a tRC of 13.75 ns, the Low Latency DRAM-III chip is capable of  
achieving this rate when accesses to at least 6 banks of memory are overlapped.  
These products are packaged in 180-pin FCBGA.  
Specification  
Package  
Density: 1.1Gbit  
180-pin FCBGA (Ball Array: 1 mm x 1 mm Pitch)  
Organization: 8M words x 18 bits x 8 banks  
Package size: 18.5 mm x 14 mm  
4M words x 36 bits x 8 banks  
ROHS 6/6 compliance  
Operating frequency  
Power supply  
800 MHz (MAX.) @ tRC=13.75 ns  
tRC  
13.75 ns tRC (and 13.75 ns tRFC  
- 2.5 V VEXT  
- 1.5 V VDD  
- 1.0 V or 1.2 V VDDQ  
)
Refresh command  
Burst length: 4  
Address bus  
- Auto Refresh : 16384 cycles / 2 ms for each bank  
- Overlapped Refresh with REF# pin  
Operating case temperature: 0 to 95 °C  
2 cycle DDR address  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 1 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Features  
Datasheet  
2 cycle 800MHz DDR Muxed Address  
Optional data bus inversion to reduce SSO, SSN, maximum I/O current, and average I/O power  
Training sequence for per-bit deskew  
Selectable Refresh Mode: Auto or Overlapped Refresh  
Programmable PVT-compensated output impedance  
Programmable PVT-compensated on-die input termination  
PLL for improved input jitter tolerance and wide output data valid window  
Ordering Information  
Orderable Part Name  
Cycle  
Clock  
Random Output Supply Burst  
Address Organization  
Package  
Time Frequency  
Cycle  
Voltage  
Length  
Type  
(word x bit)  
(VDDQ  
V
)
ns  
MHz  
800  
667  
800  
667  
ns  
RMHE41A184AGBG-120#AC0 1.25  
RMHE41A184AGBG-150#AC0 1.50  
RMHE41A364AGBG-120#AC0 1.25  
RMHE41A364AGBG-150#AC0 1.50  
13.75  
1.0 / 1.2  
4
DDR  
64 M x 18  
32 M x 36  
180-pin  
FCBGA  
(18.5 x14)  
Pb-Free  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 2 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Pin Configurations  
Datasheet  
180-pin FCBGA (18.5 x 14) (Top View)  
[RMHE41A184AGBG] ( x18 )  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
TMS  
VDD  
TCK  
VDDQ  
VSS  
VSS  
VDDQ  
VEXT  
VDD  
QK0  
A
B
C
D
E
F
DNU,  
VSS  
DNU,  
VSS  
VSS  
QVLD  
VSS  
VSS  
DQ6  
VDDQ  
DQ2  
VDDQ  
VDD  
DQ4  
VSS  
x18  
VDD  
VSS  
DQ7  
VSS  
DQ8  
VDDQ  
DQ5  
VDDQ  
VSS  
QK0#  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VDDQ  
Burst of 4  
259 sq. mm  
VDDQ  
DNU,  
VSS  
DNU,  
VSS  
VSS  
VSS  
DNU,  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VDDQ  
DINV0  
VDDQ  
DQ0  
VSS  
VDDQ  
DQ1  
VSS  
DQ3  
VSS  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VSS  
VSS  
VDD  
VSS  
VSS  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
VDDQ  
A6  
VDDQ  
A5  
VDDQ  
DM  
VDD  
G
H
J
Top  
View  
Note  
VSS  
RST#  
VDDQ  
VSS  
DK0  
DK0#  
VSS  
VSS  
VSS  
CK  
VSS  
VSS  
DNU,  
VSS  
MF  
VSS  
VDD  
VDD  
VSS  
VSS  
VDDQ  
VSS  
LBK#  
VREF  
VSS  
DNU,  
VSS  
VREF  
TRST#  
VDD  
VSS  
VDDQ  
A4  
CK#  
VSS  
VDDQ  
A3  
K
L
CS#  
VSS  
WE#  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
VDDQ  
VDDQ  
A0  
A2  
REF#  
VSS  
VDDQ  
A1  
VDD  
M
N
P
R
T
DNU,  
VSS  
VSS  
DINV1  
VDDQ  
VSS  
VSS  
VSS  
DQ10  
VSS  
VSS  
DNU,  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VDDQ  
DQ11  
VDDQ  
DQ15  
VDDQ  
DQ9  
VSS  
VDDQ  
VDDQ  
DQ14  
VDDQ  
DQ17  
VDD  
DQ12  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VSS  
QK1#  
VSS  
VSS  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VDDQ  
DQ13  
VDD  
VSS  
VDDQ  
DQ16  
VSS  
TDO  
VSS  
DNU,  
VSS  
DNU,  
VSS  
VSS  
ZQ  
VDD  
VSS  
U
V
QK1  
VDD  
VDDQ  
VEXT  
TDI  
Note When VDDQ is set to a nominal 1.0 V supply, H5 pin must be connected to VSS  
.
When VDDQ is set to a nominal 1.2 V supply, H5 pin must be connected to VDDQ  
.
DQ0–DQ17  
: Data inputs / output  
REF#  
LBK#  
MF  
: Refresh enable  
DINV0–DINV1 : Data inversion  
: Loopback mode  
: Mirror function  
DM  
: Write data mask  
: Address  
A0–A6  
TMS  
: IEEE 1149.1 test input  
CK, CK#  
DK0, DK0#  
QVLD  
: Input clock  
TDI  
: IEEE 1149.1 test input  
: Input data clock  
: Read data valid  
: Output data clock  
TCK  
: IEEE 1149.1 clock input  
: IEEE 1149.1 test output  
: IEEE 1149.1 test reset input  
: HSTL input reference input  
: Power supply, 1.5 V nominal  
TDO  
QK0–QK1,  
QK0#–QK1#  
ZQ  
TRST#  
VREF  
: Output impedance & input  
termination control  
: Master reset  
VDD  
VDDQ  
: DQ power supply, 1.0 V or 1.2 V nominal  
: Power supply, 2.5 V nominal  
RST#  
CS#  
VEXT  
: Chip select  
VSS  
: Ground  
WE#  
: Write enable  
DNU, VSS  
DNU, VDDQ  
: Must not be used, or must be connected to VSS  
: Must not be used, or must be connected to VDDQ  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 3 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
180-pin FCBGA (18.5 x 14) (Top View)  
[RMHE41A364AGBG] ( x36 )  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
TMS  
VDD  
TCK  
VDDQ  
VSS  
VSS  
VDDQ  
VEXT  
VDD  
QK0  
A
B
C
D
E
F
VSS  
QVLD  
VSS  
DQ9  
VDDQ  
DQ12  
VDDQ  
DINV0  
VDDQ  
RST#  
VDDQ  
VSS  
VSS  
DQ10  
VSS  
DQ6  
VDDQ  
DQ2  
VDDQ  
VDD  
DQ4  
VSS  
VDD  
DQ13  
VSS  
DQ11  
VDDQ  
VSS  
DQ7  
VSS  
DQ8  
VDDQ  
DQ5  
VDDQ  
DINV1  
VDDQ  
DM  
VSS  
QK0#  
VSS  
x36  
Burst of 4  
259 sq. mm  
DQ15  
VDDQ  
DQ16  
VSS  
DQ14  
VSS  
DQ0  
VSS  
DQ17  
VSS  
DQ1  
VSS  
DQ3  
VSS  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
DNU,  
VDDQ  
VDD  
VDDQ  
A6  
VDDQ  
A5  
VDD  
G
H
J
Top  
View  
Note  
VSS  
VSS  
DK0  
DK0#  
VSS  
VSS  
VSS  
CK  
VSS  
DK1  
DK1#  
VSS  
VSS  
MF  
VSS  
VDD  
VDD  
VSS  
VDDQ  
VSS  
LBK#  
VREF  
VSS  
VREF  
VDDQ  
A4  
CK#  
VSS  
VDDQ  
A3  
K
L
TRST# CS#  
VSS  
WE#  
VDDQ  
DINV3  
VDDQ  
DQ23  
VDDQ  
DQ26  
VDD  
DNU,  
VDDQ  
DNU,  
VDDQ  
VDD  
VSS  
VDDQ  
DINV2  
VDDQ  
VDDQ  
A0  
A2  
REF#  
VSS  
VDDQ  
A1  
VDD  
M
N
P
R
T
VSS  
DQ34  
VSS  
VSS  
VSS  
DQ19  
VSS  
VSS  
DQ35  
VSS  
VDDQ  
DQ20  
VDDQ  
DQ24  
VDDQ  
DQ18  
VSS  
DQ33  
VSS  
VDDQ  
DQ31  
VDDQ  
DQ27  
VDDQ  
DQ21  
VSS  
DQ32  
VDDQ  
QK1#  
VSS  
DQ30  
VSS  
DQ22  
VDD  
DQ29  
VDD  
DQ25  
VSS  
TDO  
VSS  
DQ28  
VDD  
U
V
QK1  
ZQ  
VSS  
VSS  
VEXT  
TDI  
Note When VDDQ is set to a nominal 1.0 V supply, H5 pin must be connected to VSS  
.
When VDDQ is set to a nominal 1.2 V supply, H5 pin must be connected to VDDQ  
.
DQ0–DQ35  
: Data inputs / output  
REF#  
LBK#  
MF  
: Refresh enable  
DINV0–DINV3 : Data inversion  
: Loopback mode  
: Mirror function  
DM  
: Write data mask  
: Address  
A0–A6  
TMS  
: IEEE 1149.1 test input  
CK, CK#  
DK0–DK1,  
DK0#–DK1#  
QVLD  
: Input clock  
TDI  
: IEEE 1149.1 test input  
: Input data clock  
TCK  
: IEEE 1149.1 clock input  
: IEEE 1149.1 test output  
: IEEE 1149.1 test reset input  
: HSTL input reference input  
: Power supply, 1.5 V nominal  
TDO  
: Read data Valid  
: Output data clock  
TRST#  
VREF  
VDD  
QK0–QK1,  
QK0#–QK1#  
ZQ  
: Output impedance & Input  
termination control  
: Master reset  
VDDQ  
: DQ power supply, 1.0 V or 1.2 V nominal  
: Power supply, 2.5 V nominal  
VEXT  
RST#  
CS#  
VSS  
: Ground  
: Chip select  
DNU, VSS  
DNU, VDDQ  
: Must not be used, or must be connected to VSS  
: Must not be used, or must be connected to VDDQ  
WE#  
: Write enable  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 4 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Pin Identification  
Datasheet  
(1/2)  
Freq  
Symbol  
CK, CK#  
Direction  
I/O Type  
Description  
[MHz]  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
Clock inputs:  
CK and CK# are differential clock inputs. This input clock pair registers  
address and control inputs on the rising edge of CK. CK# is ideally 180  
degrees out of phase with CK.  
DK0-DK1,  
Input  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
Differential clocks for DQ inputs:  
DK0#-DK1#  
DK0, DK0# => DQ0-DQ17, DM  
DK1, DK1# => DQ18-DQ35  
Note that DK1,DK1# are only active on x36 parts.  
Chip select:  
CS#  
1.0 / 1.2 V 800 / 667  
HSIO  
CS# enables the commands when CS# is LOW and disables them  
when CS# is HIGH. When the command is disabled, new commands  
are ignored, but internal operations continue.  
Write enable, Refresh enable:  
WE#, REF#  
RST#  
Input  
Input  
Input  
Input  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
WE#, REF# are sampled at the positive edge of CK, WE#, and REF#  
define (together with CS#) the command to be executed.  
Master reset:  
1.0 / 1.2 V  
HSIO  
-
-
Note that this pin has no on-die termination.  
(no ODT)  
1.0 / 1.2 V  
HSIO  
LBK#  
Loopback mode for control pin de-skew training  
Note that this pin has no on-die termination.  
(no ODT)  
MF  
1.0 / 1.2 V DC  
HSIO  
Causes “mirroring” of certain pins as described in  
2.14 Clam-shell support.  
(no ODT)  
Note that this pin has no on-die termination.  
Address inputs for DDR Address:  
A0-A6  
1.0 / 1.2 V 800 / 667  
HSIO  
Address bus, including bank select bits.  
Ais reserved for future use.  
DQ0-DQ35  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
Data input/output:  
/Output  
The DQ signals form the 36 bit data bus. During READ commands, the  
data is referenced to both edges of QKx. During WRITE commands,  
the data is sampled at both edges of DKx.  
Note that DQ18-DQ35 are only active on x36 parts.  
Data inversion state for DQ inputs:  
DINV0-DINV3  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
/Output  
DINV0 => DQ0-DQ8  
DINV1 => DQ9-DQ17  
DINV2 => DQ18-DQ26  
DINV3 => DQ27-DQ35  
Note that DINV2-DINV3 are only active on x36 parts  
Write data mask: disables writing of the corresponding data value.  
Clocked by DK0.  
DM  
Input  
1.0 / 1.2 V 800 / 667  
HSIO  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 5 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
(2/2)  
Freq  
Symbol  
Direction  
I/O Type  
Description  
[MHz]  
QK0-QK1,  
Output  
1.0 / 1.2 V  
HSIO  
800 / 667  
Output data clocks:  
QK0#-QK1#  
Differential clocks for DQ, QVLD outputs:  
QK0/QK0# => x36: DQ0-DQ17, x18: DQ0-DQ8, QVLD  
QK1/QK1# => x36: DQ18-DQ35, x18: DQ9-DQ17  
Data valid:  
QVLD  
TMS, TDI  
TCK  
Output  
Input  
1.0 / 1.2 V  
HSIO  
800 / 667  
The QVLD indicates valid output data. QVLD is edge-aligned with QKx and  
QKx#.  
1.0 / 1.2 V  
HSIO  
JTAG function pins:  
IEEE 1149.1 test inputs: These balls may be left as no connects if the  
JTAG function is not used in the circuit  
JTAG function pin:  
Input  
1.0 / 1.2 V  
HSIO  
IEEE 1149.1 clock input: This ball must be tied to VSS if the JTAG function  
is not used in the circuit.  
TDO  
Output  
Input  
1.0 / 1.2 V  
HSIO  
JTAG function pin:  
IEEE 1149.1 test output: JTAG output.  
This ball may be left as no connect if JTAG function is not used.  
JTAG reset:  
TRST#  
1.0 / 1.2 V  
HSIO  
IEEE 1149.1 test rest: This ball must be tied to VSS if the JTAG function is  
not used in the circuit.  
ZQ  
Analog  
Ref  
Output impedance and input termination control  
VREF  
VEXT  
VDDQ*0.7 V I/O reference voltage.  
Supply  
Power supply: 2.5 V nominal. See Recommended DC Operating  
Conditions for range.  
VDD  
Supply  
Supply  
Power supply: 1.5 V nominal. See Recommended DC Operating  
Conditions for range.  
VDDQ  
DQ power supply:  
Nominally, 1.0 V or 1.2 V. Isolated on the device for improved noise  
immunity.  
See Recommended DC Operating Conditions for range.  
VSS  
Supply  
Ground  
DNU, VSS  
DNU, VDDQ  
Do Not Use, Or must not be used, or must be connected to VSS  
.
Do Not Use, Or must not be used, or must be connected to VDDQ  
HSIO is a single-ended 1.0 V or 1.2 V high-side terminated I/O described in 1. Electrical Specifications.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 6 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Block Diagram  
Datasheet  
A0-A5  
De-muitiplexer  
Column Address  
Row Address  
Buffer  
Refresh  
Counter  
Buffer  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory Array  
Bank 0  
Memory Array  
Bank 1  
Memory Array  
Bank 2  
Memory Array  
Bank 3  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory Array  
Bank 4  
Memory Array  
Bank 5  
Memory Array  
Bank 6  
Memory Array  
Bank 7  
Output Data Valid  
Output Data Clock  
Input Buffers  
Output Buffers  
Control Logic and Timing Generator  
QVLD  
DQxx  
QK0-QK1, QK0#-QK1#  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 7 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Contents  
Datasheet  
1. Electrical Specifications ...........................................................................................................................9  
2. Operation..................................................................................................................................................17  
2.1 Interface Overview............................................................................................................................................. 17  
2.2 Clocking ............................................................................................................................................................. 17  
2.3 Address bus....................................................................................................................................................... 18  
2.4 Command encoding.......................................................................................................................................... 19  
2.5 Data mask........................................................................................................................................................... 21  
2.6 Data inversion.................................................................................................................................................... 21  
2.7 Data bus turn-around........................................................................................................................................ 21  
2.8 Command cycles............................................................................................................................................... 21  
2.9 Write data cycles ............................................................................................................................................... 22  
2.10 Read data cycles ............................................................................................................................................. 22  
2.11 READ and WRITE command protocol ........................................................................................................... 22  
2.12 Automatic Refresh........................................................................................................................................... 25  
2.13 Overlapped refresh commands...................................................................................................................... 25  
2.14 Clam-shell support.......................................................................................................................................... 27  
3. Initialization ..............................................................................................................................................28  
3.1 Power-on ............................................................................................................................................................ 29  
3.2 Reset................................................................................................................................................................... 30  
3.3 Initial impedance settings................................................................................................................................. 31  
3.4 Per-bit de-skew training sequence................................................................................................................... 32  
3.5 Configuration..................................................................................................................................................... 34  
4. JTAG Specification..................................................................................................................................39  
4.1 Test Pins............................................................................................................................................................. 39  
4.2 JTAG AC Test Conditions................................................................................................................................. 40  
4.3 Boundary Scan .................................................................................................................................................. 43  
4.4 JTAG Instructions.............................................................................................................................................. 48  
4.5 TAP Controller State Diagram .......................................................................................................................... 49  
5. Package Drawing .....................................................................................................................................50  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 8 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
1. Electrical Specifications  
Datasheet  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
VEXT  
Conditions  
2.5 V nominal  
Rating  
Unit  
V
–0.3 to +2.8  
–0.3 to +1.95  
–0.3 to +1.56  
Supply voltage  
VDD  
1.5 V nominal  
V
Output supply voltage,  
Input voltage, Input / Output voltage  
Input / Output voltage  
Junction temperature  
Storage temperature  
VDDQ  
1.0 / 1.2 V nominal  
V
VIH / VIL 1.0 / 1.2 V nominal  
–0.3 to +1.56  
105  
V
TJ MAX.  
TSTG  
°C  
°C  
–55 to +125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent  
damage. The device is not meant to be operated under conditions outside the limits described in the  
operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended  
periods may affect device reliability.  
Recommended DC Operating Conditions  
0°C TC 95°C  
Parameter  
Supply voltage  
Symbol  
VEXT  
MIN.  
2.3  
TYP.  
2.5  
MAX.  
2.7  
Unit  
V
Comments  
Note  
1
1
Supply voltage  
VDD  
1.395  
1.5  
1.605  
V
Output supply voltage  
(1.0 V nominal)  
VDDQ  
0.95  
1.14  
1.0  
1.05  
V
V
1
1
Output supply voltage  
(1.2 V nominal)  
VDDQ  
1.2  
1.26  
Reference voltage  
VREF  
VDDQ*0.69  
VDDQ*0.7  
VDDQ*0.71  
V
V
V
1,2,4  
High level output voltage  
Low level output voltage  
VOH (DC)  
VOL (DC)  
VDDQ–0.025  
1
1
VDDQ*0.4  
ZOL=40 ,  
RL=60 Ω  
High level input voltage  
Low level input voltage  
Clock input voltage  
VIH (DC)  
VIL (DC)  
VIN  
VREF+0.07  
–0.3  
VDDQ+0.3  
VREF–0.07  
VDDQ+0.3  
VDDQ+0.6  
V
V
V
V
1,4  
1,4  
–0.3  
Clock differential voltage  
Output Impedance HIGH  
Output Impedance LOW  
Input Impedance LOW  
VID  
0.2  
ZOH  
ZOL  
60  
40  
60  
3
3
4
ZI  
Notes 1. All voltage referenced to VSS (GND)  
2. Peak - to - Peak AC noise on VREF must not exceed +/- 2 % VDDQ (DC)  
3. Programmable via ZQ and Reset Impedance Control  
4. High-side termination (programmable via ZQ and Reset/MRS)  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 9 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
DC Characteristics  
0°C TC 95°C; 1.395 V VDD 1.605 V, unless otherwise noted  
Parameter  
Input leakage current  
Symbol  
Test condition  
MIN.  
MAX.  
50  
Unit Note  
ILI  
0
0
0
µA  
µA  
µA  
1
1
1
Output leakage current  
3 state leakage current  
ILO  
IOZ  
50  
50  
Note 1. Outputs Driver High-Z and ODT Disabled.  
Capacitance (TA  
=
25 °C, f = 1 MHz)  
Parameter  
Symbol  
Test conditions  
MIN.  
MAX.  
Unit  
Input capacitance  
CIN  
VIN = 0 V  
1.5  
pF  
(CK,DK, CS#, WE#, REF#, A)  
I/O, Output, Other capacitance  
(DQ, DINV, QVLD, DM)  
CI/O  
CDCK  
CDDQ  
CDCTL  
VI/O = 0 V  
VIN = 0 V  
VI/O = 0 V  
VIN = 0 V  
1.8  
0.15  
0.2  
pF  
pF  
pF  
pF  
Input capacitance delta between  
differential clock pins  
Input capacitance delta between DQ pins  
Input capacitance delta between CS#,  
WE#, REF#, A pins  
0.2  
Remark These parameters are periodically sampled and not 100% tested.  
Capacitance is not tested on ZQ pin.  
Recommended AC Operating Conditions  
0°C TC 95°C; 1.395 V VDD 1.605 V, unless otherwise noted  
Parameter  
Symbol  
VIH (AC)  
Conditions  
MIN.  
VREF+0.13  
–0.3  
MAX.  
Unit  
V
Note  
Input HIGH voltage  
Input LOW voltage  
VDDQ+0.3  
VREF–0.13  
1
1
VIL (AC)  
V
Note 1. Overshoot: VIH (AC) VDDQ+0.3 V for t tCK/5  
Undershoot: VIL (AC) –0.3 V for t tCK/5  
Control input signals may not have pulse widths less than tCKH (MIN.) or operate at cycle rates less than tCK  
(MIN.).  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 10 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Power Consumption  
Datasheet  
Parameter  
Symbol  
Test condition  
Nominal supply voltage  
Max  
Unit  
Note  
Sequential bank access  
Overlapped refresh mode  
Data inversion enabled  
x18  
x36  
Total power  
consumption  
PD  
2.0  
W
1
Half address and data transitions  
30% Write and 70% Read operation  
ODT=60, ZOH/ZOL = 60/40Ω  
TC=95°C  
Note 1. Including all the power supply (VDD=1.5 V, VDDQ=1.0 V and VEXT=2.5 V)  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 11 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
AC Characteristics  
Datasheet  
Normal bus timing  
Standard bus timing waveforms and values for command and data are shown in Figure 1-1 through Figure 1-5 and  
Interface AC Parameters. All timing is measured to/from the crossing point on differential clocks and to/from the VREF  
crossing point on single-ended signals.  
Figure 1-1 Command and DDR Address Input Timing Waveforms  
tCK  
tCKH  
tCKL  
CK#  
CK  
tAS  
tAH  
tAS  
tAH  
A
tASH  
tASH  
tCS  
tCH  
CS#,  
WE#,  
REF#  
tCSH  
Figure 1-2 Data Input Timing Waveforms  
CK#  
CK  
tCKDK  
tCK  
tCKH  
tCKL  
DK#  
DK  
tIS  
tIH  
tIS  
tIH  
DQ,  
DINV,  
DM  
tISH  
tIPW  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 12 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Figure 1-3 Data Output Timing Waveforms  
Datasheet  
CK#  
CK  
tCKQK  
tCK  
tQKH  
tQKL  
QK#  
QK  
t
t
t
QKQ0  
QKQ1  
QKQ  
,
,
t
t
t
QKQ0  
QKQ1  
QKQ  
,
,
DQ,  
DINV  
t
t
t
QH0  
QH1  
QH  
,
,
t
t
t
QH0  
QH1  
QH  
,
,
tQKQV  
QVLD  
tQVH  
Figure 1-4 Output Driver Enable/Disable Timing  
QK#  
QK  
tQON  
tQOFF  
DQ,  
DINV  
Figure 1-5 Reset Timing Waveforms  
CK  
tRSS  
tRSH  
RST #  
tRDS  
tRDH  
DQ  
CS#,  
LBK#  
Note The clock must be within specification and all other chip inputs must be driven to legal values  
throughout the tRSS period.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 13 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Interface AC Parameters  
Datasheet  
(1/2)  
–120  
–150  
Parameter  
Symbol  
Unit  
Note  
( 800 MHz )  
( 667 MHz )  
MIN.  
MAX.  
MIN.  
MAX.  
CK, DK, QK clock period (maximum 800 MHz  
clock frequency, minimum 400 MHz)  
CK, DK LOW time (assumes 5% duty cycle  
distortion at 800 MHz)  
tCK  
tCKL  
tCKH  
1.250  
2.500  
1.500  
2.500  
ns  
0.45*  
0.45*  
tCK(avg)  
tCK(avg)  
5
5
CK, DK HIGH time (assumed 5% duty cycle  
distortion at 800 MHz)  
0.45*  
0.45*  
Clock period jitter  
tJIT(per)  
tJIT(cc)  
–0.070  
0.070  
0.140  
–0.070  
0.070  
0.140  
ns  
ns  
ns  
6,7  
8
Cycle-to-cycle clock jitter  
Cumulative jitter error  
tERR(nper)  
tERR(nper),min = [1+0.08LN(n)] * tJIT(per),min  
tERR(nper),max = [1+0.08LN(n)] * tJIT(per),max  
A to CK setup  
tAS  
tAH  
0.160  
0.192  
0.192  
0.192  
0.240  
0.215  
0.215  
0.358  
ns  
ns  
ns  
ns  
ns  
2
1
4
CK to A hold  
0.160  
0.160  
0.200  
0.180  
0.180  
0.300  
CK to A setup/hold window  
A input pulse width  
tASH  
tAPW  
tCS  
CS#, WE#, REF# to CK setup  
CK to CS#, WE#, REF # hold  
CK to CS#, WE#, REF# setup/hold  
window  
2
1
4
tCH  
tCSH  
ns  
CS#, WE#, REF# input pulse width  
CK to DK skew  
tCPW  
tCKDK  
tIS  
0.400  
–0.200  
0.160  
0.160  
0.160  
0.200  
2
0.480  
–0.240  
0.192  
0.192  
0.192  
0.240  
2
ns  
ns  
0.200  
0.240  
DQ, DINV, DM to DK setup  
DK to DQ, DINV, DM hold  
DK to DQ, DINV, DM setup/hold window  
DQ, DINV, DM input pulse width  
Output signal rise time [See Note]  
Output signal fall time [See Note]  
QK LOW time  
ns  
2
1
4
tIH  
ns  
tISH  
ns  
tIPW  
tRISE  
tFALL  
tQKL  
ns  
5
5
5
5
V/ns  
V/ns  
tCK(avg)  
3
3
5
2
2
0.45*  
0.45*  
(assumed 5% duty cycle distortion at 800 MHz)  
QK HIGH time  
tQKH  
0.45*  
0.45*  
tCK(avg)  
5
(assumed 5% duty cycle distortion at 800 MHz)  
CK to QK skew  
tCKQK  
tCD  
–0.300  
0.300  
5
–0.358  
0.358  
5
ns  
ns  
ns  
Additional tRL delay in loopback  
QK0 to DQ[17:0], DINV[1:0] (x36) or DQ[8:0],  
DINV[0] (x18)  
tQKQ0  
0.100  
0.120  
9
5
9
5
QK0 to DQ[17:0], DINV[1:0] (x36) or DQ[8:0],  
DINV[0] (x18)  
tQH0  
tQKQ1  
tQH1  
0.4*  
0.4*  
0.4*  
0.4*  
tCK(avg)  
ns  
QK1 to DQ[35:18], DINV[3:2] (x36) or  
DQ[17:9],DINV[1] (x18)  
0.100  
0.120  
QK1 to DQ[35:18], DINV[3:2] (x36) or  
DQ[17:9],DINV[1] (x18)  
tCK(avg)  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 14 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
(2/2)  
–120  
–150  
Parameter  
Symbol  
Unit  
Note  
( 800 MHz )  
( 667 MHz )  
MIN.  
0.35*  
0.85*  
MAX.  
MIN.  
0.35*  
0.85*  
MAX.  
Any QK to any DQ, DINV  
Any QK to any DQ, DINV  
Any QK to QVLD  
tQKQ  
tQH  
0. 150  
0. 150  
0.100  
0.100  
0.180  
0.180  
0.120  
0.120  
ns  
tCK(avg)  
ns  
9
5
tQKQV  
tQVH  
tQON  
Any QK to QVLD  
tCK(avg)  
ns  
5
5
QK to DQ output driver turn-on time  
and ODT turn-on time  
QK to DQ output driver turn-off time  
and ODT turn-on time  
tQOFF  
–0.1*  
tCK(avg)  
1000 *  
5 *  
–0.1*  
tCK(avg)  
1000 *  
5 *  
ns  
DQ to RST# setup  
tRDS  
tRDH  
tRSS  
tRSH  
tPLL  
tCK  
tCK  
2
1
DQ to RST# hold  
RST# pulse length  
200  
200  
µs  
RST# deasserted to CS# or LBK# asserted  
Time for PLL to stabilize after being  
enabled  
400000 *  
400000 *  
tCK  
20  
20  
µs  
MRS command start to next CS#, or LBK#  
assertion; also from previous command  
to MRS command  
tMRD  
24 *  
24 *  
tCK  
Notes 1. All input hold timing assumes rising edge slew rate of 2 V/ns measured from VIL/VIH (DC) to VREF  
.
2. All input setup timing assumes falling edge slew rate of 2 V/ns measured from VREF to VIL/VIH (AC)  
3. All output timing assumes the load shown in Figure 1-6.  
4. Setup/hold windows, tASH, tCSH, tISH are used for de-skew timing budgeting and are based on electrical  
simulations. These cannot be directly measured without performing de-skew training.  
5. tCK (avg) is the value of tCK averaged over 200 clock cycles.  
6. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
7. Frequency drift is not allowed.  
8. The cumulative jitter error, tERR(nper), where n is the number of clocks between 2 and 50, is the amount of clock  
time allowed to accumulate consecutively away from the average clock over n number of clock cycles.  
9. tQKQ, tQKQ0 and tQKQ1 are guaranteed by design.  
Figure 1-6 Output Load  
VDDQ  
60  
50Ω  
Output  
2 pF  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 15 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Temperature and Thermal Impedance  
Datasheet  
Temperature Limits  
Parameter  
Symbol  
MIN.  
MAX.  
+105  
+100  
+95  
Unit  
°C  
Note  
Reliability junction temperature  
Operating junction temperature  
Operating case temperature  
TJ  
TJ  
TC  
0
0
0
1
2
3
°C  
°C  
Notes 1. Temperatures greater than 105°C may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at or above this is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability of the part.  
2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.  
3. MAX operating case temperature; TC is measured in the center of the package. Device functionality is not  
guaranteed if the device exceeds maximum TC during operation.  
Thermal Impedance  
Substrate  
θja (°C/W)  
θjb  
(°C/W)  
5.7  
θjc  
(°C/W)  
2.1  
Air Flow = 0 m/s Air Flow = 1 m/s Air Flow = 2 m/s  
4 - Layers  
14.9  
11.7  
10.7  
Impedance Controls  
The Low Latency DRAM-III includes programmable impedance control that affects the output impedance of all output and  
bidirectional pins, as well as the termination of all input and bidirectional pins. The output impedance control affects all  
output pins and the input termination control affects those pins grouped together as shown in Table 3-5 and Table 3-6.  
The impedance control affects the drive strengths of both high and low values, as well as the high-side termination  
impedance. The impedance is controlled via a precision resistor connected between the ZQ and VSS pins. The nominal  
value of the precision (1%) resistor is 240 , with a supported range of 200 to 240 .  
The output impedance accuracy is within 15% of the programmed nominal value, with the linearity measured at the  
points described in Impedance Test Parameters. The actual impedance must remain within the range specified by the  
linear interpolation of the values at those points.  
Normally, the input termination and output impedance are continuously adjusted, such that only minor instantaneous  
variations in the impedance occur. However, when the FZ bit in the configuration register is set, then the input termination  
and output impedance will be “frozen” at their current values. If the IM bit in the configuration register is set, then the output  
impedance will have a nominal value that is not dependent on the value of the resistor connected to the ZQ pin. In this  
mode, the ZQ pin is ignored by the Low Latency DRAM-III, and the output impedances will not be PVT compensated.  
Impedance Test Parameters  
Parameter  
Symbol  
MIN.  
NORM.  
MAX.  
Unit  
Output HIGH voltage with forced IOH = -(VDDQ -0.85 VDDQ) /  
ZOH  
VOH  
0.723*  
0.85*  
0.978*  
VDDQ  
Output HIGH voltage with forced IOH = -(VDDQ -0.7 VDDQ) /  
ZOH  
VOH  
0.595*  
0.7*  
0.805*  
VDDQ  
Output LOW voltage with forced IOL = 0.7 VDDQ / ZOL  
Output LOW voltage with forced IOL = 0.55 VDDQ / ZOL  
VOL  
VOL  
0.595*  
0.468*  
0.7*  
0.805*  
0.633*  
VDDQ  
VDDQ  
0.55*  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 16 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
2.Operation  
2.1 Interface Overview  
The primary Low Latency DRAM-III interface consists of a unidirectional command and address bus and a bidirectional  
data bus. This type of data bus is often referred to as common I/O or CIO. Pin Identification contains the list of pins on  
the Low Latency DRAM-III.  
The command bus is a single data rate (SDR) bus consisting of CS#, WE#, and REF#. The RMHE41A184AGBG,  
RMHE41A364AGBG have a double data rate (DDR) address bus consisting of multiplexed A0-A6 in burst length 4 mode.  
Both the command bus and address bus are clocked by the differential clock pair CK and CK#. READ and WRITE  
commands can be issued at a rate of one every 2 cycles of CK in burst length 4 mode.  
The data interface is a double-rate (DDR) interface that transfers 36 bits of data Note on each clock edge for 36-bit parts  
and 18 bits of data on each clock edge for 18-bit parts. The data interface also includes 4 data inversion pins. In addition  
to 36 data bits, the inputs to the Low Latency DRAM-III include a DDR data mask, DM, and two differential clock pairs,  
DK0-DK1 and DK0#-DK1#. The Low Latency DRAM-III outputs two differential clock pairs, QK0-QK1 and QK0#-QK1#  
that are associated with read data, and a data valid signal, QVLD. Because the data bus is bidirectional, idle cycles are  
required to implement data bus turn-around as described in 2.7 Data bus turn-around.  
Note For parts with 18-bit data bus, all references in this section should refer to DQ0-DQ17 and DINV0- DINV1 unless  
otherwise noted. DQ0-DQn is used to represent DQ0-DQ35 or DQ0-DQ17 for 36-bit and 18-bit parts, respectively,  
and DINV0-DINVm is used to represent either DINV0-DINV3 or DINV0-DINV1 for 36-bit and 18-bit parts.  
2.2 Clocking  
There are three groups of clock signals: CK/CK#, DK0-DK1/DK0#-DK1#, and QK0-QK1/QK0#-QK1#.  
The CK/CK# clock is associated with the address and command pins: A0-A6, CS#, WE#, and REF#. At the Low Latency  
DRAM-III pins, the CK/CK# transitions are nominally centered with respect to address and command signal transitions.  
The DK0-DK1/DK0#-DK1# clocks are associated with write data. DK0/DK0# is used as a source-centered clock for the  
double data rate DQ0-DQ17, DINV0-DINV1, and DM pins. DK1/DK1# is used as a source-centered clock for the double  
data rate DQ18-DQ35 and DINV2-DINV3 pins.  
The DK0-DK1/DK0#-DK1# clocks must meet the specified tCKDK skew with respect to the CK/CK# clock in order to ensure  
proper timing relationship between command and data cycles and to enable proper data bus turn-around.  
The QK0-QK1/QK0#-QK1# clocks are associated with read data. At the Low Latency DRAM-III pins, and for x36 devices,  
QK0/QK0# must be source-synchronous with the read data DQ0-DQ17, DINV0-DINV1, and QVLD pins. Similarly, for x36  
devices, QK1/QK1# is used as a source-synchronous clock for the read data DQ18-DQ35 and DINV2-DINV3 pins.  
For x18 devices, QK0/QK0# must be source-synchronous with DQ0-DQ8, DINV0, and QVLD. Similarly, for x18 devices,  
QK1/QK1# must be source-synchronous with DQ9-DQ17 and DINV1.  
The QK0-QK1/QK0#-QK1# clocks must meet the specified tCKQK skew with respect to the CK/CK# clock in order to ensure  
proper timing relationship between command and data cycles and to enable proper data bus turn-around.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 17 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.3 Address bus  
Datasheet  
In Burst of 4 mode two clock cycles are required to load the multiplexed address. In DDR Address mode address inputs  
are captured by the RAM in two beats per cycle. Three of the bits in the address field select which of the 8 banks in the  
RAM will be accessed. Note that a 4th bank address bit has been identified anticipating that a 16 bank version of the RAM  
might someday reach the market. The bit functions as an ordinary address bit in the devices described in this data sheet.  
Table 2-1 Address Bit Encoding  
Device  
Command  
Beat  
A6 Note1  
A5  
A4  
A3  
A2  
A1  
A0  
Width  
READ or WRITE  
x36  
0
1
2
3
0
1
2
3
0
X
X
X
X
X
X
X
X
X
Address  
Address Note2  
Address  
Bank  
Address  
X Note1  
Address  
Address  
READ or WRITE  
AUTO REFRESH  
x18  
Address Note2  
Address  
Address  
Address  
X
Bank  
Bank  
ANY  
X
X
Notes 1. A6 is reserved for future expansion. For smaller capacity devices, the value is a don’t care, but for devices  
of the designated capacity or larger, the value will be used.  
2. Address bit A3 in beat zero is used as an address bit in the current devices, but may be used as a bank  
address bit in future generations of the part.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 18 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.4 Command encoding  
Datasheet  
The Low Latency DRAM-III supports five types of command cycles as shown in Table 2-3.  
The NOP command must be used on any cycle where no other commands are requested.  
The READ command is used to initiate a burst read from the Low Latency DRAM-III.  
The WRITE command is used to initiate a burst write from the Low Latency DRAM-III.  
The AUTO REFRESH command is used to initiate a refresh operation on a particular bank of the memory.  
The OVERLAPPED REFRESH command is used to initiate a refresh operation, but may be overlapped with other  
commands.  
The MRS command is used to configure the Low Latency DRAM-III following a reset.  
Because the overlapped refresh feature can be enabled or disabled, the command decoding and it’s associated state  
diagram have two different forms. Table 2-2 and Figure 2-1 show the command encoding for the case when the  
overlapped refresh feature is disabled. Figure 2-1 only shows the state diagram for the command decoder; there may be  
many other states internal to the device.  
Because READ and WRITE commands require two cycles to fully transfer their associated address in burst length 4 mode  
and because the OVERLAPPED REFRESH command may be specified simultaneously with other commands, the  
command decoder and its state diagram are more complex when the overlapped refresh feature is enabled. The states  
associated with the command decoder and how command cycles are interpreted is described in Table 2-3 and Figure 2-2  
(again, the state diagram only shows the states for the command decoder, not other internal states of the device).  
Table 2-2 Command Encoding (Overlapped Refresh Disabled)  
Length  
State  
IDLE  
Command  
CS#  
WE#  
REF#  
LBK#  
RST#  
Description  
(cycles)  
NOP  
1
0
0
0
0
1
1
-
-
1
0
1
0
-
-
1
1
0
0
-
1
1
1
1
1
1
1
0
-
1
1
1
1
1
1
1
1
0
1
2
2
1
2
-
No operation  
READ  
Read  
WRITE  
Write  
AUTO REFRESH  
MRS  
Auto refresh  
Mode register set  
No operation  
No operation  
Address/control loopback  
Reset  
RD, WR  
MRS  
NOP  
NOP  
-
-
-
LOOPBACK  
RESET  
-
-
-
-
-
-
-
Figure 2-1 Command Decode State Diagram (Overlapped Refresh Disabled)  
RD  
NOP  
READ  
NOP  
REF  
IDLE  
WRITE  
MRS  
NOP  
WR  
NOP  
MRS  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 19 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 2-3 Command Encoding (Overlapped Refresh Enabled)  
Datasheet  
Length  
(cycles)  
State  
IDLE  
Command  
NOP  
CS#  
WE#  
REF#  
LBK#  
RST#  
Description  
No operation  
1
0
0
0
-
-
1
1
1
1
1
1
1
1
1
2
2
4
READ  
1
0
1
1
1
0
Read  
Write  
WRITE  
OVERLAPPED  
REFRESH  
MRS  
Overlapped refresh  
0
1
0
0
-
0
-
1
1
1
1
1
1
2
-
Mode register set  
No operation  
RD,  
WR  
NOP  
OVERLAPPED  
REFRESH  
NOP  
READ Note  
WRITE Note  
NOP  
1
0
4
Overlapped refresh  
Note  
OR1,  
1
0
0
1
-
1
0
-
-
1
1
1
1
1
1
1
1
-
2
2
-
No operation  
Note  
OR2,  
-
Read (overlapped)  
Write (overlapped)  
No operation  
Note  
OR3  
-
Note  
OR2RD,  
OR3RD,  
OR2WR,  
OR3WR  
MRS  
-
NOP  
1
-
-
-
-
-
-
-
1
0
-
1
1
0
-
-
-
No operation  
LOOPBACK  
RESET  
Address/control loopback  
Reset  
-
Note These indicate that the value of the REF# pin is ignored for the purpose of command decoding (the pin is used  
for conveying bank number during this cycle).  
Figure 2-2 Command Decode State Diagram (Overlapped Refresh Enabled)  
IDLE  
NOP*  
OR2RD*  
OR3RD*  
RD  
NOP  
NOP*  
REF  
READ *  
NOP*  
NOP  
READ *  
NOP*  
READ  
READ *  
REF  
NOP*  
IDLE  
IDLE  
OR1*  
OR2*  
OR3*  
WRITE*  
WRITE  
WRITE*  
WRITE*  
MRS  
REF  
NOP*  
MRS  
WR  
OR2WR*  
NOP  
OR3WR*  
NOP  
NOP*  
IDLE  
Note States and transitions marked with an asterisk (*) indicate  
that the value of the REF# pin should be ignored, so that neither a  
REFRESH, nor MRS command will be recognized in that state.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 20 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.5 Data mask  
Datasheet  
The DM pin is used during write cycles to indicate that the corresponding data are to be masked off from writing to the  
memory. The value of the DM pin is sampled on both edges of DK0/DK0#, and corresponds to the data sampled on that  
same edge of either DK0/DK0# or DK1/DK1#.  
When the DM pin has a logic 0 value, the data will be written to the memory. When the DM pin has a logic 1 value, the  
data will be ignored and no update to the corresponding memory data will be made.  
The value of the DM pin is ignored in all other circumstances. Thus, driving a constant logic 0 to the DM pin can be used  
in systems where all data cycles in a burst result in writes to the memory.  
When the Auto-DM Function (ADM) bit is set via an MRS command, the value of the DM pin is ignored and the device will  
behave as if it were a logic 0 on only the clock edge specified by the value of the DM pattern (DMP) field.  
2.6 Data inversion  
In order to reduce simultaneous switch noise, I/O current and average I/O power, the Low Latency DRAM-III provides the  
ability to invert all data pins. Because the nominal design for Low Latency DRAM-III I/O signals is high-side termination to  
VDDQ, signals driven to a logic high state will consume less power than those in a logic low state.  
The DINVm-DINV0 pins indicate whether corresponding DQn-DQ0 pins, in groups of nine, represent the true logic value or  
an inverted logic value. With the ability to invert DQn-DQ0 pins in groups of nine, each group is guaranteed to be driving  
no more than five pins low on any given cycle. As a result, no more than five pins in each group can switch in the same  
direction during each bit time, reducing simultaneous switching noise effects.  
When data inversion is enabled (DI=1) and a DINV pin is a logic 1, the corresponding DQ pins have been inverted.  
When data inversion is disabled (DI=0) then the device will ignore the value of the DINV pins for write data and will drive  
DINV pins to logic 1 for read data; however, in such a case, the DQ pins are not inverted, regardless of the values of the  
DINV pins.  
2.7 Data bus turn-around  
Because the DQn-DQ0 and DINVm-DINV0 pins are bidirectional, care must be taken to ensure that the Low Latency  
DRAM-III and the system chip connected to it do not drive these pins simultaneously. In order to guarantee this, a rapid  
DQ and DINV turn-off time is required. The actual bus turn-around time is dependent on many system parameters,  
including BL, RL, WL, pre-amble, post-amble, controller I/O timing, DRAM I/O timing, PCB delays; and the system must  
ensure that neither the Low Latency DRAM-III, nor the system chip is driving the bus during that time. This is  
accomplished by inserting a sufficient number of NOP commands between each READ-to-WRITE command transition and  
between each WRITE-to-READ transition. Additional NOP commands may be required to allow settling of the bus in order  
to insure no adverse effect on I/O timing.  
Note that a REFRESH command can be used in place of a NOP command to effect the insertion of an idle cycle on the  
data bus.  
2.8 Command cycles  
A command to the Low Latency DRAM-III is initiated by driving the CS# pin low at the rising edge of CK and  
simultaneously driving the WE#, REF#, and A0-A6 pins to the appropriate state corresponding to the command.  
READ and WRITE commands each require 2 clocks to send the full command in burst length 4 mode, due to the  
multiplexed nature of Address loading. The NOP and AUTO REFRESH commands are each a single cycle in length. The  
OVERLAPPED REFRESH command is four cycles in length.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 21 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.9 Write data cycles  
Datasheet  
DQ0-DQn, DINV0-DINVm, and DM associated with a WRITE command are received by the Low Latency DRAM-III in a  
DDR burst, starting on a rising edge of DK that is offset WL clock cycles from rising edge of the CK signal corresponding to  
the first cycle that the WRITE command was initiated. This delay of WL cycles is intended to ensure that the write data are  
not driven at the same time that data from a previous READ command are being driven from the Low Latency DRAM-III.  
2.10 Read data cycles  
DQ0-DQn and DINV0-DINVm associated with a READ command are driven by the Low Latency DRAM-III in a DDR burst  
by the Low Latency DRAM-III RL clock cycles from the rising edge of the CK signal corresponding to the first cycle that the  
READ command was initiated. This delay of RL cycles is equal to the delay required for the internal logic and memory  
within the Low Latency DRAM-III to read data and make it available on the bus.  
2.11 READ and WRITE command protocol  
Figure 2-3 through Figure 2-4 show the READ and WRITE command sequences.  
Figure 2-3 READ Command Sequence  
tRC  
tRL+2  
tRL-1  
tRL  
tRL+1  
0
1
2
3
CK#  
CK  
A0 A1 A2 A3  
A
WE#,  
REF#  
CS#  
QK#  
QK  
DQ,  
DINV  
R0 R1 R2 R3  
QVLD  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 22 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Figure 2-4 WRITE Command Sequence  
Datasheet  
tRC  
0
1
2
3
tWL  
tWL+1  
tWL+2  
CK#  
CK  
A0 A1 A2 A3  
A
REF#  
CS#,  
WE#  
DK#  
DK  
DQ,  
DINV,  
DM  
W3  
W0 W1 W2  
Figure 2-5 shows DDR Address examples of a sequence of 2 READ, 2 WRITE, and 2 READ commands, with the  
following configuration:  
Burst length 4  
Speed Config 5: tRC=11, tRL=16, tWL=17  
Data inversion is enabled  
Some observations of this sequence are:  
A NOP is inserted between READ2 and WRITE1 to allow for read-to-write bus turn-around  
3 NOPs are inserted between WRITE2 and READ3 to allow for write-to-read bus turn-around  
Because tRC is 11, READ3 may access the same bank as READ1; however, none of READ2, WRITE1, or WRITE2  
may access the same bank as READ1  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 23 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Figure 2-5 READ/WRITE/READ Command Sequence (Speed Config 5, tRC=11, tRL=16, tWL=17, DI=1)  
Command  
Clock#  
READ 1  
0
READ 2  
2
WRITE 1 WRITE 2  
5 7  
3 NOPs  
READ 4  
READ 3  
12  
NOP  
t
RL  
tWL  
tRC  
11  
16  
18  
22  
24  
27  
CK  
CS#  
WE#  
A
READ  
DATA1  
16  
READ  
DATA2  
18  
WRITE  
DATA1  
22  
WRITE  
DATA2  
READ  
DATA3  
READ  
DATA4  
0
2
5
7
12  
24  
DK  
QK  
DQ,  
DINV  
QVLD  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 24 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.12 Automatic Refresh  
Datasheet  
Refresh cycles of the internal memory are initiated via the AUTO REFRESH command. Each refresh command causes a  
single refresh cycle to occur on the bank specified in the command.  
The minimum data retention time is 2 ms over the temperature range specified in 1. Electrical Specifications, and there  
are 16384 words in each bank. Therefore, each bank must receive 16384 refresh commands every 2 ms in order to  
ensure proper data retention.  
This means that a refresh command must be received at an average rate of one every 15.3 ns. At a frequency of 800  
MHz, this represents 8.2% of the usable bandwidth to the Low Latency DRAM-III.  
The refresh command waveforms are shown in Figure 2-6. This refresh command is only supported if overlapped refresh  
is not configured (see 2.13 Overlapped refresh commands).  
Figure 2-6 Automatic Refresh Command Sequence  
tRC  
0
1
CK#  
CK  
BANK  
A
WE#  
CS#,  
REF #  
2.13 Overlapped refresh commands  
Refresh commands may be overlapped with READ, WRITE, or NOP commands so that it is possible to design a system  
that does not require any bus bandwidth to be consumed due to refresh. During the MRS command, overlapped refresh  
may be enabled.  
Once configured for overlapped refresh via an MRS command, the REF# pin is used to both initiate the refresh command  
as well as to communicate the bank to be refreshed. This is accomplished by indicating one bit of bank address on each  
rising edge of the CK clock, following the initial assertion of the REF# pin. The AUTO REFRESH command is not  
supported when the Low Latency DRAM-III is configured for overlapped refresh mode.  
The overlapped refresh command cannot be initiated on the same cycle as a READ or WRITE command; this avoids the  
potential ambiguity of an overlapped refresh and WRITE command being interpreted as an MRS command. In general,  
overlapped refresh commands are expected to be initiated one cycle out of phase with READ and WRITE commands.  
In addition, once the overlapped refresh command has begun, the state of the REF# pin is ignored for the purposes of  
command decoding, in order to allow subsequent READ or WRITE commands to begin while the refresh bank address is  
being specified on the REF# pin.  
Figure 2-7 shows the OVERLAPPED REFRESH command sequence.  
An example of refresh being overlapped with READ commands is shown in Figure 2-8.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 25 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Figure 2-7 Overlapped Refresh Command Sequence  
tRC  
0
1
2
3
4
CK#  
CK  
B0  
B1  
B2  
REF #  
WE#  
CS#  
See Note  
Note tRC for overlapped refresh begins 3 cycles after the start of the command.  
Figure 2-8 Overlapped Refresh with READ Commands  
0
1
2
3
4
5
6
7
8
CK#  
CK  
A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3  
A
B0  
B1  
B2  
REF#  
WE#  
CS#  
READ  
READ  
READ  
OVERLAPPED  
REFRESH  
See Note  
Note tRC for overlapped refresh begins 3 cycles after the start of the command.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 26 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
2.14 Clam-shell support  
Datasheet  
In order to support clam-shell mounting on the board, the pin-out of the Low Latency DRAM-III is designed so that most  
pins that will be interchanged via mirroring are functionally interchangeable. A few pins require their function to be  
swapped, however. The MF pin causes the pin assignment to be modified to effect those pin swaps. In order to support  
proper signal integrity, package trace lengths for mirrored pins are matched to within +/- 0.1mm. Table 2-4 shows the pins  
that are mirrored by the MF pin.  
Due to the mirroring of A5 and A6, all devices are required to include an I/O cell on A6 in order to support the mirror  
function. For lower capacity devices, the A6 pin would remain DNU, VDDQ from a memory controller standpoint, so the  
system need not actively drive this functionally unused pin.  
A3 and A4 are mirrored to support future devices that may use A3 as an additional bank select bit.  
All of A0 through A5 must be mirrored in order for MRS commands to be interpreted correctly.  
Table 2-4 Pins Affected by MF Pin  
Pin  
N4  
MF=0  
A0  
MF=1  
A1  
N10  
L4  
A1  
A0  
A4  
A3  
L10  
M5  
M9  
L2  
A3  
A4  
A2  
REF#  
A2  
REF#  
CS#  
WE#  
A5  
WE#  
CS#  
A6  
L12  
H10  
H4  
A6  
A5  
H2  
RST#  
DM  
DM  
RST#  
H12  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 27 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
3.Initialization  
Datasheet  
Prior to functional use, the Low Latency DRAM-III must be initialized and configured. The steps described in this chapter  
will ensure that the internal logic of the Low Latency DRAM-III has been properly reset and that the functional timing  
parameters of the chip have been configured.  
Figure 3-1 shows the overall initialization sequence required by the Low Latency DRAM-III. An example of an initialization  
sequence, showing each of the different phases, is shown in Figure 3-7.  
Figure 3-1 Initialization Flow  
Power on  
Reset chip and  
comfigure  
impedances  
No  
Deskew  
Required?  
Yes  
Control/address  
Deskew  
(loopback)  
Enable PLL  
and other modes  
(MRS command)  
Enable PLL  
and other modes  
(MRS command)  
Read data  
deskew  
Write data  
deskew  
Set modes  
(MRS commands)  
Normal operation  
New  
No  
Yes  
deskew  
Required?  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 28 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
3.1 Power-on  
Datasheet  
1. There are no restrictions on the sequence of applying the VDD, VEXT, and VDDQ power supplies as long as maintaining  
RST# = Low and fix MF input state before and during any of the power supplies ramp up.  
2. In case when RST# can not be asserted Low and fixed MF input state before and during any of the power supplies  
ramp up, make sure to ramp up following manners.  
(1) Ramp up VDD and VEXT  
(no ramp up sequence restriction on VDD and VEXT  
(2) Ramp up VDDQ and VREF following to the VDD and VEXT  
(no ramp up sequence restriction on VDDQ and VREF  
)
)
(3) Make sure to assert RST# for tRSS specified period before initiating any operations  
Figure 3-2 Power-on 1  
VDD  
VEXT  
V
DDQ  
VREF  
tRSS  
RST#  
MF  
CS# or LBK#  
CK/CK#  
tRSH  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 29 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Figure 3-3 Power-on 2  
VDD  
VEXT  
VDDQ  
VREF  
tRSS  
RST#  
MF  
CS# or LBK#  
CK/CK#  
tRSH  
3.2 Reset  
Before the Low Latency DRAM-III can be configured, it must be properly reset, to ensure that the Low Latency DRAM-III is  
in a known and functional state, regardless of any power on anomalies and power supply ramp rates. Reset requires the  
assertion of the RST# pin for at least 200 µs, during which time the device logic is reset to a known state, and the I/O  
impedances are programmed as described in 3.3 Initial impedance settings.  
The contents of memory are not guaranteed to be retained when the chip is reset.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 30 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
3.3 Initial impedance settings  
Datasheet  
When the RST# pin is deasserted, the value of specific DQ pins is used to configure the input termination and output  
impedance as shown in Table 3-1. The meaning of the bits is the same as the corresponding bits described in 3.5  
Configuration, although their positions in the DQ pins are unrelated to their positions in the corresponding MRS registers.  
While RST# is asserted, the impedance values are continuously updated based on the values of the DQ pins and on the  
sampled value of the ZQ impedance programming pin. On the rising edge of RST#, the values will be latched into the  
device and stored in the appropriate positions in the MRS registers. Figure 3-4 shows the waveforms associated with this  
function.  
Note that the DINV pins are ignored during reset time and the values of the DQ pins are considered to never be inverted  
during this time.  
Table 3-1 Reset Impedance Control Assignments  
Pins  
U12 T11 U4 R12 T5 P13 R4 P11 P5 B12 C11 B4 D12 C5 E13 D4 E11 E5  
DQ (x18)  
DQ (x36)  
Reset Reg  
MSB LSB  
Cell ID  
17  
26  
17  
16  
25  
16  
15  
24  
15  
14  
23  
14  
13  
22  
13  
12  
21  
12  
11  
20  
11  
10  
19  
10  
9
18  
9
8
8
8
7
7
7
6
6
6
5
5
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
KD  
KU  
CD  
CU  
DD  
DU  
ODT QD QU  
IM  
Figure 3-4 Reset Sequence  
0
1
CK#  
CK  
RST #  
DQ  
CS#,  
WE#,  
REF #  
DK#  
DK  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 31 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
3.4 Per-bit de-skew training sequence  
Datasheet  
The Low Latency DRAM-III device provides support that allows a memory controller to de-skew signals for high-speed  
operation. If per-bit de-skew is desired, the memory controller must provide the actual de-skew functionality. Per-pin de-  
skew is normally performed after deassertion of the RST# pin, but may be performed at any time, without affecting the  
contents of the memory within the device. Furthermore, resetting the device does not necessarily affect the skew  
characteristics of the device pins; therefore, a reset of the device does not necessarily require repeating the de-skew  
training sequence that was previously performed.  
Per-pin de-skew training is anticipated to be implemented in three steps:  
De-skew of the control, address, and clock pins: A0-A6, CS#, WE#, REF#, and DK0-DK1 with respect to CK  
De-skew of the read path: DQ0-DQn, DINV0- DINVm and QVLD with respect to QK0-QK1  
De-skew of the write path: DQ0-DQn, DINV0- DINVm and DM with respect to DK0-DK1  
The first phase, de-skew of the control and related pins, requires support from the device by driving the LBK# pin to a logic  
0. When the LBK# pin is a logic 0, the DK0-DK1, CS#, WE#, REF#, and A0-A6 pins are looped back to the various DQ  
and DINV pins. All pins are sampled by the CK clock, including DK0-DK1. The specific mapping of input pins to output  
pins during loopback mode is shown in Table 3-2.  
Table 3-2 Control/Address Pin Mapping When LBK#=0  
x36 part  
Input  
x18 part  
Output  
Input  
Output  
Input Pin  
Output  
Pin  
MF=0  
MF=1  
MF=0  
MF=1  
A6  
A6  
H4  
E5  
A5  
DQ0  
A5  
DQ0  
(DNU, VDDQ  
)
(DNU, VDDQ)  
J1, K1  
L4  
E11  
P5  
R4  
T5  
DK0, DK0#  
DK0, DK0#  
A3  
DQ1  
DQ18  
DQ20  
DQ22  
DQ24  
DK0, DK0#  
DK0, DK0#  
A3  
DQ1  
DQ9  
A4  
CS#  
A2  
A4  
CS#  
A2  
L2  
WE#  
REF#  
A1  
WE#  
REF#  
A1  
DQ11  
DQ13  
DQ15  
M5  
N4  
U4  
A0  
A0  
A6  
A6  
H10  
E13  
A5  
DQ3  
A5  
DQ3  
(DNU, VDDQ  
)
(DNU, VDDQ  
DNU, VSS  
A4  
)
J11, K11  
L10  
E3  
DK1, DK1#  
A3  
DK1, DK1#  
DQ14  
DQ19  
DQ21  
DQ25  
DQ26  
DNU, VSS  
A3  
DNU, VSS  
DQ10  
P11  
P13  
T11  
U12  
A4  
CS#  
A2  
L12  
WE#  
WE#  
REF#  
A1  
CS#  
DQ12  
M9  
REF#  
A1  
A2  
DQ16  
N10  
A0  
A0  
DQ17  
Note  
DK0, DK0# and DK1, DK1# have differential receivers, so the output of the receiver is used as signal being looped back.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 32 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
For each pin that is looped back, the input pin is sampled on both the rising edge and falling edges of the corresponding  
input clock. The value output on the rising edge of the corresponding output clock will be the value that was sampled on  
the rising edge of the input clock. The value output on the falling edge of the corresponding output clock will be the  
inverted value that was sampled on the falling edge of the input clock. Data inversion is not used during loopback mode  
and the value of the corresponding MRS bits are ignored.  
The delay from input pins to DQ/DINV output pins, when loopback mode is enabled, is 5 cycles of CK.  
In burst length 4 mode, while the LBK# pin is a logic 0 , the DQ/DINV output pins corresponding to unused input pins (See  
Table 3-2) will still meet the AC timing specification (See Interface AC Parameters), but they may have arbitrary logic  
state and may or may not have a constant logic value.  
While the LBK# pin is a logic 0, the device will ignore any apparent commands being presented on the CS#, WE#, and  
REF# pins and will perform self refresh operations to prevent loss of data during extended periods of de-skew training. In  
order to ensure that commands are not inadvertently received during entry and exit from de-skew training, no commands  
may be sent to the device for a period of 16 cycles of CK prior to the LBK# pin being driven to 0, nor for 16 cycles after the  
LBK# pin is returned to a logic 1. Also, no valid input signals for looped back must be inserted for 16 cycles after LBK# pin  
being driven to 0 when device just enters into loopback mode.  
While LBK# is asserted, the on-chip PLL is ignored; therefore the phase of the QK output clock will be undefined with  
respect to the CK input clock. However, the QK to DQ timing will still meet its specifications. Note that the PLL will remain  
enabled or disabled, per its state prior to LBK# being asserted, and after LBK# is deasserted.  
An example of a loopback sequence is show in Figure 3-5.  
Figure 3-5 Loopback De-skew Training Sequence  
tLBL  
0
1
2
3
5
6
7
CK#  
CK  
CS#,  
WE# ,  
REF #,  
A, DK  
LBK#  
tCD  
QK#  
QK  
DQ  
Parameter  
Symbol  
tLBL  
-120  
-150  
Units  
Cycle  
ns  
Loopback Latency  
5
5
5
5
Maximum CK to QK/DQ Output Delay in Loopback Mode  
tCD  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 33 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Following de-skew of the control, address, and DK pins, the memory controller drives the LBK# pin to a logic 1, then will  
likely perform read data and write data de-skew training.  
Prior to beginning read path de-skew, the memory controller should issue an MRS command to the Low Latency DRAM-III  
device to enable the PLL. After the PLL is enabled, the timing of the QK, DQ outputs, and QVLD will be unspecified for a  
period of tPLL. The MRS command is described in 3.5 Configuration. While the PLL is stabilizing, refresh commands must  
continue to be issued to the device in order to ensure proper retention of data.  
Read data de-skew requires that a training pattern be written to Low Latency DRAM-III memory. Complex data patterns  
can be written to the Low Latency DRAM-III memory using the non-de-skewed DQ signals and the auto-DM functions.  
Auto-DM functions are enabled through MRS, as described in 3.5 Configuration.  
Read data de-skew can be performed by using the de-skewed control and related pins, including the DK pin, and non-  
switching DQ and DINV pins to write 36-bit values to memory locations in the device. Because the data are held at  
constant values, the auto-DM modes of the device are used to specify which 36-bit beat (or 18-bit beat for x18 devices) of  
data on the bus is to be written to the memory. Once written to the memory, these data can then be read out using  
standard BL4 READ commands to effect any desired pattern on the DQ bus. This permits the system to de-skew the DQ,  
DINV, and QVLD signals with respect to the QK clocks.  
Write data de-skew can be performed by issuing WRITE commands to the device, then using the de-skewed read bus to  
determine whether or not data were correctly received by the device. This permits the system to de-skew the DQ, DINV,  
and DM signals with respect to the DK clocks.  
3.5 Configuration  
The MRS command is used to configure the Low Latency DRAM-III. Configuration is used to specify the following  
parameters:  
Address Mode  
The Address Mode of Low Latency DRAM-III devices from some vendors may be electrically configurable. The default  
Address Mode may vary from vendor-to-vendor as well. Therefore, systems must configure the desired Address Mode  
prior to issuing READ or WRITE commands  
Mode select for READ latency, WRITE latency, and tRC  
The version of the Low Latency DRAM-III covered by this specification only supports modes 4 and 5  
Select driver pull-up impedance of 1/4 or 1/6 of reference resistor (default 1/4)  
Select driver pull-down impedance of 1/4 or 1/6 reference resistor (default 1/6)  
Select DQ, DINV, DM, DK, DKN, CK, CK#, RST# terminator pull-up impedance of OFF, 1x, 1/2, or 1/4 of reference resistor  
(default 1/4)  
Select DQ, DINV, DM, DK, DKN, CK, CK#, RST# terminator pull-down impedance of OFF, 1x, 1/2, or 1/4 of reference  
resistor (default OFF)  
Select CS#, WE#, REF#, A, LBK#, TCK, TDI, TMS terminator pull-up impedance of OFF, 1x, 1/2, or 1/4 of reference  
resistor (default 1/4)  
Select CS#, WE#, REF#, A, LBK#, TCK, TDI, TMS terminator pull-down impedance of OFF, 1x, 1/2, or 1/4 of reference  
resistor (default OFF)  
Enable/freeze dynamic PVT compensation (default enabled)  
Enable/disable PLL (default disabled)  
Enable/disable read/write data inversion (default disabled)  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 34 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Refresh Mode (default AUTO REFRESH)  
Select Auto-DM Mode (default disabled)  
The MRS command allows the configuration of one of eight different registers to be configured using SDR timing on the  
address pins. The MRS command waveforms are shown in Figure 3-6 and the values of the MRS registers are described  
in Table 3-3 through Table 3-6. Because an MRS command may change values that significantly affect the behavior of  
the device, no other commands should be issued to the device for a period of tMRD clock cycles following the MRS  
command.  
MRS commands use the address pins specified in Table 3-3. The actual pins used depend on the value of the mirror  
function (MF) pin.  
Table 3-3 MRS Configuration Register Bit Assignments  
Beat 0  
L10  
L4  
Beat 2  
L10  
L4  
Pins (MF=0)  
Pins (MF=1)  
Address  
H4  
H10  
A6  
H10  
H4  
L4  
L10  
A4  
M5  
M9  
A2  
N10  
N4  
N4  
N10  
A0  
H4  
H10  
A6  
H10  
H4  
L4  
L10  
A4  
M5  
M9  
A2  
N10  
N4  
N4  
N10  
A0  
A5  
A3  
A1  
A5  
A3  
A1  
Mode Register  
MSBLSB  
Mode Reg #  
Active  
Active  
X
X
X
X
X
X
X
X
Configuration  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
0
0
DI  
0
FZ  
0
RM  
0
BL  
DMP  
KU  
QD  
ADM  
ODT  
IM  
0
0
PLL  
Active  
CD  
DD  
CU  
DU  
0
KD  
Active  
QU  
0
0
0
0
0
0
0
0
0
0
0
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 35 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 3-4 MRS Configuration Bit Definitions  
Datasheet  
Speed Configuration  
Config #  
Clock Cycles  
tRL  
Configuration  
DI  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
tRC  
tWL  
Not supported  
Not supported  
Not supported  
Not supported  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
10  
11  
12  
13  
15  
14  
Not supported  
Not supported  
Not supported  
Not supported  
Not supported  
Not supported  
10  
11  
14  
15  
17  
16  
Not supported  
Not supported  
Refresh Mode  
PLL Control  
RM  
0
Operation  
PLL  
0
Operation  
Auto Refresh Mode (Default)  
Overlapped Refresh Mode  
PLL Off / Reset (Default)  
PLL On  
1
1
Auto-DM Function  
ADM  
Burst Length  
BL  
Operation  
Operation  
4
0
1
Off / Normal Operation (Default)  
On  
0
0
1
1
0
1
0
1
Not supported  
Reserved  
Reserved  
Note When ADM=0, DMP=Don't Care  
Note Setting 01,10 & 11 not supported  
Auto-DM Pattern  
Burst of 4  
Pattern #  
DMP  
00  
1
01  
0
10  
0
11  
0
Impedance Freeze  
Write Beat 0  
Write Beat 1  
Write Beat 2  
Write Beat 3  
FZ  
0
Operation  
Update active (Default)  
Update frozen  
0
1
0
0
0
0
1
0
1
0
0
0
1
Note Data to be written =1, Data to be masked =0  
Data Inversion  
DI  
Operation  
0
1
Disable data inversion (Default)  
Enable data inversion  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 36 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Table 3-5 MRS Input Termination Bit Definitions  
Data Input On-Die Termination - Up Data Input On-Die Termination - Down  
Pins  
DQ, DINV,  
DM,  
ODT  
DU  
Div 200 240 RQ Ohms ODT  
DD  
Div  
Off  
Off  
1
200 240  
RQ Ohms  
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
Off  
Off  
1
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
DK0, DK0#  
DK1, DK1#  
200 240  
(Not Supported)  
(Not Supported)  
(Not Supported)  
1/2 100 120  
1/4 50 60  
1/2  
1/4  
Pins  
Address,  
CS#, WE#,  
REF#  
Control Input On-Die Termination - Up  
Control Input On-Die Termination - Down  
ODT  
CU  
Div 200 240 RQ Ohms ODT  
CD  
Div  
Off  
Off  
1
200 240  
RQ Ohms  
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
Off  
Off  
1
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
200 240  
(Not Supported)  
(Not Supported)  
(Not Supported)  
1/2 100 120  
1/4 50 60  
1/2  
1/4  
Pins  
Clock Input On-Die Termination - Up  
Clock Input On-Die Termination - Down  
ODT  
KU  
Div 200 240 RQ Ohms ODT  
KD  
Div  
Off  
Off  
1
200 240  
RQ Ohms  
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
Off  
Off  
1
1
X
0
0
0
X
1
1
0
0
X
1
0
1
0
CK, CK#  
200 240  
(Not Supported)  
(Not Supported)  
(Not Supported)  
1/2 100 120  
1/4 50 60  
1/2  
1/4  
Note Internal RQ is set to 240when IM=1.  
Table 3-6 MRS Output Impedance Bit Definitions  
Output Driver Impedance - Up Output Driver Impedance - Down  
Pins  
DQ, DINV,  
QK0, QK0#  
QK1, QK1#  
QVLD  
IM  
0
QU  
1
Div  
1/4  
X
200  
50  
240  
60  
RQ Ohms  
IM  
0
QD  
1
Div  
1/4  
X
200  
50  
240  
60  
RQ Ohms  
1
X
60*  
NA  
60*  
40.0  
1
X
40*  
33.3  
40*  
0
0
1/6  
0
0
1/6  
40.0  
Note 60* = 60 +/- 20% no PVT compensation  
Note 40* = 40 +/- 20% no PVT compensation  
Figure 3-6 MRS Sequence  
0
1
2
3
CK#  
CK  
A0  
A2  
A
CS#,  
WE#  
REF #  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 37 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Figure 3-7 Initialization Sequence (DDR Address mode shown)  
Datasheet  
CK  
RST #  
LBK#  
CS#  
WE#  
REF #  
Note : refresh should be performed on a regular basis  
A
DK  
DQ,  
DINV,  
DM  
Control/  
Address  
De-skew  
PLL  
Initial  
and Config  
Read path de-skew  
Write path de-skew  
Reset  
Write data at  
low speed  
Read data at  
full speed  
Write data at  
full speed  
Read data at  
full speed  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 38 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
4.JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
4.1 Test Pins  
Table 4-1 Low Latency DRAM-III Test Pins  
Functional  
Pin Name  
Test Use  
Pull Up/Down in Chip  
Pull Up/Down on Board  
Mode Value  
TDI  
TDO  
JTAG serial chain input  
JTAG serial chain output  
JTAG clock  
1
1
0
1
0
1
1
TCK  
0
1
0
TMS  
JTAG mode  
1
0
TRST#  
JTAG reset  
Table 4-2 Test Access Port (TAP) Pins  
Description  
Pin Name  
Pin Assignment  
TCK  
3A  
Test Clock Input. All input are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
TMS  
TDI  
1A  
Test Mode Select. This is the command input for the TAP controller state machine.  
Test Data Input. This is the input side of the serial registers placed between TDI  
and TDO. The register placed between TDI and TDO is determined by the state  
of the TAP controller state machine and the instruction that is currently loaded in  
the TAP instruction.  
13V  
TDO  
13T  
1L  
Test Data Output. This is the output side of the serial registers placed between  
TDI and TDO. Output changes in response to the falling edge of TCK.  
Test Reset Input. This is active-low input asynchronously reset the TAP controller.  
This pin should be driven low or tied to GND when JTAG function is not in use.  
TRST#  
Table 4-3 JTAG DC Characteristics (0°C TC 95°C, 1.395 V VDD 1.605 V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
0 V VIN VDD  
0 V VIN VDDQ  
Outputs disabled  
MIN.  
MAX.  
+100  
+100  
Unit  
JTAG Input leakage current  
JTAG I/O leakage current  
ILI  
100  
100  
µ
A
A
ILO  
,
µ
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
JTAG output LOW voltage  
VIH (DC)  
VIL (DC)  
VOH (DC)  
VOL (DC)  
VREF + 0.15  
SS 0.3  
VDDQ 0.10  
VDDQ + 0.3  
V
V
V
REF 0.15  
V
V
V
| IOHC | = 100  
IOLC = 100  
µ
A
µ
A
0.10  
Note All voltages referenced to VSS (GND).  
Table 4-4 JTAG Capacitance  
Teat Conditions  
Parameter  
Symbol  
MIN.  
MAX.  
Unit  
JTAG input capacitance  
(TCK, TDI, TMS and TRST#)  
JTAG output capacitance  
(TDO)  
CINJ  
VIN = 0V  
2.5  
pF  
COJ  
VIO = 0V  
2.5  
pF  
Note Including package.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 39 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
4.2 JTAG AC Test Conditions  
Datasheet  
Input waveform (Rise / Fall time 0.3 ns)  
VDDQ  
VIH(AC) MIN.  
VIL(AC) MAX.  
VSS  
Rise Time:  
2 V/ns  
Fall Time:  
2 V/ns  
Output waveform  
VDDQ*0.7  
VDDQ*0.7  
Test Points  
Output load condition  
VDDQ  
60Ω  
50Ω  
Output  
2 pF  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 40 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 4-5 JTAG AC Characteristics (0°C TC 95°C)  
Datasheet  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
tTHTL  
tTLTH  
20  
ns  
MHz  
ns  
50  
10  
10  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
tMVTH  
tDVTH  
tRVTH  
5
5
ns  
ns  
ns  
TDI valid to TCK HIGH  
TRST High Level to  
valid rising edge of TCK  
Capture setup time  
50  
tCSJ  
5
ns  
1
1
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCHJ  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
Reset  
TRST LOW pulse width  
tTRSTW  
100  
ns  
Note tCSJ and tCHJ refer to the setup and hold time requirements of latching data from the boundary scan register.  
JTAG Timing Diagram  
tTHTH  
TCK  
tMVTH  
tTHTL  
tTLTH  
TMS  
TDI  
tTHMX  
tDVTH  
tTHDX  
tTLOV  
tTLOX  
TDO  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 41 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 4-6 Scan Register Definition (1)  
Description  
Datasheet  
Register name  
Instruction register  
The 8 bit instruction registers hold the instructions that are executed by the TAP controller. The register  
can be loaded when it is placed between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in  
test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible. The bypass register is set LOW (VSS) when the bypass instruction is executed.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs  
I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins  
when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the  
boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register location.  
The first column defines the bit’s position in the boundary register. The second column is the name of  
the input or I/O at the bump and the third column is the bump number.  
Table 4-7 Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
8
1
bit  
32  
113  
bit  
Boundary register  
bit  
Table 4-8 ID Register Definition  
ID [31:28]  
ID [27:12]  
part no.  
Part number  
Organization  
ID [11:1] vendor ID no. ID [0] fix bit  
vendor revision no.  
RMHE41A184AGBG  
RMHE41A364AGBG  
64M x 18  
32M x 36  
0000  
0000  
1000 0010 1100 1101  
1000 0010 1100 1100  
01000100011  
01000100011  
1
1
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 42 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
4.3 Boundary Scan  
Datasheet  
IEEE 1149.1 compliant boundary scan will be implemented on all component I/O pins. High speed I/Os that are differential  
or AC coupled will be fully compliant to the IEEE 1149.6 standard.  
The actual boundary scan order is defined in an underscore (e.g. “CS#_WE#”).  
Table 4-9 and Table 4-10.  
Pins labeled DNU0 are DNU, VSS. Pins labeled DNU1 are DNU, VDDQ. Pins that are subject to the mirror function are  
named with the obverse name and reverse name, separated by an underscore (e.g. “CS#_WE#”).  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 43 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 4-9 Boundary Scan Order, x18  
Datasheet  
Safe  
Bit  
X
X
X
X
X
X
0
Cntrl  
Cell  
Cntrl  
Cntrl  
x18  
Cell #  
Cell  
Pin Name  
TYPE  
Value  
State  
J3  
K3  
L2  
0
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
DK0  
input  
input  
1
DK0#  
2
CS#_WE#  
input  
L4  
3
A4_A3  
input  
M5  
M3  
4
A2_REF#  
input  
5
DNU1(1)  
internal  
control  
bidir  
6
*
N2  
N4  
7
DINV1  
X
X
0
6
9
0
0
Z
Z
8
A0_A1  
input  
9
*
control  
bidir  
P5  
P3  
P1  
R2  
R4  
T5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
DQ9  
X
0
*
internal  
internal  
internal  
internal  
internal  
internal  
control  
bidir  
DNU0(1)  
X
0
*
DNU0(2)  
X
0
*
DNU0(3)  
X
0
*
DQ11  
X
0
17  
19  
0
0
Z
Z
*
control  
bidir  
DQ13  
X
0
*
internal  
internal  
output2  
internal  
internal  
control  
bidir  
T3  
T1  
DNU0(4)  
X
X
0
QK1#  
*
U2  
DNU0(5)  
X
0
*
DQ15  
QK1  
U4  
V1  
X
X
0
26  
29  
0
0
Z
Z
output2  
control  
bidir  
*
U12  
U10  
T9  
DQ17  
*
X
0
internal  
internal  
internal  
internal  
control  
bidir  
DNU0(6)  
*
X
0
DNU0(7)  
*
X
0
T11  
R12  
R10  
P9  
DQ16  
*
X
0
35  
37  
0
0
Z
Z
control  
bidir  
DQ14  
*
X
0
internal  
internal  
internal  
internal  
control  
bidir  
DNU0(8)  
*
X
0
DNU0(9)  
*
X
0
P11  
P13  
DQ10  
*
X
0
43  
45  
0
0
Z
Z
control  
bidir  
DQ12  
*
X
0
internal  
internal  
input  
N12  
N10  
M9  
DNU0(10)  
A1_A0  
REF#_A2  
DNU1(2)  
WE#_CS#  
A3_A4  
CK#  
X
X
X
X
X
X
X
X
1
input  
M11  
L12  
L10  
K9  
internal  
input  
input  
input  
K11  
J13  
J11  
J9  
DNU0(11)  
LBK#  
DNU0(12)  
CK  
internal  
input  
internal  
input  
X
X
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 44 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Safe  
Bit  
X
X
X
X
X
0
Cntrl  
Cell  
Cntrl  
Cntrl  
x18  
Cell #  
Cell  
Pin Name  
TYPE  
Value  
State  
H10  
H12  
G11  
G9  
59  
60  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
A5_A6  
input  
input  
DM_RST#  
61  
DNU1(3)  
internal  
internal  
internal  
internal  
internal  
control  
bidir  
62  
DNU1(4)  
F10  
63  
DNU1(5)  
64  
*
F12  
E13  
E11  
E9  
65  
DNU0(13)  
X
0
66  
*
67  
DQ3  
X
0
66  
68  
0
0
Z
Z
68  
*
control  
bidir  
69  
DQ1  
X
0
70  
*
internal  
internal  
internal  
internal  
control  
bidir  
71  
DNU0(14)  
X
0
72  
*
D10  
73  
DNU0(15)  
X
0
74  
*
D12  
C13  
75  
DQ5  
X
X
0
74  
77  
0
0
Z
Z
76  
QK0#  
output2  
control  
bidir  
77  
*
C11  
C9  
78  
DQ7  
X
0
79  
*
internal  
internal  
internal  
internal  
control  
bidir  
80  
DNU0(16)  
X
0
81  
*
B10  
82  
DNU0(17)  
X
0
83  
*
B12  
A13  
84  
DQ8  
X
X
0
83  
86  
0
0
Z
Z
85  
QK0  
output2  
control  
bidir  
86  
*
B4  
87  
DQ6  
X
0
88  
*
internal  
internal  
output2  
internal  
internal  
control  
bidir  
B2  
C1  
89  
DNU0(18)  
X
X
0
90  
QVLD  
91  
*
C3  
C5  
D4  
D2  
E1  
E3  
92  
DNU0(19)  
X
0
93  
*
94  
DQ4  
X
0
93  
95  
0
0
Z
Z
95  
*
DQ2  
control  
bidir  
96  
X
0
97  
*
internal  
internal  
internal  
internal  
internal  
internal  
control  
bidir  
98  
DNU0(20)  
*
X
0
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
DNU0(21)  
*
X
0
DNU0(22)  
*
X
0
E5  
F4  
DQ0  
X
X
0
103  
106  
0
0
Z
Z
DNU1(6)  
*
internal  
control  
bidir  
F2  
G3  
G5  
H4  
H2  
J1  
DINV0  
DNU1(7)  
DNU1(8)  
A6_A5  
RST#_DM  
MF  
X
X
X
X
X
X
internal  
internal  
input  
input  
input  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 45 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Table 4-10 Boundary Scan Order, x36  
Datasheet  
Safe  
Bit  
X
Cntrl  
Cell  
Cntrl  
Cntrl  
x36  
Cell #  
Cell  
Pin Name  
TYPE  
Value  
State  
J3  
K3  
L2  
L4  
M5  
0
1
2
3
4
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
DK0  
DK0#  
input  
input  
input  
input  
input  
X
CS#_WE#  
A4_A3  
X
X
A2_REF#  
X
M3  
5
BC_1  
DNU1(1)  
internal  
X
6
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
*
DINV2  
A0_A1  
*
control  
bidir  
0
X
X
0
N2  
N4  
7
6
0
Z
8
input  
9
control  
bidir  
P5  
P3  
P1  
R2  
R4  
T5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
DQ18  
*
X
0
9
0
0
0
0
0
0
0
Z
Z
Z
Z
Z
Z
Z
control  
bidir  
DQ34  
*
X
0
11  
13  
15  
17  
19  
21  
control  
bidir  
DQ35  
*
X
0
control  
bidir  
DQ32  
*
X
0
control  
bidir  
DQ20  
*
X
0
control  
bidir  
DQ22  
*
X
0
control  
bidir  
T3  
T1  
DQ30  
QK1#  
*
X
X
0
output2  
control  
bidir  
U2  
DQ28  
*
X
0
24  
26  
0
0
Z
Z
control  
bidir  
U4  
V1  
DQ24  
QK1  
*
X
X
0
output2  
control  
bidir  
U12  
U10  
T9  
DQ26  
*
X
0
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
0
0
0
0
0
0
0
0
0
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
control  
bidir  
DQ27  
*
X
0
control  
bidir  
DQ29  
*
X
0
control  
bidir  
T11  
R12  
R10  
P9  
DQ25  
*
X
0
control  
bidir  
DQ23  
*
X
0
control  
bidir  
DQ31  
*
X
0
control  
bidir  
DQ33  
*
X
0
control  
bidir  
P11  
P13  
DQ19  
*
X
0
control  
bidir  
DQ21  
*
X
0
control  
bidir  
N12  
N10  
M9  
DINV3  
A1_A0  
REF#_A2  
DNU1(2)  
WE#_CS#  
A3_A4  
CK#  
DK1#  
LBK#  
DK1  
CK  
X
X
X
X
X
X
X
X
1
input  
input  
M11  
L12  
L10  
K9  
internal  
input  
input  
input  
K11  
J13  
J11  
J9  
input  
input  
input  
X
X
input  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 46 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
Datasheet  
Safe  
Bit  
X
X
X
X
X
0
Cntrl  
Cell  
Cntrl  
Cntrl  
x36  
Cell #  
Cell  
Pin Name  
TYPE  
Value  
State  
H10  
H12  
G11  
G9  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
BC_7  
BC_2  
A5_A6  
input  
input  
DM_RST#  
DNU1(3)  
internal  
internal  
internal  
control  
bidir  
DNU1(4)  
F10  
DNU1(5)  
*
F12  
E13  
E11  
E9  
DINV1  
X
0
64  
66  
68  
70  
72  
74  
0
0
0
0
0
0
Z
Z
Z
Z
Z
Z
*
control  
bidir  
DQ3  
X
0
*
control  
bidir  
DQ1  
X
0
*
control  
bidir  
DQ17  
X
0
*
control  
bidir  
D10  
DQ15  
X
0
*
control  
bidir  
D12  
C13  
DQ5  
X
X
0
QK0#  
output2  
control  
bidir  
*
C11  
C9  
DQ7  
X
0
77  
79  
81  
83  
0
0
0
0
Z
Z
Z
Z
*
control  
bidir  
DQ13  
X
0
*
DQ11  
*
control  
bidir  
B10  
X
0
control  
bidir  
B12  
A13  
DQ8  
QK0  
*
X
X
0
output2  
control  
bidir  
B4  
DQ6  
*
X
0
86  
88  
0
0
Z
Z
control  
bidir  
B2  
C1  
DQ9  
QVLD  
*
X
X
0
output2  
control  
bidir  
C3  
C5  
D4  
D2  
DQ10  
*
X
0
91  
93  
95  
97  
0
0
0
0
Z
Z
Z
Z
Z
control  
bidir  
DQ4  
*
X
0
control  
bidir  
DQ2  
*
X
0
control  
bidir  
DQ12  
*
X
0
control  
E1  
E3  
100  
BC_7  
DQ16  
bidir  
X
99  
0
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
BC_2  
BC_7  
BC_2  
BC_7  
BC_1  
BC_2  
BC_7  
BC_1  
BC_1  
BC_1  
BC_1  
BC_1  
*
DQ14  
*
control  
bidir  
0
X
0
101  
103  
0
0
Z
Z
control  
bidir  
E5  
F4  
DQ0  
X
X
0
DNU1(6)  
*
internal  
control  
bidir  
F2  
G3  
G5  
H4  
H2  
J1  
DINV0  
DNU1(7)  
DNU1(8)  
A6_A5  
RST#_DM  
MF  
X
X
X
X
X
X
106  
0
Z
internal  
internal  
input  
input  
input  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 47 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
4.4 JTAG Instructions  
Datasheet  
Many different instructions (28) are possible with the 8-bit instruction register. All used combinations are listed in Table  
4-11, Instruction Codes. These six instructions are described in detail below. The remaining instructions are reserved and  
should not be used.  
The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP  
controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state,  
instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is  
shifted in, the TAP controller needs to be moved into the Update-IR state.  
Table 4-11  
Instructions  
Instruction  
Code [7:0]  
Description  
EXTEST  
0000 0000  
The EXTEST instruction allows circuitry external to the component package to be tested.  
Boundary-scan register cells at output pins are used to apply test vectors, while those  
at input pins capture test results. Typically, the first test vector to be applied using the  
EXTEST instruction will be shifted into the boundary scan register using the PRELOAD  
instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on  
and the PRELOAD data is driven onto the output pins.  
IDCODE  
0010 0001  
0000 0101  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the  
controller is in capture-DR mode and places the ID register between the TDI and TDO  
pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at  
power up and any time the controller is placed in the test-logic-reset state.  
SAMPLE / PRELOAD  
SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the  
SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP  
controller into the capture-DR state loads the data in the RAMs input and Q pins into the  
boundary scan register. Because the RAM clock(s) are independent from the TAP clock  
(TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample  
metastable input will not harm the device, repeatable results cannot be expected. RAM  
input signals must be stabilized for long enough to meet the TAPs input data capture  
setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan  
register. Moving the controller to shift-DR state then places the boundary scan register  
between the TDI and TDO pins.  
CLAMP  
0000 0111  
0000 0011  
1111 1111  
When the CLAMP instruction is loaded into the instruction register, the data driven by  
the output balls are determined from the values held in the boundary scan register.  
Selects the bypass register to be connected between TDI and TDO. Data driven by  
output balls are determined from values held in the boundary scan register.  
High-Z  
The High-Z instruction causes the boundary scan register to be connected between the  
TDI and TDO. This places all RAMs outputs into a High-Z state.  
Selects the bypass register to be connected between TDI and TDO. All outputs are  
forced into high impedance state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register, the bypass register  
is placed between TDI and TDO. This occurs when the TAP controller is moved to the  
shift-DR state. This allows the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
Reserved for Future Use  
The remaining instructions are not implemented but are reserved for future use. Do not  
use these instructions.  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 48 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
4.5 TAP Controller State Diagram  
Datasheet  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 49 of 51  
RMHE41A184AGBG, RMHE41A364AGBG  
5.Package Drawing  
Datasheet  
180-PIN FCBGA (18.5 x 14)  
JEITA Package Code  
RENESAS Code  
PLBG0180FA-A  
Previous Code  
MASS (TYP.) [g]  
P-LBGA180-14x18.5-1.00  
T180F5-100-FE1  
0.61  
R10DS0250EJ0100 Rev. 1.00  
Jun. 19, 2015  
Page 50 of 51  
Revision History  
RMHE41A184AGBG, RMHE41A364AGBG  
Description  
Summary  
Rev.  
Date  
Page  
Rev. 0.01  
Rev. 0.02  
’14.10.01  
’15.04.01  
-
-
New Preliminary Datasheet  
Fixed some typo  
50  
-
Added Package drawing  
New Datasheet  
Rev. 1.00  
’15.06.19  
All trademarks and registered trademarks are the property of their respective owners.  
C - 51  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the  
use of these circuits, software, or information.  
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics  
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.  
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or  
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or  
third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.  
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on  
the product's quality grade, as indicated below.  
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; and industrial robots etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.  
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical  
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it  
in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses  
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.  
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage  
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the  
use of Renesas Electronics products beyond such specified ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and  
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,  
please evaluate the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics  
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes  
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.  
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or  
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the  
development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and  
regulations and follow the procedures required by such laws and regulations.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the  
contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics  
products.  
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.  
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Colophon 5.0  

相关型号:

RMHE41A364AGBG

1.1G-BIT Low Latency DRAM-III Common I/O Burst Length of 4
RENESAS

RMIK0-55S

MIL Series Connector, 55 Contact(s), Polyethylene, Female, Crimp Terminal, Receptacle, ROHS COMPLIANT
ITT

RMIK0-55SH001

MIL Series Connector
ITT

RMIK0-55SH003

MIL Series Connector
ITT

RMIK0-55SH004

MIL Series Connector
ITT

RMIK0-55SH005

MIL Series Connector
ITT

RMIK0-55SH006

MIL Series Connector
ITT

RMIK0-55SH010

MIL Series Connector
ITT

RMIK0-55SH011

MIL Series Connector
ITT

RMIK0-55SH013

MIL Series Connector
ITT

RMIK0-55SH019

MIL Series Connector
ITT

RMIK0-55SH020

MIL Series Connector
ITT