UPC8172TK-E2 [RENESAS]

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PDSO6, LEAD FREE, MINIMOLD, LEADLESS-6;
UPC8172TK-E2
型号: UPC8172TK-E2
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PDSO6, LEAD FREE, MINIMOLD, LEADLESS-6

局域网 蜂窝 射频 微波 光电二极管
文件: 总35页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
µPC8172TK  
SMALL PACKAGE FREQUENCY UP-CONVERTER IC  
DESCRIPTION  
The µPC8172TK is a silicon monolithic integrated circuit designed as frequency up-converter for cellular telephone  
transmitter stage.  
This TK suffix IC which is smaller package than conventional TB suffix IC contribute to reduce your system size.  
This IC is manufactured using our 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process.  
FEATURES  
High output frequency  
Circuit current  
: fRFout = 0.8 to 2.5 GHz  
: ICC = 9.0 mA TYP.  
High-density surface mounting : 6-pin lead-less minimold package  
Supply voltage : VCC = 2.7 to 3.3 V  
APPLICAIONS  
PCS1900M  
2.4 GHz band transmitter/receiver system (wireless LAN etc.)  
RF module etc.  
ORDERING INFORMATION  
Part Number  
Order Number  
Package  
Marking  
6A  
Supplying Form  
µ PC8172TK-E2 µ PC8172TK-E2-A 6-pin lead-less minimold  
• Embossed tape 8 mm wide  
• Pin 1, 6 face the perforation side of the tape  
• Qty 5 kpcs/reel  
(1511) (Pb-Free)Note  
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact  
your nearby sales office.  
Remark To order evaluation samples, contact your nearby sales office.  
Part number for sample order: µPC8172TK  
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.  
The information in this document is subject to change without notice. Before using this document, please confirm that  
this is the latest version.  
Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices  
representative for availability and additional information.  
Document No. PU10407EJ02V0DS (2nd edition)  
Date Published December 2004 CP(K)  
The mark  shows major revised points.  
Printed in Japan  
NEC Compound Semiconductor Devices, Ltd. 2003, 2004  
µPC8172TK  
CONTENTS  
1. PIN CONNECTIONS........................................................................................................................  
2. PRODUCT LINE-UP ........................................................................................................................  
3. BLOCK DIAGRAM...........................................................................................................................  
4. SYSTEM APPLICATION EXAMPLE..............................................................................................  
5. PIN EXPLANATION.........................................................................................................................  
6. ABSOLUTE MAXIMUM RATINGS.................................................................................................  
7. RECOMMENDED OPERATING RANGE.......................................................................................  
8. ELECTRICAL CHARACTERISTICS ...............................................................................................  
9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY ....................................  
3
3
4
4
5
6
6
6
7
10. TEST CIRCUIT ...............................................................................................................................  
10.1 TEST CIRCUIT 1 (fRFout = 0.9 GHz) .....................................................................................  
8
8
10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz) ..................................................................................... 10  
10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz) ..................................................................................... 12  
11. TYPICAL CHARACTERISTICS..................................................................................................... 14  
11.1 fRFout = 900 MHz MATCHING.................................................................................................. 15  
11.2 fRFout = 1 900 MHz MATCHING............................................................................................... 19  
11.3 fRFout = 1 950 MHz MATCHING............................................................................................... 23  
11.4 fRFout = 2 400 MHz MATCHING............................................................................................... 25  
12. S-PARAMETERS ............................................................................................................................ 29  
13. PACKAGE DIMENSIONS .............................................................................................................. 30  
14. NOTE ON CORRECT USE .......................................................................................................... 31  
15. RECOMMENDED SOLDERING CONDITIONS............................................................................ 31  
2
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
1. PIN CONNECTIONS  
Pin No.  
Pin Name  
IFinput  
GND  
(Top View)  
(Bottom View)  
1
2
3
4
5
6
1
2
3
6
5
4
6
5
4
1
2
3
LOinput  
PS  
VCC  
RFoutput  
Caution Pin arrangement differs from the conventional 6-pin super mini-mold type (µPC8172TB).  
2. PRODUCT LINE-UP  
CG (dB)  
ICC  
fRFout  
Part No.  
Package  
@RF0.9 (GHz)Note  
(mA)  
(GHz)  
@RF1.9 (GHz)  
@RF2.4 (GHz)  
µPC8172TK  
µPC8106TB  
µPC8109TB  
µPC8163TB  
µPC8172TB  
µPC8187TB  
6-pin lead-less minimold  
6-pin super minimold  
(1511)  
9.0  
9.0  
0.8 to 2.5  
0.4 to 2.0  
0.4 to 2.0  
0.8 to 2.0  
0.8 to 2.5  
0.8 to 2.5  
9.5  
9.0  
6.0  
9.0  
9.5  
11.0  
8.5  
7.0  
4.0  
5.5  
8.5  
11.0  
8.0  
5.0  
16.5  
9.0  
8.0  
10.0  
15.0  
PO (sat) (dBm)  
OIP3 (dBm)  
Part No.  
@RF0.9 (GHz)Note  
@RF0.9 (GHz)Note @RF1.9 (GHz)  
@RF2.4 (GHz)  
@RF1.9 (GHz)  
+6.0  
@RF2.4 (GHz)  
µPC8172TK  
µPC8106TB  
µPC8109TB  
µPC8163TB  
µPC8172TB  
µPC8187TB  
+0.5  
2.0  
5.5  
+0.5  
+0.5  
+4.0  
0
0.5  
+7.5  
+5.5  
+1.5  
+9.5  
+7.5  
+10.0  
+4.0  
4.0  
7.5  
2.0  
0
+2.0  
1.0  
+6.0  
0.5  
+1.0  
+6.0  
+4.0  
+8.5  
+2.5  
+10.0  
Note fRFout = 0.83 GHz@ µPC8163TB, µPC8187TB  
Remarks 1. Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.  
2. To know the associated product, please refer to each latest data sheet.  
3
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
3. BLOCK DIAGRAM  
µ
PC8172TK  
Conventional  
µ
PC8172TB  
(Top View)  
(Top View)  
IFinput  
GND  
RFoutput  
LOinput  
GND  
PS  
VCC  
VCC  
LOinput  
PS  
IFinput  
RFoutput  
4. SYSTEM APPLICATION EXAMPLE  
Low Noise Tr  
RX  
I
Q
DEMO.  
PLL  
VCO  
N
÷
SW  
PLL  
I
0˚  
Phase  
shifter  
TX  
90˚  
PA  
Q
µ
PC8172TK  
Caution To know the associated products, please refer to each latest data sheet.  
4
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
5. PIN EXPLANATION  
Applied  
Pin  
Pin No. Pin Name  
Voltage  
(V)  
Voltage  
(V) Note  
Function and Applications  
Internal Equivalent Circuit  
1
IFinput  
1.3  
This pin is IF input to double  
balanced mixer (DBM). The input  
is designed as high impedance.  
The circuit contributes to suppress  
spurious signal. Also this  
symmetrical circuit can keep  
specified performance insensitive  
to process-condition distribution.  
For above reason, double  
5
6
balanced mixer is adopted.  
2
3
GND  
GND  
GND pin.  
3
Ground pattern on the board  
should be formed as wide as  
possible. Track Length should be  
kept as short as possible to  
minimize ground impedance.  
1
LOinput  
2.4  
Local input pin.  
Recommendable input level is  
–10 to 0 dBm.  
2
5
6
VCC  
2.7 to 3.3  
Supply voltage pin.  
RFoutput Same bias  
as VCC  
This pin is RF output from DBM.  
This pin is designed as open  
collector. Due to the high  
through  
external  
impedance output, this pin should  
be externally equipped with LC  
matching circuit to next stage.  
inductor  
V
CC  
5
2
4
PS  
VCC/GND  
Power save control pin.  
Bias controls operation as follows.  
Pin bias  
VCC  
Control  
Operation  
Power Save  
4
GND  
GND  
Note Each pin voltage is measured with VCC = VPS = VRFout = 3.0 V  
5
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
6. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Supply Voltage  
Symbol  
VCC  
VPS  
PD  
Test Conditions  
Ratings  
3.6  
Unit  
V
TA = +25°C  
TA = +25°C  
TA = +85°C  
PS pin input Voltage  
3.6  
V
Power Dissipation of Package  
Operating Ambient Temperature  
Storage Temperature  
Input Power  
Note  
203  
mW  
°C  
TA  
40 to +85  
55 to +150  
+10  
Tstg  
°C  
Pin  
dBm  
Note Mounted on double-side copper-clad 50 × 50 × 1.6 mm epoxy glass PWB  
7. RECOMMENDED OPERATING RANGE  
Parameter  
Supply Voltage  
Symbol  
MIN.  
2.7  
TYP.  
3.0  
MAX.  
3.3  
Unit  
V
Remarks  
VCC  
Same voltage should be applied  
to pin 5 and pin 6.  
Operating Ambient Temperature  
Local Input Level  
TA  
40  
10  
0.8  
50  
+25  
5  
+85  
0
°C  
PLOin  
fRFout  
fIFin  
dBm  
GHz  
MHz  
ZS = 50 (without matching)  
RF Output Frequency  
IF Input Frequency  
2.5  
600  
With external matching circuit  
8. ELECTRICAL CHARACTERISTICS (TA = +25°C, VCC = VRFout = 3.0 V, fIFin = 240 MHz, PLOin = 5  
dBm, and VPS 2.7 V, unless otherwise specified)  
Parameter  
Symbol  
ICC  
Test Conditions  
MIN.  
5.5  
TYP.  
9.0  
MAX.  
13  
Unit  
mA  
µA  
Circuit Current  
No signal  
VPS = 0 V  
Circuit Current In  
Power Save Mode  
ICC (PS)  
2.0  
Conversion Gain  
CG1  
CG2  
fRFout = 0.9 GHz Note1  
fRFout = 1.9 GHz Note2  
fRFout = 2.4 GHz Note2  
fRFout = 0.9 GHz Note1  
fRFout = 1.9 GHz Note2  
fRFout = 2.4 GHz Note2  
6.5  
5.5  
9.5  
8.5  
8.0  
+0.5  
0
12.5  
11.5  
11.0  
dB  
dB  
PIFin = 30 dBm  
fIFin = 240 MHz  
CG3  
5.0  
dB  
Saturated RF output  
Power  
PO (sat) 1  
PO (sat) 2  
PO (sat) 3  
2.5  
3.5  
4.0  
dBm  
dBm  
dBm  
PIFin = 0 dBm  
fIFin = 240 MHz  
0.5  
Notes 1. fRFout < fLOin @ fRFout = 0.9 GHz  
2. fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz  
6
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
9. OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY  
(TA = +25°C, VCC = VRFout = 3.0 V, PLOin = 5 dBm, and VPS 2.7 V, unless otherwise specified)  
Parameter  
Symbol  
OIP31  
OIP32  
OIP33  
IIP31  
Test Conditions  
Data  
+7.5  
+6.0  
+4.0  
2.0  
2.5  
4.0  
9.5  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
fRFout = 0.9 GHz Note1  
fRFout = 1.9 GHz Note2  
fRFout = 2.4 GHz Note2  
fRFout = 0.9 GHz Note1  
fRFout = 1.9 GHz Note2  
fRFout = 2.4 GHz Note2  
Output 3rd Order Distortion  
Intercept Point  
fIFin1 = 240 MHz  
fIFin2 = 241 MHz  
Input 3rd Order Distortion Intercept  
Point  
fIFin1 = 240 MHz  
fIFin2 = 241 MHz  
IIP32  
IIP33  
SSB Noize Figure  
SSBNF1 fRFout = 0.9 GHz, fIFin = 240 MHz  
SSBNF2 fRFout = 1.9 GHz, fIFin = 240 MHz  
SSBNF3 fRFout = 2.4 GHz, fIFin = 240 MHz  
10.4  
10.6  
1.0  
dB  
dB  
Power Save  
Rise time  
Fall time  
TPS (rise)  
VPS : GND VCC  
VPS : VCC GND  
µs  
Response Time  
TPS (fall)  
1.5  
µs  
Notes1. fRFout < fLOin @ fRFout = 0.9 GHz  
2. fLOin < fRFout @ fRFout = 1.9 GHz/2.4 GHz  
7
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
10. TEST CIRCUIT  
10.1 TEST CIRCUIT 1 (fRFout = 0.9 GHz)  
Strip Line : 8 mm  
Spectrum Analyzer  
50 Ω  
Signal Generator  
100 pF  
100 pF  
1 pF  
1
2
3
6
5
4
IFin  
RFout  
50 Ω  
10 nH  
GND  
LOin  
V
CC  
Signal Generator  
100 pF  
1 000 pF  
PS  
50 Ω  
1 000 pF  
VCC  
1 F  
µ
µ
1 F  
68 pF  
8
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD  
L
1
C
8
C
3
µ
PC8172TK  
C
1
IF input  
RF output  
C
5
C
7
C
6
GND  
C
2
C
4
PS  
LO input  
C
9
V
CC  
COMPONENT LIST  
Form  
Symbol  
Value  
100 pF  
1 000 pF  
1 µF  
Type code  
Maker  
(1) 35 × 42 × 0.4 mm polyimide board,  
double-sided copper clad  
Chip capacitor  
C1, C2 ,C3  
GRM39CH101J50PT  
GRM39B102K50PT  
murata  
murata  
murata  
murata  
murata  
murata  
(2) Ground pattern on rear of the board  
(3) Solder plated patterns  
C4  
C5 ,C6  
C7  
GRM39F105Z10PT  
(4)  
: Through holes  
68 pF  
GRM39CH680J50PT  
GRM39CH010C50PT  
DFT301-801 × 7R102S50  
C8  
1 pF  
Feed-through  
Capacitor  
C9  
1 000 pF  
Chip inductor  
L1  
10 nH  
LL1608-F10N  
TOKO  
9
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
10.2 TEST CIRCUIT 2 (fRFout = 1.9 GHz)  
Strip Line : 12 mm  
Strip Line : 5 mm  
Spectrum Analyzer  
50 Ω  
Signal Generator  
100 pF  
100 pF  
1
2
3
6
5
4
IFin  
RFout  
50 Ω  
3 pF  
100 nH  
GND  
LOin  
V
CC  
Signal Generator  
100 pF  
1 000 pF  
PS  
50 Ω  
1 000 pF  
VCC  
1 000 pF 30 pF 1 000 pF  
10  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
EXAMPLE OF TEST CIRCUIT 2 ASSEMBLED ON EVALUATION BOARD  
L1  
C
8
C
3
µ
PC8172TK  
C
1
IF input  
RF output  
C
C
C
5
7
6
GND  
C
2
C
4
PS  
LO input  
C
9
V
CC  
COMPONENT LIST  
Form  
Symbol  
Value  
100 pF  
1 000 pF  
30 pF  
Type code  
Maker  
(1) 35 × 42 × 0.4 mm polyimide board,  
double-sided copper clad  
Chip capacitor  
C1, C2 ,C3  
GRM39CH101J50PT  
GRM39B102K50PT  
murata  
murata  
murata  
murata  
murata  
(2) Ground pattern on rear of the board  
(3) Solder plated patterns  
C4, C5, C6  
C7  
C8  
C9  
GRM39CH300J50PT  
GRM39CH030C50PT  
DFT301-801 × 7R102S50  
(4)  
: Through holes  
3 pF  
Feed-through  
Capacitor  
1 000 pF  
Chip inductor  
L1  
100 nH  
LL1608-FR10  
TOKO  
11  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
10.3 TEST CIRCUIT 3 (fRFout = 2.4 GHz)  
Strip Line : 8 mm  
Strip Line : 7 mm  
Spectrum Analyzer  
Signal Generator  
100 pF  
100 pF  
2 pF  
1
2
3
6
5
4
IFin  
RFout  
50 Ω  
50 Ω  
470 nH  
GND  
LOin  
V
CC  
Signal Generator  
100 pF  
1 000 pF  
PS  
50 Ω  
1 000 pF  
VCC  
1 000 pF 10 pF 1 000 pF  
12  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
EXAMPLE OF TEST CIRCUIT 3 ASSEMBLED ON EVALUATION BOARD  
L1  
C8  
C3  
µ
PC8172TK  
C
1
IF input  
RF output  
C5  
C7  
C6  
GND  
C
2
C4  
PS  
LO input  
C
9
VCC  
COMPONENT LIST  
Form  
Symbol  
Value  
100 pF  
1 000 pF  
10 pF  
Type code  
Maker  
(1) 35 × 42 × 0.4 mm polyimide board,  
double-sided copper clad  
Chip capacitor  
C1, C2 ,C3  
GRM39CH101J50PT  
GRM39B102K50PT  
murata  
murata  
murata  
murata  
murata  
(2) Ground pattern on rear of the board  
(3) Solder plated patterns  
C4, C5, C6  
C7  
C8  
C9  
GRM39CH100D50PT  
GRM39CH020C50PT  
DFT301-801 × 7R102S50  
(4)  
: Through holes  
2 pF  
Feed-through  
Capacitor  
1 000 pF  
Chip inductor  
L1  
470 nH  
LL2012-FR47  
TOKO  
13  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
11. TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)  
CIRCUIT CURRENT vs.  
CIRCUIT CURRENT vs. SUPPLY VOLTAGE  
OPERATING AMBIENT TEMPERATURE  
12  
12  
11  
10  
9
V
CC = 3.3 V  
10  
8
3.0 V  
T
A
= +85°C  
+25°C  
6
4
2
0
2.7 V  
–40°C  
8
7
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
–60 –40 –20  
0
20  
40  
60  
80 100  
Supply Voltage VCC (V)  
Operating Ambient Temperature T  
A
(°C)  
CIRCUIT CURRENT vs.  
PS PIN INPUT VOLTAGE  
12  
10  
8
VCC = 3.0 V, no signal  
6
4
2
0
0
1
2
3
4
PS Pin Input Voltage VPS (V)  
Remark The graphs indicate nominal characteristics.  
14  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
11.1 fRFout = 900 MHz MATCHING  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
10  
15  
VCC = 3.3 V  
VCC = 3.3 V  
3.0 V  
3.0 V  
5
0
10  
5
2.7 V  
2.7 V  
–5  
0
–10  
–15  
–20  
–25  
–5  
fRFout = 900 MHz  
fRFout = 900 MHz  
fIFin = 240 MHz  
fLOin = 1 140 MHz  
PLOin = –5 dBm  
fIFin = 240 MHz  
fLOin = 1 140 MHz  
PIFin = –30 dBm  
–10  
–15  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
Local Input Level PLOin (dBm)  
IF Input Level PIFin (dBm)  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
10  
15  
TA = –40°C  
+25°C  
5
0
10  
TA = –40°C  
+25°C  
+85°C  
5
+85°C  
–5  
0
–10  
–15  
–20  
–25  
–5  
–10  
–15  
VCC = 3.0 V  
VCC = 3.0 V  
fRFout = 900 MHz  
fIFin = 240 MHz  
fLOin = 1 140 MHz  
PIFin = –30 dBm  
fRFout = 900 MHz  
fIFin = 240 MHz  
fLOin = 1 140 MHz  
PLOin = –5 dBm  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
Local Input Level PLOin (dBm)  
IF Input Level PIFin (dBm)  
PS PIN CONTROL RESPONSE TIME  
REF LVL = 0 dBm  
VCC = 3.0 V  
10 dB/DIV (vertical axis) fRFout = 0.9 GHz  
ATT = 10 dB  
fIFin = 240 MHz  
CENTER = 0.9 GHz  
SPAN = 0 Hz  
PIFin = –30 dBm  
fLOin = 1 140 MHz  
PLOin = –5 dBm  
RBW = 2 MHz  
VBW = 3 MHz  
µ
MKR –20.0 dBm,14.7  
s
µ
SWP = 50 sec  
5
µ
sec/DIN (horizontal axis)  
Response Time ( s)  
µ
Remark The graphs indicate nominal characteristics.  
15  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
out (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
f
f
f
f
A
= –40°C  
V
CC = 2.7 V  
CC = 3.0 V  
f
f
f
f
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
out (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
f
f
f
f
A
= +25°C  
CC = 3.0 V  
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
V
CC = 3.0 V  
f
f
f
f
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
out (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
A
= +85°C  
CC = 3.0 V  
V
CC = 3.3 V  
f
f
f
f
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
f
f
f
f
RFout = 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 140 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
Remark The graphs indicate nominal characteristics.  
16  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT LEVEL  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT LEVEL  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
CC = 2.7 V  
3.0 V  
3.3 V  
V
CC = 3.3 V  
f
f
f
RFout = 900 MHz  
IFin = 240 MHz  
LOin = 1 140 MHz  
f
f
RFout = 900 MHz  
LOin = 1 140 MHz  
3.0 V  
2.7 V  
RFout = 50 terminate  
P
IFin = –30 dBm  
–50  
–40  
–30  
–20  
–10  
0
–40  
–30  
–20 –10 0  
Local Input Level PLOin (dBm)  
Local Input Level PLOin (dBm)  
IF LEAKAGE AT RF PIN  
vs. IF INPUT POWER  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT FREQUENCY  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
V
CC = 3.3 V  
3.0 V  
f
f
f
RFout = 900 MHz  
IFin = 240 MHz  
LOin = 1 140 MHz  
V
f
P
CC = 3.0 V  
RFout = 900 MHz  
LOin = –5 dBm  
2.7 V  
P
LOin = –5 dBm  
RFport = 50 terminate  
–40  
–30  
–20  
–10  
0
0
500 1 000 1 500 2 000 2 500 3 000  
IF Input Power PIFin (dBm)  
Local Input Frequency fLOin (MHz)  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT FREQUENCY  
IF LEAKAGE AT RF PIN  
vs. IF INPUT FREQUENCY  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
V
f
P
f
CC = 3.0 V  
RFout = 900 MHz  
IFin = –30 dBm  
LOin = 1 140 MHz  
V
f
P
CC = 3.0 V  
RFout = 900 MHz  
LOin = –5 dBm  
PLOin = –5 dBm  
IFport = 50 terminate  
0
500 1 000 1 500 2 000 2 500 3 000  
0
100  
200  
300  
400 500  
Local Input Frequency fLOin (MHz)  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
17  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
CONVERSION GAIN vs.  
LOCAL INPUT FREQUENCY  
SSB NOISE FIGURE vs. SUPPLY VOLTAGE  
11.5  
13  
12  
11  
10  
9
11.0  
10.5  
10.0  
9.5  
VCC = 3.3 V  
3.0 V  
2.7 V  
8
f
f
P
RFout = 900 MHz  
IFin = 240 MHz  
IFin = –30 dBm  
LOin = –5 dBm  
7
f
f
P
RFout = 900 MHz  
LOin = 1 140 MHz  
LOin = –5 dBm  
9.0  
6
P
8.5  
5
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
1 050  
1 100  
1 150  
1 200  
1 250  
Supply Voltage VCC (V)  
Local Input Frequency fLOin (MHz)  
CONVERSION GAIN vs.  
IF INPUT FREQUENCY  
12  
11  
10  
9
V
CC = 3.3 V  
3.0 V  
2.7 V  
fRFout = 900 MHz  
P
P
IFin = –30 dBm  
LOin = –5 dBm  
8
0
100 200 300 400 500 600 700  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
18  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
11.2 fRFout = 1 900 MHz MATCHING  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
15  
10  
V
CC = 3.3 V  
5
10  
3.0 V  
V
CC = 3.3 V  
0
5
0
3.0 V  
2.7 V  
2.7 V  
–5  
–10  
–15  
–20  
–25  
–5  
f
f
f
RFout = 1 900 MHz  
IFin = 240 MHz  
LOin = 1 660 MHz  
LOin = –5 dBm  
f
f
f
RFout = 1 900 MHz  
IFin = 240 MHz  
LOin = 1 660 MHz  
IFin = –30 dBm  
–10  
P
P
–15  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
Local Input Level PLOin (dBm)  
IF Input Level PIFin (dBm)  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
15  
10  
TA  
= –40°C  
+25°C  
5
0
10  
5
TA  
= –40°C  
+25°C  
+85°C  
+85°C  
–5  
0
–10  
–15  
–20  
–25  
–5  
–10  
–15  
V
CC = 3.0 V  
V
CC = 3.0 V  
fRFout = 1 900 MHz  
fIFin = 240 MHz  
fLOin = 1 660 MHz  
fRFout = 1 900 MHz  
fIFin = 240 MHz  
fLOin = 1 660 MHz  
PIFin = –30 dBm  
PLOin = –5 dBm  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
IF Input Level PIFin (dBm)  
Local Input Level PLOin (dBm)  
PS PIN CONTROL RESPONSE TIME  
REF LVL = 0 dBm  
VCC = 3.0 V  
10 dB/DIV (vertical axis) fRFout = 1.9 GHz  
ATT = 10 dB  
f
IFin = 240 MHz  
IFin = –30 dBm  
LOin = 1 660 MHz  
PLOin = –5 dBm  
CENTER = 1.9 GHz  
SPAN = 0 Hz  
P
f
RBW = 2 MHz  
VBW = 3 MHz  
µ
MKR –21.0 dBm,17.9  
s
µ
SWP = 50 sec  
5
µ
sec/DIN (horizontal axis)  
Response Time ( s)  
µ
Remark The graphs indicate nominal characteristics.  
19  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM vs. IF INPUT LEVEL  
3
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
Pout (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
A
= –40°C  
V
CC = 2.7 V  
VCC = 3.0 V  
f
f
f
f
RFout = 1 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 660 MHz  
fRFout = 1 900 MHz  
fIFin1 = 240 MHz  
fIFin2 = 241 MHz  
fLOin = 1 660 MHz  
P
LOin = –5 dBm  
PLOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–20  
–10  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
out (des)  
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
Pout (undes)  
Pout (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
A
= +25°C  
V
CC = 3.0 V  
CC = 3.0 V  
f
f
f
f
RFout = 1 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 660 MHz  
f
f
f
f
RFout = 1 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 660 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
Pout (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
A
= +85°C  
V
CC = 3.3 V  
VCC = 3.0 V  
f
f
f
f
RFout = 1 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 660 MHz  
f
f
f
f
RFout = 1 900 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
LOin = 1 660 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–20  
–10  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
Remark The graphs indicate nominal characteristics.  
20  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT LEVEL  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT LEVEL  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
CC = 2.7 V  
3.0 V  
3.3 V  
V
CC = 3.3 V  
f
f
f
RFout = 1 900 MHz  
IFin = 240 MHz  
LOin = 1 660 MHz  
IFin = –30 dBm  
f
f
RFout = 1 900 MHz  
Loin = 1 660 MHz  
3.0 V  
2.7 V  
RFout = 50 terminate  
–20 –10 0  
P
–50  
–40  
–30  
–20  
–10  
0
–40  
–30  
Local Input Level PLOin (dBm)  
Local Input Level PLOin (dBm)  
IF LEAKAGE AT RF PIN  
vs. IF INPUT POWER  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT FREQUENCY  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
V
CC = 3.0 V  
V
CC = 3.3 V  
fRFout = 1 900 MHz  
3.0 V  
PLOin = –5 dBm  
RFport = 50 terminate  
2.7 V  
f
f
f
RFout = 1 900 MHz  
IFin = 240 MHz  
LOin = 1 660 MHz  
PLOin = –5 dBm  
–50  
–40  
–30  
–20  
–10  
0
0
500 1 000 1 500 2 000 2 500 3 000  
Local Input Frequency fLOin (MHz)  
IF Input Power PIFin (dBm)  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT FREQUENCY  
IF LEAKAGE AT RF PIN  
vs. IF INPUT FREQUENCY  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–25  
–30  
–35  
–40  
–45  
V
f
P
f
CC = 3.0 V  
RFout = 1 900 MHz  
IFin = –30 dBm  
LOin = 1 660 MHz  
LOin = –5 dBm  
V
f
P
CC = 3.0 V  
RFout = 1 900 MHz  
LOin = –5 dBm  
IFport = 50 terminate  
P
0
500 1 000 1 500 2 000 2 500 3 000  
Local Input Frequency fLOin (MHz)  
0
100  
200  
300  
400  
500  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
21  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
CONVERSION GAIN vs.  
LOCAL INPUT FREQUENCY  
SSB NOISE FIGURE vs. SUPPLY VOLTAGE  
11.5  
12  
11  
10  
9
f
f
P
P
RFout = 1 900 MHz  
IFin = 240 MHz  
IFin = –30 dBm  
LOin = –5 dBm  
11.0  
10.5  
10.0  
9.5  
VCC = 3.3 V  
3.0 V  
2.7 V  
8
f
f
RFout = 1 900 MHz  
IFin = 240 MHz  
7
P
f
P
IFin = –20 dBm  
LOin = 1 660 MHz  
LOin = –5 dBm  
9.0  
8.5  
6
5
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
1 550  
1 600  
1 650  
1 700  
1 800  
1 750  
Supply Voltage VCC (V)  
Local Input Frequency fLOin (MHz)  
CONVERSION GAIN vs. IF INPUT  
FREQUENCY (fLOin < fRFout  
CONVERSION GAIN vs. IF INPUT  
FREQUENCY (fLOin > fRFout  
)
)
11  
10  
9
11  
10  
9
V
CC = 3.3 V  
V
CC = 3.3 V  
3.0 V  
3.0 V  
2.7 V  
2.7 V  
8
8
fRFout = 1 900 MHz  
fRFout = 1 900 MHz  
P
P
IFin = –30 dBm  
LOin = –5 dBm  
P
P
IFin = –30 dBm  
LOin = –5 dBm  
7
7
0
100 200 300 400 500 600 700  
0
100 200 300 400 500 600 700  
IF Input Frequency fIFin (MHz)  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
22  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
11.3 fRFout = 1 950 MHz MATCHING  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
15  
5
V
CC = 3.3 V  
3.0 V  
V
CC = 3.3 V  
3.0 V  
10  
5
0
2.7 V  
–5  
2.7 V  
0
–10  
–15  
–20  
–25  
–5  
–10  
–15  
f
f
f
RFout = 1 950 MHz  
IFin = 570 MHz  
LOin = 2 520 MHz  
IFin = –30 dBm  
f
f
f
RFout = 1 950 MHz  
IFin = 570 MHz  
LOin = 2 520 MHz  
P
P
LOin = –5 dBm  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
Local Input Level PLOin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
1 948 MHz  
1 951 MHz  
1 949 MHz  
1 950 MHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1 949 MHz  
1 950 MHz  
1 951 MHz  
1 948 MHz  
V
CC = 2.7 V  
VCC = 3.0 V  
f
f
f
f
RFout = 1 950 MHz  
IFin1 = 570 MHz  
IFin2 = 571 MHz  
LOin = 2 520 MHz  
f
f
f
f
RFout = 1 950 MHz  
IFin1 = 570 MHz  
IFin2 = 571 MHz  
LOin = 2 520 MHz  
P
–10  
LOin = –5 dBm  
PLOin = –5 dBm  
–30  
–25  
–20  
–15  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
10  
0
V
CC = 2.7 V  
3.0 V  
–10  
1 948 MHz  
1 951 MHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1 949 MHz  
1 950 MHz  
3.3 V  
V
CC = 3.3 V  
f
f
f
f
RFout = 1 950 MHz  
IFin1 = 570 MHz  
IFin2 = 571 MHz  
LOin = 2 520 MHz  
f
LOin = 2 520 MHz  
P
LOin = –5 dBm  
–40 –35 –30 –25 –20 –15 –10 –5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
Local Input Level PLOin (dBm)  
Remark The graphs indicate nominal characteristics.  
23  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
IF LEAKAGE AT RF PIN  
vs. IF INPUT POWER  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT LEVEL  
–10  
–20  
–30  
–40  
–50  
–60  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
VCC = 3.3 V  
3.0 V  
VCC = 3.3 V  
3.0 V  
2.7 V  
2.7 V  
fIFin = 570 MHz  
fLOin = 2 520 MHz  
PLOin = –5 dBm  
fIFin = 570 MHz  
fLOin = 2 520 MHz  
PIF = –30 dBm  
–70  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5  
0
–40 –35 –30 –25 –20 –15 –10 –5  
0
IF Input Power PIFin (dBm)  
Local Input Level PLOin (dBm)  
CONVERSION GAIN vs.  
SSB NOISE FIGURE vs. SUPPLY VOLTAGE  
LOCAL INPUT FREQUENCY  
10.0  
10  
fIFin = 570 MHz  
PIFin = –30 dBm  
PLOin = –5 dBm  
VCC = 3.3 V  
3.0 V  
9.5  
9.0  
8.5  
8.0  
8
6
4
2
2.7 V  
fRFout = 1 950 MHz  
fLOin = 2 520 MHz  
PLOin = –5 dBm  
7.5  
0
7.0  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2 000  
2 200  
2 400  
2 600  
2 800  
3 000  
Supply Voltage VCC (V)  
Local Input Frequency fLOin (MHz)  
CONVERSION GAIN vs.  
IF INPUT FREQUENCY  
CONVERSION GAIN vs.  
IF INPUT FREQUENCY  
12  
11  
10  
9
10  
8
fRFout = 1 950 MHz  
PIFin = –30 dBm  
PLOin = –5 dBm  
VCC = 3.3 V  
3.0 V  
2.7 V  
6
8
4
VCC = 3.3 V  
3.0 V  
7
2
2.7 V  
fLOin = 2 520 MHz  
PIFin = –30 dBm  
PLOin = –5 dBm  
6
0
5
0
100 200 300 400 500 600 700  
IF Input Frequency fIFin (MHz)  
300  
400  
500  
600  
700  
800  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
24  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
11.4 fRFout = 2 400 MHz MATCHING  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
15  
10  
VCC = 3.3 V  
VCC = 3.3 V  
3.0 V  
5
0
10  
5
3.0 V  
2.7 V  
2.7 V  
–5  
0
–10  
–15  
–20  
–25  
–5  
fRFout = 2 400 MHz  
fRFout = 2 400 MHz  
fIFin = 240 MHz  
fLOin = 2 160 MHz  
PLOin = –5 dBm  
fIFin = 240 MHz  
fLOin = 2 160 MHz  
PIFin = –30 dBm  
–10  
–15  
–30 –25 –20 –15 –10 –5  
0
5
10  
–30 –25 –20 –15 –10 –5  
0
5
10  
Local Input Level PLOin (dBm)  
IF Input Level PIFin (dBm)  
CONVERSION GAIN vs. LOCAL INPUT LEVEL  
RF OUTPUT LEVEL vs. IF INPUT LEVEL  
15  
10  
TA = –40°C  
+25°C  
5
0
10  
TA = –40°C  
+25°C  
5
+85°C  
–5  
+85°C  
0
–10  
–15  
–20  
–25  
–5  
VCC = 3.0 V  
VCC = 3.0 V  
fRFout = 2 400 MHz  
fIFin = 240 MHz  
fLOin = 2 160 MHz  
fRFout = 2 400 MHz  
fIFin = 240 MHz  
fLOin = 2 160 MHz  
PLOin = –5 dBm  
–10  
PIFin = –30 dBm  
–30 –25 –20 –15 –10 –5  
Local Input Level PLOin (dBm)  
–15  
–30 –25 –20 –15 –10 –5  
0
5
10  
0
5
10  
IF Input Level PIFin (dBm)  
PS PIN CONTROL RESPONSE TIME  
REF LVL = 0 dBm  
VCC = 3.0 V  
10 dB/DIV (vertical axis) fRFout = 2.4 GHz  
ATT = 10 dB  
fIFin = 240 MHz  
CENTER = 2.4 GHz  
SPAN = 0 Hz  
PIFin = –30 dBm  
fLOin = 2 160 MHz  
PLOin = –5 dBm  
RBW = 2 MHz  
VBW = 3 MHz  
µ
MKR –21.5 dBm,13.8  
s
µ
SWP = 50 sec  
sec/DIN (horizontal axis)  
5
µ
Response Time ( s)  
µ
Remark The graphs indicate nominal characteristics.  
25  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM vs. IF INPUT LEVEL  
3
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
IM3 (des)  
out (undes)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
A
= –40°C  
V
CC = 2.7 V  
CC = 3.0 V  
f
f
f
f
RFout = 2 400 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
Loin = 2 160 MHz  
fRFout = 2 400 MHz  
fIFin1 = 240 MHz  
fIFin2 = 241 MHz  
fLoin = 2 160 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
out (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
f
f
f
f
A
= +25°C  
CC = 3.0 V  
RFout = 2 400 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
Loin = 2 160 MHz  
V
CC = 3.0 V  
f
f
f
f
RFout = 2 400 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
Loin = 2 160 MHz  
P
LOin = –5 dBm  
P
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
RF OUTPUT LEVEL, IM  
3
vs. IF INPUT LEVEL  
10  
10  
0
0
–10  
–10  
P
P
out (des)  
P
P
out (des)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
out (undes)  
out (undes)  
IM3 (des)  
IM3 (des)  
IM3 (undes)  
IM3 (undes)  
T
V
f
f
f
f
A
= +85°C  
CC = 3.0 V  
RFout = 2 400 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
Loin = 2 160 MHz  
V
CC = 3.3 V  
f
f
f
f
RFout = 2 400 MHz  
IFin1 = 240 MHz  
IFin2 = 241 MHz  
Loin = 2 160 MHz  
P
LOin = –5 dBm  
P
–10  
LOin = –5 dBm  
–30  
–25  
–20  
–15  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
IF Input Level PIFin (dBm)  
IF Input Level PIFin (dBm)  
Remark The graphs indicate nominal characteristics.  
26  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT LEVEL  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT LEVEL  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
CC = 2.7 V  
3.0 V  
3.3 V  
V
CC = 3.3 V  
f
f
f
RFout = 2 400 MHz  
IFin = 240 MHz  
LOin = 2 160 MHz  
IFin = –30 dBm  
f
f
RFout = 2 400 MHz  
LOin = 2 160 MHz  
3.0 V  
2.7 V  
P
RFout = 50 terminate  
–20 –10  
–40  
–30  
0
–50  
–40  
–30  
–20  
–10  
0
Local Input Level PLOin (dBm)  
Local Input Level PLOin (dBm)  
IF LEAKAGE AT RF PIN  
vs. IF INPUT POWER  
LOCAL LEAKAGE AT IF PIN  
vs. LOCAL INPUT FREQUENCY  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
CC = 3.0 V  
V
CC = 3.3 V  
fRFout = 2 400 MHz  
2.7 V  
PLOin = –5 dBm  
RFport = 50terminate  
3.0 V  
f
f
f
RFout = 2 400 MHz  
IFin = 240 MHz  
LOin = 2 160 MHz  
P
LOin = –5 dBm  
0
500 1 000 1 500 2 000 2 500 3 000  
Local Input Frequency fLOin (MHz)  
–50  
–40  
–30  
–20  
–10  
0
IF Input Power PIFin (dBm)  
LOCAL LEAKAGE AT RF PIN  
vs. LOCAL INPUT FREQUENCY  
IF LEAKAGE AT RF PIN  
vs. IF INPUT FREQUENCY  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–25  
–30  
–35  
–40  
–45  
V
f
P
f
CC = 3.0 V  
RFout = 2 400 MHz  
IFin = –30 dBm  
LOin = 2 160 MHz  
LOin = –5 dBm  
V
CC = 3.0 V  
f
P
RFout = 2 400 MHz  
LOin = –5 dBm  
IFport = 50 terminate  
P
0
500 1 000 1 500 2 000 2 500 3 000  
Local Input Frequency fLOin (MHz)  
0
100  
200  
300  
400  
500  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
27  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
CONVERSION GAIN vs.  
LOCAL INPUT FREQUENCY  
SSB NOISE FIGURE vs. SUPPLY VOLTAGE  
12.5  
12  
11  
10  
9
f
f
P
P
RFout = 2 400 MHz  
IFin = 240 MHz  
IFin = –30 dBm  
LOin = –5 dBm  
12.0  
11.5  
11.0  
10.5  
8
V
CC = 3.3 V  
3.0 V  
2.7 V  
7
10.0  
f
f
RFout = 2 400 MHz  
LOin = 2 160 MHz  
6
P
LOin = –5 dBm  
9.5  
5
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2 050  
2 100  
2 150  
2 200  
2 250  
Supply Voltage VCC (V)  
Local Input Frequency fLOin (MHz)  
CONVERSION GAIN vs.  
IF INPUT FREQUENCY  
11  
10  
9
f
P
P
RFout = 2 400 MHz  
IFin = –30 dBm  
LOin = –5 dBm  
VCC = 3.3 V  
3.0 V  
8
2.7 V  
7
0
100 200 300 400 500 600 700  
IF Input Frequency fIFin (MHz)  
Remark The graphs indicate nominal characteristics.  
28  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
12. S-PARAMETERS  
RF port Inpedance (at L loaded)  
LO port Inpedance (at L loaded)  
CH1 B22 1 U FB B : 22.96 –107.45 617.19 fF  
CH1 B11 1 U FB B : 17.816 –49.146 1.3493 pF  
2 400.000 000 MHz  
2 400.000 000 MHz  
1: 63.672 Ω  
275.47 Ω  
900 MHz  
1: 45.734 Ω  
136.26 Ω  
900 MHz  
2: 28.953 Ω  
141.21 Ω  
1.90 Hz  
2: 22.445 Ω  
85.655 Ω  
1.90 Hz  
MARKER 3  
2.4 GHz  
MARKER 3  
2.4 GHz  
1
3
1
3
2
2
START 100.000 000 MHz  
STOP 3 100.000 000 MHz  
START 100.000 000 MHz  
STOP 3 100.000 000 MHz  
IF port Inpedance (at L loaded)  
CH1 B11 1 U FB B : 25.383 –96.613 672.47 fF  
2 400.000 000 MHz  
1: 66.539 Ω  
236.11 Ω  
900 MHz  
2: 34.626 Ω  
121.79 Ω  
1.90 Hz  
MARKER 3  
2.4 GHz  
1
3
2
START 100.000 000 MHz  
STOP 3 100.000 000 MHz  
29  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
13. PACKAGE DIMENSIONS  
6-PIN LEAD-LESS MINIMOLD (1511) (UNIT: mm)  
(Top View)  
(Bottom View)  
1.1 0.1  
0.2 0.1  
0.9 0.1  
1.3 0.05  
Remark ( ) : Reference value  
30  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
14. NOTES ON CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).  
(3) Connect a bypass capacitor (example : 1 000 pF) to the VCC pin.  
(4) Connect a matching circuit to the RF output pin.  
(5) The DC cut capacitor must be attached to input and output pin.  
15. RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered and mounted under the following recommended conditions. For soldering  
methods and conditions other than those recommended below, contact your nearby sales office.  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Condition Symbol  
IR260  
Peak temperature (package surface temperature)  
Time at peak temperature  
: 260°C or below  
: 10 seconds or less  
: 60 seconds or less  
: 120 30 seconds  
: 3 times  
Time at temperature of 220°C or higher  
Preheating time at 120 to 180°C  
Maximum number of reflow processes  
Maximum chlorine content of rosin flux (% mass)  
: 0.2%(Wt.) or below  
Wave Soldering  
Partial Heating  
Peak temperature (molten solder temperature)  
Time at peak temperature  
: 260°C or below  
: 10 seconds or less  
WS260  
HS350  
Preheating temperature (package surface temperature) : 120°C or below  
Maximum number of flow processes  
: 1 time  
Maximum chlorine content of rosin flux (% mass)  
: 0.2%(Wt.) or below  
Peak temperature (terminal temperature)  
Soldering time (per side of device)  
: 350°C or below  
: 3 seconds or less  
: 0.2%(Wt.) or below  
Maximum chlorine content of rosin flux (% mass)  
Caution Do not use different soldering methods together (except for partial heating).  
31  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority  
having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license.  
The information in this document is current as of December, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd.  
and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4-0110  
32  
Data Sheet PU10407EJ02V0DS  
µPC8172TK  
For further information, please contact  
NEC Compound Semiconductor Devices, Ltd.  
http://www.ncsd.necel.com/  
E-mail: salesinfo@ml.ncsd.necel.com (sales and general)  
techinfo@ml.ncsd.necel.com (technical)  
Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579  
NEC Compound Semiconductor Devices Hong Kong Limited  
E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)  
TEL: +852-3107-7303  
TEL: +886-2-8712-0478 FAX: +886-2-2545-3859  
TEL: +82-2-558-2120  
FAX: +82-2-558-5209  
FAX: +852-3107-7309  
Hong Kong Head Office  
Taipei Branch Office  
Korea Branch Office  
NEC Electronics (Europe) GmbH  
http://www.ee.nec.de/  
TEL: +49-211-6503-0 FAX: +49-211-6503-1327  
California Eastern Laboratories, Inc.  
TEL: +1-408-988-3500 FAX: +1-408-988-0279  
http://www.cel.com/  
0406  

相关型号:

UPC8172TK-E2-A

Double Balanced Mixer, LEAD FREE, MINIMOLD, LEADLESS-6
NEC

UPC8172TK-E2-A

UPC8172TK-E2-A
RENESAS

UPC8178TB

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC

UPC8178TB

SILICON RFIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
CEL

UPC8178TB-A

Wide Band Low Power Amplifier, 100MHz Min, 2400MHz Max, SUPER MINIMOLD, 6 PIN
NEC

UPC8178TB-E3

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC

UPC8178TB-E3-A

SILICON RFIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
CEL

UPC8178TK

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC

UPC8178TK-A

Wide Band Low Power Amplifier, 100MHz Min, 2400MHz Max, LEADLESS MINIMOLD PACKAGE-6
NEC

UPC8178TK-E2

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC

UPC8178TK-E2-A

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC

UPC8179

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS
NEC