UPD44164365AF5-E40-EQ2-A [RENESAS]

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165;
UPD44164365AF5-E40-EQ2-A
型号: UPD44164365AF5-E40-EQ2-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

双倍数据速率 静态存储器 内存集成电路
文件: 总42页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
18M-BIT DDRII SRAM SEPARATE I/O  
2-WORD BURST OPERATION  
Description  
The μPD44164085A-A is a 2,097,152-word by 8-bit, the μPD44164095A-A is a 2,097,152-word by 9-bit, the  
μPD44164185A-A is a 1,048,576-word by 18-bit and the μPD44164365A-A is a 524,288-word by 36-bit synchronous  
double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD44164085A-A, μPD44164095A-A, μPD44164185A-A and μPD44164365A-A integrate unique synchronous  
peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the  
positive edge of K and K#.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply  
165-pin PLASTIC BGA package (13 x 15)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports  
DDR read or write operation initiated each cycle  
Pipelined double data rate operation  
Separate data input/output bus  
Two-tick burst for low DDR transaction size  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two output clocks (C and C#) for precise flight time and clock skew matching-clock  
and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 1,024 cycles after clock is resumed.  
User programmable impedance output  
Fast clock cycle time : 3.3 ns (300 MHz), 3.7 ns (270 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
Operating ambient temperature: Commercial TA = 0 to +70°C  
(-E33, -E37, -E40, -E50)  
Industrial TA = –40 to +85°C (-E37Y, -E40Y, -E50Y)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M19868EJ1V0DS00 (1st edition)  
Date Published July 2009  
Printed in Japan  
2009  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Ordering Information  
(1) Operating Ambient Temperature TA = 0 to +70°C  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization  
(word x bit)  
Package  
Operating  
Ambient  
Temperature  
μPD44164085AF5-E33-EQ2-A  
μPD44164085AF5-E40-EQ2-A  
μPD44164085AF5-E50-EQ2-A  
μPD44164095AF5-E33-EQ2-A  
μPD44164095AF5-E40-EQ2-A  
μPD44164095AF5-E50-EQ2-A  
μPD44164185AF5-E33-EQ2-A  
μPD44164185AF5-E37-EQ2-A  
μPD44164185AF5-E40-EQ2-A  
μPD44164185AF5-E50-EQ2-A  
μPD44164365AF5-E33-EQ2-A  
μPD44164365AF5-E40-EQ2-A  
μPD44164365AF5-E50-EQ2-A  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
3.7  
4.0  
5.0  
3.3  
4.0  
5.0  
300  
250  
200  
300  
250  
200  
300  
270  
250  
200  
300  
250  
200  
2M x 8-bit  
2M x 9-bit  
1M x 18-bit  
165-pin PLASTIC  
BGA (13 x 15)  
Commercial  
(TA = 0 to +70°C)  
Lead-free  
512K x 36-bit  
Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.  
The footprint is commonly used.  
2. Products with -A at the end of the part number are lead-free products.  
2
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
(2) Operating Ambient Temperature TA = –40 to +85°C  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization  
(word x bit)  
Package  
Operating  
Ambient  
Temperature  
μPD44164085AF5-E37Y-EQ2-A  
μPD44164085AF5-E40Y-EQ2-A  
μPD44164085AF5-E50Y-EQ2-A  
μPD44164095AF5-E37Y-EQ2-A  
μPD44164095AF5-E40Y-EQ2-A  
μPD44164095AF5-E50Y-EQ2-A  
μPD44164185AF5-E37Y-EQ2-A  
μPD44164185AF5-E40Y-EQ2-A  
μPD44164185AF5-E50Y-EQ2-A  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
3.7  
4.0  
5.0  
270  
250  
200  
270  
250  
200  
270  
250  
200  
2M x 8-bit  
2M x 9-bit  
1M x 18-bit  
165-pin PLASTIC  
BGA (13 x 15)  
Industrial  
(TA = –40 to +85°C)  
Lead-free  
Remarks 1. QDR Consortium standard package size is 13 x 15 and 15 x 17.  
The footprint is commonly used.  
2. Products with -A at the end of the part number are lead-free products.  
Data Sheet M19868EJ1V0DS  
3
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Pin Configurations  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164085A-A]  
2M x 8-bit  
1
CQ#  
NC  
2
3
A
4
5
6
7
NC  
NW0#  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
D2  
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
A
B
C
D
E
F
VSS  
NC  
NC  
D4  
R, W# NW1#  
K#  
K
LD#  
A
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
NC  
NC  
Q7  
A
A
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
D5  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
VREF  
Q1  
G
H
J
NC  
DLL#  
NC  
VREF  
NC  
NC  
Q6  
K
L
NC  
NC  
NC  
NC  
NC  
NC  
TMS  
NC  
M
N
P
R
NC  
NC  
D7  
NC  
VSS  
VSS  
NC  
NC  
TCK  
A
A
C
A
A
TDO  
A
A
C#  
A
A
A
: Address inputs  
: Data inputs  
DLL#  
: DLL/PLL disable  
D0 to D7  
Q0 to Q7  
LD#  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Data outputs  
: Synchronous load  
: Read Write input  
TCK  
TDO  
VREF  
VDD  
R, W#  
NW0#, NW1#  
K, K#  
: Nibble Write data select  
: Input clock  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
NC  
: No connection  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.  
2A and 10A of this product can also be used as NC.  
4
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164095A-A]  
2M x 9-bit  
1
CQ#  
NC  
2
3
A
4
5
6
7
NC  
BW0#  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
D3  
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
VSS  
NC  
NC  
D5  
R, W#  
A
NC  
NC  
A
K#  
K
LD#  
A
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
NC  
NC  
Q8  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
VREF  
Q2  
G
H
J
NC  
DLL#  
NC  
VREF  
NC  
NC  
Q7  
K
L
NC  
NC  
NC  
NC  
NC  
D0  
NC  
M
N
P
R
NC  
NC  
D8  
NC  
VSS  
VSS  
NC  
NC  
TCK  
A
A
C
A
A
TDO  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
DLL#  
: DLL/PLL disable  
D0 to D8  
Q0 to Q8  
LD#  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Data outputs  
: Synchronous load  
: Read Write input  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#  
K, K#  
: Byte Write data select  
: Input clock  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
NC  
: No connection  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 7A and 10A are expansion addresses: 10A for 36Mb, 2A for 72Mb and 7A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M19868EJ1V0DS  
5
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164185A-A]  
1M x 18-bit  
1
CQ#  
NC  
2
3
4
5
6
7
NC  
BW0#  
A
8
9
A
10  
VSS  
NC  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
VSS  
Q9  
NC  
R, W# BW1#  
K#  
K
LD#  
A
D9  
A
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
VSS  
A
VSS  
NC  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
D6  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
Q12  
D13  
VREF  
NC  
NC  
NC  
VREF  
Q4  
G
H
J
NC  
DLL#  
NC  
K
L
NC  
NC  
D3  
NC  
Q15  
NC  
NC  
Q1  
M
N
P
R
NC  
NC  
D17  
NC  
VSS  
VSS  
NC  
D0  
NC  
A
A
C
A
A
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
DLL#  
: DLL/PLL disable  
D0 to D17  
Q0 to Q17  
LD#  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Data outputs  
: Synchronous load  
: Read Write input  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0#, BW1#  
K, K#  
: Byte Write data select  
: Input clock  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
NC  
: No connection  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A, 3A and 10A are expansion addresses: 3A for 36Mb, 10A for 72Mb and 2A for 144Mb.  
2A and 10A of this product can also be used as NC.  
6
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD44164365A-A]  
512K x 36-bit  
1
2
3
4
5
6
7
BW1#  
BW0#  
A
8
9
10  
VSS  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
VSS  
NC  
R, W# BW2#  
K#  
K
LD#  
A
NC  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
A
BW3#  
A
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
C
A
A
D0  
A
A
C#  
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
DLL#  
: DLL/PLL disable  
D0 to D35  
Q0 to Q35  
LD#  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Data outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TCK  
TDO  
VREF  
VDD  
R, W#  
BW0# to BW3#  
K, K#  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, C#  
: Output clock  
VDDQ  
VSS  
CQ, CQ#  
ZQ  
: Echo clock  
: Output impedance matching  
NC  
: No connection  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 3A, 9A and 10A are expansion addresses: 9A for 36Mb, 3A for 72Mb and 10A for 144Mb.  
2A and 10A of this product can also be used as NC.  
Data Sheet M19868EJ1V0DS  
7
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Pin Identification  
(1/2)  
Symbol  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. All transactions operate on a burst of two words (one clock period of bus activity). These  
inputs are ignored when device is deselected, i.e., NOP (LD# = HIGH).  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and K#  
during WRITE operations. See Pin Configurations for ball site location of individual signals.  
x8 device uses D0 to D7.  
D0 to Dxx  
x9 device uses D0 to D8.  
x18 device uses D0 to D17.  
x36 device uses D0 to D35.  
Q0 to Qxx  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K and K# rising edges  
if C and C# are tied HIGH. Data is output in synchronization with C and C# (or K and K#), depending on the  
LD# and R, W# command. See Pin Configurations for ball site location of individual signals.  
x8 device uses Q0 to Q7.  
x9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
LD#  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus  
activity).  
R, W#  
Synchronous Read/Write Input: When LD# is LOW, this input designates the access type (READ when R, W#  
is HIGH, WRITE when R, W# is LOW) for the loaded address. R, W# must meet the setup and hold times  
around the rising edge of K.  
BWx#  
NWx#  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin  
Configurations for signal to data relationships.  
x8 device uses NW0#, NW1#.  
x9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx#, NWx# and Dxx.  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of phase with K. All  
synchronous inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
C# is used as the output timing reference for first output data. The rising edge of C is used as the output  
reference for second output data. Ideally, #C is 180 degrees out of phase with C. When use of K and K# as the  
reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be guaranteed unless C and  
C# are fixed to HIGH (i.e. toggle of C and C#)  
K, K#  
C, C#  
8
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
(2/2)  
Symbol  
Description  
CQ, CQ#  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates. If C and C# are stopped (if K and K# are stopped in the single clock mode), CQ and CQ# will also  
stop.  
ZQ  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. Q, CQ and CQ# output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. The output impedance can be minimized by directly connect ZQ to VDDQ. This pin cannot be  
connected directly to GND or left unconnected. The output impedance is adjusted every 1,024 cycles upon  
power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new  
output impedance is reset by implementing power-on sequence.  
DLL#  
DLL/PLL Disable: When debugging the system or board, the operation can be performed at a clock frequency  
slower than TKHKH (MAX.) without the DLL circuit being used, if DLL# = LOW. The AC/DC characteristics  
cannot be guaranteed. For normal operation, DLL# must be HIGH and it can be connected to VDDQ through a  
10 kΩ or less resistor.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for  
range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See Recommended DC  
Operating Conditions and DC Characteristics for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are not connected internally.  
Data Sheet M19868EJ1V0DS  
9
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Block Diagram  
[μPD44164085A-A]  
20  
ADDRESS  
LD#  
ADDRESS  
20  
R, W#  
REGISTRY  
& LOGIC  
K
K#  
R, W#  
NW0#  
NW1#  
220 x 16  
DATA  
16  
16  
8
2
16  
8
D0 to D7  
Q0 to Q7  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
LD#  
CQ,  
CQ#  
K
K
K
C, C#  
K#  
OR  
K, K#  
[μPD44164095A-A]  
20  
ADDRESS  
LD#  
ADDRESS  
REGISTRY  
& LOGIC  
20  
R, W#  
K
K#  
R, W#  
BW0#  
220 x 18  
DATA  
18  
18  
9
2
18  
9
D0 to D8  
Q0 to Q8  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
LD#  
CQ,  
CQ#  
K
K
K
C, C#  
OR  
K#  
K, K#  
10  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
[μPD44164185A-A]  
19  
ADDRESS  
LD#  
ADDRESS  
19  
R, W#  
REGISTRY  
& LOGIC  
K
K#  
R, W#  
BW0#  
BW1#  
219 x 36  
DATA  
36  
36  
18  
2
36  
18  
Q0 to Q17  
REGISTRY  
& LOGIC  
D0 to D17  
MEMORY  
ARRAY  
MUX  
LD#  
CQ,  
CQ#  
K
K
K
C, C#  
K#  
OR  
K, K#  
[μPD44164365A-A]  
18  
ADDRESS  
LD#  
ADDRESS  
REGISTRY  
& LOGIC  
18  
R, W#  
K
K#  
R, W#  
BW0#  
BW1#  
BW2#  
BW3#  
218 x 72  
DATA  
72  
72  
36  
2
72  
Q0 to Q35  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
36  
D0 to D35  
CQ,  
CQ#  
LD#  
K
K
K
C, C#  
OR  
K#  
K, K#  
Data Sheet M19868EJ1V0DS  
11  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Power-on Sequence  
The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after  
VDD/VDDQ stable and when starting the clock before VDD/VDDQ stable.  
1. Clock starts after VDD/VDDQ stable  
The clock is supplied from a controller.  
(a)  
V
DD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
DLL#  
Clock  
Fix HIGH (or tied to VDDQ)  
20 ns (MIN.)  
Clock Start Note  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Note Input a stable clock from the start.  
(b)  
V
DD/VDD  
Q
DLL#  
Clock  
V
DD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Switched to HIGH after Clock is stable.  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Clock Start  
(c)  
V
DD/VDDQ  
V
DD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
Clock  
30 ns. (MIN.)  
Clock Stop  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation  
Start  
Clock Start  
12  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
2. Clock starts before VDD/VDDQ stable  
The clock is supplied from a clock generator.  
(a)  
V
DD/VDDQ  
V
DD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
Clock  
Unstable Clock  
(level, frequency)  
1,024 cycles or more  
Stable Clock  
Normal Operation Start  
30 ns. (MIN.)  
Clock Stop  
Clock Start  
(b)  
V
DD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
30 ns (MIN.)  
DLL# LOW  
HIGH or LOW  
DLL#  
Clock  
Switched to HIGH after Clock is stable.  
Unstable Clock  
(level, frequency)  
1,024 cycles or more Normal  
Stable Clock  
Operation  
Start  
Clock keep running  
Clock Start  
Data Sheet M19868EJ1V0DS  
13  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Truth Table  
Operation  
LD# R, W#  
CLK  
D or Q  
Data in  
WRITE cycle  
L
L
L
L H  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
D(A+0)  
D(A+1)  
K(t+1) ↑  
K#(t+1) ↑  
H
L H  
Data out  
Output data  
Output clock  
D = X, Q = High-Z  
Previous state  
Load address, read data on two  
consecutive C and C# rising edge  
NOP (No operation)  
Q(A+0)  
Q(A+1)  
C#(t+1) ↑  
C(t+2) ↑  
H
X
X
X
L H  
Clock stop  
Stopped  
Remarks 1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges  
except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
14  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Byte Write Operation  
[μPD44164085A-A]  
Operation  
K
L H  
K#  
NW0#  
NW1#  
Write D0 to D7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0 to D3  
Write D4 to D7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. NW0# and NW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD44164095A-A]  
Operation  
K
L H  
K#  
BW0#  
Write D0 to D8  
Write nothing  
0
0
1
1
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD44164185A-A]  
Operation  
K
K#  
BW0#  
BW1#  
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
L H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Data Sheet M19868EJ1V0DS  
15  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
[μPD44164365A-A]  
Operation  
K
L H  
K#  
BW0#  
BW1#  
BW2#  
BW3#  
Write D0 to D35  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
16  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 2  
Load, Count = 2  
READ DOUBLE  
Write  
Read  
WRITE DOUBLE  
Count = Count + 2  
Count = Count + 2  
Load  
NOP,  
NOP,  
Count = 2  
Count = 2  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remark State machine control timing sequence is controlled by K.  
Data Sheet M19868EJ1V0DS  
17  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
Supply voltage  
+2.5  
Output supply voltage  
Input voltage  
VDDQ  
VIN  
VDD  
V
VDD + 0.5 (2.5 V MAX.)  
V
Input / Output voltage  
Operating ambient temperature  
VI/O  
VDDQ + 0.5 (2.5 V MAX.)  
V
TA  
Commercial  
Industrial  
+70  
+85  
°C  
–40  
–55  
Storage temperature  
Tstg  
+125  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
18  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
DC Characteristics (VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit Note  
x8, x9 x18  
x36  
Input leakage current  
I/O leakage current  
Operating supply  
current  
ILI  
–2  
–2  
+2  
+2  
μA  
μA  
ILO  
IDD  
Note1  
Commercial  
-E33  
-E37  
-E40  
-E50  
-E37Y  
520  
570  
520  
490  
420  
540  
510  
430  
300  
290  
280  
260  
310  
300  
280  
VDDQ  
660 mA  
(TA = 0 to +70°C)  
(Read cycle/  
450  
390  
500  
470  
410  
300  
570  
Write cycle)  
490  
Industrial  
(TA = –40 to +85°C) -E40Y  
-E50Y  
Standby supply  
current  
ISB1  
Note1  
Commercial  
-E33  
-E37  
-E40  
-E50  
-E37Y  
300 mA  
(TA = 0 to +70°C)  
280  
260  
(NOP)  
280  
260  
310  
300  
280  
Industrial  
(TA = –40 to +85°C) -E40Y  
-E50Y  
Output HIGH voltage VOH(Low) |IOH| 0.1 mA  
VOH Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
V
4, 5  
4, 5  
4, 5  
4, 5  
VDDQ/2+0.12  
0.2  
V
V
V
Output LOW voltage VOL(Low) IOL 0.1 mA  
VOL Note3  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. VIN VIL or VIN VIH, II/O = 0 mA, Cycle = MAX.  
2. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) ±15 % for values of 175 Ω ≤ RQ 350 Ω.  
3. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) ±15 for values of 175 Ω ≤ RQ 350 Ω.  
4. AC load current is higher than the shown DC values.  
5. HSTL outputs meet JEDEC HSTL Class I standards.  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
Input capacitance (Address, Control)  
Input / Output capacitance  
(D, Q, CQ, CQ#)  
4
6
5
7
CI/O  
VI/O = 0 V  
pF  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
5
6
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Resistance  
Parameter  
Thermal resistance  
Symbol  
Test conditions  
MIN.  
TYP.  
25.1  
MAX.  
Unit  
θ j-a  
°C/W  
(junction – ambient)  
Thermal resistance  
(junction – case)  
θ j-c  
2.8  
°C/W  
Remark These parameters are simulated under the condition of air flow velocity = 1 m/s.  
Data Sheet M19868EJ1V0DS  
19  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
AC Characteristics (VDD = 1.8 ± 0.1 V)  
AC Test Conditions (VDD = 1.8 ± 0.1 V, VDDQ = 1.4 V to VDD )  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
20  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Read and Write Cycle  
Parameter  
Symbol  
-E33  
-E37, -E37Y -E40, -E40Y -E50, -E50Y Unit Note  
(270 MHz)  
(250 MHz) (200 MHz)  
(300 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
Average Clock cycle time (K, K#, C, C#)  
Clock phase jitter (K, K#, C, C#)  
Clock HIGH time (K, K#, C, C#)  
Clock LOW time (K, K#, C, C#)  
Clock HIGH to Clock# HIGH  
(KK#, CC#)  
TKHKH  
TKC var  
TKHKL  
ns  
ns  
ns  
ns  
ns  
1
2
3.7  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
3.3  
8.4  
0.2  
1.5  
1.5  
1.7  
1.6  
1.6  
1.8  
2.0  
2.0  
2.2  
1.32  
1.32  
1.49  
TKLKH  
TKHK#H  
Clock# HIGH to Clock HIGH  
(K#K, C#C)  
TK#HKH  
ns  
ns  
1.7  
1.8  
2.2  
1.49  
Clock to data clock  
270 to 300 MHz TKHCH  
250 to 270 MHz  
200 to 250 MHz  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
0
1.45  
1.65  
1.8  
2.3  
2.8  
3.55  
1.65  
1.8  
2.3  
2.8  
3.55  
(KC, K#C#)  
0
0
0
0
0
0
1.8  
2.3  
2.8  
3.55  
0
0
0
2.3  
2.8  
3.55  
0
0
0
0
0
0
0
0
DLL/PLL lock time (K, C)  
K static to DLL/PLL reset  
TKC lock  
Cycle  
ns  
3
4
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
TKC reset  
Output Times  
C, C# HIGH to output valid  
C, C# HIGH to output hold  
C, C# HIGH to echo clock valid  
C, C# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
C HIGH to output High-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.45  
0.45  
– 0.45  
0.45  
– 0.45  
0.45  
– 0.45  
0.45  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
0.45  
0.45  
0.45  
0.45  
0.45  
– 0.45  
– 0.45  
– 0.45  
5
5
0.3  
0.3  
0.35  
0.27  
0.3  
– 0.3  
– 0.35  
– 0.27  
0.45  
0.45  
0.45  
0.45  
C HIGH to output Low-Z  
TCHQX1  
0.45  
– 0.45  
– 0.45  
– 0.45  
Setup Times  
Address valid to K rising edge  
Synchronous load input (LD#),  
read write input (R, W#) valid to  
K rising edge  
TAVKH  
TIVKH  
ns  
ns  
6
6
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.4  
0.4  
Data inputs and write data select  
inputs (BWx#, NWx#) valid to  
K, K# rising edge  
TDVKH  
ns  
6
0.35  
0.4  
0.3  
0.35  
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
ns  
ns  
6
6
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.4  
0.4  
synchronous load input (LD#),  
read write input (R, W#) hold  
K, K# rising edge to data inputs and  
write data select inputs (BWx#, NWx#)  
hold  
TKHDX  
ns  
6
0.35  
0.4  
0.3  
0.35  
Data Sheet M19868EJ1V0DS  
21  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.5 clock in  
this operation. The AC/DC characteristics cannot be guaranteed, however.  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.  
DLL/PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.  
4. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
or  
K
TKC reset  
5. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
6. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.  
5. VDDQ is 1.5 V DC.  
22  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Read and Write Timing  
NOP  
WRITE  
(burst of 2)  
WRITE  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
NOP  
1
2
3
4
5
6
7
8
K
TKHKL TKLKH  
TKHKH  
TKHK#H  
TK#HKH  
K#  
LD#  
TIVKH  
R, W#  
TKHIX  
A0  
A2  
A4  
TDVKH TKHDX  
A1  
A3  
Address  
TDVKH TKHDX  
TKHAX  
TAVKH  
Data in  
D21  
D22  
D31  
D32  
Data out  
Q01  
Q02  
Q11  
Q12  
Q41  
Q42  
Qx2  
TCHQX1  
TCHQZ  
TCQHQV  
TCQHQX  
TCHQX  
TCHQX  
TCHQV  
TCHQV  
CQ  
TCHCQX  
TCHCQV  
CQ#  
TCHCQX  
TCHCQV  
TKHCH  
C
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
TKHCH  
C#  
Remarks 1. Q01 refers to output from address A0+0.  
Q02 refers to output from the next internal burst address following A0, i.e., A0+1.  
2. Outputs are disabled (high impedance) 2.5 clocks after the last READ (LD# = LOW, R, W# = HIGH) is  
input in the sequences of [READ]-[NOP] and [READ]-[WRITE].  
3. In this example, if address A4 = A3, data Q41 = D31 and Q42 = D32.  
Write data is forwarded immediately as read results.  
Data Sheet M19868EJ1V0DS  
23  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Application Example  
R =  
250 Ω  
R =  
250 Ω  
ZQ  
CQ#  
CQ  
Q
ZQ  
CQ#  
CQ  
Q
. . .  
SRAM#1  
SRAM#4  
D
A
D
A
LD# R, W# BWx# C/C# K/K#  
LD# R, W# BWx# C/C# K/K#  
V
t
SRAM  
Controller  
R
Data In  
Vt  
Data Out  
Address  
LD#  
R
Vt  
R
R, W#  
BW#  
SRAM#1 CQ/CQ#  
Vt  
R
R
SRAM#4 CQ/CQ#  
Vt  
Source CLK/CLK#  
Return CLK/CLK#  
Vt  
R
R = 50 Ω  
Vt = Vref  
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ# and Q with termination.  
24  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between TDI and  
TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
μA  
Outputs disabled  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
JTAG output LOW voltage  
0.2  
0.4  
Data Sheet M19868EJ1V0DS  
25  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
26  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
JTAG AC Characteristics  
Parameter  
Clock  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
50  
20  
ns  
MHz  
ns  
tTHTL  
tTLTH  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
t
THTH  
TCK  
t
MVTH  
t
THTL  
t
TLTH  
TMS  
TDI  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
Data Sheet M19868EJ1V0DS  
27  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
Part number  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0001 1000  
0000 0000 0101 0101  
0000 0000 0001 1001  
0000 0000 0001 1010  
ID [11:1] vendor ID no. ID [0] fix bit  
μPD44164085A-A  
μPD44164095A-A  
μPD44164185A-A  
μPD44164365A-A  
2M x 8  
2M x 9  
XXXX  
XXXX  
XXXX  
XXXX  
00000010000  
00000010000  
00000010000  
00000010000  
1
1
1
1
1M x 18  
512K x 36  
28  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
SCAN Exit Order  
Bit  
Signal name  
x9 x18 x36  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
no.  
x8  
X9  
x18 x36  
no.  
x8  
X9  
x18 x36  
1
C#  
C
A
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
NC  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC D15 10D  
NC Q15 9E  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
NC  
Q4  
D4  
NC  
NC  
NC  
NC  
NC  
NC  
Q5  
D5  
NC  
NC  
NC  
NC  
NC  
NC  
Q6  
D6  
NC  
NC  
NC  
NC  
NC  
NC  
Q7  
D7  
NC  
NC Q28 2C  
2
Q5 Q11 Q20 3E  
D5 D11 D20 2D  
3
Q7  
D7  
Q7 10C  
D7 11D  
4
A
NC  
NC  
NC D29 2E  
NC Q29 1E  
5
A
NC D16 9C  
NC Q16 9D  
6
A
NC Q12 Q21 2F  
NC D12 D21 3F  
7
A
Q8  
D8  
Q8 11B  
D8 11C  
8
A
NC  
NC  
NC D30 1G  
NC Q30 1F  
9
A
NC  
NC  
NC  
NC  
NC D17 9B  
NC Q17 10B  
11A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
NC Q0  
NC D0  
Q0  
D0  
Q0 11P  
D0 10P  
D9 10N  
Q6 Q13 Q22 3G  
D6 D13 D22 2G  
CQ  
Internal  
NC NC NC  
NC NC NC  
NC  
NC  
NC D31  
NC Q31  
1J  
2J  
Q9  
9P  
A
A
A
NC  
9A  
8B  
7C  
6C  
8A  
NC NC  
NC NC  
Q1  
D1  
Q1 10M  
D1 11N  
A
A
A
NC Q14 Q23 3K  
NC D14 D23 3J  
NC NC NC D10 9M  
NC NC NC Q10 9N  
NC  
NC  
NC D32 2K  
NC Q32 1K  
LD#  
NC  
Q0  
D0  
Q1  
D1  
Q2  
D2  
Q2 11L  
D2 11M  
NC  
NC BW1# 7A  
Q7 Q15 Q24  
D7 D15 D24  
2L  
3L  
55 NW0# BW0# BW0# BW0# 7B  
NC NC NC D11 9L  
NC NC NC Q11 10L  
56  
57  
58  
K
6B  
6A  
NC  
NC  
NC D33 1M  
NC Q33 1L  
K#  
NC NC  
NC NC  
Q3  
D3  
Q3 11K  
D3 10K  
NC  
NC  
NC BW3# 5B  
NC Q16 Q25 3N  
NC D16 D25 3M  
59 NW1# NC BW1# BW2# 5A  
NC NC NC D12 9J  
NC NC NC Q12 9K  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
R, W#  
4A  
5C  
4B  
3A  
1H  
1A  
NC  
NC  
NC D34 1N  
NC Q34 2M  
A
A
Q1  
D1  
Q2  
D2  
Q4  
D4  
Q4 10J  
D4 11J  
11H  
Q8 Q17 Q26 3P  
D8 D17 D26 2N  
A
A
NC  
NC  
ZQ  
DLL#  
CQ#  
100 NC  
101 NC  
102  
NC  
NC  
NC D35 2P  
NC NC NC D13 10G  
NC NC NC Q13 9G  
NC Q35 1P  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q9 Q18 2B  
D9 D18 3B  
NC D27 1C  
NC Q27 1B  
A
A
A
A
A
A
3R  
4R  
4P  
5P  
5N  
5R  
NC NC  
NC NC  
Q5  
D5  
Q5 11F  
D5 11G  
103  
104  
NC NC NC D14 9F  
NC NC NC Q14 10F  
105  
NC Q10 Q19 3D  
NC D10 D19 3C  
106  
Q2  
D2  
Q3  
D3  
Q6  
D6  
Q6 11E  
D6 10E  
107  
NC  
NC D28 1D  
Data Sheet M19868EJ1V0DS  
29  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register, the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD  
SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
30  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Output Pin States of CQ, CQ# and Q  
Instructions  
Control-Register Status  
Output Pin Status  
CQ, CQ#  
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
Q
EXTEST  
0
1
0
1
0
1
0
1
0
1
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Boundary Scan  
Register  
Remark The output pin statuses during each instruction vary  
according to the Control-Register status (value of Boundary  
Scan Register, bit no. 48).  
CAPTURE  
Register  
There are three statuses:  
SRAM  
Output  
Update  
Register  
Update : Contents of the “Update Register” are output to  
the output pin (QDR Pad).  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
High-Z  
JTAG ctrl  
Data Sheet M19868EJ1V0DS  
31  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Boundary Scan Register Status of Output Pins CQ, CQ# and Q  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ, CQ#  
Q
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
Pad  
Pad  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
Boundary Scan  
Register  
CAPTURE  
Register  
There are two statuses:  
Internal  
Pad  
: Contents of the output pin (QDR Pad) are  
SRAM  
Output  
Update  
Register  
Pad  
captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
32  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open but fix  
them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected also  
when the TAP controller is not used.  
Data Sheet M19868EJ1V0DS  
33  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
34  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
Select-DR-Scan  
Run-Test/Idle  
Data Sheet M19868EJ1V0DS  
35  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Package Drawing  
165-PIN PLASTIC BGA (13x15)  
B
E
w
S
B
ZD  
ZE  
11  
10  
9
8
A
7
6
D
5
4
3
2
1
R P N M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
A2  
y1  
S
S
y
e
S
A1  
(UNIT:mm)  
ITEM DIMENSIONS  
M
φ
φ
x
b
S A B  
D
E
13.00 0.10  
15.00 0.10  
0.15  
w
e
1.00  
A
1.40 0.11  
0.40 0.05  
1.00  
A1  
A2  
b
0.50 0.05  
0.08  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
1.50  
0.50  
P165F5-100-EQ2  
36  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD44164085AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164095AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164185AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
μPD44164365AF5-EQ2-A : 165-pin PLASTIC BGA (13 x 15)  
Quality Grade  
A quality grade of the products is “Standard”.  
Anti-radioactive design is not implemented in the products.  
Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the  
ground and so forth.  
Data Sheet M19868EJ1V0DS  
37  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
[ MEMO ]  
38  
Data Sheet M19868EJ1V0DS  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
Data Sheet M19868EJ1V0DS  
39  
μPD44164085A-A, 44164095A-A, 44164185A-A, 44164365A-A  
The information in this document is current as of July, 2009. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,  
etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or  
types are available in every country. Please check with an NEC Electronics sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
• Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC  
Electronics products are not taken measures to prevent radioactive rays in the product design. When customers  
use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate  
sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in  
order to avoid risks of the damages to property (including public or social property) or injury (including death) to  
persons, as the result of defects of NEC Electronics products.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on  
a
customer-designated "quality assurance program" for a specific application. The recommended applications  
of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the  
quality grade of each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E0904E  

相关型号:

UPD44164365AF5-E50-EQ2

IC,SYNC SRAM,DDR,512KX36,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365AF5-E50-EQ2-A

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44164365F5-E50-EQ1

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44164365F5-E60-EQ1

18M-BIT DDRII SRAM SEPARATE I/O 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082

18M-BIT QDRII SRAM 2-WORD BURST OPERATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E40-EQ2

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E40-EQ2-A

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44165082AF5-E40Y-EQ2-A

QDR SRAM, 2MX8, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E40Y-EQ2-A

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44165082AF5-E50-EQ2

QDR SRAM, 2MX8, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E50-EQ2-A

QDR SRAM, 2MX8, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44165082AF5-E50-EQ2-A

2MX8 QDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS