UPD44321322F1-A60Y-FQ2 [RENESAS]

IC,SYNC SRAM,1MX32,CMOS,BGA,165PIN,PLASTIC;
UPD44321322F1-A60Y-FQ2
型号: UPD44321322F1-A60Y-FQ2
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,SYNC SRAM,1MX32,CMOS,BGA,165PIN,PLASTIC

静态存储器
文件: 总40页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD44321182, 44321322, 44321362  
32M-BIT ZEROSBTM SRAM  
PIPELINED OPERATION  
Description  
The µPD44321182 is a 2,097,152-word by 18-bit, the µPD44321322 is a 1,048,576-word by 32-bit and the  
µPD44321362 is a 1,048,576-word by 36-bit ZEROSB static RAM fabricated with advanced CMOS technology using  
full CMOS six-transistor memory cell.  
The µPD44321182, µPD44321322 and µPD44321362 are optimized to eliminate dead cycles for read to write, or  
write to read transitions. These ZEROSB static RAMs integrate unique synchronous peripheral circuitry, 2-bit burst  
counter and output buffer as well as SRAM core. All input registers are controlled by a positive edge of the single  
clock input (CLK).  
The µPD44321182, µPD44321322 and µPD44321362 are suitable for applications which require synchronous  
operation, high speed, low voltage, high density and wide bit configuration, such as buffer memory.  
ZZ has to be set LOW at the normal operation. When ZZ is set HIGH, the SRAM enters Power Down State (“Sleep”).  
In the “Sleep” state, the SRAM internal state is preserved. When ZZ is set LOW again, the SRAM resumes normal  
operation.  
The µPD44321182, µPD44321322 and µPD44321362 are packaged in 100-pin PLASTIC LQFP with a 1.4 mm  
package thickness or 165-pin PLASTIC FBGA for high density and low capacitive loading.  
Features  
Low voltage core supply : VDD = 3.3 ± 0.165V (-A44, -A50, -A60, -A44Y, -A50Y, -A60Y)  
VDD = 2.5 ± 0.125V (-C50, -C60, -C50Y, -C60Y)  
Synchronous operation  
Operating temperature : TA = 0 to 70 °C (-A44, -A50, -A60, -C50, -C60)  
TA = –40 to +85 °C (-A44Y, -A50Y, -A60Y, -C50Y, -C60Y)  
100 percent bus utilization  
Internally self-timed write control  
Burst read / write : Interleaved burst and linear burst sequence  
Fully registered inputs and outputs for pipelined operation  
All registers triggered off positive clock edge  
3.3V or 2.5V LVTTL Compatible : All inputs and outputs  
Fast clock access time : 2.8 ns (225 MHz), 3.2 ns (200 MHz), 3.5 ns (167 MHz)  
Asynchronous output enable : /G  
Burst sequence selectable : MODE  
Sleep mode : ZZ (ZZ = Open or Low : Normal operation)  
Separate byte write enable : /BW1 to /BW4 (µPD44321322 and µPD44321362)  
/BW1 and /BW2 (µPD44321182)  
Three chip enables for easy depth expansion  
Common I/O using three state outputs  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with NEC Electronics sales  
representative for availability and additional information.  
The mark  
shows major revised points.  
Document No. M16024EJ1V0DS00 (1st edition)  
Date Published December 2002 NS CP(K)  
Printed in Japan  
2002  
µPD44321182, 44321322, 44321362  
Ordering Information  
(1/2)  
Part number  
Access  
Time  
ns  
Clock  
Frequency  
MHz  
Core Supply  
Voltage  
V
I/O Interface  
Operating  
Temperature  
°C  
Package  
µPD44321182GF-A44 Note  
µPD44321182GF-A50  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
225  
200  
167  
225  
200  
167  
225  
200  
167  
200  
167  
200  
167  
200  
167  
225  
200  
167  
225  
200  
167  
225  
200  
167  
200  
167  
200  
167  
200  
167  
3.3 ± 0.165  
3.3 V or  
0 to 70  
100-pin PLASTIC LQFP  
(14 x 20)  
2.5 V LVTTL  
µPD44321182GF-A60  
µPD44321322GF-A44 Note  
µPD44321322GF-A50  
µPD44321322GF-A60  
µPD44321362GF-A44 Note  
µPD44321362GF-A50  
µPD44321362GF-A60  
µPD44321182GF-C50  
2.5 ± 0.125  
2.5 V LVTTL  
µPD44321182GF-C60  
µPD44321322GF-C50  
µPD44321322GF-C60  
µPD44321362GF-C50  
µPD44321362GF-C60  
µPD44321182F1-A44-FQ2 Note  
µPD44321182F1-A50-FQ2 Note  
µPD44321182F1-A60-FQ2 Note  
µPD44321322F1-A44-FQ2 Note  
µPD44321322F1-A50-FQ2 Note  
µPD44321322F1-A60-FQ2 Note  
µPD44321362F1-A44-FQ2 Note  
µPD44321362F1-A50-FQ2 Note  
µPD44321362F1-A60-FQ2 Note  
µPD44321182F1-C50-FQ2 Note  
µPD44321182F1-C60-FQ2 Note  
µPD44321322F1-C50-FQ2 Note  
µPD44321322F1-C60-FQ2 Note  
µPD44321362F1-C50-FQ2 Note  
µPD44321362F1-C60-FQ2 Note  
3.3 ± 0.165  
3.3 V or  
165-pin PLASTIC FBGA  
(15 x 17)  
2.5 V LVTTL  
2.5 ± 0.125  
2.5 V LVTTL  
Note Under development  
2
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
(2/2)  
Part number  
Access  
Time  
ns  
Clock  
Frequency  
MHz  
Core Supply  
Voltage  
V
I/O Interface  
Operating  
Temperature  
°C  
Package  
µPD44321182GF-A44Y Note  
µPD44321182GF-A50Y  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
2.8  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
3.2  
3.5  
225  
200  
167  
225  
200  
167  
225  
200  
167  
200  
167  
200  
167  
200  
167  
225  
200  
167  
225  
200  
167  
225  
200  
167  
200  
167  
200  
167  
200  
167  
3.3 ± 0.165  
3.3 V or  
–40 to +85  
100-pin PLASTIC LQFP  
(14 x 20)  
2.5 V LVTTL  
µPD44321182GF-A60Y  
µPD44321322GF-A44Y Note  
µPD44321322GF-A50Y  
µPD44321322GF-A60Y  
µPD44321362GF-A44Y Note  
µPD44321362GF-A50Y  
µPD44321362GF-A60Y  
µPD44321182GF-C50Y  
2.5 ± 0.125  
2.5 V LVTTL  
µPD44321182GF-C60Y  
µPD44321322GF-C50Y  
µPD44321322GF-C60Y  
µPD44321362GF-C50Y  
µPD44321362GF-C60Y  
µPD44321182F1-A44Y-FQ2 Note  
µPD44321182F1-A50Y-FQ2 Note  
µPD44321182F1-A60Y-FQ2 Note  
µPD44321322F1-A44Y-FQ2 Note  
µPD44321322F1-A50Y-FQ2 Note  
µPD44321322F1-A60Y-FQ2 Note  
µPD44321362F1-A44Y-FQ2 Note  
µPD44321362F1-A50Y-FQ2 Note  
µPD44321362F1-A60Y-FQ2 Note  
µPD44321182F1-C50Y-FQ2 Note  
µPD44321182F1-C60Y-FQ2 Note  
µPD44321322F1-C50Y-FQ2 Note  
µPD44321322F1-C60Y-FQ2 Note  
µPD44321362F1-C50Y-FQ2 Note  
µPD44321362F1-C60Y-FQ2 Note  
3.3 ± 0.165  
3.3 V or  
165-pin PLASTIC FBGA  
(15 x 17)  
2.5 V LVTTL  
2.5 ± 0.125  
2.5 V LVTTL  
Note Under development  
3
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Pin Configurations  
/××× indicates active low signal.  
100-pin PLASTIC LQFP (14 × 20)  
[µPD44321182GF]  
Marking Side  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A20  
NC  
2
NC  
3
NC  
VDDQ  
VSSQ  
NC  
4
VDDQ  
VSSQ  
NC  
5
6
NC  
7
I/OP1  
I/O8  
I/O7  
VSSQ  
VDDQ  
I/O6  
I/O5  
VSS  
I/O9  
8
I/O10  
VSSQ  
VDDQ  
I/O11  
I/O12  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
VDD  
VDD  
ZZ  
VDD  
VSS  
I/O13  
I/O14  
VDDQ  
VSSQ  
I/O15  
I/O16  
I/OP2  
NC  
I/O4  
I/O3  
VDDQ  
VSSQ  
I/O2  
I/O1  
NC  
NC  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
NC  
NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Remark Refer to Package Drawings for the 1-pin index mark.  
4
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Pin Identifications  
[µPD44321182GF]  
Symbol  
Pin No.  
Description  
A0 to A20  
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, Synchronous Address Input  
45, 46, 47, 48, 49, 50, 83, 84, 43, 80  
I/O1 to I/O16  
58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, Synchronous Data In,  
18, 19, 22, 23  
Synchronous / Asynchronous Data Out  
I/OP1  
74  
Synchronous Data In (Parity),  
Synchronous / Asynchronous Data Out (Parity)  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
I/OP2  
24  
ADV  
85  
/CE, CE2, /CE2  
/WE  
98, 97, 92  
88  
/BW1, /BW2  
/G  
93, 94  
86  
CLK  
89  
/CKE  
87  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
31  
ZZ  
64  
VDD  
VSS  
14, 15, 16, 41, 65, 66, 91  
17, 40, 67, 90  
Ground  
VDDQ  
VSSQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
5, 10, 21, 26, 55, 60, 71, 76  
Output Buffer Power Supply  
Output Buffer Ground  
1, 2, 3, 6, 7, 25, 28, 29, 30, 38, 39, 42, 51, No Connection  
52, 53, 56, 57, 75, 78, 79, 95, 96  
5
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
100-pin PLASTIC LQFP (14 × 20)  
[µPD44321322GF, µPD44321362GF]  
Marking Side  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
I/OP3, NC  
I/O17  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
I/OP2, NC  
I/O16  
2
I/O18  
3
I/O15  
V
DD  
Q
Q
4
V
V
DD  
Q
V
SS  
5
SSQ  
I/O19  
I/O20  
I/O21  
I/O22  
6
I/O14  
I/O13  
I/O12  
I/O11  
7
8
9
V
SS  
Q
Q
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
V
SS  
Q
VDD  
DD  
Q
I/O23  
I/O24  
I/O10  
I/O9  
VDD  
VDD  
VDD  
V
V
V
SS  
DD  
DD  
V
SS  
ZZ  
I/O25  
I/O26  
I/O8  
I/O7  
V
DD  
Q
Q
V
V
DD  
Q
V
SS  
SSQ  
I/O27  
I/O28  
I/O29  
I/O30  
I/O6  
I/O5  
I/O4  
I/O3  
V
SS  
Q
Q
V
V
SS  
Q
VDD  
DD  
Q
I/O31  
I/O32  
I/O2  
I/O1  
I/OP4, NC  
I/OP1, NC  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Remark Refer to Package Drawings for the 1-pin index mark.  
6
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[µPD44321322GF, µPD44321362GF]  
Symbol  
Pin No.  
Description  
A0 to A19  
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, Synchronous Address Input  
45, 46, 47, 48, 49, 50, 83, 84, 43  
I/O1 to I/O32  
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, Synchronous Data In,  
73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, Synchronous / Asynchronous Data Out  
18, 19, 22, 23, 24, 25, 28, 29  
I/OP1, NC Note  
I/OP2, NCNote  
I/OP3, NCNote  
I/OP4, NCNote  
ADV  
51  
Synchronous Data In (Parity),  
80  
Synchronous / Asynchronous Data Out (Parity)  
1
30  
85  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
/CE, CE2, /CE2  
/WE  
98, 97, 92  
88  
/BW1 to /BW4  
/G  
93, 94, 95, 96  
86  
89  
87  
31  
CLK  
/CKE  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
ZZ  
64  
VDD  
VSS  
14, 15, 16, 41, 65, 66, 91  
17, 40, 67, 90  
Ground  
VDDQ  
VSSQ  
NC  
4, 11, 20, 27, 54, 61, 70, 77  
5, 10, 21, 26, 55, 60, 71, 76  
38, 39, 42  
Output Buffer Power Supply  
Output Buffer Ground  
No Connection  
Note NC (No Connection) is used in the µPD44321322GF.  
I/OP1 to I/OP4 are used in the µPD44321362GF.  
7
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
165-pin PLASTIC FBGA (15 x 17)  
[µPD44321182F1]  
Top View  
1
NC  
2
A7  
3
4
/BW2  
NC  
5
NC  
6
7
8
9
10  
A9  
11  
A20  
NC  
A
B
C
D
E
F
/CE  
/CE2  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A1  
/CKE  
/WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
ADV  
/G  
A17  
NC  
A6  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
/BW1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A18  
A8  
NC  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A12  
A2  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A19  
A10  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O4  
I/O3  
I/O2  
I/O1  
NC  
A14  
A15  
I/OP1  
I/O8  
I/O7  
I/O6  
I/O5  
ZZ  
NC  
I/O9  
I/O10  
I/O11  
I/O12  
VDD  
NC  
NC  
NC  
G
H
J
NC  
NC  
I/O13  
I/O14  
I/O15  
I/O16  
I/OP2  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A4  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A13  
NC  
K
L
NC  
NC  
NC  
NC  
M
N
P
R
NC  
NC  
NC  
NC  
NC  
TDI  
TMS  
TDO  
TCK  
NC  
MODE  
A5  
A3  
A0  
A11  
A16  
Remark Refer to Package Drawings for the index mark.  
8
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[µPD44321182F1]  
Symbol  
Pin No.  
Description  
A0 to A20  
6R, 6P, 4R, 3R, 3P, 2R, 2B, 2A, 10B, 10A, 8R, 9R, Synchronous Address Input  
4P, 9P, 10P, 10R, 11R, 9A, 9B, 8P, 11A  
I/O1 to I/O16  
10M, 10L, 10K, 10J, 11G, 11F, 11E, 11D, 2D, 2E,  
Synchronous Data In,  
2F, 2G, 1J, 1K, 1L, 1M  
Synchronous / Asynchronous Data Out  
Synchronous Data In (Parity),  
I/OP1  
11C  
1N  
I/OP2  
Synchronous / Asynchronous Data Out (Parity)  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
ADV  
8A  
/CE, CE2, /CE2  
/WE  
3A, 3B, 6A  
7B  
/BW1, /BW2  
/G  
5B, 4A  
8B  
CLK  
6B  
/CKE  
7A  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
1R  
ZZ  
11H  
VDD  
2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 8D,  
8E, 8F, 8G, 8H, 8J, 8K, 8L, 8M  
4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M,  
6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,  
7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N  
3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D,  
9E, 9F, 9G, 9J, 9K, 9L, 9M, 9N  
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1P, 2C, 2J, 2K,  
2L, 2M, 2N, 2P, 3H, 4B, 5A, 5N, 6N, 7N, 9H,  
10C, 10D, 10E, 10F, 10G, 10H, 10N, 11B,  
11J, 11K, 11L, 11M, 11N, 11P  
5R  
VSS  
Ground  
VDDQ  
NC  
Output Buffer Power Supply  
No Connection  
TMS  
TDI  
Test Mode Select (JTAG)  
Test Data Input (JTAG)  
Test Clock Input (JTAG)  
Test Data Output (JTAG)  
5P  
TCK  
TDO  
7R  
7P  
9
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
165-pin PLASTIC FBGA (15 x 17)  
[µPD44321322F1, µPD44321362F1]  
Top View  
1
NC  
2
3
4
5
6
7
8
9
10  
A9  
11  
NC  
A
B
C
D
E
F
A7  
/CE  
/BW3  
/BW4  
VSS  
/BW2  
/BW1  
VSS  
/CE2  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A1  
/CKE  
/WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
ADV  
/G  
A17  
NC  
A6  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A18  
A8  
NC  
I/OP3,NC  
I/O17  
I/O18  
I/O19  
I/O20  
NC  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
A19  
A10  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
I/OP2,NC  
I/O12  
I/O11  
I/O10  
I/O9  
I/O21  
I/O22  
I/O23  
I/O24  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
I/O16  
I/O15  
I/O14  
I/O13  
NC  
VSS  
VSS  
G
H
J
VSS  
VSS  
ZZ  
I/O25  
I/O26  
I/O27  
I/O28  
I/OP4,NC  
NC  
I/O29  
I/O30  
I/O31  
I/O32  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A4  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A13  
I/O8  
I/O7  
I/O6  
I/O5  
NC  
I/O4  
K
L
VSS  
I/O3  
VSS  
I/O2  
M
N
P
R
VSS  
I/O1  
NC  
I/OP1,NC  
NC  
NC  
A12  
A2  
TDI  
TMS  
TDO  
TCK  
A14  
A15  
MODE  
A5  
A3  
A0  
A11  
A16  
Remark Refer to Package Drawings for the index mark.  
10  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[µPD44321322GF, µPD44321362GF]  
Symbol  
Pin No.  
Description  
A0 to A19  
6R, 6P, 4R, 3R, 3P, 2R, 2B, 2A, 10B, 10A, 8R,  
9R, 4P, 9P, 10P, 10R, 11R, 9A, 9B, 8P  
Synchronous Address Input  
I/O1 to I/O32  
11M, 11L, 11K, 11J, 10M, 10L, 10K, 10J, 11G, 11F, Synchronous Data In,  
11E, 11D, 10G, 10F, 10E, 10D, 1D, 1E, 1F, 1G,  
Synchronous / Asynchronous Data Out  
2D, 2E, 2F, 2G,1J, 1K, 1L, 1M, 2J, 2K, 2L, 2M  
I/OP1, NC Note  
I/OP2, NCNote  
I/OP3, NC Note  
I/OP4, NCNote  
ADV  
11N  
Synchronous Data In (Parity),  
11C  
Synchronous / Asynchronous Data Out (Parity)  
1C  
1N  
8A  
Synchronous Address Load / Advance Input  
Synchronous Chip Enable Input  
Synchronous Write Enable Input  
Synchronous Byte Write Enable Input  
Asynchronous Output Enable Input  
Clock Input  
/CE, CE2, /CE2  
/WE  
3A, 3B, 6A  
7B  
/BW1 to /BW4  
/G  
5B, 5A, 4A, 4B  
8B  
6B  
7A  
1R  
CLK  
/CKE  
Synchronous Clock Enable Input  
Asynchronous Burst Sequence Select Input  
Have to tied to VDD or VSS during normal operation  
Asynchronous Power Down State Input  
Power Supply  
MODE  
ZZ  
11H  
VDD  
2H, 4D, 4E, 4F, 4G, 4H, 4J, 4K, 4L, 4M, 8D, 8E,  
8F, 8G, 8H, 8J, 8K, 8L, 8M  
VSS  
4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M,  
6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D,  
7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N  
Ground  
VDDQ  
NC  
3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D, 9E, Output Buffer Power Supply  
9F, 9G, 9J, 9K, 9L, 9M, 9N  
1A, 1B, 1H, 1P, 2C, 2N, 2P, 3H, 5N, 6N, 7N, 9H,  
No Connection  
10C, 10H, 10N, 11A, 11B, 11P  
TMS  
TDI  
5R  
5P  
7R  
7P  
Test Mode Select (JTAG)  
Test Data Input (JTAG)  
Test Clock Input (JTAG)  
Test Data Output (JTAG)  
TCK  
TDO  
Note NC (No Connection) is used in the µPD44321322GF.  
I/OP1 to I/OP4 are used in the µPD44321362GF.  
11  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Block Diagrams  
[µPD44321182]  
21  
19  
21  
A0 to A20  
MODE  
Address  
register 0  
A1  
A0  
A1’  
A0’  
Burst  
logic  
ADV  
K
K
CLK  
/CKE  
21  
21  
Write address  
register 1  
Write address  
register 0  
Memory Cell Array  
1,024 rows  
ADV  
/BW1  
/BW2  
Write registry and  
data coherency  
control logic  
Write  
drivers  
18  
18  
I/O1 to I/O16  
I/OP1, I/OP2  
2,048 x 18 columns  
(37,748,736 bits)  
/WE  
E
E
18  
18  
18  
Input  
register 1  
Input  
register 0  
E
E
Read  
logic  
/G  
/CE  
CE2  
/CE2  
ZZ  
Power down control  
Burst Sequence  
[µPD44321182]  
Interleaved Burst Sequence Table (MODE = VDD)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A20 to A2, A1, A0  
A20 to A2, A1, /A0  
A20 to A2, /A1, A0  
A20 to A2, /A1, /A0  
Linear Burst Sequence Table (MODE = VSS)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A20 to A2, 0, 0  
A20 to A2, 0, 1  
A20 to A2, 1, 0  
A20 to A2, 1, 1  
A20 to A2, 0, 1  
A20 to A2, 1, 0  
A20 to A2, 1, 1  
A20 to A2, 0, 0  
A20 to A2, 1, 0  
A20 to A2, 1, 1  
A20 to A2, 0, 0  
A20 to A2, 0, 1  
A20 to A2, 1, 1  
A20 to A2, 0, 0  
A20 to A2, 0, 1  
A20 to A2, 1, 0  
12  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[µPD44321322, µPD44321362]  
20  
18  
20  
A0 to A19  
MODE  
Address  
register 0  
A1  
A0  
A1’  
A0’  
Burst  
logic  
ADV  
K
K
CLK  
/CKE  
20  
20  
Write address  
register 1  
Write address  
register 0  
Memory Cell Array  
1,024 rows  
ADV  
/BW1  
/BW2  
/BW3  
/BW4  
/WE  
Write registry and  
data coherency  
control logic  
Write  
drivers  
32/36  
32/36  
I/O1 to I/O32  
I/OP1 to I/OP4  
1,024 x 32 columns  
(33,554,432 bits)  
1,024 x 36 columns  
(37,748,736 bits)  
E
E
32/36  
32/36  
32/36  
Input  
register 1  
Input  
register 0  
E
E
Read  
logic  
/G  
/CE  
CE2  
/CE2  
ZZ  
Power down control  
[µPD44321322, µPD44321362]  
Interleaved Burst Sequence Table (MODE = VDD)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A19 to A2, A1, A0  
A19 to A2, A1, /A0  
A19 to A2, /A1, A0  
A19 to A2, /A1, /A0  
Linear Burst Sequence Table (MODE = VSS)  
External Address  
1st Burst Address  
2nd Burst Address  
3rd Burst Address  
A19 to A2, 0, 0  
A19 to A2, 0, 1  
A19 to A2, 1, 0  
A19 to A2, 1, 1  
A19 to A2, 0, 1  
A19 to A2, 1, 0  
A19 to A2, 1, 1  
A19 to A2, 0, 0  
A19 to A2, 1, 0  
A19 to A2, 1, 1  
A19 to A2, 0, 0  
A19 to A2, 0, 1  
A19 to A2, 1, 1  
A19 to A2, 0, 0  
A19 to A2, 0, 1  
A19 to A2, 1, 0  
13  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
State Diagram  
DS  
BURST  
DS  
DS  
DESELECT  
READ  
WRITE  
DS  
DS  
WRITE  
READ  
BEGIN  
READ  
BEGIN  
WRITE  
READ  
WRITE  
READ  
BURST  
BURST  
WRITE  
WRITE  
READ  
BURST  
READ  
BURST  
WRITE  
BURST  
BURST  
Command  
DS  
Operation  
Deselect  
Read  
Write  
New Read  
New Write  
Burst  
Burst Read, Burst Write or Continue Deselect  
Remarks 1. States change on the rising edge of the clock.  
2. A Stall or Ignore Clock Edge cycle is not shown in the above diagram. This is because /CKE HIGH only  
blocks the clock (CLK) input and does not change the state of the device.  
14  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Asynchronous Truth Table  
Operation  
Read Cycle  
/G  
L
I/O  
Data-Out  
High-Z  
Read Cycle  
H
×
Write Cycle  
High-Z, Data-In  
High-Z  
Deselected  
×
Remark × : don’t care  
Synchronous Truth Table  
Operation  
Deselected  
/CE  
H
×
CE2 /CE2 ADV  
/WE /BWs /CKE  
CLK  
I/O  
Address  
None  
Note  
×
L
×
×
H
×
H
×
H
×
×
×
×
H
×
L
×
L
×
L
×
×
L
L
×
×
×
×
H
×
L
×
L
×
×
×
×
×
×
×
×
L
L
H
H
×
L
L
L
L
L
L
L
L
L
L
H
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
High-Z  
High-Z  
High-Z  
High-Z  
Data-Out  
Data-Out  
Data-In  
Data-In  
High-Z  
High-Z  
1
1
1
1
Deselected  
None  
Deselected  
×
L
None  
Continue Deselected  
Read Cycle / Begin Burst  
Read Cycle / Continue Burst  
Write Cycle / Begin Burst  
Write Cycle / Continue Burst  
Write Cycle / Write Abort  
Write Cycle / Write Abort  
Stall / Ignore Clock Edge  
×
H
L
None  
L
External  
Next  
×
H
L
L
External  
Next  
×
H
L
L
External  
Next  
×
H
×
×
Current  
2
Notes 1. Deselect status is held until new “Begin Burst” entry.  
2. If an Ignore Clock Edge command occurs during a read operation, the I/O bus will remain active (Low-  
impedance). If it occurs during a write cycle, the bus will remain High impedance. No write operation will  
be performed during the Ignore Clock Edge cycle.  
Remarks 1. × : don’t care  
2. /BWs = L means any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.  
/BWs = H means all byte write enables (/BW1, /BW2, /BW3 or /BW4) are HIGH.  
15  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Partial Truth Table for Write Enables  
[µPD44321182]  
Operation  
/WE  
H
/BW1  
/BW2  
Read Cycle  
×
L
×
H
L
Write Cycle / Byte 1 (I/O [1:8], I/OP1)  
Write Cycle / Byte 2 (I/O [9:16], I/OP2)  
Write Cycle / All Bytes  
Write Abort / NOP  
L
L
H
L
L
L
L
H
H
Remark × : don’t care  
[µPD44321322, µPD44321362]  
Operation  
/WE  
H
L
/BW1  
/BW2  
/BW3  
/BW4  
Read Cycle  
×
L
×
H
L
×
H
H
L
×
H
H
H
L
Write Cycle / Byte 1 (I/O [1:8], I/OP1)  
Write Cycle / Byte 2 (I/O [9:16], I/OP2)  
Write Cycle / Byte 3 (I/O [17:24], I/OP3)  
Write Cycle / Byte 4 (I/O [25:32], I/OP4)  
Write Cycle / All Bytes  
L
H
H
H
L
L
H
H
L
L
H
L
L
L
Write Abort / NOP  
L
H
H
H
H
Remark × : don’t care  
ZZ (Sleep) Truth Table  
ZZ  
0.2 V  
Chip Status  
Active  
Active  
Sleep  
Open  
VDD 0.2 V  
16  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
Conditions  
MIN.  
–0.5  
TYP.  
MAX.  
+4.0  
Unit  
V
VDD  
-A44, -A50, -A60  
-A44Y, -A50Y, -A60Y  
-C50, -C60  
–0.5  
+3.0  
-C50Y, -C60Y  
Output supply voltage  
Input voltage  
VDDQ  
VIN  
–0.5  
–0.5 Note  
–0.5 Note  
0
VDD  
VDD + 0.5  
VDDQ + 0.5  
70  
V
V
Input / Output voltage  
Operating ambient  
temperature  
VI/O  
TA  
V
-A44, -A50, -A60, -C50, -C60  
°C  
-A44Y, -A50Y, -A60Y, -C50Y, -C60Y  
–40  
+85  
Storage temperature  
Tstg  
–55  
+125  
°C  
Note –2.0 V (MIN.) (Pulse width : 2 ns)  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions  
(1/2)  
Unit  
Parameter  
Symbol  
Conditions  
-A44, -A50, -A60  
-A44Y, -A50Y, -A60Y  
MIN.  
TYP.  
3.3  
MAX.  
Supply voltage  
VDD  
3.135  
3.465  
V
2.5 V LVTTL Interface  
Output supply voltage  
High level input voltage  
Low level input voltage  
3.3 V LVTTL Interface  
Output supply voltage  
High level input voltage  
Low level input voltage  
VDDQ  
VIH  
2.375  
1.7  
–0.3 Note  
2.5  
2.9  
V
V
V
VDDQ + 0.3  
+0.7  
VIL  
VDDQ  
VIH  
3.135  
2.0  
–0.3 Note  
3.3  
3.465  
VDDQ +  
+0.8  
V
V
V
VIL  
Note –0.8 V (MIN.) (Pulse width : 2 ns)  
Recommended DC Operating Conditions  
(2/2)  
Parameter  
Symbol  
Conditions  
-C50, -C60  
Unit  
-C50Y, -C60Y  
MIN.  
2.375  
2.375  
1.7  
TYP.  
2.5  
MAX.  
2.625  
Supply voltage  
VDD  
VDDQ  
VIH  
V
V
V
V
Output supply voltage  
High level input voltage  
Low level input voltage  
2.5  
2.625  
VDDQ + 0.3  
+0.7  
VIL  
–0.3 Note  
Note –0.8 V (MIN.) (Pulse width : 2 ns)  
17  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
DC Characteristics (VDD = 3.3 ± 0.165 V or 2.5 ± 0.125 V)  
Parameter  
Input leakage current  
I/O leakage current  
Operating supply current  
Symbol  
ILI  
Test condition  
MIN.  
–2  
TYP.  
MAX.  
+2  
Unit  
µA  
VIN (except ZZ, MODE) = 0 V to VDD  
VI/O = 0 V to VDDQ, Outputs are disabled.  
ILO  
–2  
+2  
µA  
IDD  
Device selected,  
Cycle = MAX.  
-A44  
440  
mA  
-A44Y  
VIN VIL or VIN VIH,  
II/O = 0 mA  
-A50, -C50  
-A50Y, -C50Y  
-A60, -C60  
-A60Y, -C60Y  
410  
360  
70  
Standby supply current  
ISB  
Device deselected, Cycle = 0 MHz,  
VIN VIL or VIN VIH, All inputs are static.  
Device deselected, Cycle = 0 MHz,  
VIN 0.2 V or VIN VDD – 0.2 V,  
VI/O 0.2 V, All inputs are static.  
Device deselected, Cycle = MAX.  
VIN VIL or VIN VIH  
mA  
ISB1  
60  
ISB2  
ISBZZ  
VOH  
VOL  
130  
60  
Power down supply current  
2.5 V LVTTL Interface  
High level output voltage  
ZZ VDD – 0.2 V, VI/O VDDQ + 0.2 V  
mA  
V
IOH = –2.0 mA  
IOH = –1.0 mA  
IOL = +2.0 mA  
IOL = +1.0 mA  
1.7  
2.1  
Low level output voltage  
0.7  
0.4  
V
3.3 V LVTTL Interface  
High level output voltage  
Low level output voltage  
VOH  
VOL  
IOH = –4.0 mA  
IOL = +8.0 mA  
2.4  
V
V
0.4  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Symbol  
CIN  
Test condition  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
6.0  
Unit  
pF  
Input capacitance  
Input / Output capacitance  
Clock input capacitance  
CI/O  
VI/O = 0 V  
8.0  
pF  
Cclk  
Vclk = 0 V  
6.0  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
18  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
AC Characteristics (VDD = 3.3 ± 0.165 V or 2.5 ± 0.125 V)  
AC Test Conditions  
2.5 V LVTTL Interface  
Input waveform (Rise / Fall time2.4 ns)  
2.4 V  
1.2 V  
Test points  
1.2 V  
1.2 V  
VSS  
Output waveform  
1.2 V  
Test points  
3.3 V LVTTL Interface  
Input waveform (Rise / Fall time3.0 ns)  
3.0 V  
1.5 V  
Test points  
Test points  
1.5 V  
VSS  
Output waveform  
1.5 V  
1.5 V  
Output load condition  
CL : 30 pF  
5 pF (TKHQX1, TKHQX2, TGLQX, TGHQZ, TKHQZ)  
Figure External load at test  
ZO = 50  
I/O (Output)  
C
L
50 Ω  
VT = +1.2 V / +1.5 V  
Remark CL includes capacitances of the probe and jig, and stray capacitances.  
19  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Read and Write Cycle  
Parameter  
Symbol  
-A44  
-A44Y  
-A50, -C50  
-A50Y, -C50Y  
(200 MHz)  
-A60, -C60  
-A60Y, -C60Y  
(167 MHz)  
Unit Notes  
(225 MHz)  
Standard  
Alias  
TCYC  
TCD  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Cycle time  
TKHKH  
TKHQV  
TGLQV  
TKHQX1  
TKHQX2  
TGLQX  
TGHQZ  
TKHQZ  
TKHKL  
TKLKH  
TAVKH  
ns  
ns  
ns  
4.4  
2.8  
2.8  
5
3.2  
3.2  
6
3.5  
3.5  
Clock access time  
Output enable access time  
Clock high to output active  
Clock high to output change  
Output enable to output active  
Output disable to output High-Z  
Clock high to output High-Z  
Clock high pulse width  
Clock low pulse width  
TOE  
TDC1  
TDC2  
TOLZ  
TOHZ  
TCZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
1.5  
1.5  
0
1.5  
1.5  
0
1.5  
1.5  
0
1
1
0
2.8  
2.8  
0
3.2  
3.2  
0
3.5  
3.5  
1, 2  
1.5  
1.8  
1.8  
1.4  
1.5  
1.8  
1.8  
1.5  
1.5  
1.8  
1.8  
1.5  
TCH  
TCL  
Setup times  
Address  
TAS  
Address advance TADVVKH TADVS  
Clock enable  
Chip enable  
Data in  
TEVKH  
TCVKH  
TDVKH  
TWVKH  
TKHAX  
TCES  
TCSS  
TDS  
Write enable  
Address  
TWS  
TAH  
Hold times  
0.4  
0.5  
0.5  
ns  
Address advance TKHADVX TADVH  
Clock enable  
Chip enable  
Data in  
TKHEX  
TKHCX  
TKHDX  
TKHWX  
TZZE  
TCEH  
TCSH  
TDH  
Write enable  
TWH  
TZZE  
TZZR  
Power down entry time  
ns  
ns  
8.8  
8.8  
10  
10  
12  
12  
Power down recovery time  
TZZR  
Notes 1. Transition is measured 200 mV from steady state.  
2. To avoid bus contention, the output buffers are designed such that TKHQZ (device turn-off) is faster than  
TKHQX1 (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus  
contention because TKHQX1 is a min. parameter that is worse case at totally different conditions (TA min.,  
VDD max.) than TKHQZ, which is a max. parameter (worse case at TA max., VDD min.).  
20  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
READ / WRITE CYCLE  
1
2
TKHKH  
3
4
5
6
7
8
9
10  
CLK  
TKHKL TKLKH  
TEVKH TKHEX  
TCVKH TKHCX  
/CKE  
/CEs Note 1  
ADV  
TADVVKH TKHADVX  
TWVKH TKHWX  
TWVKH TKHWX  
/WE  
/BWs Note 2  
Address  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TAVKH TKHAX  
High-Z  
High-Z  
High-Z  
D (A1)  
D (A2)  
D (A2+1)  
D (A5)  
Data In  
TDVKH TKHDX  
TKHQX1  
TKHQX2  
Q (A3)  
TGLQV TKHQZ  
High-Z  
High-Z  
Q (A4)  
Q (A4+1)  
Q (A6)  
Data Out  
/G  
TKHQX2  
TGHQZ  
TKHQV  
TGLQX  
BURST  
WRITE  
D (A2+1)  
BURST  
READ  
Q (A4+1)  
WRITE  
D (A1)  
WRITE  
D (A2)  
READ  
Q (A3)  
READ  
Q (A4)  
WRITE  
D (A5)  
READ  
Q (A6)  
WRITE  
Q (A7)  
Command  
DESELECT  
Notes 1. /CEs refers to /CE, CE2 and /CE2. When /CEs is LOW, /CE and /CE2 are LOW and CE2 is HIGH. When  
/CEs is HIGH, /CE and /CE2 are HIGH and CE2 is LOW.  
2. /BWs refers to /BW1, /BW2, /BW3 and /BW4. When /BWs is LOW, any one or more byte write enables  
(/BW1, /BW2, /BW3 or /BW4) are LOW.  
21  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
NOP, STALL AND DESELECT CYCLE  
1
2
3
4
5
6
7
8
9
10  
CLK  
/CKE  
/CEs  
ADV  
/WE  
/BWs  
Address  
A1  
A2  
A3  
A4  
A5  
High-Z  
High-Z  
High-Z  
D (A1)  
D (A4)  
Data In  
TKHQZ  
High-Z  
High-Z  
Q (A2)  
Q (A3)  
Q (A5)  
TKHQX2  
Data Out  
WRITE  
D (A1)  
READ  
Q (A2)  
READ  
Q (A3)  
WRITE  
D (A4)  
READ  
Q (A5)  
CONTINUE  
DESELECT  
Command  
STALL  
STALL  
NOP  
DESELECT  
22  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
POWER DOWN (ZZ) CYCLE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
TKHKH  
CLK  
/CKE  
TKHKL TKLKH  
/CEs Note  
ADV  
/WE Note  
/BWs  
Address  
/G  
A1  
A2  
High-Z  
High-Z  
Data Out  
ZZ  
Q1 (A2)  
Q (A1)  
TZZE  
TZZR  
Power Down (ISBZZ) State  
Note /WE or /CEs must be held HIGH at CLK rising edge (clock edge No.2 and No.3 in this figure) prior to power  
down state entry.  
23  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
JTAG Specifications  
Only the 165-pin PLASTIC FBGA package of µPD44321182, µPD44321322 and µPD44321362 support a limited set  
of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin Name  
TCK  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling  
edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
Test Data Input. This is the input side of the serial registers placed between TDI and TDO.The register placed  
between TDI and TDO is deter-mined by the state of the TAP controller state machine and the instruction that is  
currently loaded in the TAP instruction.  
TDO  
Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial  
registers placed between TDI and TDO.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (VDD = 3.3 ± 0.165 V)  
(1/2)  
Note  
Parameter  
Symbol  
Conditions  
0 V VIN VDD  
MIN.  
TYP.  
MAX.  
Unit  
JTAG Input leakage current  
JTAG I/O leakage current  
ILI  
–5.0  
–5.0  
+5.0  
+5.0  
µA  
µA  
ILO  
0 V VIN VDDQ ,  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
JTAG output low voltage  
VIH  
VIL  
2.0  
–0.3  
2.4  
VDD+0.3  
+0.5  
V
V
V
V
VOH  
VOL  
IOH = –4 mA  
IOL = 8 mA  
0.4  
JTAG DC Characteristics (VDD = 2.5 ± 0.125 V)  
(2/2)  
Note  
Parameter  
Symbol  
ILI  
Conditions  
0 V VIN VDD  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
JTAG Input leakage current  
JTAG I/O leakage current  
ILO  
0 V VIN VDDQ ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.7  
–0.3  
1.7  
VDD+0.3  
+0.5  
V
V
V
VOH  
IOH = –2.0 mA  
IOH = –1.0 mA  
IOL = +2.0 mA  
IOL = +1.0 mA  
2.1  
JTAG output low voltage  
VOL  
0.7  
0.4  
V
24  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
JTAG AC Test Conditions  
[-A44, -A50, -A60, -A44Y, -A50Y, -A60Y]  
Input waveform (rise / fall time 1 ns )  
Output waveform  
1.5 V  
1.5 V  
Test Points  
[-C50, -C60, -C50Y, -C60Y]  
Input waveform (rise / fall time 1 ns )  
2.4 V  
1.2 V  
1.2 V  
Test Points  
0 V  
Output waveform  
1.2 V  
1.2 V  
Test Points  
Output load  
VTT = 1.2 V / 1.5 V  
50  
Z
O
= 50 Ω  
TDO  
20 pF  
25  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
JTAG AC Characteristics  
Parameter  
Symbol  
tTHTH  
Conditions  
MIN.  
100  
40  
TYP.  
MAX.  
Unit  
ns  
Note  
Clock Cycle Time (TCK)  
Clock Phase Time (TCK)  
Setup Time (TMS / TDI)  
Hold Time (TMS / TDI)  
TCK Low to TDO Valid (TDO)  
tTHTL / tTLTH  
tMVTH / tDVTH  
tTHMX / tTHDX  
tTLQV  
ns  
10  
ns  
10  
ns  
20  
ns  
JTAG Timing Diagram  
26  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
Bypass register  
ID register  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The shift register bit  
nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the  
input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
77  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0010 1100  
0000 0000 0010 1101  
0000 0000 0010 1110  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44321182  
µPD44321322  
µPD44321362  
2M x 18  
1M x 32  
1M x 36  
XXXX  
XXXX  
XXXX  
1
1
1
00000010000  
00000010000  
27  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
SCAN Exit Order  
[ µPD44321322 (1M words by 32 bits) ]  
[ µPD44321362 (1M words by 36 bits) ]  
[ µPD44321182 (2M words by 18 bits) ]  
Bit  
no.  
Signal  
name  
Bump  
ID  
Bit  
no.  
Signal  
name  
Bump  
ID  
Bit  
no.  
Signal  
name  
Bump  
ID  
Bit  
no.  
Signal  
name  
Bump  
ID  
1
NC  
A19  
A10  
A11  
A13  
A14  
A15  
A16  
NC  
6N  
8P  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
/CE2  
/BW1  
NC  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1A  
1C  
1D  
1E  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1
NC  
A19  
6N  
8P  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
/CE2  
/BW1  
/BW2  
/BW3  
/BW4  
CE2  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1A  
1C  
1D  
1E  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
2
2
3
8R  
3
A10  
8R  
4
9R  
/BW2  
NC  
4
A11  
9R  
5
9P  
5
A13  
9P  
6
10P  
10R  
11R  
11P  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
11C  
10F  
10E  
10D  
10G  
11A  
11B  
10A  
10B  
9A  
CE2  
/CE  
A7  
6
A14  
10P  
10R  
11R  
11P  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
11A  
11B  
10A  
10B  
9A  
7
7
A15  
/CE1  
A7  
8
8
A16  
9
A6  
9
NC  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
ZZ  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
ZZ  
NC  
NC  
NC  
I/OP1, NC  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O8  
I/O9  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
I/O16  
I/OP2, NC  
NC  
NC  
NC  
NC  
I/OP3, NC  
I/O17  
I/O18  
I/O19  
I/O20  
I/O21  
I/O22  
I/O23  
I/O24  
I/O25  
I/O26  
I/O27  
I/O28  
I/O29  
I/O30  
I/O31  
I/O32  
I/OP4, NC  
A5  
NC  
NC  
NC  
NC  
NC  
NC  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O8  
I/OP1  
NC  
NC  
I/O9  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
I/O16  
I/OP2  
NC  
1K  
1L  
1K  
1L  
1M  
1N  
2K  
2L  
1M  
2J  
NC  
2K  
2L  
NC  
NC  
NC  
NC  
2M  
2J  
2M  
1N  
2R  
1R  
3P  
3R  
4R  
4P  
6P  
6R  
A20  
NC  
NC  
A5  
2R  
1R  
3P  
3R  
4R  
4P  
6P  
6R  
NC  
A9  
MODE  
A4  
A9  
MODE  
A4  
A8  
A8  
A17  
A18  
ADV  
/G  
A3  
A17  
A3  
9B  
A2  
A18  
9B  
A2  
8A  
A12  
A1  
ADV  
/G  
8A  
A12  
8B  
8B  
A1  
/CKE  
7A  
A0  
/CKE  
7A  
A0  
38  
39  
/WE  
CLK  
7B  
6B  
38  
39  
/WE  
CLK  
7B  
6B  
28  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
JTAG Instructions  
Instructions  
EXTEST  
Description  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction  
register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented  
in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does  
respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the  
instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the  
RAM output are forced to high impedance any time the instruction is loaded.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed  
in the test-logic-reset state.  
BYPASS  
SAMPLE  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed between  
TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other devices in the scan path.  
Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the  
instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input  
and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the  
TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable  
input will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture setup plus hold time (tCS plus tCH). The  
RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring  
contents into the boundary scan register. Moving the controller to shift-DR state then places the  
boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1  
compliant.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive  
drive state (High impedance) and the boundary register is connected between TDI and TDO when the  
TAP controller is moved to the shift-DR state.  
JTAG Instruction Cording  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
IDCODE  
SAMPLE-Z  
BYPASS  
SAMPLE  
BYPASS  
BYPASS  
BYPASS  
Note  
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.  
29  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
TAP Controller State Diagram  
Disabling The Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1 kresistor.  
TDO should be left unconnected.  
30  
Preliminary Data Sheet M16024EJ1V0DS  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
µ
Contoroller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
µ
Controller  
state  
TDI  
Instructin  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
µPD44321182, 44321322, 44321362  
Package Drawings  
100-PIN PLASTIC LQFP (14x20)  
A
B
80  
81  
51  
50  
detail of lead end  
S
C
D
R
Q
31  
30  
100  
1
F
M
G
J
H
I
K
P
S
N
S
L
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
D
F
22.0 0.2  
20.0 0.2  
14.0 0.2  
16.0 0.2  
0.825  
G
0.575  
+0.08  
0.32  
H
0.07  
I
J
0.13  
0.65 (T.P.)  
1.0 0.2  
0.5 0.2  
K
L
+0.06  
0.17  
M
0.05  
N
P
Q
0.10  
1.4  
0.125 0.075  
+7°  
3°  
R
S
3°  
1.7 MAX.  
S100GF-65-8ET-1  
33  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
165-PIN PLASTIC FBGA (15x17)  
E
w S B  
ZD  
ZE  
B
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w S A  
INDEX MARK  
y1 S  
A2  
h
A
S
ITEM MILLIMETERS  
A1  
e
y
D
E
15.00  
17.00  
2.50  
1.50  
1.00  
0.60  
1.40  
0.40  
1.00  
0.45  
0.08  
0.08  
0.15  
0.20  
S
ZD  
ZE  
e
φ M  
x
φ
b
S A B  
h
A
A1  
A2  
b
y
x
w
y1  
This package drawing is a preliminary version. It may be changed in the future.  
34  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of the µPD44321182, µPD44321322 and  
µPD44321362.  
Types of Surface Mount Devices  
µPD44321182GF  
µPD44321322GF  
µPD44321362GF  
: 100-pin PLASTIC LQFP (14 x 20)  
: 100-pin PLASTIC LQFP (14 x 20)  
: 100-pin PLASTIC LQFP (14 x 20)  
µPD44321182F1-FQ2 : 165-pin PLASTIC FBGA (15 x 17)  
µPD44321322F1-FQ2 : 165-pin PLASTIC FBGA (15 x 17)  
µPD44321362F1-FQ2 : 165-pin PLASTIC FBGA (15 x 17)  
35  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
Revision History  
Edition/  
Page  
Previous  
edition  
Type of  
revision  
Location  
Description  
Date  
This  
(Previous edition This edition)  
edition  
1st edition/ Throughout Throughout Modification  
Preliminary Product Information  
Dec. 2002  
Deletion  
Addition  
Preliminary Data Sheet  
µPD44321162  
Extended operating temperature products  
(TA = 40 to +85 °C)  
pp.2, 3  
p.27  
pp.2, 3  
p.27  
Addition  
Addition  
Ordering Information Under development  
(225 MHz and 165-pin PLASTIC FBGA (15 x 17))  
ID Register Definition Addition of ID [27:12] part no.  
36  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[MEMO]  
37  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
[MEMO]  
38  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
39  
Preliminary Data Sheet M16024EJ1V0DS  
µPD44321182, 44321322, 44321362  
ZEROSB is a trademark of NEC Electronics Corporation.  
The information in this document is current as of December, 2002. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44321322F1-C50-FQ2

IC,SYNC SRAM,1MX32,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44321322F1-C50Y-FQ2

IC,SYNC SRAM,1MX32,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44321322F1-C60-FQ2

IC,SYNC SRAM,1MX32,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44321322GF-A44

ZBT SRAM, 1MX32, 2.8ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS

UPD44321322GF-A44Y

ZBT SRAM, 1MX32, 2.8ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS

UPD44321322GF-A50

IC,SYNC SRAM,1MX32,CMOS,QFP,100PIN,PLASTIC
RENESAS

UPD44321322GF-A50Y

ZBT SRAM, 1MX32, 3.2ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS

UPD44321322GF-A60

IC,SYNC SRAM,1MX32,CMOS,QFP,100PIN,PLASTIC
RENESAS

UPD44321322GF-C50

ZBT SRAM, 1MX32, 3.2ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS

UPD44321322GF-C50Y

IC,SYNC SRAM,1MX32,CMOS,QFP,100PIN,PLASTIC
RENESAS

UPD44321322GF-C60Y

ZBT SRAM, 1MX32, 3.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS

UPD44321361GF-A65

ZBT SRAM, 1MX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, LQFP-100
RENESAS