UPD48576236FF-E24-DW1-A [RENESAS]

Low Latency DRAM, T-TFBGA, /Tray;
UPD48576236FF-E24-DW1-A
型号: UPD48576236FF-E24-DW1-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Low Latency DRAM, T-TFBGA, /Tray

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总53页 (文件大小:1118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
μPD48576209  
μPD48576218  
μPD48576236  
R10DS0063EJ0300  
Rev.3.00  
576M-BIT Low Latency DRAM  
Common I/O  
Oct 01, 2012  
Description  
The μPD48576209 is a 67,108,864-word by 9 bit, the μPD48576218 is a 33,554,432 word by 18 bit and the  
μPD48576236 is a 16,777,216 word by 36 bit synchronous double data rate Low Latency RAM fabricated with  
advanced CMOS technology using one-transistor memory cell.  
The μPD48576209, μPD48576218 and μPD48576236 integrate unique synchronous peripheral circuitry and a burst  
counter. All input registers controlled by an input clock pair (CK and CK#) are latched on the positive edge of CK and  
CK#. These products are suitable for application which require synchronous operation, high speed, low voltage, high  
density and wide bit configuration.  
Specification  
Features  
Density: 576M bit  
SRAM-type interface  
Organization  
Double-data-rate architecture  
PLL circuitry  
-
Common I/O: 8M words x 9 bits x 8 banks  
4M words x 18 bits x 8 banks  
Cycle time:  
1.875 ns @ tRC = 15 ns  
2M words x 36 bits x 8 banks  
2.5 ns @ tRC = 15 ns  
2.5 ns @ tRC = 20 ns  
3.3 ns @ tRC = 20 ns  
Operating frequency: 533 / 400 / 300 MHz  
Interface: HSTL I/O  
Package: 144-pin TAPE FBGA  
Non-multiplexed addresses  
-
-
Package size: 18.5 x 11  
Leaded and Lead free  
Multiplexing option is available.  
Power supply  
Data mask for WRITE commands  
Differential input clocks (CK and CK#)  
Differential input data clocks (DK and DK#)  
Data valid signal (QVLD)  
-
-
-
2.5 V VEXT  
1.8 V VDD  
1.5 V or 1.8 V VDDQ  
Refresh command  
-
-
-
Auto Refresh  
Programmable burst length: 2 / 4 / 8 (x9 / x18 / x36)  
User programmable impedance output (25 Ω - 60 Ω)  
JTAG boundary scan  
16K cycle / 32 ms for each bank  
128K cycle / 32 ms for total  
Operating case temperature : Tc = 0 to 95°C  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 1 of 52  
μPD48576209, μPD48576218, μPD48576236  
Ordering Information  
Part number  
Cycle  
Clock  
Random Organization Core Supply Core Supply Output Supply Package  
Time Frequency Cycle  
(word x bit)  
Voltage  
(VEXT)  
V
Voltage  
(VDD)  
V
Voltage  
(VDDQ)  
V
ns  
1.875  
2.5  
MHz  
533  
400  
400  
300  
533  
400  
400  
300  
533  
400  
400  
300  
533  
400  
400  
300  
533  
400  
400  
300  
533  
400  
400  
300  
ns  
15  
15  
20  
20  
15  
15  
20  
20  
15  
15  
20  
20  
15  
15  
20  
20  
15  
15  
20  
20  
15  
15  
20  
20  
μPD48576209FF-E18-DW1-A  
μPD48576209FF-E24-DW1-A  
μPD48576209FF-E25-DW1-A  
μPD48576209FF-E33-DW1-A  
μPD48576218FF-E18-DW1-A  
μPD48576218FF-E24-DW1-A  
μPD48576218FF-E25-DW1-A  
μPD48576218FF-E33-DW1-A  
μPD48576236FF-E18-DW1-A  
μPD48576236FF-E24-DW1-A  
μPD48576236FF-E25-DW1-A  
μPD48576236FF-E33-DW1-A  
μPD48576209FF-E18-DW1  
μPD48576209FF-E24-DW1  
μPD48576209FF-E25-DW1  
μPD48576209FF-E33-DW1  
μPD48576218FF-E18-DW1  
μPD48576218FF-E24-DW1  
μPD48576218FF-E25-DW1  
μPD48576218FF-E33-DW1  
μPD48576236FF-E18-DW1  
μPD48576236FF-E24-DW1  
μPD48576236FF-E25-DW1  
μPD48576236FF-E33-DW1  
64 M x 9  
2.5 + 0.13  
2.5 – 0.12  
1.8 ± 0.1  
1.5 ± 0.1  
or  
144-pin  
TAPE FBGA  
(18.5 x 11)  
2.5  
1.8 ± 0.1  
3.3  
1.875  
2.5  
32 M x 18  
16 M x 36  
64 M x 9  
Lead-free  
2.5  
3.3  
1.875  
2.5  
2.5  
3.3  
1.875  
2.5  
2.5 + 0.13  
2.5 – 0.12  
1.8 ± 0.1  
1.5 ± 0.1  
or  
144-pin  
TAPE FBGA  
(18.5 x 11)  
2.5  
1.8 ± 0.1  
3.3  
1.875  
2.5  
32 M x 18  
16 M x 36  
Lead  
2.5  
3.3  
1.875  
2.5  
2.5  
3.3  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 2 of 52  
μPD48576209, μPD48576218, μPD48576236  
Pin Arrangement  
# indicates active LOW signal.  
144-pin TAPE FBGA (18.5 x 11)  
(Top View) [Common I/O x9]  
1
2
3
4
5
6
7
8
9
10  
VEXT  
DQ0  
DQ1  
QK0#  
DQ2  
DQ3  
A2  
11  
12  
TCK  
VDD  
VTT  
A
B
C
D
E
F
VREF  
VDD  
VTT  
VSS  
VEXT  
VSS  
VSS  
TMS  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
Note 1  
QK0  
VSS  
(A22)  
Note 3  
DNU  
Note 3  
DNU  
A21  
A5  
A20  
QVLD  
A0  
G
H
J
A8  
A6  
A7  
VSS  
VDD  
VDD  
VSS  
A17  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
A1  
A4  
BA2  
Note 2  
NF  
A9  
Note 2  
NF  
VSS  
VSS  
VSS  
A3  
VDD  
VDD  
VDD  
BA0  
BA1  
A14  
A11  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
CK  
K
L
DK  
REF#  
WE#  
A18  
A15  
VSS  
DK#  
CS#  
A16  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
VDD  
VDD  
VDD  
CK#  
A13  
A10  
A19  
DM  
VSS  
VSS  
VSS  
M
N
P
R
T
VDD  
VDD  
A12  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
VEXT  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VSS  
VTT  
VTT  
U
V
VDD  
VDD  
TDI  
VREF  
ZQ  
VEXT  
TDO  
Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address  
input signal. This may optionally be connected to VSS, or left open.  
2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal.  
This may optionally be connected to VSS, or left open.  
3. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may  
optionally be connected to VSS, or left open.  
CK, CK#  
CS#  
: Input clock  
TMS  
TDI  
TCK  
TDO  
VREF  
VEXT  
VDD  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Chip select  
WE#  
: WRITE command  
: Refresh command  
: Address inputs  
REF#  
A0–A21  
A22  
: Reserved for the future  
: Bank address input  
: Data input/output  
: Input data clock  
: Input data Mask  
: Output data clock  
: Data Valid  
BA0–BA2  
DQ0–DQ8  
DK, DK#  
DM  
: Power Supply  
VDDQ  
VSS  
: DQ Power Supply  
: Ground  
VSSQ  
VTT  
: DQ Ground  
QK0, QK0#  
QVLD  
ZQ  
: Power Supply  
NF  
: No function  
: Output impedance matching  
DNU  
: Do not use  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 3 of 52  
μPD48576209, μPD48576218, μPD48576236  
# indicates active LOW signal.  
144-pin TAPE FBGA (18.5 x 11)  
(Top View) [Common I/O x18]  
1
2
3
4
5
6
7
8
9
10  
VEXT  
DQ0  
DQ1  
QK0#  
DQ2  
DQ3  
A2  
11  
12  
TCK  
VDD  
VTT  
A
B
C
D
E
F
VREF  
VDD  
VTT  
Note 1  
(A22)  
Note 1  
VSS  
VEXT  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
A7  
VSS  
VSS  
TMS  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
QK0  
VSS  
A20  
QVLD  
A0  
Note 3  
DNU  
Note 3  
DNU  
(A21)  
A5  
A8  
G
H
J
A6  
A1  
A4  
BA2  
A9  
VSS  
VSS  
VSS  
VSS  
A3  
Note 2  
Note 2  
VDD  
VDD  
VDD  
VDD  
BA0  
BA1  
A14  
A11  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
Note 3  
DNU  
CK  
NF  
NF  
K
L
DK  
REF#  
WE#  
A18  
A15  
VSS  
DK#  
CS#  
A16  
Note 3  
DNU  
Note 3  
DNU  
VDD  
VDD  
VDD  
VDD  
CK#  
A13  
A10  
A19  
DM  
VSS  
VSS  
VSS  
VSS  
M
N
P
R
T
A17  
VDD  
VDD  
A12  
DQ14  
DQ15  
QK1#  
DQ16  
DQ17  
VEXT  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
VEXT  
QK1  
VSS  
VTT  
Note 3  
DNU  
Note 3  
DNU  
VTT  
U
V
VDD  
VDD  
TDI  
VREF  
ZQ  
TDO  
Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address  
input signal. This may optionally be connected to VSS, or left open.  
2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal.  
This may optionally be connected to VSS, or left open.  
3. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may  
optionally be connected to VSS, or left open.  
CK, CK#  
CS#  
: Input clock  
TMS  
TDI  
TCK  
TDO  
VREF  
VEXT  
VDD  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Chip select  
WE#  
: WRITE command  
: Refresh command  
: Address inputs  
: Reserved for the future  
: Bank address input  
: Data input/output  
: Input data clock  
: Input data Mask  
: Output data clock  
: Data Valid  
REF#  
A0–A20  
A21–A22  
BA0–BA2  
DQ0–DQ17  
DK, DK#  
DM  
: Power Supply  
VDDQ  
VSS  
: DQ Power Supply  
: Ground  
VSSQ  
VTT  
: DQ Ground  
QK0–QK1, QK0#–QK1#  
QVLD  
: Power Supply  
NF  
: No function  
ZQ  
: Output impedance  
matching  
DNU  
: Do not use  
# indicates active LOW signal.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 4 of 52  
μPD48576209, μPD48576218, μPD48576236  
144-pin TAPE FBGA (18.5 x 11)  
(Top View) [Common I/O x36]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
TCK  
VDD  
VTT  
A
B
C
D
E
F
VREF  
VDD  
VTT  
VSS  
VEXT  
DQ9  
DQ11  
DQ13  
DQ15  
DQ17  
A7  
VSS  
VSS  
VEXT  
DQ1  
DQ3  
QK0#  
DQ5  
DQ7  
A2  
TMS  
DQ0  
DQ2  
QK0  
DQ4  
DQ6  
A1  
DQ8  
DQ10  
DQ12  
DQ14  
DQ16  
A6  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDD  
Note  
VSS  
Note  
(A20)  
(A22)  
Note  
(A21)  
A5  
A8  
QVLD  
G
H
J
A0  
A3  
BA2  
DK0  
DK1  
REF#  
WE#  
A18  
A15  
VSS  
A9  
VSS  
VSS  
VSS  
VSS  
A4  
DK0#  
DK1#  
CS#  
VDD  
VDD  
VDD  
VDD  
BA0  
BA1  
A14  
CK  
K
L
VDD  
VDD  
VDD  
VDD  
CK#  
A13  
A10  
A19  
DM  
VSS  
VTT  
VSS  
VSS  
VSS  
VSS  
M
N
P
R
T
A16  
A17  
VDD  
VDD  
A12  
A11  
DQ24  
DQ22  
QK1  
DQ20  
DQ18  
ZQ  
DQ25  
DQ23  
QK1#  
DQ21  
DQ19  
VEXT  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQ35  
DQ33  
DQ31  
DQ29  
DQ27  
VEXT  
DQ34  
DQ32  
DQ30  
DQ28  
DQ26  
TDO  
VTT  
U
V
VDD  
VDD  
TDI  
VREF  
Note Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input  
signal. This may optionally be connected to VSS, or left open.  
CK, CK#  
: Input clock  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
CS#  
: Chip select  
WE#  
: WRITE command  
: Refresh command  
: Address inputs  
TCK  
TDO  
VREF  
VEXT  
VDD  
REF#  
A0–A19  
A20–A22  
: Reserved for the future  
: Bank address input  
: Data input/output  
: Input data clock  
: Input data Mask  
: Output data clock  
: Data Valid  
BA0–BA2  
: Power Supply  
DQ0–DQ35  
VDDQ  
VSS  
: DQ Power Supply  
: Ground  
DK0–DK1, DK0#–DK1#  
DM  
VSSQ  
VTT  
: DQ Ground  
QK0–QK1, QK0#–QK1#  
: Power Supply  
QVLD  
ZQ  
: Output impedance matching  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 5 of 52  
μPD48576209, μPD48576218, μPD48576236  
Pin Description  
(1/2)  
Symbol  
Type  
Description  
CK, CK#  
Input  
Clock inputs:  
CK and CK# are differential clock inputs. This input clock pair registers address and control inputs  
on the rising edge of CK. CK# is ideally 180 degrees out of phase with CK.  
CS#  
Input  
Input  
Input  
Chip select  
CS# enables the commands when CS# is LOW and disables them when CS# is HIGH. When the  
command is disabled, new commands are ignored, but internal operations continue.  
WE#, REF#  
A0–A21  
WRITE command pin, Refresh command pin:  
WE#, REF# are sampled at the positive edge of CK, WE#, and REF# define (together with CS#) the  
command to be executed.  
Address inputs:  
A0–A21 define the row and column addresses for READ and WRITE operations. During a MODE  
REGISTER SET, the address inputs define the register settings. They are sampled at the rising  
edge of CK.  
In the x36 configuration, A20–A21 are reserved for address expansion; in the x18 configuration, A21  
is reserved for address expansion. These expansion addresses can be treated as address inputs,  
but they do not affect the operation of the device.  
A22  
Input  
Input  
Reserved for future use:  
These signals should be tied to VSS or leave open.  
Bank address inputs;  
BA0–BA2  
DQx–DQxx  
Select to which internal bank a command is being applied.  
Data input/output:  
Input  
/Output  
The DQ signals form the 9/18/36 bit data bus. During READ commands, the data is referenced to  
both edges of QKx. During WRITE commands, the data is sampled at both edges of DKx.  
x 9 device uses DQ0 to DQ8.  
x18 device uses DQ0 to DQ17.  
x36 device uses DQ0 to DQ35.  
Output data clocks:  
QKx, QKx#  
Output  
QKx and QKx# are opposite polarity, output data clocks. They are always free running and edge-  
aligned with data output from the μPD48576209/18/36. QKx# is ideally 180 degrees out of phase  
with QKx.  
For the x36 device, QK0 and QK0# are aligned with DQ0–DQ17. QK1 and QK1# are aligned with  
DQ18–DQ35. For the x18 device, QK0 and QK0# are aligned with DQ0–DQ8. QK1 and QK1# are  
aligned with DQ9–DQ17. For the x9 device, QK0 and QK0# are aligned with DQ0–DQ8.  
DKx, DKx#  
Input  
Input data clock;  
DKx and DKx# are the differential input data clocks. All input data is referenced to both edges of DK.  
DK# is ideally 180 degrees out of phase with DK.  
For the x36 device, DQ0–DQ17 are referenced to DK0 and DK0#, and DQ18–DQ35 are referenced  
to DK1 and DK1#. For the x9 and x18 devices, all DQs are referenced to DK and DK#.  
DM  
Input  
Input data mask;  
The DM signal is the input mask signal for WRITE data. Input data is masked when DM is sampled  
HIGH along with the WRITE input data. DM is sampled on both edges of DK (DK1 for the x36  
configuration). The signal should be VSS if not used.  
QVLD  
Output  
Data valid;  
The QVLD indicates valid output data. QVLD is edge-aligned with QKx and QKx#.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 6 of 52  
μPD48576209, μPD48576218, μPD48576236  
(2/2)  
Symbol  
Type  
Description  
ZQ  
Input  
External impedance [25 Ω – 60 Ω];  
This signal is used to tune the device outputs to the system data bus impedance. DQ output  
/Output  
impedance is set to 0.2 x RQ, where RQ is a resistor from this signal to VSS. Connecting ZQ to VSS  
invokes the minimum impedance mode. Connecting ZQ to VDDQ invokes the maximum impedance  
mode. Refer to Figure 2-5. Mode Register Bit Map to activate this function.  
TMS , TDI  
Input  
JTAG function pins:  
IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used in  
the circuit  
TCK  
TDO  
Input  
JTAG function pin;  
IEEE 1149.1 clock input: This ball must be tied to VSS if the JTAG function is not used in the circuit.  
Output  
JTAG function pin;  
IEEE 1149.1 test output: JTAG output.  
This ball may be left as no connect if JTAG function is not used.  
Input reference voltage;  
VREF  
VEXT  
VDD  
Input  
Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power supply;  
Supply  
Supply  
Supply  
2.5 V nominal. See Recommended DC Operating Conditions for range.  
Power supply;  
1.8 V nominal. See Recommended DC Operating Conditions for range.  
DQ power supply;  
VDDQ  
Nominally, 1.5 V or 1.8 V. Isolated on the device for improved noise immunity.  
See Recommended DC Operating Conditions for range.  
Ground  
VSS  
Supply  
Supply  
VSSQ  
DQ ground;  
Isolated on the device for improved noise immunity.  
Power supply;  
VTT  
Supply  
Isolated termination supply. Nominally, VDDQ/2. See Recommended DC Operating Conditions for  
range.  
NF  
No function;  
These balls may be connected to VSS.  
Do not use;  
DNU  
These balls may be connected to VSS.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 7 of 52  
μPD48576209, μPD48576218, μPD48576236  
Block Diagram  
A0-Axx , B0, B1, B2  
Column Address  
Row Address  
Refresh  
Counter  
Buffer  
Buffer  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory Array  
Bank 0  
Memory Array  
Bank 1  
Memory Array  
Bank 2  
Memory Array  
Bank 3  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory Array  
Bank 4  
Memory Array  
Bank 5  
Memory Array  
Bank 6  
Memory Array  
Bank 7  
Output Data Valid  
Output Data Clock  
QKx, QKx#  
Input Buffers  
Output Buffers  
Control Logic and Timing Generator  
QVLD  
DQxx  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 8 of 52  
μPD48576209, μPD48576218, μPD48576236  
Contents  
1. Electrical Characteristics....................................................................................................10  
2. Operation...............................................................................................................................17  
2.1 Command Operation.................................................................................................17  
2.2 Description of Commands........................................................................................17  
2.3 Initialization................................................................................................................18  
2.4 Power-On Sequence..................................................................................................19  
2.5 Programmable Impedance Output Buffer ...............................................................19  
2.6 PLL Reset...................................................................................................................19  
2.7 Clock Input.................................................................................................................19  
2.8 Mode Register Set Command (MRS) .......................................................................21  
2.9 Read & Write configuration (Non Multiplexed Address Mode)..............................22  
2.10 Write Operation (WRITE)...........................................................................................23  
2.11 Read Operation (READ) ............................................................................................26  
2.12 Refresh Operation: AUTO REFRESH Command (AREF) .......................................30  
2.13 On-Die Termination ...................................................................................................31  
2.14 Operation with Multiplexed Address .......................................................................34  
2.15 Address Mapping in Multiplexed Mode ...................................................................36  
2.16 Read & Write configuration in Multiplexed Address Mode....................................37  
2.17 Refresh Command in Multiplexed Address Mode ..................................................37  
2.18 Input Slew Rate Derating ..........................................................................................39  
3. JTAG Specification...............................................................................................................43  
4. Package Dimension..............................................................................................................50  
5. Recommended Soldering Condition...................................................................................50  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 9 of 52  
μPD48576209, μPD48576218, μPD48576236  
1. Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
VEXT  
Conditions  
Rating  
Unit  
V
–0.3 to +2.8  
–0.3 to +2.1  
–0.3 to +2.1  
Supply voltage  
VDD  
V
Output supply voltage,  
Input voltage, Input / Output voltage  
Input / Output voltage  
Junction temperature  
Storage temperature  
VDDQ  
V
VIH / VIL  
Tj MAX.  
Tstg  
–0.3 to +2.1  
110  
V
°C  
°C  
–55 to +125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions  
0°C TC 95°C; 1.7 V VDD 1.9 V, unless otherwise noted.  
Parameter  
Symbol Conditions  
MIN.  
2.38  
1.7  
TYP.  
2.5  
MAX.  
2.63  
1.9  
Unit  
V
Note  
Supply voltage  
VEXT  
VDD  
1
1
Supply voltage  
1.8  
V
Output supply voltage  
Reference Voltage  
Termination voltage  
Input HIGH voltage  
Input LOW voltage  
VDDQ  
VREF  
1.4  
VDD  
V
1, 2, 3  
1, 4, 5  
1, 6  
1
0.49 x VDDQ 0.5 x VDDQ 0.51 x VDDQ  
V
VTT  
0.95 x VREF  
VREF + 0.1  
VREF  
1.05 x VREF  
V
VIH (DC)  
VIL (DC)  
V
VREF – 0.1  
V
1
Notes 1. All voltage referenced to VSS (GND).  
2. During normal operation, VDDQ must not exceed VDD.  
3. VDDQ can be set to a nominal 1.5 V 0.1 V or 1.8 V 0.1 V supply.  
4. Typically the value of VREF is expect to be 0.5 x VDDQ of the transmitting device. VREF is expected to track  
variations in VDDQ.  
5. Peak-to-peak AC noise on VREF must not exceed 2% VREF(DC).  
6. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 10 of 52  
μPD48576209, μPD48576218, μPD48576236  
DC Characteristics  
0°C TC 95°C; 1.7 V VDD 1.9 V, unless otherwise noted  
Parameter  
Input leakage current  
Output leakage current  
Reference voltage current  
Output high current  
Symbol Test condition  
MIN.  
–5  
MAX.  
+5  
Unit Note  
ILI  
ILO  
μA  
μA  
1,2  
1,2  
1,2  
3,4  
3,4  
–5  
+5  
IREF  
–5  
+5  
μA  
IOH  
IOL  
VOH = VDDQ/2  
VOL = VDDQ/2  
(VDDQ/2) / (1.15 x RQ/5) (VDDQ/2) / (0.85 x RQ/5)  
(VDDQ/2) / (1.15 x RQ/5) (VDDQ/2) / (0.85 x RQ/5)  
mA  
mA  
Output low current  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 125 Ω ≤ RQ 300 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 125 Ω ≤ RQ 300 Ω.  
3. IOH and IOL are defined as absolute values and are measured at VDDQ/2. IOH flows from the device, IOL flows  
into the device.  
4. If MRS bit A8 is 0, use RQ = 250 Ω in the equation in lieu of presence of an external impedance matched  
resistor.  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Symbol  
Test conditions  
MIN.  
1.5  
MAX.  
2.5  
Unit  
pF  
Address / Control Input capacitance  
I/O, Output, Other capacitance  
(DQ, DM, QK, QVLD)  
CIN  
VIN = 0 V  
CI/O  
VI/O = 0 V  
3.5  
5.0  
pF  
Clock Input capacitance  
JTAG pins  
Cclk  
CJ  
Vclk = 0 V  
VJ = 0 V  
2.0  
2.0  
3.0  
5.0  
pF  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Capacitance is not tested on ZQ pin.  
Recommended AC Operating Conditions  
0°C TC 95°C; 1.7 V VDD 1.9 V, unless otherwise noted  
Parameter  
Symbol Conditions  
MIN.  
MAX.  
Unit Note  
Input HIGH voltage  
Input LOW voltage  
VIH (AC)  
VIL (AC)  
VREF + 0.2  
V
V
1
1
VREF – 0.2  
Note 1. Overshoot: VIH (AC) VDDQ + 0.7 V for t tCK/2  
Undershoot: VIL (AC) – 0.5 V for t tCK/2  
Control input signals may not have pulse widths less than tCKH (MIN.) or operate at cycle rates less than tCK  
(MIN.).  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 11 of 52  
μPD48576209, μPD48576218, μPD48576236  
DC Characteristics  
IDD / ISB Operating Conditions  
Parameter  
Symbol  
Test condition  
MAX.  
Unit  
–E18 –E24 –E25 –E33  
x9/x18 55  
55  
55  
55  
55  
55  
55  
Standby current  
ISB1  
tCK = Idle  
VDD  
mA  
All banks idle, no inputs toggling  
x36  
55  
5
VEXT  
VDD  
5
5
5
x9/x18  
x36  
Active standby  
current  
ISB2  
IDD1  
CS# = HIGH, No commands, half bank / address /  
data change once every four clock cycles  
250  
250  
5
215  
215  
5
215  
215  
5
190  
190  
5
mA  
mA  
VEXT  
VDD  
x9/x18  
x36  
Operating current  
Operating current  
Operating current  
BL=2, sequential bank access, bank transitions  
once every tRC, half address transitions once  
every tRC, read followed by write sequence,  
continuous data during WRITE commands.  
BL=4, sequential bank access, bank transitions  
once every tRC, half address transitions once  
every tRC, read followed by write sequence,  
continuous data during WRITE commands.  
BL=8, sequential bank access, bank transitions  
once every tRC, half address transitions once  
every tRC, read followed by write sequence,  
continuous data during WRITE commands.  
Eight bank cyclic refresh, continuous  
390  
407  
10  
331  
346  
10  
321  
336  
10  
291  
306  
10  
VEXT  
VDD  
VEXT  
VDD  
VEXT  
VDD  
x9/x18  
x36  
IDD2  
422  
445  
10  
367  
387  
10  
357  
377  
10  
336  
353  
10  
mA  
mA  
x9/x18  
x36  
IDD3  
439  
488  
15  
381  
419  
15  
371  
409  
15  
350  
388  
15  
x9/x18  
x36  
Burst refresh  
current  
IREF1  
IREF2  
IDD2W  
IDD4W  
IDD8W  
IDD2R  
IDD4R  
IDD8R  
692  
670  
45  
540  
545  
30  
540  
545  
30  
419  
430  
25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
address/data, command bus remains in refresh  
for all banks  
VEXT  
VDD  
x9/x18  
x36  
Disturbed  
Single bank refresh, sequential bank access,  
half address transitions once every tRC,  
continuous data  
286  
295  
10  
265  
265  
10  
260  
260  
10  
194  
215  
10  
refresh current  
VEXT  
Operating burst  
write current  
BL=2, cyclic bank access, half of address bits  
change every clock cycle, continuous data,  
measurement is taken during continuous WRITE  
BL=4, cyclic bank access, half of address bits  
change every two clocks, continuous data,  
measurement is taken during continuous WRITE  
BL=8, cyclic bank access, half of address bits  
change every four clocks, continuous data,  
measurement is taken during continuous WRITE  
BL=2, cyclic bank access, half of address bits  
change every clock cycle, measurement is taken  
during continuous READ  
VDD X9/x18 1078  
X36 1105  
872  
891  
35  
872  
891  
35  
716  
731  
30  
VEXT  
VDD  
40  
784  
832  
25  
x9/x18  
x36  
Operating burst  
write current  
645  
681  
20  
645  
681  
20  
538  
565  
20  
VEXT  
VDD  
x9/x18  
x36  
Operating burst  
write current  
625  
706  
25  
520  
579  
20  
520  
579  
20  
442  
487  
20  
VEXT  
VDD  
x9/x18  
x36  
Operating burst  
read current  
949  
999  
40  
735  
779  
35  
735  
779  
35  
566  
601  
30  
VEXT  
VDD  
x9/x18  
x36  
Operating burst  
read current  
BL=4, cyclic bank access, half of address bits  
change every two clocks, measurement is taken  
during continuous READ  
659  
685  
25  
503  
535  
20  
503  
535  
20  
400  
424  
20  
VEXT  
VDD  
x9/x18  
x36  
Operating burst  
read current  
BL=8, cyclic bank access, half of address bits  
497  
567  
25  
389  
441  
20  
389  
441  
20  
308  
349  
20  
change every four clocks, measurement is taken  
during continuous READ  
VEXT  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 12 of 52  
μPD48576209, μPD48576218, μPD48576236  
Remarks1. IDD specifications are tested after the device is properly initialized. 0°C TC 95°C; 1.7 V VDD 1.9 V,  
2.38 V VEXT 2.63 V, 1.4 V VDDQ VDD, VREF = VDDQ/2  
2. tCK = tDK = MIN., tRC = MIN.  
3. Input slew rate is specified in Recommended DC Operating Conditions and Recommended AC  
Operating Conditions.  
4. IDD parameters are specified with ODT disabled.  
5. Continuous data is defined as half the DQ signals changing between HIGH and LOW every half clock  
cycles (twice per clock).  
6. Continuous address is defined as half the address signals between HIGH and LOW every clock cycles  
(once per clock).  
7. Sequential bank access is defined as the bank address incrementing by one ever tRC.  
8. Cyclic bank access is defined as the bank address incrementing by one for each command access. For  
BL=4 this is every other clock.  
9. CS# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS# never transitions  
more than per clock cycle.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 13 of 52  
μPD48576209, μPD48576218, μPD48576236  
AC Characteristics  
AC Test Conditions  
Input waveform  
VDDQ  
VIH(AC) MIN.  
VIL(AC) MAX.  
V
SS  
Rise Time:  
2 V/ns  
Fall Time:  
2 V/ns  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
VTT  
50Ω  
Test point  
10pF  
DQ  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 14 of 52  
μPD48576209, μPD48576218, μPD48576236  
AC Characteristics <Read and Write Cycle>  
Parameter  
Symbol  
–E18  
–E24  
–E25  
–E33  
Unit Note  
(533 MHz)  
(400 MHz)  
(400 MHz)  
(300 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
Clock cycle time (CK,CK#,DK,DK#)  
Clock frequency (CK,CK#,DK,DK#)  
Random Cycle time  
tCK, tDK  
tCK, tDK  
tRC  
1.875  
175  
5.7  
2.5  
175  
15  
5.7  
2.5  
175  
20  
5.7  
3.3  
175  
20  
5.7  
ns  
MHz  
ns  
533  
400  
400  
300  
15  
Clock Jitter: period  
tJIT PER  
tJIT CC  
–100  
100  
200  
0.55  
0.55  
0.3  
–150  
150  
300  
0.55  
0.55  
0.5  
–150  
150  
300  
0.55  
0.55  
0.5  
–200  
200  
400  
ps  
ps  
1, 2  
Clock Jitter: cycle-to-cycle  
Clock HIGH time (CK,CK#,DK,DK#)  
Clock LOW time (CK,CK#,DK,DK#)  
Clock to input data clock  
Mode register set cycle time  
to any command  
tCKH, tDKH  
tCKL, tDKL  
tCKDK  
0.45  
0.45  
–0.3  
6
0.45  
0.45  
–0.45  
6
0.45  
0.45  
–0.45  
6
0.45  
0.45  
–0.45  
6
0.55 Cycle  
0.55 Cycle  
1.0  
ns  
tMRSC  
Cycle  
PLL Lock time  
tCK Lock  
15  
30  
15  
30  
15  
30  
15  
30  
μs  
Clock static to PLL reset  
Output Times  
tCK Reset  
ns  
Output data clock HIGH time  
Output data clock LOW time  
QK edge to clock edge skew  
QK edge to output data edge  
QK edge to any output data  
QK edge to QVLD  
tQKH  
tQKL  
0.9  
0.9  
1.1  
1.1  
0.9  
0.9  
1.1  
1.1  
0.25  
0.2  
0.3  
0.3  
0.9  
0.9  
1.1  
1.1  
0.9  
0.9  
1.1  
1.1  
tCKH  
tCKL  
ns  
tCKQK  
–0.2  
0.2  
–0.25  
–0.2  
–0.3  
–0.3  
–0.25  
–0.2  
–0.3  
–0.3  
0.25  
0.2  
0.3  
0.3  
–0.3  
–0.25  
–0.35  
–0.35  
0.3  
tQKQ0, tQKQ1 –0.12  
0.12  
0.22  
0.22  
0.25  
0.35  
0.35  
ns  
3, 5  
4, 5  
tQKQ  
–0.22  
–0.22  
ns  
tQKVLD  
ns  
Setup Times  
Address/command and input  
Data-in and data mask to DK  
Hold Times  
tAS/tCS  
tDS  
0.3  
0.4  
0.4  
0.5  
0.3  
ns  
ns  
0.17  
0.25  
0.25  
Address/command and input  
Data-in and data mask to DK  
tAH/tCH  
tDH  
0.3  
0.4  
0.4  
0.5  
0.3  
ns  
ns  
0.17  
0.25  
0.25  
Notes 1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
2. Frequency drift is not allowed.  
3. tQKQ0 is referenced to DQ0–DQ17 in x36 and DQ0–DQ8 in x18.  
tQKQ1 is referenced to DQ18–DQ35 in x36 and DQ9–DQ17 in x18.  
4. tQKQ takes into account the skew between any QKx and any DQ.  
5. tQKQ, tQKQX are guaranteed by design.  
Remark All timing parameters are measured relative to the crossing point of CK/CK#, DK/DK# and to the crossing  
point with VREF of the command, address, and data signals.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 15 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 1-1. Clock / Input Data Clock Command / Address Timings  
t
CK  
t
CKH  
tCKL  
CK#  
CK  
COMMAND,  
ADDRESS  
VALID  
VALID  
VALID  
t
CKDK  
t
CKDK  
tAS  
tAH  
DKx#  
DKx  
t
DK  
t
DKH  
tDKL  
Don’t care  
Temperature and Thermal Impedance  
Temperature Limits  
Parameter  
Symbol  
MIN.  
MAX.  
+110  
+100  
+95  
Unit  
°C  
Note  
Reliability junction temperature  
Operating junction temperature  
Operating case temperature  
TJ  
TJ  
TC  
0
0
0
1
2
3
°C  
°C  
Notes 1. Temperatures greater than 110°C may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability of the part.  
2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.  
3. MAX operating case temperature; TC is measured in the center of the package. Device functionality is not guaranteed if the  
device exceeds maximum TC during operation.  
Thermal Impedance  
Substrate  
Ball  
θja (°C/W)  
θjb  
(°C/W)  
10.29  
10.13  
θjc  
(°C/W)  
1.22  
Air Flow = 0 m/s Air Flow = 1 m/s Air Flow = 2 m/s  
4 - Layer  
4 - Layer  
Lead  
21.49  
21.32  
17.33  
17.18  
16.15  
16.01  
Lead free  
1.22  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 16 of 52  
μPD48576209, μPD48576218, μPD48576236  
2. Operation  
2.1 Command Operation  
According to the functional signal description, the following command sequences are possible. All input states or sequences not  
shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK.  
Table 2-1. Address Widths at Different Burst Lengths  
Burst Length  
Configuration  
x18  
x9  
x36  
BL=2  
BL=4  
BL=8  
A0–A21  
A0–A20  
A0–A19  
A0–A20  
A0–A19  
A0–A18  
A0–A17  
A0–A19  
A0–A18  
Table 2-2. Command Table  
Operation  
Code  
CS#  
WE#  
REF#  
A0–AnNote1  
BA0–BA2 Note  
Device DESELECT / No Operation DESEL / NOP  
H
L
L
L
L
X
L
X
L
X
X
MRS: Mode Register Set  
READ  
MRS  
READ  
WRITE  
AREF  
OPCODE  
X
2
3
3
H
L
H
H
L
A
A
X
BA  
BA  
BA  
WRITE  
AUTO REFRESH  
H
Notes 1. n = 21.  
2. Only A0–A17 are used for the MRS command.  
3. See Table 2-1.  
Remark X = “Don’t Care”, H = logic HIGH, L = logic LOW, A = valid address, BA = valid bank address  
2.2 Description of Commands  
DESEL / NOP Note1  
The NOP command is used to perform a no operation to the μPD48576209/18/36, which essentially deselects the chip. Use the  
NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are  
not affected. Output values depend on command history.  
MRS  
The mode register is set via the address inputs A0–A17. See Figure 2-5. Mode Register Bit Map for further information. The  
MRS command can only be issued when all banks are idle and no bursts are in progress.  
READ  
The READ command is used to initiate a burst read access to a bank. The value on the BA0–BA2 inputs selects the bank, and the  
address provided on inputs A0–A21 selects the data location within the bank.  
WRITE  
The WRITE command is used to initiate a burst write access to a bank. The value on the BA0–BA2 inputs selects the bank, and  
the address provided on inputs A0–A21 selects the data location within the bank. Input data appearing on the DQ is written to the  
memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the  
corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored  
(i.e., this part of the data word will not be written).  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 17 of 52  
μPD48576209, μPD48576218, μPD48576236  
AREF  
The AREF is used during normal operation of the μPD48576209/18/36 to refresh the memory content of a bank. The  
command is non-persistent, so it must be issued each time a refresh is required. The value on the BA0–BA2 inputs  
selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a  
“Don’t Care” during the AREF command. The μPD48576209/18/36 requires 64K cycles at an average periodic interval  
Note2  
of 0.244μs  
(MAX.). To improve efficiency, eight AREF commands (one for each bank) can be posted to  
μPD48576209/18/36 at periodic intervals of 1.95 μs Note3  
.
Within a period of 32 ms, the entire memory must be refreshed. The delay between the AREF command and a  
subsequent command to same bank must be at least tRC as continuous refresh. Other refresh strategies, such as burst  
refresh, are also possible.  
Notes 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted.  
2. Actual refresh is 32 ms / 16k / 8 = 0.244 μs.  
3. Actual refresh is 32 ms / 16k = 1.95 μs.  
2.3 Initialization  
The μPD48576209/18/36 must be powered up and initialized in a predefined manner. Operational procedures other  
than those specified may result in undefined operations or permanent damage to the device. The following sequence is  
used for Power-Up:  
1. Apply power (VEXT, VDD, VDDQ, VREF, VTT) and start clock as soon as the supply voltages are stable. Apply VDD  
and VEXT before or at the same time as VDDQ. Apply VDDQ before or at the same time as VREF and VTT. Although  
there is no timing relation between VEXT and VDD, the chip starts the power-up sequence only after both voltages  
are at their nominal levels. VDDQ supply must not be applied before VDD supply. CK/CK# must meet VID(DC)  
prior to being applied. Maintain all remaining balls in NOP conditions.  
Note No rule of apply power sequence is the design target.  
2. Maintain stable conditions for 200 μs (MIN.).  
3. Issue at least three or more consecutive MRS commands: two dummies or more plus one valid MRS. It is  
recommended that all address pins are held LOW during the dummy MRS commands.  
4. tMRSC after valid MRS, an AUTO REFRESH command to all 8 banks must be issued and wait for 15 μs with  
CK/CK# toggling in order to lock the PLL prior to normal operation.  
5. After tRC, the chip is ready for normal operation.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 18 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.4 Power-On Sequence  
Figure 2-1. Power-Up Sequence  
VEXT  
V
DD  
V
DDQ  
V
REF  
VTT  
CK#  
CK  
MRS  
MRS  
MRS  
NOP  
RF0  
RF1  
RF7  
AC  
COMMAND  
ADDRESS  
NOP  
NOP  
Note 2  
Note 1, 2  
Note 1, 2  
A
A
A
200μs MIN.  
tMRSC  
tRC  
Refresh all banks  
15μs  
Don't care  
Notes 1. Recommended all address pins held LOW during dummy MRS commands.  
2. A10-A17 must be LOW.  
Remark MRS : MRS command  
RFp : REFRESH bank p  
AC : Any command  
2.5 Programmable Impedance Output Buffer  
The μPD48576209/18/36 is equipped with programmable impedance output buffers. This allows a user to match the  
driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the  
ZQ ball and VSS. The value of the resistor must be five times the desired impedance. For example, a 300 Ω resistor is  
required for an output impedance of 60 Ω. To ensure that output impedance is one fifth the value of RQ (within 15  
percent), the range of RQ is 125 Ω to 300 Ω. Output impedance updates may be required because, over time, variations  
may occur in supply voltage and temperature. The device samples the value of RQ. An impedance update is transparent  
to the system and does not affect device operation. All data sheet timing and current specifications are met during an  
update.  
2.6 PLL Reset  
The μPD48576209/18/36 utilizes internal Phase-locked loops for maximum output, data valid windows. It can be  
placed into a stopped-clock state to minimize power with a modest restart time of 15 μs. The clock (CK/CK#) must be  
toggled for 15 μs in order to stabilize PLL circuits for next READ operation.  
2.7 Clock Input  
Table 2-3. Clock Input Operation Conditions  
Parameter  
Symbol  
Conditions  
CK and CK#  
CK and CK#  
CK and CK#  
CK and CK#  
MIN.  
-0.3  
MAX.  
Unit Note  
Clock Input Voltage Level  
VIN (DC)  
VID (DC)  
VID (AC)  
VIX (AC)  
VDDQ + 0.3  
VDDQ + 0.6  
VDDQ + 0.6  
VDDQ/2 + 0.15  
V
Clock Input Differential Voltage Level  
Clock Input Differential Voltage Level  
Clock Input Crossing Point Voltage Level  
0.2  
V
V
V
8
8
9
0.4  
VDDQ/2 - 0.15  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 19 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-2. Clock Input  
Maximum Clock Level  
VIN(DC) MAX.  
CK#  
V
IX(AC) MAX.  
Note 10  
V
DDQ/2 + 0.15  
DDQ/2  
DDQ/2 - 0.15  
Note11  
ID(DC)  
Note12  
ID(AC)  
V
V
V
V
V
IX(AC) MIN.  
CK  
IN(DC) MIN.  
Minimum Clock Level  
V
Notes 1. DKx and DKx# have the same requirements as CK and CK#.  
2. All voltages referenced to VSS.  
3. Tests for AC timing, IDD and electrical AC and DC characteristics may be conducted at normal  
reference/supply voltage levels; but the related specifications and device operations are tested for the full  
voltage range specified.  
4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing  
is still referenced to VREF (or the crossing point for CK/CK#), and parameters specifications are tested for the  
specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to  
test the device is 2V/ns in the range between VIL(AC) and VIH(AC).  
5. The AC and DC input level specifications are as defined in the HSTL Standard (i.e. the receiver will  
effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as  
the signal does not ring back above[below] the DC input LOW[HIGH] level).  
6. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK#  
cross. The input reference level for signal other than CK/CK# is VREF.  
7. CK and CK# input slew rate must be >= 2V/ns (>=4V/ns if measured differentially).  
8. VID is the magnitude of the difference between the input level on CK and input level on CK#.  
9. The value of VIX is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC  
level of the same.  
10.CK and CK# must cross within the region.  
11.CK and CK# must meet at least VID(DC) (MIN.) when static and centered around VDDQ/2.  
12.Minimum peak-to-peak swing.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 20 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.8 Mode Register Set Command (MRS)  
The mode register stores the data for controlling the operating modes of the memory. It programs the  
μPD48576209/18/36 configuration, burst length, and I/O options. During a MRS command, the address inputs A0–A17  
are sampled and stored in the mode register. tMRSC must be met before any command can be issued to the  
μPD48576209/18/36. The mode register may be set at any time during device operation. However, any pending  
operations are not guaranteed to successfully complete, and all memory cell data are not guaranteed.  
Since MRS is used for internal test mode entry, bits A10–A17 must be set to all “0” at the MRS setting.  
Figure 2-3. Mode Register Set Timing  
t
MRSC  
CK#  
CK  
MRS  
NOP  
NOP  
AC  
COMMAND  
QVLD  
QKx  
QKx#  
Don’t care  
Remark MRS: MRS command  
AC : any command  
Figure 2-4. Mode Register Set  
CK#  
CK  
CS#  
WE#  
REF#  
ADDRESS  
COD  
BANK  
ADDRESS  
Don’t care  
Remark COD: code to be loaded into the register.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 21 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-5. Mode Register Bit Map  
A17-A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Note 1  
Reserved  
Impedance  
Matching  
On-Die  
Termination  
Address  
Mux  
PLL Reset  
Unused  
Burst Length  
Configuration  
On-Die  
Configuration  
A2 A1 A0  
Termination  
PLL Reset  
Burst Length  
A4 A3  
A9  
Termination  
A7  
BL  
PLL Reset  
Configuration  
0
1
Disabled (default)  
Enabled  
0
1
0
0
1
1
0
1
0
1
2 (default)  
4
PLL reset (default)  
PLL enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 Note 2 (default)  
1 Note 2  
8 Note 2  
2
3
Impedance  
Matching  
Not valid  
Address Mux  
Note 2  
4
A8  
Resistor  
A5 Address Mux  
5
Note 3  
Internal 50 Ω  
Reserved  
Reserved  
Nonmultiplexed  
(default)  
0
1
(default)  
0
Note 4  
External  
1
Address multiplexed  
Notes 1. Bits A10–A17 must be set to all ‘0’. A18-An are “Don’t Care”.  
2. BL=8 is not available for configuration 1 and 4.  
3. ±30% temperature variation.  
4. Within 15%.  
2.9 Read & Write configuration (Non Multiplexed Address Mode)  
Table 2-4 shows, for different operating frequencies, the different μPD48576209/18/36 configurations that can be  
programmed into the mode register. The READ and WRITE latency (tRL and tWL) values along with the row cycle times  
(tRC) are shown in clock cycles as well as in nanoseconds.  
Table 2-4. Configuration Table  
Parameter  
Configuration  
3
Unit  
Note2  
Note2, 3  
5
2
1
4
tRC  
4
4
5
6
8
3
3
4
5
tCK  
tCK  
tRL  
tWL  
6
7
8
9
5
6
tCK  
Valid frequency range  
266-175  
400-175  
533-175  
200-175  
333-175  
MHz  
Notes 1. Apply to the entire table. tRC < 20 ns in any configuration only available with –E24 and –E18 speed grades.  
2. BL= 8 is not available.  
3. The minimum tRC is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank.  
In this instance the minimum tRC is 4 cycles.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 22 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.10 Write Operation (WRITE)  
Write accesses are initiated with a WRITE command, as shown in Figure 2-6. Row and bank addresses are provided  
together with the WRITE command. During WRITE commands, data will be registered at both edges of DK according  
to the programmed burst length (BL). A WRITE latency (WL) one cycle longer than the programmed READ latency  
(RL + 1) is present, with the first valid data registered at the first rising DK edge WL cycles after the WRITE command.  
Any WRITE burst may be followed by a subsequent READ command. Figure 2-10. WRITE Followed By READ: BL=2,  
RL=4, WL=5, Configuration 1 and Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1  
illustrate the timing requirements for a WRITE followed by a READ for bursts of two and four, respectively.  
Setup and hold times for incoming input data relative to the DK edges are specified as tDS and tDH. The input data is  
masked if the corresponding DM signal is HIGH. The setup and hold times for data mask are also tDS and tDH.  
Figure 2-6. WRITE Command  
CK#  
CK  
CS#  
WE#  
REF#  
ADDRESS  
A
BANK  
ADDRESS  
BA  
Don’t care  
Remark A : Address  
BA: Bank address  
Figure 2-7. Basic WRITE Burst / DM Timing  
CK#  
CK  
t
CKDK  
DKx#  
DKx  
Write  
Latency  
tDS  
tDH  
tDS  
tDH  
DQ  
DM  
D0  
D1  
D2  
D3  
Data  
masked  
Data  
masked  
tDS  
tDH  
Don't care  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 23 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-8. WRITE Burst Basic Sequence: BL=2, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
WR  
WR  
WR  
WR  
WR  
WR  
WR  
WR  
WR  
A
A
A
A
A
A
A
A
A
BA0  
BA1  
BA2  
BA3  
BA0  
BA4  
BA5  
BA6  
BA7  
WL = 5  
DK#  
DK  
DQ  
D0a D0b D1a D1b D2a D2b D3a D3  
Don’t care  
Figure 2-9. WRITE Burst Basic Sequence: BL=4, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
WR  
NOP  
WR  
NOP  
WR  
NOP  
WR  
NOP  
WR  
A
A
A
A
A
BA0  
BA1  
BA0  
BA3  
BA0  
WL = 5  
DK#  
DK  
DQ  
D0a D0b D0c D0d D1a D1b D1c D1  
Don’t care  
Remarks 1.  
WR  
A/Bap  
WL  
: WRITE command  
: Address A of bank p  
: WRITE latency  
Dpq  
: Data q to bank p  
2. Any free bank may be used in any given command. The sequence shown is only one example of  
a bank sequence.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 24 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
ADDRESS  
WR  
NOP  
RD  
RD  
NOP  
RL = 4  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
WL = 5  
DKx#  
DKx  
DQ  
D0a D0b  
Q1a Q1b Q2a Q2b  
QVLD  
QKx  
QKx#  
Don’t care  
Undefined  
Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
ADDRESS  
WR  
NOP  
NOP  
RD  
NOP  
RD  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
RL = 4  
WL = 5  
DKx#  
DKx  
DQ  
D0a D0b D0c D0d  
Q1a Q1b Q1c Q1d Q2a  
QVLD  
QKx  
QKx#  
Don’t care  
Undefined  
Remark WR  
: WRITE command  
: READ command  
RD  
A/BAp : Address A of bank p  
WL  
RL  
: WRITE latency  
: READ latency  
Dpq  
Qpq  
: Data q to bank p  
: Data q from bank p  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 25 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.11 Read Operation (READ)  
Read accesses are initiated with a READ command, as shown in Figure 2-12. Row and bank addresses are provided  
with the READ command.  
During READ bursts, the memory device drives the read data edge-aligned with the QK signal. After a programmable  
READ latency, data is available at the outputs. The data valid signal indicates that valid data will be present in the next  
half clock cycle.  
The skew between QK and the crossing point of CK is specified as tCKQK. tQKQ0 is the skew between QK0 and the last  
valid data edge considered the data generated at the DQ0–DQ17 in x36 and DQ0–DQ8 in x18 data signals. tQKQ1 is the  
skew between QK1 and the last valid data edge considered the data generated at the DQ18–DQ35 in x36 and DQ9–  
DQ17 in x18 data signals. tQKQx is derived at each QKx clock edge and is not cumulative over time.  
After completion of a burst, assuming no other commands have been initiated, DQ will go High-Z. Back-to-back READ  
commands are possible, producing a continuous flow of output data.  
Minimum READ data valid window can be expressed as MIN.(tQKH, tQKL) – 2 x MAX.(tQKQx)  
Any READ burst may be followed by a subsequent WRITE command. Figure 2-16. READ followed by WRITE, BL=2,  
RL=4, WL=5, Configuration 1 and Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1  
illustrate the timing requirements for a READ followed by a WRITE.  
Figure 2-12. READ Command  
CK#  
CK  
CS#  
WE#  
REF#  
A
ADDRESS  
BANK  
ADDRESS  
BA  
Don’t care  
Remark A : Address  
BA: Bank address  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 26 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-13. Basic READ Burst Timing  
tCKH  
tCKL  
tCK  
CK#  
CK  
tQKL  
tQKH  
tCKQK  
QKx  
QKx#  
tQKVLD  
tQKVLD  
QVLD  
DQ  
Q0  
Q1  
Q2  
Q3  
tQKQ  
tQKQ  
tQKQ  
Note 1  
Undefined  
Note 1. Minimum READ data valid window can be expressed as MIN.(tQKH, tQKL) – 2 x MAX.(tQKQx)  
tCKH and tCKL are recommended to have 50% / 50% duty.  
Remarks  
1. tQKQ0 is referenced to DQ0–DQ17 in x36 and DQ0–DQ8 in x18.  
tQKQ1 is referenced to DQ18–DQ35 in x36 and DQ9–DQ17 in x18.  
2. tQKQ takes into account the skew between any QKx and any DQ.  
3. tCKQK is specified as CK rising edge to QK rising edge.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 27 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-14. READ Burst Basic Sequence: BL=2, RL=4, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
RD  
RD  
RD  
RD  
RD  
RD  
RD  
RD  
RD  
A
A
A
A
A
A
A
A
A
BA0  
BA1  
BA2  
BA3  
BA0  
BA7  
BA6  
BA5  
BA4  
RL = 4  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b Q1a Q1b Q2a Q2b Q3a Q3b Q0a  
Don’t care  
Undefined  
Figure 2-15. READ Burst Basic Sequence: BL=4, RL=4, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
RD  
NOP  
RD  
NOP  
RD  
NOP  
RD  
NOP  
RD  
A
A
A
A
A
BA0  
BA1  
BA0  
BA1  
BA3  
RL = 4  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b Q0c Q0d Q1a Q1b Q1c Q1d Q0a  
Don’t care  
Undefined  
Remark RD  
: READ command  
A/BAp : Address A of bank p  
RL  
: READ latency  
Qpq  
: Data q from bank p  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 28 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
ADDRESS  
RD  
WR  
WR  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
RL = 4  
WL = 5  
DKx#  
DKx  
D2a D2b  
DQ  
Q0a Q0b  
D1a D1b  
QVLD  
QKx  
QKx#  
Don’t care  
Undefined  
Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1  
0
1
2
3
4
5
6
7
CK#  
CK  
RD  
NOP  
WR  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
A
A
BA0  
BA1  
WL = 5  
RL = 4  
DKx#  
DKx  
DQ  
Q0a Q0b Q0c Q0d  
D1a D1b  
QVLD  
QKx  
QKx#  
Don’t care  
Undefined  
Remark WR  
: WRITE command  
: READ command  
RD  
A/BAp : Address A of bank p  
WL  
RL  
: WRITE latency  
: READ latency  
Dpq  
Qpq  
: Data q to bank p  
: Data q from bank p  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 29 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.12 Refresh Operation: AUTO REFRESH Command (AREF)  
AREF is used to perform a REFRESH cycle on one row in a specific bank. The row addresses are generated by an  
internal refresh counter; external address balls are “Don’t Care.” The delay between the AREF command and a  
subsequent command to the same bank must be at least tRC.  
Within a period of 32 ms (tREF), the entire memory must be refreshed. Figure 2-19 illustrates an example of a  
continuous refresh sequence. Other refresh strategies, such as burst refresh, are also possible.  
Figure 2-18. AUTO REFRESH Command  
CK#  
CK  
CS#  
WE#  
REF#  
ADDRESS  
BANK  
BA  
ADDRESS  
Don’t care  
Remark BA: Bank address  
Figure 2-19. AUTO REFRESH Cycle  
CK#  
CK  
ARFx  
ACy  
ACx  
ACy  
COMMAND  
tRC  
Don’t care  
Remarks 1. ACx : Any command on bank x  
ARFx : Auto refresh bank x  
ACy : Any command on different bank.  
2. tRC is configuration-dependent. Refer to Table 2-4. Configuration Table.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 30 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.13 On-Die Termination  
On-die termination (ODT) is enabled by setting A9 to “1” during an MRS command. With ODT on, all the DQs and  
DM are terminated to VTT with a resistance RTT. The command, address, and clock signals are not terminated. Figure 2-  
20 below shows the equivalent circuit of a DQ receiver with ODT. ODTs are dynamically switched off during READ  
commands and are designed to be off prior to the μPD48576209/18/36 driving the bus. Similarly, ODTs are designed to  
switch on after the μPD48576209/18/36 has issued the last piece of data.  
Table 2-5. On-Die Termination DC Parameters  
Description  
Termination voltage  
On-Die termination  
Symbol  
VTT  
MIN.  
0.95 x VREF  
125  
MAX.  
1.05 x VREF  
185  
Units  
V
Note  
1, 2  
3
RTT  
Ω
Notes 1. All voltages referenced to VSS (GND).  
2. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF.  
3. The RTT value is measured at 95°C TC.  
Figure 2-20. On- Die Termination-Equivalent Circuit  
V
TT  
sw  
RTT  
DQ  
Receiver  
Figure 2-21. READ Burst with ODT: BL=2, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
RD  
RD  
RD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
RL = 4  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b Q1a Q1b Q2a Q2b  
ODT  
ODT ON  
ODT ON  
ODT OFF  
Don’t care  
Undefined  
Remark  
RD  
A/BAp : Address A of bank p  
RL : READ latency  
Qpq : Data q from bank p  
: READ command  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 31 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-22. READ NOP READ with ODT: BL=2, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
RD  
NOP  
RD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
BA0  
BA2  
RL = 4  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b  
Q2a Q2b  
ODT  
ODT ON  
ODT ON  
ODT OFF  
ODT OFF  
ODT ON  
Don’t care  
Undefined  
Figure 2-23. READ NOP NOP READ with ODT: BL=2, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
RD  
NOP  
NOP  
RD  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
ADDRESS  
BA0  
BA2  
RL = 4  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b  
Q2a Q2b  
ODT  
ODT ON  
ODT ON  
ODT OFF  
ODT OFF  
ODT ON  
Don’t care  
Undefined  
Remark RD  
A/BAp: Address A of bank p  
RL : READ latency  
Qpq : Data q from bank p  
: READ command  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 32 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-24. READ followed by WRITE with ODT: BL=2, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
ADDRESS  
RD  
WR  
WR  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
RL = 4  
WL = 5  
DKx#  
DKx  
Q0a Q0b  
D2a D2b  
DQ  
D1a D1b  
QKx  
QKx#  
ODT  
ODT ON  
ODT ON  
ODT OFF  
Don’t care  
Undefined  
Figure 2-25. WRITE followed by READ with ODT: BL=2, Configuration 1  
0
1
2
3
4
5
6
7
8
9
CK#  
CK  
COMMAND  
ADDRESS  
WR  
NOP  
RD  
RD  
NOP  
RL= 4  
NOP  
NOP  
NOP  
NOP  
NOP  
A
A
A
BA0  
BA1  
BA2  
WL= 5  
DKx#  
DKx  
DQ  
D0a D0b  
Q1a Q1b Q2a Q2b  
QKx  
QKx#  
ODT  
ODT ON  
ODT ON  
ODT OFF  
Don’t care  
Undefined  
Remark  
RD  
: READ command  
: WRITE command  
WR  
A/BAp : Address A of bank p  
RL  
: READ latency  
WL  
Qpq  
Dpq  
: WRITE latency  
: Data q from bank p  
: Data q to bank p  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 33 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.14 Operation with Multiplexed Address  
In multiplexed address mode, the address can be provided to the μPD48576209/18/36 in two parts that are latched  
into the memory with two consecutive rising clock edges. This provides the advantage that a maximum of 11 address  
balls are required to control the μPD48576209/18/36, reducing the number of balls on the controller side. The data bus  
efficiency in continuous burst mode is not affected for BL=4 and BL=8 since at least two clocks are required to read the  
data out of the memory. The bank addresses are delivered to the μPD48576209/18/36 at the same time as the WRITE  
command and the first address part, Ax.  
This option is available by setting bit A5 to “1” in the mode register. Once this bit is set, the READ, WRITE, and  
MRS commands follow the format described in Figure 2-26. See Figure 2-28. Power-Up Sequence in Multiplexed  
Address Mode for the power-up sequence.  
Figure 2-26. Command Description in Multiplexed  
READ  
WRITE  
MRS  
CK#  
CK  
CS#  
WE#  
REF#  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
ADDRESS  
BANK  
ADDRESS  
BA  
BA  
Don’t care  
Remarks 1. Ax, Ay : Address  
BA : Bank Address  
2. The minimum setup and hold times of the two address parts are defined tAS and tAH.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 34 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-27. Mode Register Set Command in Multiplexed Address Mode  
Ax  
Ay  
A17 ••••• A10  
A17 ••••• A10  
A9  
A8  
A5  
A4  
A3  
A0  
A9  
A8  
A4  
A3  
Note 1  
Impedance  
Matching  
Address  
Mux  
On-Die  
Termination  
Burst Length  
Configuration  
Unused  
PLL Reset  
Reserved  
On-Die  
Termination  
Configuration  
PLL Reset  
Burst Length  
A4x A3x  
A9x  
Termination  
A9y  
BL  
PLL Reset  
A4y A3y A0x  
Configuration  
1
Note 2 (default)  
0
1
Disabled (default)  
Enabled  
0
0
1
1
0
1
0
1
2 (default)  
4
0
1
PLL reset (default)  
PLL enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 Note 2  
8 Note 2  
2
Not valid  
Impedance  
Matching  
3
4 Note 2  
A8x  
Resistor  
A5x  
Address Mux  
5
Note 3  
Reserved  
Reserved  
Nonmultiplexed  
(default)  
0
(default)  
0
1
Note 4  
1
External  
Address multiplexed  
Notes 1. Bits A10–A17 must be set to all ‘0’.  
2. BL=8 is not available for configuration 1 and 4.  
3. ±30% temperature variation.  
4. Within 15%.  
Remark The address A0, A3, A4, A5, A8, and A9 must be set as follows in order to activate the mode register in  
the multiplexed address mode.  
Figure 2-28. Power-Up Sequence in Multiplexed Address Mode  
VEXT  
V
DD  
V
DDQ  
V
REF  
VTT  
CK#  
CK  
NOP  
NOP  
NOP  
Ay  
MRS  
MRS  
MRS  
MRS  
RF0  
RF1  
RF7  
AC  
COMMAND  
ADDRESS  
NOP  
Note 1, 2  
Note 1, 2  
Note 2, 3  
Note 4  
A
Ax  
A
A
1 cycle  
MIN.  
200μs MIN.  
1 cycle  
MIN.  
tMRSC  
tMRSC  
tRC  
Refresh all banks  
15μs  
Don't care  
Notes 1. Recommended all address pins held LOW during dummy MRS command.  
2. A10-A17 must be LOW.  
3. Address A5 must be set HIGH (muxed address mode setting when μPD48576209/18/36 is in normal mode  
of operation).  
4. Address A5 must be set HIGH (muxed address mode setting when μPD48576209/18/36 is already in  
muxed address mode).  
Remark MRS: MRS command  
RFp : REFRESH Bank p  
AC : any command  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 35 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.15 Address Mapping in Multiplexed Mode  
The address mapping is described in Table 2-6 as a function of data width and burst length.  
Table 2-6. Address Mapping in Multiplexed Address Mode  
Data  
Burst  
Ball  
Address  
A9  
A9  
Width Length  
A0  
A0  
X
A3  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A3  
A1  
A4  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A4  
A2  
A5  
A5  
X
A8  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A8  
A6  
A10  
A10  
A19  
A10  
X
A13  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A13  
A11  
A14  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A14  
A12  
A17  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A17  
A16  
A18  
A18  
A15  
A18  
A15  
X
x36  
x18  
x9  
BL=2  
BL=4  
BL=8  
BL=2  
BL=4  
BL=8  
BL=2  
BL=4  
BL=8  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
Ax  
Ay  
A7  
A0  
X
A5  
X
A9  
A7  
A0  
X
A5  
X
A9  
A10  
X
A7  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A18  
A15  
A0  
A20  
A0  
X
A5  
X
A9  
A10  
A19  
A10  
A19  
A10  
X
A7  
A5  
X
A9  
A7  
A0  
X
A5  
X
A9  
A7  
A0  
A20  
A0  
A20  
A0  
X
A5  
A21  
A5  
X
A9  
A10  
A19  
A10  
A19  
A10  
A19  
A7  
A9  
A7  
A5  
X
A9  
A7  
Remark X means “Don’t care”.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 36 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.16 Read & Write configuration in Multiplexed Address Mode  
In multiplexed address mode, the READ and WRITE latencies are increased by one clock cycle. The  
μPD48576209/18/36 cycle time remains the same, as described in Table 2-7.  
Table 2-7. Configuration in Multiplexed Address Mode  
Parameter  
Configuration  
3
Unit  
Note2  
Note2, 3  
5
2
1
4
tRC  
4
5
6
6
8
9
3
4
5
5
tCK  
tCK  
tRL  
tWL  
7
8
6
7
10  
tCK  
Valid frequency range  
266-175  
400-175  
533-175  
200-175  
333-175  
MHz  
Notes 1. Apply to the entire table. tRC < 20 ns in any configuration is only available with –E24 and –E18 speed grades.  
2. BL = 8 is not available.  
3. The minimum tRC is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank.  
In this instance the minimum tRC is 4 cycles.  
2.17 Refresh Command in Multiplexed Address Mode  
Similar to other commands, the refresh command is executed on the next rising clock edge when in the multiplexed  
address mode. However, since only bank address is required for AREF, the next command can be applied on the  
following clock. The operation of the AREF command and any other command is represented in Figure 2-29.  
Figure 2-29. Burst REFRESH Operation  
11  
11  
10  
10  
9
9
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
CK#  
CK  
NOP  
COM
AC  
AREF  
AREF  
AREF  
AREF  
AREF  
AREF  
AREF  
AC  
AREF  
COMMAND  
AD
ADDRESS  
Ax  
Ay  
Ax  
Ay  
BAp  
BA0  
BA1  
BA2  
BA3  
BA4  
BA5  
BA6  
BAp  
BA7  
AD
BANK  
ADDRESS  
Don’t care  
Remark AREF  
: AUTO REFRESH  
: Any command  
: First part Ax of address  
AC  
Ax  
Ay  
: Second part Ay of address  
BAp  
: Bank p is chosen so that tRC is met.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 37 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-30. WRITE Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
WR  
NOP  
Ay  
WR  
NOP  
WR  
NOP  
Ay  
WR  
NOP  
Ay  
WR  
Ax  
BA0  
Ax  
BA1  
Ax  
BA2  
Ax  
BA3  
Ax  
BA0  
Ay  
WL = 6  
DKx#  
DKx  
DQ  
D0a D0b D0c D0d D1a D1  
Don’t care  
Figure 2-31. READ Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1, RL=5  
0
1
2
3
4
5
6
7
8
CK#  
CK  
COMMAND  
ADDRESS  
RD  
NOP  
Ay  
RD  
NOP  
Ay  
RD  
NOP  
Ay  
RD  
NOP  
Ay  
RD  
Ax  
BA0  
Ax  
BA1  
Ax  
BA2  
Ax  
BA0  
Ax  
BA1  
RL = 5  
QKx  
QKx#  
QVLD  
DQ  
Q0a Q0b Q0c Q0d Q1a Q1b Q1c  
Don’t care  
Undefined  
Remark WR  
: WRITE command  
: READ command  
: Address Ax of bank p  
: Address Ay of bank p  
: Data q to bank p  
: Data q from bank p  
: WRITE latency  
RD  
Ax/BAp  
Ay  
Dpq  
Qpq  
WL  
RL  
: READ latency  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 38 of 52  
μPD48576209, μPD48576218, μPD48576236  
2.18 Input Slew Rate Derating  
Table 2-8 on page 40 and Table 2-9 on page 41 define the address, command, and data setup and hold derating values.  
These values are added to the default tAS/tCS/tDS and tAH/tCH/tDH specifications when the slew rate of any of these  
input signals is less than the 2 V/ns the nominal setup and hold specifications are based upon.  
To determine the setup and hold time needed for a given slew rate, add the tAS/tCS default specification to the  
“tAS/tCS VREF to CK/CK# Crossing” and the tAH/tCH default specification to the “tAH/tCH CK/CK# Crossing to  
VREF” derated values on Table 2-8. The derated data setup and hold values can be determined in a like manner using the  
“tDS VREF to CK/CK# Crossing” and “tDH to CK/CK# Crossing to VREF” values on Table 2-9.  
The derating values on Table 2-8 and Table 2-9 apply to all speed grades.  
The setup times on Table 2-8 and Table 2-9 represent a rising signal. In this case, the time from which the rising signal  
crosses VIH(AC) MIN to the CK/CK# cross point is static and must be maintained across all slew rates. The derated setup  
timing represents the point at which the rising signal crosses VREF(DC) to the CK/CK# cross point. This derated valueis  
calculated by determining the time needed to maintain the given slew rate and the delta between VIH(AC) MIN and the  
CK/CK# cross point. The setup values in Table 2-8 and Table 2-9 are also valid for falling signals (with respect to  
VIL[AC] MAX and the CK/CK# cross point).  
The hold times in Table 2-8 and Table 2-9 represent falling signals. In this case, the time from the CK/CK# cross point  
to when the signal crosses VIH(DC) MIN is static and must be maintained across all slew rates. The derated hold timing  
represents the delta between the CK/CK# cross point to when the falling signal crosses VREF(DC). This derated value is  
calculated by determining the time needed to maintain the given slew rate and the delta between the CK/CK# cross  
point and VIH(DC). The hold values in Table 2-8 and Table 2-9 are also valid for rising signals (with respect to VIL[DC]  
MAX and the CK and CK# cross point).  
Note: The above descriptions also pertain to data setup and hold derating when CK/CK# are replaced with DK/DK#.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 39 of 52  
μPD48576209, μPD48576218, μPD48576236  
Table 2-8. Address and Command Setup and Hold Derating Values  
REF  
t
t
t
t
IH(AC)  
t
t
t t  
AH/ CH  
Command/  
Address Slew  
Rate (V/ns)  
AS/ CS V  
to  
AS/ CS V  
AH/ CH  
CK/CK#  
Crossing  
MIN to CK/CK#  
Crossing  
CK/CK#  
Crossing to  
CK/CK#  
Crossing to  
IH(DC)  
Unit  
REF  
V
V
MIN  
CK, CK# Differential Slew Rate: 2.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0
5
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
0
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3
11  
18  
25  
33  
43  
54  
67  
82  
100  
6
9
13  
17  
22  
27  
34  
41  
50  
CK, CK# Differential Slew Rate: 1.5 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
30  
35  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
30  
33  
36  
39  
43  
47  
52  
57  
64  
71  
80  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
41  
48  
55  
63  
73  
84  
97  
112  
130  
CK, CK# Differential Slew Rate: 1.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
60  
65  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
60  
63  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
71  
66  
78  
69  
85  
73  
93  
77  
103  
114  
127  
142  
160  
82  
87  
94  
101  
110  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 40 of 52  
μPD48576209, μPD48576218, μPD48576236  
Table 2-9. Data Setup and Hold Derating Values  
Data Slew Rate  
(V/ns)  
tDS VREF to  
DK/DK#  
Crossing  
tDS VIH(AC)  
MIN to DK/DK#  
Crossing  
tDH DK/DK#  
Crossing to  
VREF  
tDH DK/DK#  
Crossing to  
VIH(DC) MIN  
Unit  
DK, DK# Differential Slew Rate: 2.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0
5
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
-100  
0
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
-50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
3
11  
18  
25  
33  
43  
54  
67  
82  
100  
6
9
13  
17  
22  
27  
34  
41  
50  
DK, DK# Differential Slew Rate: 1.5 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
30  
35  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
-70  
30  
33  
36  
39  
43  
47  
52  
57  
64  
71  
80  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
-20  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
41  
48  
55  
63  
73  
84  
97  
112  
130  
DK, DK# Differential Slew Rate: 1.0 V/ns  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
60  
65  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
-40  
60  
63  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
71  
66  
78  
69  
85  
73  
93  
77  
103  
114  
127  
142  
160  
82  
87  
94  
101  
110  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 41 of 52  
μPD48576209, μPD48576218, μPD48576236  
Figure 2-32. Nominal tAS/tCS/tDS and tAH/tCH/tDH Slew Rate  
VDDQ  
V
IH(AC) MIN.  
IH(DC) MIN.  
V
VRFE(DC)  
V
IL(DC) MAX.  
IL(AC) MAX.  
V
VSSQ  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 42 of 52  
μPD48576209, μPD48576218, μPD48576236  
3. JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Table 3-1. Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
12A  
Test Mode Select. This is the command input for the TAP controller state  
TMS  
TDI  
11A  
12V  
Test Data Input. This is the input side of the serial registers placed between  
TDI and TDO. The register placed between TDI and TDO is determined by the  
state of the TAP controller state machine and the instruction that is currently  
TDO  
11V  
Test Data Output. This is the output side of the serial registers placed between  
TDI and TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the POWER-UP.  
Table 3-2. JTAG DC Characteristics (0°C TC 95°C, 1.7 V VDD 1.9 V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
0 V VIN VDD  
MIN.  
5.0  
5.0  
MAX.  
+5.0  
+5.0  
Unit Notes  
JTAG Input leakage  
current  
ILI  
μA  
μA  
JTAG I/O leakage current  
ILO  
0 V VIN VDD Q ,  
Outputs disabled  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
VREF + 0.15  
VDD + 0.3  
V
V
V
V
V
V
1, 2  
1, 2  
V
SSQ 0.3  
VDDQ 0.2  
DDQ 0.4  
VREF 0.15  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
V
JTAG output LOW voltage  
0.2  
0.4  
1
1
Note 1. All voltages referenced to VSS (GND).  
2. Overshoot: VIH (AC) VDD + 0.7 V for t tCK/2.  
Undershoot: VIL (AC) –0.5 V for t tCK/2.  
During normal operation, VDDQ must not exceed VDD.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 43 of 52  
μPD48576209, μPD48576218, μPD48576236  
JTAG AC Test Conditions  
Input waveform  
V
DDQ  
V
V
IH(AC) MIN.  
IL(AC) MAX.  
V
SS  
Rise Time:  
2 V/ns  
Fall Time:  
2 V/ns  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
VTT  
50Ω  
Test point  
10pF  
TDO  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 44 of 52  
μPD48576209, μPD48576218, μPD48576236  
Table 3-3. JTAG AC Characteristics (0°C TC 95°C)  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
tTHTL  
tTLTH  
20  
ns  
MHz  
ns  
50  
10  
10  
ns  
Output time  
TCK LOW to TDO  
tTLOX  
tTLOV  
0
ns  
ns  
TCK LOW to TDO valid  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCSJ  
5
5
5
ns  
ns  
ns  
1
1
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCHJ  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
Note 1. tCSJ and tCHJ refer to the setup and hold time requirements of latching data from the boundary scan register.  
JTAG Timing Diagram  
t
THTH  
TCK  
TMS  
TDI  
t
MVTH  
t
THTL  
t
TLTH  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 45 of 52  
μPD48576209, μPD48576218, μPD48576236  
Table 3-4. Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The 8 bit instruction registers hold the instructions that are executed by the TAP  
controller. The register can be loaded when it is placed between the TDI and TDO pins.  
The instruction register is automatically preloaded with the IDCODE instruction at power-  
up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It  
allows serial test data to be passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible. The bypass register is set LOW (VSS) when the  
bypass instruction is executed.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit  
code when the controller is put in capture-DR state with the IDCODE command loaded in  
the instruction register. The register is then placed between the TDI and TDO pins when  
the controller is moved into shift-DR state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents  
of the RAMs I/O ring when the controller is in capture-DR state and then is placed  
between the TDI and TDO pins when the controller is moved to shift-DR state. Several  
TAP instructions can be used to activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary  
register location. The first column defines the bit’s position in the boundary register. The  
second column is the name of the input or I/O at the bump and the third column is the  
bump number.  
Table 3-5. Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
8
1
bit  
32  
113  
bit  
Boundary register  
bit  
Table 3-6. ID Register Definition  
ID [31:28] vendor  
ID [0]  
fix bit  
Part number  
Organization  
ID [27:12] part no.  
ID [11:1] vendor ID no.  
revision no.  
μPD48576209  
μPD48576218  
μPD48576236  
64M x 9  
32M x 18  
16M x 36  
0000  
0001 0001 1010 0111  
0001 0001 1010 0111  
0001 0001 1010 0111  
00000010000  
00000010000  
00000010000  
1
1
1
0001  
0010  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 46 of 52  
μPD48576209, μPD48576218, μPD48576236  
Table 3-7. SCAN Exit Order  
Bit  
Signal name  
x18  
Bump  
ID  
Bit  
Signal name  
x18  
Bump  
ID  
Bit  
Signal name  
x18  
Bump  
ID  
no.  
x9  
x36  
no.  
x9  
x36  
no.  
x9  
x36  
1
DK  
DK#  
CS#  
REF#  
WE#  
A17  
DK  
DK1  
DK1#  
CS#  
K1  
K2  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
DNU  
DNU  
DNU  
DNU  
DQ5  
DQ5  
DNU  
DNU  
DQ4  
DQ4  
DM  
DNU  
DNU  
DNU  
DNU  
DQ10  
DQ10  
DNU  
DNU  
DQ9  
DQ9  
DM  
DQ30  
DQ30  
DQ32  
DQ32  
DQ33  
DQ33  
DQ34  
DQ34  
DQ35  
DQ35  
DM  
R11  
R11  
P11  
P11  
P10  
P10  
N11  
N11  
N10  
N10  
P12  
N12  
M11  
M10  
M12  
L12  
L11  
K11  
K12  
J12  
77  
78  
DNU  
DNU  
DQ1  
DQ1  
DNU  
DNU  
DQ0  
DQ0  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
A21  
DNU  
DNU  
DQ1  
DQ1  
DNU  
DNU  
DQ0  
DQ0  
DQ4  
DQ4  
DNU  
DNU  
DQ5  
DQ5  
DNU  
DNU  
DQ6  
DQ6  
DNU  
DNU  
DNU  
DNU  
DQ7  
DQ7  
DNU  
DNU  
DQ8  
DQ8  
(A21)  
A5  
DQ2  
DQ2  
DQ3  
DQ3  
DQ0  
DQ0  
DQ1  
DQ1  
DQ9  
DQ9  
DQ8  
DQ8  
DQ11  
DQ11  
DQ10  
DQ10  
DQ13  
DQ13  
DQ12  
DQ12  
DQ14  
DQ14  
DQ15  
DQ15  
DQ16  
DQ16  
DQ17  
DQ17  
(A21)  
A5  
C11  
C11  
C10  
C10  
B11  
B11  
B10  
B10  
B3  
2
DK#  
3
CS#  
L2  
79  
4
REF#  
WE#  
A17  
REF#  
WE#  
L1  
80  
5
M1  
M3  
M2  
N1  
P1  
81  
6
A17  
82  
7
A16  
A16  
A16  
83  
8
A18  
A18  
A18  
84  
9
A15  
A15  
A15  
85  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
ZQ  
DQ14  
DQ14  
DNU  
DNU  
DQ15  
DQ15  
DNU  
DNU  
QK1  
DQ25  
DQ25  
DQ24  
DQ24  
DQ23  
DQ23  
DQ22  
DQ22  
QK1  
N3  
N3  
N2  
N2  
P3  
86  
B3  
87  
B2  
A19  
A11  
A12  
A10  
A13  
A14  
BA1  
CK#  
CK  
A19  
A11  
A12  
A10  
A13  
A14  
BA1  
CK#  
CK  
A19  
88  
B2  
A11  
89  
C3  
C3  
C2  
C2  
D3  
D3  
D2  
D2  
E2  
A12  
90  
P3  
A10  
91  
P2  
A13  
92  
P2  
A14  
93  
R2  
R3  
T2  
BA1  
CK#  
CK  
94  
QK1#  
DNU  
DNU  
DQ16  
DQ16  
DNU  
DNU  
DQ17  
DQ17  
ZQ  
QK1#  
DQ20  
DQ20  
DQ21  
DQ21  
DQ18  
DQ18  
DQ19  
DQ19  
ZQ  
95  
96  
T2  
BA0  
A4  
BA0  
A4  
BA0  
A4  
J11  
97  
T3  
H11  
H12  
G12  
G10  
G11  
E12  
F12  
F10  
F10  
F11  
F11  
E10  
E10  
E11  
E11  
D11  
D10  
98  
E2  
T3  
A3  
A3  
A3  
99  
E3  
U2  
U2  
U3  
U3  
V2  
A0  
A0  
A0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
E3  
A2  
A2  
A2  
F2  
A1  
A1  
A1  
F2  
A20  
QVLD  
DQ3  
DQ3  
DNU  
DNU  
DQ2  
DQ2  
DNU  
DNU  
QK0  
QK0#  
A20  
QVLD  
DQ3  
DQ3  
DNU  
DNU  
DQ2  
DQ2  
DNU  
DNU  
QK0  
QK0#  
(A20)  
QVLD  
DQ7  
DQ7  
DQ6  
DQ6  
DQ5  
DQ5  
DQ4  
DQ4  
QK0  
QK0#  
F3  
F3  
DQ8  
DQ8  
DNU  
DNU  
DQ7  
DQ7  
DNU  
DNU  
DQ6  
DQ6  
DQ13  
DQ13  
DNU  
DNU  
DQ12  
DQ12  
DNU  
DNU  
DQ11  
DQ11  
DQ27  
DQ27  
DQ26  
DQ26  
DQ29  
DQ29  
DQ28  
DQ28  
DQ31  
DQ31  
U10  
U10  
U11  
U11  
T10  
T10  
T11  
T11  
R10  
R10  
E1  
A5  
F1  
A6  
A6  
A6  
G2  
G3  
G1  
H1  
H2  
J2  
A7  
A7  
A7  
A8  
A8  
A8  
BA2  
A9  
BA2  
A9  
BA2  
A9  
NF  
NF  
DK0#  
DK0  
NF  
NF  
J1  
Note Any unused balls that are in the order will read as a logic “0”.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 47 of 52  
μPD48576209, μPD48576218, μPD48576236  
JTAG Instructions  
Many different instructions (28) are possible with the 8-bit instruction register. All used combinations are listed in  
Table 3-8, Instruction Codes. These six instructions are described in detail below. The remaining instructions are  
reserved and should not be used.  
The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the  
TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state,  
instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once  
it is shifted in, the TAP controller needs to be moved into the Update-IR state.  
Table 3-8  
Instructions  
Instruction  
Code [7:0]  
Description  
EXTEST  
0000 0000  
The EXTEST instruction allows circuitry external to the component package to be  
tested. Boundary-scan register cells at output pins are used to apply test vectors, while  
those at input pins capture test results. Typically, the first test vector to be applied  
using the EXTEST instruction will be shifted into the boundary scan register using the  
PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is  
turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
0010 0001  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the  
controller is in capture-DR mode and places the ID register between the TDI and TDO  
pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at  
power up and any time the controller is placed in the test-logic-reset state.  
SAMPLE / PRELOAD 0000 0101  
SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the  
SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP  
controller into the capture-DR state loads the data in the RAMs input and DQ pins into  
the boundary scan register. Because the RAM clock(s) are independent from the TAP  
clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while  
the input buffers are in transition (i.e., in a metastable state). Although allowing the  
TAP to sample metastable input will not harm the device, repeatable results cannot be  
expected. RAM input signals must be stabilized for long enough to meet the TAPs  
input data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not  
be paused for any other TAP operation except capturing the I/O ring contents into the  
boundary scan register. Moving the controller to shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
CLAMP  
0000 0111  
0000 0011  
1111 1111  
When the CLAMP instruction is loaded into the instruction register, the data driven by  
the output balls are determined from the values held in the boundary scan register.  
Selects the bypass register to be connected between TDI and TDO. Data driven by  
output balls are determined from values held in the boundary scan register.  
High-Z  
The High-z instruction causes the boundary scan register to be connected between the  
TDI and TDO. This places all RAMs outputs into a High-Z state.  
Selects the bypass register to be connected between TDI and TDO. All outputs are  
forced into high impedance state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register, the bypass register  
is placed between TDI and TDO. This occurs when the TAP controller is moved to the  
shift-DR state. This allows the board level scan path to be shortened to facilitate  
testing of other devices in the scan path.  
Reserved for Future Use  
The remaining instructions are not implemented but are reserved for future use. Do not  
use these instructions.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 48 of 52  
μPD48576209, μPD48576218, μPD48576236  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 49 of 52  
μPD48576209, μPD48576218, μPD48576236  
4. Package Dimension  
144-PIN TAPE FBGA ( μBGA) (18.5x11)  
D
w
S
A
A
ZE  
B
D1  
eD  
ZD  
SD  
12  
11  
10  
9
A
E2  
8
7
6
5
4
E1  
E
SE  
3
2
1
eE  
S
V U T R P  
L K J H  
N M  
G F E D C B A  
4xC0.2  
INDEX MARK  
w
B
INDEX MARK  
D2  
(UNIT:mm)  
ITEM DIMENSIONS  
Detail of A pa rt  
A
D
18.50 0.10  
17.90  
y1  
S
A2  
D1  
D2  
E
A3  
S
14.52  
11.00 0.10  
10.70  
E1  
y
S
A1  
2.184  
E2  
w
0.20  
M
b
x
S A B  
A
1.07 0.10  
0.39 0.05  
0.68  
A1  
A2  
A3  
eD  
eE  
SD  
SE  
b
0.08 MAX.  
1.00  
0.80  
0.50  
2.00  
0.51 0.05  
0.15  
x
y
0.10  
y1  
ZD  
ZE  
0.20  
0.75  
1.10  
P144FF-80-DW1  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 50 of 52  
μPD48576209, μPD48576218, μPD48576236  
5. Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD48576209FF-DW1  
μPD48576218FF-DW1  
μPD48576236FF-DW1  
: 144-pin TAPE FBGA (18.5 x 11)  
: 144-pin TAPE FBGA (18.5 x 11)  
: 144-pin TAPE FBGA (18.5 x 11)  
Quality Grade  
• A quality grade of the products is “Standard”.  
• Anti-radioactive design is not implemented in the products.  
• Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to  
the ground and so forth.  
R10DS0063EJ0300 Rev.3.00  
Oct 01, 2012  
Page 51 of 52  
Revision History  
μPD48576209, μPD48576218, μPD48576236  
Description  
Summary  
Rev.  
Date  
Page  
-
Rev.0.01  
Rev.1.00  
’10.11.08  
’11.09.27  
New Preliminary Data Sheet  
New Data Sheet  
-
P12  
P16  
Update DC Characteristics  
Update Thermal Impedance  
Rev.2.00  
Rev.3.00  
’12.05.10  
’12.10.01  
P39, P40  
P41, P42  
P18,P19  
P35  
Update Input Slew Rate Derating  
Update Power-On Sequence  
All trademarks and registered trademarks are the property of their respective owners.  
C - 52  
Notice  
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas  
Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to  
be disclosed by Renesas Electronics such as that disclosed through our website.  
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or  
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the  
use of these circuits, software, or information.  
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and  
regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to  
the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is  
prohibited under any applicable domestic or foreign laws or regulations.  
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics  
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.  
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product  
depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas  
Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the  
use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.  
The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;  
personal electronic equipment; and industrial robots.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically  
designed for life support.  
"Specific":  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical  
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage  
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the  
use of Renesas Electronics products beyond such specified ranges.  
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and  
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,  
please evaluate the safety of the final products or system manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics  
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes  
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.  
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Renesas Electronics Canada Limited  
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada  
Tel: +1-905-898-5441, Fax: +1-905-898-3220  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-65030, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China  
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898  
Renesas Electronics Hong Kong Limited  
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2886-9318, Fax: +852 2886-9022/9044  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632  
Tel: +65-6213-0200, Fax: +65-6278-8001  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics Korea Co., Ltd.  
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
© 2012 Renesas Electronics Corporation. All rights reserved.  
Colophon 1.1  

相关型号:

UPD48576236FF-E25-DW1

16MX36 DDR DRAM, PBGA144, 18.50 X 11 MM, UBGA-144
RENESAS

UPD48576236FF-E25-DW1-A

16MX36 DDR DRAM, PBGA144, 18.50 X 11, LEAD FREE, FBGA-144
RENESAS

UPD48576236FF-E33-DW1-A

16MX36 DDR DRAM, PBGA144, 18.50 X 11, LEAD FREE, FBGA-144
RENESAS

UPD487000GC-30

Field/Frame/Line Memory
ETC

UPD487000GC-40

Field/Frame/Line Memory
ETC

UPD488031LG6-A50

RAMBUS DRAM
ETC

UPD488130

Rambus DRAM, 2MX8, CMOS, PSVP32,
NEC

UPD488130LG6-A45

RAMBUS DRAM
ETC

UPD488130LG6-A50

RAMBUS DRAM
ETC

UPD488130LG6A45-9

UPD488130LG6A45-9
RENESAS

UPD488130LG6A50-9

UPD488130LG6A50-9
RENESAS

UPD488130LVN-A45

RAMBUS DRAM
ETC