UPD6134MC-XXX-5A4-E1 [RENESAS]

UPD6134MC-XXX-5A4-E1;
UPD6134MC-XXX-5A4-E1
型号: UPD6134MC-XXX-5A4-E1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

UPD6134MC-XXX-5A4-E1

光电二极管
文件: 总66页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD6133, 6134  
4-BIT SINGLE-CHIP MICROCONTROLLER  
FOR INFRARED REMOTE CONTROL TRANSMISSION  
DESCRIPTION  
Equipped with low-voltage 1.8V operation, a carrier generation circuit for infrared remote control transmission,  
a standby release function through key entry, and a programmable timer, the µPD6133 and 6134 are suitable for  
infrared remote control transmitters.  
For the µPD6133 and 6134, we have made available the one-time PROM product µPD61P34B for program  
evaluation or small-quantity production.  
FEATURES  
• Program memory (ROM)  
· µPD6133: 512 × 10 bits  
· µPD6134: 1002 × 10 bits  
• Data memory (RAM): 32 × 4 bits  
• Built-in carrier generation circuit for infrared remote control  
• 9-bit programmable timer  
• Command execution time  
• Stack level  
: 1 channel  
: 8 µs (when operating at fX = 1 MHz: ceramic oscillation)  
: 1 level (Stack RAM is for data memory RF as well.)  
• I/O pins (KI/O)  
: 8 units  
: 4 units  
: 1 unit  
• Input pins (KI)  
• Sense input pin (S0)  
• S1/LED pin (I/O)  
:
1 unit (When in output mode, this is the remore control transmission  
display pin.)  
• Power supply voltage  
: VDD = 1.8 to 3.6 V (when operating at fX = 500 kHz)  
VDD = 2.2 to 3.6 V (when operating at fX = 1 MHz)  
• Operating ambient temperature : TA = –40 to +85 ˚C  
• Oscillation frequency  
: fX = 300 kHz to 1 MHz  
• POC circuit (Mask option)  
APPLICATION  
Infrared remote control transmitter (for AV and household electric appliances)  
Unless otherwise stated, the µPD6133 is taken as a representative product in this document.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
Document No. U10454EJ6V0DS00 (6th edition)  
Date Published June 1999 N CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
1995, 1999  
©
µPD6133, 6134  
ORDERING INFORMATION  
Part Number  
Package  
µPD6133GS-×××  
µPD6134GS-×××  
µPD6134MC-×××-5A4  
20-pin plastic SOP (300 mil)  
20-pin plastic SOP (300 mil)  
20-pin plastic SSOP (300 mil)  
Remark ××× indicates ROM code suffix.  
PIN CONFIGURATION (TOP VIEW)  
20-pin Plastic SOP (300 mil)  
µPD6133GS-×××  
µPD6134GS-×××  
20-pin Plastic SSOP (300 mil)  
µPD6134MC-×××-5A4  
KI/O6  
KI/O7  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
KI/O0  
KI3  
S0  
S1/LED  
REM  
VDD  
XOUT  
XIN  
KI2  
GND  
RESET  
KI1  
KI0  
Caution The pin numbers of KI and KI/O are in the reverse order of the µPD6600A and 6124A.  
Data Sheet U10454EJ6V0DS00  
2
µPD6133, 6134  
BLOCK DIAGRAM  
4
8
2
4
8
2
PORT K  
I
K
K
S
I0-KI3  
CARRIER  
GENERATOR  
REM  
/LED  
CPU  
CORE  
ROM  
PORT KI/O  
PORT S  
I/O0-KI/O7  
9-bit  
TIMER  
S
1
0
, S /LED  
1
RESET  
RAM  
SYSTEM  
CONTROL  
X
X
IN  
OUT  
V
DD  
GND  
LIST OF FUNCTIONS  
Item  
µPD6133  
µPD6134  
1002 × 10 bit  
µPD61P34B  
ROM capacity  
512 × 10 bit  
Mask ROM  
32 × 4 bits  
1002 × 10 bits  
One-time PROM  
RAM capacity  
Stack  
1 level (multiplexed with RF of RAM)  
I/O pins  
• Key input (KI)  
• Key I/O (KI/O)  
: 4  
: 8  
: 2  
• Key extended input (S0, S1)  
• Remote control transmission display output (LED) : 1 (multiplexed with S1 pin)  
Number of keys  
Clock frequency  
• 32 keys  
• 48 keys (when extended by key extension input)  
• 96 keys (when extended by key extension input and diode)  
Ceramic oscillation  
• fX = 300 kHz to 1 MHz  
• fX = 300 to 500 kHz (with POC circuit)  
Instruction execution time  
Carrier frequency  
Timer  
8 µs (fx = 1 MHz)  
fX, fX/2, fX/8, fX/12, fX/16, fX/24, no carrier (high level)  
9-bit programmable timer: 1 channel  
POC circuit  
Mask option  
Internal  
Supply voltage  
VDD = 1.8 to 3.6 V  
VDD = 2.2 to 3.6 V  
Operating ambient temperature  
• TA = –40 to +85 °C  
• TA = –20 to +70 °C (with POC circuit)  
Package  
• 20-pin plastic SOP  
(300 mil)  
• 20-pin plastic SOP (300 mil)  
• 20-pin plastic SSOP (300 mil)  
Data Sheet U10454EJ6V0DS00  
3
µPD6133, 6134  
TABLE OF CONTENTS  
1. PIN FUNCTIONS.........................................................................................................................  
1.1 List of Pin Functions.........................................................................................................................  
1.2 INPUT/OUTPUT Circuits of Pins ......................................................................................................  
1.3 Dealing with Unused Pins ................................................................................................................  
6
6
7
8
2. INTERNAL CPU FUNCTIONS ....................................................................................................  
2.1 Program Counter (PC) ......................................................................................................................  
2.2 Stack Pointer (SP) .............................................................................................................................  
2.3 Address Stack Register (ASR (RF)).................................................................................................  
9
9
9
9
2.4 Program Memory (ROM) ................................................................................................................... 10  
2.5 Data Memory (RAM) .......................................................................................................................... 10  
2.6 Data Pointer (DP)............................................................................................................................... 11  
2.7 Accumulator (A) ................................................................................................................................ 11  
2.8 Arithmetic and Logic Unit (ALU) ...................................................................................................... 12  
2.9 Flags ................................................................................................................................................... 12  
2.9.1 Status flag (F).......................................................................................................................... 12  
2.9.2 Carry flag (CY) ........................................................................................................................ 13  
3. PORT REGISTERS (PX)............................................................................................................. 14  
3.1 KI/O Port (P0)....................................................................................................................................... 15  
3.2 KI Port/Special Ports (P1) ................................................................................................................. 16  
3.2.1 KI port (P11: bits 4-7 of P1) ..................................................................................................... 16  
3.2.2 S0 port (bit 2 of P1).................................................................................................................. 16  
3.2.3 S1/LED (bit 3 of P1) ................................................................................................................. 16  
3.3 Control Register 0 (P3) ..................................................................................................................... 17  
3.4 Control Register 1 (P4) ..................................................................................................................... 18  
4. TIMER ......................................................................................................................................... 19  
4.1 Timer Configuration .......................................................................................................................... 19  
4.2 Timer Operation................................................................................................................................. 20  
4.3 Carrier Output .................................................................................................................................... 21  
4.4 Software Control of Timer Output ................................................................................................... 21  
5. STANDBY FUNCTION................................................................................................................ 22  
5.1 Outline of Standby Function ............................................................................................................ 22  
5.2 Standby Mode Setup and Release................................................................................................... 23  
5.3 Standby Mode Release Timing ........................................................................................................ 24  
6. RESET PIN.................................................................................................................................. 26  
7. POC CIRCUIT (MASK OPTION) ................................................................................................ 27  
7.1 Functions of POC Circuit.................................................................................................................. 28  
7.2 Oscillation Check at Low Supply Voltage....................................................................................... 28  
8. SYSTEM CLOCK OSCILLATOR................................................................................................ 29  
Data Sheet U10454EJ6V0DS00  
4
µPD6133, 6134  
9. INSTRUCTION SET .................................................................................................................... 30  
9.1 Machine Language Output by Assembler....................................................................................... 30  
9.2 Circuit Symbol Description .............................................................................................................. 31  
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table ............................... 32  
9.4 Accumulator Operation Instructions ............................................................................................... 36  
9.5 Input/Output Instructions ................................................................................................................. 39  
9.6 Data Transfer Instructions................................................................................................................ 40  
9.7 Branch Instructions .......................................................................................................................... 42  
9.8 Subroutine Instructions .................................................................................................................... 43  
9.9 Timer Operation Instructions ........................................................................................................... 44  
9.10 Others................................................................................................................................................. 45  
10. ASSEMBLER RESERVED WORDS .......................................................................................... 47  
10.1 Mask Option Directives..................................................................................................................... 47  
10.1.1 OPTION and ENDOP directives ............................................................................................. 47  
10.1.2 Mask option definition directives ............................................................................................. 47  
11. ELECTRICAL SPECIFICATIONS............................................................................................... 48  
12. CHARACTERISTIC CURVE (REFERENCE VALUES) .............................................................. 52  
13. APPLIED CIRCUIT EXAMPLE ................................................................................................... 54  
14. PACKAGE DRAWINGS.............................................................................................................. 55  
15. RECOMMENDED SOLDERING CONDITIONS.......................................................................... 57  
APPENDIX A. DEVELOPMENT TOOLS ......................................................................................... 58  
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN µPD6133 SUBSERIES AND  
OTHER SUBSERIES ................................................................................................ 59  
APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT (in the case  
of NEC transmission format in command one-shot transmission mode) ......... 60  
Data Sheet U10454EJ6V0DS00  
5
µPD6133, 6134  
1. PIN FUNCTIONS  
1.1 List of Pin Functions  
Pin No.  
Symbol  
Function  
Output Format  
CMOS  
push-pullNote 1  
When Reset  
1
KI/O0-KI/O7  
These pins refer to the 8-bit I/O ports. I/O switching can  
be made in 8-bit units.  
High-level output  
2
15-20  
In INPUT mode, a pull-down resistor is added.  
In OUTPUT mode, they can be used as the key scan  
output of the key matrix.  
3
S0  
Refers to the input port.  
High-impedance  
(OFF mode)  
Can also be used as the key return input of the key  
matrix.  
In INPUT mode, the availability of the pull-down resistor  
of the S0 and S1 ports can be specified by software in  
terms in 2-bit units.  
If INPUT mode is canceled by software, this pin is placed  
in OFF mode and enters the high-impedance state.  
4
S1/LED  
Refers to the I/O port.  
CMOS push-pull  
High-level output  
(LED)  
In INPUT mode (S1), this pin can also be used as the key  
return input of the key matrix.  
The availability of the pull-down resistor of the S0 and S1  
ports can be specified by software in 2-bit units.  
In OUTPUT mode (LED), it becomes the remote control  
transmission display output (active low). When the  
remote control carrier is output from the REM output, this  
pinoutputsthelowlevelfromtheLEDoutputsynchronously  
with the REM signal.  
5
6
REM  
Refers to the infrared remote control transmission output.  
The output is active high.  
CMOS push-pull  
Low-level output  
Carrier frequency: fX, fX/8, fX/12, high-level,  
fX/2, fX/16, fX/24 (usable on software)  
VDD  
Refers to the power supply.  
7
8
XOUT  
These pins are connected to system clock ceramic  
resonators.  
Low level  
XIN  
(oscillation stopped)  
9
GND  
Refers to the ground.  
10  
RESET  
Normally, this pin is a system reset input. By inputting  
a low level, the CPU can be reset. When resetting with  
the POC circuit (mask option) a low level is output. A  
pull-up resistor is incorporated.  
Note 2  
11-14  
KI0-KI3  
These pins refer to the 4-bit input ports.  
They can be used as the key return input of the key  
matrix.  
Input (low-level)  
The use of the pull-down resistor can be specified by  
software in 4-bit units.  
Notes 1. Be careful about this because the drive capability of the low-level output side is held low.  
2. In order to prevent malfunction, be sure to input a low level to more than one of pins KI0 to KI3 when  
reset is released (when RESET pin changes from low level to high level, or POC is released due to  
supply voltage startup).  
Data Sheet U10454EJ6V0DS00  
6
µPD6133, 6134  
1.2 INPUT/OUTPUT Circuits of Pins  
The input/output circuits of the µPD6133 pins are shown in partially simplified forms below.  
(1) KI/O0-KI/O7  
(4) S0  
V
DD  
Input buffer  
OFF mode  
Output  
Data  
latch  
P-ch  
N-chNote  
Output  
disable  
Standby  
release  
N-ch  
Pull-down flag  
Input buffer  
N-ch  
(5) S1/LED  
VDD  
Note The drive capability is held low.  
REM  
output latch  
P-ch  
(2) KI0-KI3  
Output  
disable  
N-ch  
Standby  
release  
Standby  
release  
Input buffer  
Input buffer  
Pull-down flag  
N-ch  
N-ch  
Pull-down flag  
(3) REM  
(6) RESET  
VDD  
VDD  
P-ch  
P-ch  
Output  
latch  
Data  
N-ch  
Carrier  
generator  
Input buffer  
Internal reset signal  
other than POC  
N-ch  
Mask option  
POC circuit  
Data Sheet U10454EJ6V0DS00  
7
µPD6133, 6134  
1.3 Dealing with Unused Pins  
The following connections are recommended for unused pins.  
Table 1-1. Connections for Unused Pins  
Connection  
Inside the microcontroller Outside the microcontroller  
Pin  
KI/O  
INPUT mode  
High-level output  
Open  
OUTPUT mode  
REM  
S1/LED  
S0  
OUTPUT mode (LED) setting  
OFF mode setting  
Directly connected to GND  
Open  
KI  
RESETNote  
Built-in POC circuit  
Note If the circuit is an applied one requiring high reliability, be sure to design it in such a manner that the RESET  
signal is entered externally.  
Caution The I/O mode and the terminal output level are recommended to be fixed by setting them  
repeatedly in each loop of the program.  
Data Sheet U10454EJ6V0DS00  
8
µPD6133, 6134  
2. INTERNAL CPU FUNCTIONS  
2.1 Program Counter (PC): 10 Bits  
Refers to the binary counter that holds the address information of the program memory.  
Figure 2-1. Program Counter Organization  
PC PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
The program counter contains the address of the instruction that should be executed next. Normally, the counter  
contents are automatically incremented in accordance with the instruction length (byte count) each time an  
instruction is executed.  
However, when executing JUMP instructions (JMP, JC, JNC, JF, JNF), the program counter contains the jump  
destination address written in the operand.  
When executing the subroutine call instruction (CALL), the call destination address written in the operand is  
entered in the PC after the PC contents at the time are saved in the address stack register (ASR). If the return  
instruction (RET) is executed after the CALL instruction is executed, the address saved in the ASR is restored to  
the PC.  
When reset, the value of the program counter becomes “000H”.  
2.2 Stack Pointer (SP): 1 Bit  
Refers to the 1-bit register which holds the status of the address stack register.  
The stack pointer contents are incremented when the call instruction (CALL) is executed; they are decremented  
when the return instruction (RET) is executed.  
When reset, the stack pointer contents are cleared to “0”.  
When the stack pointer overflows (stack level 2 or more) or underflows, the CPU is hung up thus a system reset  
signal is generated and the PC becoming “000H”.  
As no instruction is available to set a value directly for the stack pointer, it is not possible to operate the pointer  
by means of a program.  
2.3 Address Stack Register (ASR (RF)): 10 Bits  
The address stack register saves the return address of the program after a subroutine call instruction is executed.  
The low-order 8 bits are arranged in the RF of the data memory as a dual-function RAM. The register holds  
the ASR value even after the RET is executed.  
When reset, it holds the previous data (undefined when turning on the power).  
Caution If the RF is accessed as the data memory, the high-order 2 bits of the ASR become undefined.  
Figure 2-2. Address Stack Register Organization  
RF  
ASR ASR9 ASR8 ASR7 ASR6 ASR5 ASR4 ASR3 ASR2 ASR1 ASR0  
Data Sheet U10454EJ6V0DS00  
9
µPD6133, 6134  
2.4 Program Memory (ROM): 512 steps × 10 bits (µPD6133)  
1002 steps × 10 bits (µPD6134)  
The ROM consists of 10 bits per step, and is addressed by the program counter.  
The program memory stores programs and table data, etc.  
The 22 steps from 3EAH to 3FFH cannot be used in the test program area.  
Figure 2-3. Program Memory Map  
(a) µPD6133  
(b) µPD6134  
10 bits  
10 bits  
000H  
000H  
0FFH  
100H  
0FFH  
100H  
1FFH  
1FFH  
200H  
Unmounted areaNote  
2FFH  
300H  
3E9H  
3EAH  
3FFH  
3E9H  
3EAH  
Test  
Test  
program areaNote  
program areaNote  
3FFH  
Note The unmounted area and the test program area are so designed that a program or data placed in either  
of them by mistake is returned to the 000H address.  
2.5 Data Memory (RAM): 32 × 4 Bits  
The data memory, which is a static RAM consisting of 32 × 4 bits, is used to retain processed data. The data  
memory is sometimes processed in 8-bit units. R0 can be used as the ROM data pointer.  
RF is also used as the ASR.  
When reset, R0 is cleared to “00H” and R1 to RF retain the previous data (undefined when turning on the power).  
Data Sheet U10454EJ6V0DS00  
10  
µPD6133, 6134  
Figure 2-4. Data Memory Organization  
R1n (high-order 4 bits) R0n (low-order 4 bits)  
DP (Refer to 2.6 Data Pointer.)  
R0  
R
R
R
R
R
R
R
R
R
R
R
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
R
R
R
R
R
R
R
R
R
R
R
R
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
RA  
RB  
RC  
RD  
RE  
RF  
R1C  
R1D  
R1E  
R1F  
R0C  
R0D  
R0E  
R0F  
ASR (Refer to 2.3 Address Stack Register.)  
2.6 Data Pointer (DP): 10 Bits  
The ROM data table can be referenced by setting the ROM address in the data pointer to call the ROM contents.  
The low-order 8 bits of the ROM address are specified by R0 of the data memory; and the high-order 2 bits by  
bits 4 and 5 of the P3 register (CR0).  
When reset, the pointer contents become “000H”.  
Figure 2-5. Data Pointer Organization  
P3 Register  
b5  
b
4
R10  
R00  
P3  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
DP0  
R0  
2.7 Accumulator (A): 4 Bits  
The accumulator, which refers to a register consisting of 4 bits, plays a leading role in performing various  
operations.  
When reset, the accumulator contents are left undefined.  
Figure 2-6. Accumulator Organization  
A
3
A
2
A
1
A
0
A
Data Sheet U10454EJ6V0DS00  
11  
µPD6133, 6134  
2.8 Arithmetic and Logic Unit (ALU): 4 Bits  
The arithmetic and logic unit (ALU), which refers to an arithmetic circuit consisting of 4 bits, executes simple  
manipulations with priority given to logical operations.  
2.9 Flags  
2.9.1 Status flag (F)  
Pin and timer statuses can be checked by executing the STTS instruction to check the status flag.  
The status flag is set (to 1) in the following cases.  
• If the condition specified with the operand is met when the STTS instruction has been executed  
• When STANDBY mode is canceled.  
• When the cancelation condition is met at the point of executing the HALT instruction. (In this case, the system  
is not placed in STANDBY mode.)  
Conversely, the status flag is cleared (to 0) in the following cases:  
• If the condition specified with the operand is not met when the STTS instruction has been executed.  
• When the status flag has been set (to 1), the HALT instruction executed, but the cancelation condition is not  
met at the point of executing the HALT instruction. (In this case, the system is not placed in STANDBY mode.)  
Table 2-1. Conditions for Status Flag (F) to be Set by STTS Instruction  
Operand Value of STTS Instruction  
Condition for Status Flag (F) to be Set  
b3  
b2  
b1  
b0  
0
0
0
0
High level is input to at least one of KI pins.  
High level is input to at least one of KI pins.  
High level is input to at least one of KI pins.  
The down counter of the timer is 0.  
0
1
1
1
1
0
1
0
1
1
Either of the combinations  
of b2, b1, and b0 above.  
[The following condition is added in addition to the above.]  
High level is input to at least one of S0 and S1 pins.  
Data Sheet U10454EJ6V0DS00  
12  
µPD6133, 6134  
2.9.2 Carry flag (CY)  
The carry flag is set (to 1) in the following cases:  
• If the ANL instruction or the XRL instruction is executed when bit 3 of the accumulator is “1” and bit 3 of the  
operand is “1”.  
• If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is “1”.  
• If the INC instruction or the SCAF instruction is executed when the value of the accumulator is 0FH.  
The carry flag is cleared (to 0) in the following cases:  
• If the ANL instruction or the XRL instruction is executed when at least either bit 3 of the accumulator or bit  
3 of the operand is “0”.  
• If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is “0”.  
• If the INC instruction or the SCAF instruction is executed when the value of the accumulator is other than 0FH.  
• If the ORL instruction is executed.  
• When Data is written to the accumulator by the MOV instruction or the IN instruction.  
Data Sheet U10454EJ6V0DS00  
13  
µPD6133, 6134  
3. PORT REGISTERS (PX)  
The KI/O port, the KI port, the special ports (S0, S1/LED), and the control register are treated as port registers.  
At reset, port register values are shown below.  
Figure 3-1. Port Register Organization  
Port Register  
P0  
At Reset  
FFH  
P10  
P11  
P13  
P14  
P00  
P01  
P03  
P04  
K
I/O7  
K
I/O6  
K
I/O5  
K
I/O4  
K
I/O3  
K
I/O2  
K
I/O1  
K
I/O0  
P1  
× FHNote  
K
I3  
K
I2  
K
I1  
K
I0  
S
1
/LED  
S
0
1
1
P3 (Control register 0)  
03H  
0
0
DP  
9
DP  
8
TCTL  
CARY  
MOD  
1
MOD  
0
P4 (Control register 1)  
26H  
K
I
S
0
/S  
1
0
0
0
S1  
/LEDmode  
KI/O mode  
S0 mode  
pull-down pull-down  
Note ×: Refers to the value based on the KI pin state.  
Table 3-1. Relationship between Ports and their Read/Write  
INPUT Mode  
OUTPUT Mode  
Port Name  
Read  
Write  
Read  
Write  
KI/O  
Pin state  
Pin state  
Pin state  
Pin state  
Output latch  
Output latch  
Output latch  
KI  
S0  
Note  
S1/LED  
Pin state  
Note When in OFF mode, “1” is normally read.  
Data Sheet U10454EJ6V0DS00  
14  
µPD6133, 6134  
3.1 KI/O Port (P0)  
The KI/O port is an 8-bit input/output port for key scan output.  
INPUT/OUTPUT mode is set by bit 1 of the P4 register.  
If a read instruction is executed, the pin state can be read in INPUT mode, whereas the output latch contents  
can be read in OUTPUT mode.  
If the write instruction is executed, data can be written to the output latch regardless of INPUT or OUTPUT mode.  
When reset, the port is placed in OUTPUT mode; and the value of the output latch (P0) becomes 1111 1111B.  
The KI/O port contains the pull-down resistor, allowing pull-down in INPUT mode only.  
Caution During double pressing of a key, a high-level output and a low-level output may coincide with  
each other at the KI/O port. To avoid this, the low-level output current of the KI/O port is held  
low. Therefore, be careful when using the KI/O port for purposes other than key scan output.  
The KI/O port is so designed that, even when connected directly to VDD within the normal supply  
voltage range (VDD = 1.8 to 3.6 V), no problem may occur.  
Table 3-2. KI/O Port (P0)  
Bit  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Name  
KI/O7  
KI/O6  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
KI/O0  
b0-b7 : In reading : In INPUT mode, the KI/O pin’s state is read.  
In OUTPUT mode, the KI/O pin’s output latch contents are read.  
In writing : Data is written to the KI/O pin’s output latch regardless of INPUT or OUTPUT mode.  
Data Sheet U10454EJ6V0DS00  
15  
µPD6133, 6134  
3.2 KI Port/Special Ports (P1)  
3.2.1 KI port (P11: bits 4-7 of P1)  
The KI port is to the 4-bit input port for key entry.  
The pin state can be read.  
Software can be used to set the availability of the pull-down resistor of the KI port in 4-bit units by means of bit  
5 of the P4 register.  
When reset, the pull-down resistor is connected.  
Table 3-3. KI/Special Port Register (P1)  
Bit  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Name  
KI3  
KI2  
KI1  
KI0  
S1/LED S0  
(Fixed to “1”)  
b2  
: In INPUT mode, state of the S0 pin is read (Read only).  
In OFF mode, this bit is fixed to “1”.  
b3  
: The state of the S1/LED pin is read regardless of INPUT/OUTPUT mode (Read only).  
b4-b7 : The state of the KI pin is read (Read only).  
Caution In order to prevent malfunction, be sure to input a low level to more than one of pins KI0 to KI3  
when reset is released (when RESET pin changes from low level to high level, or POC is released  
due to supply voltage startup).  
3.2.2 S0 port (bit 2 of P1)  
The S0 port is the INPUT/OFF mode port.  
The pin state can be read by setting this port to INPUT mode with bit 0 of the P4 register.  
In INPUT mode, software can be used to set the availability of the pull-down resistor of the S0 and S1/LED port  
in 2-bit units by means of bit 4 of the P4 register.  
If INPUT mode is canceled (thus set to OFF mode), the pin becomes high-impedance but it also makes that the  
through current does not flow internally. In OFF mode, “1” can be read regardless of the pin state.  
When reset, it is set to OFF mode, thus becoming high-impedance.  
3.2.3 S1/LED (bit 3 of P1)  
The S1/LED port is the input/output port.  
It uses bit 2 of the P4 register to set INPUT or OUTPUT mode. The pin state can be read in both INPUT mode  
and OUTPUT mode.  
When in INPUT mode, software can be used to set the availability of the pull-down resistor of the S0 and  
S1/LED ports in 2-bit units by means of bit 4 of the P4 register.  
When in OUTPUT mode, the pull-down resistor is automatically disconnected thus becoming the remote  
transmission display pin (refer to 4. TIMER).  
When reset, it is placed in OUTPUT mode, and high level is output.  
Data Sheet U10454EJ6V0DS00  
16  
µPD6133, 6134  
3.3 Control Register 0 (P3)  
Control register 0 consists of 8 bits. The contents that can be controlled are as shown below.  
When reset, the register becomes 0000 0011B.  
Table 3-4. Control Register 0 (P3)  
Bit  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Name  
DP (Data pointer) TCTL  
CARY  
MOD1  
MOD0  
DP9  
0
DP8  
0
Set  
0
1
Fixed  
to “0”  
0
Fixed  
to “0”  
0
1/1  
1/2  
0
ON  
OFF  
0
Refer to  
Table 3-5.  
value  
1
1
When reset  
0
0
1
1
b0, b1 : These bits specify the carrier frequency and duty ratio of the REM output.  
b2  
: This bit specifies the availability of the carrier of the frequency specified by b0 and b1.  
“0” = ON (with carrier); “1” = OFF (without carrier; high level)  
b3  
: This bit changes the carrier frequency and the timer clock’s frequency division ratio.  
“0” = 1/1 (carrier frequency: the specified value of b0 and b1; timer clock: fX/8)  
“1” = 1/2 (carrier frequency: half of the specified value of b0 and b1; timer clock: fX/16)  
Table 3-5. Timer Clock and Carrier Frequency Setup  
b3  
b2  
b1  
b0  
Timer Clock  
Carrier Frequency (Duty Ratio)  
fX (Duty 1/2)  
0
1
0
0
0
1
1
×
0
0
1
1
×
0
1
0
1
×
0
1
0
1
×
fX/8  
fX/8 (Duty 1/2)  
fX/12 (Duty 1/2)  
fX/12 (Duty 1/3)  
1
0
Without carrier (high level)  
fX/2 (Duty 1/2)  
fX/16  
fX/16 (Duty 1/2)  
fX/24 (Duty 1/2)  
fX/24 (Duty 1/3)  
1
Without carrier (high level)  
b4 and b5 : These bits specify the high-order 2 bits (DP8 and DP9) of ROM’s data pointer.  
Remark ×: don’t care  
Data Sheet U10454EJ6V0DS00  
17  
µPD6133, 6134  
3.4 Control Register 1 (P4)  
Control register 1 consists of 8 bits. The contents that can be controlled are as shown below.  
When reset, the register becomes 0010 0110B.  
Table 3-6. Control Register 1 (P4)  
Bit  
b7  
b6  
b5  
KI  
b4  
b3  
b2  
b1  
b0  
Name  
S0/S1  
S1/LED KI/O  
S0  
Pull-down Pull-down  
mode  
S1  
mode  
mode  
OFF  
IN  
Set  
0
1
Fixed  
to “0”  
0
Fixed  
to “0”  
0
OFF  
ON  
1
OFF  
ON  
0
Fixed  
to “0”  
0
IN  
value  
LED  
1
OUT  
1
When reset  
0
b0 : Specifies the input mode of the S0 port. “0” = OFF mode (high impedance); “1” = IN (INPUT mode).  
b1 : Specifies the I/O mode of the KI/O port.  
“0” = IN (INPUT mode); “1” = OUT (OUTPUT mode).  
b2 : Specifies the I/O mode of the S1/LED port. “0” = S1 (INPUT mode); “1” = LED (output mode).  
b4 : Specifies the availability of the pull-down resistor in S0/S1 port INPUT mode. “0” = OFF (unavailable);  
“1” = ON (available)  
b5 : Specifies the availability of the pull-down resistor in KI port. “0” = OFF (unavailable);  
“1” = ON (available).  
Remark In OUTPUT mode or in OFF mode, all the pull-down resistors are automatically disconnected.  
Data Sheet U10454EJ6V0DS00  
18  
µPD6133, 6134  
4. TIMER  
4.1 Timer Configuration  
The timer is the block used for creating a remote control transmission pattern. As shown in Figure 4-1, it consists  
of a 9-bit down counter (t8 to t0), a flag (t9) permitting the 1-bit timer output, and a zero detecting circuit.  
Figure 4-1. Timer Configuration  
Bit 3 of control register 0 (P3)  
T
Count  
clock  
T1  
T0  
f
X
/8  
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
f
X
/16  
9-bit down counter  
Timer operation end signal  
(HALT # ×101B release  
signal)  
S
1/LED  
Zero detecting circuit  
Carrier  
synchronous  
circuit  
REM  
Bit 2 of control register 0 (P3)  
Carrier signal  
Data Sheet U10454EJ6V0DS00  
19  
µPD6133, 6134  
4.2 Timer Operation  
The timer starts (counting down) when a value other than 0 is set for the down counter with a timer operation  
instruction. The timer operation instructions for making the timer start operation are shown below:  
MOV T0, A  
MOV T1, A  
MOV T, #data10  
MOV T, @R0  
The down counter is decremented (–1) in the cycle of 8/fX or 16/fXNote. If the value of the down counter becomes  
0, the zero detecting circuit generates the timer operation end signal to stop the timer operation. At this time, if  
the timer is in HALT mode (HALT # × 101B) waiting for the timer to stop its operation, the HALT mode is canceled  
and the instruction following the HALT instruction is executed. The output of the timer operation end signal is  
continued while the down counter is 0 and the timer is stopped. There is the following relational expression between  
the timer’s time and the down counter’s set value.  
Note  
Timer time = (Set value + 1) × 8/fX (or 16/fX  
)
Note This becomes 16/fX if bit 3 of the control register is set (to 1).  
By setting 1 for the flag (t9) which enables the timer output, the timer can output its operation status from the  
S1/LED pin and the REM pin. The REM pin can also output the carrier while the timer is in operation.  
Table 4-1. Timer Output (at t9 = 1)  
S1/LED Pin  
REM Pin  
Timer operating  
Timer halting  
L
H (or carrier outputNote  
)
H
L
Note The carrier output results if bit 2 of the control register 0 is cleared (to 0).  
Figure 4-2. Timer Output (When Carrier Is Not Output)  
Timer value: (Set value + 1) × 8 f/  
X
(or 16/f )  
X
LED  
REM  
Data Sheet U10454EJ6V0DS00  
20  
µPD6133, 6134  
4.3 Carrier Output  
The carrier for remote-controlled transmission can be output from the REM pin by clearing (to 0) bit 2 of the control  
register 0.  
As shown in Figure 4-3, in the case where the timer stops when the carrier is at a high level, the carrier continues  
to be output until its next fall and then stops due to the function of the carrier synchronous circuit . When the timer  
starts operation, however, the high-level width of the first carrier may become shorter than the specified width.  
Figure 4-3. Timer Output (When Carrier Is Output)  
Timer value: (Set value+1) × 8/f  
X
(or 16/f )  
X
LED  
REM (at low-level start)  
REM (at high-level start)  
Note 1  
Note 2  
Notes 1. Error when the REM output ends: Lead by “the carrier’s low-level width” to lag by “the carrier’s high-  
level width”  
2. Error of the carrier’s high-level width: 0 to “the carrier’s high-level width”  
4.4 Software Control of Timer Output  
The timer output can be controlled by software. As shown in Figure 4-4, the pulse with a minimum width of 1-  
instruction cycle (8/fX) can be output.  
Figure 4-4. Pulse Output of 1-Instruction Cycle Width  
MOV T, #0000000000B; low-level output from the REM pin  
MOV T, #1000000000B; high-level output from the REM pin  
MOV T, #0000000000B; low-level output from the REM pin  
8/f  
X
LED  
REM  
Data Sheet U10454EJ6V0DS00  
21  
µPD6133, 6134  
5. STANDBY FUNCTION  
5.1 Outline of Standby Function  
To save current consumption, two types of standby modes, i.e., HALT mode and STOP mode, are made available.  
In STOP mode, the system clock stops oscillation. At this time, the XIN and XOUT pins are fixed at a low level.  
In HALT mode, CPU operation halts, while the system clock continues oscillation. When in HALT mode, the  
timer (including REM output and LED output) operates.  
In either STOP mode or HALT mode, the statuses of the data memory, accumulator, and port register, etc.  
immediately before the standby mode is set are retained. Therefore, make sure to set the port status for the system  
so that the current consumption of the whole system is suppressed before the standby mode is set.  
Table 5-1. Statuses During Standby Mode  
STOP Mode  
HALT instruction  
HALT Mode  
Setting instruction  
Clock oscillator  
Oscillation stopped  
Oscillation continued  
CPU  
• Operation halted  
Data memory  
Accumulator  
Flag  
• Immediately preceding status retained  
• Immediately preceding status retained  
Operation  
statuses  
F
• 0 (When 1, the flag is not placed in the standby mode.)  
• Immediately preceding status retained  
CY  
Port register  
Timer  
• Immediately preceding status retained  
• Operation halted  
• Operable  
(The count value is reset to “0”)  
Cautions 1. Write the NOP instruction as the first instruction after STOP mode is canceled.  
2. When standby mode is canceled, the status flag (F) is set (to 1).  
3. If, at the point the standby mode has been set, its cancelation condition is met, then the  
system is not placed in the standby mode. However, the status flag (F) is set (1).  
Data Sheet U10454EJ6V0DS00  
22  
µPD6133, 6134  
5.2 Standby Mode Setup and Cancelation  
The standby mode is set with the HALT #b3b2b1b0B instruction for both STOP mode and HALT mode. For the  
standby mode to be set, the status flag (F) is required to have been cleared (to 0).  
The standby mode is canceled by the cancelation condition specified with the RESET (RESET input; POC) or  
the operand of HALT instruction. If the standby mode is canceled, the status flag (F) is set (to 1).  
Even when the HALT instruction is executed in the state that the status flag (F) has been set (to 1), the standby  
mode is not set. If the cancelation condition is not met at this time, the status flag is cleared (to 0). If the cancelation  
condition is met, the status flag remains set (to 1).  
Even in the case when the cancelation condition has been already met at the point that the HALT instruction  
is executed, the standby mode is not set. Here, also, the status flag (F) is set (to 1).  
Caution Depending on the status of the status flag (F), the HALT instruction may not be executed. Be  
careful about this. For example, when setting HALT mode after checking the key status with  
the STTS instruction, the system does not enter HALT mode as long as the status flag (F)  
remains set (to 1) thus sometimes performing an unintended operation. In this case, the  
intended operation can be realized by executing the STTS instruction immediately after timer  
setting to clear (to 0) the status flag.  
Example STTS  
#03H  
;To check the KI pin status.  
MOV  
T, #0xxH ;To set the timer  
STTS  
#05H  
;To clear the status flag  
(During this time, be sure not to execute an instruction that may set the status flag.)  
HALT  
#05H  
;To set HALT mode  
Table 5-2. Addresses Executed After Standby Mode Release  
Cancelation Condition  
Address Executed After Cancelation  
0 address  
The address following the HALT instruction  
Reset  
Cancelation condition shown in Table 5-3  
Data Sheet U10454EJ6V0DS00  
23  
µPD6133, 6134  
Table 5-3. Standby Mode Setup (HALT #b3b2b1b0B) and Release Conditions  
Operand Value of  
HALT Instruction  
Setting Mode  
Precondition for Setup  
Release Condition  
b3  
b2  
b1  
b0  
0
0
0
0
STOP  
All KI/O pins are high-level output.  
All KI/O pins are high-level output.  
The KI/O0 pin is high-level output.  
High level is input to at least one  
of KI pins.  
0
1
1
1
1
0
STOP  
High level is input to at least one  
of KI pins.  
STOPNote 1  
High level is input to at least one  
of KI pins.  
1
Any of the  
STOP  
or  
[The following condition is added in addition to the above.]  
combinations of  
b2b1b0 above  
High level is input to at least one  
of S0 and S1 pinsNote 2  
When the timer’s down counter is 0  
HALT  
HALT  
.
0/1  
1
0
1
Notes 1. When setting HALT #×110B, configure a key matrix by using the KI/O0 pin and the KI pin so that an  
internal reset takes effect at the time of program hang-up.  
2. At least one of the S0 and S1 pins (the pin used for releasing the standby) must be in INPUT mode.  
(The internal reset does not take effect even when both pins are in OUTPUT mode.)  
Cautions 1. The internal reset takes effect when the HALT instruction is executed with an operand value  
other than that above or when the precondition has not been satisfied when executing the  
HALT instruction.  
2. If STOP mode is set when the timer’s down counter is not 0 (timer operating), the system  
is placed in STOP mode only after all the 10 bits of the timer’s down counter and the timer  
output permit flag are cleared to 0.  
3. Write the NOP instruction as the first instruction after STOP mode is released.  
5.3 Standby Mode Release Timing  
(1) STOP Mode Release Timing  
Figure 5-1. STOP Mode Cancelation by Release Condition  
Wait  
(36/fX + α)  
HALT instruction  
(STOP mode)  
Standby  
release signal  
OPERATING  
OPERATING  
mode  
STOP mode  
HALT mode  
mode  
Oscillation  
stopped  
Oscillation  
Oscillation  
Clock  
α : Oscillation growth time  
Caution When a release condition is established in the STOP mode, the device is released from the STOP  
mode and goes into a wait status. At this time, if the release condition is not held, the device  
mode and goes into the STOP mode again after the wait time has elapsed. Therefore, when  
releasing the STOP mode, it is necessary to hold the release condition longer than the wait time.  
Data Sheet U10454EJ6V0DS00  
24  
µPD6133, 6134  
Figure 5-2. STOP Mode Release by RESET Input  
HALT instruction  
(STOP mode)  
Wait  
(60 to 116)/fX + α  
0 address start  
RESET  
Clock  
OPERATING  
mode  
OPERATING  
STOP  
mode  
Reset  
HALT mode  
mode  
Oscillation  
Oscillation stopped  
Oscillation  
α : Oscillation growth time  
(2) HALT Mode Release Timing  
Figure 5-3. HALT Mode Release by Cancelation Condition  
HALT instruction  
(HALT mode)  
Standby  
release signal  
OPERATING  
HALT mode  
OPERATING mode  
mode  
Oscillation  
Clock  
Figure 5-4. HALT Mode Release by RESET Input  
HALT instruction  
(HALT mode)  
Wait  
(60 to 116)/f + α  
0 address start  
X
RESET  
OPERATING  
OPERATING  
mode  
HALT mode  
Reset  
HALT mode  
mode  
Oscillation  
stopped  
Oscillation  
Oscillation  
α : Oscillation growth time  
Clock  
Data Sheet U10454EJ6V0DS00  
25  
µPD6133, 6134  
6. RESET PIN  
The system reset takes effect by inputting low level to the RESET pin.  
While the RESET pin is at low level, the system clock oscillator is stopped and the XIN and XOUT pins are fixed  
to the GND.  
If the RESET pin is raised from low level to high level, it executes the program from the 0 address after counting  
60 to 116 of the system clock (fX).  
Figure 6-1. Reset Operation by RESET Input  
Wait  
(60 to 116)/f + α  
0 address start  
X
RESET  
OPERATING mode or Oscillation  
STANDBY mode stopped  
OPERATING  
mode  
HALT mode  
α : Oscillation growth time  
The RESET pin outputs low level when the POC circuit (mask option) is in operation.  
Caution When connecting a reset IC to the RESET pin, ensure that the IC is of the N-ch open drain output  
type.  
Table 6-1. Hardware Statuses After Reset  
• RESET Input in Operation  
• RESET Input During STANDBY Mode  
Hardware  
• Resetting by Internal POC Circuit in Operation • Resetting by the Internal POC Circuit During  
• Resetting by Other FactorsNote 1  
STANDBY Mode  
PC (10 bits)  
000H  
0B  
SP (1 bit)  
Data  
R0 = DP 000H  
memory  
R1-RF  
Undefined  
Undefined  
0B  
Previous status retained  
Accumulator (A)  
Status flag (F)  
Carry flag (CY)  
Timer (10 bits)  
Port register  
0B  
000H  
P0 FFH  
P1 ×FHNote 2  
Control register P3 03H  
P4 26H  
Notes 1. The following resets are available.  
• Reset when executing the HALT instruction (when the operand value is illegal or does not satisfy  
the precondition)  
• Reset when executing the RLZ instruction (when A = 0)  
• Reset by stack pointer’s overflow or underflow  
2. Refers to the value by the KI pin status.  
In order to prevent malfunction, be sure to input a low level to more than one of pins KI0 to KI3 when  
reset is released (when RESET pin changes from low level to high level, or POC is released due to  
supply voltage startup).  
Data Sheet U10454EJ6V0DS00  
26  
µPD6133, 6134  
7. POC CIRCUIT (MASK OPTION)  
The POC circuit monitors the power supply voltage and applies an internal reset in the microcontroller at the  
time of battery replacement. If the applied circuit satisfies the following conditions, the POC circuit can be  
incorporated by the mask option.  
• High reliability is not required.  
• Clock frequency fX = 300 to 500 kHz  
• Operating ambient temperature TA = –20 to +70 ˚C  
Cautions 1. The one-time PROM product (µPD61P34B) originally contains the POC circuit.  
2. There are cases in which the POC circuit cannot detect a low power supply voltage of less  
than 1 ms. Therefore, if the power supply voltage has become low for a period of less than  
1 ms, the POC circuit may malfunction because it does not generate an internal reset signal.  
3. Clock oscillation is stopped by the resonator due to low power supply voltage before the  
POC circuit generates the internal reset signal. In this case, malfunction may result, for  
example when the power supply voltage is recovered after the oscillation is stopped. This  
type of phenomenon takes place because the POC circuit does not generate an internal reset  
signal (because the power supply voltage recovers before the low power supply voltage is  
detected) even though the clock has stopped. If, by any chance, a malfunction has taken  
place, remove the battery for a short time and put it back. In most cases, normal operation  
will be resumed.  
4. If the applied circuit does not satisfy the conditions above, design the applied circuit in such  
a manner that the reset takes effect without failure within the power supply voltage range  
by means of an external reset circuit.  
5. In order to prevent malfunction, be sure to input a low level to more than one of pins KI0 to  
KI3 when reset is released (when RESET pin changes from low level to high level, or POC  
is released due to supply voltage startup).  
Remarks 1. It is recommended that a POC circuit should be incorporated if applied circuits are infrared remote-  
control transmitters for household appliances.  
2. Even when a POC circuit is incorporated, the externally entered RESET input is valid with the OR  
condition; therefore, the POC circuit and the RESET input can be used at the same time. However,  
if the POC circuit detects a low power supply voltage, the RESET pin will be forced to low level;  
therefore, use an N-ch open drain output or NPN open collector output for the external reset circuit.  
Data Sheet U10454EJ6V0DS00  
27  
µPD6133, 6134  
7.1 Functions of POC Circuit  
The POC circuit has the following functions:  
• Generates an internal reset signal when VDD VPOC.  
• Cancels an internal reset signal when VDD > VPOC.  
Here, VDD: power supply voltage, VPOC: POC-detected voltage.  
V
DD  
Operating ambient temperature T  
A
= –20 to + 70°C  
3.6 V  
2.2 V  
Clock frequency f = 300 to 500 kHz  
X
V
POC  
POC-detected voltage VPOC = 0.9 to 2.2 VNote 3  
0.8 V  
0 V  
t  
Internal reset signal  
Reset  
OPERATING mode  
Reset  
Note 1  
Note 2  
Notes 1. In reality, there is the oscillation stabilization wait time until the circuit is switched to OPERATING  
mode. The oscillation stabilization wait time is about 60/fX to 116/fX (when about 130 to 250 µs; fX  
= 455 kHz).  
2. For the POC circuit to generate an internal reset signal when the power supply voltage has fallen,  
it is necessary for the power supply voltage to be kept less than the VPOC for the period of 1 ms or  
more. Therefore, in reality, there is the time lag of up to 1 ms until the reset takes effect.  
3. The POC-detected voltage (VPOC) varies between 0.9 to 2.2 V; thus, the resetting may be canceled  
at a power supply voltage smaller than the assured range (VDD = 1.8 to 3.6 V). However, as long as  
the conditions for operating the POC circuit are met, the actual lowest operating power supply voltage  
becomes lower than the POC-detected voltage. Therefore, there is no malfunction occurring due to  
the shortage of power supply voltage. However, malfunction for such reasons as the clock not  
oscillating due to low power supply voltage may occur (refer to Cautions 3. in 7. POC CIRCUIT).  
7.2 Oscillation Check at Low Supply Voltage  
A reliable resetting operation can be expected of the POC circuit if it satisfies the condition that the clock can  
oscillate even at low power supply voltage (the oscillation start voltage of the resonator being even lower than the  
POC-detected voltage). Whether this condition is being met or not can be checked by measuring the oscillation  
status on a product which actually contains a POC circuit, as follows.  
<1> Connect a storage oscilloscope to the XOUT pin so that the oscillation status can be measured.  
<2> Connect a power supply whose output voltage can be varied and then gradually raise the power supply  
voltage VDD from 0 V (making sure to avoid VDD > 3.6V).  
At first (during VDD < 0.9 V), the XOUT pin is 0 V regardless of the VDD. However, at the point that VDD reaches  
the POC-detected voltage (voltage somewhere between VPOC = 0.9 to 2.2 V), the voltage of the XOUT pin jumps to  
about 0.5 VDD. Maintain this power supply voltage for a while to measure the waveform of the XOUT pin. If, by any  
chance, the oscillation start voltage of the resonator is lower than the POC-detected voltage, the growing oscillation  
of the XOUT pin can be confirmed within several ms after the VDD has reached the VPOC.  
Data Sheet U10454EJ6V0DS00  
28  
µPD6133, 6134  
8. SYSTEM CLOCK OSCILLATOR  
The system clock oscillator consists of oscillators for ceramic resonators (fX = 300 kHz to 1 MHz).  
Figure 8-1. System Clock  
µ
PD6133, 6134  
XOUT  
XIN  
GND  
Ceramic resonator  
The system clock oscillator stops its oscillation when reset or in STOP mode.  
Caution When using the system clock oscillator, wire area indicated by the dotted-line in the diagram  
as follows to reduce the effects of the wiring capacitance, etc.  
Make the wiring as short as possible.  
Do not allow the wiring to intersect other signal lines. Do not wire close to lines through  
which large fluctuating currents flow.  
Make sure that the point where the oscillator capacitor is installed is always at the same  
electric potential as the ground. Never earth with a ground pattern through which large  
currents flow.  
Do not extract signals from the oscillator.  
Data Sheet U10454EJ6V0DS00  
29  
µPD6133, 6134  
9. INSTRUCTION SET  
9.1 Machine Language Output by Assembler  
The bit length of the machine language of this product is 10 bits per word.However, the machine language that  
is output by the assembler is extended to 16 bits per word. As shown in the example below, the expansion is made  
by inserting 3-bit extended bits (111) in two locations.  
Figure 9-1. Example of Assembler Output (10 bits extended to 16 bits)  
<1> In the case of “ANL A, @R0H”  
1
1 0 1 0  
1
0 0 0 0  
1 1 1  
1 0 1 0  
1 1 1  
1
0 0 0 0 = FAF0  
1
Extended bits  
Extended bits  
<2> In the case of “OUT P0, #data8”  
0
0 1 1 0  
1
1 0 0 0  
1 1 1  
0 1 1 0  
1 1 1  
1
1 0 0 0 = E6F8  
0
Extended bits  
Extended bits  
Data Sheet U10454EJ6V0DS00  
30  
µPD6133, 6134  
9.2 Circuit Symbol Description  
A
: Accumulator  
ASR  
addr  
CY  
: Address Stack Register  
: Program memory address  
: Carry flag  
data4  
data8  
data10  
F
: 4-bit immediate data  
: 8-bit immediate data  
: 10-bit immediate data  
: Status flag  
PC  
: Program Counter  
Pn  
: Port register pair (n = 0, 1, 3, 4)  
: Port register (low-order 4 bits)  
: Port register (high-order 4 bits)  
: Bit n of the program memory’s (n = 0-9)  
: Register pair  
P0n  
P1n  
ROMn  
Rn  
R0n  
R1n  
SP  
: Data memory (General-purpose register; n = 0-F)  
: Data memory (General-purpose register; n = 0-F)  
: Stack Pointer  
T
: Timer register  
T0  
: Timer register (low-order 4 bits)  
: Timer register (high-order 4 bits)  
: Content addressed with ×  
T1  
(×)  
Data Sheet U10454EJ6V0DS00  
31  
µPD6133, 6134  
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table  
Accumulator Operation Instructions  
Instruction Code  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
1st Word 2nd Word 3rd Word  
ANL  
ORL  
XRL  
INC  
A, R0n  
FBEn  
FAEn  
FAF0  
(A) (A) (Rmn) m = 0, 1 n = 0-F  
CY A3 • Rmn3  
1
1
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY A3 • ROM7  
A, @R0L  
FBF0  
(A) (A) ((P13), (R0))3-0  
CY A3 • ROM3  
A, #data4 FBF1  
data4  
data4  
data4  
(A) (A) data4  
2
1
CY A3 • data43  
A, R0n  
FDEn  
FCEn  
FCF0  
(A) (A) (Rmn) m = 0, 1 n = 0-F  
CY 0  
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY 0  
A, @R0L  
FDF0  
(A) (A) ((P13), (R0))3-0  
CY 0  
A, #data4 FDF1  
(A) (A) data4  
2
1
CY 0  
A, R0n  
F5En  
F4En  
F4F0  
(A) (A) (Rmn) m = 0, 1 n = 0-F  
CY A3 • Rmn3  
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY A3 • ROM7  
A, @R0L  
F5F0  
(A) (A) ((P13), (R0))3-0  
CY A3 • ROM3  
A, #data4 F5F1  
(A) (A) data4  
2
1
CY A3 • data43  
A
F4F3  
(A) (A) + 1  
if (A) = 0 CY 1  
else CY 1  
RL  
A
A
FCF3  
FEF3  
(An+1) (An), (A0) (A3)  
CY A3  
RLZ  
if A = 0 reset  
else (An+1) (An), (A0) (A3)  
CY A3  
Data Sheet U10454EJ6V0DS00  
32  
µPD6133, 6134  
Input/output Instructions  
Instruction Code  
1st Word 2nd Word 3rd Word  
Instruction Instruction  
Mnemonic Operand  
Operation  
Length  
Cycle  
IN  
A, P0n  
A, P1n  
P0n, A  
P1n, A  
A, P0n  
A, P1n  
A, P0n  
A, P1n  
A, P0n  
A, P1n  
FFF8 + n  
FEF8 + n  
E5F8 + n  
E4F8 + n  
FBF8 + n  
FAF8 + n  
FDF8 + n  
FCF8 + n  
F5F8 + n  
F4F8 + n  
(A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
1
1
OUT  
ANL  
ORL  
XRL  
(Pmn) (A) m = 0, 1 n = 0, 1, 3, 4  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 • Pmn3  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 • Pmn3  
Instruction Code  
1st Word 2nd Word 3rd Word  
Pn, #data8 E6F8 + n data8  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
OUT  
(Pn) data8  
n = 0, 1, 3, 4  
2
1
Remark Pn: P1n-P0n are dealt with in pairs.  
Data Transfer Instruction  
Instruction Code  
Mnemonic Operand  
Instruction Instruction  
Length Cycle  
Operation  
m = 0, 1 n = 0-F  
1st Word 2nd Word 3rd Word  
MOV  
A, R0n  
FFEn  
FEEn  
FEF0  
(A) (Rmn)  
CY 0  
1
1
A, R1n  
A, @R0H  
(A) ((P13), (R0))7-4  
CY 0  
A, @R0L  
FFF0  
(A) ((P13), (R0))7-4  
CY 0  
A, #data4 FFF1  
data4  
(A) data4  
CY 0  
2
1
R0n, A  
R1n, A  
E5En  
E4En  
(Rmn) (A)  
m = 0, 1 n = 0-F  
Instruction Code  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
1st Word 2nd Word 3rd Word  
MOV  
Rn, #data8 E6En  
Rn, @R0 E7En  
data8  
(R1n-R0n) data8  
n = 0-F  
n = 1-F  
2
1
1
(R1n-R0n) ((P13), (R0))  
Remark Rn: R1n-R0n are dealt with in pairs.  
Data Sheet U10454EJ6V0DS00  
33  
µPD6133, 6134  
Branch Instructions  
Instruction Code  
1st Word 2nd Word 3rd Word  
addr  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
JMP  
JC  
addr (Page 0) E8F1  
addr (Page 1) E9F1  
PC addr  
2
1
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr (Page 0) ECF1  
addr (Page 1) EAF1  
addr (Page 0) EDF1  
addr (Page 1) EBF1  
addr (Page 0) EEF1  
addr (Page 1) F0F1  
addr (Page 0) EFF1  
addr (Page 1) F1F1  
if CY = 1 PC addr  
else PC PC + 2  
if CY = 0 PC addr  
else PC PC + 2  
if F = 1 PC addr  
else PC PC + 2  
if F = 0 PC addr  
else PC PC + 2  
JNC  
JF  
JNF  
Caution 0 and 1, which refer to PAGE0 and 1, are not written when describing mnemonics.  
Subroutine Instructions  
Instruction Code  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
1st Word 2nd Word 3rd Word  
CALL  
RET  
addr (Page 0) E6F2  
E8F1  
E9F1  
addr  
addr  
SP SP + 1, ASR PC, PC addr  
3
2
addr (Page 1) E6F2  
E8F2  
PC ASR, SP SP – 1  
1
1
Caution 0 and 1, which refer to PAGE0 and 1, are not written when describing mnemonics.  
Timer Operation Instructions  
Instruction Code  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
1st Word 2nd Word 3rd Word  
MOV  
A, T0  
A, T1  
T0, A  
T1, A  
FFFF  
FEFF  
E5FF  
F4FF  
(A) (Tn)  
CY 0  
n = 0, 1  
n = 0, 1  
1
1
(Tn) (A)  
(T) n 0  
Instruction Code  
Instruction Instruction  
Length Cycle  
Mnemonic Operand  
Operation  
1st Word 2nd Word 3rd Word  
MOV  
T, #data10 E6FF  
data10  
(T) data10  
1
1
T, @R0  
F4FF  
(T) ((P13), (R0))  
Data Sheet U10454EJ6V0DS00  
34  
µPD6133, 6134  
Others  
Instruction Code  
Instruction Instruction  
Mnemonic Operand  
Operation  
Standby mode  
1st Word 2nd Word 3rd Word  
Length  
Cycle  
HALT  
STTS  
#data4  
#data4  
E2F1  
E3F1  
data4  
data4  
2
1
1
if statuses match F 1  
else F 0  
R0n  
E3En  
FAF3  
E0E0  
if statuses match F 1  
else F 0  
n = 0-F  
SCAF  
NOP  
if A = 0FH CY 1  
else CY 0  
PC PC + 1  
Data Sheet U10454EJ6V0DS00  
35  
µPD6133, 6134  
9.4 Accumulator Operation Instructions  
ANL A, R0n  
ANL A, R1n  
<1> Instruction code  
<2> Cycle count  
<3> Function  
:
1
1
0
1 R  
4
0 R  
3
R
2
R
1
R
0
: 1  
: (A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 • Rmn3  
The accumulator contents and the register Rmn contents are ANDed and the results are entered in the  
accumulator.  
ANL A, @R0H  
ANL A, @R0L  
<1> Instruction code  
:
1 1 0 1 0/1 1 0 0 0 0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) ((P13), (R0))7-4 (in the case of ANL A, @R0H)  
CY A3 • ROM7  
(A) (A) ((P13), (R0))3-0 (in the case of ANL A, @R0L)  
CY A3 • ROM3  
The accumulator contents and the program memory contents specified with the control register P13 and  
register pair R10-R00 are ANDed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5 and b4 take effect. If L is specified, b3, b2, b1 and b0 take effect.  
• Program memory (ROM) organization  
b9  
b7  
b6  
b5  
b4  
b8  
b3  
b2  
b1  
b0  
H↓  
L↓  
Valid bits at the time of accumulator operation  
ANL A, #data4  
<1> Instruction code  
:
1
0
1
0
0
0
1
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) data4  
CY A3 • data43  
The accumulator contents and the immediate data are ANDed and the results are entered in the  
accumulator.  
Data Sheet U10454EJ6V0DS00  
36  
µPD6133, 6134  
ORL A, R0n  
ORL A, R1n  
<1> Instruction code  
:
1
1
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY 0  
The accumulator contents and the register Rmn contents are ORed and the results are entered in the  
accumulator.  
ORL A, @R0H  
ORL A, @R0L  
<1> Instruction code  
:
1 1 1 0 0/1 1 0 0 0 0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (P13), (R0))7-4 (in the case of ORL A, @R0H)  
(A) (A) (P13), (R0))3-0 (in the case of ORL A, @R0L)  
CY 0  
The accumulator contents and the program memory contents specified with the control register P13 and  
register pair R10-R00 are ORed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5 and b4 take effect. If L is specified, b3, b2, b1 and b0 take effect.  
ORL A, #data4  
<1> Instruction code  
:
1
0
1
0
1
0
0
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) data4  
CY 0  
The accumulator contents and the immediate data are exclusive-ORed and the results are entered in  
the accumulator.  
XRL A, R0n  
XRL A, R1n  
<1> Instruction code  
:
1
0
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 • Rmn3  
The accumulator contents and the register Rmn contents are ORed and the results are entered in the  
accumulator.  
Data Sheet U10454EJ6V0DS00  
37  
µPD6133, 6134  
XRL A, @R0H  
XRL A, @R0L  
<1> Instruction code  
: 1 0 1 0 0/1 1 0 0 0 0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (P13), (R0))7-4 (in the case of XRL A, @R0H)  
CY A3 • ROM7  
(A) (A) (P13), (R0))3-0 (in the case of XRL A, @R0L)  
CY A3 • ROM3  
The accumulator contents and the program memory contents specified with the control register P13 and  
register pair R10-R00 are exclusive-ORed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5, and b4 take effect. If L is specified, b3, b2, b1, and b0 take effect.  
XRL A, #data4  
<1> Instruction code  
:
1
0
0
0
1
0
0
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) data4  
CY A3 • data43  
The accumulator contents and the immediate data are exclusive-ORed and the results are entered in  
the accumulator.  
INC A  
<1> Instruction code  
:
1 0 1 0 0 1 0 0 1 1  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) + 1  
if A = 0 CY 1  
else CY 0  
The accumulator contents are incremented (+1).  
RL A  
<1> Instruction code  
:
1 1 1 0 0 1 0 0 1 1  
<2> Cycle count  
<3> Function  
: 1  
: (An + 1) (An), (A0) (A3)  
CY A3  
The accumulator contents are rotated anticlockwise bit by bit.  
RLZ A  
<1> Instruction code  
:
1 1 1 1 0 1 0 0 1 1  
<2> Cycle count  
<3> Function  
: 1  
: if A = 0 reset  
else (An + 1) (An), (A0) (A3)  
CY A3  
The accumulator contents are rotated anticlockwise bit by bit.  
If A = 0H at the time of command execution, an internal reset takes effect.  
Data Sheet U10454EJ6V0DS00  
38  
µPD6133, 6134  
9.5 Input/Output Instructions  
IN A, P0n  
IN A, P1n  
<1> Instruction code  
<2> Cycle count  
<3> Function  
:
1
1
1
1 P  
4
1
1 P  
2
P
1
P
0
: 1  
: (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
The port Pmn data is loaded (read) onto the accumulator.  
OUT P0n, A  
OUT P1n, A  
<1> Instruction code  
:
0
0
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count  
<3> Function  
: 1  
: (Pmn) (A) m = 0, 1 n = 0, 1, 3, 4  
The accumulator contents are transferred to port Pmn to be latched.  
ANL A, P0n  
ANL A, P1n  
<1> Instruction code  
:
1
1
0
1 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 • Pmn  
The accumulator contents and the port Pmn contents are ANDed and the results are entered in the  
accumulator.  
ORL A, P0n  
ORL A, P1n  
<1> Instruction code  
:
1
1
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
The accumulator contents and the port Pmn contents are ORed and the results are entered in the  
accumulator.  
XRL A, P0n  
XRL A, P1n  
<1> Instruction code  
:
1
0
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 • Pmn  
The accumulator contents and the port Pmn contents are exclusive-ORed and the results are entered  
in the accumulator.  
Data Sheet U10454EJ6V0DS00  
39  
µPD6133, 6134  
OUT Pn, #data8  
<1> Instruction code  
:
:
0
0
0
1
1
0
1
1 P  
2
P
1
P
0
d7  
d6  
d5  
d4  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (Pn) data8 n = 0, 1, 3, 4  
The immediate data is transferred to port Pn. In this case, port Pn refers to P1n-P0n operating in pairs.  
9.6 Data Transfer Instructions  
MOV A, R0n  
MOV A, R1n  
<1> Instruction code  
:
1
1
1
1 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: (A) (Rmn) m = 0, 1 n = 0 to F  
CY 0  
The register Rmn contents are transferred to the accumulator.  
MOV A, @R0H  
<1> Instruction code  
:
1 1 1 1 0 1 0 0 0 0  
<2> Cycle count  
<3> Function  
: 1  
: (A) ((P13), (R0))7-4  
CY 0  
The high-order 4 bits (b7 b6 b5 b4) of the program memory specified with control register P13 and register  
pair R10-R00 are transferred to the accumulator. b9 is ignored.  
MOV A, @R0L  
<1> Instruction code  
:
1 1 1 1 1 1 0 0 0 0  
<2> Cycle count  
<3> Function  
: 1  
: (A) ((P13), (R0))3-0  
CY 0  
The low-order 4 bits (b3 b2 b1 b0) of the program memory specified with control register P13 and register  
pair R10-R00 are transferred to the accumulator. b8 is ignored.  
• Program memory (ROM) contents  
@R  
0
H
@R L  
0
b9  
b7  
b6  
b5  
b4  
b8  
b3  
b2  
b1  
b0  
MOV A, #data4  
<1> Instruction code  
:
:
1
0
1
1
0
1
0
1
0
1
0
0 0 1  
0
0 d  
3
d
2
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (A) data4  
CY 0  
The immediate data is transferred to the accumulator.  
Data Sheet U10454EJ6V0DS00  
40  
µPD6133, 6134  
MOV R0n, A  
MOV R1n, A  
<1> Instruction code  
:
0
0
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: (Rmn) (A) m = 0, 1 n = 0 to F  
The accumulator contents are transferred to register Rmn.  
MOV Rn, #data8  
<1> Instruction code  
:
:
0
0
0
1
1
0
0 R  
3
R
2
R
1
R
0
d7  
d6  
d5  
d4  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: (R1n-R0n) data8 n = 0-F  
The immediate data is transferred to the register. Using this instruction, registers operate as register  
pairs.  
The pair combinations are as follows:  
R0 : R10 - R00  
R1 : R11 - R01  
:
RE : R1E - R0E  
RF : R1F - R0F  
Lower column  
Higher column  
MOV Rn, @R0  
<1> Instruction code  
:
0
0
1
1
1
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: (R1n-R0n) ((P13), R0)) n = 1 to F  
The program memory contents specified with control register P13 and register pair R10-R00 are  
transferred to register pair R1n-R0n. The program memory consists of 10 bits and has the following  
state after the transfer to the register.  
Program memory  
b9  
b7  
b6  
b5  
b4  
b8  
b3  
b2  
b1  
b0  
b9  
b7  
b6  
b5  
b4  
b8  
b3  
b2  
b1  
b0  
@R0  
R1n  
R0n  
The high-order 2 bits of the program memory address is specified with the control register (P13).  
Data Sheet U10454EJ6V0DS00  
41  
µPD6133, 6134  
9.7 Branch Instructions  
The program memory consists of pages in steps of 1K (000H to 3FFH). However, as the assembler automatically  
performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as  
follows.  
µPD6133 (ROM: 0.5K steps) : page 0  
µPD6134 (ROM: 1K steps) : page 0  
µPD61P34B (ROM: 1K steps): page 0  
JMP addr  
<1> Instruction code : page 0  
0
1
0
0
0
1
0
0
0
1
; page 1 0 1 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 1  
: PC addr  
The 10 bits (PC9-0) of the program counter are replaced directly by the specified address addr (a9 to  
a0).  
JC addr  
<1> Instruction code : page 0  
0
1
1
0
0
1
0
0
0
1
; page 1 0 1 0 1 0 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 1  
: if CY = 1 PC addr  
else PC PC + 2  
If the carry flag CY is set (to 1), a jump is made to the address specified with addr (a9 to a0).  
JNC addr  
<1> Instruction code : page 0  
0
1
1
0
1
1
0
0
0
1
; page 1 0 1 0 1 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 1  
: if CY = 0 PC addr  
else PC PC + 2  
If the carry flag CY is cleared (to 0), a jump is made to the address specified with addr (a9 to a0).  
JF addr  
<1> Instruction code : page 0  
0
1
1
1
0
1
0
0
0
1
; page 1 1 0 0 0 0 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 1  
: if F = 1 PC addr  
else PC PC + 2  
If the status flag F is set (to 1), a jump is made to the address specified with addr (a9 to a0).  
JNF addr  
<1> Instruction code : page 0  
0
1
1
1
1
1
0
0
0
1
; page 1 1 0 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 1  
: if F = 0 PC addr  
else PC PC + 2  
If the status flag F is cleared (to 0), a jump is made to the address specified with addr (a9 to a0).  
Data Sheet U10454EJ6V0DS00  
42  
µPD6133, 6134  
9.8 Subroutine Instructions  
The program memory consists of pages in steps of 1K (000H to 3FFH). However, as the assembler automatically  
performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as  
follows.  
µPD6133 (ROM: 0.5K steps) : page 0  
µPD6134 (ROM: 1K steps) : page 0  
µPD61P34B (ROM: 1K steps): page 0  
CALL addr  
<1> Instruction code  
:
0
0
1
1
0
0
1
1
0
0
0
0
1 0  
page 0  
0
1
0
0
0
1
; page 1 0 1 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count  
<3> Function  
: 2  
: SP SP + 1  
ASR PC  
PC addr  
Increments (+1) the stack pointer value and saves the program counter value in the address stack  
register. Then, enters the address specified with the operand addr (a9 to a0) into the program counter.  
If a carry is generated when the stack pointer value is incremented (+1), an internal reset takes effect.  
RET  
<1> Instruction code  
<2> Cycle count  
<3> Function  
: 0 1 0 0 0 1 0 0 1 0  
: 1  
: PC ASR  
SP SP – 1  
Restores the value saved in the address stack register to the program counter. Then, decrements  
(–1) the stack pointer.  
If a borrow is generated when the stack pointer value is decremented (–1), an internal reset takes effect.  
Data Sheet U10454EJ6V0DS00  
43  
µPD6133, 6134  
9.9 Timer Operation Instructions  
MOV A, T0  
MOV A, T1  
<1> Instruction code  
<2> Cycle count  
<3> Function  
: 1 1 1 1 0/1 1 1 1 1 1  
: 1  
: (A) (Tn) n = 0, 1  
CY 0  
The timer Tn contents are transferred to the accumulator. T1 corresponds to (t9, t8, t7, t6); T0 corresponds  
to (t5, t4, t3, t2).  
T
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
T1  
T0  
Can be set with  
MOV T, #data10  
MOV T, @R0  
MOV T0, A  
MOV T1, A  
<1> Instruction code  
<2> Cycle count  
<3> Function  
: 0 0 1 0 0/1 1 1 1 1 1  
: 1  
: (Tn) (A) n = 0, 1  
The accumulator contents are transferred to the timer register Tn. T1 corresponds to (t9, t8, t7, t6); T0  
corresponds to (t5, t4, t3, t2). After executing this instruction, if data is transferred to T1, t1 becomes 0;  
if data is transferred to T0, t0 becomes 0.  
MOV T, #data10  
<1> Instruction code  
:
0 0 1 1 0 1 1 1 1 1  
t1  
t9  
t8  
t7  
t6  
t0  
t5  
t4  
t3  
t2  
<2> Cycle count  
<3> Function  
: 1  
: (T) data10  
The immediate data is transferred to the timer register T (t9-t0).  
Remark The timer time is set with  
(set value + 1) × 8/fX (or 16/fX).  
Data Sheet U10454EJ6V0DS00  
44  
µPD6133, 6134  
MOV T, @R0  
<1> Instruction code  
:
0 0 1 1 1 1 1 1 1 1  
<2> Cycle count  
<3> Function  
: 1  
: (T) ((P13), (R0))  
Transfers the program memory contents to the timer register T (t9 to t0) specified with the control register  
P13 and the register pair R10-R00.  
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the  
register.  
Timer  
Program memory  
T
t
1
t
9
t
8
t
7
t
6
t
0
t
5
t
4
t
3
t
2
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
@R  
0
T1  
T0  
The high-order 2 bits of the program memory address are specified with the control register (P13).  
Caution When setting a timer value in the program memory, ensure to use the DT directive.  
9.10 Others  
HALT #data4  
<1> Instruction code  
:
:
0
0
0
0
0
0
1
0
0
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: Sandby mode  
Places the CPU in standby mode.  
The condition for having the standby mode (HALT/STOP mode) canceled is specified with the immediate  
data.  
STTS R0n  
<1> Instruction code :  
0
0
0
1
1
0 R  
3
R2  
R1  
R0  
<2> Cycle count  
<3> Function  
: 1  
: if statuses match F 1  
else F 0 n = 0 to F  
Compares the S0, S1, KI/O, KI, and TIMER statuses with the register R0n contents. If at least one of the  
statuses coincides with the bits that have been set, the status flag F is set (to 1).  
If none of them coincide, the status flag F is cleared (to 0).  
Data Sheet U10454EJ6V0DS00  
45  
µPD6133, 6134  
STTS #data4  
<1> Instruction code  
:
:
0
0
0
0
0
0
1
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count  
<3> Function  
: 1  
: if statuses match F 1  
else F 0  
Compares the S0, S1, KI/O, KI, and TIMER statuses with the immediate data contents. If at least one  
of the statuses coincides with the bits that have been set, the status flag F is set (to 1).  
If none of them coincide, the status flag F is cleared (to 0).  
SCAF (Set Carry If ACC = FH)  
<1> Instruction code  
<2> Cycle count  
<3> Function  
:
1 1 0 1 0 1 0 0 1 1  
: 1  
: if A = 0FH CY 1  
else CY 0  
Sets the carry flag CY (to 1) if the accumulator contents are FH.  
The accumulator values after executing the SCAF instruction are as follows:  
Accumulator Value  
Carry Flag  
Before execution  
After execution  
×××0  
××01  
×011  
0111  
1111  
0000  
0 (clear)  
0 (clear)  
0 (clear)  
0 (clear)  
1 (set)  
0001  
0011  
0111  
1111  
Remark ×: don’t care  
NOP  
<1> Instruction code  
:
0 0 0 0 0 0 0 0 0 0  
<2> Cycle count  
<3> Function  
No operation  
: 1  
: PC PC + 1  
Data Sheet U10454EJ6V0DS00  
46  
µPD6133, 6134  
10. ASSEMBLER RESERVED WORDS  
10.1 Mask Option Directives  
When creating the µPD6133 program, it is necessary to use a mask option directive in the assembler’s source  
program to specify a mask option.  
10.1.1 OPTION and ENDOP directives  
From the OPTION directive on to the ENDOP directive are called the mask option definition block. The format  
of the mask option definition block is as follows:  
Format  
Symbol field  
[Label:]  
Mnemonic field  
Operand field  
Comment field  
[; Comment]  
OPTION  
:
:
ENDOP  
10.1.2 Mask option definition directives  
The directives that can be used in the mask option definition block are listed in Table 10-1.  
An example of the mask option definition is shown below.  
Example  
Symbol field  
Mnemonic field  
OPTION  
Operand field  
Comment field  
USEPOC  
ENDOP  
; POC circuit incorporated  
Table 10-1. List of Mask Option Definition Directives  
PRO File  
Name  
POC  
Mask Option Definition Directive  
Address value  
2044H  
Data value  
USEPOC  
01  
(POC circuit incorporated)  
NOUSEPOC  
00  
(Without POC circuit)  
Data Sheet U10454EJ6V0DS00  
47  
µPD6133, 6134  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = +25 ˚C)  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
VDD  
Test Conditions  
Rating  
Unit  
V
–0.3 to +5.0  
VI  
KI/O, KI, S0, S1, RESET  
–0.3 to VDD + 0.3  
V
Output voltage  
VO  
–0.3 to VDD + 0.3  
V
Note  
High-level output current  
IOH  
REM  
Peak value  
rms  
–30  
–20  
–7.5  
–5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
˚C  
LED  
Peak value  
rms  
One KI/O pin  
Peak value  
rms  
–13.5  
–9  
Total of LED and KI/O pins  
Peak value  
rms  
–18  
–12  
7.5  
Note  
Low-level output current  
IOL  
REM  
LED  
Peak value  
rms  
5
Peak value  
rms  
7.5  
5
Operating ambient  
temperature  
TA  
–40 to +85  
Storage temperature  
Tstg  
–65 to +150  
˚C  
Note Work out the rms with: [rms] = [Peak value] × √Duty.  
Caution Product quality may suffer if the absolute rating is exceeded for any parameter, even momen-  
tarily. In other words, an absolute maxumum rating is a value at which the possibility of psysical  
damage to the product cannnot be ruled out. Care must therefore be taken to ensure that the  
these ratings are not exceeded during use of the product.  
Recommended Power Supply Voltage Range (TA = –40 to +85 ˚C)  
Parameter  
Symbol  
Test Conditions  
fX = 300 to 500 kHz  
MIN.  
1.8  
TYP.  
3.0  
MAX.  
3.6  
Unit  
V
Power supply voltage  
VDD  
fX = 500 kHz to 1 MHz  
2.2  
3.0  
3.6  
V
When using the POC circuit (mask option)  
TA = –20 to +70 ˚C  
2.2  
3.0  
3.6  
V
fX = 300 to 500 kHz  
Data Sheet U10454EJ6V0DS00  
48  
µPD6133, 6134  
DC Characteristics (TA = –40 to +85 ˚C, VDD = 1.8 to 3.6 V)  
Parameter  
Symbol  
VIH1  
Test Conditions  
MIN.  
TYP.  
MAX.  
VDD  
Unit  
V
High-level input voltage  
RESET  
KI/O  
0.8 VDD  
VIH2  
0.65 VDD  
VDD  
V
VIH3  
KI, S0, S1  
RESET  
KI/O  
0.65 VDD  
VDD  
V
Low-level input voltage  
VIL1  
0
0
0
0.2 VDD  
0.3 VDD  
0.15 VDD  
3
V
VIL2  
V
VIL3  
KI, S0, S1  
KI  
V
High-level input  
leakage current  
ILIH1  
µA  
VI = VDD, pull-down resistor not incorporated  
ILIH2  
S0, S1  
3
µA  
VI = VDD, pull-down resistor not incorporated  
Low-level input leakage  
current  
ILIL1  
ILIL2  
ILIL3  
KI  
VI = 0 V  
VI = 0 V  
–3  
–3  
–3  
µA  
µA  
µA  
V
KI/O  
S0, S1 VI = 0 V  
High-level output voltage VOH1  
REM, LED, KI/O  
IOH = –0.3 mA  
0.8 VDD  
Low-level output voltage  
VOL1  
VOL2  
REM, LED  
KI/O  
IOL = 0.3 mA  
0.3  
0.4  
V
IOL = 15 µA  
V
High-level output current IOH1  
REM  
KI/O  
VDD = 3.0 V, VOH = 1.0 V  
VDD = 3.0 V, VOH = 2.2 V  
VDD = 3.0 V, VOL = 0.4 V  
VDD = 3.0 V, VOL = 2.2 V  
–5  
–2.5  
30  
–9  
–5  
mA  
mA  
µA  
µA  
kΩ  
kΩ  
kΩ  
kΩ  
V
IOH2  
Low-level output current  
Built-in pull-up resistor  
IOL1  
R1  
KI/O  
70  
100  
25  
220  
50  
RESET  
100  
15  
Built-in pull-down resistor R2  
RESET  
2.5  
75  
5
R3  
R4  
KI, S0, S1  
KI/O  
150  
250  
300  
500  
3.6  
130  
0.9  
Data hold power supply  
voltage  
VDDDR  
In STOP mode  
Supply currentNote  
IDD1  
IDD2  
IDD3  
OPERATING fX = 1.0 MHz, VDD = 3 V ± 10 %  
0.4  
0.35  
0.35  
0.3  
0.8  
0.7  
0.7  
0.6  
8.0  
1.0  
mA  
mA  
mA  
mA  
µA  
mode  
fX = 455 kHz, VDD = 3 V ± 10 %  
fX = 1.0 MHz, VDD = 3 V ± 10 %  
fX = 455 kHz, VDD = 3 V ± 10 %  
VDD = 3 V ± 10 %  
HALT mode  
STOP mode  
1.0  
VDD = 3 V ± 10 %, TA = 25 ˚C  
0.1  
µA  
Note The POC circuit current and the current flowing in the built-in pull-up resistor are not included.  
Data Sheet U10454EJ6V0DS00  
49  
µPD6133, 6134  
AC Characteristics (TA = –40 to +85 ˚C, VDD = 1.8 to 3.6 V)  
Parameter  
Symbol  
Test Conditions  
VDD = 2.2 to 3.6 V  
MIN.  
7.9  
TYP.  
MAX.  
27  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
Command execution time tCY  
15.9  
10  
27  
KI, S0, S1 high-level width tH  
When releasing  
Standby mode  
in HALT mode  
in STOP mode  
10  
Note  
10  
RESET low-level width  
tRSL  
Note 10 + 36/fX + oscillation growth time  
Remark tCY = 8/fX (fX: System clock oscillator frequency)  
POC Circuit (mask optionNote 1) (TA = –20 to +70 ˚C)  
Parameter  
POC-detected voltageNote 2 VPOC  
POC circuit current  
Symbol  
Test Conditions  
MIN.  
0.9  
TYP.  
1.6  
MAX.  
2.2  
Unit  
V
IPOC  
0.9  
1.0  
µA  
Notes 1. Operates effectively under the conditions of fX = 300 to 500 kHz.  
2. Refers to the voltage with which the POC circuit cancels an internal reset. If VPOC < VDD, the internal  
reset is released.  
From the time of VPOC VDD until the internal reset takes effect, lag of up to 1 ms occurs. When the  
period of VPOC VDD lasts less than 1 ms, the internal reset may not take effect.  
Data Sheet U10454EJ6V0DS00  
50  
µPD6133, 6134  
System Clock Oscillator Characteristics (TA = –40 to +85 ˚C, VDD = 1.8 to 3.6 V)  
Parameter  
Oscillator frequency  
(ceramic resonator)  
Symbol  
Test Conditions  
MIN.  
300  
300  
TYP.  
455  
MAX.  
500  
Unit  
kHz  
kHz  
fX  
VDD = 2.2 to 3.6 V  
455  
1000  
Recommended Ceramic Resonator (TA = –40 to +85 ˚C)  
Power Supply  
Voltage [V]Note  
Manufacturer  
Recommended Constant  
Part Number  
Remark  
(Order Disregarded)  
C1 [pF] C1 [pF] Rd [k]  
MIN.  
1.8  
MAX.  
3.6  
Murata Mfg. Co., Ltd CSB455E  
CSB600P  
150  
150  
100  
220  
220  
100  
100  
220  
220  
220  
470  
470  
470  
150  
150  
100  
220  
220  
100  
100  
220  
220  
220  
470  
470  
470  
0
0
0
0
0
0
0
0
0
0
0
0
0
2.2  
2.2  
1.8  
1.8  
2.2  
2.2  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
CSB910J  
Kyocera Corp.  
KBR-455BK  
KBR-455BY  
KBR-1000F  
KBR-1000Y  
FCR400K3  
TDK Corp.  
FCR455K3  
FCR500K3  
Matsushita  
Electronics  
EFOA440K06B  
EFOA455K06B  
Components Co., Ltd. EFOA480K06B  
Note When a POC circuit (mask option) is not incorporated  
An external circuit example  
X
IN  
X
OUT  
Rd  
C1  
C2  
Data Sheet U10454EJ6V0DS00  
51  
µPD6133, 6134  
12. CHARACTERISTIC CURVE (REFERENCE VALUES) (common to µPD6133 and 6134)  
I
DD vs VDD  
(
f
X
= 455 kHz)  
I
DD vs VDD  
(fX = 1 MHz)  
(TA  
= 25 °C , VDD = 1.8 to 3.6 V)  
(TA = 25 °C , VDD = 2.2 to 3.6 V)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
OPERATING mode  
OPERATING mode  
HALT mode  
HALT mode  
0.1  
0
0.1  
0
1
1.8 2  
3
3.6  
4
1
2 2.2  
3
3.6  
4
Power supply voltage VDD [V]  
Power supply voltage VDD [V]  
I
OL vs VOL (REM, LED)  
(T = 25 °C, VDD = 3.0 V)  
I
OH vs VOH (REM)  
(T = 25 °C , VDD = 3.0 V)  
A
A
10  
9
8
7
6
5
4
3
2
1
– 20  
– 18  
– 16  
– 14  
– 12  
– 10  
– 8  
– 6  
– 4  
– 2  
0
0
0.6  
1.2  
1.8  
2.4  
3
V
DD  
V
DD  
0.6 VDD  
1.2 VDD  
1.8 VDD  
2.4  
V
DD  
3  
Low-level output voltage VOL [V]  
High-level output voltage VOH [V]  
I
OH vs VOH (LED)  
(T = 25 °C , VDD = 3.0 V)  
A
– 10  
– 9  
– 8  
– 7  
– 6  
– 5  
– 4  
– 3  
– 2  
– 1  
0
V
DD  
V
DD  
0.6 VDD  
1.2 VDD  
1.8 VDD  
2.4  
V
DD  
3  
High-level output voltage VOH [V]  
Data Sheet U10454EJ6V0DS00  
52  
µPD6133, 6134  
I
OL vs VOL  
(
KI/O  
)
I
OH vs VOH  
(KI/O)  
(T  
A
= 25 °C, VDD = 3.0 V)  
(TA = 25 °C, VDD = 3.0 V)  
– 15  
– 14  
– 13  
– 12  
– 11  
– 10  
– 9  
– 8  
– 7  
– 6  
– 5  
320  
280  
240  
200  
160  
120  
80  
µ
– 4  
– 3  
– 2  
– 1  
0
40  
0
0.6  
1.2  
1.8  
2.4  
3
VDD  
V
DD  
0.6 VDD  
1.2 VDD  
1.8 VDD  
2.4  
V
DD  
3  
Low-level output voltage VOL [V]  
High-level output voltage VOH [V]  
Data Sheet U10454EJ6V0DS00  
53  
µPD6133, 6134  
13. APPLIED CIRCUIT EXAMPLE  
Example of Application to System  
· Remote-control transmitter (40 keys; mode selection switch accommodated)  
K
K
S
S
I/O6  
I/O7  
0
K
K
K
K
K
K
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
+
1/LED  
REM  
VDD  
XOUT  
XIN  
Mode selection switch  
K
K
K
K
I3  
I2  
I1  
I0  
+
GND  
RESET  
Key matrix  
8 × 5 = 40 keys  
· Remote-control transmitter (48 keys accommodated)  
K
K
S
S
I/O6  
I/O7  
0
K
K
K
K
K
K
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
+
1/LED  
REM  
V
X
X
DD  
OUT  
IN  
K
K
K
K
I3  
I2  
I1  
I0  
+
GND  
RESET  
Key matrix  
8 × 6 = 48 keys  
Remark When the POC circuit of the mask option is used effectively, it is not necessary to connect the capacitor  
enclosed in the dotted lines.  
Data Sheet U10454EJ6V0DS00  
54  
µPD6133, 6134  
14. PACKAGE DRAWINGS  
20 PIN PLASTIC SOP (300 mil)  
20  
11  
detail of lead end  
P
1
10  
A
H
I
J
G
L
C
B
K
D
M
N
M
E
F
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.12 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
12.7±0.3  
0.500±0.012  
0.031 MAX.  
0.050 (T.P.)  
0.78 MAX.  
1.27 (T.P.)  
+0.08  
0.42  
+0.003  
0.017  
D
–0.07  
–0.004  
E
F
0.1±0.1  
0.004±0.004  
0.071 MAX.  
0.061±0.002  
0.303±0.012  
1.8 MAX.  
1.55±0.05  
7.7±0.3  
G
H
+0.009  
0.220  
I
5.6±0.2  
1.1  
–0.008  
J
K
0.043  
+0.003  
0.009  
+0.08  
0.22  
–0.004  
–0.07  
+0.008  
0.024  
L
0.6±0.2  
–0.009  
M
N
0.12  
0.10  
0.005  
0.004  
+7°  
3°  
+7°  
3°  
P
–3°  
–3°  
P20GM-50-300B, C-5  
Remark The dimensions and materials of the ES model are the same as those of mass production model.  
Data Sheet U10454EJ6V0DS00  
55  
µPD6133, 6134  
20 PIN PLASTIC SSOP (300 mil)  
20  
11  
detail of lead end  
F
G
T
P
L
U
E
1
10  
A
H
I
J
S
N
S
K
C
B
M
D
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
6.65±0.15  
0.475 MAX.  
0.65 (T.P.)  
+0.08  
0.24  
D
0.07  
E
F
G
H
I
0.1±0.05  
1.3±0.1  
1.2  
8.1±0.2  
6.1±0.2  
1.0±0.2  
J
K
L
0.17±0.03  
0.5  
M
N
0.13  
0.10  
+5°  
3°  
P
3°  
T
0.25  
U
0.6±0.15  
S20MC-65-5A4-1  
Remark The dimensions and materials of the ES model are the same as those of mass production model.  
Data Sheet U10454EJ6V0DS00  
56  
µPD6133, 6134  
15. RECOMMENDED SOLDERING CONDITIONS  
Carry out the soldered packaging of this product under the following recommended conditions.  
For details of the soldering conditions, refer to information material Semiconductor Device Mounting  
Technology Manual (C10535E).  
For soldering methods and conditions other than the recommended conditions, please consult one of our NEC  
sales representatives.  
Table 15-1. Soldering Conditions for Surface-Mount Type  
(1) µPD6133GS-×××: 20-pin plastic SOP (300 mil)  
µPD6134GS-×××: 20-pin plastic SOP (300 mil)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Condition  
Condition Symbol  
IR35-00-2  
Package peak temperature: 235 °C; time: 30 secs. max. (210 °C min.);  
count: twice max.  
VPS  
Package peak temperature: 215 °C; time: 40 secs. max. (200 °C min.);  
VP15-00-2  
WS60-00-1  
count: twice max.  
Wave soldering  
Partial heating  
Solder bath temperature: 260 °C max.; time: 10 secs. max.; count: once;  
Preliminary heat temperature: 120 °C max. (Package surface temperature)  
Pin temperature: 300 ˚C or less ; time: 3 secs. max. (for each side of the device)  
Caution Using more than one soldering method should be avoided (except in the case of partial heating).  
(2) µPD6134MC-×××-5A4: 20-pin plastic SSOP (300 mil)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Condition  
Condition Symbol  
IR35-00-3  
Package peak temperature: 235 °C; time: 30 secs. max. (210 °C min.);  
count: three times max.  
VPS  
Package peak temperature: 215 °C; time: 40 secs. max. (200 °C min.);  
VP15-00-3  
WS60-00-1  
count: three times max.  
Wave soldering  
Partial heating  
Solder bath temperature: 260 °C max.; time: 10 secs. max.; count: once;  
Preliminary heat temperature: 120 °C max. (Package surface temperature)  
Pin temperature: 300 ˚C or less ; time: 3 secs. max. (for each side of the device)  
Caution Using more than one soldering method should be avoided (except in the case of partial heating).  
Data Sheet U10454EJ6V0DS00  
57  
µPD6133, 6134  
APPENDIX A. DEVELOPMENT TOOLS  
An emulator is provided for the µPD6133.  
Hardware  
Emulator (EB-6133Note  
It is used to emulate the µPD6133.  
)
Note This is a product of Naito Densei Machida Mfg. Co., Ltd. For details, consult Naito Densei Machida Mfg.  
Co., Ltd. (044-822-3813).  
Software  
Assembler (AS6133)  
• This is a development tool for remote control transmitter software.  
Part Number List of AS6133  
Host Machine  
PC-9800 series  
OS  
Supply Medium  
3.5-inch 2HD  
Part Number  
MS-DOSTM (Ver. 5.0 to Ver. 6.2)  
µS5A13AS6133  
(CPU: 80386 or more)  
IBM PC/ATTM compatible  
MS-DOS (Ver. 6.0 to Ver. 6.22)  
PC DOSTM (Ver. 6.1 to Ver. 6.3)  
3.5-inch 2HC  
µS7B13AS6133  
Caution Although Ver.5.0 or later has a task swap function, this function cannot be used with this  
software.  
Data Sheet U10454EJ6V0DS00  
58  
µPD6133, 6134  
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN µPD6133 SUBSERIES AND OTHER  
SUBSERIES  
Item  
µPD6133  
512 × 10 bits  
32 × 4 bits  
µPD6134  
µPD6600A  
512 × 10 bits  
32 × 5 bits  
µPD6124A  
ROM capacity  
RAM capacity  
Stack  
1002 × 10 bits  
1002 × 10 bits  
1 level (multiplexed with RF of RAM)  
3 levels (multiplexed with RAM)  
8 × 4 = 32 keys  
Key matrix  
8 × 6 = 48 keys  
S0 (S-IN) input  
Read by P01 register (with function to  
release standby mode)  
Read by left shift instruction  
S1/LED (S-OUT)  
Clock frequency  
I/O (with function to release standby mode) Output  
Ceramic oscillation  
Ceramic oscillation  
• fX = 300 kHz to 1 MHz  
• fX = 300 to 500 kHz  
(with POC circuit)  
• fX = 400 to 500 kHz  
Timer  
Clock  
fX/8, fX/16  
fX/8  
Count start  
Frequency  
Writing count value  
Writing count value and P1 register value  
• fX/8, fX/12  
Carrier  
• fX, fX/8, fX/12 (timer clock: fX/8)  
• fX/2, fX/16, fX/24 (timer clock: fX/16)  
• No carrier  
Output start  
Synchronized with timer  
8 µs (fX = 1 MHz)  
None  
Not synchronized with timer  
16 µs (fX = 500 kHz)  
Provided  
Instruction execution time  
Relative branch instruction  
Left shift instrucion  
None  
Provided  
“MOV Rn, @R0” instrucion  
n = 1 to F  
n = 0 to F  
Standby mode  
HALT mode for timer only.  
STOP mode for only releasing KI  
(KI/O high-level output or KI/O0 high-level  
output)  
HALT/STOP mode set by P1 register  
value  
(HALT instruction)  
Relation between HALT  
instruction execution and  
status flag (F)  
HALT instruction not executed when F = 1 HALT instrucion executed regardless of  
status of F  
Reset function by charging/  
discharging capacitor  
None  
Provided  
POC circuit  
Mask option  
Provided (low-voltage detection circuit)  
Low level output to RESET pin on detection Low level ouput to S-OUT pin on detection  
Mask option  
POC circuit only  
• Pull-down resistor  
• Variable duty  
(Circuits other than POC circuit are set  
by software.)  
• Hang-up detection  
Supply voltage  
VDD = 1.8 to 3.6 V  
• VDD = 2.2 to 3.6 V  
• VDD = 2.2 to 5.5 V  
Operating temperature  
• TA = –40 to +85 °C  
• TA = –20 to +70 °C  
• TA = –20 to +70 °C (with POC circuit)  
Package  
• 20-pin plastic  
SOP  
• 20-pin plastic SOP • 20-pin plastic SOC  
• 20-pin plastic SSOP • 20-pin plastic shrink DIP  
One-time PROM product  
µPD61P34B  
µPD61P24  
Data Sheet U10454EJ6V0DS00  
59  
µPD6133, 6134  
APPENDIX C. EXAMPLE OF REMOTE-CONTROL TRANSMISSION FORMAT  
(in the case of NEC transmission format in command one-shot transmission mode)  
Caution When using the NEC transmission format, please apply for a custom code at NEC.  
(1) REM output waveform (From <2> on, the output is made only when the key is kept pressed.)  
REM output  
58.5 to 76.5 ms  
< 1 >  
< 2 >  
108 ms  
108 ms  
Remark If the key is repeatedly pressed, the power consumption of the infrared light-emitting diode (LED) can  
be reduced by sending the reader code and the stop bit from the second time.  
(2) Enlarged waveform of <1>  
< 3 >  
REM output  
9 ms  
4.5 ms  
Custom code  
8 bits  
Custom code'  
8 bits  
Data code  
8 bits  
Data code  
8 bits  
Stop bit  
1 bit  
13.5 ms  
Leader code  
18 to 36 ms  
58.5 to 76.5 ms  
27 ms  
(3) Enlarged waveform of <3>  
REM output  
9 ms  
4.5 ms  
0.56 ms  
13.5 ms  
1.125 ms 2.25 ms  
0
1
1
0
0
(4) Enlarged waveform of <2>  
REM output  
9 ms  
2.25 ms  
11.25 ms  
Leader code  
0.56 ms  
Stop bit  
Data Sheet U10454EJ6V0DS00  
60  
µPD6133, 6134  
(5) Carrier waveform (Enlarged waveform of each code’s high period)  
REM output  
8.77 µs  
26.3 µs  
9 ms or 0.56 ms  
Carrier frequency : 38 kHz  
(6) Bit array of each code  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C0' C1' C2' C3' C4' C5' C6' C7' D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
C
0
C
1
C
2
C
3
C
4
C
5
C
6
C
7
or or or or or or or or  
Co  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
Leader code  
Custom code  
Custom code'  
Data code  
Data code  
Caution To prevent malfunction with other systems when receiving data in the NEC transmission  
format, not only fully decode (make sure to check Data Code as well) the total 32 bits of the  
16-bit custom codes (Custom Code, Custom Code’) and the 16-bit data codes (Data Code,  
Data Code) but also check to make sure that no signals are present.  
Data Sheet U10454EJ6V0DS00  
61  
µPD6133, 6134  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input  
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each  
unused pin should be connected to VDD or GND with a resistor, if it is considered to have a  
possibility of being an output pin. All handling related to the unused pins must be judged device  
by device and related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until  
the reset signal is received. Reset operation must be executed immediately after power-on for  
devices having reset function.  
Data Sheet U10454EJ6V0DS00  
62  
µPD6133, 6134  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
Fax: 040-2444580  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
Fax: 01-30-67 58 99  
Fax: 0211-65 03 490  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 65-253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 65-250-3583  
Tel: 91-504-2787  
Fax: 01908-670-290  
Fax: 91-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
NEC Electronics Italiana s.r.l.  
Milano, Italy  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Tel: 02-66 75 41  
Fax: 02-2719-5951  
Taeby, Sweden  
Fax: 02-66 75 42 99  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Fax: 08-63 80 388  
Electron Devices Division  
Rodovia Presidente Dutra, Km 214  
07210-902-Guarulhos-SP Brasil  
Tel: 55-11-6465-6810  
Fax: 55-11-6465-6829  
J99.1  
Data Sheet U10454EJ6V0DS00  
63  
µPD6133, 6134  
MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States  
and/or other countries.  
PC/AT and PC DOS are trademarks of IBM Corp.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated “quality assurance program“ for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98.8  

相关型号:

UPD6134MC-XXX-5A4-E2

UPD6134MC-XXX-5A4-E2
RENESAS

UPD6140C

Peripheral IC
ETC

UPD6140G

Peripheral IC
ETC

UPD6141C

Peripheral IC
ETC

UPD6141G

Peripheral IC
ETC

UPD6142C

Peripheral IC
ETC

UPD6142G

Peripheral IC
ETC

UPD6143C

Peripheral IC
ETC

UPD6143G

Peripheral IC
ETC

UPD6144C-001

On-Screen Display Circuit
ETC

UPD6144G-101

On-Screen Display Circuit
ETC

UPD6145C

Peripheral IC
ETC