UPD753204GT-XXX-T2 [RENESAS]

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC;
UPD753204GT-XXX-T2
型号: UPD753204GT-XXX-T2
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC

光电二极管
文件: 总83页 (文件大小:583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD753204, 753206, 753208  
4-BIT SINGLE-CHIP MICROCONTROLLERS  
The µPD753208 is one of the 75XL Series 4-bit single-chip microcontrollers and has a data processing  
capability comparable to that of an 8-bit microcontroller.  
The µPD753208 has an on-chip LCD controller/driver and is based on the µPD75308B of the 75X Series.  
However, the µPD75308B is supplied in an 80-pin package, whereas the µPD753208 is supplied in a 48-  
pin package (375 mils, 0.65-mm pitch) and therefore is suitable for small-scale application systems. In  
addition, the µPD753208 features expanded CPU functions and performs high-speed operations at a low  
voltage of 1.8 V.  
Detailed information about functions can be found in the following user’s manual. Be sure to read it  
before designing. µPD753208 User’s Manual: U10158E  
Features  
Variable instruction execution time for high-speed  
operation and power saving operation  
Low-voltage operation: VDD = 1.8 to 5.5 V  
– Can be driven by two 1.5-V batteries  
Internal memory  
– 0.95, 1.91, 3.81, 15.3 µs (@ 4.19-MHz operation)  
– 0.67, 1.33, 2.67, 10.7 µs (@ 6.0-MHz operation)  
Internal programmable LCD controller/driver  
Small package:  
– Program memory (ROM):  
4096 × 8 bits (µPD753204)  
6144 × 8 bits (µPD753206)  
8192 × 8 bits (µPD753208)  
– Data memory (RAM):  
48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
One-time PROM version: µPD75P3216  
512 × 4 bits  
Applications  
Remote controllers, Cameras, Sphygnomamometers, Compact-disc radio cassette player compo systems,  
gas meters, etc.  
Unless otherwise specified, references in this data sheet to the µPD753208 mean the  
µPD753204 and the µPD753206.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. U10166EJ2V1DS00 (2nd edition)  
Date Published August 2005 N CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
1996  
µPD753204, 753206, 753208  
Ordering Information  
Part number  
Package  
48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
ROM (× 8 bits)  
µPD753204GT-×××  
4096  
4096  
6144  
6144  
8192  
8192  
µPD753204GT-×××-A 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
µPD753206GT-××× 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
µPD753206GT-×××-A 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
µPD753208GT-××× 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
µPD753208GT-×××-A 48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
Remarks 1. Products with “-A” at the end of the part number are lead-free products.  
2. ××× indicates ROM code suffix.  
2
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Function Outline  
Parameter  
Function  
Instruction execution time  
• 0.95, 1.91, 3.81, 15.3 µs (@ 4.19-MHz operation with system clock)  
• 0.67, 1.33, 2.67, 10.7 µs (@ 6.0-MHz operation with system clock)  
ROM 4096 × 8 bits (µPD753204)  
6144 × 8 bits (µPD753206)  
Internal memory  
8192 × 8 bits (µPD753208)  
RAM 512 × 4 bits  
General-purpose register  
• 4-bit operation: 8 × 4 banks  
• 8-bit operation: 4 × 4 banks  
Input/  
output  
port  
CMOS input  
6
Connecting on-chip pull-up resistors can be specified by software: 5  
CMOS input/output  
20 Connecting on-chip pull-up resistors can be specified by software: 20  
Also used for segment pins: 8  
N-ch open-drain  
input/output  
4
On-chip pull-up resistors can be specified by mask option  
13-V withstand voltage  
Total  
30  
LCD controller/driver  
• Segment selection:  
4/8/12 segments (can be changed to CMOS input/  
output port in 4-time units; max. 8)  
• Display mode selection: Static  
1/2 duty (1/2 bias)  
1/3 duty (1/2 bias)  
1/3 duty (1/3 bias)  
1/4 duty (1/3 bias)  
• On-chip split resistor for LCD drive can be specified by mask option  
Timer  
5 channels  
• 8-bit timer/event counter: 1 channel  
• 8-bit timer counter: 2 channels (can be used as the 16-bit timer counter, carrier  
generator, and timer with gate)  
• Basic interval timer/watchdog timer: 1 channel  
• Watch timer: 1 channel  
Serial interface  
• 3-wire serial I/O mode ... MSB or LSB can be selected for transferring first bit  
• 2-wire serial I/O mode  
• SBI mode  
Bit sequential buffer (BSB)  
Clock output (PCL)  
16 bits  
Φ, 524, 262, 65.5 kHz (@ 4.19-MHz operation with system clock)  
Φ, 750, 375, 93.8 kHz (@ 6.0-MHz operation with system clock)  
Buzzer output (BUZ)  
• 2, 4, 32 kHz (@ 4.19-MHz operation with system clock)  
• 2.93, 5.86, 46.9 kHz (@ 6.0-MHz with system clock)  
Vectored interrupts  
Test input  
External: 2, Internal: 5  
External: 1, Internal: 1  
System clock oscillator  
Standby function  
Power supply voltage  
Package  
Ceramic or crystal oscillator for system clock oscillation  
STOP/HALT mode  
VDD = 1.8 to 5.5 V  
48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
Data Sheet U10166EJ2V1DS  
3
µPD753204, 753206, 753208  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) ....................................................................................................6  
2. BLOCK DIAGRAM................................................................................................................................7  
3. PIN FUNCTIONS ....................................................................................................................................8  
3.1 Port Pins ......................................................................................................................................8  
3.2 Non-Port Pins ............................................................................................................................10  
3.3 Pin Input/Output Circuits .........................................................................................................12  
3.4 Recommended Connections for Unused Pins .......................................................................14  
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE ................................................15  
4.1 Difference Between Mk I and Mk II Modes ..............................................................................15  
4.2 Setting Method of Stack Bank Select Register (SBS) ...........................................................16  
5. MEMORY CONFIGURATION .............................................................................................................17  
6. PERIPHERAL HARDWARE FUNCTION ...........................................................................................22  
6.1 Digital I/O Port ...........................................................................................................................22  
6.2 Clock Generator ........................................................................................................................23  
6.3 Clock Output Circuit .................................................................................................................24  
6.4 Basic Interval Timer/Watchdog Timer.....................................................................................25  
6.5 Watch Timer ..............................................................................................................................26  
6.6 Timer/Event Counter.................................................................................................................27  
6.7 Serial Interface ..........................................................................................................................31  
6.8 LCD Controller/Driver ...............................................................................................................33  
6.9 Bit Sequential Buffer ................................................................................................................35  
7. INTERRUPT FUNCTION AND TEST FUNCTION ..............................................................................36  
8. STANDBY FUNCTION........................................................................................................................38  
9. RESET FUNCTION .............................................................................................................................39  
10. MASK OPTION ...................................................................................................................................42  
11. INSTRUCTION SET ............................................................................................................................43  
12. ELECTRICAL SPECIFICATIONS.......................................................................................................57  
13. CHARACTERISTIC CURVES (REFERENCE VALUES) ...................................................................69  
14. PACKAGE DRAWINGS .....................................................................................................................71  
15. RECOMMENDED SOLDERING CONDITIONS .................................................................................72  
4
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
APPENDIX A µPD753108, 753208, AND 75P3216 FUNCTIONAL LIST .............................................73  
APPENDIX B DEVELOPMENT TOOLS .................................................................................................75  
APPENDIX C RELATED DOCUMENTS ................................................................................................78  
Data Sheet U10166EJ2V1DS  
5
µPD753204, 753206, 753208  
1. PIN CONFIGURATION (TOP VIEW)  
48-pin plastic shrink SOP (375 mils, 0.65-mm pitch)  
µPD753204GT-×××, µPD753204GT-×××-A, µPD753206GT-×××, µPD753206GT-×××-A,  
µPD753208GT-×××, µPD753208GT-×××-A  
COM0  
COM1  
COM2  
COM3  
BIAS  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
S12  
S13  
S14  
S15  
P93/S16  
P92/S17  
P91/S18  
P90/S19  
P83/S20  
P82/S21  
P81/S22  
P80/S23  
P23/BUZ  
P22/PCL/PTO2  
P21/PTO1  
P20/PTO0  
P13/TI0  
P10/INT0  
P03/SI/SB1  
P02/SO/SB0  
P01/SCK  
P00/INT4  
RESET  
VLC0  
VLC1  
VLC2  
P30/LCDCL  
P31/SYNC  
P32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P33  
VSS  
P50  
P51  
P52  
P53  
P60/KR0  
P61/KR1  
P62/KR2  
P63/KR3  
VDD  
X1  
X2  
IC Note  
Note Connect IC (Internally Connected) pin directly to VDD.  
Pin Identification  
P00 to P03  
P10, P13  
: Port0  
S12 to S23  
VLC0 to VLC2  
BIAS  
: Segment Output 12 to 23  
: LCD Power Supply 0 to 2  
: LCD Power Supply Bias Control  
: LCD Clock  
: Port1  
P20 to P23  
P30 to P33  
P50 to P53  
P60 to P63  
P80 to P83  
P90 to P93  
KR0 to KR3  
: Port2  
: Port3  
LCDCL  
SYNC  
: Port5  
: LCD Synchronization  
: Timer Input 0  
: Port6  
TI0  
: Port8  
PTO0 to PTO2 : Programmable Timer Output 0 to 2  
: Port9  
BUZ  
: Buzzer Clock  
: Key Return 0 to 3  
PCL  
: Programmable Clock  
: External Vectored Interrupt 0, 4  
: System Clock Oscillation 1, 2  
: Reset  
COM0 to COM3 : Common Output 0 to 3  
INT0, INT4  
X1, X2  
RESET  
IC  
SCK  
SI  
: Serial Clock  
: Serial Input  
SO  
: Serial Output  
: Serial Data Bus 0, 1  
: Internally Connected  
: Positive Power Supply  
: Ground  
SB0, SB1  
VDD  
VSS  
6
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
2. BLOCK DIAGRAM  
WATCH  
BUZ/P23  
TIMER  
4
2
4
4
4
4
4
4
PORT0  
PORT1  
PORT2  
PORT3  
PORT5  
PORT6  
PORT8  
PORT9  
P00 to P03  
P10,P13  
f
LCD  
INTW  
BASIC  
INTERVAL  
TIMER/  
WATCHDOG  
TIMER  
P20 to P23  
P30 to P33  
P50 to P53  
P60 to P63  
P80 to P83  
P90 to P93  
SP (8)  
SBS  
PROGRAM  
COUNTER  
CY  
INTBT  
8-BIT  
TIMER/EVENT  
COUNTER #0  
ALU  
TI0/P13  
BANK  
TPO0/P20  
INTT0 TOUT  
INTT1  
GENERAL REG.  
8-BIT  
TIMER  
CASCADED  
16-BIT  
COUNTER #1  
PTO1/P21  
TOUT  
PROGRAM  
MEMORYNote  
(ROM)  
DECODE  
AND  
CONTROL  
TIMER  
8-BIT  
COUNTER  
TIMER  
COUNTER #2  
DATA  
MEMORY  
(RAM)  
PTO2/PCL/P22  
4
4
4
4
S12 to S15  
INTT2  
S16/P93 to  
S19/P90  
512 × 4 BITS  
SI/SB1/P03  
CLOCKED  
SERIAL  
INTERFACE  
S20/P83 to  
S23/P80  
SO/SB0/P02  
SCK/P01  
LCD  
CONTROLLER/  
DRIVER  
INTCSI TOUT  
COM0 to COM3  
INT0/P10  
INT4/P00  
V
V
V
LC0  
LC1  
LC2  
CPU CLOCK  
fX  
/2N  
Φ
fLCD  
INTERRUPT  
CONTROL  
CLOCK  
OUTPUT  
CONTROL  
SYSTEM  
CLOCK  
GENERATOR  
KR0/P60 to  
KR3/P63  
CLOCK  
DIVIDER  
STANDBY  
CONTROL  
BIAS  
LCDCL/P30  
SYNC/P31  
4
BIT SEQ  
BUFFER (16)  
PCL/PTO2/P22  
X1 X2  
IC  
VDD VSS  
RESET  
Note The ROM capacity depends on the product.  
Data Sheet U10166EJ2V1DS  
7
µPD753204, 753206, 753208  
3. PIN FUNCTION  
3.1 Port Pins (1/2)  
Alternate  
Function  
8-bit  
I/O  
I/O Circuit  
Pin Name  
P00  
Input/Output  
Function  
After Reset  
Input  
Note 1  
TYPE  
Input  
INT4  
SCK  
No  
No  
No  
(B)  
4-bit input port (PORT0).  
For P01 to P03, on-chip pull-up resistors can  
be specified by software in 3-bit units.  
P01  
P02  
P03  
P10  
Input/Output  
Input/Output  
Input/Output  
Input  
(F)-A  
(F)-B  
(M)-C  
(B)-C  
SO/SB0  
SI/SB1  
INT0  
Input port in 1 bit unit (PORT1).  
On-chip pull-up resistors can be specified by  
software in 2-bit units.  
Input  
Input  
Input  
P13  
TI0  
Noise elimination circuit can be specified with  
P10/INT0.  
P20  
P21  
P22  
P23  
P30  
P31  
P32  
P33  
Input/Output  
Input/Output  
Input/Output  
PTO0  
PTO1  
PCL/PTO2  
BUZ  
E-B  
E-B  
M-D  
4-bit input/output port (PORT2).  
On-chip pull-up resistors can be specified by  
software in 4-bit units.  
LCDCL  
SYNC  
Programmable4-bitinput/outputport(PORT3). No  
This port can be specified input/output bit-  
wise. On-chip pull-up resistor can be speci-  
fied by software in 4-bit units.  
High level  
(when pull-  
up resistors  
are  
P50 to  
P53 Note 2  
No  
N-chopen-drain4-bitinput/outputport(PORT5).  
A pull-up resistor can be contained bit-wise  
(mask option).  
provided) or  
high-  
Withstand voltage is 13 V in open-drain mode.  
impedance  
Notes 1. Characters in parentheses indicate the Schmitt-trigger input.  
2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port),  
low level input leakage current increases when input or bit manipulation instruction is executed.  
8
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
3.1 Port Pins (2/2)  
Alternate  
Function  
8-bit  
I/O  
I/O Circuit  
Pin Name  
P60  
Input/Output  
Function  
After Reset  
Input  
Note 1  
TYPE  
Programmable4-bitinput/outputport(PORT6).  
This port can be specified for input/output bit-  
wise.  
Input/Output  
Input/Output  
Input/Output  
KR0  
KR1  
KR2  
KR3  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
No  
(F)-A  
P61  
P62  
P63  
P80  
P81  
P82  
P83  
P90  
P91  
P92  
P93  
On-chip pull-up resistors can be specified by  
software in 4-bit units.  
Yes  
Input  
Input  
H
4-bit input/output port (PORT8).  
On-chip pull-up resistors can be specified by  
Note 2  
software in 4-bit units.  
H
4-bit input/output port (PORT9).  
On-chip pull-up resistors can be specified by  
Note 2  
software in 4-bit units.  
Notes 1. Characters in parentheses indicate the Schmitt-trigger input.  
2. Do not connect on-chip pull-up resistors specified by software when using as segment signal output  
pins.  
Data Sheet U10166EJ2V1DS  
9
µPD753204, 753206, 753208  
3.2 Non-Port Pins (1/2)  
Alternate  
Function  
I/O Circuit  
Pin Name  
TI0  
Input/Output  
Input  
Function  
After Reset  
Note 1  
TYPE  
P13  
Inputs external event pulses to the timer/event  
counter.  
Input  
Input  
(B)-C  
E-B  
PTO0  
PTO1  
PTO2  
PCL  
Output  
P20  
P21  
Timer/event counter output  
Timer counter output  
P22/PCL  
P22/PTO2  
P23  
Clock output  
BUZ  
Optional frequency output (for buzzer output  
or system clock trimming)  
SCK  
Input/Output  
P01  
P02  
Serial clock input/output  
Input  
(F)-A  
(F)-B  
SO/SB0  
Serial data output  
Serial data bus input/output  
SI/SB1  
INT4  
P03  
P00  
P10  
Serial data input  
(M)-C  
(B)  
Serial data bus input/output  
Input  
Input  
Edge detection vectored interrupt input (both  
rising edge and falling edge detection)  
Input  
Input  
Edge detection vectored  
interrupt input (detection  
edge can be selected).  
Noise elimination circuit  
can be specified.  
With clock elimination  
circuit/asynchronous  
selectable  
INT0  
(B)-C  
KR0 to KR3  
S12 to S15  
S16 to S19  
S20 to S23  
COM0 to COM3  
VLC0 to VLC2  
Input/Output  
Output  
Output  
Output  
Output  
P60 to P63 Falling edge detection testable input  
Segment signal output  
Input  
Note 2  
Input  
Input  
Note 2  
(F)-A  
G-A  
H
P93 to P90 Segment signal output  
P83 to P80 Segment signal output  
H
Common signal output  
G-B  
LCD drive power  
On-chip split resistor is enable (mask option).  
BIAS  
Output  
Output for external split resistor disconnect  
Clock output for externally expanded driver  
Clock output for externally expanded driver sync  
Note 3  
Input  
LCDCL Note 4  
SYNC Note 4  
Input/Output  
Input/Output  
P30  
P31  
E-B  
E-B  
Input  
Notes 1. Characters in parentheses indicate the Schmitt trigger input.  
2. Each display output selects the following VLCX as input source.  
S12 to S15: VLC1, COM0 to COM2: VLC2, COM3: VLC0.  
3. When a split resistor is contained ....... Low level  
When no split resistor is contained ......High-impedance  
4. These pins are provided for future system expansion.  
At present, these pins are used only as pins P30 and P31.  
10  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
3.2 Non-Port Pins (2/2)  
Alternate  
Function  
I/O Circuit  
Pin Name  
X1  
Input/Output  
Input  
Function  
After Reset  
Note 1  
TYPE  
Crystal/ceramic connection pin for the system  
clock oscillator. When inputting the external  
clock, input the external clock to pin X1, and  
the reverse phase of the external clock to pin  
X2.  
X2  
RESET  
IC  
Input  
System reset input (low-level active)  
Internally connected. Connect directly to VDD.  
Positive power supply  
(B)  
VDD  
VSS  
Ground potential  
Note Characters in parentheses indicate the Schmitt-trigger input.  
Data Sheet U10166EJ2V1DS  
11  
µPD753204, 753206, 753208  
3.3 Pin Input/Output Circuits  
The µPD753208 pin input/output circuits are shown schematically.  
(1/2)  
TYPE A  
TYPE D  
V
DD  
V
DD  
data  
P-ch  
OUT  
P-ch  
IN  
N-ch  
output  
disable  
N-ch  
Push-pull output that can be placed in output  
high-impedance (both P-ch, N-ch off).  
CMOS specification input buffer.  
TYPE B  
TYPE E-B  
VDD  
P.U.R.  
P.U.R.  
enable  
P-ch  
IN  
data  
IN/OUT  
Type D  
output  
disable  
Type A  
Schmitt trigger input having hysteresis characteristic.  
P.U.R. : Pull-Up Resistor  
TYPE F-A  
TYPE B-C  
VDD  
V
DD  
P.U.R.  
P-ch  
P.U.R.  
enable  
P.U.R.  
P.U.R.  
enable  
P-ch  
data  
IN/OUT  
Type D  
output  
disable  
IN  
Type B  
P.U.R. : Pull-Up Resistor  
P.U.R. : Pull-Up Resistor  
12  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
(2/2)  
TYPE F-B  
TYPE H  
V
DD  
P.U.R  
P-ch  
P.U.R  
enable  
output  
disable  
(P)  
IN/OUT  
SEG  
data  
V
DD  
P-ch  
N-ch  
TYPE G-A  
P-ch  
IN/OUT  
data  
data  
output  
disable  
N-ch  
TYPE E-B  
output  
disable  
output  
disable  
(N)  
P.U.R : Pull-Up Resistor  
TYPE M-C  
TYPE G-A  
VDD  
P-ch  
N-ch  
V
V
LC0  
LC1  
P.U.R  
P-ch  
N-ch  
P.U.R.  
enable  
P-ch  
IN/OUT  
P-ch N-ch  
data  
N-ch  
OUT  
output  
SEG  
data  
disable  
N-ch  
P-ch  
N-ch  
VLC2  
N-ch  
P.U.R : Pull-Up Resistor  
TYPE G-B  
TYPE M-D  
VDD  
P-ch  
N-ch  
P.U.R.  
(Mask Option)  
V
LC0  
IN/OUT  
N-ch  
(+13-V  
withstand)  
data  
V
LC1  
output  
disable  
V
DD  
P-ch N-ch  
input  
instruction  
P-ch  
P.U.R.Note  
OUT  
Voltage  
control  
circuit  
COM  
data  
N-ch P-ch  
P-ch  
N-ch  
V
LC2  
P.U.R. : Pull-Up Resistor  
Pull-up resistor that only operates upon the execution  
of an input instruction when the pull-up resistor is not  
connected via the mask option (it is available during  
low-voltage).  
Note  
N-ch  
Data Sheet U10166EJ2V1DS  
13  
µPD753204, 753206, 753208  
3.4 Recommended Connections for Unused Pins  
Table 3-1. List of Recommended Connections for Unused Pins  
Pin  
Recommended Connection  
Connect to VSS or VDD  
P00/INT4  
P01/SCK  
Connect individually to VSS or VDD via a resistor  
P02/SO/SB0  
P03/SI/SB1  
P10/INT0  
P13/TI0  
Connect to VSS  
Connect to VSS or VDD  
P20/PTO0  
P21/PTO1  
P22/PCL/PTO2  
P23/BUZ  
P30/LCDCL  
P31/SYNC  
P32  
Input state: Connect individually to VSS or VDD via a resistor  
Output state: No connection  
P33  
P50 to P53  
Input state  
: Connect to VSS  
Output state : Connect to VSS (Do not connect pull-up  
resistor in the mask option)  
P60/KR0 to P63/KR3  
Input state  
: Connect individually to VSS or VDD via a  
resistor  
Output state : No connection  
S0 to S15  
No connection  
COM0 to COM3  
S16/P93 to S19/P90  
S20/P83 to S23/P80  
VLC0 to VLC2  
Input state: Connect individually to VSS or VDD via a resistor  
Output state: No connection  
Connect to VSS  
BIAS  
Only if all of VLC0 to VLC2 are unused, connect to VSS.  
In other cases, no connection.  
IC  
Connect to VDD directly  
14  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
4 SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE  
4.1 Difference Between Mk I and Mk II Modes  
The CPU of the µPD753208 has the following two modes: Mk I and Mk II, either of which can be selected.  
The mode can be switched by bit 3 of the Stack Bank Select register (SBS).  
Mk I mode: Upward compatible with the µPD75308B. Can be used in the 75XL CPU with a ROM  
capacity of up to 16 Kbytes.  
Mk II mode: Incompatible with µPD75308B. Can be used in all the 75XL CPU including those products  
whose ROM capacity is more than 16 Kbytes.  
Table 4-1. Differences between Mk I Mode and Mk II Mode  
Mk I mode  
Mk II mode  
Number of stack bytes  
2 bytes  
3 bytes  
for subroutine instructions  
BRA ! addr1 instruction  
Not available  
Available  
CALLA ! addr1 instruction  
CALL ! addr instruction  
CALLF ! faddr instruction  
3 machine cycles  
2 machine cycles  
4 machine cycles  
3 machine cycles  
Caution The MkII mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series.  
Software compatibility with products whose program memory exceeds 16 Kbytes can be raised  
by using this mode.  
When the MkII mode is selected, the number of stack bytes increases by one byte per stack  
during subroutine call instruction execution compared with the MkI mode. When the !faddr  
instruction is used, the length of each machine cycle increases by 1 machine cycle. Therefore,  
if RAM efficiency or processing speed is emphasized over software compatibility, use of the MkI  
mode is recommended.  
Data Sheet U10166EJ2V1DS  
15  
µPD753204, 753206, 753208  
4.2 Setting Method of Stack Bank Select Register (SBS)  
Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format.  
The SBS is set by a 4-bit memory manipulation instruction. When using the Mk I mode, the SBS must be  
initialized to 100×BNote at the beginning of a program. When using the Mk II mode, it must be initialized to 000×BNote  
.
Note The desired numbers must be set in the × positions.  
Figure 4-1. Stack Bank Select Register Format  
3
2
1
0
Address  
F84H  
Symbol  
SBS  
SBS3 SBS2 SBS1 SBS0  
Stack area specification  
0
0
Memory bank 0  
Memory bank 1  
Setting prohibited  
0
1
Other than  
above  
0 must be set in the bit 2 position.  
0
Mode switching specification  
0
1
Mk II mode  
Mk I mode  
Caution Since SBS. 3 is set to “1” after a RESET signal is generated, the CPU operates in the Mk I mode.  
When executing an instruction in the Mk II mode, set SBS. 3 to “0” to select the Mk II mode.  
16  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
5. MEMORY CONFIGURATION  
Program Memory (ROM) .... 4096 × 8 bits (µPD753204)  
.... 6144 × 8 bits (µPD753206)  
.... 8192 × 8 bits (µPD753208)  
– Addresses 0000H and 0001H  
Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET  
signal is generated are written. Reset and start are possible at an arbitrary address.  
– Addresses 0002H to 000DH  
Vector table wherein the program start address and values set for the RBE and MBE by the vectored  
interrupts are written. Interrupt execution can be started at an arbitrary address.  
– Addresses 0020H to 007FH  
Table area referenced by the GETI instruction Note  
.
Note The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte  
instruction, or two 1-byte instructions. It is used to decrease the program steps.  
Data Memory (RAM)  
– Data area ... 512 words × 4 bits (000H to 1FFH)  
– Peripheral hardware area ... 128 words × 4 bits (F80H to FFFH)  
Data Sheet U10166EJ2V1DS  
17  
µPD753204, 753206, 753208  
Figure 5-1. Program Memory Map (1/3)  
(a) µPD753204  
Address  
7
6
5
0
4
0
0
0 0 0 H MBE RBE  
0 0 2 H MBE RBE  
0 0 4 H MBE RBE  
Internal reset start address  
Internal reset start address  
(high-order 4 bits)  
(low-order 8 bits)  
(high-order 4 bits)  
(low-order 8 bits)  
(high-order 4 bits)  
(low-order 8 bits)  
0
0
0
0
INTBT/INT4  
INTBT/INT4  
start address  
start address  
INT0  
INT0  
start address  
start address  
CALLF  
! faddr  
instruction  
entry  
address  
0 0 6 H  
Branch address of  
BR BCXA, BR BCDE,  
BR !addr, BRA !addr1Note or  
CALLA !addr1Note  
0 0 8 H MBE RBE  
0 0 A H MBE RBE  
0 0 C H MBE RBE  
0
0
0
0
0
0
INTCSI  
start address  
start address  
start address  
start address  
start address  
start address  
(high-order 4 bits)  
(low-order 8 bits)  
(high-order 4 bits)  
(low-order 8 bits)  
(high-order 4 bits)  
(low-order 8 bits)  
instructions  
CALL !addr instruction  
subroutine entry address  
INTCSI  
INTT0  
BR $addr instruction  
relative branch address  
INTT0  
–15 to –1,  
+2 to +16  
INTT1/INTT2  
INTT1/INTT2  
BRCB  
! caddr instruction  
branch address  
0 2 0 H  
GETI instruction reference table  
0 7 F H  
0 8 0 H  
Branch destination  
address and  
subroutine entry  
address when GETI  
instruction is executed  
7 F F H  
8 0 0 H  
F F F H  
Note Can be used only in the Mk II mode.  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE or BR PCXA instruction.  
18  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Figure 5-1. Program Memory Map (2/3)  
(b) µPD753206  
Address  
7
6
5
0
0
0 0 0 0 H  
MBE RBE  
Internal reset start address  
Internal reset start address  
(high-order 5 bits)  
(low-order 8 bits)  
(high-order 5 bits)  
0 0 0 2 H MBE RBE  
0 0 0 4 H MBE RBE  
0
0
INTBT/INT4  
INTBT/INT4  
INT0  
start address  
start address  
start address  
start address  
(low-order 8 bits)  
(high-order 5 bits)  
Branch address  
of BR BCXA, BR  
BCDE, BR ! addr,  
BRA ! addr1Note or  
CALLA ! addr1Note  
instructions  
INT0  
(low-order 8 bits)  
CALLF  
! faddr  
instruction  
entry  
0 0 0 6 H  
address  
CALL ! addr  
instruction  
0 0 0 8 H MBE RBE  
0
INTCSI  
start address  
start address  
start address  
(high-order 5 bits)  
subroutine entry  
address  
(low-order 8 bits)  
(high-order 5 bits)  
(low-order 8 bits)  
(high-order 5 bits)  
INTCSI  
INTT0  
BR $ addr  
instruction relative  
branch address  
0 0 0 A H MBE RBE  
0 0 0 C H MBE RBE  
0
0
–15 to –1,  
+2 to +16  
start address  
start address  
INTT0  
INTT1/INTT2  
start address  
INTT1/INTT2  
(low-order 8 bits)  
BRCB ! caddr  
instruction  
branch  
address  
0 0 2 0 H  
GETI instruction reference table  
0 0 7 F H  
0 0 8 0 H  
Branch destination  
address and  
subroutine entry  
address when GETI  
instruction is executed  
0 7 F F H  
0 8 0 0 H  
0 F F F H  
1 0 0 0 H  
BRCB ! caddr  
instruction  
branch  
address  
1 7 F F H  
Note Can be used only in the Mk II mode.  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE or BR PCXA instruction.  
Data Sheet U10166EJ2V1DS  
19  
µPD753204, 753206, 753208  
Figure 5-1. Program Memory Map (3/3)  
(c) µPD753208  
Address  
7
6
5
0
0
0 0 0 0 H  
MBE RBE  
Internal reset start address  
Internal reset start address  
(high-order 5 bits)  
(low-order 8 bits)  
(high-order 5 bits)  
0 0 0 2 H MBE RBE  
0 0 0 4 H MBE RBE  
0
0
INTBT/INT4  
INTBT/INT4  
INT0  
start address  
start address  
start address  
(low-order 8 bits)  
(high-order 5 bits)  
Branch address  
of BR BCXA, BR  
BCDE, BR ! addr,  
BRA ! addr1Note or  
CALLA ! addr1Note  
instructions  
(low-order 8 bits)  
INT0  
start address  
CALLF  
! faddr  
instruction  
entry  
0 0 0 6 H  
address  
CALL ! addr  
instruction  
subroutine entry  
address  
0 0 0 8 H MBE RBE  
0
INTCSI  
start address  
(high-order 5 bits)  
(low-order 8 bits)  
(high-order 5 bits)  
(low-order 8 bits)  
(high-order 5 bits)  
INTCSI  
INTT0  
start address  
start address  
BR $ addr  
instruction relative  
branch address  
0 0 0 A H MBE RBE  
0 0 0 C H MBE RBE  
0
0
–15 to –1,  
+2 to +16  
INTT0  
start address  
start address  
INTT1/INTT2  
(low-order 8 bits)  
INTT1/INTT2  
BRCB ! caddr  
start address  
instruction  
branch  
address  
0 0 2 0 H  
GETI instruction reference table  
0 0 7 F H  
0 0 8 0 H  
Branch destination  
address and  
subroutine entry  
address when GETI  
instruction is executed  
0 7 F F H  
0 8 0 0 H  
0 F F F H  
1 0 0 0 H  
BRCB ! caddr  
instruction  
branch  
address  
1 F F F H  
Note Can be used only in the Mk II mode.  
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order  
eight bits of PC by executing the BR PCDE or BR PCXA instruction.  
20  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Figure 5-2. Data Memory Map  
Data memory  
Memory bank  
0 0 0 H  
General-purpose  
register area  
(32 × 4)  
0 1 F H  
0 2 0 H  
0
256 × 4  
(224 × 4)  
Stack area Note  
Data area  
static RAM  
(512×4)  
0 F F H  
1 0 0 H  
256 × 4  
(236 × 4)  
1
1 E B H  
1 E C H  
Display data  
memory area  
(12 × 4)  
(8 × 4)  
1 F 7 H  
1 F 8 H  
1 F F H  
Not incorporated  
F 8 0 H  
128 × 4  
15  
Peripheral hardware area  
F F F H  
Note As a stack area, either memory bank 0 or 1 can be selected.  
Data Sheet U10166EJ2V1DS  
21  
µPD753204, 753206, 753208  
6. PERIPHERAL HARDWARE FUNCTION  
6.1 Digital I/O Port  
There are three kinds of I/O ports.  
CMOS input ports (Ports 0, 1)  
: 6  
CMOS input/output ports (Ports 2, 3, 6, 8, 9) : 20  
N-ch open-drain input/output ports (Port 5)  
Total  
: 4  
30  
Table 6-1. Types and Features of Digital Ports  
Port  
PORT0  
Function  
Operation and features  
Remarks  
4-bit input  
The alternate function pins have an output function  
with operation mode when using the serial interface  
function.  
Also used for the INT4, SCK,  
SO/SB0, and SI/SB1 pins.  
PORT1  
PORT2  
PORT3  
PORT5  
1-bit input  
4-bit I/O  
2-bit input dedicated port  
Also used for the INT0 and  
TI0.  
Can be set to input mode or output mode in 4-bit  
units.  
Also used for the PTO0 to  
PTO2, PCL, and BUZ pins.  
Can be set to input mode or output mode bit-wise.  
Also used for the LCDCL  
and SYNC pins.  
4-bit I/O (N-  
Can be set to input mode or output mode in 4-bit  
channel open- units. On-chip pull-up resistor can be specified  
drain, 13-V  
by mask option bit-wise.  
withstand)  
PORT6  
PORT8  
PORT9  
4-bit I/O  
Can be set to input mode or output mode bit-wise.  
Can be set to input mode Ports 8 and 9 are paired  
Also used for the KR0 to  
KR3 pins.  
Also used for the S20 to  
S23 pins.  
or output mode in 4-bit  
units.  
and data can be input/  
output in 8-bit units.  
Also used for the S16 to  
S19 pins.  
22  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
6.2 Clock Generator  
The clock generator provides the clock signals to the CPU and peripheral hardware and its configuration is  
shown in Figure 6-1.  
The operation of the clock generator is determined by the Processor Clock Control Register (PCC).  
The instruction execution time can also be changed.  
0.95, 1.91, 3.81, 15.3 µs (system clock: @ 4.19-MHz operation)  
0.67, 1.33, 2.67, 10.7 µs (system clock: @ 6.0-MHz operation)  
Figure 6-1. Clock Generator Block Diagram  
· Basic interval timer (BT)  
· Timer/event counter 0  
· Timer counter 1, 2  
· Watch timer  
· LCD controller/driver  
· Serial interface  
· INT0 noise eliminator  
· Clock output circuit  
X1  
VDD  
fX  
1/1 to 1/4096  
Divider  
System clock  
oscillator  
X2  
1/2 1/4 1/16  
Oscillation stop  
Divider  
Selector  
1/4  
Φ
· CPU  
· INT0 noise eliminator  
PCC  
· Clock output circuit  
PCC0  
PCC1  
PCC2  
PCC3  
HALT F/F  
S
4
HALTNote  
STOPNote  
R
Q
PCC2,  
PCC3  
Clear  
STOP F/F  
Wait release signal from BT  
RESET Signal  
Q
S
R
Standby release signal from  
interrupt control circuit  
Note Instruction execution  
Data Sheet U10166EJ2V1DS  
23  
µPD753204, 753206, 753208  
Remarks 1. fX = System clock frequency  
2. Φ = CPU clock  
3. PCC: Processor Clock Control Register  
4. One clock cycle (tCY) of the CPU clock is equal to one machine cycle of the instruction.  
6.3 Clock Output Circuit  
The clock output circuit is provided to output the clock pulses from the PCL pin (also functions as P22 or PTO2)  
to the remote control wave outputs and peripheral LSIs.  
Clock Output (PCL) : Φ, 524, 262, 65.5 kHz (system clock: @ 4.19-MHz operation)  
Φ, 750, 375, 93.8 kHz (system clock: @ 6.0-MHz operation)  
Figure 6-2. Clock Output Circuit Block Diagram  
From clock  
generator  
From timer counter  
(channel 2)  
Φ
/23  
/24  
Output buffer  
f
f
X
X
Selector  
PCL/PTO2/P22  
f
X
/26  
PORT2.2  
Bit 2 of PMGB  
P22  
output latch  
Port 2 I/O mode  
specification bit  
CLOM3  
0
CLOM1 CLOM0 CLOM  
4
Internal bus  
Remark Special care has been taken in designing the chip so that small-width pulses may not be output when  
switching clock output enable/disable.  
24  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
6.4 Basic Interval Timer/Watchdog Timer  
The basic interval timer/watchdog timer has the following functions.  
Interval timer operation to generate a reference time interrupt  
Watchdog timer operation to detect program runaway and reset the CPU  
Selects and counts the wait time when the standby mode is released  
Reads the contents of counting  
Figure 6-3. Basic Interval Timer/Watchdog Timer Block Diagram  
From clock  
generator  
Clear  
Clear  
fX  
fX  
fX  
/25  
/27  
/29  
BT  
Basic interval timer  
(8-bit frequency divider)  
Set  
MPX  
interrupt  
request flag  
Vectored  
interrupt  
IRQBT request signal  
BT  
f
/212  
X
3
Wait release signal  
when standby is  
released.  
Internal reset  
signal  
WDTM  
1
BTM3 BTM2 BTM1 BTM0 BTM  
4
SET1Note  
8
SET1Note  
Internal bus  
Note Instruction execution  
Data Sheet U10166EJ2V1DS  
25  
µPD753204, 753206, 753208  
6.5 Watch Timer  
The µPD753208 has one watch timer channel, whose functions are as follows.  
Sets the test flag (IRQW) with 0.5 sec interval. The standby mode can be released by the IRQW.  
0.5 sec interval can be created with the system clock (4.194304 MHz)  
Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the  
fast feed mode.  
Outputs a frequency (2.048, 4.096, or 32.768 kHz) to the BUZ pin (P23), usable for buzzer and trimming  
of system clock frequencies.  
Clears the frequency divider to make the clock start with zero seconds.  
Figure 6-4. Watch Timer Block Diagram  
f
W
26  
(512 Hz : 1.95 ms)  
(256 Hz : 3.91 ms)  
f
LCD  
f
W
27  
f
X
From  
clock  
generator  
Selector  
128  
f
W
214  
f
W
INTW  
IRQW  
(32.768 kHz)  
(32.768 kHz)  
Selector  
Divider  
set signal  
2 Hz  
4 kHz 2 kHz  
0.5 sec  
f
W
f
W
24  
Clear  
23  
Selector  
Output buffer  
P23/BUZ  
WM  
PORT2.3  
PMGB bit 2  
Port 2 input/  
Note 1  
Note 2  
P23  
output-latch  
WM7  
0
WM5 WM4 WM3 WM2 WM1 WM0  
output mode  
8
Internal bus  
Notes 1. WM3 is undefined while reading data.  
2. Be sure to set WM0 to 0.  
Remark The values enclosed in parentheses are applied when fX = 4.194304 MHz.  
26  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
6.6 Timer/Event Counter  
The µPD753208 provides one channel for timer/event counters and two channels for timer counters. Figures  
6-5 to 6-7 show the block diagrams. Timer/event counter functions are as follows.  
Programmable interval timer operation  
Square wave output of any frequency to the PTO0 pin (n = 0 to 2).  
Event counter operation (Channel 0 only)  
Divides the frequency of signal input via the TI0 pin to 1-nth of the original signal and outputs the divided  
frequency to the PTO0 pin (frequency divider operation).  
Supplies the shift clock to the serial interface circuit.  
Reads the counting status.  
The timer/event counter operates in the following four modes as set by the mode register.  
Table 6-2. Operation Modes of Timer/Event Counter  
Channel  
Channel 0 Channel 1 Channel 2  
Mode  
8-bit timer/event counter mode Note 1  
Gate control function  
A
A
A
A
A
N/ANote 2  
N/A  
N/A  
N/A  
PWM pulse generator mode  
16-bit timer counter mode  
Gate control function  
N/A  
A
A
A
N/ANote 2  
N/A  
Carrier generator mode  
Notes 1. Channel 0 only. 8-bit timer counter mode for channel 1 and channel 2  
2. Used for gate control signal generation  
Remark A:  
Available  
N/A: Not available  
Data Sheet U10166EJ2V1DS  
27  
Figure 6-5. Timer/Event Counter Block Diagram (channel 0)  
Internal bus  
SET1Note  
8
8
8
TOE0  
PORT2.0  
PMGB bit 2  
TMOD0  
TM0  
Port 2  
input/output  
mode  
T0  
P20  
output latch  
TM06 TM05 TM04 TM03 TM02  
Modulo register (8)  
8
enable flag  
To serial interface  
PORT1.3  
TOUT0  
Match  
TOUT  
F/F  
Comparator (8)  
8
PTO0/P20  
Output buffer  
Input  
Reset  
buffer  
T0  
TI0/P13  
INTT0  
IRQT0  
set signal  
Count register (8)  
Clear  
f
f
f
X
/24  
/26  
/28  
MPX  
CP  
From  
clock  
generator  
X
X
µ
f
X
/210  
Timer operation start  
RESET  
IRQT0  
clear signal  
To timer counter (channel 2)  
Note Execution of instruction  
Caution When data is set to TM0, always set bit 1 to 0.  
Figure 6-6. Timer/Event Counter Block Diagram (channel 1)  
Internal bus  
SET1Note  
8
TOE1  
PORT2.1  
PMGB bit 2  
TM1  
Port 2  
input/output  
mode  
8
T1  
enable flag  
P21  
output latch  
TM16 TM15 TM14 TM13 TM12 TM11 TM10  
Decoder  
TMOD1  
Modulo register (8)  
8
P21/PTO1  
Match  
TOUT  
F/F  
Comparator (8)  
8
Timer counter  
(channel 2) output  
Output buffer  
Reset  
f
f
f
X
/25  
T1  
X
/26  
Count register (8)  
Clear  
MPX  
From clock  
generator  
CP  
X
/28  
f
f
X
/210  
/212  
X
µ
RESET  
Timer operation start  
16 bit timer counter mode  
IRQT1 clear signal  
Selector  
INTT1  
IRQT1  
set signal  
Timer counter match signal (channel 2)  
(During 16-bit timer counter mode)  
Timer counter reload signal (channel 2)  
Timer counter comparator (channel 2)  
(During 16-bit timer counter mode)  
Note Execution of instruction  
Figure 6-7. Timer Counter Block Diagram (channel 2)  
Internal bus  
SET1Note  
8
8
8
8
TMOD2H  
TMOD2  
TC2  
PORT2.2 PMGB bit 2  
TM2  
High-level period setting  
modulo register (8)  
P22  
Port 2  
Modulo register (8)  
8
TM26 TM25 TM24 TM23 TM22 TM21 TM20  
TGCE  
TOE2 REMC NRZB NRZ  
Reload  
output latch input/output  
8
Decoder  
MPX (8)  
P22/PCL/PTO2  
8
Match  
Output buffer  
TOUT  
F/F  
Comparator (8)  
f
X
/2  
/22  
/24  
Reset  
8
Timer clock  
input (channel 1)  
T2  
f
f
f
f
X
X
X
Overflow  
Carrier generator mode  
From clock  
generator  
Count register (8)  
Clear  
MPX  
CP  
/26  
/28  
X
f
X
/210  
INTT2  
IRQT2  
16-bit timer counter mode  
Timer operation start  
set signal  
IRQT2 clear signal  
µ
RESET  
Timer counter  
Timer event counter  
TOUT F/F (channel 0)  
clear signal (channel 1)  
(During 16-bit timer  
counter mode)  
From clock generator  
Timer counter  
Timer counter  
match signal (channel 1)  
(When carrier generator mode)  
match signal (channel 1)  
(During 16-bit timer  
counter mode)  
Note Execution of instruction  
µPD753204, 753206, 753208  
6.7 Serial Interface  
The µPD753208 incorporates a clock-synchronous 8-bit serial interface and can be used in the following four  
modes.  
Operation stop mode  
3-wire serial I/O mode  
2-wire serial I/O mode  
SBI mode (serial bus interface mode)  
Data Sheet U10166EJ2V1DS  
31  
Figure 6-8. Serial Interface Block Diagram  
Internal bus  
Bit test  
8
Bit manipulation  
RELT  
Bit test  
8/4  
8
8
Slave address register (SVA) (8)  
Match signal  
SBIC  
CSIM  
CMDT  
Address comparator  
(8)  
SO latch  
P03/SI/SB1  
P02/SO/SB0  
SET CLR  
Selector  
Shift register (SIO)  
(8)  
D
Q
Busy/  
acknowledge  
output circuit  
Selector  
RELD  
CMDD  
ACKD  
Bus release/  
command/  
acknowledge  
detection circuit  
µ
INTCSI  
P01/SCK  
INTCSI  
control circuit  
IRQCSI  
set signal  
Serial clock counter  
f
f
f
X
X
X
/23  
/24  
/26  
P01  
output Iatch  
Serial clock  
selector  
Serial clock control  
circuit  
TOUT0  
(from timer/event counter  
(channel 0))  
External SCK  
µPD753204, 753206, 753208  
6.8 LCD Controller/Driver  
The µPD753208 incorporates a display controller which generates segment and common signals according  
to the display data memory contents and incorporates segment and common drivers which can drive the panel  
directly.  
The µPD753208 LCD controller/driver functions are as follows:  
Display data memory is read automatically by DMA operation and segment and common signals are  
generated.  
Display mode can be selected from among the following five:  
<1> Static  
<2> 1/2 duty (time multiplexing by 2), 1/2 bias  
<3> 1/3 duty (time multiplexing by 3), 1/2 bias  
<4> 1/3 duty (time multiplexing by 3), 1/3 bias  
<5> 1/4 duty (time multiplexing by 4), 1/3 bias  
A frame frequency can be selected from among four in each display mode.  
A maximum of 12 segment signal output pins (S12 to S23) and four common signal output pins (COM0 to  
COM3).  
The segment signal output pins (S16 to S23) can be changed to the I/O ports (PORT8 and PORT9).  
Split-resistor can be incorporated to supply LCD drive power. (Mask option)  
Various bias methods and LCD drive voltages can be applicable.  
When display is off, current flowing through the split resistor is cut.  
Display data memory not used for display can be used for normal data memory.  
Data Sheet U10166EJ2V1DS  
33  
Figure 6-9. LCD Controller/Driver Block Diagram  
Internal bus  
4
4
4
4
4
8
4
8
4
4
4
Port 8  
output latch  
3 2 1 0  
Port 9  
Port mode  
LCD/port  
selection  
register  
1F7H  
1F0H  
1EFH  
1ECH  
Display  
control  
register  
Port 3  
Port mode  
register group A  
Display mode register  
output latch register group C  
output latch  
3 2 1 0  
0
1
3
3
2
1
0
0
3
3
2
1
0
3
2
1
0
0
3
3
2
1
0
0
1
0
1
0
Decoder  
2
1
2
1
0
3
2
1
2
1
Timing  
controller  
fLCD  
LCD drive  
mode  
switching  
Port 8  
Port 9  
Input/Output buffer  
LCD drive  
voltage control  
Segment driver  
Segment driver  
Common driver  
µ
Input/Output buffer  
0
1
2
3
0
1
2
3
S23/P80  
S16/P93  
S15  
S0  
COM3 COM2 COM1 COM0  
VLC2  
VLC1  
VLC0  
P31/SYNC P30/LCDCL  
µPD753204, 753206, 753208  
6.9 Bit Sequential Buffer ....... 16 Bits  
The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be  
easily performed by changing the address specification and bit specification in sequence, therefore it is useful  
when processing large data bit-wise.  
Figure 6-10. Bit Sequential Buffer Format  
Address  
Bit  
FC3H  
FC2H  
FC1H  
FC0H  
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
Symbol  
BSB3  
BSB2  
BSB1  
BSB0  
L register  
L = FH  
L = CH L = BH  
L = 8H L = 7H  
L = 4H L = 3H  
DECS L  
L = 0H  
INCS L  
Remarks 1. In pmem.@L addressing, the specified bit moves corresponding to the L register.  
2. In pmem.@L addressing, the BSB can be manipulated regardless of MBE/MSB specification.  
Data Sheet U10166EJ2V1DS  
35  
µPD753204, 753206, 753208  
7. INTERRUPT FUNCTION AND TEST FUNCTION  
There are seven interrupt sources and two test sources in the µPD753208.  
The interrupt control circuit of the µPD753208 has the following functions.  
(1) Interrupt function  
Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the  
interrupt enable flag (IE×××) and interrupt master enable flag (IME).  
Can set any interrupt start address.  
Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register  
(IPS).  
Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.  
Release the standby mode. A release interrupt can be selected by the interrupt enable flag.  
(2) Test function  
Test request flag (IRQ×××) generation can be checked by software.  
Release the standby mode. The test source to be released can be selected by the test enable flag.  
36  
Data Sheet U10166EJ2V1DS  
Figure 7-1. Interrupt Control Circuit Block Diagram  
Internal bus  
2
4
IME IPS  
IST1 IST0  
Interruput enable flag (IE×××  
)
IM2  
IM0  
Decoder  
IRQBT  
IRQ4  
INTBT  
VRQn  
Both edge  
detector  
INT4/P00  
INT0/P10  
Edge  
detector  
Selec-  
tor  
Note  
IRQ0  
INTCSI  
IRQCSI  
IRQT0  
IRQT1  
IRQT2  
IRQW  
IRQ2  
Vector table  
address  
generator  
Priority control  
circuit  
INTT0  
INTT1  
INTT2  
INTW  
µ
Selec-  
tor  
Standby release  
signal  
KR0/P60  
KR3/P63  
Falling edge  
detector  
IM2  
Note Noise eliminator (Standby release is disabled when noise eliminator is selected.)  
µPD753204, 753206, 753208  
8. STANDBY FUNCTION  
In order to save power dissipation while a program is in standby mode, two types of standby modes (STOP  
mode and HALT mode) are provided for the µPD753208.  
Table 8-1. Operation Status in Standby Mode  
Item  
Mode  
STOP mode  
STOP instruction  
HALT mode  
HALT instruction  
Set instruction  
Operation Clock generator  
status  
The system clock stops oscillation.  
Only the CPU clock Φ halts (oscillation  
continues).  
Basic interval timer/  
Watchdog timer  
Operation stops.  
Operable only when the system clock  
is oscillated. (The IRQBT is set in the  
reference interval).  
Serial interface  
Operable only when an external SCK  
input is selected as the serial clock.  
Operable  
Timer/event counter  
Operable only when a signal input to  
the TI0 pin is specified as the count  
clock.  
Operable  
Watch timer  
Operation stops.  
Operation stops.  
Operable  
Operable  
LCD controller/driver  
External interrupt  
The INT4 is operable.  
Note  
Only the INT0 is not operated  
.
CPU  
Operation stops.  
Release signal  
Interrupt request signal sent from the operable hardware enabled by the  
interrupt enable flag or RESET signal input.  
Note Can operate only when the noise eliminator is not used (IM02 = 1) by bit 2 of the edge detection mode register  
(IM0).  
38  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
9. RESET FUNCTION  
There are two reset inputs: external RESET signal and RESET signal sent from the basic interval timer/  
watchdog timer. When either one of the RESET signals are input, an internal RESET signal is generated. Figure  
9-1 shows the circuit diagram of the above two inputs.  
Figure 9-1. Configuration of Reset Function  
RESET  
Internal RESET signal  
RESET signal sent from the  
basic interval timer/watchdog timer  
WDTM  
Internal bus  
Each hardware is initialized by the RESET signal generation as listed in Table 9-1. Figure 9-2 shows the  
timing chart of the reset operation.  
Figure 9-2. Reset Operation by RESET Signal Generation  
Wait Note  
RESET  
signal  
generated  
Operation mode or  
standby mode  
HALT mode  
Operation mode  
Internal reset operation  
Note The following two times can be selected by the mask option.  
217/fX (21.8 ms: @ 6.0-MHz operation, 31.3 ms: @ 4.19-MHz operation)  
215/fX (5.46 ms: @ 6.0-MHz operation, 7.81 ms: @ 4.19-MHz operation)  
Data Sheet U10166EJ2V1DS  
39  
µPD753204, 753206, 753208  
Table 9-1. Status of Each Device After Reset (1/2)  
RESET signal generation  
in the standby mode  
RESET signal generation  
during operation  
Hardware  
Program counter (PC)  
µPD753204 Sets the low-order 4 bits of  
program memory’s address  
0000H to PC11 to PC8 and  
the contents of address 0001H  
to PC7 to PC0.  
Sets the low-order 4 bits of  
program memory’s address  
0000H to PC11 to PC8 and  
the contents of address 0001H  
to PC7 to PC0.  
µPD753206, Sets the low-order 5 bits of  
µPD753208 program memory's address  
0000H to PC12 to PC8 and  
Sets the low-order 5 bits of  
program memory's address  
0000H to PC12 to PC8 and  
the contents of address 0001H  
to PC7 to PC0.  
the contents of address 0001H  
to PC7 to PC0.  
PSW  
Carry flag (CY)  
Skip flag (SK0-SK2)  
Held  
0
Undefined  
0
0
Interrupt status flag (IST0, IST1)  
Bank enable flag (MBE, RBE)  
0
Sets bit 6 of program memory’s  
address 0000H to RBE and bit  
7 to MBE.  
Sets bit 6 of program memory’s  
address 0000H to RBE and bit  
7 to MBE.  
Stack pointer (SP)  
Undefined  
Undefined  
Stack bank select register (SBS)  
Data memory (RAM)  
1000B  
1000B  
Held  
Undefined  
General-purpose register (X, A, H, L, D, E, B, C)  
Bank select register (MBS, RBS)  
Held  
Undefined  
0, 0  
0, 0  
Basic interval  
Counter (BT)  
Undefined  
Undefined  
timer/watchdog Mode register (BTM)  
0
0
0
0
timer  
Watchdog timer enable flag (WDTM)  
Timer/event  
counter (T0)  
Counter (T0)  
0
0
Modulo register (TMOD0)  
Mode register (TM0)  
TOE0, TOUT F/F  
FFH  
0
FFH  
0
0, 0  
0
0, 0  
0
Timer  
Counter (T1)  
counter (T1)  
Modulo register (TMOD1)  
Mode register (TM1)  
TOE1, TOUT F/F  
FFH  
0
FFH  
0
0, 0  
0
0, 0  
0
Timer  
Counter (T2)  
counter (T2)  
Modulo register (TMOD2)  
FFH  
FFH  
FFH  
FFH  
High-level period setting modulo  
register (TMOD2H)  
Mode register (TM2)  
TOE2, TOUT F/F  
REMC, NRZ, NRZB  
TGCE  
0
0, 0  
0, 0, 0  
0
0
0, 0  
0, 0, 0  
0
Watch timer  
Mode register (WM)  
0
0
40  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Table 9-1. Status of Each Device After Reset (2/2)  
RESET signal generation  
in the standby mode  
RESET signal generation  
during operation  
Hardware  
Serial interface  
Clock generator,  
Shift register (SIO)  
Held  
Undefined  
Operation mode register (CSIM)  
SBI control register (SBIC)  
Slave address register (SVA)  
Processor clock control register (PCC)  
0
0
0
0
Held  
Undefined  
0
0
clock output circuit Clock output mode register (CLOM)  
0
0
LCD controller/  
driver  
Display mode register (LCDM)  
Display control register (LCDC)  
LCD/port selection register (LPS)  
Interrupt request flag (IRQ×××)  
Interrupt enable flag (IE×××)  
Interrupt priority selection register (IPS)  
INT0, 2 mode registers (IM0, IM2)  
Output buffer  
0
0
0
0
0
0
Interrupt  
function  
Reset (0)  
Reset (0)  
0
0
0
0
0, 0  
0, 0  
Digital port  
Off  
Off  
Output latch  
Cleared (0)  
Cleared (0)  
I/O mode registers (PMGA, B, C)  
Pull-up resistor setting register (POGA, B)  
0
0
0
0
Bit sequential buffer (BSB0 to BSB3)  
Held  
Undefined  
Data Sheet U10166EJ2V1DS  
41  
µPD753204, 753206, 753208  
10. MASK OPTION  
The µPD753208 has the following mask options.  
P50 to P53 mask options  
Selects whether or not to connect an internal pull-up resistor.  
<1> Connect pull-up resistor internally bit-wise.  
<2> Do not connect pull-up resistor internally.  
VLC0 to VLC2 pins, BIAS pins mask option  
Selects whether or not to internally connect LCD-driving split resistors.  
<1> Do not connect split resistor internally.  
<2> Connect four 10-k(typ.) split resistors simultaneously internally.  
<3> Connect four 100-k(typ.) split resistors simultaneously internally.  
Standby function mask option  
Selects the wait time with the RESET signal.  
<1> 217/fx (21.8 ms: When fX = 6.0 MHz, 31.3 ms: When fX = 4.19 MHz)  
<2> 215/fx (5.46 ms: When fX = 6.0 MHz, 7.81 ms: When fX = 4.19 MHz)  
42  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
11. INSTRUCTION SET  
(1) Expression formats and description methods of operands  
The operand is described in the operand column of each instruction in accordance with the description  
method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER  
PACKAGE USERS’ MANUAL—LANGUAGE (EEU-1363)". If there are several elements, one of them  
is selected. Capital letters and the + and – symbols are key words and are described as they are.  
For immediate data, appropriate numbers and labels are described.  
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described.  
However, there are restrictions in the labels that can be described for fmem and pmem. For details, see  
the user's manual.  
Representation  
Description method  
format  
reg  
X, A, B, C, D, E, H, L  
X, B, C, D, E, H, L  
reg1  
rp  
XA, BC, DE, HL  
rp1  
rp2  
rp'  
BC, DE, HL  
BC, DE  
XA, BC, DE, HL, XA', BC', DE', HL'  
BC, DE, HL, XA', BC', DE', HL'  
rp'1  
rpa  
HL, HL+, HL–, DE, DL  
DE, DL  
rpa1  
n4  
n8  
4-bit immediate data or label  
8-bit immediate data or label  
Note  
mem  
bit  
8-bit immediate data or label  
2-bit immediate data or label  
fmem  
FB0H-FBFH, FF0H-FFFH immediate data or label  
FC0H-FFFH immediate data or label  
pmem  
addr  
000H-FFFH immediate data or label (µPD753204)  
0000H-17FFH immediate data or label (µPD753206)  
0000H-1FFFH immediate data or label (µPD753208)  
000H-FFFH immediate data or label (µPD753204)  
0000H-17FFH immediate data or label (µPD753206)  
0000H-1FFFH immediate data or label (µPD753208)  
12-bit immediate data or label  
addr1  
(Only in the  
MKII mode)  
caddr  
faddr  
11-bit immediate data or label  
taddr  
20H-7FH immediate data (where bit 0 = 0) or label  
PORTn  
IE×××  
RBn  
PORT0-PORT3, PORT5, PORT6, PORT8, PORT9  
IEBT, IET0-IET2, IE0, IE2, IE4, IECSI, IEW  
RB0-RB3  
MBn  
MB0, MB1, MB15  
Note mem can be only used for even address in 8-bit data processing.  
Data Sheet U10166EJ2V1DS  
43  
µPD753204, 753206, 753208  
(2) Legend in explanation of operation  
A
: A register, 4-bit accumulator  
: B register  
B
C
: C register  
D
: D register  
E
: E register  
H
: H register  
L
: L register  
X
: X register  
XA  
BC  
DE  
HL  
XA’  
BC’  
DE’  
HL’  
PC  
SP  
CY  
PSW  
MBE  
RBE  
: XA register pair; 8-bit accumulator  
: BC register pair  
: DE register pair  
: HL register pair  
: XA’ expanded register pair  
: BC’ expanded register pair  
: DE’ expanded register pair  
: HL’ expanded register pair  
: Program counter  
: Stack pointer  
: Carry flag, bit accumulator  
: Program status word  
: Memory bank enable flag  
: Register bank enable flag  
PORTn : Port n (n = 0 to 3, 5, 6, 8, 9)  
IME  
IPS  
: Interrupt master enable flag  
: Interrupt priority selection register  
: Interrupt enable flag  
IE×××  
RBS  
MBS  
PCC  
.
: Register bank selection register  
: Memory bank selection register  
: Processor clock control register  
: Separation between address and bit  
: Contents addressed by ××  
: Hexadecimal data  
(××)  
××H  
44  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
(3) Explanation of symbols under addressing area column  
*1  
MB = MBE•MBS  
(MBS = 0, 1, 15)  
*2  
*3  
MB = 0  
MBE = 0 : MB = 0 (000H-07FH)  
MB = 15 (F80H-FFFH)  
Data memory addressing  
MBE = 1 : MB = MBS (MBS = 0, 1, 15)  
*4  
*5  
*6  
MB = 15, fmem = FB0H-FBFH, FF0H-FFFH  
MB = 15, pmem = FC0H-FFFH  
µPD753204  
µPD753206  
µPD753208  
addr = 000H-FFFH  
addr = 0000H-17FFH  
addr = 0000H-1FFFH  
*7  
*8  
addr, addr1 = (Current PC) – 15 to (Current PC) – 1  
(Current PC) + 2 to (Current PC) + 16  
µPD753204  
µPD753206  
caddr = 000H-FFFH  
caddr = 0000H-0FFFH(PC12 = 0) or  
1000H-17FFH(PC12 = 1)  
Program memory addressing  
µPD753208  
caddr = 0000H-0FFFH(PC12 = 0) or  
1000H-1FFFH(PC12 = 1)  
*9  
faddr = 0000H-07FFH  
taddr = 0020H-007FH  
*10  
*11  
µPD753204  
µPD753206  
µPD753208  
addr1 = 000H-FFFH  
addr1 = 0000H-17FFH  
addr1 = 0000H-1FFFH  
Remarks 1. MB indicates memory bank that can be accessed.  
2. In *2, MB = 0 independently of how MBE and MBS are set.  
3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.  
4. *6 to *11 indicate the areas that can be addressed.  
(4) Explanation of number of machine cycles column  
S denotes the number of machine cycles required by skip operation when a skip instruction is executed.  
The value of S varies as follows.  
When no skip is made: S = 0  
When the skipped instruction is a 1- or 2-byte instruction: S = 1  
When the skipped instruction is a 3-byte instruction Note: S = 2  
Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction  
Caution The GETI instruction is skipped in one machine cycle.  
One machine cycle is equal to one cycle of CPU clock (= tCY); time can be selected from among four types  
by setting PCC.  
Data Sheet U10166EJ2V1DS  
45  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
MOV  
Operand  
Operation  
Skip condition  
String effect A  
area  
Transfer  
instruction  
A, #n4  
1
2
2
2
2
1
1
1
1
2
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
2
1
2
1
2
A n4  
reg1, #n4  
XA, #n8  
HL, #n8  
rp2, #n8  
A, @HL  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
@HL, A  
@HL, XA  
A, mem  
XA, mem  
mem, A  
mem, XA  
A, reg  
reg1 n4  
2
XA n8  
String effect A  
String effect B  
2
HL n8  
2
rp2 n8  
1
A (HL)  
*1  
*1  
*1  
*2  
*1  
*1  
*1  
*3  
*3  
*3  
*3  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
L = 0  
L = FH  
2
XA (HL)  
1
(HL) A  
2
(HL) XA  
2
A (mem)  
XA (mem)  
(mem) A  
(mem) XA  
A reg  
2
2
2
2
XA, rp'  
2
XA rp'  
reg1, A  
2
reg1 A  
rp'1, XA  
A, @HL  
A, @HL+  
A, @HL–  
A, @rpa1  
XA, @HL  
A, mem  
XA, mem  
A, reg1  
2
rp'1 XA  
XCH  
1
A (HL)  
*1  
*1  
*1  
*2  
*1  
*3  
*3  
2+S  
2+S  
1
A (HL), then L L+1  
A (HL), then L L–1  
A (rpa1)  
XA (HL)  
L = 0  
L = FH  
2
2
A (mem)  
XA (mem)  
A reg1  
2
1
XA, rp'  
2
XA rp'  
46  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
MOVT  
Operand  
Operation  
Skip condition  
area  
Table  
reference  
XA, @PCDE  
1
3
µPD753204  
XA (PC11–8+DE)ROM  
µPD753206, 753208  
XA (PC12–8+DE)ROM  
XA, @PCXA  
1
3
µPD753204  
XA (PC11–8+XA)ROM  
µPD753206, 753208  
XA (PC12–8+XA)ROM  
Note  
XA, @BCDE  
XA, @BCXA  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
fmem.bit, CY  
pmem.@L, CY  
@H+mem.bit, CY  
A, #n4  
1
1
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
3
3
XA (BCDE)ROM  
*6  
*6  
*4  
*5  
*1  
*4  
*5  
*1  
Note  
XA (BCXA)ROM  
Bit transfer  
MOV1  
2
CY (fmem.bit)  
2
CY (pmem7–2+L3–2.bit(L1–0))  
CY (H+mem3–0.bit)  
(fmem.bit) CY  
2
2
2
(pmem7–2+L3–2.bit(L1–0)) CY  
(H+mem3–0.bit) CY  
A A+n4  
2
Operation  
ADDS  
1+S  
2+S  
1+S  
2+S  
2+S  
1
carry  
carry  
carry  
carry  
carry  
XA, #n8  
XA XA+n8  
A, @HL  
A A+(HL)  
*1  
*1  
*1  
*1  
XA, rp'  
XA XA+rp'  
rp'1, XA  
rp'1 rp'1+XA  
ADDC  
SUBS  
SUBC  
A, @HL  
A, CY A+(HL)+CY  
XA, CY XA+rp'+CY  
rp'1, CY rp'1+XA+CY  
A A–(HL)  
XA, rp'  
2
rp'1, XA  
2
A, @HL  
1+S  
2+S  
2+S  
1
borrow  
borrow  
borrow  
XA, rp'  
XA XA–rp'  
rp'1, XA  
rp'1 rp'1–XA  
A, @HL  
A, CY A–(HL)–CY  
XA, CY XA–rp'–CY  
rp'1, CY rp'1–XA–CY  
XA, rp'  
2
rp'1, XA  
2
Note Set "0" to register B if the µPD753204 is used. Only the low-order one bit of register B will be valid if the  
µPD753206 or 753208 is used.  
Data Sheet U10166EJ2V1DS  
47  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
AND  
Operand  
Operation  
Skip condition  
area  
Operation  
A, #n4  
2
1
2
2
2
1
2
2
2
1
2
2
1
2
1
1
2
2
1
2
2
2
1
2
2
2
1
1
1
1
2
1
A A n4  
A, @HL  
XA, rp'  
rp'1, XA  
A, #n4  
A, @HL  
XA, rp'  
rp'1, XA  
A, #n4  
A, @HL  
XA, rp'  
rp'1, XA  
A
A A (HL)  
XA XA rp'  
rp'1 rp'1 XA  
A A n4  
*1  
2
2
OR  
2
1
A A (HL)  
XA XA rp'  
rp'1 rp'1 XA  
A A v n4  
*1  
*1  
2
2
XOR  
2
1
A A v (HL)  
XA XA v rp'  
rp'1 rp'1 v XA  
2
2
Accumulator RORC  
manipulation  
instructions  
1
CY A  
A A  
0, A  
3
CY, An–1 A  
n
NOT  
A
2
Increment  
and  
Decrement  
instructions  
INCS  
reg  
1+S  
1+S  
2+S  
2+S  
1+S  
2+S  
2+S  
2+S  
1+S  
2+S  
2+S  
2+S  
1
reg reg+1  
rp1 rp1+1  
reg=0  
rp1  
rp1=00H  
(HL)=0  
@HL  
(HL) (HL)+1  
(mem) (mem)+1  
reg reg–1  
rp' rp'–1  
*1  
*3  
mem  
(mem)=0  
reg=FH  
rp'=FFH  
reg=n4  
DECS  
reg  
rp'  
Comparison SKE  
instruction  
reg, #n4  
@HL, #n4  
A, @HL  
XA, @HL  
A, reg  
XA, rp'  
CY  
Skip if reg = n4  
Skip if (HL) = n4  
Skip if A = (HL)  
Skip if XA = (HL)  
Skip if A = reg  
Skip if XA = rp'  
CY 1  
*1  
*1  
*1  
(HL) = n4  
A = (HL)  
XA = (HL)  
A=reg  
XA=rp'  
Carry flag  
manipulation  
instruction  
SET1  
CLR1  
SKT  
CY  
1
CY 0  
CY  
1+S  
1
Skip if CY = 1  
CY CY  
CY=1  
NOT1  
CY  
48  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
SET1  
Operand  
Operation  
Skip condition  
area  
Memory bit  
manipulation  
instructions  
mem.bit  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(mem.bit) ← 1  
(fmem.bit) ← 1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*3  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
*4  
*5  
*1  
fmem.bit  
pmem.@L  
2
(pmem7–2+L3–2.bit(L1–0)) ← 1  
(H+mem3–0.bit) ← 1  
@H+mem.bit  
mem.bit  
2
CLR1  
2
(mem.bit) ← 0  
fmem.bit  
2
(fmem.bit) ← 0  
pmem.@L  
2
(pmem7–2+L3–2.bit(L1–0)) ← 0  
(H+mem3–0.bit) ← 0  
@H+mem.bit  
mem.bit  
2
SKT  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2+S  
2
Skip if (mem.bit)=1  
(mem.bit)=1  
fmem.bit  
Skip if (fmem.bit)=1  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
(mem.bit)=0  
pmem.@L  
Skip if (pmem7–2+L3–2.bit(L1–0))=1  
Skip if (H+mem3–0.bit)=1  
Skip if (mem.bit)=0  
@H+mem.bit  
mem.bit  
SKF  
fmem.bit  
Skip if (fmem.bit)=0  
(fmem.bit)=0  
(pmem.@L)=0  
(@H+mem.bit)=0  
(fmem.bit)=1  
(pmem.@L)=1  
(@H+mem.bit)=1  
pmem.@L  
Skip if (pmem7–2+L3–2.bit(L1–0))=0  
Skip if (H+mem3–0.bit)=0  
Skip if (fmem.bit)=1 and clear  
Skip if (pmem7–2+L3–2.bit(L1–0))=1 and clear  
Skip if (H+mem3–0.bit)=1 and clear  
CY CY (fmem.bit)  
@H+mem.bit  
fmem.bit  
SKTCLR  
AND1  
OR1  
pmem.@L  
@H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
CY, fmem.bit  
CY, pmem.@L  
CY, @H+mem.bit  
2
CY CY (pmem7–2+L3–2.bit(L1–0))  
CY CY (H+mem3–0.bit)  
CY CY (fmem.bit)  
2
2
2
CY CY (pmem7–2+L3–2.bit(L1–0))  
CY CY (H+mem3–0.bit)  
CY CY v (fmem.bit)  
2
XOR1  
2
2
CY CY v (pmem7–2+L3–2.bit(L1–0))  
CY CY v (H+mem3–0.bit)  
2
Data Sheet U10166EJ2V1DS  
49  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
BR Note  
Operand  
Operation  
Skip condition  
area  
Branch  
instructions  
addr  
µPD753204  
*6  
PC11–0 addr  
Select the most appropriate instruction from  
among BR !addr, BRCB !caddr and BR $addr  
according to the assembler being used.  
µPD753206, 753208  
PC12–0 addr  
Select the most appropriate instruction  
from among BR !addr, BRCB !caddr  
and BR $addr according to the  
assembler being used.  
addr1  
µPD753204  
*11  
PC11-0 addr1  
Select the most appropriate instruction  
from among BR !addr, BRA !addr1,  
BRCB !caddr and BR $addr1 according  
to the assembler being used.  
µPD753206, 753208  
PC12–0 addr1  
Select the most appropriate instruction  
from among BR !addr, BRA !addr1,  
BRCB !caddr and BR $addr1 according  
to the assembler being used.  
! addr  
$addr  
3
1
3
2
µPD753204  
PC11–0 addr  
*6  
*7  
µPD753206, 753208  
PC12–0 addr  
µPD753204  
PC11–0 addr  
µPD753206, 753208  
PC12–0 addr  
$addr1  
1
2
µPD753204  
PC11–0 addr1  
µPD753206, 753208  
PC12–0 addr1  
Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations  
can be performed only in the Mk I mode.  
50  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
BR  
Operand  
Operation  
Skip condition  
area  
Branch  
instruction  
PCDE  
2
2
2
2
3
2
3
3
3
3
3
3
2
3
µPD753204  
PC11–0 PC11-8+DE  
µPD753206, 753208  
PC12–0 PC12-8+DE  
PCXA  
BCDE  
BCXA  
!addr1  
!caddr  
µPD753204  
PC11–0 PC11-8+XA  
µPD753206, 753208  
PC12–0 PC12-8+XA  
µPD753204  
*6  
*6  
PC11–0 BCDE Note 1  
µPD753206, 753208  
PC12–0 BCDE Note 2  
µPD753204  
PC11–0 BCXA Note 1  
µPD753206, 753208  
PC12–0 BCXA Note 2  
BRA Note 3  
µPD753204  
*6  
PC11–0 addr1  
µPD753206, 753208  
PC12–0 addr1  
BRCB  
µPD753204  
*8  
PC11–0 caddr11–0  
µPD753206, 753208  
PC12–0 PC12+caddr11–0  
Subroutine  
stack control  
instructions  
CALLA Note 3 !addr1  
µPD753204  
*11  
(SP–2) ← ×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, 0  
PC11–0 addr1, SP SP–6  
µPD753206, 753208  
(SP–2) ← ×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, PC12  
PC12–0 addr1, SP SP–6  
Notes 1. "0" must be set to the B register.  
2. Only the low-order one bit is valid in the B register.  
3. The above operations in the double boxes can be performed only in the Mk II mode. The other  
operations can be performed only in the Mk I mode.  
Data Sheet U10166EJ2V1DS  
51  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
CALL Note  
Operand  
Operation  
Skip condition  
area  
Subroutine  
stack control  
instructions  
!addr  
3
3
µPD753204  
*6  
(SP–3) MBE, RBE, 0, 0  
(SP–4) (SP–1) (SP–2) PC11–0  
PC11–0 addr, SP SP–4  
µPD753206, 753208  
(SP–3) MBE, RBE, 0, PC12  
(SP–4) (SP–1) (SP–2) PC11–0  
PC12–0 addr, SP SP–4  
4
µPD753204  
(SP–2) ← ×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, 0  
PC11–0 addr, SP SP–6  
µPD753206, 753208  
(SP–2) ← ×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, PC12  
PC12–0 addr, SP SP–6  
CALLF Note !faddr  
2
2
µPD753204  
*9  
(SP–3) MBE, RBE, 0, 0  
(SP–4) (SP–1) (SP–2) PC11–0  
PC11–0 0+faddr, SP SP–4  
µPD753206, 753208  
(SP–3) MBE, RBE, 0, PC12  
(SP–4) (SP–1) (SP–2) PC11–0  
PC12–0 00+faddr, SP SP–4  
3
µPD753204  
(SP–2)  
×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, 0  
PC11–0 0+faddr, SP SP–6  
µPD753206, 753208  
(SP–2)  
×, ×, MBE, RBE  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, PC12  
PC12–0 00+faddr, SP SP–6  
Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations  
can be performed only in the Mk I mode.  
52  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
RET Note  
Operand  
Operation  
Skip condition  
area  
Subroutine  
stack control  
instructions  
1
3
µPD753204  
PC11–0 (SP) (SP+3) (SP+2)  
MBE, RBE, 0, 0 (SP+1), SP SP+4  
µPD753206, 753208  
PC11–0 (SP) (SP+3) (SP+2)  
MBE, RBE, 0, PC12 (SP+1), SP SP+4  
µPD753204  
×, ×, MBE, RBE (SP+4)  
0, 0, 0, 0, (SP+1)  
PC11–0 (SP) (SP+3) (SP+2), SP SP+6  
µPD753206, 753208  
×, ×, MBE, RBE (SP+4)  
MBE, 0, 0, PC12 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2), SP SP+6  
RETS Note  
1
3+S  
µPD753204  
Unconditional  
MBE, RBE, 0, 0 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
SP SP+4  
then skip unconditionally  
µPD753206, 753208  
MBE, RBE, 0, PC12 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
SP SP+4  
then skip unconditionally  
µPD753204  
0, 0, 0, 0 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
×, ×, MBE, RBE (SP+4)  
SP SP+6  
then skip unconditionally  
µPD753206, 753208  
0, 0, 0, PC12 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
×, ×, MBE, RBE (SP+4)  
SP SP+4  
then skip unconditionally  
Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations  
can be performed only in the Mk I mode.  
Data Sheet U10166EJ2V1DS  
53  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
RETI Note 1  
Operand  
Operation  
Skip condition  
area  
Subroutine  
stack control  
instructions  
1
3
µPD753204  
MBE, RBE, 0, 0 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
PSW (SP+4) (SP+5), SP SP+6  
µPD753206, 753208  
MBE, RBE, 0, PC12 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
PSW (SP+4) (SP+5), SP SP+6  
µPD753204  
0, 0, 0, 0 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
PSW (SP+4) (SP+5), SP SP+6  
µPD753206, 753208  
0, 0, 0, PC12 (SP+1)  
PC11–0 (SP) (SP+3) (SP+2)  
PSW (SP+4) (SP+5), SP SP+6  
PUSH  
rp  
1
1
(SP–1)(SP–2) rp, SP SP–2  
BS  
rp  
2
1
2
2
2
1
2
2
(SP–1) MBS, (SP–2) RBS, SP SP–2  
rp (SP+1) (SP), SP SP+2  
MBS (SP+1), RBS (SP), SP SP+2  
IME (IPS.3) 1  
POP  
EI  
BS  
Interrupt  
control  
instructions  
IE×××  
2
2
2
2
IE××× ← 1  
DI  
IME (IPS.3) 0  
IE××× ← 0  
IE×××  
2
2
2
2
2
2
Input/output  
instructions  
IN Note 2  
A, PORTn  
XA, PORTn  
A PORTn  
(n = 0-3, 5, 6, 8, 9)  
(n = 8)  
XA PORTn+1, PORTn  
OUT Note 2  
PORTn, A  
2
2
2
2
2
2
PORTn A  
(n = 3, 5, 6, 8, 9)  
(n = 8)  
PORTn, XA  
PORTn+1, PORTn XA  
CPU control HALT  
instructions  
Set HALT Mode (PCC.2 1)  
STOP  
2
1
2
2
2
1
2
2
Set STOP Mode (PCC.3 1)  
No Operation  
NOP  
Special  
SEL  
RBn  
MBn  
RBS n  
(n = 0-3)  
instructions  
MBS n  
(n = 0, 1, 15)  
Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other  
operations can be performed only in the Mk I mode.  
2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and  
MBS must be set to 15.  
54  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
Operand  
Operation  
Skip condition  
area  
Special  
instructions  
GET Notes 1, 2 taddr  
1
3
µPD753204  
*10  
• When TBR instruction  
PC11–0 (taddr)3–0 + (taddr+1)  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
• When TCALL instruction  
(SP–4) (SP–1) (SP–2) PC11–0  
(SP–3) MBE, RBE, 0, 0  
PC11–0 (taddr)3–0 + (taddr+1)  
SP SP–4  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
Depending on  
the reference  
instruction  
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed.  
µPD753206, 753208  
• When TBR instruction  
PC12–0 (taddr)4–0 + (taddr+1)  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
• When TCALL instruction  
(SP–4) (SP–1) (SP–2) PC11–0  
(SP–3) MBE, RBE, 0, PC12  
PC12–0 (taddr)4–0 + (taddr+1)  
SP SP–4  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
Depending on  
the reference  
instruction  
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed.  
3
µPD753204  
*10  
• When TBR instruction  
PC11–0 (taddr)3–0 + (taddr+1)  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -  
– – – – – – – – – – – – –  
4
• When TCALL instruction  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, 0  
(SP–2) ← ×, ×, MBE, RBE  
PC11–0 (taddr)3–0 + (taddr+1)  
SP SP–6  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – -  
– – – – – – – – – – – – –  
3
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed.  
Depending on  
the reference  
instruction  
Notes 1. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI  
instruction.  
2. The above operations in the double boxes can be performed only in the Mk II mode. The other  
operations can be performed only in the Mk I mode.  
Data Sheet U10166EJ2V1DS  
55  
µPD753204, 753206, 753208  
Number  
of machine  
cycles  
Instruction  
group  
Number  
of bytes  
Addressing  
Mnemonic  
Operand  
Operation  
Skip condition  
area  
Special  
instructions  
GETI Notes 1, 2 taddr  
1
3
µPD753206, 753208  
*10  
• When TBR instruction  
PC12–0 (taddr)4–0 + (taddr+1)  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
4
• When TCALL instruction  
(SP–6) (SP–3) (SP–4) PC11–0  
(SP–5) 0, 0, 0, PC12  
(SP–2) ← ×, ×, MBE, RBE  
PC12–0 (taddr)4–0 + (taddr+1)  
SP SP–6  
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
– – – – – – – – – – – – –  
Depending on  
the reference  
instruction  
3
• When instruction other than TBR and  
TCALL instructions  
(taddr) (taddr+1) instruction is executed.  
Notes 1. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI  
instruction.  
2. The above operations in the double boxes can be performed only in the Mk II mode.  
56  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
12. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25˚C)  
Parameter  
Supply voltage  
Input voltage  
Symbol  
VDD  
Test Conditions  
Rating  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to +14  
–0.3 to VDD + 0.3  
–10  
Unit  
V
VI1  
Except port 5  
V
VI2  
Port 5  
On-chip pull-up resistor  
When N-ch open-drain  
V
V
Output voltage  
VO  
IOH  
V
Output current high  
Per pin  
mA  
mA  
mA  
mA  
˚C  
Total for all pins  
Per pin  
–30  
Output current low  
IOL  
30  
Total for all pins  
220  
Note  
Operating ambient  
temperature  
TA  
–40 to +85  
Storage temperature  
Tstg  
–65 to +150  
˚C  
Note When LCD is driven in normal mode: TA = –10 to +85˚C  
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single  
parameter or even momentarily. That is, the absolute ratings are rated values at which the  
product is on the verge of suffering physical damage, and therefore the product must be used  
under conditions which ensure that the absolute maximum ratings are not exceeded.  
CAPACITANCE (TA = 25˚C, VDD = 0 V)  
Parameter  
Input capacitance  
Output capacitance  
I/O capacitance  
Symbol  
CIN  
Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
f = 1 MHz  
Unmeasured pins returned to 0 V.  
COUT  
CIO  
15  
pF  
15  
pF  
Data Sheet U10166EJ2V1DS  
57  
µPD753204, 753206, 753208  
SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Resonator  
Recommended constant  
Parameter  
Test conditions  
MIN. TYP. MAX. Unit  
Note  
2
2
2
Ceramic  
Oscillator  
frequency (fX) Note 1  
1.0  
6.0  
MHz  
X2  
X1  
resonator  
C1  
C2  
Oscillation  
stabilization time Note 3  
After VDD reaches oscil-  
lation voltage range MIN.  
4
ms  
V
DD  
Note  
Crystal  
Oscillator  
frequency (fX) Note 1  
1.0  
6.0  
MHz  
ms  
X2  
X1  
resonator  
C1  
C2  
Oscillation  
stabilization time Note 3  
VDD = 4.5 to 5.5 V  
10  
30  
V
DD  
Note  
External  
clock  
X1 input  
frequency (fX) Note 1  
1.0  
6.0  
MHz  
ns  
X1  
X2  
X1 input  
83.3  
500  
high/low level width  
(tXH, tXL)  
Notes 1. The oscillator frequency and X1 input frequency indicate characteristics of the oscillator only. For the  
instruction execution time, refer to the AC characteristics.  
2. When the oscillator frequency is 4.19 MHz < fx 6.0 MHz, setting the processor clock control register  
(PCC) to 0011 results in 1 machine cycle being less than the required 0.95 µs. Therefore, set PCC  
to a value other than 0011.  
3. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing  
the STOP mode.  
Caution When using the system clock oscillator, wiring in the area enclosed with the dotted line should  
be carried out as follows to avoid an adverse effect from wiring capacitance.  
• Wiring should be as short as possible.  
• Wiring should not cross other signal lines.  
• Wiring should not be placed close to a varying high current.  
• The potential of the oscillator capacitor ground should be the same as VDD.  
• Do not ground it to the ground pattern in which a high current flows.  
• Do not fetch a signal from the oscillator.  
58  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
RECOMMENDED OSCILLATOR CONSTANTS  
Ceramic resonator (TA = –40 to 85°C)  
Oscillator constant (pF)  
Oscillation voltage range (VDD)  
Remark  
Frequency  
(MHz)  
Manufacturer  
TDK  
Part number  
C1  
100  
C2  
100  
MIN. (V)  
MAX. (V)  
CCR1000K2  
CCR2.0MC33  
CCR3.58MC3  
CCR4.19MC3  
FCR4.19MC5  
CCR6.0MC3  
FCR6.0MC5  
1.0  
2.0  
1.8  
5.5  
2.0  
On-chip  
capacitor  
3.58  
4.19  
2.2  
2.5  
6.0  
Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.  
Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency  
precision, the oscillaiton frequency must be adjusted on the implementation circuit. For details,  
please contact directly the manufacturer of the resonator you will use.  
Data Sheet U10166EJ2V1DS  
59  
µPD753204, 753206, 753208  
DC CHARACTERISTICS (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
IOL  
Test conditions  
MIN. TYP. MAX. Unit  
Output voltage low  
Per pin  
15  
150  
mA  
mA  
V
Sum of the all pins  
Ports 2, 3, 8, and 9  
Input voltage high  
VIH1  
VIH2  
VIH3  
2.7 VDD 5.5 V 0.7VDD  
1.8 VDD < 2.7 V 0.9VDD  
2.7 VDD 5.5 V 0.8VDD  
1.8 VDD < 2.7 V 0.9VDD  
VDD  
VDD  
V
Ports 0, 1, 6, RESET  
VDD  
V
VDD  
V
Port 5  
When a pull-up register 2.7 VDD 5.5 V 0.7VDD  
VDD  
V
is incorporated  
1.8 VDD < 2.7 V 0.9VDD  
VDD  
V
When N-ch open-drain 2.7 VDD 5.5 V 0.7VDD  
1.8 VDD < 2.7 V 0.9VDD  
VDD – 0.1  
13  
V
13  
V
VIH4  
VIL1  
X1  
VDD  
V
Input voltage low  
Ports 2, 3, 5, 8, and 9  
Ports 0, 1, 6, RESET  
X1  
2.7 VDD 5.5 V  
1.8 VDD < 2.7 V  
2.7 VDD 5.5 V  
1.8 VDD < 2.7 V  
0
0.3VDD  
0.1VDD  
0.2VDD  
0.1VDD  
0.1  
V
0
V
VIL2  
0
V
0
0
V
VIL3  
VOH  
VOL1  
V
Output voltage high  
Output voltage low  
SCK, SO, ports 2, 3, 6, 8, and 9 IOH = –1.0 mA  
VDD – 0.5  
V
SCK, SO, ports 2, 3, 5, 6, 8,  
and 9  
IOL = 15 mA,  
0.2  
2.0  
V
VDD = 4.5 to 5.5 V  
IOL = 1.6 mA  
0.4  
V
V
VOL2  
SB0, SB1  
N-ch open-drain  
pull-up resistor 1 kΩ  
0.2VDD  
Input leakage  
current high  
ILIH1  
ILIH2  
ILIH3  
ILIL1  
ILIL2  
ILIL3  
VIN = VDD  
Other pins than X1  
3
20  
20  
–3  
–20  
–3  
µA  
µA  
µA  
µA  
µA  
µA  
X1  
VIN = 13 V  
VIN = 0 V  
Port 5 (When N-ch open-drain)  
Other pins than port 5 and X1  
X1  
Input leakage  
current low  
Port 5 (When N-ch open drain)  
Other than when an input instruction  
is executed  
Port 5 (When N-ch open-drain)  
–30  
–27  
–8  
µA  
µA  
µA  
µA  
When an input instruction  
VDD = 5.0 V  
is executed  
–10  
–3  
VDD = 3.0 V  
Output leakage  
current high  
ILOH1  
VOUT = VDD  
SCK, SO/SB0, SB1, ports 2, 3, 6, 8  
and 9  
3
Port 5 (When a pull-up resistor  
is incorporated.)  
ILOH2  
ILOL  
VOUT = 13 V  
VOUT = 0 V  
Port 5 (When N-ch open-drain)  
20  
–3  
µA  
µA  
Output leakage  
current low  
On-chip pull-up resistor  
RL1  
RL2  
VIN = 0 V  
Ports 0 to 3, 6, 8, and 9  
(Excluding P00 pin)  
50  
15  
100  
30  
200  
60  
kΩ  
kΩ  
Port 5 (Mask option)  
60  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
DC CHARACTERISTICS (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
VLCD  
Test conditions  
TA = –40 to +85˚C  
TA = –10 to +85˚C  
MIN. TYP. MAX. Unit  
LCD drive voltage  
VAC0 = 0  
VAC0 = 1  
2.7  
2.2  
1.8  
VDD  
VDD  
VDD  
4
V
V
V
VAC current Note 1  
IVAC  
VAC0 = 1, VDD = 2.0 V 10%  
1
µA  
kΩ  
kΩ  
V
LCD split resistor Note 2  
RLCD1  
RLCD2  
VODC  
50  
5
100  
10  
200  
20  
LCD output voltage  
deviation Note 3 (common)  
lO = 1.0 µA  
lO = 0.5 µA  
VLCD0 = VLCD  
0
0.2  
VLCD1 = VLCD × 2/3  
VLCD2 = VLCD × 1/3  
1.8 V VLCD VDD  
LCD output voltage  
deviation Note 3 (segment)  
VODS  
0
0.2  
V
Note 5  
Note 6  
Supply current Note 4  
IDD1  
6.0 MHz  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
1.9  
0.4  
6.0  
1.3  
2.1  
0.8  
4.0  
0.75  
2.0  
0.7  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Crystal oscillation  
C1 = C2 = 22 pF  
IDD2  
IDD1  
IDD2  
IDD3  
HALT mode VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
0.72  
0.27  
1.5  
4.19 MHz  
VDD = 5.0 V 10% Note 5  
VDD = 3.0 V 10% Note 6  
HALT mode VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
Crystal oscillation  
C1 = C2 = 22 pF  
0.25  
0.7  
0.23  
0.05  
0.02  
0.02  
STOP mode  
VDD = 5.0 V 10%  
VDD = 3.0 V  
5
µA  
10%  
TA = 25˚C  
3
µA  
Notes 1. Set VAC0 to 0 when setting the STOP mode. If VAC0 is set to 1, the current increases by about 1  
µA.  
2. Either RLCD1 or RLCD2 can be selected by the mask option.  
3. The voltage deviation is the difference from the output voltage corresponding to the ideal value of the  
segment and common outputs (VLCDn; n = 0, 1, 2).  
4. Not including currents flowing in on-chip pull-up resistors or LCD split resistors.  
5. When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-  
speed mode.  
6. When PCC is set to 0000 and the device is operated in the low-speed mode.  
Data Sheet U10166EJ2V1DS  
61  
µPD753204, 753206, 753208  
AC CHARACTERISTICS (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
tCY  
Test conditions  
MIN. TYP. MAX. Unit  
CPU clock cycle  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
INT0  
0.67  
0.95  
0
64  
64  
µs  
µs  
Note 1  
time  
TI0 input frequency  
fTI  
1.0  
275  
MHz  
kHz  
µs  
0
TI0 input  
tTIH, tTIL  
0.48  
1.8  
Note 2  
10  
high/low-level width  
µs  
Interrupt input high/  
low-level width  
tINTH,  
tINTL  
IM02 = 0  
IM02 = 1  
µs  
µs  
INT4  
10  
µs  
KR0 to KR3  
10  
µs  
RESET low level width  
tRSL  
10  
µs  
Notes 1. The cycle time (minimum instruc-  
tion execution time) of the CPU  
clock (Φ) is determined by the  
oscillation frequency of the con-  
nected resonator (and external  
clock) and the processor clock  
control register (PCC). The figure  
at the right indicates the cycle  
time tCY versus supply voltage  
VDD characteristic.  
t
CY vs VDD  
64  
30  
6
5
Guaranteed Operation  
Range  
µ
4
3
2. 2tCY or 128/fX is set by setting the  
interrupt mode register (IM0).  
1
0.5  
0
1
2
3
4
5
6
Supply Voltage VDD [V]  
62  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
SERIAL TRANSFER OPERATION  
2-Wire and 3-Wire Serial I/O Mode (SCK...Internal clock output): (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
tKCY1  
Test conditions  
MIN.  
TYP. MAX. Unit  
SCK cycle time  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
1300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3800  
SCK high/low-level  
width  
tKL1, tKH1  
tKCY1/2 – 50  
tKCY1/2 – 150  
SINote 1 setup time  
tSIK1  
150  
500  
400  
600  
0
(to SCK)  
SINote 1 hold time  
tKSI1  
(from SCK)  
SONote 1 output delay  
tKSO1  
RL = 1 k,  
VDD = 2.7 to 5.5 V  
250  
ns  
ns  
Note 2  
time from SCK↓  
CL = 100 pF  
0
1000  
Notes 1. In the 2-wire serial I/O mode, read SB0 or SB1 instead.  
2. RL and CL are the load resistance and load capacitance of the SO output lines.  
2-Wire and 3-Wire Serial I/O Mode (SCK...External clock input): (TA = –40 to +85˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test conditions  
MIN.  
800  
3200  
400  
1600  
100  
150  
400  
600  
0
TYP. MAX. Unit  
SCK cycle time  
tKCY2  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK high/low-level  
width  
tKL2, tKH2  
SINote 1 setup time  
tSIK2  
(to SCK)  
SINote 1 hold time  
tKSI2  
(from SCK)  
SONote 1 output delay  
tKSO2  
RL = 1 k,  
VDD = 2.7 to 5.5 V  
300  
ns  
ns  
Note 2  
time from SCK↓  
CL = 100 pF  
0
1000  
Notes 1. In the 2-wire serial I/O mode, read SB0 or SB1 instead.  
2. RL and CL are the load resistance and load capacitance of the SO output lines.  
Data Sheet U10166EJ2V1DS  
63  
µPD753204, 753206, 753208  
SBI Mode (SCK...Internal clock output (master)): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
tKCY3  
Test conditions  
MIN.  
1300  
TYP. MAX. Unit  
SCK cycle time  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3800  
SCK high/low-level  
width  
tKL3, tKH3  
tKCY3/2 – 50  
tKCY3/2 – 150  
150  
SB0, 1 setup time  
tSIK3  
(to SCK)  
500  
SB0, 1 hold time  
tKSI3  
tKCY3/2  
(from SCK)  
Note  
SB0, 1 output delay  
tKSO3  
RL = 1 k,  
CL = 100 pF  
VDD = 2.7 to 5.5 V  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
time from SCK↓  
0
1000  
SB0, 1from SCK↑  
SCKfrom SB0, 1↑  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.  
SBI Mode (SCK...External clock input (slave)): (TA = –40 to +85 ˚C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test conditions  
MIN.  
800  
TYP. MAX. Unit  
SCK cycle time  
tKCY4  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3200  
400  
SCK high/low-level  
width  
tKL4, tKH4  
1600  
100  
SB0, 1 setup time  
tSIK4  
(to SCK)  
150  
SB0, 1 hold time  
tKSI4  
tKCY4/2  
(from SCK)  
Note  
SB0, 1 output delay  
tKSO4  
RL = 1 k,  
CL = 100 pF  
VDD = 2.7 to 5.5 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
time from SCK↓  
0
1000  
SB0, 1from SCK↑  
SCKfrom SB0, 1↑  
SB0, 1 low-level width  
SB0, 1 high-level width  
tKSB  
tSBK  
tSBL  
tSBH  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines.  
64  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
AC Timing Test Point (Excluding X1 Input)  
V
IH (MIN.)  
IL (MAX.)  
V
IH (MIN.)  
IL (MAX.)  
V
V
V
OH (MIN.)  
OL (MAX.)  
V
OH (MIN.)  
OL (MAX.)  
V
V
Clock Timing  
1/fX  
tXL  
tXH  
VDD–0.1 V  
0.1 V  
X1 Input  
TI0 Timing  
1/fTI  
t
TIL  
t
TIH  
TI0  
Data Sheet U10166EJ2V1DS  
65  
µPD753204, 753206, 753208  
Serial Transfer Timing  
3-wire serial I/O mode  
t
KCY1, 2  
tKL1, 2  
t
KH1, 2  
SCK  
t
SIK1, 2  
t
KSI1, 2  
SI  
Input Data  
t
KSO1, 2  
SO  
Output Data  
2-wire serial I/O mode  
tKCY1, 2  
tKL1, 2  
tKH1, 2  
SCK  
tSIK1, 2  
tKSI1, 2  
SB0, 1  
tKSO1, 2  
66  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
Serial Transfer Timing  
Bus release signal transfer  
tKCY3, 4  
tKL3, 4  
tKH3, 4  
SCK  
tSIK3, 4  
tKSI3, 4  
tKSB  
tSBL  
tSBH  
tSBK  
SB0, 1  
tKSO3, 4  
Command signal transfer  
tKCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK  
tSIK3, 4  
tKSB  
tSBK  
tKSI3, 4  
SB0, 1  
tKSO3, 4  
Interrupt input timing  
tINTL  
tINTH  
INTP0, 4  
KR0 to 3  
RESET input timing  
t
RSL  
RESET  
Data Sheet U10166EJ2V1DS  
67  
µPD753204, 753206, 753208  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS  
(TA = –40 to +85˚C)  
Parameter  
Symbol  
tSREL  
Test conditions  
MIN. TYP. MAX. Unit  
Release signal set time  
0
µs  
ms  
ms  
Oscillation stabilization  
wait time Note 1  
tWAIT  
Release by RESET  
Release by interrupt  
Note 2  
Note 3  
Notes 1. The oscillation stabillization wait time is the time during which the CPU operation is stopped to prevent  
unstable operation at the oscillation start.  
2. Either 217/fX or 215/fX can be selected by the mask option.  
3. Depends on the basic interval timer mode register (BTM) settings (See the table below).  
BTM3  
BTM2  
BTM1  
BTM0  
Wait time  
When fx = 4.19-MHz operation When fx = 6.0-MHz operation  
0
0
1
1
0
1
0
1
0
1
1
1
220/fX (approx. 250 ms)  
217/fX (approx. 31.3 ms)  
215/fX (approx. 7.81 ms)  
213/fX (approx. 1.95 ms)  
220/fX (approx. 175 ms)  
217/fX (approx. 21.8 ms)  
215/fX (approx. 5.46 ms)  
213/fX (approx. 1.37 ms)  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
Halt mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
VDD  
tSREL  
STOP Instruction Execution  
RESET  
tWAIT  
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)  
Halt mode  
Operating Mode  
STOP Mode  
Data Retention Mode  
VDD  
t
SREL  
STOP Instruction Execution  
Standby Release Signal  
(Interrupt Request)  
tWAIT  
68  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
13. CHARACTERISTIC CURVES (REFERENCE VALUES)  
IDD vs VDD (System Clock : 6.0-MHz Crystal Resonator)  
(TA = 25 °C)  
10  
5.0  
PCC = 0011  
PCC = 0010  
PCC = 0001  
1.0  
0.5  
PCC = 0000  
System clock  
HALT mode  
0.1  
0.05  
X1  
X2  
Crystal  
resonator  
6.0 MHz  
22 pF  
22 pF  
VDD  
0.01  
0
1
2
3
4
5
6
7
8
Supply Voltage VDD (V)  
Data Sheet U10166EJ2V1DS  
69  
µPD753204, 753206, 753208  
IDD vs VDD (System Clock : 4.19-MHz Crystal Resonator)  
(TA = 25°C)  
10  
5.0  
PCC = 0011  
PCC = 0010  
1.0  
0.5  
PCC = 0001  
PCC = 0000  
System clock  
HALT mode  
0.1  
0.05  
X1  
X2  
Crystal  
resonator  
4.19 MHz  
22 pF  
22 pF  
VDD  
0.01  
0
1
2
3
4
5
6
7
8
Supply Voltage VDD (V)  
70  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
14. PACKAGE DRAWINGS  
48 PIN PLASTIC SHRINK SOP (375 mil)  
48  
25  
detail of lead end  
1
24  
A
H
I
J
N
C
L
B
D
M
M
P48GT-65-375B-1  
NOTE  
ITEM  
MILLIMETERS  
16.21 MAX.  
0.63 MAX.  
0.65 (T.P.)  
0.30 0.10  
0.125 0.075  
2.0 MAX.  
INCHES  
Each lead centerline is located within 0.10  
mm (0.004 inch) of its true position (T.P.) at  
maximum material condition.  
A
B
C
D
E
F
0.639 MAX.  
0.025 MAX.  
0.026 (T.P.)  
+0.004  
–0.005  
0.012  
0.005 0.003  
0.079 MAX.  
G
H
I
1.7 0.1  
0.067 0.004  
+0.012  
–0.013  
10.0 0.3  
0.394  
8.0 0.2  
0.315 0.008  
+0.009  
–0.008  
0.039  
J
1.0 0.2  
+0.10  
+0.004  
0.15  
0.006  
K
L
–0.05  
–0.002  
+0.008  
–0.009  
0.5 0.2  
0.10  
0.020  
M
N
0.004  
0.004  
0.10  
Data Sheet U10166EJ2V1DS  
71  
µPD753204, 753206, 753208  
15. RECOMMENDED SOLDERING CONDITIONS  
The µPD753204, µPD753206, and µPD753208 should be soldered and mounted under the following  
recommended conditions.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Table 15-1. Surface Mounting Type Soldering Conditions  
(1) µPD753204GT-xxx: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
µPD753206GT-xxx: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
µPD753208GT-xxx: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), IR35-00-2  
Count: Twice or less  
Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), VP15-00-2  
Count: Twice or less  
Wave soldering  
Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once  
Preheating temperature: 120°C max. (package surface temperature)  
WS60-00-1  
Partial heating  
Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)  
Caution Do not use different soldering methods together (except for partial heating).  
Remark For soldering methods and conditions other than those recommended above, contact an NEC  
Electronics sales representative.  
(2) µPD753204GT-xxx-A: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
µPD753206GT-xxx-A: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
µPD753208GT-xxx-A: 48-pin plastic shrink SOP (375 mil, 0.65 mm pitch)  
Undefined  
Remark Products with “-A” at the end of the part number are lead-free products.  
72  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
APPENDIX A µPD753108, 753208, AND 75P3216 FUNCTIONAL LIST  
Parameter  
Program memory  
µPD753108  
µPD753208  
µPD75P3216  
Mask ROM  
0000H-1FFFH  
(8192 × 8 bits)  
One-time PROM  
0000H-3FFFH  
(16384 × 8 bits)  
Data memory  
CPU  
000H-1FFH  
(512 × 4 bits)  
75XL CPU  
Instruction  
execution  
time  
When main system  
clock is selected  
0.95, 1.91, 3.81, 15.3 µs (@ 4.19-MHz operation)  
0.67, 1.33, 2.67, 10.7 µs (@ 6.0-MHz operation)  
When subsystem  
clock is selected  
122 µs (@ 32.768-kHz  
operation)  
None  
I/O port  
CMOS input  
8 (on-chip pull-up resistors can  
be specified by software: 7)  
6 (on-chip pull-up resistors can be specified by software: 5)  
CMOS input/output  
20 (on-chip pull-up resistors can be specified by software)  
N-ch open drain  
input/output  
4 (on-chip pull-up resistors can be specified by software,  
withstand voltage is 13 V)  
4 (no mask option, withstand  
voltage is 13 V)  
Total  
32  
30  
LCD controller/driver  
Segment selection: 16/20/24  
(can be changed to CMOS  
input/output port in 4 time-  
unit; max. 8)  
Segment selection: 4/8/12 segments  
(can be changed to CMOS input/output port in 4 time-unit;  
max. 8)  
Display mode selection: static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias),  
1/4 duty (1/3 bias)  
On-chip split resistor for LCD driver can be specified by  
using mask option.  
No on-chip split resistor for  
LCD driver  
Timer  
5 channels  
5 channels  
• 8-bit timer/event  
• 8-bit timer counter: 2 channels (can be used as the 16-bit  
timer counter, carrier generator, and timer with gate)  
• 8-bit timer/event counter: 1 channel  
• Basic interval timer/watchdog timer: 1 channel  
• Watch timer: 1 channel  
counter: 3 channels  
• Basic interval timer/  
watchdog timer: 1 channel  
• Watch timer: 1 channel  
Clock output (PCL)  
Buzzer output (BUZ)  
Φ, 524, 262, 65.5 kHz  
(Main system clock: @ 4.19-MHz operation)  
Φ, 750, 375, 93.8 kHz  
(Main system clock: @ 6.0-MHz operation)  
• 2, 4, 32 kHz  
• 2, 4, 32 kHz  
(Main system clock: @  
4.19-MHz operation or sub-  
(Main system clock: @ 4.19-MHz operation)  
• 2.93, 5.86, 46.9 kHz  
system clock: @ 32.768-kHz (Main system clock: @ 6.0-MHz operation)  
operation)  
• 2.86, 5.72, 45.8 kHz  
(Main system clock: @  
6.0-MHz operation)  
Serial interface  
3 modes are available  
• 3-wire serial I/O mode ... MSB/LSB can be selected for transfer top bit  
• 2-wire serial I/O mode  
• SBI mode  
SCC register  
Contained  
None  
SOS register  
Vectored interrupt  
External: 3, internal: 5  
External: 2, internal: 5  
Data Sheet U10166EJ2V1DS  
73  
µPD753204, 753206, 753208  
Parameter  
µPD753108  
External: 1, internal: 1  
VDD = 1.8 to 5.5 V  
µPD753208  
µPD75P3216  
Test input  
Operation supply voltage  
Operating ambient temperature  
Package  
TA = –40 to +85°C  
• 64-pin plastic QFP  
(14 × 14 mm)  
• 48-pin plastic shrink SOP  
(375 mils, 0.65-mm pitch)  
• 64-pin plastic QFP  
(12 × 12 mm)  
74  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
APPENDIX B DEVELOPMENT TOOLS  
The following development tools are provided for system development using the µPD753208.  
In 75XL series, the relocatable assembler which is common to the µPD753208 Subseries is used in combination  
with the device file of each product.  
Language processor  
RA75X relocatable assembler  
Part number  
Host machine  
(product name)  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOSTM  
Ver. 3.30 to  
µS5A13RA75X  
µS5A10RA75X  
Note  
Ver. 6.2  
IBM PC/ATTM and  
compatible machines  
Refer to section  
OS for IBM PC”  
3.5-inch 2HC  
5-inch 2HC  
µS7B13RA75X  
µS7B10RA75X  
Device file  
Part number  
(product name)  
Host machine  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOS  
Ver. 3.30 to  
µS5A13DF753208  
µS5A10DF753208  
Note  
Ver. 6.2  
3.5-inch 2HC  
5-inch 2HC  
µS7B13DF753208  
µS7B10DF753208  
IBM PC/AT and  
compatible machines  
Refer to section  
OS for IBM PC”  
PROM write tools  
Hardware  
PG-1500  
PG-1500 is a PROM programmer which enables you to program single chip microcomputers  
including PROM by stand-alone or host machine operation by connecting an attached board  
and optional programmer adapter to PG-1500. It also enables you to program typical PROM  
devices of 256 Kbits to 4 Mbits.  
PA-75P3216GT  
PROM programmer adapter for the µPD75P3216GT. Connect the programmer adapter to  
PG-1500 for use.  
Software  
PG-1500 controller  
PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500  
is controlled on the host machine.  
Part number  
(product name)  
Host machine  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOS  
Ver. 3.30 to  
Ver. 6.2Note  
µS5A13PG1500  
µS5A10PG1500  
3.5-inch 2HD  
5-inch 2HC  
µS7B13PG1500  
µS7B10PG1500  
IBM PC/AT and  
compatible machines  
Refer to section  
OS for IBM PC”  
Note Ver. 5.00 or later have the task swap function, but it cannot be used for this software.  
Remarks 1. Operation of the assembler and device file is guaranteed only on the above host machine and OSs.  
2. Operation of the PG-1500 controller is guaranteed only on the above host machine and OSs.  
Data Sheet U10166EJ2V1DS  
75  
µPD753204, 753206, 753208  
Debugging tool  
The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the  
µPD753208.  
The system configurations are described as follows.  
Note 1  
Hardware  
IE-75000-R  
In-circuit emulator for debugging the hardware and software when developing the  
application systems that use the 75X series and 75XL series. When developing a  
µPD753208 subseries, the emulation board IE-75300-R-EM and emulation probe EP-  
753208GT-R that are sold separately must be used with the IE-75000-R.  
By connecting with the host machine and the PROM programmer, efficient debugging  
can be made.  
It contains the emulation board IE-75000-R-EM which is connected.  
IE-75001-R  
In-circuit emulator for debugging the hardware and software when developing the  
application systems that use the 75X series and 75XL series. When developing a  
µPD753208 subseries, the emulation board IE-75300-R-EM and emulation probe EP-  
753208GT-R which are sold separately must be used with the IE-75001-R.  
It can debug the system efficiently by connecting the host machine and PROM  
programmer.  
IE-75300-R-EM  
EP-753208GT-R  
Emulation board for evaluating the application systems that use a µPD753208  
subseries.  
It must be used with the IE-75000-R or IE-75001-R.  
Emulation probe for the µPD753208GT.  
It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM.  
It is supplied with the 48-pin conversion adapter EV-9500GF-48 which facilitates  
connection to a target system.  
EV-9500GF-48  
Software  
IE control program  
Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix  
I/F and controls the above hardware on a host machine.  
Part No.  
(product name)  
Host machine  
OS  
Distribution media  
3.5-inch 2HD  
5-inch 2HD  
PC-9800 series  
MS-DOS  
µS5A13IE75X  
µS5A10IE75X  
Ver. 3.30 to  
Ver. 6.2 Note 2  
3.5-inch 2HC  
5-inch 2HC  
µS7B13IE75X  
µS7B10IE75X  
IBM PC/AT and its  
compatible machine  
Refer to section  
OS for IBM PC”  
Notes 1. Maintenance parts.  
2. Ver. 5.00 or later have the task swap function, but it cannot be used for this software.  
Remarks 1. Operation of the IE control program is guaranteed only on the above host machines and OSs.  
2. The µPD753204, 753206, 753208, and 75P3216 are commonly referred to as the µPD753208  
Subseries.  
76  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
OS for IBM PC  
The following IBM PC OS’s are supported.  
OS  
Version  
PC DOSTM  
Ver. 5.02 to Ver. 6.3  
Note  
Note  
J6.1/V  
to J6.3/V  
MS-DOS  
Ver. 5.0 to Ver. 6.22  
Note  
Note  
5.0/V  
to 6.2/V  
Note  
IBM DOSTM  
J5.02/V  
Note English version is supported.  
Caution Ver. 5.0 and later have the task swap function, but it cannot be used for this software.  
Data Sheet U10166EJ2V1DS  
77  
µPD753204, 753206, 753208  
APPENDIX C RELATED DOCUMENTS  
The related documents indicated in this publication may include preliminary versions.  
However, preliminary versions are not marked as such.  
Documents related to device  
Document No.  
Japanese English  
Document Name  
µPD753204, 753206, 753208 Data Sheet  
µPD75P3216 Data Sheet  
U10166J  
U10241J  
U10158J  
U10453J  
This manual  
U10241E  
U10158E  
U10453E  
µPD753208 User’s Manual  
75XL Series Selection Guide  
Documents related to development tool  
Document No.  
Document Name  
Japanese  
EEU-846  
U11354J  
U10739J  
U11940J  
EEU-731  
EEU-730  
EEU-704  
English  
Hardware  
Software  
IE-75000-R/IE-75001-R User‘s Manual  
EEU-1416  
U11354E  
U10739E  
EEU-1335  
EEU-1346  
EEU-1363  
EEU-1291  
IE-75300-R-EM User’s Manual  
EP-753208GT-R User’s Manual  
PG-1500 User’s Manual  
RA75X Assembler Package User’s Manual  
Operation  
Language  
PG-1500 Controller User’s Manual  
PC-9800 Series  
(MS-DOS) Base  
IBM PC Series  
(PC DOS) Base  
EEU-5008  
U10540E  
Other related documents  
Document No.  
Document Name  
Japanese  
C10943X  
C10535J  
C11531J  
C10983J  
MEM-539  
C11893J  
C11416J  
English  
Semiconductor Device Package Manual  
Semiconductor Device Mounting Technology Manual  
Quality Grades on NEC Semiconductor Devices  
C10535E  
C11531E  
C10983E  
IEI-1201  
MEI-1202  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
Guide to Quality Assurance for Semiconductor Devices  
Microcontroller – Related Product Guide – Third Party Products –  
Caution The contents of the documents listed above are subject to change without prior notice to users.  
Make sure to use the latest edition when starting design.  
78  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is  
fixed, and also in the transition period when the input level passes through the area between VIL (MAX)  
and VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or  
GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins  
must be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
Data Sheet U10166EJ2V1DS  
79  
µPD753204, 753206, 753208  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
Electronics product in your application, pIease contact the NEC Electronics office in your country to  
obtain a list of authorized representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
[GLOBAL SUPPORT]  
http://www.necel.com/en/support/support.html  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics America, Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
NEC Electronics (Europe) GmbH  
Duesseldorf, Germany  
Tel: 0211-65030  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Sucursal en España  
Madrid, Spain  
Tel: 091-504 27 87  
Tel: 02-558-3737  
Succursale Française  
Vélizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics Shanghai Ltd.  
Shanghai, P.R. China  
Tel: 021-5888-5400  
Filiale Italiana  
Milano, Italy  
Tel: 02-66 75 41  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
Branch The Netherlands  
Eindhoven, TheNetherlands  
Tel: 040-2654010  
NEC Electronics Singapore Pte. Ltd.  
Novena Square, Singapore  
Tel: 6253-8311  
Tyskland Filial  
Taeby, Sweden  
Tel: 08-63 87 200  
United Kingdom Branch  
Milton Keynes, UK  
Tel: 01908-691-133  
J05.6  
80  
Data Sheet U10166EJ2V1DS  
µPD753204, 753206, 753208  
MS-DOS is a trademark of Microsoft Corporation.  
IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.  
These commodities, technology or software, must be exported in accordance  
with the export administration regulations of the exporting country.  
Diversion contrary to the law of that country is prohibited.  
The information in this document is current as of August, 2005. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD753204GT-XXX-T2-A

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753206

4-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD753206GT

4-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD753206GT-XXX

4-Bit Microcontroller
ETC

UPD753206GT-XXX-A

暂无描述
NEC

UPD753206GT-XXX-E1

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753206GT-XXX-E2

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753206GT-XXX-T1

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753206GT-XXX-T2

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753206GT-XXX-T2-A

IC,MICROCONTROLLER,4-BIT,UPD75000 CPU,CMOS,SSOP,48PIN,PLASTIC
RENESAS

UPD753208

4-BIT SINGLE-CHIP MICROCONTROLLERS
NEC

UPD753208GT

4-BIT SINGLE-CHIP MICROCONTROLLERS
NEC