UPD78070A [RENESAS]

8-BIT SINGLE-CHIP MICROCONTROLLER; 8位单芯片微控制器
UPD78070A
型号: UPD78070A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

8-BIT SINGLE-CHIP MICROCONTROLLER
8位单芯片微控制器

微控制器
文件: 总58页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78P083  
8-BIT SINGLE-CHIP MICROCONTROLLER  
DESCRIPTION  
The µPD78P083 is a member of the µPD78083 subseries of the 78K/0 series products. It includes an on-chip, 24-Kbyte,  
one-time PROM or EPROM.  
Because this device can be programmed by users, it is ideally suited for applications involving the evaluation of systems  
in development stages, small-scale production of many different products, and rapid development and time-to-market of  
a new product.  
Caution  
The µPD78P083DU does not maintain planned reliability when used in your systems’ mass-produced  
products. Please use only experimentally or for evaluation purposes during trial manufacture.  
The details of functions are described in the user’s manuals. Be sure to read the following manuals before  
designing.  
µPD78083 Subseries User's Manual  
: IEU-1407  
78K/0 Series User's Manual — Instructions : IEU-1372  
FEATURES  
Pin-compatible with mask ROM version (except VPP pin)  
Note  
Internal PROM: 24 Kbytes  
µPD78P083DU: Reprogrammable (ideally suited for system evaluation)  
µPD78P083CU, µPD78P083GB: One-time programmable (ideally suited for small-scale production)  
Note  
Internal high-speed RAM: 512 bytes  
Can be operated in the same supply voltage as the mask ROM version (VDD = 1.8 to 5.5 V)  
Corresponding to QTOPTM Microcontrollers  
Note The internal PROM and internal high-speed RAM capacities can be changed by setting the internal memory size  
switching register (IMS).  
Remark  
QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally  
supported by NEC's programming service (from programming to marking, screening and verification).  
*
Differs from the mask ROM version in the following points  
The same memory mapping as the mask ROM version is enabled by setting the internal memory size switching  
register (IMS).  
In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.  
The information in this document is subject to change without notice.  
Document No. U11006EJ1V0DS00 (1st edition)  
(Previous No. IP-3556)  
Date Published June 1996 P  
The mark  
shows major revised points.  
*
Printed in Japan  
1995  
©
µPD78P083  
ORDERING INFORMATION  
Part Number  
Package  
Internal ROM  
µPD78P083CU  
42-pin plastic shrink DIP (600 mil)  
44-pin plastic QFP (10 x 10 mm)  
44-pin plastic QFP (10 x 10 mm)  
42-pin ceramic shrink DIP  
One-Time PROM  
One-Time PROM  
One-Time PROM  
EPROM  
µPD78P083GB-3B4  
µPD78P083GB-3BS-MTX  
µPD78P083DU  
*
(with window) (600 mil)  
Caution  
µPD78P083GB has two kinds of package. (Refer to 9. PACKAGE DRAWINGS). Please refer an  
NEC’s sales representative for the available package.  
QUALITY GRADE  
Part Number  
Package  
Quality Grades  
µPD78P083CU  
42-pin plastic shrink DIP (600 mil)  
44-pin plastic QFP (10 x 10 mm)  
44-pin plastic QFP (10 x 10 mm)  
42-pin ceramic shrink DIP  
Standard  
µPD78P083GB-3B4  
µPD78P083GB-3BS-MTX  
µPD78P083DU  
Standard  
Standard  
Not applicable  
(with window) (600 mil)  
Please refer to “Quality grades on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC  
Corporation to know the specification of quality grade on the devices and its recommended applications.  
2
µPD78P083  
78K/0 SERIES DEVELOPMENT  
The following shows the 78K/0 series products development. Subseries names are shown inside frames.  
Products in mass production  
Products under development  
Y subseries products are compatible with I2C bus.  
Control  
A timer was added to the µPD78054 and external interface function was enhanced  
µPD78078  
µPD78078Y  
100-pin  
100-pin  
80-pin  
80-pin  
64-pin  
64-pin  
64-pin  
64-pin  
42/44-pin  
µPD78070A  
µPD78058F  
µPD78054  
µPD78018F  
µPD78014  
µPD780001  
µPD78002  
µPD78083  
µPD78070AY  
µPD78058FY  
µPD78054Y  
µPD78018FY  
µPD78014Y  
ROM-less versions of the µPD78078  
EMI noise reduced product of the µPD78054  
UART and D/A converter were added to the µPD78014 and I/O was enhanced  
Low-voltage (1.8 V) operation versions of the µPD78014 with several ROM and RAM  
capacities are available.  
An A/D converter and 16-bit timer were added to the µPD78002  
An A/D converter was added to the µPD78002  
µPD78002Y  
Basic subseries for control  
On-chip UART, capable of operating at a low voltage (1.8 V)  
FIPTM drive  
µPD780208  
µPD78044A  
µPD78024  
The I/O and FIP C/D of the µPD78044A were enhanced. Display output total: 53  
A 6-bit U/D counter was added to the µPD78024. Display output total: 34  
Basic subseries for driving FIP. Display output total: 26  
100-pin  
80-pin  
64-pin  
78K/0  
Series  
LCD drive  
The enhanced SIO to the µPD78064 and increased ROM and RAM capacities  
µPD780308Y  
µPD78064Y  
100-pin  
100-pin  
100-pin  
µPD780308  
µPD78064B  
µPD78064  
EMI noise reduced product of the µPD78064  
Subseries for driving LCDs, On-chip UART  
IEBusTM supported  
µPD78098  
80-pin  
64-pin  
The IEBus controller was added to the µPD78054  
LV control  
On-chip PWM, LV digital code decoder, and Hsync counter  
µPD78P0914  
3
µPD78P083  
The following table shows the differences among subseries functions.  
Function ROM  
Capacity  
32 K to 60 K 4ch 1ch 1ch 1ch 8ch 2ch 3ch (UART: 1ch) 88  
Timer  
8-bit 8-bit Serial Interface  
I/O VDD MIN. External  
Part Number  
Control  
8-bit 16-bit Watch WDT A/D D/A  
Value  
1.8 V  
2.7 V  
Expansion  
Available  
µPD78078  
µPD78070A  
61  
69  
µPD78058F 48 K to 60 K 2ch  
µPD78054 16 K to 60 K  
µPD78018F 8 K to 60 K  
µPD78014 8 K to 32 K  
µPD780001 8 K  
2.0 V  
1.8 V  
2.7 V  
2ch  
1ch  
53  
1ch  
39  
53  
µPD78002  
µPD78083  
8 K to 16 K  
Available  
8ch  
1ch (UART: 1ch) 33  
1.8 V  
2.7 V  
FIP drive  
µPD780208 32 K to 60 K 2ch 1ch 1ch 1ch 8ch  
µPD78044A 16 K to 40 K  
2ch  
74  
68  
54  
µPD78024  
24 K to 32 K  
LCD drive  
µPD780308 48 K to 60 K 2ch 1ch 1ch 1ch 8ch  
µPD78064B 32 K  
3ch (UART: 1ch) 57  
2ch (UART: 1ch)  
1.8 V  
2.0 V  
µPD78064  
µPD78098  
16 K to 32 K  
32 K to 60 K 2ch 1ch 1ch 1ch 8ch 2ch 3ch (UART: 1ch) 69  
IEBus  
2.7 V  
4.5 V  
Available  
Available  
supported  
LV control  
µPD78P0914 32 K  
6ch  
1ch 8ch  
2ch  
54  
4
µPD78P083  
FUNCTION DESCRIPTION  
Item  
Function  
Note  
Internal memory  
• PROM: 24 Kbytes  
• RAM  
Internal high-speed RAM: 512 bytes Note  
Memory space  
General register  
Instruction cycles  
64 Kbytes  
8 bits x 32 registers (8 bits x 8 registers x 4 banks)  
Instruction execution time variable function is integrated.  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs/12.8 µs (@5.0-MHz operation with main system clock)  
• 16-bit operation  
Instruction set  
• Multiply/divide (8 bits x 8 bits, 16 bits ÷ 8 bits)  
• Bit manipulation (set, reset, test, Boolean operation)  
• BCD adjust, etc.  
I/O ports  
Total  
• CMOS input  
• CMOS input/output  
:
:
:
33  
1
32  
A/D converter  
Serial interface  
Timer  
• 8-bit resolution x 8 channels  
• 3-wire serial I/O/UART mode selectable: 1 channel  
• 8-bit timer/event counter: 2 channels  
• Watchdog timer: 1 channel  
Timer output  
Clock output  
2 pins (8-bit PWM output enable)  
19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and  
5.0 MHz (@ 5.0-MHz operation with main system clock)  
1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz  
Buzzer output  
(@ 5.0-MHz operation with main system clock)  
Vectored  
interrupts  
Maskable interrupts Internal  
Non-maskable interrupt Internal  
Software interrupt Internal  
:
:
:
8
1
1
external  
:
3
Power supply voltage  
Operating ambient temperature  
Packages  
VDD = 1.8 to 5.5 V  
TA = –40 to +85°C  
• 42-pin plastic shrink DIP (600 mil)  
• 44-pin plastic QFP (10 x 10 mm)  
• 42-pin ceramic shrink DIP (with window) (600 mil)  
Note  
Internal PROM and high-speed RAM capacities can be changed by setting the internal memory size switching  
register (IMS).  
5
µPD78P083  
PIN CONFIGURATIONS (Top View)  
(1) Normal operating mode  
• 42-pin plastic shrink DIP (600 mil) µPD78P083CU  
• 42-pin ceramic shrink DIP (with window) (600 mil) µPD78P083DU  
P55  
P56  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
V
SS  
2
P54  
P57  
3
P53  
P30  
4
P52  
P31  
5
P51  
P32  
6
P50  
P33  
7
P100/TI5/TO5  
P101/TI6/TO6  
P34  
8
P35/PCL  
P36/BUZ  
P37  
9
P70/R  
X
D/SI2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P71/T  
XD/SO2  
P72/ASCK/SCK2  
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
P13/ANI3  
P12/ANI2  
P11/ANI1  
P10/ANI0  
P00  
P01/INTP1  
P02/INTP2  
P03/INTP3  
RESET  
VPP  
X2  
X1  
V
DD  
20  
21  
23  
22  
AVSS  
AVDD  
AVREF  
Cautions 1. Connect VPP pin directly to VSS.  
2. Connect AVDD pin to VDD.  
3. Connect AVSS pin to VSS.  
6
µPD78P083  
• 44-pin plastic QFP (10 x 10 mm)  
µPD78P083GB-3B4, µPD78P083GB-3BS-MTX  
44 43 42 41 40 39 38 37 36 35 34  
33  
P12/ANI2  
P13/ANI3  
1
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
P14/ANI4  
3
P15/ANI5  
4
P16/ANI6  
5
P37  
P17/ANI7  
6
P36/BUZ  
P35/PCL  
P34  
P72/ASCK/SCK2  
7
P71/T  
X
D/SO2  
D/SI2  
8
P70/R  
X
9
P33  
P101/TI6/TO6  
P100/TI5/TO5  
10  
P32  
11  
NC  
12 13 14 15 16 17 18 19 20 21 22  
Cautions 1. Connect VPP pin directly to VSS.  
2. Connect AVDD pin to VDD.  
3. Connect AVSS pin to VSS.  
4. Connect NC pin to VSS for noise protection (It can be left open).  
7
µPD78P083  
P00 to P03  
P10 to P17  
P30 to P37  
P50 to P57  
P70 to P72  
P100, P101  
INTP1 to INTP3  
TI5, TI6  
: Port 0  
PCL  
: Programmable Clock  
: Port 1  
BUZ  
: Buzzer Clock  
: Port 3  
X1, X2  
RESET  
ANI0-ANI7  
AVDD  
AVSS  
AVREF  
VDD  
: Crystal (Main System Clock)  
: Reset  
: Port 5  
: Port 7  
: Analog Input  
: Port 10  
: Analog Power Supply  
: Analog Ground  
: Interrupt from Peripherals  
: Timer Input  
: Timer Output  
: Serial Input  
: Serial Output  
: Serial Clock  
: Receive Data  
: Transmit Data  
: Asynchronous Serial Clock  
: Analog Reference Voltage  
: Power Supply  
TO5, TO6  
SI2  
VPP  
: Programming Power Supply  
: Ground  
SO2  
VSS  
SCK2  
NC  
: Non-connection  
RxD  
TxD  
ASCK  
8
µPD78P083  
(2) PROM programming mode  
• 42-pin plastic shrink DIP (600 mil) µPD78P083CU  
• 42-pin ceramic shrink DIP (with window) (600 mil) µPD78P083DU  
A5  
A6  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
V
SS  
2
A4  
A7  
3
A3  
OE  
CE  
4
A2  
5
A1  
PGM  
A8  
6
A0  
7
A10  
A11  
A12  
A13  
A14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
8
9
(L)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
A9  
(L)  
RESET  
VPP  
Open  
(L)  
V
DD  
DD  
20  
21  
23  
22  
V
SS  
SS  
V
V
Cautions 1. (L):  
2. VSS:  
Individually connect to VSS via a pull-down resistor.  
Connect to GND.  
3. RESET: Set to low level.  
4. Open:  
Leave open.  
9
µPD78P083  
• 44-pin plastic QFP (10 x 10 mm)  
µPD78P083GB-3B4, µPD78P083GB-3BS-MTX  
44 43 42 41 40 39 38 37 36 35 34  
33  
D2  
D3  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
(L)  
(L)  
D4  
3
D5  
4
A9  
A8  
D6  
5
D7  
6
A14  
A13  
A12  
A11  
A10  
7
8
9
10  
PGM  
(L)  
11  
12 13 14 15 16 17 18 19 20 21 22  
Cautions 1. (L):  
2. VSS:  
Individually connect to VSS via a pull-down resistor.  
Connect to GND.  
3. RESET: Set to low level.  
4. Open: Leave open.  
A0 to A14  
: Address Bus  
: Data Bus  
RESET  
VDD  
: Reset  
: Power Supply  
D0 to D7  
CE  
: Chip Enable  
: Output Enable  
: Program  
VPP  
: Programming Power Supply  
: Ground  
OE  
VSS  
PGM  
10  
µPD78P083  
BLOCK DIAGRAM  
P100/TI5/TO5  
P00  
8-bit TIMER/  
EVENT COUNTER 5  
PORT 0  
PORT 1  
PORT 3  
PORT 5  
P01-P03  
8-bit TIMER/  
EVENT COUNTER 6  
P101/TI6/TO6  
P10-P17  
P30-P37  
78K/0  
CPU  
CORE  
WATCHDOG  
TIMER  
PROM  
(24 KBytes)  
SI2/R  
X
D/P70  
D/P71  
SERIAL  
INTERFACE 2  
SO2/T  
X
P50-P57  
P70-P72  
SCK2/ASCK/P72  
ANI0/P10-  
ANI7/P17  
A/D  
CONVERTER  
AVDD  
AVSS  
PORT 7  
AVREF  
DATA  
MEMORY  
(512 Bytes)  
INTP1/P01-  
INTP3/P03  
PORT 10  
P100, P101  
INTERRUPT  
CONTROL  
BUZZER OUTPUT  
BUZ/P36  
PCL/P35  
RESET  
X1  
SYSTEM  
CONTROL  
CLOCK OUTPUT  
CONTROL  
X2  
VDD  
VSS  
VPP  
11  
µPD78P083  
CONTENTS  
1.  
2.  
DIFFERENCES BETWEEN THE µPD78P083 AND MASK ROM VERSIONS ··· 13  
PIN FUNCTIONS ··· 14  
2.1 Pins in Normal Operating Mode ··· 14  
2.2 Pins in PROM Programming Mode ··· 16  
2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins ··· 16  
3.  
4.  
INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS) ··· 18  
PROM PROGRAMMING ··· 19  
4.1 Operating Modes ··· 19  
4.2 PROM Write Procedure ··· 21  
4.3 PROM Read Procedure ··· 25  
5.  
6.  
7.  
8.  
9.  
PROGRAM ERASURE (µPD78P083DU ONLY) ··· 26  
OPAQUE FILM ON ERASURE WINDOW (µPD78P083DU ONLY) ··· 26  
ONE-TIME PROM VERSION SCREENING ··· 26  
ELECTRICAL SPECIFICATIONS ··· 27  
*
*
PACKAGE DRAWINGS ··· 45  
10. RECOMMENDED SOLDERING CONDITIONS ··· 49  
APPENDIX A. DEVELOPMENT TOOLS ··· 50  
APPENDIX B. RELATED DOCUMENTS ··· 52  
12  
µPD78P083  
1. DIFFERENCES BETWEEN THE µPD78P083 AND MASK ROM VERSIONS  
The µPD78P083 is a single-chip microcontroller with an on-chip one-time PROM or with an on-chip EPROM which has  
program write, erasure and rewrite capability.  
Setting the internal memory size switching register (IMS) makes the functions except the PROM specification identical  
to the mask ROM versions, that is, the µPD78081 and µPD78082.  
Differences between the µPD78P083 and mask ROM versions are shown in Table 1-1.  
Table 1-1. Differences between the µPD78P083 and Mask ROM Versions  
Parameter  
µPD78P083  
One-time PROM/EPROM  
24 Kbytes  
Mask ROM Versions  
Mask ROM  
ROM type  
ROM capacity  
µPD78081  
µPD78082  
µPD78081  
µPD78082  
:
:
:
:
8 Kbytes  
16 Kbytes  
256 bytes  
384 bytes  
Internal high-speed RAM capacity  
512 bytes  
Note  
Internal ROM and internal high-speed  
RAM capacity change by internal  
memory size switching register  
IC pin  
Can be changed  
Can not be changed  
No  
Yes  
No  
VPP pin  
Yes  
Electrical specifications  
Refer to a data sheet of each product  
Note  
The internal PROM becomes 24 Kbytes and the internal expansion RAM becomes 512 bytes by the RESET input.  
13  
µPD78P083  
2. PIN FUNCTIONS  
2.1 Pins in Normal Operating Mode  
(1) Port pins  
Pin Name  
P00  
Input/Output  
Input  
Function  
Input only  
After Reset  
Input  
Alternate Function  
Port 0  
INTP1  
P01  
P02  
P03  
Input/output  
Input/output  
Input/output  
Input/output  
4-bit input/output port  
Input/output is specifiable  
bit-wise. When used as the  
input port, it is possible to  
connect a pull-up resistor by  
software.  
Input  
INTP2  
INTP3  
P10-P17  
Port 1  
Input  
Input  
Input  
ANI0-ANI7  
8-bit input/output port  
Input/output is specifiable bit-wise.  
When used as the input port, it is possible to connect  
Note  
a pull-up resistor by software.  
P30-P34  
P35  
Port 3  
PCL  
8-bit input/output port  
P36  
Input/output is specifiable bit-wise.  
When used as the input port, it is possible to connect  
a pull-up resistor by software.  
Port 5  
BUZ  
P37  
P50-P57  
8-bit input/output port  
Can drive up to seven LEDs directly.  
Input/output is specifiable bit-wise.  
When used as the input port, it is possible to connect  
a pull-up resistor by software.  
Port 7  
P70  
P71  
P72  
Input/output  
Input/output  
Input  
Input  
SI2/RxD  
3-bit input/output port  
SO2/TxD  
SCK2/ASCK  
Input/output is specifiable bit-wise.  
When used as the input port, it is possible to connect  
a pull-up resistor by software.  
Port 10  
P100  
P101  
TI5/TO5  
TI6/TO6  
2-bit input/output port  
Input/output is specifiable bit-wise.  
When used as the input port, it is possible to connect  
a pull-up resistor by software.  
Note  
When P10/ANI0-P17/ANI7 pins are used as the analog inputs for the A/D converter, set the port 1 to the input mode.  
The on-chip pull-up resistor is automatically disabled.  
14  
µPD78P083  
(2) Non-port pins  
Pin Name  
INTP1  
Input/Output  
Function  
After Reset  
Alternate Function  
Input  
External interrupt input by which the active edge (rising edge, Input  
falling edge, or both rising and falling edges) can be specified.  
P01  
INTP2  
INTP3  
SI2  
P02  
P03  
Input  
Serial interface serial data input.  
Serial interface serial data output.  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
P70/RxD  
SO2  
SCK2  
RxD  
Output  
P71/TxD  
Input/Output Serial interface serial clock input/output.  
P72/ASCK  
Input  
Output  
Input  
Input  
Asynchronous serial interface serial data input.  
Asynchronous serial interface serial data output.  
Asynchronous serial interface serial clock input.  
External count clock input to 8-bit timer (TM5).  
External count clock input to 8-bit timer (TM6).  
8-bit timer output.  
P70/SI2  
TxD  
P71/SO2  
ASCK  
TI5  
P72/SCK2  
P100/TO5  
TI6  
P101/TO6  
TO5  
Output  
Input  
P100/TI5  
TO6  
P101/TI6  
PCL  
Output  
Output  
Input  
Clock output. (for main system clock trimming)  
Buzzer output.  
Input  
Input  
Input  
P35  
BUZ  
ANI0-ANI7  
AVREF  
AVDD  
AVSS  
RESET  
X1  
P36  
A/D converter analog input.  
P10-P17  
Input  
A/D converter reference voltage input.  
A/D converter analog power supply. Connected to VDD.  
A/D converter ground potential. Connected to VSS.  
System reset input.  
Input  
Input  
Main system clock oscillation crystal connection.  
X2  
VDD  
Positive power supply.  
VPP  
High-voltage applied during program write/verification.  
Connected directly to VSS in normal operating mode.  
Ground potential.  
VSS  
NC  
Does not internally connected. Connect to VSS.  
(It can be left open)  
15  
µPD78P083  
2.2 Pins in PROM Programming Mode  
Pin Name  
RESET  
Input/Output Function  
Input  
PROM programming mode setting  
When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin,  
this chip is set in the PROM programming mode.  
VPP  
Input  
Input  
Input/output  
Input  
Input  
Input  
PROM programming mode setting and high-voltage applied during program write/verification.  
A0-A14  
D0-D7  
CE  
Address bus  
Data bus  
PROM enable input/program pulse input  
Read strobe input to PROM  
Program/program inhibit input in PROM programming mode.  
Positive power supply  
OE  
PGM  
VDD  
VSS  
Ground potential  
2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins  
Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1.  
For the configuration of each type of input/output circuit, see Figure 2-1.  
Table 2-1. Type of Input/Output Circuit of Each Pin  
Pin Name  
Input/Output  
Circuit Type  
Input/Output  
Recommended Connection for Unused Pins  
P00  
2
Input  
Connect to VSS.  
P01/INTP1  
P02/INTP2  
P03/INTP3  
P10/ANI0-P17/ANI7  
P30-P32  
8-A  
Input/Output  
Input/Output  
Independently connect to VSS via a resistor.  
11  
Independently connect to VDD or VSS via  
a resistor.  
5-A  
8-A  
5-A  
P33, P34  
P35/PCL  
P36/BUZ  
P37  
P50-P57  
5-A  
8-A  
5-A  
8-A  
8-A  
P70/SI2/RxD  
P71/SO2/TxD  
P72/SCK2/ASCK  
P100/TI5/TO5  
P101/TI6/TO6  
RESET  
2
Input  
Connect to VSS.  
AVREF  
AVDD  
Connect to VDD.  
AVSS  
Connect to VSS.  
VPP  
Connect directly to VSS.  
Connect to VSS (can leave open)  
NC  
16  
µPD78P083  
Figure 2-1. Types of Pin Input/Output Circuits  
Type 2  
Type 8-A  
VDD  
pull-up  
enable  
P-ch  
IN  
V
DD  
data  
P-ch  
IN/OUT  
output  
disable  
N-ch  
Schmitt-triggered input with hysteresis characteristics  
VDD  
Type 5-A  
V
DD  
Type 11  
pull-up  
enable  
pull-up  
enable  
P-ch  
P-ch  
V
DD  
V
DD  
data  
P-ch  
IN/OUT  
data  
P-ch  
output  
disable  
N-ch  
IN/OUT  
P-ch  
output  
disable  
N-ch  
Comparator  
+
N-ch  
REF (threshold voltage)  
V
input  
enable  
input  
enable  
17  
µPD78P083  
3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)  
This is a register to disable use of part of internal memories by software. By setting this internal memory size switching  
register (IMS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal  
memory (ROM, RAM).  
IMS is set with an 8-bit memory manipulation instruction.  
RESET input sets IMS to 46H.  
Figure 3-1. Internal Memory Size Switching Register Format  
Symbol  
IMS  
R/W  
R/W  
7
6
5
4
0
3
2
1
0
Address  
FFF0H  
After Reset  
46H  
RAM2 RAM1 RAM0  
ROM3 ROM2 ROM1  
ROM0  
Selection of Internal  
ROM Capacity  
ROM3 ROM2 ROM1 ROM0  
0
0
0
0
1
1
1
0
1
0
0
0
8 Kbytes  
16 Kbytes  
24 Kbytes  
Other than above  
Setting prohibited  
RAM2 RAM1 RAM0 Selection of Internal  
High-Speed RAM Capacity  
0
0
1
1
1
0
0
1
0
512 bytes  
384 bytes  
256 bytes  
Other than above  
Setting prohibited  
Table 3-1 shows the setting values of IMS which make the memory mapping the same as that of the mask ROM version.  
Table 3-1. Internal Memory Size Switching Register Setting Values  
Target Mask ROM Versions  
µPD78081  
IMS Setting Value  
82H  
64H  
µPD78082  
18  
µPD78P083  
4. PROM PROGRAMMING  
The µPD78P083 has an internal 24-Kbyte PROM as a program memory. For programming, set the PROM programming  
mode with the VPP and RESET pins. For the connection of unused pins, refer to “PIN CONFIGURATIONS (TOP VIEW)  
(2) PROM programming mode.”  
Caution  
Programs must be written in addresses 0000H to 5FFFH (The last address 5FFFH must be specified).  
They cannot be written by a PROM programmer which cannot specify the write address.  
4.1 Operating Modes  
When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the RESET pin, the PROM programming  
mode is set. This mode will become the operating mode as shown in Table 4-1 when the CE, OE, and PGM pins are set  
as shown.  
Further, when the read mode is set, it is possible to read the contents of the PROM.  
Table 4-1. Operating Modes of PROM Programming  
Pin  
RESET  
L
VPP  
VDD  
CE  
OE  
PGM  
D0 to D7  
Operating Mode  
Page data latch  
Page write  
+12.5 V  
+6.5 V  
H
H
L
L
x
L
H
L
Data input  
H
H
L
High-impedance  
Data input  
Byte write  
L
Program verify  
Program inhibit  
H
H
L
Data output  
H
L
High-impedance  
x
Read  
+5 V  
+5 V  
L
L
H
L
H
x
Data output  
Output disable  
Standby  
H
x
High-impedance  
High-impedance  
x
x : L or H  
19  
µPD78P083  
(1) Read mode  
Read mode is set if CE = L, OE = L is set.  
(2) Output disable mode  
Data output becomes high-impedance, and is in the output disable mode, if OE = H is set.  
Therefore, it allows data to be read from any device by controlling the OE pin, if multiple µPD78P083s are connected  
to the data bus.  
(3) Standby mode  
Standby mode is set if CE = H is set.  
In this mode, data outputs become high-impedance irrespective of the OE status.  
(4) Page data latch mode  
Page data latch mode is set if CE = H, PGM = H, OE = L are set at the beginning of page write mode.  
In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.  
(5) Page write mode  
After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying  
a 0.1-ms program pulse (active low) to the PGM pin with CE = H, OE = H. Then, program verification can be performed,  
if CE = L, OE = L are set.  
If programming is not performed by a one-time program pulse, X times (X 10) write and verification operations should  
be executed repeatedly.  
(6) Byte write mode  
Byte write is executed when a 0.1-ms program pulse (active low) is applied to the PGM pin with CE = L, OE = H. Then,  
program verification can be performed if OE = L is set.  
If programming is not performed by a one-time program pulse, X times (X 10) write and verification operations should  
be executed repeatedly.  
(7) Program verify mode  
Program verify mode is set if CE = L, PGM = H, OE = L are set.  
In this mode, check if a write operation is performed correctly after the write.  
(8) Program inhibit mode  
Program inhibit mode is used when the OE pin, VPP pin, and D0-D7 pins of multiple µPD78P083s are connected in  
parallel and a write is performed to one of those devices.  
When a write operation is performed, the page write mode or byte write mode described above is used. At this time,  
a write is not performed to a device which has the PGM pin driven high.  
20  
µPD78P083  
4.2 PROM Write Procedure  
Figure 4-1. Page Program Mode Flow Chart  
Start  
Address = G  
V
DD = +6.5 V, VPP = +12.5 V  
X = 0  
Latch  
Address = Address + 1  
Latch  
Address = Address + 1  
Latch  
Address = Address + 1  
Latch  
Address = Address + 1  
No  
X = X + 1  
Yes  
X = 10 ?  
0.1-ms program pulse  
Fail  
Verify 4 bytes  
Pass  
No  
Address = N ?  
Yes  
V
DD = 4.5 to 5.5 V, VPP = VDD  
Pass  
Fail  
Verify all bytes  
All Pass  
Write end  
Defective product  
G = Start address  
N = Program last address  
21  
µPD78P083  
Figure 4-2. Page Program Mode Timing  
Page Data Latch  
Page Program  
Program Verify  
A2-A14  
A0, A1  
D0-D7  
Data Input  
Data Output  
V
V
V
PP  
V
V
PP  
DD  
DD + 1.5  
DD  
V
DD  
IH  
V
CE  
V
IL  
VIH  
VIL  
VIH  
VIL  
PGM  
OE  
22  
µPD78P083  
Figure 4-3. Byte Program Mode Flow Chart  
Start  
Address = G  
V
DD = +6.5 V, VPP = +12.5 V  
X = 0  
X = X + 1  
No  
Yes  
X = 10 ?  
0.1-ms program pulse  
Address = Address + 1  
Fail  
Verify  
Pass  
No  
Address = N ?  
Yes  
V
DD = 4.5 to 5.5 V, VPP = VDD  
Pass  
Fail  
Verify all bytes  
All Pass  
Write end  
Defective product  
G = Start address  
N = Program last address  
23  
µPD78P083  
Figure 4-4. Byte Program Mode Timing  
Program  
Program Verify  
A0-A14  
D0-D7  
Data Input  
Data Output  
VPP  
VPP  
VDD  
VDD + 1.5  
VDD  
VDD  
VIH  
CE  
PGM  
OE  
VIL  
VIH  
VIL  
VIH  
VIL  
Cautions 1. VDD should be applied before VPP and removed after VPP.  
2. VPP must not exceed +13.5 V including overshoot.  
3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being  
applied to VPP.  
24  
µPD78P083  
4.3 PROM Read Procedure  
The contents of PROM are readable to the external data bus (D0-D7) according to the read procedure shown below.  
(1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in “PIN  
CONFIGURATIONS (TOP VIEW) (2) PROM programming mode”.  
(2) Supply +5 V to the VDD and VPP pins.  
(3) Input address of read data into the A0-A16 pins.  
(4) Read mode  
(5) Output data to D0-D7 pins.  
The timings of the above steps (2) to (5) are shown in Figure 4-5.  
Figure 4-5. PROM Read Timings  
A0-A14  
Address Input  
CE (Input)  
OE (Input)  
D0-D7  
Hi-Z  
Hi-Z  
Data Output  
25  
µPD78P083  
5. PROGRAM ERASURE (µPD78P083DU ONLY)  
*
The µPD78P083DU is capable of erasing (FFH) the data written in a program memory and rewriting.  
To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm.  
Normally, irradiate ultraviolet rays of 254-nm wavelength. The amount of exposure required to completely erase the  
programmed data is as follows:  
UV intensity x erasing time  
: 30 Ws/cm2 or more  
Erasure time: 40 min. or more (When a UV lamp of 12,000 µW/cm2 is used. However, a longer time may be needed  
because of deterioration in performance of the UV lamp, soiled erasure window, etc.)  
When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided  
for a UV lamp, irradiate the ultraviolet rays after removing the filter.  
6. OPAQUE FILM ON ERASURE WINDOW (µPD78P083DU ONLY)  
To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal  
circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents  
erasure is not performed.  
7. ONE-TIME PROM VERSION SCREENING  
The one-time PROM version (µPD78P083CU, 78P083GB-3B4, 78P083GB-3BS-MTX) cannot be tested completely by  
NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing  
necessary data and performing high-temperature storage under the condition below.  
Storage Temperature  
Storage Time  
24 hours  
125°C  
NEC offers for an additional fee one-time PROM writing to marking, screening, and verify for products designated as  
"QTOP Microcontroller". Please contact an NEC sales representative for details.  
*
26  
µPD78P083  
8. ELECTRICAL SPECIFICATIONS  
*
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Symbol Test Conditions  
Ratings  
–0.3 to +7.0  
Unit  
V
Supply voltage  
VDD  
VPP  
AVDD  
AVREF  
AVSS  
VI1  
–0.3 to +13.5  
V
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to +0.3  
V
V
V
Input voltage  
–0.3 to VDD + 0.3  
PROM programming mode –0.3 to +13.5  
–0.3 to VDD + 0.3  
Analog input pins  
–10  
V
VI2  
A9  
V
Output voltage  
VO  
V
Analog input voltage  
Output current, high  
VAN  
IOH  
P10-P17  
Per pin  
AVSS – 0.3 to AVREF + 0.3  
V
mA  
mA  
Total for P10-P17, P50-P54, P70-P72,  
P100, P101  
–15  
Total for P01-P03, P30-P37, P55-P57  
–15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
Note  
Output current, low  
IOL  
Per pin  
Peak value 30  
r.m.s. value 15  
Total for P50-P54  
Total for P55-P57  
Peak value 100  
r.m.s. value 70  
Peak value 100  
r.m.s. value 70  
Peak value 50  
r.m.s. value 20  
Peak value 50  
r.m.s. value 20  
Total for P10-P17, P70-P72, P100,  
P101  
Total for P01-P03, P30-P37  
Operating ambient temperature  
Storage temperature  
TA  
–40 to +85  
–65 to +150  
Tstg  
°C  
Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] x Duty  
Caution  
Remark  
If the absolute maximum rating of even one of the above parameters is exceeded, the quality of the  
product may be degraded. The absolute maximum ratings are therefore the rated values that may, if  
exceeded, physically damage the product. Be sure to use the product with all the absolute maximum  
ratings observed.  
Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.  
27  
µPD78P083  
Capacitance (TA = 25°C, VDD = VSS = 0 V)  
Parameter  
Symbol Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input capacitance  
I/O capacitance  
CIN  
CIO  
f = 1 MHz, Unmeasured pins returned to 0 V.  
f = 1 MHz,  
P01-P03, P10-P17, P30-P37,  
P50-P57, P70-P72, P100,  
P101  
15  
pF  
Unmeasured pins  
returned to 0 V.  
Remark  
Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.  
Main System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Resonator  
Recommended  
Circuit  
Parameter  
Test Conditions  
MIN.  
1.0  
TYP.  
MAX.  
5.0  
Unit  
Ceramic  
V
PP X2  
X1  
Oscillation frequency  
(fX) Note 1  
VDD = Oscillation voltage  
range  
MHz  
resonator  
C2  
C1  
Oscillation stabilization  
timeNote 2  
After VDD came to MIN.  
of oscillation voltage range  
4
ms  
V
PP X2  
C2  
X1  
Crystal  
Oscillation frequency  
(fX) Note 1  
1.0  
5.0  
MHz  
ms  
resonator  
C1  
Oscillation stabilization  
timeNote 2  
VDD = 4.5 to 5.5 V  
10  
30  
5.0  
External clock  
X1 input frequency  
(fX) Note 1  
1.0  
85  
MHz  
ns  
X2  
X1  
X1 input high- and  
low-level widths (tXH, tXL)  
500  
µ
PD74HCU04  
Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.  
2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.  
Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines  
in the figures as follows to avoid adverse influences on the wiring capacitance:  
Keep the wiring length as short as possible.  
Do not cross the wiring over other signal lines.  
Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.  
Always keep the ground point of the capacitor of the oscillation circuit at the same potential as VSS.  
Do not connect the power source pattern through which a high current flows.  
Do not extract signals from the oscillation circuit.  
28  
µPD78P083  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Input voltage, high  
VIH1  
P10-P17, P30-P32,  
VDD = 2.7 to 5.5 V  
0.7VDD  
VDD  
P35-P37, P50-P57,  
P71  
0.8VDD  
0.8VDD  
VDD  
VDD  
V
V
VIH2  
P00-P03, P33, P34,  
P70, P72, P100, P101,  
RESET  
VDD = 2.7 to 5.5 V  
0.85VDD  
VDD  
V
VIH3  
VIL1  
X1, X2  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD–0.5  
VDD–0.2  
0
VDD  
VDD  
V
V
V
Input voltage, low  
P10-P17, P30-P32,  
P35-P37, P50-P57,  
P71  
0.3VDD  
0
0
0.2VDD  
0.2VDD  
V
V
VIL2  
P00-P03, P33, P34,  
P70, P72, P100,  
P101, RESET  
X1, X2  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
0.15VDD  
0
V
VIL3  
VOH  
VOL  
0
0.4  
0.2  
V
V
V
V
V
0
Output voltage, high  
Output voltage, low  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
VDD–1.0  
VDD–0.5  
IOH = –100 µA  
P50-P57  
VDD = 2.0 to 4.5 V,  
0.8  
2.0  
0.4  
IOL = 10 mA  
VDD = 4.5 to 5.5 V,  
IOL = 15 mA  
0.4  
V
V
P01-P03, P10-P17,  
P30-P37, P70-P72,  
P100, P101  
VDD = 4.5 to 5.5 V,  
IOL = 1.6 mA  
IOL = 400 µA  
0.5  
3
V
Input-leak current, high  
Input-leak current, low  
ILIH1  
VIN = VDD  
P00-P03, P10-P17,  
P30-P37, P50-P57,  
P70-P72, P100,  
P101, RESET  
X1, X2  
µA  
ILIH2  
ILIL1  
20  
–3  
µA  
µA  
VIN = 0 V  
P00-P03, P10-P17,  
P30-P37, P50-P57,  
P70-P72, P100,  
P101, RESET  
X1, X2  
ILIL2  
ILOH  
ILOL  
R
–20  
3
µA  
µA  
µA  
kΩ  
Output leak current, high  
Output leak current, low  
Software pull-up resistor  
VOUT = VDD  
VOUT = 0 V  
VIN = 0 V  
–3  
90  
P01-P03, P10-P17,  
P30-P37, P50-P57,  
P70-P72, P100,  
P101  
15  
40  
Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.  
29  
µPD78P083  
DC Characteristics (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
5.4  
MAX.  
16.2  
2.4  
Unit  
mA  
mA  
mA  
mA  
mA  
Note 1  
Note 4  
Note 5  
Note 5  
Note 4  
Note 5  
Supply current  
IDD1  
5.0-MHz crystal  
oscillation operating  
VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
0.8  
mode (fXX = 2.5 MHz) Note 2 VDD = 2.0 V ± 10%  
5.0-MHz crystal oscil- VDD = 5.0 V ± 10%  
lation operating mode VDD = 3.0 V ± 10%  
0.45  
9.5  
1.35  
28.5  
3.0  
1.0  
Note 3  
(fXX = 5.0 MHz)  
IDD2  
5.0-MHz crystal oscil- VDD = 5.0 V ± 10%  
1.4  
0.5  
4.2  
1.5  
mA  
mA  
µA  
lation HALT mode  
VDD = 3.0 V ± 10%  
VDD = 2.0 V ± 10%  
Note 2  
(fXX = 2.5 MHz)  
280  
1.6  
840  
4.8  
5.0-MHz crystal oscil- VDD = 5.0 V ± 10%  
mA  
mA  
lation HALT mode  
VDD = 3.0 V ± 10%  
0.65  
1.95  
Note 3  
(fXX = 5.0 MHz)  
STOP mode  
IDD3  
VDD = 5.0 V ± 10%  
VDD = 3.0 V ± 10%  
VDD = 2.0 V ± 10%  
0.1  
30  
10  
10  
µA  
µA  
µA  
0.05  
0.05  
Notes 1. Not including AVREF, AVDD currents or port currents (including current flowing into internal pull-up resistors).  
2. fXX = fX/2 operation (when oscillation mode selection register (OSMS) is set to 00H).  
3. fXX = fX operation (when oscillation mode selection register (OSMS) is set to 01H).  
4. High-speed mode operation (when processor clock control register (PCC) is set to 00H).  
5. Low-speed mode operation (when processor clock control register (PCC) is set to 04H).  
Remark  
fxx: Main system clock frequency (fx or fx/2)  
fx: Main system clock oscillation frequency  
30  
µPD78P083  
AC Characteristics  
(1) Basic Operation (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
Parameter  
Cycle time  
Symbol  
Test Conditions  
VDD = 2.7 to 5.5 V  
MIN.  
0.8  
2.0  
0.4  
0.8  
0
TYP.  
MAX.  
64  
Unit  
µs  
Note1  
TCY  
fXX = fX/2  
(minimum instruction execution  
time)  
64  
µs  
Note2  
fXX = fX  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
32  
µs  
32  
µs  
TI5, TI6  
fTI  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 2.7 to 5.5 V  
4
MHz  
kHz  
ns  
input frequency  
TI5, TI6 input high-/  
low-level widths  
Interrupt input high-/  
low-level widths  
RESET low-level width  
0
275  
tTIH,  
tTIL  
100  
1.8  
10  
µs  
tINTH,  
tINTL  
tRSL  
µs  
20  
µs  
10  
µs  
20  
µs  
Notes 1. When oscillation mode selection register (OSMS) is set to 00H.  
2. When OSMS is set to 01H.  
Remark  
fxx: Main system clock frequency (fx or fx/2)  
fx: Main system clock oscillation frequency  
TCY vs VDD  
TCY vs VDD  
(Main System Clock fxx = fx/2 Operation)  
(Main System Clock fxx = fx Operation)  
60  
10  
60  
10  
µ
µ
Operation  
Operation  
Guaranteed Range  
Guaranteed  
Range  
2.0  
1.0  
2.0  
1.0  
0.5  
0.4  
0.5  
0.4  
0
0
1
2
3
4
5
6
1
2
3
4
5
6
Power Supply Voltage VDD [V]  
Power Supply Voltage VDD [V]  
31  
µPD78P083  
(2) Serial Interface (TA = –40 to +85°C, VDD = 1.8 to 5.5 V)  
(a) 3-wire serial I/O mode (SCK2 ··· internal clock output)  
Parameter  
SCK2 cycle time  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
1600  
3200  
4800  
tKCY1/2–50  
tKCY1/2–100  
100  
SCK2 high-/low-level width  
tKH1,  
tKL1  
VDD = 4.5 to 5.5 V  
SI2 setup time  
tSIK1  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
(to SCK2 )  
150  
300  
400  
SI2 hold time  
tKSI1  
400  
(from SCK2 )  
SCK2 ↓ → SO2  
output delay time  
tKSO1  
C = 100 pFNote  
300  
ns  
Note C is the SCK2, SO2 output line load capacitance.  
(b) 3-wire serial I/O mode (SCK2 ··· external clock input)  
Parameter  
SCK2 cycle time  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY2  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
1600  
3200  
4800  
400  
SCK2 high-/low-level width  
tKH2,  
tKL2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI2 setup time  
(to SCK2 )  
tSIK2  
tKSI2  
tKSO2  
VDD = 2.0 to 5.5 V  
150  
SI2 hold time  
400  
(from SCK2 )  
SCK2 ↓ → SO2  
output delay time  
SCK2 rise, fall time  
C = 100 pFNote  
VDD = 2.0 to 5.5 V  
300  
500  
ns  
ns  
ns  
tR2,  
tF2  
1000  
Note C is the SO2 output line load capacitance.  
32  
µPD78P083  
(c) UART mode (Dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
78125  
39063  
19531  
9766  
Unit  
bps  
bps  
bps  
bps  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
(d) UART mode (External clock input)  
Parameter  
ASCK cycle time  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
tKCY3  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ASCK high-/low-level width  
tKH3,  
tKL3  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
ns  
800  
ns  
1600  
2400  
ns  
ns  
Transfer rate  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
39063  
19531  
9766  
bps  
bps  
bps  
bps  
ns  
6510  
ASCK rise, fall time  
tR3,  
1000  
tF3  
33  
µPD78P083  
AC Timing Test Point (Excluding X1 Input)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
Clock Timing  
1/fx  
tXL  
tXH  
VDD – 0.5 V  
0.4 V  
X1 Input  
TI Timing  
1/fTI  
tTIL  
tTIH  
TI5, TI6  
34  
µPD78P083  
Serial Transfer Timing  
3-wire serial I/O mode:  
tKCY1, 2  
tKH1, 2  
tKL1, 2  
tR2  
tF2  
SCK2  
SI2  
tSIK1, 2  
tKSI1, 2  
Input Data  
tKSO1, 2  
Output Data  
SO2  
UART mode (external clock input):  
tKCY3  
tKL3  
tKH3  
tR3  
tF3  
ASCK  
35  
µPD78P083  
A/D Converter Characteristics (TA = –40 to +85°C, AVDD = VDD = 2.7 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Test Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
bit  
%
Note  
Total error  
2.7 V AVREF AVDD  
1.4  
200  
Conversion time  
tCONV  
tSAMP  
VIAN  
19.1  
12/fxx  
AVSS  
2.7  
µs  
µs  
V
Sampling time  
Analog input voltage  
Reference voltage  
AVREF-AVSS resistance  
AVREF  
AVDD  
AVREF  
RAIREF  
V
4
14  
kΩ  
Note Excluding quantization error (±1/2 LSB). Shown as a percentage of the full scale value.  
Remark  
fxx: Main system clock frequency (fx or fx/2)  
fx: Main system clock oscillation frequency  
36  
µPD78P083  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85°C)  
Parameter  
Symbol  
Test Conditions  
MIN.  
1.8  
TYP.  
0.1  
MAX.  
5.5  
Unit  
V
Data retention supply voltage VDDDR  
Data retention supply current  
Release signal set time  
Oscillation stabilization wait  
time  
IDDDR  
tSREL  
tWAIT  
VDDDR = 1.8 V  
10  
µA  
µs  
0
Release by RESET  
Release by interrupt  
217/fx  
ms  
ms  
Note  
Note 212/fxx or 214/fxx-217/fxx can be selected by bit 0-bit 2 (OSTS0-OSTS2) of oscillation stabilization time selection register  
(OSTS).  
Remark  
fxx: Main system clock frequency (fx or fx/2)  
fx: Main system clock oscillation frequency  
Data Retention Timing (STOP mode released by RESET)  
Internal reset operation  
HALT mode  
Operating  
mode  
STOP mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction execution  
RESET  
tWAIT  
Data Retention Timing (Standby release signal: STOP mode released by interrupt signal)  
HALT mode  
Operating  
mode  
STOP mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
tWAIT  
37  
µPD78P083  
Interrupt Input Timing  
tINTL  
tINTH  
INTP1-INTP3  
RESET Input Timing  
tRSL  
RESET  
38  
µPD78P083  
PROM Programming Characteristics  
DC Characteristics  
(1) PROM Write Mode (TA = 25 ±5˚C, VDD = 6.5 ±0.25 V, VPP = 12.5 ±0.3 V)  
Parameter  
Input voltage, high  
Input voltage, low  
Output voltage, high  
Output voltage, low  
Input leakage current  
VPP supply voltage  
VDD supply voltage  
VPP supply current  
VDD supply current  
Symbol SymbolNote  
Test Conditions  
MIN.  
0.7VDD  
0
TYP.  
MAX.  
VDD  
Unit  
V
VIH  
VIL  
VOH  
VOL  
ILI  
VIH  
VIL  
0.3VDD  
V
VOH  
VOL  
ILI  
IOH = –1 mA  
VDD – 1.0  
V
IOL = 1.6 mA  
0.4  
+10  
12.8  
6.75  
50  
V
0 VIN VDD  
–10  
12.2  
6.25  
µA  
V
VPP  
VDD  
IPP  
VPP  
VCC  
IPP  
12.5  
6.5  
V
PGM = VIL  
mA  
mA  
IDD  
ICC  
50  
(2) PROM Read Mode (TA = 25 ±5˚C, VDD = 5.0 ±0.5 V, VPP = VDD ±0.6 V)  
Parameter  
Input voltage, high  
Input voltage, low  
Output voltage, high  
Symbol SymbolNote  
Test Conditions  
MIN.  
0.7VDD  
0
TYP.  
MAX.  
VDD  
Unit  
V
VIH  
VIL  
VIH  
VIL  
0.3VDD  
V
VOH1  
VOH2  
VOL  
ILI  
VOH1  
VOH2  
VOL  
ILI  
IOH = –1 mA  
VDD – 1.0  
VDD – 0.5  
V
IOH = –100 µA  
V
Output voltage, low  
Input leakage current  
Output leakage current  
VPP supply voltage  
VDD supply voltage  
VPP supply current  
VDD supply current  
IOL = 1.6 mA  
0.4  
+10  
V
0 VIN VDD  
–10  
–10  
µA  
µA  
V
ILO  
ILO  
0 VOUT VDD, OE = VIH  
+10  
VPP  
VDD  
IPP  
VPP  
VCC  
IPP  
VDD – 0.6  
4.5  
VDD  
VDD + 0.6  
5.5  
5.0  
V
VPP = VDD  
100  
µA  
mA  
IDD  
ICCA1  
CE = VIL, VIN = VIH  
50  
Note Corresponding µPD27C1001A symbol.  
39  
µPD78P083  
AC Characteristics  
(1) PROM Write Mode  
(a) Page program mode (TA = 25 ±5˚C, VDD = 6.5 ±0.25 V, VPP = 12.5 ±0.3 V)  
Parameter  
Address setup time (to OE ) tAS  
Symbol Symbol Note  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
tAS  
2
2
2
2
2
2
0
2
0
OE setup time  
tOES  
tCES  
tOES  
tCES  
tDS  
CE setup time (to OE )  
Input data setup time (to OE ) tDS  
Address hold time (from OE ) tAH  
tAH  
tAHL  
tAHV  
tAHL  
tAHV  
tDH  
Input data hold time (from OE ) tDH  
OE ↑ → Data output float  
delay time  
tDF  
tDF  
250  
VPP setup time (to OE )  
VDD setup time (to OE )  
Program pulse width  
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOE  
1.0  
1.0  
ms  
ms  
ms  
µs  
0.095  
0.1  
0.105  
1
OE ↓ → Valid data delay time tOE  
OE pulse width during data  
latching  
tLW  
tLW  
1
µs  
PGM setup time  
CE hold time  
tPGMS  
tCEH  
tPGMS  
tCEH  
2
2
2
µs  
µs  
µs  
OE hold time  
tOEH  
tOEH  
(b) Byte program mode (TA = 25 ±5˚C, VDD = 6.5 ±0.25 V, VPP = 12.5 ±0.3 V)  
Parameter  
Address setup time (to PGM ) tAS  
Symbol Symbol Note  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
tAS  
2
2
2
2
2
2
OE set time  
tOES  
tCES  
tOES  
tCES  
tDS  
CE setup time (to PGM )  
Input data setup time (to PGM ) tDS  
Address hold time (from OE ) tAH  
tAH  
Input data hold time  
(from PGM )  
tDH  
tDH  
OE ↑ → Data output float  
delay time  
tDF  
tDF  
0
250  
ns  
VPP setup time (to PGM )  
VDD setup time (to PGM )  
Program pulse width  
tVPS  
tVDS  
tPW  
tVPS  
tVCS  
tPW  
tOE  
1.0  
1.0  
ms  
ms  
ms  
µs  
0.095  
0.1  
0.105  
1
OE ↓ → Valid data delay time tOE  
OE hold time  
tOEH  
2
µs  
Note Corresponding µPD27C1001A symbol.  
40  
µPD78P083  
(2) PROM Read Mode (TA = 25 ±5˚C, VDD = 5.0 ±0.5 V, VPP = VDD ±0.6 V)  
Parameter  
Address Data output  
delay time  
Symbol Symbol Note  
Test Conditions  
CE = OE = VIL  
MIN.  
TYP.  
MAX.  
800  
Unit  
ns  
tACC  
tACC  
CE ↓ → Data output delay time  
OE ↓ → Data output delay time  
OE ↑ → Data output float  
delay time  
tCE  
tOE  
tDF  
tCE  
tOE  
tDF  
OE = VIL  
CE = VIL  
CE = VIL  
800  
200  
60  
ns  
ns  
ns  
0
0
Address Data hold time  
tOH  
tOH  
CE = OE = VIL  
ns  
Note Corresponding µPD27C1001A symbol.  
(3) PROM Programming Mode (TA = 25˚C, VSS = 0 V)  
Parameter  
PROM programming mode  
setup time  
Symbol  
tSMA  
Test Conditions  
MIN.  
10  
TYP.  
MAX.  
Unit  
µs  
41  
µPD78P083  
PROM Write Mode Timing (page program mode)  
Page Data Latch  
Page Program  
Program Verify  
A2-A14  
t
AS  
t
t
AHL  
DH  
t
AHV  
A0, A1  
D0-D7  
t
DS  
t
DF  
Hi-Z  
Hi-Z  
Hi-Z  
Data  
Output  
tPGMS  
t
AH  
t
OE  
t
VPS  
Data Input  
VPP  
V
PP  
VDD  
t
VDS  
V
DD+1.5  
V
DD  
V
DD  
t
OEH  
t
CES  
V
IH  
CE  
VIL  
t
CEH  
t
PW  
V
IH  
PGM  
OE  
V
IL  
t
OES  
t
LW  
V
IH  
VIL  
42  
µPD78P083  
PROM Write Mode Timing (byte program mode)  
Program  
Program Verify  
Data Output  
A0-A14  
t
AS  
t
DF  
Hi-Z  
Hi-Z  
Hi-Z  
Data Input  
D0-D7  
t
DS  
t
DH  
t
AH  
VPP  
VPP  
V
DD  
t
VPS  
V
DD+1.5  
V
DD  
V
DD  
t
t
VDS  
CES  
t
OEH  
V
IH  
CE  
PGM  
OE  
V
IL  
t
PW  
V
IH  
V
IL  
t
OES  
t
OE  
V
IH  
VIL  
Cautions 1. VDD should be applied before VPP, and removed after VPP.  
2. VPP must not exceed +13.5 V including overshoot.  
3. Reliability may be adversely affected if removal/reinsertion is performed while + 12.5 V is being  
applied to VPP.  
PROM Read Mode Timing  
Effective Address  
A0-A14  
VIH  
CE  
OE  
V
IL  
t
CE  
V
IH  
Note 2  
DF  
VIL  
t
Note 1  
ACC  
Note 1  
OE  
t
t
t
OH  
Hi-Z  
Hi-Z  
D0-D7  
Data Output  
Notes 1. If you want to read within the range of tACC, make the OE input delay time from the fall of CE a maximum of tACC–  
tOE.  
2. tDF is the time from when either OE or CE first reaches VIH.  
43  
µPD78P083  
PROM Programming Mode Setting Timing  
V
DD  
VDD  
0
RESET  
V
DD  
V
PP  
0
t
SMA  
Effective Address  
A0-A14  
44  
µPD78P083  
9. PACKAGE DRAWINGS  
42PIN PLASTIC SHRINK DIP (600 mil)  
42  
22  
1
21  
A
K
L
F
B
R
M
C
D
M
N
NOTES  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
39.13 MAX.  
1.78 MAX.  
1.778 (T.P.)  
1.541 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.600 (T.P.)  
0.520  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
15.24 (T.P.)  
13.2  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P42C-70-600A-1  
Remark The shape and material of ES versions are the same as those of mass-produced versions.  
45  
µPD78P083  
µPD78P083GB-3B4  
44 PIN PLASTIC QFP ( 10)  
A
B
23  
22  
33  
34  
detail of lead end  
S
C
D
R
Q
12  
11  
44  
1
F
G
J
M
I
H
K
M
P
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
+0.017  
0.535  
A
B
C
D
13.6±0.4  
10.0±0.2  
10.0±0.2  
13.6±0.4  
–0.016  
+0.008  
–0.009  
0.394  
0.394  
0.535  
+0.008  
–0.009  
+0.017  
–0.016  
F
1.0  
1.0  
0.039  
0.039  
G
+0.004  
–0.005  
H
0.35±0.10  
0.014  
I
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P44GB-80-3B4-3  
Remark The shape and material of ES versions are the same as those of mass-produced versions.  
46  
µPD78P083  
µPD78P083GB-3BS-MTX  
44 PIN PLASTIC QFP ( 10)  
A
B
23  
22  
33  
34  
detail of lead end  
S
C
D
R
Q
12  
11  
44  
1
F
J
M
H
G
I
K
M
P
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.16 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
+0.008  
0.520  
A
B
C
D
13.2±0.2  
10.0±0.2  
10.0±0.2  
13.2±0.2  
–0.009  
+0.008  
0.394  
–0.009  
+0.008  
0.394  
–0.009  
+0.008  
0.520  
–0.009  
F
1.0  
1.0  
0.039  
0.039  
G
+0.08  
+0.003  
0.015  
H
0.37  
–0.07  
–0.004  
I
0.16  
0.007  
J
0.8 (T.P.)  
1.6±0.2  
0.031 (T.P.)  
K
L
0.063±0.008  
+0.009  
0.031  
0.8±0.2  
–0.008  
+0.002  
0.007  
+0.06  
0.17  
M
–0.003  
–0.05  
N
P
Q
0.10  
0.004  
2.7  
0.106  
0.125±0.075  
0.005±0.003  
+7°  
3°  
+7°  
3°  
R
S
–3°  
–3°  
3.0 MAX.  
0.119 MAX.  
S44GB-80-3BS  
Remark The shape and material of ES versions are the same as those of mass-produced versions.  
47  
µPD78P083  
42PIN CERAMIC SHRINK DIP (WINDOW) (600 mil)  
X
42  
22  
1
21  
A
K
L
Z
F
D
B
M
N
M
C
0°~15°  
P42DW-70-600A  
NOTES  
ITEM  
MILLIMETERS  
38.25 MAX.  
1.345 MAX.  
1.778 (T.P.)  
0.46 0.05  
0.85 MIN.  
3.5 0.3  
INCHES  
1) Each lead centerline is located within 0.25  
mm (0.01 inch) of its true position (T.P.) at  
maximum material condition.  
A
B
C
D
F
1.506 MAX.  
0.053 MAX.  
0.07 (T.P.)  
0.018 0.002  
0.033 MIN.  
0.138 0.012  
0.040 MIN.  
0.119  
2) Item "K" to center of leads when formed  
parallel.  
G
H
I
1.02 MIN.  
3.026  
J
5.282 MAX.  
15.24 (T.P.)  
0.208 MAX.  
0.600 (T.P.)  
0.590  
K
L
14.99  
0.010+–0.0023  
M
N
X
Y
Z
0.25 0.05  
0.25  
0.01  
12.0  
6.0  
0.472  
0.236  
4-R3.0  
4-R0.118  
48  
µPD78P083  
10. RECOMMENDED SOLDERING CONDITIONS  
*
It is recommended that the µPD78P083 be soldered under the following conditions.  
For details on the recommended soldering conditions, refer to information document "Semiconductor Device Mounting  
Technology Manual" (C10535E).  
For soldering methods and conditions other than those recommended, please contact your NEC sales representative.  
Table 10-1. Soldering Conditions for Surface Mount Types  
µPD78P083GB-3B4  
: 44-pin plastic QFP (10 x 10 mm)  
µPD78P083GB-3BS-MTX : 44-pin plastic QFP (10 x 10 mm)  
Soldering Method  
Infrared ray reflow  
Soldering Conditions  
Symbol  
Package peak temperature: 235˚C, Reflow time: 30 seconds or  
less (at 210˚C or higher), Number of reflow processes: 2 or less  
< Cautions >  
IR35-00-2  
VP15-00-2  
(1) Wait for the device temperature to return to normal after the  
first reflow before starting the second reflow.  
(2) Do not perform flux cleaning with water after the first reflow.  
Package peak temperature: 215˚C, Reflow time: 40 seconds or  
less (at 200˚C or higher), Number of reflow processes: 2 or less  
< Cautions >  
VPS  
(1) Wait for the device temperature to return to normal after the  
first reflow before starting the second reflow.  
(2) Do not perform flux cleaning with water after the first reflow.  
Solder temperature: 260˚C or below, Flow time: 10 seconds or  
less, Number of flow processes: 1,  
Wave soldering  
Partial heating  
WS60-00-1  
Preheating temperature: 120˚C max. (package surface  
temperature)  
Pin temperature: 300˚C or below,  
Flow time: 3 seconds or less (per pin row)  
Caution Do not use different soldering methods together (except for partial heating method).  
Table 10-2. Soldering Condition for Hole-Through Types  
µPD78P083CU : 42-pin plastic shrink DIP (600 mil)  
µPD78P083DU : 42-pin ceramic shrink DIP (with window) (600 mil)  
Soldering Method  
Soldering Conditions  
Wave Soldering  
(only pins)  
Solder temperature: 260°C or below, Flow time: 10 seconds or less  
Partial heating  
Pin temperature: 300°C or below, Flow time: 3 seconds or less (per pin)  
Caution Apply wave soldering only to the pins and be careful so as not to bring solder into direct contact with  
the package.  
49  
µPD78P083  
APPENDIX A. DEVELOPMENT TOOLS  
*
The following development tools are available to support development of systems using the µPD78P083.  
Language Processing Software  
Notes 1, 2, 3, 4  
RA78K/0  
CC78K/0  
DF78083  
Assembler package common to the 78K/0 series  
C compiler package common to the 78K/0 series  
Device file used for the µPD78083 subseries  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
CC78K/0–L  
C compiler library source file common to the 78K/0 series  
PROM Writing Tools  
PG-1500  
PROM programmer  
PA-78P083CU  
PA-78P083GB  
Programmer adapter connected to the PG-1500  
Notes 1, 2  
PG-1500 Controller  
Control program for the PG-1500  
Debugging Tools  
IE-78000-R  
In-circuit emulator common to the 78K/0 series  
Note 8  
IE-78000-R-A  
In-circuit emulator common to the 78K/0 series (for integrated debugger)  
Break board common to the 78K/0 series  
IE-78000-R-BK  
IE-78078-R-EM  
EP-78083CU-R  
EP-78083GB-R  
EV-9200G-44  
Emulation board common to the µPD78078 subseries  
Emulation probe for the µPD78083 subseries  
Socket mounted on the target system board prepared for 44-pin plastic QFP  
System simulator common to the 78K/0 series  
Integrated debugger for IE-78000-R-A  
Notes 5, 6, 7  
SM78K0  
Notes 4, 5, 6, 7, 8  
ID78K0  
Notes 1, 2  
SD78K/0  
Screen debugger for the IE-78000-R  
Notes 1, 2, 5, 6, 7  
DF78083  
Device file used for the µPD78083 subseries  
Notes 1. Based on PC-9800 series (MS-DOSTM)  
2. Based on IBM PC/ATTM and its compatibles (PC DOSTM/IBM DOSTM/MS-DOS)  
3. Based on HP9000 series 300TM (HP-UXTM)  
4. Based on HP9000 series 700TM (HP-UX), SPARCstationTM (SunOSTM), and EWS4800 series (EWS-UX/V)  
5. Based on PC-9800 series (MS-DOS + WindowsTM)  
6. IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows)  
7. Based on NEWSTM (NEWS-OSTM)  
8. Under development  
Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on the third party development  
tools.  
2. Use the RA78K/0, CC78K/0, SM78K0, ID78K0, and SD78K/0 in combination with the DF78083.  
50  
µPD78P083  
Fuzzy Inference Development Support System  
Note 2  
FE9000 Note 1/FE9200  
FT9080 Note 1/FT9085  
Fuzzy knowledge data creation tool  
Note 3  
Translator  
Notes 1, 3  
FI78K0  
Fuzzy inference module  
Fuzzy inference debugger  
Notes 1, 3  
FD78K0  
Notes 1. Based on PC-9800 series (MS-DOS)  
2. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS+Windows)  
3. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS)  
Remark  
Please refer to the 78K/0 Series Selection Guide (U11126E) for information on the third party development  
tools.  
51  
µPD78P083  
APPENDIX B. RELATED DOCUMENTS  
Documents Related to Devices  
*
Document Name  
Document No.  
Japanese  
IEU-886  
English  
IEU-1407  
IEU-1372  
µPD78083 Subseries User’s Manual  
78K/0 Series User’s Manual—Instructions  
78K/0 Series Instruction Table  
IEU-849  
U10903J  
U10904J  
IEM-5599  
IEA-767  
78K/0 Series Instruction Set  
µPD78083 Subseries Special Function Register Table  
78K/0 Series Application Note  
Basic (III)  
U10182E  
Documents Related to Development Tools (User's Manual)  
Document Name  
Document No.  
Japanese  
English  
EEU-1399  
EEU-1404  
EEU-1402  
EEU-1280  
EEU-1284  
EEA-1208  
RA78K Series Assembler Package  
Operation  
Language  
EEU-809  
EEU-815  
EEU-817  
EEU-656  
EEU-655  
EEA-618  
RA78K Series Structured Assembler Preprocessor  
CC78K Series C Compiler  
Operation  
Language  
Programming  
know-how  
CC78K/0 C Compiler Application Note  
CC78K Series Library Source File  
PG-1500 PROM Programmer  
PG-1500 Controller PC-9800 Series (MS-DOS) Based  
PG-1500 Controller IBM PC Series (PC DOS) Based  
IE-78000-R  
EEU-777  
EEU-651  
EEU-704  
EEU-5008  
EEU-810  
U10057J  
EEU-867  
U10775J  
EEU-5003  
EEU-5002  
U10092J  
EEU-1335  
EEU-1291  
U10540E  
EEU-1398  
U10057E  
EEU-1427  
EEU-1504  
EEU-1529  
U10181E  
U10092E  
IE-78000-R-A  
IE-78000-R-BK  
IE-78078-R-EM  
EP-78083  
SM78K0 System Simulator  
SM78K Series System Simulator  
Reference  
Third party’s user  
open interface  
specifications  
Introduction  
Reference  
SD78K/0 Screen Debugger  
PC-9800 Series (MS-DOS) Based  
SD78K/0 Screen Debugger  
IBM PC/AT (PC DOS) Based  
EEU-852  
U10952J  
EEU-5024  
EEU-993  
Introduction  
Reference  
EEU-1414  
EEU-1413  
Caution  
The contents of the documents listed above are subject to change without prior notice. Make sure to  
use the latest edition when starting design.  
52  
µPD78P083  
Documents Related to Embedded Software (User’s Manual)  
Document Name  
Document No.  
Japanese English  
EEU-5010  
78K/0 Series OS MX78K0  
Basic  
Fuzzy Knowledge Data Creation Tool  
EEU-829  
EEU-862  
EEU-858  
EEU-921  
EEU-1438  
EEU-1444  
EEU-1441  
EEU-1458  
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System Translator  
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Module  
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger  
Other Documents  
Document Name  
Document No.  
Japanese  
English  
IEI-1213  
C10535E  
IEI-1209  
C10983E  
IEI-1201  
MEI-1202  
Semiconductor Device Package Manual  
IEI-635  
Semiconductor Device Mounting Technology Manual  
Quality Grades on NEC Semiconductor Devices  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
C10535J  
IEI-620  
C10983J  
MEM-539  
MEI-603  
MEI-604  
Guide to Quality Assurance for Semicoductor Devices  
Microcontroller-Related Product Guide – Third Party Products –  
Caution  
The contents of the documents listed above are subject to change without prior notice. Be sure to use  
the latest edition when starting design.  
53  
µPD78P083  
[MEMO]  
54  
µPD78P083  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction of the  
gate oxide and ultimately degrade the device operation. Steps must be taken to  
stop generation of static electricity as much as possible, and quickly dissipate it  
once, when it has occurred. Environmental control must be adequate. When it  
is dry, humidifier should be used. It is recommended to avoid using insulators that  
easily build static electricity. Semiconductor devices must be stored and trans-  
ported in an anti-static container, static shielding bag or conductive material. All  
test and measurement tools including work bench and floor should be grounded.  
The operator should be grounded using wrist strap. Semiconductor devices must  
not be touched with bare hands. Similar precautions need to be taken for PW  
boards with semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input level  
may be generated due to noise, etc., hence causing malfunction. CMOS devices  
behave differently than Bipolar or NMOS devices. Input levels of CMOS devices  
must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have  
a possibility of being an output pin. All handling related to the unused pins must  
be judged device by device and related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production  
process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset function  
have not yet been initialized. Hence, power-on does not guarantee out-pin levels,  
I/O settings or contents of registers. Device is not initialized until the reset signal  
is received. Reset operation must be executed immediately after power-on for  
devices having reset function.  
FIP, IEBus, and QTOP are trademarks of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
IBM DOS, PC/AT and PC DOS are trademarks of International Business Machines Corporation.  
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  
NEWS and NEWS-OS are trademarks of Sony Corporation.  
55  
µPD78P083  
The related documents indicated in this publication may include preliminary versions. However, preliminary versions  
are not marked as such.  
The export of these products from Japan is regulated by the Japanese government. The export of some or all of  
these products may be prohibited without governmental license. To export or re-export some or all of these products  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representive.  
License not needed  
The customer must judge the need for license  
: µPD78P083CU, 78P083GB-3B4, 78P083GB-3BS-MTX  
: µPD78P083DU  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on  
a customer designated “quality assurance program“ for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94.11  

相关型号:

UPD78070AGC-7EA

8-Bit Microcontroller
ETC

UPD78070AGC-8EU

8-BIT, MROM, 5MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, FINE PITCH, PLASTIC, LQFP-100
RENESAS

UPD78070AGF-3BA

8-Bit Microcontroller
ETC

UPD78070AY

8-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD78070AYGC-7EA

8-Bit Microcontroller
ETC

UPD78070AYGC-8EU

8-Bit Microcontroller
ETC

UPD78070AYGF-3BA

8-Bit Microcontroller
ETC

UPD78074B

78K/0 Series for Instructions | User's Manual[10/2001]
ETC

UPD78074BGC-XXX-7EA

8-Bit Microcontroller
ETC

UPD78074BGF-XXX-3BA

8-Bit Microcontroller
ETC

UPD78074GC-XXX-7EA

8-Bit Microcontroller
ETC

UPD78074GF-XXX-3BA

8-Bit Microcontroller
ETC