UPD784927GF-A-A-A-3BA [RENESAS]

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, PLASTIC, QFP-100;
UPD784927GF-A-A-A-3BA
型号: UPD784927GF-A-A-A-3BA
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, PLASTIC, QFP-100

时钟 外围集成电路
文件: 总99页 (文件大小:774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD784927, 784928, 784927Y, 784928Y  
16-BIT SINGLE-CHIP MICROCONTROLLER  
DESCRIPTION  
The µPD784927 and 784928 are members of the NEC 78K/IV Series of microcontrollers equipped with a high-  
speed, high-performance 16-bit CPU for VCR software servo control.  
The µPD784927Y and 784928Y are based on the µPD784928 with the addition of an I2C bus interface compatible  
with multi-master.  
They contain many peripheral hardware units ideal for VCR control, such as a multi-function timer unit (super timer  
unit) for software servo control and VCR analog circuits.  
Flash memory models, the µPD78F4928 and µPD78F4928Y, are under development.  
The functions of the µPD784927 is described in detail in the following User’s Manual. Be sure to read this  
manual before designing your system.  
µPD784928, 784928Y Subseries User’s Manual - Hardware  
: U12648E  
: U10905E  
78K/IV Series User’s Manual - Instruction  
FEATURES  
High instruction execution speed realized by 16-bit CPU core  
Minimum instruction execution time: 250 ns (with 8 MHz internal clock)  
High internal memory capacity  
Part Number  
Item  
µPD784927, 784927Y  
96K bytes  
µPD784928, 784928Y  
128K bytes  
Internal ROM capacity  
Internal RAM capacity  
2048 bytes  
3584 bytes  
VCR analog circuits conforming to VHS Standard  
CTL amplifier  
DFG amplifier  
DPG amplifier  
Reel FG comparator (2 channels)  
CSYNC comparator  
RECCTL driver (rewritable)  
CFG amplifier  
DPFG separation circuit (ternary separation circuit)  
Timer unit (super timer unit) for servo control  
Serial interface : 3 channels  
3-wire serial I/O : 2 channels  
I2C bus interface: 1 channel  
A/D converter: 12 channels (conversion time: 10 µs)  
Low-frequency oscillation mode: main system clock frequency = internal clock frequency  
Low-power consumption mode: CPU can operate with a subsystem clock.  
Supply voltage range: VDD = +2.7 to 5.5 V  
Hardware watch function: watch operation at low voltage (VDD = 2.7 V (MIN.)) and low current consumption  
Unless otherwise specified, the µPD784927 is treated as the representative model throughout this document.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
The mark shows major revised points.  
Document No. U12255EJ2V1DS00 (2nd edition)  
Date Published October 2005 N CP(K)  
Printed in Japan  
1997, 1999  
µPD784927, 784928, 784927Y, 784928Y  
APPLICATION FIELDS  
Stationary VCR, video camera, In-TV VCR  
ORDERING INFORMATION  
(1) µPD784928 subseries  
Part Number  
Package  
µPD784927GC-×××-8EUNote  
µPD784927GF-×××-3BA  
µPD784928GC-×××-8EUNote  
µPD784928GF-×××-3BA  
µPD784927GF-×××-3BA-A  
µPD784928GF-×××-3BA-A  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic QFP (14 × 20 mm)  
(2) µPD784928Y subseries  
Part Number  
Package  
µPD784927YGC-×××-8EUNote  
µPD784927YGF-×××-3BA  
µPD784928YGC-×××-8EUNote  
µPD784928YGF-×××-3BA  
µPD784927YGF-×××-3BA-A  
µPD784928YGF-×××-3BA-A  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic QFP (14 × 20 mm)  
100-pin plastic QFP (14 × 20 mm)  
Note Under development  
Remarks 1. ××× indicates ROM code suffix.  
2. Products that have the part numbers suffixed by “-A” are lead-free products.  
2
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
PRODUCT DEVELOPMENT OF VCR-SERVO MICROCONTROLLERS  
The product development of VCR-servo microcontrollers is shown below. Enclosed in a frame are subseries  
names.  
The Y subseries is a collection of products supporting the I2C bus.  
Products under mass production  
Products under development  
100-pin QFP. With flash memory.  
Expanded internal memory capacity.  
78K/IV series  
More powerful analog amplifier. Improved VCR functions.  
Increased I/O. High-current port added.  
I2C function added (Y model only).  
µ
µ
µ
PD784928Y  
PD784928  
PD784915  
100-pin QFP.  
Expanded internal memory capacity.  
Internal analog amplifier. Reinforced super timer.  
Low-power consumption mode added.  
78K/I series  
100-pin QFP  
µPD78148  
Expanded internal RAM capacity. Operational amplifier,  
watch function, multiplier added.  
µ
PD78138  
80-pin QFP  
Data Sheet U12255EJ2V1DS  
3
µPD784927, 784928, 784927Y, 784928Y  
FUNCTION LIST (1/2)  
Part Number  
µPD784927, 784927Y  
µPD784928, 784928Y  
Item  
Internal ROM capacity  
Internal RAM capacity  
Operating clock  
96K bytes  
128K bytes  
3584 bytes  
2048 bytes  
16 MHz (internal clock: 8 MHz)  
Low frequency oscillation mode : 8 MHz (internal clock: 8 MHz)  
Low power consumption mode : 32.768 kHz (subsystem clock)  
Minimum instruction execu-  
tion time  
250 ns (with 8 MHz internal clock)  
I/O port  
input : 20  
74  
I/O  
: 54 (including 8 ports for LED direct drive)  
Real-time output port  
Timer/counter  
11 (including one each for pseudo VSYNC, head amplifier switch, and chrominance rotation)  
Timer/counter  
TM0 (16 bits)  
TM1 (16 bits)  
FRC (22 bits)  
TM3 (16 bits)  
UDC (5 bits)  
EC (8 bits)  
Compare register  
Capture register  
Remark  
3
3
1
2
6
1
1
4
For HSW signal generation  
For CFG signal division  
EDV (8 bits)  
1
Capture register  
Input signal  
CFG  
Number of bits  
Measurable cycle  
125 ns to 524 ms  
125 ns to 524 ms  
1 µs to 65.5 ms  
125 ns to 524 ms  
1 µs to 65.5 ms  
125 ns to 524 ms  
125 ns to 524 ms  
Operating edge  
22  
22  
16  
22  
16  
22  
22  
DFG  
HSW  
VSYNC  
CTL  
Super  
timer unit  
TREEL  
SREEL  
VCR special  
circuit  
VSYNC separation circuit, HSYNC separation circuit  
VISS detection, wide aspect detection circuits  
Field identification circuit  
Head amplifier switch/chrominance rotation output circuit  
General-purpose  
timer  
Timer  
Compare register  
Capture register  
TM2 (16 bits)  
TM4 (16 bits)  
TM5 (16 bits)  
1
1
1 (capture/compare)  
1
PWM output  
Serial interface  
16-bit resolution : 3 channels (carrier frequency: 62.5 kHz)  
8-bit resolution : 3 channels (carrier frequency: 62.5 kHz)  
3-wire serial I/O: 2 channels (BUSY/STRB control: 1 channel)  
I2C bus interface: 1 channel (µPD784928Y subseries only)  
A/D converter  
8-bit resolution × 12 channels, conversion time: 10 µs  
4
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
FUNCTION LIST (2/2)  
Part Number  
µPD784927, 784927Y  
µPD784928, 784928Y  
Item  
Analog circuit  
CTL amplifier  
RECCTL driver (rewritable)  
DFG amplifier, DPG amplifier, CFG amplifier  
DPFG separation circuit (ternary separation circuit)  
Reel FG comparator (2 channels)  
CSYNC comparator  
Interrupt sources  
4 levels (programmable), vectored interrupt, macro service, context switching  
9 (including NMI)  
External  
Internal  
22 (including software interrupt)  
23 (including software interrupt)  
Standby function  
Watch function  
HALT mode/STOP mode/low power consumption mode/low power consumption HALT mode  
STOP mode can be released by input of valid edge of NMI pin, watch interrupt (INTW), or INTP1/  
INTP2/KEY0-KEY4 pins  
0.5-second measurement, low-voltage operation (VDD = 2.7 V)  
Buzzer output function  
1.95 kHz, 3.91 kHz, 7.81 kHz, 15.6 kHz (Internal clock: 8 MHz)  
2.048 kHz, 4.096 kHz, 32.768 kHz (Subsystem clock: 32.768 kHz)  
Supply voltage  
Package  
VDD = +2.7 to 5.5 V  
• 100-pin plastic LQFP (fine pitch)(14 × 14 mm)Note  
• 100-pin plastic QFP (14 × 20 mm)  
Note Under development  
Data Sheet U12255EJ2V1DS  
5
µPD784927, 784928, 784927Y, 784928Y  
PIN CONFIGURATION (Top View)  
100-pin plastic LQFP (fine pitch)(14 × 14 mm)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
P84/PWM2/SDANote 2  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P65/HWIN/DPGMON  
P64/BUZ/DFGMON  
P103/CSYNCIN  
P102/REEL0IN/INTP3  
P101/REEL1IN  
DFGIN  
P100/DPGIN  
CFGCPIN  
CFGAMP0  
CFGIN  
AVDD1  
AVSS1  
VREFC  
CTLOUT2  
CTLOUT1  
CTLIN  
RECCTL−  
RECCTL+  
CTLDLY  
P83/ROTC  
P82/HASW  
P80  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
VDD  
P47  
P46  
P45  
P44  
P43  
P42  
P41  
P40  
P07  
P06  
P05  
AVSS2  
P113/ANI11  
P112/ANI10  
P111/ANI9  
P110/ANI8  
P77/ANI7  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes 1. Under development  
2. Pins SCL and SDA are provided for the µPD784928Y subseries only.  
Caution Directly connect the IC (Internally Connected) pins to VSS in the normal operation mode.  
6
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
100-pin plastic QFP (14 × 20 mm)  
99 9897 9695 9493 9291 9089 8887 86858483 8281  
DFGMON/P64/BUZ  
DPGMON/P65/HWIN  
CFGMON/P66/PWM4  
CTLMON/P67/PWM5  
P60/STRB/CLO  
P61/SCK1/BUZ  
P62/SO1  
1100  
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
ANI9/P111  
ANI8/P110  
P77/ANI7  
P76/ANI6  
P75/ANI5  
P74/ANI4  
P73/ANI3  
P72/ANI2  
P71/ANI1  
P70/ANI0  
AVREF  
P63/SI1  
P37/PWM0  
P36/PWM1  
P35/SCK2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P34/SO2  
P33/SI2/BUSY  
AVDD2  
P96  
VDD  
P95/KEY4  
P94/KEY3  
P93/KEY2  
P92/KEY1  
P91/KEY0  
P90/ENV  
NMI/P20  
INTP0/P21  
INTP1/P22  
INTP2/23  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
XT1  
XT2  
VSS  
X2  
X1  
RESET  
IC  
P32/PTO02  
P31/PTO01  
P30/PTO00  
P87/PTO11  
P86/PTO10  
SCLNote/P85/PWM3  
SDANote/P84/PWM2  
P83/ROTC  
P82/HASW  
3132 3334 3536 3738 3940 4142 4344 45464748 4950  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
Caution Directly connect the IC (Internally Connected) pins to VSS.  
Data Sheet U12255EJ2V1DS  
7
µPD784927, 784928, 784927Y, 784928Y  
ANI0-ANI11  
AVDD1, AVDD2  
AVSS1, AVSS2  
AVREF  
: Analog Input  
P20-P23  
: Port2  
: Port3  
: Port4  
: Port5  
: Port6  
: Port7  
: Port8  
: Port9  
: Port10  
: Port11  
: Analog Power Supply  
: Analog Ground  
P30-P37  
P40-P47  
: Analog Reference Voltage  
: Serial Busy  
P50-P57  
BUSY  
P60-P67  
BUZ  
: Buzzer Output  
P70-P77  
CFGAMPO  
CFGCPIN  
CFGIN  
: Capstan FG Amplifier Output  
: Capstan FG Capacitor Input  
: Analog Unit Input  
P80, P82-P87  
P90-P96  
P100-P103  
P110-P113  
PTO00-PTO02,  
PTO10, PTO11  
PWM0-PWM5  
CFGMON  
CLO  
: Capstan FG Monitor  
: Clock Output  
CSYNCIN  
CTLDLY  
CTLIN  
: Analog Unit Input  
: Programmable Timer Output  
: Pulse Width Modulation Output  
: Control Delay Input  
: CTL Amplifier Input Capacitor  
: CTL Amplifier Monitor  
RECCTL+, RECCTL– : RECCTL Output/PBCLT Input  
REEL0IN, REEL1IN : Analog Unit Input  
CTLMON  
CTLOUT1, CTLOUT2 : CTL Amplifier Output  
RESET  
ROTC  
: Reset  
DFGIN  
: Analog Unit Input  
: DFG Monitor  
: Chrominance Rotate Output  
: Serial Clock  
DFGMON  
DPGIN  
DPGMON  
ENV  
SCK1, SCK2  
SCLNote  
SDANote  
SI1, SI2  
SO1, SO2  
STRB  
: Analog Unit Input  
: DPG Monitor  
: Serial Clock  
: Serial Data  
: Envelope Input  
: Serial Input  
HASW  
: Head Amplifier Switch Output  
: Hardware Timer External Input  
: Internally Connected  
: Interrupt From Peripherals  
: Key Return  
: Serial Output  
HWIN  
: Serial Strobe  
IC  
VDD  
: Power Supply  
INTP0-INTP3  
KEY0-KEY4  
NMI  
VREFC  
VSS  
: Reference Amplifier Capacitor  
: Ground  
: Nonmaskable Interrupt  
: Port0  
X1, X2  
: Crystal (Main System Clock)  
: Crystal (Subsystem Clock)  
P00-P07  
XT1, XT2  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
8
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
INTERNAL BLOCK DIAGRAM  
NMI  
V
V
X1  
DD  
SS  
INTERRUPT  
CONTROL  
INTP0-INTP3  
SYSTEM  
CONTROL  
X2  
XT1  
XT2  
RESET  
PWM0-PWM5  
PTO00-PTO02  
PTO10, PTO11  
SUPER TIMER  
UNIT  
CLOCK OUTPUT  
BUZZER OUTPUT  
CLO  
BUZ  
VREFC  
REEL0IN  
REEL1IN  
CSYNCIN  
DFGIN  
KEY INPUT  
KEY0-KEY4  
DPGIN  
CFGIN  
P00-P07  
CFGAMPO  
CFGCPIN  
CTLOUT1  
CTLOUT2  
CTLIN  
78K/IV  
16-BIT CPU CORE  
(RAM: 512 bytes)  
REAL-TIME  
OUTPUT PORT  
P80, P82, P83  
RECCTL+  
PORT0  
PORT2  
PORT3  
PORT4  
PORT5  
PORT6  
PORT7  
PORT8  
PORT9  
PORT10  
PORT11  
P00-P07  
RECCTL  
-
CTLDLY  
DFGMON  
DPGMON  
CFGMON  
CTLMON  
AVDD1, AVDD2  
AVSS1, AVSS2  
AVREF  
P20-P23  
ANALOG UNIT  
&
A/D CONVERTER  
P30-P37  
RAM  
ROM  
P40-P47  
AN10-AN11  
P50-P57  
SI1  
SO1  
SCK1  
SERIAL  
INTERFACE 1  
P60-P67  
P70-P77  
SI2/BUSY  
SO2  
SERIAL  
INTERFACE 2  
P80, P82-P87  
P90-P96  
SCK2  
STRB  
SERIAL  
SDA  
SCL  
P100-P103  
P110-P113  
INTERFACE 3Note  
Note Only the µPD784928 subseries supports I2C bus interface.  
Remark Internal ROM and RAM capacities differ depending on the product.  
Data Sheet U12255EJ2V1DS  
9
µPD784927, 784928, 784927Y, 784928Y  
SYSTEM CONFIGURATION EXAMPLE  
Video camera  
µPD784927  
DFG  
DPG  
PORT  
PORT  
Key matrix  
DFGIN  
DPGIN  
Drum motor  
M
M
Driver  
Driver  
PWM0  
CFGIN  
PORT  
SCK1  
SI1  
INTP0  
Camera-  
SCK  
SO  
controlling  
microcontroller  
µPD784038  
CFG  
SO1  
SI  
INTP0  
PORT  
Capstan motor  
PWM1  
Camera block  
RECCTL+  
PORT  
SCK2  
SO2  
CS  
CTL head  
CLK  
LCD C/D  
µPD7225  
RECCTL  
-
DATA  
BUSY  
BUSY  
Loading motor  
M
Driver  
PWM2  
LCD display panel  
CS  
PORT  
Audio/video  
signal  
processing  
circuit  
PORT  
Composite sync signal  
Video head switch  
CSYNCIN  
PTO00  
PTO01  
P80  
CLK  
OSD  
DATA  
µPD6461  
BUSY  
Audio head switch  
Pseudo vertical sync signal  
STRB  
PORT  
STB  
Remote  
controller  
signal  
Remote controller  
reception signal  
Mechanical block  
INTP2  
µPC2800A  
+VDD +VDD  
EEPROMTM  
SDA  
SDANote  
SCLNote  
SCL  
Other ICs  
SDA  
SCL  
X1  
X2  
XT1 XT2  
32.768 kHz  
16 MHz  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
10  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Stationary VCR  
µPD784927  
DFG  
DPG  
DFGIN  
DPGIN  
PORT  
SCK1  
SI1  
STB  
CLK  
DOUT  
DIN  
FIPTM C/D  
µ
PD16311  
SO1  
Drum motor  
M
M
Driver  
Driver  
PWM0  
CFGIN  
PWM1  
CFG  
FIP  
Key matrix  
Capstan motor  
PORT  
SCK2  
SO2  
CS  
OSD  
PD6464A  
CLK  
DATA  
µ
RECCTL+  
CTL head  
RECCTL  
PWM2  
-
PORT  
Composite sync signal  
Video head switch  
Audio head switch  
Audio/video signal  
processing circuit  
CSYNCIN  
PTO00  
PTO01  
P80  
Loading motor  
M
Driver  
Pseudo vertical sync signal  
Reel FG0  
REEL0IN  
PWM3  
PWM5  
PORT  
Tuner  
M
M
Driver  
Reel motor  
PORT  
INTP2  
Mechanical block  
Driver  
PWM4  
Remote controller  
reception signal  
Remote controller  
signal  
Reel FG1  
REEL1IN  
µPC2800A  
EEPROM  
+VDD +VDD  
SDANote  
SCLNote  
SDA  
SCL  
Other ICs  
SDA  
SCL  
Low frequency  
oscillation mode  
X1  
X2 XT1 XT2  
8 MHz  
32.768 kHz  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
Data Sheet U12255EJ2V1DS  
11  
µPD784927, 784928, 784927Y, 784928Y  
CONTENTS  
1. DIFFERENCE BETWEEN µPD784928 SUBSERIES AND 784928Y SUBSERIES .................... 13  
2. PIN FUNCTION ............................................................................................................................... 14  
2.1 Port Pins ................................................................................................................................................ 14  
2.2 Pins Other Than Port Pins .................................................................................................................. 15  
2.3 I/O Circuits of Pins and Processing of Unused Pins...................................................................... 17  
3. INTERNAL BLOCK FUNCTION ..................................................................................................... 20  
3.1 CPU Registers ...................................................................................................................................... 20  
3.1.1 General-purpose registers ......................................................................................................... 20  
3.1.2 Other CPU registers................................................................................................................... 21  
3.2 Memory Space ...................................................................................................................................... 22  
3.3 Special Function Registers (SFRs) ................................................................................................... 25  
3.4 Ports ....................................................................................................................................................... 31  
3.5 Real-Time Output Port ......................................................................................................................... 32  
3.6 Super Timer Unit .................................................................................................................................. 36  
3.7 Serial Interface ..................................................................................................................................... 42  
3.8 A/D Converter ....................................................................................................................................... 45  
3.9 VCR Analog Circuits ............................................................................................................................ 46  
3.10 Watch Function .................................................................................................................................... 51  
3.11 Clock Output Function ........................................................................................................................ 52  
3.12 Buzzer Output Function ...................................................................................................................... 53  
4. INTERNAL/EXTERNAL CONTROL FUNCTION ........................................................................... 54  
4.1 Interrupt Function ................................................................................................................................ 54  
4.1.1 Vectored interrupt....................................................................................................................... 57  
4.1.2 Context switching ....................................................................................................................... 57  
4.1.3 Macro service ............................................................................................................................. 58  
4.1.4 Application example of macro service ...................................................................................... 60  
4.2 Standby Function ................................................................................................................................. 63  
4.3 Clock Generation Circuit..................................................................................................................... 65  
4.4 Reset Function ..................................................................................................................................... 66  
5. INSTRUCTION SET ........................................................................................................................ 67  
6. ELECTRICAL SPECIFICATIONS .................................................................................................. 71  
7. PACKAGE DRAWING .................................................................................................................... 86  
8. RECOMMENDED SOLDERING CONDITIONS ............................................................................. 88  
APPENDIX A. DEVELOPMENT TOOLS............................................................................................. 89  
APPENDIX B. RELATED DOCUMENTS ............................................................................................ 92  
12  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
1. DIFFERENCE BETWEEN µPD784928 SUBSERIES AND 784928Y SUBSERIES  
The µPD78F4928 and 78F4928Y are based on the µPD784927 and 784927Y and are provided with a 128K-byte  
flash memory instead of a mask ROM.  
Table 1-1 shows the differences between the products in the µPD784928 subseries and 784928Y subseries.  
Table 1-1. Differences between µPD784928 Subseries and 784928Y Subseries  
Part Number  
µPD784927,  
µPD784927Y  
µPD784928,  
µPD784928Y  
µPD78F4928,  
µPD78F4928Y  
Item  
Internal ROM  
Mask ROM  
Flash memory  
96K bytes  
128K bytes  
3584 bytes  
Internal RAM  
2048 bytes  
Not provided  
Internal memory capacity  
select register (IMS)  
Provided  
IC pin  
Provided  
Not provided  
Provided  
VPP pin  
Not provided  
Electrical characteristics  
Refer to the Data Sheet of each product.  
Data Sheet U12255EJ2V1DS  
13  
µPD784927, 784928, 784927Y, 784928Y  
2. PIN FUNCTION  
2.1 Port Pins  
Pin Name  
P00-P07  
I/O  
I/O  
Shared with:  
Function  
Real-time  
8-bit I/O port (port 0).  
output port  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
P20  
Input  
I/O  
NMI  
4-bit I/O port (port 2).  
P21-P23  
P30-P32  
P33  
INTP0-INTP2  
PTO00-PTO02  
SI2/BUSY  
SO2  
Can be connected with software pull-up resistors (P22 and P23 only).  
8-bit I/O port (port 3).  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
P34  
P35  
SCK2  
P36, P37  
P40-P47  
PWM1, PWM0  
I/O  
8-bit I/O port (port 4).  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
Can directly drive LED.  
P50-P57  
I/O  
I/O  
8-bit I/O port (port 5).  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
P60  
STRB/CLO  
SCK1/BUZ  
SO1  
8-bit I/O port (port 6).  
P61  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
P62  
P63  
SI1  
P64  
DFGMON/BUZ  
DPGMON/HWIN  
CFGMON/PWM4  
CTLMON/PWM5  
ANI0-ANI7  
Real-time  
P65  
P66  
P67  
P70-P77  
P80  
Input  
I/O  
8-bit input port (port 7)  
Pseudo VSYNC output  
HASW output  
7-bit I/O port (port 8).  
P82  
output port  
Can be set in input or output mode  
in 1-bit units.  
P83  
ROTC output  
P84  
PWM2/SDANote  
PWM3/SCLNote  
PTO10  
Can be connected with software  
pull-up resistors.  
P85  
P86  
P87  
PTO11  
P90  
I/O  
ENV  
7-bit I/O port (port 9).  
P91-P95  
P96  
KEY0-KEY4  
Can be set in input or output mode in 1-bit units.  
Can be connected with software pull-up resistors.  
4-bit input port (port 10).  
P100  
P101  
P102  
P103  
P110-P113  
Input  
DPGIN  
REEL1IN  
REEL0IN/INTP3  
CSYNCIN  
ANI8-ANI11  
Input  
4-bit input port (port 11).  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
14  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
2.2 Pins Other Than Port Pins (1/2)  
Pin Name  
REEL0IN  
I/O  
Shared with:  
P102/INTP3  
P101  
Function  
Input  
Reel FG input  
REEL1IN  
DFGIN  
DPGIN  
CFGIN  
CSYNCIN  
CFGCPIN  
CFGAMPO  
PTO00  
PTO01  
PTO02  
PTO10  
PTO11  
PWM0  
Drum FG, PFG input (ternary)  
Drum PG input  
P100  
Capstan FG input  
P103  
Composite SYNC input  
CFG comparator input  
Output  
Output  
CFG amplifier output  
P30  
Programmable timer output of super timer unit  
P31  
P32  
P86  
P87  
Output  
P37  
PWM output of super timer unit  
PWM1  
P36  
PWM2  
P84/SDANote  
P85/SCLNote  
P66/CFGMON  
P67/CTLMON  
P82  
PWM3  
PWM4  
PWM5  
HASW  
Output  
Output  
Input  
Head amplifier switch signal output  
Chrominance rotation signal output  
Envelope signal input  
ROTC  
P83  
ENV  
P90  
SI1  
Input  
P63  
Serial data input (serial interface channel 1)  
Serial data output (serial interface channel 1)  
Serial clock I/O (serial interface channel 1)  
Serial data input (serial interface channel 2)  
Serial data output (serial interface channel 2)  
Serial clock I/O (serial interface channel 2)  
Serial busy signal input (serial interface channel 2)  
Serial strobe signal output (serial interface channel 2)  
I2C bus data I/O  
SO1  
Output  
I/O  
P62  
SCK1  
P61/BUZ  
P33/BUSY  
P34  
SI2  
Input  
SO2  
Output  
I/O  
SCK2  
P35  
BUSY  
Input  
P33/SI2  
P60/CLO  
P84/PWM2  
P85/PWM3  
P70-P77  
P110-P113  
STRB  
Output  
I/O  
SDA  
SCL  
I/O  
I2C bus clock I/O  
ANI0-ANI7  
ANI8-ANI11  
CTLIN  
Analog input  
Analog signal input of A/D converter  
Output  
I/O  
CTL amplifier input capacitor connection  
CTL amplifier output  
CTLOUT1  
CTLOUT2  
RECCTL+, RECCTL–  
CTLDLY  
Logic signal input/CTL amplifier output  
RECCTL signal output/PBCTL signal input  
External time constant connection (for RECCTL rewriting)  
I/O  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
Data Sheet U12255EJ2V1DS  
15  
µPD784927, 784928, 784927Y, 784928Y  
2.2 Pins Other Than Port Pins (2/2)  
Pin Name  
VREFC  
I/O  
Shared with:  
Function  
VREF amplifier AC connection  
Drum FG signal output  
DFGMON  
DPGMON  
CFGMON  
CTLMON  
NMI  
Output  
P64/BUZ  
P65/HWIN  
P66/PWM4  
P67/PWM5  
P20  
Drum PG signal output  
CFG signal output  
CTL signal output  
Input  
Input  
Non-maskable interrupt request input  
External interrupt request input  
INTP0-INTP2  
INTP3  
P21-P23  
P102/REEL0IN  
P91-P95  
P60/STRB  
P61/SCK1  
P64/DFGMON  
P65/DPGMON  
Input  
KEY0-KEY4  
CLO  
Input  
Key input signal input  
Clock output  
Output  
Output  
BUZ  
Buzzer output  
HWIN  
RESET  
X1  
Input  
Input  
Input  
External input of hardware watch counter  
Reset input  
Crystal connection for main system clock oscillation  
X2  
XT1  
Input  
Crystal connection for subsystem clock oscillation.  
Crystal connection for watch clock oscillation  
Positive power supply to analog amplifier circuit  
PositivepowersupplytoA/Dconverterandanalogcircuitsinputbuffer  
GND of analog amplifier circuit  
XT2  
AVDD1  
AVDD2  
AVSS1  
AVSS2  
AVREF  
VDD  
GND of A/D converter and analog circuits input buffer  
Reference voltage input to A/D converter  
Positive power supply to digital circuits  
VSS  
GND of digital circuits  
IC  
Internally connected. Directly connect this pin to VSS.  
16  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
2.3 I/O Circuits of Pins and Processing of Unused Pins  
Table 2-1 shows the types of the I/O circuits of the respective pins and processing of the unused pins. Figure  
2-1 shows the circuits of the respective types.  
Table 2-1. I/O Circuits of Respective Pins and Processing of Unused Pins (1/2)  
Pin  
I/O Circuit Type  
5-A  
I/O  
I/O  
Recommended Connection of Unused Pins  
Input: Connect to VDD.  
P00-P07  
Output: Leave unconnected.  
Connect to VDD.  
P20/NMI  
2
Input  
I/O  
P21/INTP0  
Connect to VDD or VSS.  
Connect to VDD.  
P22/INTP1, P23/INTP2  
P30/PTO00-P32/PTO02  
P33/SI2/BUSY  
P34/SO2  
2-A  
5-A  
8-A  
5-A  
8-A  
5-A  
Input: Connect to VDD.  
Output: Leave unconnected.  
P35/SCK2  
P36/PWM1, P37/PWM0  
P40-P47  
P50-P57  
P60/STRB/CLO  
P61/SCK1/BUZ  
P62/SO1  
8-A  
5-A  
8-A  
5-A  
8-A  
5-A  
P63/SI1  
P64/DFGMON/BUZ  
P65/HWIN/DPGMON  
P66/PWM4/CFGMON  
P67/PWM5/CTLMON  
P70/ANI0-P77/ANI7  
P80  
9
Input  
I/O  
Connect to VSS.  
5-A  
Input: Connect to VDD.  
Output: Leave unconnected.  
P82/HASW  
P83/ROTC  
P84/PWM2/SDANote  
P85/PWM3/SCLNote  
P86/PTO10  
10-A  
5-A  
P87/PTO11  
P90/ENV  
P91/KEY0-P95/KEY4  
P96  
8-A  
5-A  
Note Pins SCL and SDA are provided for the µPD784928Y subseries only.  
Data Sheet U12255EJ2V1DS  
17  
µPD784927, 784928, 784927Y, 784928Y  
Table 2-1. I/O Circuits of Respective Pins and Processing of Unused Pins (2/2)  
Pin  
I/O Circuit Type  
I/O  
Recommended Connection of Unused Pins  
When ENDRUM = 0 or ENDRUM = 1 and  
SELPGSEPA = 0: Connect to VSS.  
P100/DPGIN  
Input  
P101/REEL1IN  
P102/REEL0IN/INTP3  
P103/CSYNCIN  
P110/ANI8-P113/ANI11  
RECCTL+, RECCTL–  
DFGIN  
When ENREEL = 0: Connect to VSS.  
When ENCSYN = 0: Connect to VSS.  
Connect to VSS.  
9
Input  
I/O  
When ENCTL = 0 and ENREC = 0: Connect to VSS.  
When ENDRUM = 0: Connect to VSS.  
When ENCAP = 0: Connect to VSS.  
Leave unconnected.  
Input  
CFGIN, CFGCPIN  
CTLOUT1  
Output  
I/O  
CTLOUT2  
When ENCTL = 0 and ENCOMP = 0: Connect to VSS.  
When ENCTL = 1: Leave unconnected.  
Leave unconnected.  
CFGAMPO  
CTLIN  
Output  
When ENCTL = 0: Leave unconnected.  
When ENCTL = 0 and ENCAP = 0 and ENCOMP = 0: Leave unconnected.  
Leave unconnected.  
VREFC  
CTLDLY  
AVDD1, AVDD2  
AVREF, AVSS1, AVSS2  
RESET  
Connect to VDD.  
Connect to VSS.  
2
XT1  
Connect to VSS.  
XT2  
Leave unconnected.  
IC  
Directly connect to VSS.  
Remark ENCTL  
ENREC  
: bit 1 of amplifier control register (AMPC)  
: bit 7 of amplifier mode register 0 (AMPM0)  
: bit 2 of amplifier control register (AMPC)  
ENDRUM  
SELPGSEPA : bit 2 of amplifier mode register 0 (AMPM0)  
ENCAP  
: bit 3 of amplifier control register (AMPC)  
: bit 5 of amplifier control register (AMPC)  
: bit 6 of amplifier control register (AMPC)  
: bit 4 of amplifier control register (AMPC)  
ENCSYN  
ENREEL  
ENCOMP  
18  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Figure 2-1. I/O Circuits of Respective Pins  
Type 2  
Type 8-A  
VDD  
IN  
Pull-up  
enable  
P-ch  
V
DD  
Schmitt trigger input with hysteresis characteristics  
Type 2-A  
Data  
P-ch  
IN/  
OUT  
Output  
disable  
N-ch  
V
DD  
Pull-up  
enable  
P-ch  
Type 9  
IN  
IN  
Comparator  
P-ch  
N-ch  
+
Schmitt trigger input with hysteresis characteristics  
Type 5-A  
-
VREF (Threshold voltage)  
VDD  
Input enable  
Pull-up  
enable  
P-ch  
V
DD  
Data  
Type 10-A  
P-ch  
VDD  
IN/  
OUT  
Output  
disable  
N-ch  
Pull-up  
Enable  
P-ch  
V
DD  
Input  
enable  
Data  
P-ch  
IN/OUT  
Open drain  
Output disable  
N-ch  
Data Sheet U12255EJ2V1DS  
19  
µPD784927, 784928, 784927Y, 784928Y  
3. INTERNAL BLOCK FUNCTION  
3.1 CPU Registers  
3.1.1 General-purpose registers  
The µPD784927 has eight banks of general-purpose registers. One bank consists of sixteen 8-bit general-purpose  
registers. Two of these 8-bit registers can be used in pairs as a 16-bit register. Four of the 16-bit general-purpose  
registers can be used to specify a 24-bit address in combination with an 8-bit address expansion register.  
These eight banks of general-purpose registers can be selected by software or context switching function.  
The general-purpose registers, except for the address expansion registers V, U, T, and W, are mapped to the  
internal RAM.  
Figure 3-1. Configuration of General-Purpose Register  
A (R1)  
B (R3)  
R5  
X (R0)  
C (R2)  
R4  
AX (RP0)  
BC (RP1)  
RP2  
R7  
R6  
RP3  
V
U
T
R9  
R8  
VP (RP4)  
VVP (RG4)  
R11  
R10  
UP (RP5)  
UUP (RG5)  
D (R13)  
DE (RP6)  
TDE (RG6)  
H (R15)  
HL (RP7)  
E (R12)  
L (R14)  
W
8 banks  
WHL (RG7)  
(
): absolute name  
Caution Although R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers,  
respectively, by setting the RSS bit of PSW to 1, do not use this function. The function of the  
RSS bit is planned to be deleted from the future models in the 78K/IV Series.  
20  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
3.1.2 Other CPU registers  
(1) Program counter  
The program counter of the µPD784927 is 20 bits wide. The value of the program counter is automatically  
updated as the program is executed.  
19  
0
PC  
(2) Program status word  
This is a register that holds the various statuses of the CPU. Its contents are automatically updated as the  
program is executed.  
15  
14  
13  
12  
11  
10  
9
8
PSWH UF RBS2 RBS1 RBS0  
PSW  
7
6
Z
5
4
3
2
1
0
0
Note  
PSWL  
S
AC  
IE  
P/V  
CY  
RSS  
Note The RSS flag is provided to maintain compatibility with the microcomputers in the 78K/III Series.  
Always clear this flag to 0 except when the software of the 78K/III Series is used.  
(3) Stack pointer  
This is a 24-bit pointer that holds the first address of the stack.  
Be sure to write 0 to the high-order 4 bits.  
23  
0
20  
0
0
SP  
0
0
Data Sheet U12255EJ2V1DS  
21  
µPD784927, 784928, 784927Y, 784928Y  
3.2 Memory Space  
A memory space of 1M bytes can be accessed. The mapping of the internal data area (special function registers  
and internal RAM) can be selected by using the LOCATION instruction. The LOCATION instruction must be always  
executed after reset has been cleared, and cannot be used more than once.  
(1) When LOCATION 0H instruction is executed  
Part Number  
Internal Data Area  
0F700H-0FFFFH  
Internal ROM Area  
µPD784927, 784927Y  
00000H-0F6FFH  
10000H-17FFFH  
µPD784928, 784928Y  
0F100H-0FFFFH  
00000H-0F0FFH  
10000H-1FFFFH  
Remark The area of the internal ROM overlapping the internal data area cannot be used when the  
LOCATION 0 instruction is executed.  
Part Number  
µPD784927, 784927Y  
µPD784928, 784928Y  
Unusable Area  
0F700H-0FFFFH (2304 bytes)  
0F100H-0FFFFH (3840 bytes)  
(2) When LOCATION 0FH instruction is executed  
Part Number  
µPD784927, 784927Y  
µPD784928, 784928Y  
Internal Data Area  
FF700H-FFFFFH  
FF100H-FFFFFH  
Internal ROM Area  
00000H-17FFFH  
00000H-1FFFFH  
22  
Data Sheet U12255EJ2V1DS  
Figure 3-2. Memory Map of µPD784927, 784927Y  
When LOCATION 0H instruction is executed  
When LOCATION 0FH instruction is executed  
FFFFFH  
FFFDFH  
FFFD0H  
FFF00H  
Special function registers (SFRs)  
Note 1  
FFFFFH  
(256 bytes)  
0FEFFH  
FFEFFH  
FFEFFH  
Cannot be used  
Internal RAM  
(2048 bytes)  
General-purpose registers  
(128 bytes)  
0FE80H  
0FE7FH  
FFE80H  
FFE7FH  
FF700H  
FF6FFH  
18000H  
17FFFH  
Internal ROM  
FFE3BH  
FFE06H  
(32768 bytes)  
0FE3BH  
0FE06H  
10000H  
Macro service control  
word area (54 bytes)  
0FFFFH  
0FFDFH  
0FFD0H  
0FF00H  
0FEFFH  
Special function registers (SFRs)  
Note 1  
(256 bytes)  
Data area (512 bytes)  
0FD00H  
0FCFFH  
FFD00H  
FFCFFH  
Internal RAM  
(2048 bytes)  
Program/data area  
(1536 bytes)  
µ
0F700H  
FF700H  
17FFFH  
Cannot be used  
0F700H  
0F6FFH  
17FFFH  
10000H  
Note 2  
0F6FFH  
Program/data areaNote 3  
Note 4  
01000H  
00FFFH  
Internal ROM  
(63232 bytes)  
CALLF entry area  
(2K bytes)  
18000H  
17FFFH  
00800H  
007FFH  
00080H  
0007FH  
Note 4  
CALLT table area  
(64 bytes)  
Internal ROM  
(96K bytes)  
00040H  
0003FH  
Vector table area  
(64 bytes)  
00000H  
00000H  
00000H  
Notes 1. Accessed in external memory expansion mode  
2. The 2304 bytes in this area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.  
3. When LOCATION 0H instruction is executed: 96000 bytes, when LOCATION 0FH instruction is executed: 98304 bytes  
4. Base area or entry area for reset or interrupt. Excluding the internal RAM for reset.  
Figure 3-3. Memory Map of µPD784928, 784928Y  
When LOCATION 0H instruction is executed  
When LOCATION 0FH instruction is executed  
FFFFFH  
FFFDFH  
FFFD0H  
FFF00H  
Special function registers (SFRs)  
Note 1  
FFFFFH  
(256 bytes)  
0FEFFH  
FFEFFH  
FFEFFH  
Cannot be used  
Internal RAM  
(3584 bytes)  
General-purpose registers  
(128 bytes)  
0FE80H  
0FE7FH  
FFE80H  
FFE7FH  
FF100H  
FF0FFH  
20000H  
1FFFFH  
Internal ROM  
FFE3BH  
FFE06H  
(65536 bytes)  
0FE3BH  
0FE06H  
10000H  
Macro service control  
word area (54 bytes)  
0FFFFH  
0FFDFH  
0FFD0H  
0FF00H  
0FEFFH  
Special function registers (SFRs)  
Note 1  
(256 bytes)  
Data area (512 bytes)  
0FD00H  
0FCFFH  
FFD00H  
FFCFFH  
Internal RAM  
(3584 bytes)  
Program/data area  
(3072 bytes)  
0F100H  
FF100H  
1FFFFH  
Cannot be used  
0F100H  
0F0FFH  
µ
1FFFFH  
10000H  
Note 2  
0F0FFH  
Program/data areaNote 3  
Note 4  
01000H  
00FFFH  
Internal ROM  
(61696 bytes)  
CALLF entry area  
(2K bytes)  
20000H  
1FFFFH  
00800H  
007FFH  
00080H  
0007FH  
Note 4  
CALLT table area  
(64 bytes)  
Internal ROM  
(128K bytes)  
00040H  
0003FH  
Vector table area  
(64 bytes)  
00000H  
00000H  
00000H  
Notes 1. Accessed in external memory expansion mode  
2. The 3840 bytes in this area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.  
3. When LOCATION 0H instruction is executed: 127232 bytes, when LOCATION 0FH instruction is executed: 131072 bytes  
4. Base area or entry area for reset or interrupt. Excluding the internal RAM for reset.  
µPD784927, 784928, 784927Y, 784928Y  
3.3 Special Function Registers (SFRs)  
Special function registers are assigned special functions and mapped to a 256-byte space of addresses FF00H  
through FFFFH. These registers include mode registers and control registers that control the internal peripheral  
hardware units.  
Caution Do not access an address to which no SFR is assigned. If such an address is accessed by  
mistake, the µPD784927 may be deadlocked. This deadlock can be cleared only by reset input.  
Table 3-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:  
Symbol .................................... Abbreviation of an SFR. This abbreviation is reserved for NEC’s assembler  
(RA78K4). With a C compiler (CC78K4), the abbreviation can be used as sfr  
variable by the #pragma sfr instruction.  
R/W ......................................... Indicates whether the SFR in question can be read or written.  
R/W : Read/write  
R
: Read only  
: Write only  
W
Bit length................................. Indicates the bit length (word length) of the SFR.  
Bit units for manipulation ....... Indicates bit units in which the SFR in question can be manipulated. An SFR that  
can be manipulated in 16-bit units can be used as the operand sfrp of an  
instruction. Specify an even address to manipulate this SFR.  
An SFR that can be manipulated in 1-bit units can be used for a bit manipulation  
instruction.  
After clearing reset ................. Indicates the status of each register immediately after clearing reset.  
Caution The addresses shown in Table 3-1 are used when the LOCATION 0H instruction is executed. Add  
“F0000H” to the address values shown in the table when the LOCATION 0FH instruction is  
executed.  
Data Sheet U12255EJ2V1DS  
25  
µPD784927, 784928, 784927Y, 784928Y  
Table 3-1. Special Function Registers (1/5)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Bit  
Length  
8
Bit Units for Manipulation After Clearing  
1 bit  
8 bits 16 bits  
Reset  
FF00H Port 0  
P0  
P2  
R/W  
R
Undefined  
FF02H Port 2  
8
FF03H Port 3  
P3  
R/W  
8
FF04H Port 4  
P4  
8
FF05H Port 5  
P5  
8
FF06H Port 6  
P6  
8
FF07H Port 7  
P7  
R
8
FF08H Port 8  
P8  
R/W  
8
FF09H Port 9  
P9  
8
FF0AH Port 10  
P10  
R
8
FF0BH Port 11  
P11  
8
FF0EH Port 0 buffer register L  
FF0FH Port 0 buffer register H  
FF10H Timer 0 compare register 0  
FF11H Event counter compare register 0  
FF12H Timer 0 compare register 1  
FF13H Event counter compare register 1  
FF14H Timer 0 compare register 2  
FF15H Event counter compare register 2  
FF16H Timer 1 compare register 0  
FF17H Event counter compare register 3  
FF18H Timer 1 compare register 1  
FF1AH Timer 1 compare register 2  
FF1CH Timer 1 compare register 3  
FF1EH Timer 2 compare register 0  
FF20H Port 0 mode register  
FF23H Port 3 mode register  
FF24H Port 4 mode register  
FF25H Port 5 mode register  
FF26H Port 6 mode register  
FF28H Port 8 mode register  
FF29H Port 9 mode register  
FF2EH Real-time output port 0 control register  
FF30H Timer counter 0  
P0L  
R/W  
8
P0H  
CR00  
ECC0  
CR01  
ECC1  
CR02  
ECC2  
CR10  
ECC3  
CR11  
CR12  
CR13  
CR20  
PM0  
PM3  
PM4  
PM5  
PM6  
PM8  
PM9  
RTPC  
TM0  
EC  
8
16  
8
Cleared to 0  
W
R/W  
W
16  
8
R/W  
W
16  
8
R/W  
W
16  
8
R/W  
R
16  
16  
16  
16  
8
R/W  
FFH  
8
8
8
8
8
FDH  
7FH  
8
8
00H  
R
R/W  
R
16  
8
Cleared to 0  
FF31H Event counter  
FF32H Timer counter 1  
TM1  
FRCL  
FRCH  
TM2  
16  
16  
8
FF34H Free running counter (bits 0-15)  
FF35H Free running counter (bits 16-21)  
FF36H Timer counter 2  
0000H  
00H  
16  
Cleared to 0  
Remark Cleared to 0: Counter is initialized to 0 within 16 clocks after the reset signal has been cleared (the  
contents before initialization are undefined).  
26  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Table 3-1. Special Function Registers (2/5)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Bit  
Bit Units for Manipulation After Clearing  
Length  
8
1 bit  
8 bits 16 bits  
Reset  
00H  
FF38H Timer control register 0  
FF39H Timer control register 1  
FF3AH Timer control register 2  
FF3BH Timer control register 3  
FF3CH Timer counter 3  
TMC0  
TMC1  
TMC2  
TMC3  
TM3  
R/W  
8
8
8
00×00000  
Cleared to 0  
××000000  
Cleared to 0  
00H  
R
16  
8
FF3DH Timer control register 4  
FF3EH Timer counter 4  
TMC4  
TM4  
R/W  
R
16  
8
FF43H Port 3 mode control register  
FF48H Port 8 mode control register  
FF4BH Control mode select register  
FF4DH Trigger source select register 0  
FF4EH Pull-up resistor option register L  
FF4FH Pull-up resistor option register H  
FF50H Input control register  
PMC3  
PMC8  
CMS  
R/W  
8
8
TRGS0  
PUOL  
PUOH  
ICR  
8
8
8
8
10H  
FF51H Up/down counter count register  
FF52H Event divider counter  
UDC  
8
Undefined  
Cleared to 0  
00H  
EDV  
R
R/W  
R
8
FF53H Capture mode register  
CPTM  
TM5  
8
FF54H Timer counter 5  
16  
16  
8
Cleared to 0  
FF56H Timer 3 capture register 0  
FF58H Timer 0 output mode register  
FF59H Timer 0 output control register  
FF5AH Timer 1 output mode register  
FF5BH Timer 1 output control register  
FF5CH Timer 3 compare register 0  
FF5EH Timer 3 compare register 1  
FF60H Port 8 buffer register L  
CPT30  
TOM0  
TOC0  
W
××000000  
00H  
8
Note 1  
TOM1  
R/W  
W
8
80H  
TOC1  
CR30  
CR31  
P8L  
8
00H  
R/W  
16  
16  
8
Cleared to 0  
000×0×0×  
Undefined  
00H  
FF63H Up/down counter compare register  
FF65H Trigger source select register 1  
FF66H Port 6 mode control register  
FF68H A/D converter mode register  
UDCC  
TRGS1  
PMC6  
ADM  
W
8
R/W  
8
8
16  
8
0000H  
Note 2  
ADML  
FF6AH A/D conversion result register  
FF6CH Hardware watch counter 0  
FF6EH Hardware watch counter 1  
FF6FH Watch mode register  
ADCR  
HW0  
R
8
Undefined  
Not affected  
by reset  
R/W  
R
16  
16  
8
HW1  
WM  
R/W  
00××0×00  
05H  
FF70H PWM control register 0  
PWMC0  
8
Notes 1. When the TOM1 is read, the write sequence of the REC driver is read (bits 0 and 1).  
2. ADML is the low-order 8 bits of ADM and can be manipulated in 1- or 8-bit units.  
Remark Cleared to 0: Counter is initialized to 0 within 16 clocks after the reset signal has been cleared (the  
contents before initialization are undefined).  
Data Sheet U12255EJ2V1DS  
27  
µPD784927, 784928, 784927Y, 784928Y  
Table 3-1. Special Function Registers (3/5)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
R/W  
Bit  
Bit Units for Manipulation After Clearing  
Length  
8
1 bit  
8 bits 16 bits  
Reset  
15H  
FF71H PWM control register 1  
FF72H PWM0 modulo register  
FF73H PWM2 modulo register  
FF74H PWM1 modulo register  
FF75H PWM3 modulo register  
FF76H PWM5 modulo register  
FF77H PWM4 modulo register  
FF78H Event divider control register  
FF79H Clock output mode register  
FF7AH Timer 4 capture/compare register 0  
FF7BH Clock control register  
PWMC1  
PWM0  
PWM2  
PWM1  
PWM3  
PWM5  
PWM4  
EDVC  
CLOM  
CR40  
CC  
16  
8
0000H  
00H  
16  
8
0000H  
00H  
16  
8
0000H  
00H  
W
8
Cleared to 0  
00H  
R/W  
8
16  
8
Cleared to 0  
00H  
FF7CH Timer 4 capture register 1  
FF7DH Capture/compare control register  
FF7EH Timer 5 compare register  
FF80H I2C control register  
CR41  
CRC  
R
W
16  
8
Cleared to 0  
00H  
CR50  
IICC  
R/W  
16  
8
Cleared to 0  
00H  
FF82H I2C clock select register  
FF84H Serial mode register 1  
FF85H Serial shift register 1  
IICCL  
CSIM1  
SIO1  
8
8
8
Undefined  
00H  
FF86H Slave address register  
FF88H Serial mode register 2  
FF89H Serial shift register 2  
SVA  
8
CSIM2  
SIO2  
8
8
Undefined  
00H  
FF8AH Serial control register 2  
FF8CH I2C bus status registerNote  
FF8EH I2C bus shift registerNote  
FF90H Amplifier mode register 2  
FF91H Head amplifier switch output control register  
FF94H Amplifier control register  
FF95H Amplifier mode register 0  
FF96H Amplifier mode register 1  
FF97H Gain control register  
CSIC2  
IICS  
8
R
8
IIC  
R/W  
8
AMPM2  
HAPC  
AMPC  
AMPM0  
AMPM1  
CTLM  
VSFT0  
8
8
8
8
8
8
FF98H VISS detection circuit shift register 0  
FF99H  
16  
0000H  
FF9AH VISS detection circuit shift register 1  
FF9BH  
VSFT1  
16  
FFA0H External interrupt mode register  
FFA1H External capture mode register 1  
FFA2H External capture mode register 2  
FFA3H VISS detection circuit control register  
INTM0  
INTM1  
INTM2  
VDC  
8
8
8
8
000000×0  
00H  
Note These registers are provided for the µPD784928Y subseries only.  
Remark Cleared to 0: Counter is initialized to 0 within 16 clocks after the reset signal has been cleared (the  
contents before initialization are undefined).  
28  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Table 3-1. Special Function Registers (4/5)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Bit  
Bit Units for Manipulation After Clearing  
Length  
8
1 bit  
8 bits 16 bits  
Reset  
00H  
FFA4H VISS detection circuit up/down counter register  
FFA5H VUDC value setting register  
FFA6H Key interrupt control register  
FFA7H VISS pulse pattern setting register  
FFA8H In-service priority register  
FFAAH Interrupt mode control register  
FFACH Interrupt mask flag register  
FFADH  
VUDC  
VUDST  
KEYC  
VPS  
R/W  
8
8
70H  
00H  
8
ISPR  
IMC  
R
8
R/W  
8
80H  
FFH  
MK0L  
8
MK0  
MK1  
MK0H  
MK1L  
MK1H  
8
FFAEH  
8
FFAFH  
8
FFB0H FRC capture register 0L  
FFB1H FRC capture register 0H  
FFB2H FRC capture register 1L  
FFB3H FRC capture register 1H  
FFB4H FRC capture register 2L  
FFB5H FRC capture register 2H  
FFB6H FRC capture register 3L  
FFB7H FRC capture register 3H  
FFB8H FRC capture register 4L  
FFB9H FRC capture register 4H  
FFBAH FRC capture register 5L  
FFBBH FRC capture register 5H  
FFBDH VSYNC separation circuit control register  
CPT0L  
R
16  
8
Cleared to 0  
CPT0H  
CPT1L  
CPT1H  
CPT2L  
CPT2H  
CPT3L  
CPT3H  
CPT4L  
CPT4H  
CPT5L  
CPT5H  
VSC  
16  
8
16  
8
16  
8
16  
8
16  
8
R/W  
8
00H  
FFBEH  
VSYNC separation circuit up/down counter register  
VSUDC  
VSCMP  
STBC  
8
FFBFH VSYNC separation circuit compare register  
FFC0H Standby control register  
8
FFH  
0011×000  
20H  
8
FFC4H Execution speed select register  
FFCEH CPU clock status register  
MM  
W
R
8
PCS  
8
00H  
FFCFH Oscillation stabilization time specification register  
FFE0H Interrupt control register (INTP0)  
FFE1H Interrupt control register (INTCPT3)  
FFE2H Interrupt control register (INTCPT2)  
FFE3H Interrupt control register (INTCR12)  
FFE4H Interrupt control register (INTCR00)  
FFE5H Interrupt control register (INTCLR1)  
FFE6H Interrupt control register (INTCR10)  
OSTS  
W
8
PIC0  
R/W  
8
43H  
CPTIC3  
CPTIC2  
CRIC12  
CRIC00  
CLRIC1  
CRIC10  
8
8
8
8
8
8
Remark Cleared to 0: Counter is initialized to 0 within 16 clocks after the reset signal has been cleared (the  
contents before initialization are undefined).  
Data Sheet U12255EJ2V1DS  
29  
µPD784927, 784928, 784927Y, 784928Y  
Table 3-1. Special Function Registers (5/5)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
R/W  
Bit  
Bit Units for Manipulation After Clearing  
Length  
1 bit  
8 bits 16 bits  
Reset  
43H  
FFE7H Interrupt control register (INTCR01)  
FFE8H Interrupt control register (INTCR02)  
FFE9H Interrupt control register (INTCR11)  
FFEAH Interrupt control register (INTCPT1)  
FFEBH Interrupt control register (INTCR20)  
CRIC01  
CRIC02  
CRIC11  
CPTIC1  
CRIC20  
IICIC  
8
8
8
8
8
8
8
8
8
Note 1  
FFECH Interrupt control register (INTIIC)  
FFEDH Interrupt control register (INTTB)  
FFEEH Interrupt control register (INTAD)  
TBIC  
ADIC  
Note 2  
FFEFH Interrupt control register (INTP2)  
Interrupt control register (INTCR40)  
PIC2  
Note 2  
CRIC40  
UDCIC  
CRIC30  
CRIC50  
CRIC13  
CSIIC1  
WIC  
FFF0H Interrupt control register (INTUDC)  
FFF1H Interrupt control register (INTCR30)  
FFF2H Interrupt control register (INTCR50)  
FFF3H Interrupt control register (INTCR13)  
FFF4H Interrupt control register (INTCSI1)  
FFF5H Interrupt control register (INTW)  
FFF6H Interrupt control register (INTVISS)  
FFF7H Interrupt control register (INTP1)  
FFF8H Interrupt control register (INTP3)  
FFFAH Interrupt control register (INTCSI2)  
8
8
8
8
8
8
8
8
8
8
×1000011  
VISIC  
43H  
PIC1  
PIC3  
CSIIC2  
Notes 1. µPD784928Y subseries only.  
2. PIC2 and CRIC40 are at the same address (register).  
Remark Cleared to 0: Counter is initialized to 0 within 16 clocks after the reset signal has been cleared (the  
contents before initialization are undefined).  
30  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
3.4 Ports  
The µPD784927 is provided with the ports shown in Figure 3-3. Table 3-2 shows the function of each port.  
Figure 3-4. Port Configuration  
P00  
P60  
Port 0  
Port 2  
Port 3  
Port 6  
P07  
P20  
P67  
P70-P77  
8
Port 7  
Port 8  
P23  
P30  
P80  
P82  
P87  
P90  
P37  
P40  
Port 9  
Port 4  
Port 5  
P96  
P47  
P50  
P100  
P103  
Port 10  
Port 11  
P110  
P113  
P57  
Table 3-2. Port Function  
Name  
Port 0  
Pin Name  
P00-P07  
Function  
Specification of Pull-up Resistor  
Can be set in input or output mode in  
1-bit units.  
Pull-up resistors are connected to all  
pins in input mode.  
Port 2  
Port 3  
Port 4  
P20-P23  
P30-P37  
P40-P47  
Input port  
Pull-up resistors are connected to pins  
P22 and P23.  
Can be set in input or output mode in  
1-bit units.  
Pull-up resistors are connected to all pins  
in input mode.  
Can be set in input or output mode in  
1-bit units.  
Can directly drive LED.  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port 10  
Port 11  
P50-P57  
P60-P67  
P70-P77  
Can be set in input or output mode in  
1-bit units.  
Input port  
Pull-up resistor is not provided.  
Pull-up resistors are connected to all pins  
in input mode.  
P80, P82-P87  
P90-P96  
Can be set in input or output mode in  
1-bit units.  
Input port  
P100-P103  
P110-P113  
Pull-up resistor is not provided.  
Data Sheet U12255EJ2V1DS  
31  
µPD784927, 784928, 784927Y, 784928Y  
3.5 Real-Time Output Port  
A real-time output port consists of a port output latch and a buffer register (refer to Figure 3-5).  
The function to transfer the data prepared in advance in the buffer register to the output latch when a trigger such  
as a timer interrupt occurs, and output the data to an external device is called a real-time output function. A port used  
in this way is called a real-time output port (RTP).  
Table 3-3 shows the real-time output ports of the µPD784927.  
Table 3-4 shows the trigger sources of RTPs.  
Figure 3-5. Configuration of RTP  
Buffer register  
Output trigger  
Port output latch  
Port  
Table 3-3. Bit Configuration of RTP  
RTP  
RTP0  
RTP8  
Shared with:  
Port 0  
Number of Bits of  
Number of Bits That Can  
Be Specified as RTP  
Remark  
Real-Time Output Data  
4 bits × 2 channels or  
8 bits × 1 channel  
4-bit units  
Port 8  
1 bit × 1 channel and  
2 bits × 1 channel  
1-bit units  
Pseudo VSYNC output: 1 channel (RTP80)  
Head amplifier switch: 1 channel (RTP82)  
Chrominance rotation signal output: 1  
channel (RTP83)  
Table 3-4. Trigger Sources of RTP  
Trigger Source  
INTCR00  
INTCR01  
INTCR02  
INTCR13  
INTCR50  
INTP0  
Remark  
RTP  
RTP0  
High-order 4 bits  
Low-order 4 bits  
All 8 bits  
RTP8  
Bit 0  
Note 1  
Note 2  
Bits 2 and 3  
Notes 1. Select one of the four trigger sources.  
2. When the real-time output port mode is set by the port mode control register 8 (PMC8), the HASW and  
ROT-C signals that are set by the head amplifier switch output control register (HAPC) are directly  
output. The HASW and ROT-C signals are synchronized with HSW output (TM0-CR00 coincidence  
signal). However, the set signal is output immediately when the HAPC register is rewritten.  
32  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Figures 3-6 and 3-7 show the block diagrams of RTP0 and RTP8. Figure 3-8 shows the types of RTP output trigger  
sources.  
Figure 3-6. Block Diagram of RTP0  
Internal bus  
8
4
4
Buffer register  
Real-time output port 0  
control register (RTPC)  
8
P0H  
P0L  
4
4
INTP0  
INTCR01  
INTCR02  
Output trigger  
Control circuit  
Output latch (P0)  
P07  
P00  
Remark INTCR01: TM0-CR01 coincidence signal  
INTCR02: TM0-CR02 coincidence signal  
Figure 3-7. Block Diagram of RTP8  
Internal bus  
8
8
8
Head amplifier output control register (HAPC)  
Port 8 buffer register L (P8L)  
SEL SEL SEL PB  
ROTCHASW ENV MOD2 MOD1 MOD0  
PB  
PB  
SEL  
0
0
0
0
0
P8L4 MD80 P8L2  
0 P8L0  
TRGP80  
HASW, ROT-C  
control circuit  
Pseudo VSYNC output  
control circuit  
TM0-CR00  
coincidence signal  
PMC80  
0
PMC82  
PMC83  
PMC8  
Output latch (P8)  
H
SYNC  
superimposition  
circuit  
P83P82  
P80  
Data Sheet U12255EJ2V1DS  
33  
µPD784927, 784928, 784927Y, 784928Y  
Figure 3-8. Types of RTP Output Trigger Sources  
Real-time output port 0  
control register (RTPC)  
INTP0  
TM0  
Selector  
Trigger of P0H  
Trigger of P0L  
CR00  
CR01  
CR02  
Interrupt and  
timer output  
Trigger of P82 and P83  
Trigger of P80  
Selector  
TM1  
Trigger source select  
register 0 (TRGS0)  
CR10  
CR11  
CR12  
CR13  
Interrupt and  
timer output  
Capture  
Interrupt  
TM5  
Interrupt  
CR50  
34  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
RTP80 can output low-level, high-level, and high-impedance values real-time.  
Because RTP80 can superimpose a horizontal sync signal, it can be used to create pseudo vertical sync signal.  
When RTP80 is set in the pseudo VSYNC output mode, it repeatedly outputs a specific pattern when an output trigger  
occurs.  
Figure 3-9 shows the operation timing of RTP80.  
Figure 3-9. Example of Operation Timing of RTP80  
(a) When HSYNC signal is superimposed  
High level  
P80 High impedance  
Low level  
Trigger signal  
(b) Pseudo VSYNC output mode  
High level  
P80 High impedance  
Low level  
Trigger signal  
Data Sheet U12255EJ2V1DS  
35  
µPD784927, 784928, 784927Y, 784928Y  
3.6 Super Timer Unit  
The µPD784927 is provided with a super timer unit that consists of the timers, and VCR special circuits such as  
a VISS detection circuit and a VSYNC separation circuit, etc., shown in Table 3-5.  
Table 3-5. Configuration of Super Timer Unit  
Maximum  
Unit Name Timer/Counter Resolution  
Register  
CR00  
Remark  
Count Time  
65.5 ms  
Timer 0  
TM0  
1 µs  
Controls delay of video head switching signal  
Controls delay of audio head switching signal  
Controls pseudo VSYNC output timing  
(16-bit timer)  
CR01  
CR02  
EC  
ECC0, ECC1,  
ECC2, ECC3  
CPT0  
Creates internal head switching signal  
(8-bit counter)  
FRC  
Free  
125 ns  
524 ms  
Detects reference phase (to control drum phase)  
Detects phase of drum motor (to control drum  
phase)  
running  
counter  
(22-bit counter)  
CPT1  
CPT2  
CPT3  
Detects speed of drum motor (to control drum  
speed)  
Detects speed of capstan motor (to control speed  
of capstan motor)  
CPT4, CPT5  
CR10  
Detects remaining tape for reel FG  
Playback: Creates internal reference signal  
Recording: Buffer oscillator in case VSYNC is  
missing  
Timer 1  
TM1  
1 µs  
65.5 ms  
(16-bit timer)  
CR11  
CR12  
Controls RECCTL output timing  
Detects phase of capstan motor (to control capstan  
phase)  
CR13  
Controls VSYNC mask as noise preventive measures  
Controls duty detection timing of PBCTL signal  
Measures cycle of PBCTL signal  
Divides CFG signal frequency  
TM3  
1 µs or  
1.1 µs  
65.5 ms or CR30, CR31  
(16-bit timer)  
EDV  
71.5 ms  
CPT30  
EDVC  
(8-bit counter)  
TM2  
Timer 2  
Timer 4  
1 µs  
2 µs  
65.5 ms  
131 ms  
CR20  
CR40  
CR41  
CR50  
UDCC  
Can be used as interval timer (to control system)  
(16-bit timer)  
TM4  
Detects duty of remote controller signal (to decode  
remote controller signal)  
(16-bit timer)  
Measures cycle of remote controller signal (to de  
code remote controller signal)  
Timer 5  
TM5  
2 µs  
131 ms  
Can be used as interval timer (to control system)  
(16-bit timer)  
UDC  
Up/down  
counter  
PWM  
Creates linear tape counter  
(5-bit counter)  
PWM0, PWM1, 16-bit resolution (carrier frequency: 62.5 kHz)  
output unit  
PWM5  
PWM2, PWM3, 8-bit resolution (carrier frequency: 62.5 kHz)  
PWM4  
36  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(1) Timer 0 unit  
Timer 0 unit creates head switching signal and pseudo VSYNC output timing from the PG and FG signals of the  
drum motor.  
This unit consists of an event counter (EC: 8 bits), compare registers (ECC0 through ECC3), a timer (TM0:  
16 bits), and compare registers (CR00 through CR02).  
A signal indicating coincidence between the value of timer 0 and the value of a compare register can be used  
as the output trigger of the real-time output port.  
(2) Free running counter unit  
The free running counter unit detects the speed and phase of the drum motor, and the speed and reel speed  
of the capstan motor.  
This unit consists of a free running counter (FRC), capture registers (CPT0 through CPT5), a VSYNC separation  
circuit, and a HSYNC separation circuit.  
(3) Timer 1 unit  
Timer 1 unit is a reference timer unit synchronized with the frame cycle and creates the RECCTL signal, detects  
the phase of the capstan motor, and detects the duty factor of the PBCTL signal. This unit consists of the  
following three groups:  
Timer 1 (TM1), compare registers (CR10, CR11, and CR13), and capture register (CR12)  
Timer 3 (TM3), compare registers (CR30 and CR31), and capture register (CPT30)  
Event divider counter (EDV) and compare register (EDVC)  
The TM1-CR13 coincidence signal can be used for automatic unmasking of VSYNC or as the output trigger of  
the real-time output port.  
Data Sheet U12255EJ2V1DS  
37  
Figure 3-10. Block Diagram of Super Timer Unit (TM0, FRC, TM1)  
DPGIN  
DFGIN  
Divider  
Mask  
Selector  
Clear  
TM0  
Writes  
Output control circuit  
Output control circuit  
Output control circuit  
PTO00  
PTO01  
PTO02  
00H to EC  
INTCR00  
INTCR01  
INTCR02  
RTP  
Clear  
EC  
CR00  
CR01  
CR02  
RTP, A/D  
RTP, A/D  
ECC3  
ECC2  
ECC1  
ECC0  
F/F  
F/F  
(Superimposition)  
(Superimposition)  
H
circuit  
SYNC separation  
To P80  
V
SYNC separation  
circuit  
CSYNCIN  
INTCLR1  
µ
FRC  
CPT0  
CPT1  
CPT2  
CPT3  
CPT4  
CPT5  
Capture  
Capture  
Capture  
Capture  
Capture  
Mask  
REEL0IN  
REEL1IN  
INTCPT1  
INTCPT2  
INTCPT3  
Capture  
INTP3  
Clear  
CFGIN  
EDV  
Output control circuit  
PTO10  
PTO11  
Clear  
TM1  
INTCR10  
EDVC  
CR10  
CR11  
CR12  
CR13  
Output control circuit  
PBCTL  
PTO10  
PTO11  
INTCR11  
INTCR12  
INTCR13  
Clear  
TM3  
Capture  
FFLVL  
CR30  
CR31  
CPT30  
INTCR30 To PBCTL signal  
input block  
CTL  
F/F  
Capture  
µPD784927, 784928, 784927Y, 784928Y  
(4) Timer 2 unit  
Timer 2 unit is a general-purpose 16-bit timer unit.  
This unit consists of a timer (TM2) and a compare register (CR20).  
The timer is cleared when the TM2-CR20 coincidence signal occurs, and at the same time, an interrupt request  
is generated.  
Figure 3-11. Block Diagram of Timer 2 Unit  
Clear  
TM2  
INTCR20  
CR20  
(5) Timer 4 unit  
Timer 4 unit is a general-purpose 16-bit timer unit.  
This unit consists of a timer (TM4), a capture/compare register (CR40), and a capture register (CR41).  
The value of the timer is captured to CR40/CR41 when the INTP2 signal is input. This timer can be used to  
decode a remote controller signal.  
Figure 3-12. Block Diagram of Timer 4 Unit  
Mask  
Clear  
TM4  
INTCR40  
CR40  
CR41  
INTP2  
(6) Timer 5 unit  
Timer 5 unit is a general-purpose 16-bit timer unit.  
This unit consists of a timer (TM5) and a compare register (CR50).  
The timer is cleared by the TM5-CR50 coincidence signal, and at the same time, an interrupt request is  
generated.  
Figure 3-13. Block Diagram of Timer 5 Unit  
Clear  
TM5  
INTCR50  
RTP, A/D  
CR50  
Data Sheet U12255EJ2V1DS  
39  
µPD784927, 784928, 784927Y, 784928Y  
(7) Up/down counter unit  
The up/down counter unit is a counter that realizes a linear time counter.  
This unit consists of an up/down counter (UDC) and a compare register (UDCC).  
The up/down counter counts up the rising edges of PBCTL and counts down the falling edges of PBCTL. When  
the value of the up/down counter coincides with the value of the compare register, or when the counter  
underflows, an interrupt request is generated.  
Figure 3-14. Block Diagram of Up/Down Counter Unit  
SELUD  
PTO10  
PTO11  
P77  
UP/DOWN  
UDC  
EDVC output  
PBCTL  
UDCC  
INTUDC  
(8) PWM output unit  
The PWM output unit has three 16-bit accuracy output lines (PWM0, PWM1, and PWM5) and 8-bit accuracy  
output lines (PWM2 through PWM4). The carrier frequency of all the output lines is 62.5 kHz (fCLK = 8 MHz).  
PWM0 and PWM1 can be used to control the drum motor and capstan motor.  
Figure 3-15. Block Diagram of 16-Bit PWM Output Unit  
(n = 0, 1, 5)  
Internal bus  
16  
8
PWMn  
15  
8
7
0
PWMC0  
8
8
To selector  
Reload  
Reload  
Reload control  
PWM pulse  
generation circuit  
16 MHz  
8-bit down counter  
PWMn  
Output control  
circuit  
1/256  
8-bit counter  
RESET  
40  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Figure 3-16. Block Diagram of 8-Bit PWM Output Unit  
Internal bus  
PWM2  
PWM3  
PWM4  
PWMC1  
8-bit comparator  
8-bit comparator  
PWM counter  
8-bit comparator  
Output control  
circuit  
PWM4  
PWM3  
PWM2  
16 MHz  
Output control  
circuit  
Output control  
circuit  
(9) VISS detection circuit  
Figure 3-17. Block Diagram of VISS Detection Circuit  
PBCTL  
UP/DOWN  
CFG signal  
VUDST  
(VUDC value  
setting register)  
f
CLK/16  
CLK/64  
VUDC  
(8-bit up/down counter)  
f
fCLK/256  
VISS malfunction  
prevention circuit  
VSFT0  
(shift register 0)  
VSFT1  
(shift register 1)  
Coincidence  
INTVISS  
VPS  
VCMP  
(compare register)  
(VISS pulse pattern  
setting register)  
Data Sheet U12255EJ2V1DS  
41  
µPD784927, 784928, 784927Y, 784928Y  
(10) VSYNC separation circuit  
Figure 3-18. Block Diagram of VSYNC Separation Circuit  
CSYNC signal  
Digital noise rejection circuit  
f
CLK/4  
CLK/8  
VSUDC  
(8-bit up/down  
counter)  
f
V
SYNC F/F  
VSCMP  
(8-bit compare  
register)  
V
SYNC  
S
Q
R
"00"  
3.7 Serial Interface  
The µPD784927 is provided with the serial interfaces shown in Table 3-6.  
Data can be automatically transmitted or received through these serial interfaces, when the macro service is used.  
Table 3-6. Types of Serial Interfaces  
Name  
Function  
Serial interface channel 1  
Clocked serial interface (3-wire)  
Bit length: 8 bits  
Clock rate: External clock/31.25 kHz/62.5 kHz/125 kHz/250 kHz/500 kHz/1 MHz  
(fCLK = 8 MHz)  
MSB first/LSB first selectable  
Serial interface channel 2  
Clocked serial interface (3-wire)  
Bit length: 8 bits  
Clock rate: External clock/31.25 kHz/62.5 kHz/125 kHz/250 kHz/500 kHz/1 MHz  
(fCLK = 8 MHz)  
MSB first/LSB first selectable  
BUSY/STRB control function  
Serial interface channel 3  
I2C bus interface  
For multimaster  
42  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(1) Serial interface channels 1, 2  
Figure 3-19. Block Diagram of Serial Interface Channel n (n = 1 or 2)  
Internal bus  
SIn /BUSY  
SOn  
SIOn register  
CSIMn register  
Serial clock counter  
INTCSIn  
SCKn  
f
f
f
f
f
f
CLK/8  
CLK/16  
CLK/32  
CLK/64  
CLK/128  
CLK/256  
Busy detection circuit  
Strobe generation circuit  
STRB  
CSIC2 register  
Internal bus  
Remark The circuits enclosed in the broken line are provided to serial interface channel 2 only.  
Data Sheet U12255EJ2V1DS  
43  
µPD784927, 784928, 784927Y, 784928Y  
(2) Serial interface channel 3 (µPD784928Y subseries only)  
This channel transfers 8-bit data with multiple devices using two lines: serial clock (SCL) and serial data bus  
(SDA).  
It conforms to the I2C bus format, and can output a “start condition”, “data”, and “stop condition” onto the serial  
data bus during transmission. This data is automatically detected by hardware during reception.  
SCL and SDA are open-drain output pins and therefore, must be connected with a pull-up resistor.  
Figure 3-20. Serial Interface Channel 3  
+VDD+VDD  
Master CPU2  
Slave CPU2  
Serial data bus  
SDA  
SCL  
SDA  
SCL  
Master CPU1  
Slave CPU1  
Serial clock  
Address 1  
SDA  
SCL  
Slave CPU3  
Address 2  
SDA  
SCL  
Slave IC  
Address 3  
SDA  
SCL  
Slave IC  
Address N  
44  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
3.8 A/D Converter  
The µPD784927Y has an analog-to-digital (A/D) converter with 12 multiplexed analog inputs (ANI0 through ANI11).  
This A/D converter is of successive approximation type, and the conversion result is held by an 8-bit A/D conversion  
result register (ADCR) (conversion time: 10 µs at fCLK = 8 MHz).  
A/D conversion can be started in the following two modes:  
Hardware start: Conversion is started by a hardware triggerNote  
.
Software start : Conversion is started by setting a bit of the A/D converter mode register (ADM).  
After conversion has been started, the A/D converter operates in the following modes:  
Scan mode : Sequentially selects more than one analog input to obtain data to be converted from all the pins.  
Select mode: Use only one pin for analog input to obtain successive data to be converted.  
When the conversion result is transferred to ADCR, interrupt request INTAD is generated. By processing this  
interrupt with the macro service, the conversion result can be successively transferred to memory.  
A mode in which starting A/D conversion of the next pin is kept pending until the value of ADCR is read is also  
available. When this ode is used, reading the conversion result by mistake when timing is shifted because an interrupt  
is disabled can be prevented.  
Note A hardware trigger is the following coincidence signals, one of which is selected by the trigger source select  
register 1 (TRGS1):  
TM0-CR01 coincidence signal  
TM0-CR02 coincidence signal  
TM1-CR13 coincidence signal  
TM5-CR50 coincidence signal  
Data Sheet U12255EJ2V1DS  
45  
µPD784927, 784928, 784927Y, 784928Y  
Figure 3-21. Block Diagram of A/D Converter  
ADM.7 (CS)  
ANI0  
ANI1  
ANI2  
Series resistor string  
1 : ON  
Sample & hold circuit  
AVREF  
ANI3  
R/2  
R
Voltage  
comparator  
.
.
.
.
.
.
ANI11  
Successive approximation  
register (SAR)  
R/2  
Conversion  
trigger  
TM0-CR01 coincidence  
TM0-CR02 coincidence  
TM1-CR13 coincidence  
TM5-CR50 coincidence  
AVSS2  
Control circuit  
INTAD  
A/D conversion  
end interrupt  
8
Trigger  
enable  
Delay detection  
circuit  
Trigger source select register 1  
(TRGS1)  
A/D conversion result  
register (ADCR)  
A/D converter mode  
register (ADM)  
8
16  
Internal bus  
3.9 VCR Analog Circuits  
The µPD784927 is provided with the following VCR analog circuits:  
CTL amplifier  
RECCTL driver (rewritable)  
DPG amplifier  
DFG amplifier  
DPFG separation circuit (ternary separation circuit)  
CFG amplifier  
Reel FG comparator (2 channels)  
CSYNC comparator  
46  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(1) CTL amplifier/RECCTL driver  
The CTL amplifier is used to amplify the playback control (PBCTL) signal that is reproduced from the CTL signal  
recorded on a VCR tape.  
The gain of the CTL amplifier is set by the gain control register (CTLM). Thirty-two types of gains can be set  
in increments of about 1.78 dB.  
The µPD784927 is also provided with a gain control signal generation circuit that monitors the status of the  
amplifier output to perform optimum gain control by software. The gain control signal generation circuit  
generates a CTL detection flag that identifies the amplitude status of the CTL amplifier output. By using this  
CTL detection flag, the gain of the CTL amplifier can be optimized.  
The RECCTL driver writes a control signal onto a VCR tape.  
This driver operates in two modes: REC mode that is used for recording, and rewrite mode used to rewrite  
the VISS signal. The output status of the RECCTL pin is changed by hardware, by using the timer output  
from the super timer unit as a trigger.  
Figure 3-22. Block Diagram of CTL Amplifier and RECCTL Driver  
ANI11  
CTLDLY  
TOM1.4-TOM1.6  
RECCTL+  
TM1-CR11 coincidence signal  
TM1-CR13 coincidence signal  
TM3-CR30 coincidence signal  
RECCTL driver  
AMPC. 1  
RECCTL  
-
CTL head  
V
REF  
+
-
AMPC. 1  
CTL detection flag L (AMPM0. 1)  
CTL detection flag S (AMPM0. 3)  
CTL detection flag clear  
(1 write to AMPM0. 6)  
+
Gain control signal  
generation circuit  
CTLIN  
-
CTLOUT1  
CTLM. 0-CTLM. 4  
Waveform  
shaping circuit  
PBCTL signal (to timer unit)  
CTLMON (to P67)  
CTLOUT2  
Data Sheet U12255EJ2V1DS  
47  
µPD784927, 784928, 784927Y, 784928Y  
(2) DPG amplifier, DFG amplifier, and DFPG separation circuit  
The DPG amplifier converts the drum PG (DPG) signal that indicates the phase information of the drum motor  
into a logic signal.  
The DFG amplifier amplifies the drum FG (DFG) signal that indicates the speed information of the drum motor.  
The DPFG separation circuit (ternary separation circuit) separates a drum PFG (DPFG) signal having speed  
and phase information into a DFG and DPG signals.  
Figure 3-23. Block Diagram of DPG Amplifier, DFG Amplifier, and DPFG Separation Circuit  
AMPC.7  
V
REF  
AMPM0.2  
AMPC.2  
AMPC.2  
AMPM0.0  
DPGIN  
0 : ON  
1
0
Drum PG signal  
1
V
REF  
DPG signal  
(to timer unit)  
DPG  
comparator  
+
0
DPGMON  
(to P65)  
DPG amplifier  
V
REF  
AMPC.2  
+
AMPM0.0  
DFGIN  
DFG amplifier  
Drum FG signal or  
drum PFG signal  
AMPM0.2  
AMPM0.2  
AMPC.2  
0
1
AMPC.2  
DPFG separation  
circuit (ternary  
separation circuit)  
1
0
1
DFG signal  
(to timer unit)  
AMPM0.2  
0
DFGMON  
(to P64)  
48  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(3) CFG amplifier  
The CFG amplifier amplifies the capstan FG (CFG) signal that indicates the speed information of the capstan  
motor. This amplifier consists of an operational amplifier and a comparator. The gain of the operational  
amplifier is set by using an external resistor.  
When the gain of the operational amplifier is set to 50 dB, the output duty accuracy of the CFG signal can be  
improved to 50.0 0.3%.  
Figure 3-24. Block Diagram of CFG Amplifier  
VREF  
AMPC.3  
+
CFG amplifier  
-
Capstan FG signal  
CFGIN  
CFGAMPO  
VREF  
AMPM0.0  
AMPC.3  
AMPC.3  
CFG  
comparator  
-
1
CFGCPIN  
CFG signal  
(to timer unit)  
+
0
CFGMON  
(to P66)  
(4) Reel FG comparators  
The reel FG comparator converts a reel FG signal that indicates the speed information of the reel motor into  
a logic signal. Two comparators, one for take-up and the other for supply, are provided.  
Figure 3-25. Block Diagram of Reel FG Comparators  
VREF  
AMPC.6  
AMPM0.0  
REEL0IN  
1
0
Supply reel signal  
Reel FG0 signal  
(to timer unit)  
Reel FG comparator  
VREF  
AMPC.6  
AMPC.6  
AMPM0.0  
REEL1IN  
1
0
Take-up reel signal  
Reel FG1 signal  
(to timer unit)  
Reel FG comparator  
Data Sheet U12255EJ2V1DS  
49  
µPD784927, 784928, 784927Y, 784928Y  
(5) CSYNC comparator  
The CSYNC comparator converts the COMPSYNC signal into a logic signal.  
Figure 3-26. Block Diagram of COMPSYNC Comparator  
VREF  
AMPM1.7  
AMPC.5  
AMPC.5  
AMPM0.0  
CSYNCIN  
1
COMPSYNC signal  
C
SYNC signal  
CSYNC comparator  
(to timer unit)  
0
(6) Reference amplifier  
The reference amplifier generates a reference voltage (VREF) to be supplied to the internal amplifiers and  
comparators of the µPD784927.  
Figure 3-27. Block Diagram of Reference Amplifier  
ENCAP (AMPC.3)  
AVDD1  
-
VREFC  
V
REF (CFG amplifier)  
+
-
AVSS1  
V
REF (CFG amplifier)  
+
ENCTL (AMPC.1)  
-
V
REF (CTL amplifier)  
ENDRUM (AMPC.2)  
+
ENREEL (AMPC.6)  
ENCSYN (AMPC.5)  
-
V
REF DFG amplifier, DPG comparator,  
reel FG comparator, and CSYNC  
comparator)  
+
Remark Multiple reference amplifiers are provided to assure the accuracy of the amplifiers and comparators.  
50  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(7) Analog circuit monitor function  
This function is to output the following signals to port pins, and is mainly used for debugging.  
Comparator output of CTL amplifier CTLMON (multiplexed port: P67)  
Comparator output of CFG amplifier CFGMON (multiplexed port: P66)  
Comparator output of DPG amplifier DPGMON (multiplexed port: P65)  
Comparator output of DFG amplifier DFGMON (multiplexed port: P64)  
3.10 Watch Function  
The µPD784927 has a watch function that counts the overflow signals of the watch timer by hardware. As the clock,  
the subsystem clock (32.768 kHz) is used.  
Because this watch function is independent of the CPU, it can be used even while the CPU is in the standby mode  
(STOP mode) or is reset. In addition, this function can be used at a low voltage of VDD = 2.7 V (MIN.).  
Therefore, by using only the watch function with the CPU set in the standby mode or reset, a watch operation can  
be performed at a low voltage and low current consumption.  
In addition, the watch function can also be used while the CPU is in the normal operation mode, because a dedicated  
counter is provided.  
The watch function can be used to count up to about 17 years of data.  
The hardware watch counters (HW0 and HW1) are shared with external input counters. These counters execute  
counting at the falling edge of input to the P65 pin, and can be used to count the HSYNC signals.  
Figure 3-28. Block Diagram of Watch Counter  
PM65  
PMC65  
CMS5  
Edge detection  
P65  
P65  
Pin level read  
WM.2  
WM.2  
(enables/disables operation)  
(enables/disables operation)  
1
0
0
13  
0
15  
0
13  
0
Normal  
1
fXT  
(32.768 kHz)  
Watch timer  
HW0  
HW1  
WM.2  
Fast  
forward  
To NMI generation block  
WM.1  
Subclock  
BUZ signal  
WM.6  
INTW  
WM.7  
WM.5  
WM.4  
WM.2  
Data Sheet U12255EJ2V1DS  
51  
µPD784927, 784928, 784927Y, 784928Y  
3.11 Clock Output Function  
The µPD784927 can output a square wave (with a duty factor of 50%) to the P60/STRB/CLO pin as the operating  
clock for the peripheral devices or other microcomputers. To enable or disable the clock output, and to set the  
frequency of the clock, the clock output mode register (CLOM) is used.  
When setting the frequency, the division ratio can be set to fCLK/n (where n = 1, 2, 4, 8, 16, 32, 64, or 128) (fCLK  
= fOSC/2: fOSC is the oscillation frequency of the resonator).  
Figure 3-29 shows the block diagram of the clock output circuit.  
The clock output (CLO) pin is shared with P60 and STRB.  
Figure 3-29. Block Diagram of Clock Output Circuit  
CLOM CLOM7 CLOM6 CLOM5 ENCLO  
0
SELFRQ2 SELFRQ1 SELFRQ0  
fCLK  
f
f
f
CLK/2  
CLK/4  
CLK/8  
1
f
f
f
CLK/16  
CLK/32  
CLK/64  
P60/STRB/CLO  
0
P60  
(Output latch)  
RESET  
f
CLK/128  
Remark fCLK: internal system clock  
Caution Do not use the clock output function in the STOP mode. Clear ENCLO (CLOM.4) to 0 in the STOP  
mode.  
Figure 3-30. Application Example of Clock Output Function  
µ
PD784927  
µPD7503A  
LCD  
24  
System clock  
CLO  
SCK1  
SI1  
CL1  
SCK  
SO  
SI  
SO1  
52  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
3.12 Buzzer Output Function  
The BUZ signal can be superimposed on P61 or P64.  
The buzzer output frequency can be generated from the subsystem clock frequency or main system clock  
frequency.  
Figure 3-31 shows the block diagram of the BUZ output circuit.  
The BUZ signal can be also used for trimming the subsystem clock.  
Figure 3-31. Block Diagram of BUZ Output Circuit  
WM4  
CMS4  
WM5  
WM7  
2.048 kHz  
0
1
4.096 kHz  
P61  
(Output latch)  
CLOM7  
P61/BUZ  
32.768 kHz  
0
1
BUZ output  
CLOM5  
CLOM6  
f
CLK/512  
0
P64  
(Output latch)  
f
f
f
CLK/1024  
CLK/2048  
CLK/4096  
P64/BUZ  
1
BUZ output  
Data Sheet U12255EJ2V1DS  
53  
µPD784927, 784928, 784927Y, 784928Y  
4. INTERNAL/EXTERNAL CONTROL FUNCTION  
4.1 Interrupt Function  
The µPD784927 has as many as 32 interrupt sources, including internal and external sources. For 28 sources,  
a high-speed interrupt processing mode such as context switching or macro service can be specified by software.  
Table 4-1 lists the interrupt sources.  
54  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Table 4-1. Interrupt Sources  
Interrupt  
Control  
Register  
Name  
Interrupt  
Macro Context Macro Service Vector  
Service Switching Control Word Table  
Address Address  
Interrupt Request Source  
Trigger  
Request Priority  
Type  
Name  
Reset  
RESET RESET pin input  
No  
No  
0000H  
0002H  
Non-  
NMI  
NMI pin input edge  
maskable  
Maskable  
0
1
2
3
INTP0  
INTP0 pin input edge  
PIC0  
Yes  
Yes  
FE06H  
FE08H  
FE0AH  
FE0CH  
0006H  
0008H  
000AH  
000CH  
INTCPT3 EDVC output signal (CPT3 capture)  
INTCPT2 DFGIN pin input edge (CPT2 capture)  
INTCR12 PBCTL input edge/EDVC output signal  
(CR12 capture)  
CPTIC3  
CPTIC2  
CRIC12  
4
5
INTCR00 TM0-CR00 coincidence signal  
INTCLR1 CSYNCIN pin input edge  
INTCR10 TM1-CR10 coincidence signal  
INTCR01 TM0-CR01 coincidence signal  
INTCR02 TM0-CR02 coincidence signal  
INTCR11 TM1-CR11 coincidence signal  
INTCPT1 Pin input edge/EC output signal  
(CPT1 capture)  
CRIC00  
CLRIC1  
CRIC10  
CRIC01  
CRIC02  
CRIC11  
CPTIC1  
FE0EH  
FE10H  
FE12H  
FE14H  
FE16H  
FE18H  
FE1AH  
000EH  
0010H  
0012H  
0014H  
0016H  
0018H  
001AH  
6
7
8
9
10  
11  
12  
13  
14  
15  
INTCR20 TM2-CR20 coincidence signal  
CRIC20  
IICICNote  
TBIC  
FE1CH  
FE1EH  
FE20H  
FE22H  
FE24H  
001CH  
001EH  
0020H  
0022H  
0024H  
INTIIC  
INTTB  
End of I2C bus transfer  
Time base from FRC  
INTAD A/D converter conversion end  
INTP2 INTP2 pin input edge  
ADIC  
PIC2  
INTCR40 TM4-CR40 coincidence signal  
INTUDC UDC-UDCC coincidence/UDC underflow  
INTCR30 TM3-CR30 coincidence signal  
INTCR50 TM5-CR50 coincidence signal  
INTCR13 TM1-CR13 coincidence signal  
INTCSI1 End of serial transfer (channel 1)  
CRIC40  
UDCIC  
CRIC30  
CRIC50  
CRIC13  
CSIIC1  
WIC  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
FE26H  
FE28H  
FE2AH  
FE2CH  
FE2EH  
FE30H  
FE32H  
FE34H  
FE36H  
FE3AH  
0026H  
0028H  
002AH  
002CH  
002EH  
0030H  
0032H  
0034H  
0036H  
003AH  
003CH  
INTW  
Overflow of watch timer  
INTVISS VISS detection signal  
VISIC  
PIC1  
INTP1  
INTP3  
INTP1 pin input edge  
INTP3 pin input edge  
PIC3  
INTCSI2 End of serial transfer (channel 2)  
CSIIC2  
Operand  
error  
Illegal operand of MOV STBC, #byte or  
LOCATION instruction  
No  
No  
Software  
Execution of BRK instruction  
Execution of BRKCS instruction  
003EH  
Yes  
Note µPD784928Y subseries only.  
Remark EVDC : Event divider compare register  
EC  
: Event counter  
FRC : Free running counter  
MSCW: Macro service control register  
Data Sheet U12255EJ2V1DS  
55  
µPD784927, 784928, 784927Y, 784928Y  
Figure 4-1. Differences in Operation Depending on Interrupt Processing Mode  
Main  
routine  
Macro service  
processing  
Main routine  
Macro service  
Context  
Interrupt  
processing  
Main  
routine  
Note 2  
Note 4  
Note 4  
Note 3 Main routine  
switchingNote 1  
Vectored  
interruptNote 1  
Restoring  
PC and  
PSW  
SEL  
Interrupt  
Main  
routine  
Main routine  
RBn  
processing  
Initializing  
general-purpose  
register  
Saving  
general-purpose  
register  
Restoring  
general-purpose  
register  
Restoring  
PC and  
PSW  
Interrupt  
processing  
Main  
routine  
Main  
routine  
Vectored interrupt  
Interrupt request generated  
Notes 1. When the register bank switching function is used and when initial values are set in advance to the  
registers  
2. Selecting a register bank and saving PC and PSW by context switching  
3. Restoring register bank, PC, and PSW by context switching  
4. Saves PC and PSW to stack and loads vector address to PC  
56  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
4.1.1 Vectored interrupt  
When an interrupt request is acknowledged, an interrupt processing program is executed according to the data  
stored in the vector table area (the first address of the interrupt processing program created by the user).  
In addition, four levels of priorities can be specified by software.  
4.1.2 Context switching  
When an interrupt request is generated or when the BRKCS instruction is executed, a specific register bank is  
selected by hardware, and execution branches to a vector address set in advance in the register bank. At the same  
time, the current contents of the program counter (PC) and program status word (PSW) are saved to the registers  
in the register bank. Because the contents of PC and PSW are not saved to the stack area, execution can be branched  
to an interrupt processing routine more quickly than the vectored interrupt.  
Figure 4-2. Context Switching Operation When Interrupt Request Is Generated  
Register bank  
(0-7)  
<7> 0H  
Register bank n (n = 0-7)  
PC19-16  
PC15-0  
A
B
X
C
<6> Exchange  
R5  
R7  
R4  
R6  
<2> Save  
Bits 8-11 of temporary  
register  
<3> Switching register bank  
(RBS0-RBS2 n)  
<4> RSS 0  
<5> Save  
V
U
T
VP  
UP  
Temporary register  
<1> Save  
PSW  
IE 0  
D
H
E
L
W
Data Sheet U12255EJ2V1DS  
57  
µPD784927, 784928, 784927Y, 784928Y  
4.1.3 Macro service  
The macro service is a function to transfer data between the memory and a special function register (SFR) without  
intervention by the CPU. A macro service controller accesses the memory and SFR and directly transfers the data.  
Because the status of the CPU is not saved or restored, data can be transferred more quickly than context switching.  
The processing that can be executed with the macro service is described below.  
Figure 4-3. Macro Service  
Read  
Write  
Write  
Read  
Macro service  
controller  
CPU  
Memory  
SFR  
Internal bus  
(1) Counter mode  
In this mode, the value of the macro service counter (MSC) is decremented when an interrupt request occurs.  
This mode can be used to execute the division operation of an interrupt request or count the number of times  
an interrupt request has occurred.  
When the value of the macro service counter has been decremented to 0, a vectored interrupt occurs.  
MSC  
-1  
(2) Compound data transfer mode  
When an interrupt request occurs, data are simultaneously transferred from an 8-bit SFR to memory, a 16-  
bit SFR to memory (word), memory (byte) to an 8-bit SFR, and memory (word) to a 16-bit SFR (3 points MAX.  
for each transfer).  
This mode can also be used to exchange data, instead of transferring data.  
This mode can be used for automatic transfer/reception by the serial interface or automatic updating of data/  
timing by the serial output port.  
When the value of the macro service counter reaches to 0, a vectored interrupt request occurs.  
Memory  
.
.
SFR<4>-1 SFR<4>-2 SFR<4>-3  
SFR<2>-1 SFR<2>-2 SFR<2>-3  
SFR<3>-1  
SFR<3>-2  
SFR<1>-2  
SFR<3>-3  
SFR<1>-3  
.
Internal bus  
SFR<1>-1  
Internal bus  
58  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(3) Macro service type A  
When an interrupt request occurs, data is transferred from an 8-/16-bit SFR to memory (byte/word) or from  
memory (byte/word) to an 8-/16-bit SFR.  
Data is transferred the number of times set in advance by the macro service counter.  
This mode can be used to store the result of A/D conversion or for automatic transfer (or reception) by the  
serial interface.  
Because transfer data is stored at an address FE00H to FEFFH, if only a small quantity of data is to be  
transferred, the data can be transferred at high speeds.  
When the value of the macro service counter is decremented to 0, a vectored interrupt request occurs.  
Data storage buffer (memory)  
Data n  
Data storage buffer (memory)  
Data n  
Data n  
-
1
Data n -1  
Data 2  
Data 1  
Data 2  
Data 1  
Internal bus  
SFR  
Internal bus  
SFR  
(4) Data pattern identification mode (VISS detection mode)  
This mode of macro service is for detection of the VISS signal and is used in combination with a pulse width  
detection circuit.  
When an interrupt request occurs, the content of bit 7 of an SFR (usually, TMC3) specified by SFR pointer  
1 is shifted into the buffer area. At the same time, the data in the buffer area is compared with the data in  
the compare area. If the two data coincide, a vectored interrupt request is generated. When the value of the  
macro service counter is decremented to 0, a vectored interrupt request occurs.  
It can be specified by option that the value of an SFR (usually, CPT30) specified by SFR pointer 2 be multiplied  
by a coefficient and the result of this multiplication be stored to an SFR (usually, CR30) specified by SFR pointer  
3 (this operation is to automatically update an identification threshold value when the tape speed fluctuates).  
Buffer area (memory)  
Compare area (memory)  
Coefficient (memory)  
CPT30  
TM3  
Multiplier  
Coincidence  
CR30  
Vectored interrupt  
CTL F/F  
(bit 7 of TMC3)  
Data Sheet U12255EJ2V1DS  
59  
µPD784927, 784928, 784927Y, 784928Y  
4.1.4 Application example of macro service  
(1) Automatic transfer/reception of serial interface  
Automatic transfer/reception of 3-byte data by serial interface channel 1  
Setting of macro service register: compound data transfer mode (exchange mode)  
7
0
FE50H  
High-order address  
Macro service counter (MSC = 2)  
Memory pointer H (= FD)  
Memory pointer L (= 50)  
ddccbbaa (= 01000100B)  
SFR pointer <2> (SFRP2 = 85H)  
SFR pointer <4> (SFRP4 = 85H)  
Macro service channel  
Channel pointer (= 50H)  
Macro service control word  
Mode register (= 10110011B) FE2EH  
Low-order address  
(Before transfer)  
(Exchange 2)  
SI1  
Transmit data 3 FD52H  
SIO1 (FF85H)  
<3>  
SO1  
Transmit data 2 FD51H  
<2>  
(Transmit data 1) FD50H  
(Exchange 1)  
<1> Transfer is started by writing  
transmit data 1 to SIO1 by  
software.  
(After transfer)  
Receive data 2 FD51H  
Receive data 1 FD50H  
(Receive data 3 is the data of SIO1.)  
60  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(2) Reception operation of serial interface  
Transfer of receive data by serial interface channel 1 (16 bytes)  
Setting of macro service mode register: macro service type A (1-byte data transfer from SFR to memory)  
Internal RAM  
MSC 0FH  
Setting of number of transfers  
FE7FH  
SFR pointer 85H  
Low-order 8 bits of address of SIO1 register  
Channel pointer (= 7FH)  
FE2EH Mode register (= 00010001B) Starts macro service when INTCSI1 occurs  
SIO1  
(FF85H)  
SI1  
Data Sheet U12255EJ2V1DS  
61  
µPD784927, 784928, 784927Y, 784928Y  
(3) VISS detection operation  
Setting of macro service mode register: data pattern identification mode (with multiplication, 8-byte compari-  
son)  
CPT30  
High-order address  
TM3  
Macro service counter (MSC = FFH)  
SFR pointer 2 (SFRP2 = 56H)  
Coefficient (6EH: 43%)  
FE50H  
Multiplier  
CR30  
TMC3  
SFR pointer 3 (SFRP3 = 5CH)  
SFR pointer 1 (SFRP1 = 3BH)  
Bit 7  
0
Buffer size specification  
register (64 bits: 8H)  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1050H  
8 bytes  
8 bytes  
1
1
1
1
1
1
1
0
Compare area pointer (high): 10H  
Compare area pointer (low): 50H  
Coincidence (vectored interrupt)  
Channel pointer (= 50H)  
FE0CH Mode register (= 00010100B) (CTL signal input edge detection interrupt)  
Low-order address  
62  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
4.2 Standby Function  
The standby function is to reduce the power consumption of the chip and is used in the following modes:  
Mode  
Function  
HALT mode  
STOP mode  
Stops operating clock of CPU. Reduces average power consumption when used  
in combination with normal mode for intermittent operation  
Stops oscillator. Stops all internal operations of chip to minimize power consump-  
tion to leakage current only  
Low power consumption mode  
Stops main system clock with subsystem clock used as system clock. CPU can  
operate with subsystem clock to reduce current consumption  
Low power consumption HALT mode  
Standby function in low power consumption mode. Stops operating clock of CPU.  
Reduces power consumption of overall system  
These modes are programmable.  
The macro service can be started in the HALT mode.  
Figure 4-4. Status Transition of Standby Function  
Sets low power consumption mode  
Restores normal operation  
Low power  
consumption mode  
(subsystem  
Normal  
operation  
clock operation)  
Macro  
service  
Waits for  
stabilization  
of oscillation  
Low power  
consumption  
HALT mode  
(standby)  
STOP mode  
(standby)  
HALT mode  
(standby)  
Unmasked  
interrupt request  
Notes 1. NMI input means starting NMI by NMI pin input, watch interrupt, or key interrupt input.  
2. Unmasked interrupt request  
Data Sheet U12255EJ2V1DS  
63  
µPD784927, 784928, 784927Y, 784928Y  
Figure 4-5. Relations among NMI, Watch Interrupt, and Key Interrupt When STOP Mode Is Released  
INTM0.0  
Standby control  
block  
NMI  
Latch  
Interrupt control  
Clear  
block  
INTP1  
INTP2  
KEY0  
KEY1  
KEY2  
KEY3  
KEY4  
S
R
Q
KEYC.7  
Cleared when "0" is  
written to KEYC.7  
Mask KEYC.6  
Mask KEYC.5  
Mask KEYC.4  
S
R
Q
KEYC.0  
WM.6  
Cleared when "0" is  
written to KEYC.0  
Watch timer  
INTW (OVF)  
Divides INTW  
by 128 (HW0L.7)  
Mask WM.3  
64  
Data Sheet U12255EJ2V1DS  
Figure 4-6. Block Diagram of Clock Generation Circuit  
CC.7  
µ
PD784927  
STBC.4, 5  
Oscillation stabilization timer  
Low-frequency  
X1  
Main  
oscillation mode  
XX/16 (fXX/8)Note 1  
STBC.6  
system  
clock  
f
f
XX  
1/2  
1/2  
1/2  
Normal mode  
oscillation  
circuit  
f
f
XX/8 (fXX/4)Note 1  
1/2  
X2  
XX/4 (fXX/2)Note 1  
16 MHz or 8 MHz  
Oscillation stop  
CPU  
f
CLK  
From standby control block  
Note 1  
f
XX/2 (fXX)  
Peripheral hardware  
operation clockNote 2  
XT1  
Subsystem  
f
XT  
clock  
Watch timer  
Hardware watch function  
Watch interrupt  
oscillation  
circuit  
µ
XT2  
32.768 kHz  
Oscillation stop  
STBC.7  
Notes 1. fXX: oscillation frequency, ( ): in low-frequency oscillation mode.  
2. The peripheral hardware units that can operate with the subsystem clock have some restrictions. For details, refer to µPD784928,  
784928Y Subseries User’s Manual-Hardware (U12648E).  
µPD784927, 784928, 784927Y, 784928Y  
4.4 Reset Function  
When a low-level signal is input to the RESET pin, the system is reset, and each hardware unit is initialized (reset  
status). During the reset period, oscillation of the system clock is unconditionally stopped, so that the current  
consumption of the overall system can be reduced.  
When the RESET pin goes high, the reset status is cleared. After the count time of the oscillation stabilization timer  
(32.8 ms at 16 MHz or 65.6 ms at 8 MHz) has elapsed, the contents of the reset vector table are set to the program  
counter (PC), and execution branches to the address set to the PC, and the program is executed starting from the  
branch destination address. Therefore, execution can be reset and started from any address.  
Figure 4-7. Oscillation of Main System Clock during Reset Period  
Main system clock  
oscillation circuit  
During reset, oscillation  
is unconditionally stopped.  
f
CLT  
RESET input  
Oscillation stabilization  
timer count time  
The RESET pin is provided with an analog delay noise rejection circuit to prevent malfunctioning due to noise.  
Figure 4-8. Accepting Reset Signal  
Oscillation  
stabilization  
time  
Analog  
delay  
Analog delay  
Analog delay  
RESET input  
Internal reset signal  
Internal clock  
66  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
5. INSTRUCTION SET  
(1) 8-bit instructions (( ): combination realized by using A as r)  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,  
ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC,  
CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA  
2nd Operand  
# byte  
A
r
saddr  
saddr'  
sfr  
!addr16  
mem  
r3  
[WHL+]  
[WHL–]  
n
NoneNote 2  
r'  
!!addr24 [saddrp]  
PSWL  
1st Operand  
A
[%saddrg] PSWH  
Note 6  
(MOV)  
(MOV)  
(XCH)  
MOV  
XCH  
(MOV)  
MOV  
(MOV)  
(XCH)  
MOV  
MOV  
(MOV)  
(XCH)  
(MOV)  
(XCH)  
Note 1  
Note 6  
1,6  
ADD  
(XCH)  
(XCH)  
XCH  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
(ADD)  
(ADD)  
MOV  
XCH  
(ADD)Notes  
(ADD)  
MOV  
XCH  
ADD  
ADD  
(ADD)  
(ADD)  
Note 3  
r
MOV  
(MOV)  
(XCH)  
MOV  
MOV  
XCH  
ROR  
MULU  
DIVUW  
INC  
Note 1  
ADD  
XCH  
Note 1  
(ADD)  
ADDNote 1 ADDNote 1 ADDNote 1  
DEC  
Note 6  
saddr  
sfr  
MOV  
ADDNote 1 (ADD)  
(MOV)  
MOV  
ADDNote 1 XCH  
MOV  
INC  
Note 1  
Note 1  
DEC  
ADDNote 1  
DBNZ  
PUSH  
POP  
MOV  
ADDNote 1 (ADD)  
MOV  
MOV  
ADDNote 1  
CHKL  
CHKLA  
!addr16  
!!addr24  
mem  
MOV  
(MOV)  
ADDNote 1  
MOV  
MOV  
[saddrp]  
[%saddrg]  
mem3  
ADDNote 1  
ROR4  
ROL4  
r3  
MOV  
MOV  
MOV  
PSWL  
PSWH  
B, C  
DBNZ  
STBC, WDM  
[TDE+]  
5
(MOV)  
MOVBKNote  
Note 1  
(ADD)  
4
MOVMNote  
5
[TDE–]  
(MOV)  
MOVBKNote  
(ADD)Note 1  
4
MOVMNote  
Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.  
2. Either the second operand is not used, or the second operation is not an operand address.  
3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.  
4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.  
5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.  
6. If saddr2 instead of saddr is used in this combination, the code length of some instructions is short.  
Data Sheet U12255EJ2V1DS  
67  
µPD784927, 784928, 784927Y, 784928Y  
(2) 16-bit instructions (( ): combination realized by using AX as rp)  
MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH,  
POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW  
2nd Operand  
# word  
AX  
rp  
saddrp  
saddrp  
sfrp  
!addr16  
!!addr24  
mem  
[WHL+]  
byte  
n
None Note 2  
rp'  
[saddrp]  
[%saddrg]  
1st Operand  
AX  
(MOVM)  
ADDWNote 1 (XCHW)  
(MOVW)  
(MOVW)  
(XCHW)  
(MOVW)Note 3 MOVW  
(MOVW) MOVW  
(MOVW)  
(XCHW)  
Note 3  
(
XCHW  
)
(XCHW)  
(ADDW)Note 1  
MOVW  
XCHW  
XCHW  
(ADDW)Note 1 (ADDW)Note 1 (ADDW)Notes  
1,3  
rp  
MOVW  
ADDWNote 1 (XCHW)  
(MOVW)  
MOVW  
XCHW  
MOVW  
XCHW  
MOVW  
SHRW  
SHLW  
MULWNote 4  
INCW  
XCHW  
(ADDW)Note 1 ADDWNote 1 ADDWNote 1 ADDWNote 1  
(MOVW)Note 3 MOVW  
MOVW  
ADDWNote 1 (ADDW)Note 1 ADDWNote 1 XCHW  
ADDWNote 1  
DECW  
INCW  
saddrp  
sfrp  
MOVW  
DECW  
MOVW  
MOVW  
MOVW  
PUSH  
POP  
ADDWNote 1 (ADDW)Note 1 ADDWNote 1  
!addr16  
!!addr24  
mem  
MOVW  
(MOVW)  
MOVW  
MOVW  
MOVTBLW  
[saddrp]  
[%saddrg]  
PSW  
PUSH  
POP  
SP  
ADDWG  
SUBWG  
post  
PUSH  
POP  
PUSHU  
POPU  
[TDE+]  
byte  
(MOVW)  
SACW  
MACW  
MACSW  
Notes 1. SUBW and CMPW are the same as ADDW.  
2. Either the second operand is not used, or the second operation is not an operand address.  
3. If saddr2 instead of saddr is used in this combination, the code length of some instructions is short.  
4. MULUW and DIVUX are the same as MULW.  
68  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(3) 24-bit instructions (( ): combination realized by using WHL as rg)  
MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP  
2nd Operand  
# imm24  
WHL  
rg  
saddrg  
!!addr24  
(MOVG)  
MOVG  
mem1  
MOVG  
[%saddrg]  
SP  
NoneNote  
rg'  
1st Operand  
WHL  
(MOVG)  
(ADDG)  
(SUBG)  
MOVG  
ADDG  
(MOVG)  
(ADDG)  
(SUBG)  
(MOVG)  
(ADDG)  
(SUBG)  
(MOVG)  
(ADDG)  
(SUBG)  
MOVG  
ADDG  
(MOVG)  
ADDG  
SUBG  
MOVG  
MOVG  
rg  
MOVG  
INCG  
DECG  
PUSH  
POP  
SUBG  
SUBG  
saddrg  
!!addr24  
mem1  
(MOVG)  
(MOVG)  
MOVG  
MOVG  
MOVG  
MOVG  
MOVG  
[%saddrg]  
SP  
MOVG  
INCG  
DECG  
Note Either the second operand is not used, or the second operation is not an operand address.  
(4) Bit manipulation instructions  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET  
2nd Operand  
CY  
saddr.bit  
sfr.bit  
/saddr.bit  
/sfr.bit  
NoneNote  
A.bit  
/A.bit  
X.bit  
/X.bit  
PSWL.bit  
PSWH.bit  
mem2.bit  
iaddr16.bit  
!addr24.bit  
/PSWL.bit  
/PSWH.bit  
/mem2.bit  
/!addr16.bit  
/!!addr24.bit  
1st Operand  
CY  
MOV1  
AND1  
OR1  
AND1  
OR1  
NOT1  
SET1  
CLR1  
XOR1  
saddr.bit  
sfr.bit  
MOV1  
NOT1  
SET1  
CLR1  
BF  
A.bit  
X.bit  
PSWL.bit  
PSWH.bit  
mem2.bit  
!addr16.bit  
!!addr24.bit  
BT  
BTCLR  
BFSET  
Note Either the second operand is not used, or the second operation is not an operand address.  
Data Sheet U12255EJ2V1DS  
69  
µPD784927, 784928, 784927Y, 784928Y  
(5) Call/return and branch instructions  
CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC,  
BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ  
Operand of $addr20 $!addr20 !addr16  
instruction  
!!addr20  
rp  
rg  
[rp]  
[rg]  
!addr11 [addr5]  
RBn  
None  
address  
Note  
Basic  
BC  
CALL  
BR  
CALL  
BR  
CALL  
BR  
CALL  
BR  
CALL  
BR  
CALL  
BR  
CALL  
BR  
CALLF CALLT BRKCS BRK  
instruction BR  
RET  
RETCS  
RETCSB  
RETI  
RETB  
Compound BF  
instruction BT  
BTCLR  
BFSET  
DBNZ  
Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are  
the same as BC.  
(6) Other instructions  
ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS  
70  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
6. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
| VDD – AVDD1 | 0.5 V  
Ratings  
–0.5 to +7.0  
–0.5 to +7.0  
–0.5 to +7.0  
–0.5 to +0.5  
–0.5 to +0.5  
–0.5 to VDD + 0.5  
–0.5 to AVDD2 + 0.5  
–0.5 to VDD + 0.5  
–0.5 to VDD + 0.5  
15  
Unit  
V
AVDD1  
AVDD2  
AVSS1  
AVSS2  
VI  
| VDD – AVDD2 | 0.5 V  
V
| AVDD1 – AVDD2 | 0.5 V  
V
V
V
Input voltage  
V
Analog input voltage  
(ANI0-ANI11)  
VIAN  
VDD AVDD2  
V
VDD < AVDD2  
V
Output voltage  
VO  
IOL  
V
Low-level output current  
Pin 1  
mA  
mA  
mA  
mA  
°C  
°C  
Total of all pins  
Pin 1  
100  
High-level output current  
IOH  
–10  
Total of all pins  
–50  
Operating ambient temperature  
Storage temperature  
TA  
–10 to +70  
–65 to +150  
Tstg  
Caution If the rated value of even one of the above parameters is exceeded even momentarily, the quality  
of the product may be degraded. Absolute maximum ratings therefore specify the values  
exceeding which the product may be physically damaged. Never exceed these values when  
using the product.  
Operating Conditions  
Clock Frequency  
Operating Ambient Temperature (T  
A
)
Operating Conditions  
All functions  
Supply Voltage (VDD)  
+4.5 to +5.5 V  
4 MHz fXX 16 MHz  
–10 to +70°C  
CPU function only  
+4.0 to +5.5 V  
32 kHz fXT 35 kHz  
Subclock operation  
(CPU, watch, and port  
functions only)  
+2.7 to +5.5 V  
Data Sheet U12255EJ2V1DS  
71  
µPD784927, 784928, 784927Y, 784928Y  
Oscillator Characteristics (main clock) (TA = –10 to +70°C, VDD = AVDD = 4.0 to 5.5 V, VSS = AVSS = 0 V)  
Resonator  
Recommended Circuit  
Parameter  
MIN.  
4
MAX. Unit  
16 MHz  
Crystal resonator  
Oscillation frequency (fXX)  
X1  
X2  
VSS  
C1  
C2  
Oscillator Characteristics (subclock) (TA = –10 to +70°C, VDD = AVDD = 2.7 to 5.5 V, VSS = AVSS = 0 V)  
Resonator  
Recommended Circuit  
Parameter  
MIN.  
32  
MAX. Unit  
35 kHz  
Crystal resonator  
Oscillation frequency (fXT)  
XT1  
XT2  
VSS  
C1  
C2  
Caution When using the main system clock and subsystem clock oscillator, wire the portion enclosed  
by the broken line in the above figures as follows to avoid the adverse influence of wiring  
capacitance:  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines. Do not route the wiring in the  
neighborhood of a signal line through which a high alternating current flows.  
Always keep the ground point of the capacitor of the oscillator to the same potential as VSS.  
Do not ground the capacitor to a ground pattern to which a high current flows.  
Do not extract signals from the oscillation circuit.  
Exercise particular care in using the subsystem clock oscillator because the amplification factor  
of this circuit is kept low to reduce the current consumption.  
Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the  
oscillation themselves or apply to the resonator manufacturer for evaluation.  
72  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
DC Characteristics (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
VIL1  
Conditions  
Pins other than those listed in Note 1 below  
Pins listed in Note 1 below  
X1, X2  
MIN.  
TYP.  
MAX.  
0.3 VDD  
0.2 VDD  
0.4  
Unit  
V
Low-level input voltage  
0
0
VIL2  
V
VIL3  
0
V
High-level input voltage  
Low-level output voltage  
VIH1  
VIH2  
VIH3  
VOL1  
VOL2  
VOL3  
VOL4  
VOH1  
VOH2  
ILI  
Pins other than those listed in Note 1 below  
Pins listed in Note 1 below  
X1, X2  
0.7 VDD  
0.8 VDD  
VDD – 0.5  
VDD  
V
VDD  
V
VDD  
V
IOL = 8.0 mA (pins in Note 2)  
IOL = 5.0 mA (pins in Note 4)  
IOL = 2.0 mA  
1.0  
V
0.6  
V
0.45  
0.25  
V
IOL = 100 µA  
V
High-level output voltage  
IOH = –1.0 mA  
VDD – 1.0  
VDD – 0.4  
V
IOH = –100 µA  
V
Input leakage current  
Output leakage current  
VDD supply current  
0 VI VDD  
10  
10  
50  
µA  
µA  
mA  
ILO  
0 VO VDD  
IDD1  
Operation  
mode  
fXX = 16 MHz  
30  
fXX = 8 MHz (low-frequency os-  
cillation mode)  
Internally, 8 MHz main  
clock operation  
fXT = 32.768 kHz  
Subclock operation (CPU,  
watch, port)  
50  
10  
80  
25  
µA  
VDD = 2.7 V  
IDD2  
HALT mode fXX = 16 MHz  
fXX = 8 MHz (low-frequency  
mA  
oscillation mode)  
Internally, 8 MHz main clock  
operation  
fXT = 32.768 MHz  
Subclock operation (CPU,  
watch, port)  
25  
50  
µA  
VDD = 2.7 V  
Data hold voltage  
VDDDR STOP mode  
2.5  
V
Note 3  
Data hold current  
IDDDR  
STOP mode Subclock oscillates  
18  
2.5  
0.2  
55  
50  
10  
µA  
VDDDR = 5.0 V  
STOP mode Subclock oscillates  
VDDDR = 2.7 V  
µA  
µA  
kΩ  
STOP mode Subclock stops  
VDDDR = 2.5 V  
7.0  
110  
Pull-up resistor  
RL  
VI = 0 V  
25  
Notes 1. RESET, IC, NMI, INTP0-INTP2, P61/SCK1/BUZ, P63/SI1, SCK2, SI2/BUSY, P65/HWIN, P91/KEY0 to  
P95/KEY4  
2. P40 to P47  
3. In the STOP mode in which the subclock oscillation is stopped, disconnect the feedback resistor, and  
connect the XT1 pin to VDD.  
4. P46, P47  
Data Sheet U12255EJ2V1DS  
73  
µPD784927, 784928, 784927Y, 784928Y  
AC Characteristics  
CPU and peripheral circuit operation clock (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
tCLK  
Conditions  
TYP.  
125  
Unit  
ns  
CPU operation clock cycle time  
fXX = 16 MHz  
VDD = AVDD = 4.0 to 5.5 V  
CPU function only  
fXX = 16 MHz  
fXX = 8 MHz  
low-frequency oscillation mode  
(Bit 7 of CC = 1)  
Peripheral operation clock cycle time  
tCLK1  
fXX = 16 MHz  
fXX = 8MHz  
125  
ns  
low-frequency oscillation mode  
(Bit 7 of CC = 1)  
Serial interface  
(1) SIOn: n = 1 or 2 (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Serial clock cycle time  
Symbol  
tCYSK  
Conditions  
External clock  
MIN.  
1.0  
MAX.  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
Input  
Output fCLK1/8  
fCLK1/16  
1.0  
2.0  
fCLK1/32  
4.0  
fCLK1/64  
8.0  
fCLK1/128  
16  
fCLK1/256  
32  
Serial clock high- and low-level widths  
tWSKH  
tWSKL  
tSSSK  
tHSSK  
tDSSK  
Input  
External clock  
420  
tCYSK/2 – 50  
100  
400  
0
Output Internal clock  
SIn setup time (vs. SCKn )  
SIn hold time (vs. SCKn )  
SOn output delay time (vs. SCKn )  
300  
Remarks 1. fCLK1: operating clock of peripheral circuit (8 MHz)  
2. n = 1 or 2  
(2) SIO2 only (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
SCK2(8) ↑→STRB ↑  
Symbol  
tDSTRB  
Conditions  
MIN.  
tWSKH  
MAX.  
tCYSK  
Unit  
Strobe high-level width  
BUSY setup time  
tWSTRB  
tSBUSY  
tCYSK – 30  
100  
tCYSK + 30  
ns  
ns  
(vs. BUSY detection timing)  
BUSY hold time  
tHBUSY  
100  
ns  
(vs. BUSY detection timing)  
BUSY inactive SCK2(1) ↓  
tLBUSY  
tCYSK + tWSKH  
Remarks 1. The value in ( ) following SCK2 indicates the number of SCK2.  
2. BUSY is detected after the time of (n + 2) x tCYSK (n = 0, 1, and so on) in respect to SCK2 (8) .  
3. BUSY inactive SCK2 (1) is the value when data has been completely written to SIO2.  
74  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
I2C bus mode (µPD784928Y subseries only)  
Parameter  
Symbol  
Standard Mode  
High-speed Mode  
MIN MAX.  
Unit  
MIN.  
MAX  
100  
SCL clock frequency  
fCLK  
0
0
400  
kHz  
Bus free time (between stop and start  
conditions)  
tBUF  
4.7  
1.3  
µs  
Note 1  
Hold time  
tHD : STA  
tLOW  
4.0  
4.7  
4.0  
4.7  
0.6  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
ns  
SCL clock low-level width  
SCL clock high-level width  
Start/restart condition setup time  
tHIGH  
tSU : STA  
tHD : DAT  
Data hold  
time  
CBUS compatible master  
5.0  
2
Note 2  
Note 2  
Note 2  
I C bus  
0
0
0.9  
Note 4  
Data setup time  
tSU : DAT  
tR  
250  
100  
20+0.1Cb  
20+0.1Cb  
0.6  
Note 5  
Note 5  
SDA and SCL signal rise time  
SDA and SCL signal fall time  
Stop condition setup time  
Pulse width of spike restrained by input  
filter  
1000  
300  
300  
300  
tF  
tSU : STO  
tSP  
4.0  
0
50  
Each bus line capacitative load  
Cb  
400  
400  
pF  
Notes 1. The first clock pulse is generated at the start condition after this period.  
2. The device needs to internally supply a hold time of at least 300 ns for the SDA signal to fill the undefined  
area at the falling edge of the SCL (VIHmin. of the SCL signal).  
3. Unless the device extends the low hold time (tLOW) of the SCL signal, it is necessary to fill only the  
maximum data hold time (tHD : DAT).  
4. The high-speed mode I2C bus can be used in the standard mode I2C bus system. In this case, satisfy  
the following conditions:  
• When the device does not extend the low hold time of the SCL signal  
tSU : DAT 250 ns  
• When the device extends the low hold time of the SCL signal  
Send the next data bit to the SDA line before releasing the SCL line (tRmax. + tSU:DAT = 1000 + 250  
= 1250 ns : in the standard mode I2C bus specification)  
5. Cb: Total capacitance of one bus line (unit: pF)  
Data Sheet U12255EJ2V1DS  
75  
µPD784927, 784928, 784927Y, 784928Y  
Other operations (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
tWCTL  
Condition  
MIN.  
MAX.  
Unit  
ns  
Timer input signal low-level width  
When DFGIN, CFGIN, DPGIN, REEL0IN,  
or REEL1IN logic level is input  
tCLK1  
Timer input signal high-level width  
tWCTH  
When DFGIN, CFGIN, DPGIN, REEL0IN,  
or REEL1IN logic level is input  
tCLK1  
ns  
Timer input signal valid edge input cycle  
CSYNCIN low-level width  
tPERIN  
When DFGIN, CFGIN, or DPGIN is input  
2
µs  
ns  
ns  
tWCR1L When digital noise rejection circuit is not used  
When digital noise rejection circuit is used  
(Bit 4 of INTM2 = 0)  
8tCLK1  
108tCLK1  
When digital noise rejection circuit is used  
(Bit 4 of INTM2 = 1)  
180tCLK1  
ns  
CSYNCIN high-level width  
tWCR1H When digital noise rejection circuit is not used  
When digital noise rejection circuit is used  
(Bit 4 of INTM2 = 0)  
8tCLK1  
ns  
ns  
108tCLK1  
When digital noise rejection circuit is used  
(Bit 4 of INTM2 = 1)  
180tCLK1  
ns  
Digital noise  
Rejected pulse width  
Passed pulse width  
tWSEP  
Bit 4 of INTM2 = 0  
104tCLK1  
176tCLK1  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
µs  
ns  
µs  
ns  
µs  
µs  
ms  
µs  
ns  
µs  
µs  
ms  
µs  
µs  
rejection circuit  
Bit 4 of INTM2 = 1  
Bit 4 of INTM2 = 0  
108tCLK1  
180tCLK1  
10  
Bit 4 of INTM2 = 1  
NMI low-level width  
tWNIL  
tWNIH  
tWIPL0  
tWIPH0  
tWIPL1  
VDD = AVDD = 2.7 to 5.5 V  
VDD = AVDD = 2.7 to 5.5 V  
NMI high-level width  
10  
INTP0, INTP3 low-level widths  
INTP0, INTP3 high-level widths  
INTP1, KEY0-KEY4 low-level widths  
2tCLK1  
2tCLK1  
2tCLK1  
10  
Mode other than STOP mode  
In STOP mode, for releasing STOP mode  
Mode other than STOP mode  
INTP1, KEY0-KEY4 high-level widths  
INTP2 low-level width  
tWIPH1  
2tCLK1  
10  
In STOP mode, for releasing STOP mode  
tWIPL2  
In normal mode,  
with main clock  
Normal mode,  
with subclock  
Sampling = fCLK  
2tCLK1  
Note  
Sampling = fCLK/128  
Sampling = fCLK  
32  
61  
Note  
Sampling = fCLK/128  
7.9  
In STOP mode, for releasing STOP mode  
10  
INTP2 high-level width  
RESET low-level width  
tWIPH2  
In normal mode,  
with main clock  
Normal mode,  
with subclock  
Sampling = fCLK  
2tCLK1  
Note  
Sampling = fCLK/128  
Sampling = fCLK  
32  
61  
Note  
Sampling = fCLK/128  
7.9  
In STOP mode, for releasing STOP mode  
10  
10  
tWRSL  
Note If a high or low level is successively input two times during the sampling period, a high or low level is  
detected.  
Remark tCKL1: operating clock cycle time of peripheral circuit (125 ns)  
76  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Clock output operation (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
CLO cycle time  
Symbol  
tCYCL  
tCLL  
Condition  
MIN.  
125  
MAX.  
16000  
8025  
8025  
25  
Unit  
ns  
nT  
CLO low-level width  
CLO high-level width  
CLO rise time  
tCYCL/2 25  
tCYCL/2 25  
37.5  
37.5  
ns  
tCLH  
ns  
tCLR  
ns  
CLO fall time  
tCLF  
25  
ns  
Remarks 1. n: system clock division  
2. T = 1/fCLK  
Data hold characteristics (TA = –10 to +70°C, VDD = AVDD = 2.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Low-level input voltage  
High-level input voltage  
Symbol  
VIL  
Condition  
MIN.  
0
TYP.  
MAX.  
0.1 VDDDR  
VDDDR  
Unit  
V
Special pins (pins in Note)  
VIH  
0.9 VDDDR  
V
Note RESET, IC, NMI, INTP0-INTP2, P61/SCK1/BUZ, P63/SI1, SCK2, SI2/BUSY, P65/HWIN, P91/KEY0-P95/  
KEY4  
Watch function (TA = –10 to +70°C, VDD = AVDD = 2.7 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
VDDXT  
Condition  
MIN.  
2.7  
MAX.  
Unit  
V
Subclock oscillation hold voltage  
Hardware watch function operating voltage  
VDDW  
2.7  
V
Subclock oscillation stop detection flag (TA = –10 to +70°C, VDD = AVDD = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
45  
MAX.  
Unit  
Oscillation stop detection width  
tOSCF  
µs  
A/D converter characteristics (TA = –10 to +70°C, VDD = AVDD = AVREF = 4.5 to 5.5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
8
TYP.  
MAX.  
Unit  
bit  
Resolution  
Total error  
AVREF = VDD  
2.0  
1/2  
%
Quantization error  
Conversion time  
LSB  
µs  
tCONV  
Bit 4 of ADM = 0  
Bit 4 of ADM = 1  
Bit 4 of ADM = 0  
Bit 4 of ADM = 1  
160tCLK1  
80tCLK1  
32tCLK1  
16tCLK1  
0
µs  
Sampling time  
tSAMP  
µs  
µs  
Analog input voltage  
Analog input impedance  
AVREF current  
VIAN  
ZAN  
AVREF  
V
1000  
0.4  
MΩ  
mA  
AIREF  
1.2  
Data Sheet U12255EJ2V1DS  
77  
µPD784927, 784928, 784927Y, 784928Y  
VREF amplifier (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Reference voltage  
Charge current  
Symbol  
VREF  
Condition  
MIN.  
2.35  
300  
TYP.  
2.50  
MAX.  
2.65  
Unit  
V
ICHG  
Sets AMPM0.0 to 1  
µA  
(pins in Note)  
Note RECCTL+, RECCTL–, CFGIN, CFGCPIN, DFGIN, DPGIN, CSYNCIN, REEL0IN, REEL1IN  
CTL amplifier (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
CTL+, – input resistance  
Feedback resistance  
Symbol  
RICTL  
Condition  
MIN.  
2
TYP.  
5
MAX.  
10  
Unit  
kΩ  
kΩ  
kΩ  
dB  
dB  
dB  
dB  
V
RFCTL  
20  
20  
17  
71  
50  
100  
100  
22  
Bias resistance  
RBCTL  
50  
Minimum voltage gain  
Maximum voltage gain  
Gain selecting step  
GCTLMIN  
GCTLMAX  
SGAIN  
20  
75  
1.77  
50  
Same phase signal elimination ratio  
CMR DC, voltage gain: 20 dB  
High comparator set voltage of waveform shaping VPBCTLHS  
High comparator reset voltage of waveform shaping VPBCTLHR  
Low comparator set voltage of waveform shaping VPBCTLLS  
Low comparator reset voltage of waveform shaping VPBCTLLR  
VREF + 0.47 VREF + 0.50 VREF + 0.53  
VREF + 0.27 VREF 0.30 VREF + 0.33  
+
V
VREF – 0.53 VREF – 0.50 VREF – 0.47  
VREF – 0.33 VREF – 0.30 VREF – 0.27  
V
V
Comparator Schmitt width of waveform shaping  
High comparator voltage of CTL flag S  
Low comparator voltage of CLT flag S  
High comparator voltage of CTL flag L  
Low comparator voltage of CTL flag L  
VPBSH  
VFSH  
VFSL  
VFLH  
VFLL  
150  
200  
250  
mV  
V
VREF + 1.00 VREF + 1.05 VREF + 1.10  
VREF – 1.10 VREF – 1.05 VREF – 1.00  
VREF + 1.40 VREF + 1.45 VREF + 1.50  
VREF – 1.50 VREF – 1.45 VREF – 1.40  
V
V
V
78  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
CFG amplifier (AC coupling) (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
50  
TYP.  
MAX.  
Unit  
dB  
dB  
mA  
mA  
V
Voltage gain 1  
Voltage gain 2  
GCFG1 fi = 2 kHz, open loop  
GCFG2 fi = 30 kHz, open loop  
34  
CFGAMPO High-level output current  
CFGAMPO Low-level output current  
High comparator voltage  
IOHCFG DC  
IOLCFG DC  
VCFGH  
–1  
0.1  
VREF + 0.09 VREF + 0.12 VREF + 0.15  
VREF – 0.15 VREF – 0.12 VREF – 0.09  
Low comparator voltage  
VCFGL  
V
Duty accuracy  
PDUTY  
Note  
49.7  
50.0  
50.3  
%
Note The conditions include the following circuit and input signal.  
Input signal : Sine wave input (5 mVp-p)  
fi = 1 kHz  
µPD784927  
1 kΩ  
Voltage gain: 50 dB  
+
CFGIN  
22µF  
330 kΩ  
CFGAMPO  
0.01µ F  
CFGCPIN  
DFG amplifier (AC coupling) (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
GDFG  
Condition  
MIN.  
TYP.  
MAX.  
640  
Unit  
dB  
kΩ  
Voltage gain  
fi = 900 Hz, open loop  
50  
Feedback resistance  
RFDFG  
RIDFG  
VDFGH  
VDFGL  
160  
400  
150  
Input protection resistance  
High comparator voltage  
Low comparator voltage  
VREF + 0.07 VREF + 0.10 VREF + 0.14  
VREF – 0.14 VREF – 0.10 VREF – 0.07  
V
V
Caution Set the input resistance connected to the DFGIN pin to 16 kor below. Connecting a resistor  
exceeding that value may cause the DFG amp to oscillate.  
Data Sheet U12255EJ2V1DS  
79  
µPD784927, 784928, 784927Y, 784928Y  
DPG amplifier (AC coupling) (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
GDPG  
Condition  
MIN.  
TYP.  
20  
MAX.  
Unit  
dB  
V
Voltage gain  
fI = 30 Hz  
High comparator voltage  
VDPGH1 SELDPGHL0 = 0, SELDPGHL1 = 0 VREF + 0.02 VREF + 0.05 VREF + 0.08  
VDPGH2 SELDPGHL0 = 1, SELDPGHL1 = 0 VREF + 0.56 VREF + 0.60 VREF + 0.64  
VDPGH3 SELDPGHL0 = 0, SELDPGHL1 = 1 VREF – 0.44 VREF – 0.40 VREF – 0.36  
VDPGL1 SELDPGHL0 = 0, SELDPGHL1 = 0 VREF – 0.08 VREF – 0.05 VREF – 0.02  
VDPGL2 SELDPGHL0 = 1, SELDPGHL1 = 0 VREF + 0.36 VREF + 0.40 VREF + 0.44  
VDPGL3 SELDPGHL0 = 0, SELDPGHL1 = 1 VREF – 0.64 VREF – 0.60 VREF – 0.56  
V
V
Low comparator voltage  
V
V
V
Caution When both the SELDPGHL0 and SELDPGHL1 are set to 0, the DPG amplifier is not used.  
Therefore, be sure to set AMPC.7 (ENDPG) to 0.  
Ternary separation circuit (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Input impedance  
Symbol  
ZIPFG  
Condition  
MIN.  
20  
TYP.  
50  
MAX.  
100  
Unit  
kΩ  
V
High comparator voltage  
Low comparator voltage  
VPFGH  
VPFGL  
VREF + 0.5 VREF + 0.7 VREF + 0.9  
VREF – 1.4 VREF – 1.2 VREF – 1.0  
V
CSYNC comparator (AC coupling) (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Input impedance  
Symbol  
ZICSYN  
Condition  
MIN.  
20  
TYP.  
50  
MAX.  
100  
Unit  
kΩ  
V
High comparator voltage  
Low comparator voltage  
VCSYNH  
VCSYNL  
VREF + 0.07 VREF + 0.10 VREF + 0.13  
VREF – 0.13 VREF – 0.10 VREF – 0.07  
V
Reel FG comparator (AC coupling) (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Input impedance  
Symbol  
ZIRLFG  
Condition  
MIN.  
20  
TYP.  
50  
MAX.  
100  
Unit  
kΩ  
V
High comparator voltage  
Low comparator voltage  
VRLFGH  
VRLFGL  
VREF + 0.02 VREF + 0.05 VREF + 0.08  
VREF – 0.08 VREF – 0.05 VREF – 0.02  
V
RECCTL driver (TA = 25°C, VDD = AVDD = 5 V, VSS = AVSS = 0 V)  
Parameter  
Symbol  
Condition  
MIN.  
TYP.  
70  
MAX.  
Unit  
V
RECCTL+, – high-level output voltage  
RECCTL+, – low-level output voltage  
CTLDLY internal resistance  
CTLDLY charge current  
VCHREC IOH = –4 mA  
VOLREC IOL = 4 mA  
RCTL  
VDD – 0.8  
0.8  
V
40  
–3  
–3  
140  
kΩ  
mA  
mA  
IOHCTL Use of internal resistor  
IOLCTL  
CTLDLY discharge current  
80  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Timing waveform  
AC timing test point  
0.8 VDD or 2.2 V  
0.8 V  
0.8 VDD or 2.2 V  
Test point  
0.8 V  
Serial transfer timing (SIOn: n = 1 or 2)  
t
WSKL  
t
WSKH  
SCKn  
SIn  
t
CYSK  
t
SSSK  
t
HSSK  
Input data  
t
DSSK  
Output data  
SOn  
Data Sheet U12255EJ2V1DS  
81  
µPD784927, 784928, 784927Y, 784928Y  
Serial transfer timing (SIO2 only)  
No busy processing  
tWSKL  
tWSKH  
SCK2  
BUSY  
7
8
9
10  
1
2
t
CYSK  
Active high  
Busy invalid  
tDSTRB  
tWSTRB  
STRB  
Continuation of busy processing  
tWSKL  
tWSKH  
SCK2  
BUSY  
STRB  
7
8
9
10  
10+n  
t
CYSK  
t
SBUSY  
t
SBUSY  
Active high  
tDSTRB  
t
WSTRB  
End of busy processing  
tWSKL  
tWSKH  
SCK2  
7
8
9
10+n  
11+n  
1
tCYSK  
tHBUSY  
tLBUSY  
BUSY  
Active high  
Caution When an external clock is selected as the serial clock, do not use the busy control or strobe  
control.  
82  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
I2C bus mode (µPD784928Y subseries only)  
tLOW  
tR  
SCL  
SDA  
tF  
t
HD : DAT  
t
HIGH  
tSU : STA  
tHD : STA  
tSP  
tSU : STO  
t
HD : STA  
tSU : DAT  
tBUF  
Stop  
condition  
Start  
condition  
Restart  
condition  
Stop  
condition  
Data Sheet U12255EJ2V1DS  
83  
µPD784927, 784928, 784927Y, 784928Y  
Super timer unit input timing  
t
WCTH  
t
WCTL  
0.8 VDD  
When DFGIN, CFGIN, DPGIN,  
REEL0IN, or REEL1IN logic  
level is input  
0.8 V  
t
WCR1H  
t
WCR1L  
0.8 VDD  
When CSYNCIN logic level  
is input  
0.8 V  
Interrupt request input timing  
tWNIH  
tWNIL  
0.8 VDD  
NMI  
0.8 V  
0.8 V  
0.8 V  
0.8 V  
tWIPH0  
tWIPH1  
t
WIPH2  
t
WIPL0  
WIPL1  
WIPL2  
0.8 VDD  
0.8 VDD  
0.8 VDD  
INTP0, INTP3  
INTP1, KEY0-KEY4  
INTP2  
t
t
84  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Reset input timing  
tWRSL  
RESET  
0.8 V  
Clock output timing  
t
CLH  
0.8 VDD  
0.8 V  
CLO  
t
CLR  
t
CLF  
t
CLL  
t
CYCL  
Data Sheet U12255EJ2V1DS  
85  
µPD784927, 784928, 784927Y, 784928Y  
7. PACKAGE DRAWING  
100 PIN PLASTIC LQFP (FINE PITCH) (14×14)  
A
B
75  
76  
51  
50  
detail of lead end  
S
C
D
R
Q
100  
1
26  
25  
F
M
H
I
J
G
K
L
P
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.08 mm (0.003 inch) of  
its true position (T.P.) at maximum material condition.  
A
16.00 0.20  
0.630 0.008  
+0.009  
0.551  
B
14.00 0.20  
–0.008  
+0.009  
0.551  
C
D
14.00 0.20  
16.00 0.20  
–0.008  
0.630 0.008  
F
1.00  
1.00  
0.039  
0.039  
G
+0.05  
0.22  
H
0.009 0.002  
–0.04  
I
0.08  
0.003  
J
0.50 (T.P.)  
0.020 (T.P.)  
+0.009  
0.039  
K
L
1.00 0.20  
0.50 0.20  
–0.008  
+0.008  
0.020  
–0.009  
+0.03  
0.17  
+0.001  
0.007  
M
–0.07  
–0.003  
N
P
Q
0.08  
0.003  
1.40 0.05  
0.10 0.05  
0.055 0.002  
0.004 0.002  
+7°  
3°  
+7°  
3°  
R
S
–3°  
–3°  
1.60 MAX.  
0.063 MAX.  
S100GC-50-8EU  
Remark The package dimensions and materials of ES versions are the same as those of mass-production  
versions.  
86  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
100PIN PLASTIC QFP (14x20)  
A
B
51  
50  
80  
81  
detail of lead end  
C D  
S
R
Q
31  
30  
100  
1
F
J
G
M
H
I
P
K
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
A
23.6 0.4  
0.929 0.016  
+0.009  
0.795  
B
20.0 0.2  
–0.008  
+0.009  
0.551  
C
14.0 0.2  
–0.008  
D
F
17.6 0.4  
0.8  
0.693 0.016  
0.031  
G
0.6  
0.024  
+0.004  
0.012  
H
0.30 0.10  
–0.005  
I
0.15  
0.006  
J
0.65 (T.P.)  
0.026 (T.P.)  
+0.008  
0.071  
K
L
1.8 0.2  
0.8 0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
0.10  
0.004  
+0.005  
0.106  
2.7 0.1  
–0.004  
Q
R
S
0.1 0.1  
5° 5°  
3.0 MAX.  
0.004 0.004  
5° 5°  
0.119 MAX.  
P100GF-65-3BA1-3  
Remark The package dimensions and materials of ES versions are the same as those of mass-production  
versions.  
Data Sheet U12255EJ2V1DS  
87  
µPD784927, 784928, 784927Y, 784928Y  
8. RECOMMENDED SOLDERING CONDITIONS  
Solder this product under the following recommended conditions.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Table 8-1. Surface Mount Type Soldering Conditions  
(1) µPD784927GF-×××-3BA : 100-pin plastic QFP (14 × 20 mm)  
µPD784928GF-×××-3BA : 100-pin plastic QFP (14 × 20 mm)  
µPD784927YGF-×××-3BA : 100-pin plastic QFP (14 × 20 mm)  
µPD784928YGF-×××-3BA : 100-pin plastic QFP (14 × 20 mm)  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Conditions Symbol  
Package peak temperature: 235°C, Time: 30 secs. max. (210°C min.),  
Number of times: three times max.  
IR35-00-3  
VP15-00-3  
WS60-00-1  
Package peak temperature: 215°C, Time: 40 secs. max. (200°C min.),  
Number of times: three times max.  
Wave soldering  
Solder bath temperature: 260°C max., Time: 10 secs. max.,  
Number of times: once,  
Preheating temperature: 120°C max.(Package surface temperature)  
Partial heating  
Pin temperature: 350°C max., Time: three secs. max. (per device side)  
Caution Do not use two or more soldering methods in combination (except partial heating).  
(2) µPD784927GF-×××-3BA-A : 100-pin plastic QFP (14 × 20 mm)  
µPD784928GF-×××-3BA-A : 100-pin plastic QFP (14 × 20 mm)  
µPD784927YGF-×××-3BA-A : 100-pin plastic QFP (14 × 20 mm)  
µPD784928YGF-×××-3BA-A : 100-pin plastic QFP (14 × 20 mm)  
Soldering Method  
Soldering Conditions  
Recommended  
Conditions Symbol  
Infrared reflow  
Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or  
IR60-207-3  
higher), Count: Three times or less,  
Exposure limit: 7 daysNote (after that, prebake at 125°C for 20 to 72 hours)  
For details, contact an NEC Electronics sales representative.  
Wave soldering  
Partial heating  
Pin temperature: 350°C max., Time: 3 seconds. max. (per pin row))  
Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
Remark Products that have the part numbers suffixed by “-A” are lead-free products.  
88  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for developing systems using the µPD784927.  
Refer to (5) Cautions when the development tools are used.  
(1) Language processing software  
RA78K4  
78K/IV series common assembler package  
CC78K4  
78K/IV series common C compiler package  
Device file for the µPD784928, 784928Y subseries  
78K/IV series common C compiler library source file  
DF784928  
CC78K4-L  
(2) Flash memory writing tools  
Flashpro II, III  
Dedicated flash programmer  
(Part number: FL-PR2,  
FL-PR3, PG-FPIII)  
FA-100GC  
Adapter for writing 100-pin plastic LQFP (GC-8EU type) flash memory. Be sure to  
connect depending on the target product.  
FA-100GF  
Adapter for writing 100-pin plastic QFP (GF-3BA type) flash memory. Be sure to  
connect depending on the target product.  
(3) Debugging tools  
When using the IE-78K4-NS in-circuit emulator  
IE-78K4-NS  
78K/IV series common in-circuit emulator  
Power supply unit for IE-78K4-NS  
IE-70000-MC-PS-B  
IE-70000-98-IF-C  
Interface adapter necessary when a PC-9800 series computer (except notebook  
personal computer) is used as host machine (C bus compatible)  
IE-70000-CD-IF-A  
IE-70000-PC-IF-C  
PC card and interface cable necessary when a notebook personal computer is used as  
host machine (PCMCIA socket compatible)  
Interface adapter necessary when an IBM PC/ATTM compatible machine is used as host  
machine (ISA bus compatible)  
IE-784928-NS-EM1  
EP-784915-GF-R  
Emulation board for emulating the µPD784928, 784928Y subseries  
Emulation probe for µPD784915 subseries common 100-pin plastic QFP (GC-3BA type)  
and 100-pin plastic LQFP (GC-8EU type).  
EV-9200GF-100  
NQPACK100RB  
Conversion socket to be mounted on the board of the target system for 100-pin plastic  
QFP (GF-3BA type). It is used in LCC system.  
Conversion socket to be mounted on the board of the target system for 100-pin plastic  
QFP (GF-3BA type). It is used in QFP system.  
ID78K4-NS  
SM78K4  
Integrated debugger for IE-78K4-NS  
78K/IV series common system simulator  
Device file for the µPD784928, 784928Y subseries  
DF784928  
Data Sheet U12255EJ2V1DS  
89  
µPD784927, 784928, 784927Y, 784928Y  
When using the IE-784000-R in-circuit emulator  
IE-784000-R  
78K/IV series common in-circuit emulator  
IE-70000-98-IF-C  
Interface adapter necessary when a PC-9800 series computer (except notebook  
personal computer) is used as host machine (C bus compatible)  
IE-70000-PC-IF-C  
Interface adapter necessary when an IBM PC/AT compatible machine is used  
as host machine (ISA bus compatible)  
IE-78000-R-SV3  
Interface adapter and cable necessary when an EWS is used as host machine  
IE-784928-NS-EM1  
IE-784915-R-EM1  
Emulation board for emulating the µPD784928, 784928Y subseries and µPD784915  
subseries  
IE-784000-R-EM  
IE-78K4-R-EX3  
78K/IV series common emulation board  
Conversion board for 100-pin products necessary when the IE-784928-NS-EM1 is used  
in the IE-784000-R. Not necessary when the IE-784915-R-EM1 is used.  
EP-784915-GF-R  
EV-9200GF-100  
NQPACK100RB  
Emulation probe for µPD784915 subseries common 100-pin plastic QFP (GC-3BA type)  
and 100-pin plastic LQFP (GC-8EU type).  
Conversion socket to be mounted on the board of the target system for 100-pin plastic  
QFP (GF-3BA type). It is used in LCC system.  
Conversion socket to be mounted on the board of the target system for 100-pin plastic  
QFP (GF-3BA type). It is used in QFP system.  
ID78K4  
Integrated debugger for IE-784000-R  
SM78K4  
DF784928  
78K/IV series common system simulator  
Device file for the µPD784928, 784928Y subseries  
(4) Real-time OS  
RX78K/IV  
MX78K4  
Real-time OS for 78K/IV series  
OS for 78K/IV series  
90  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
(5) Cautions when the development tools are used  
The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784928.  
The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784928.  
FL-PR2, FL-PR3, FA-100GC, and FA-100GF are products of Naito Densei Machida Mfg. Co., Ltd. (TEL: 044-  
822-3813). Contact an NEC distributor when purchasing these products.  
NQPACK100RB is a product of Tokyo Eletech Corp.  
Reference: Daimaru Kogyo, Ltd. Electronics Dept. (TEL: Tokyo 03-3820-7112)  
Electronics 2nd Dept. (TEL: Osaka 06-6244-6672)  
Host machines and OSs compatible with the software are as follows:  
Host Machine [OS]  
PC  
EWS  
PC-9800 Series [WindowsTM  
]
HP9000 series 700TM [HP-UXTM  
]
IBM PC/AT compatible machines  
[Japanese/English Windows]  
Note  
SPARCstationTM [SunOSTM, SolarisTM  
]
NEWSTM (RISC) [NEWS-OSTM  
]
Software  
RA78K4  
CC78K4  
Note  
ID78K4-NS  
ID78K4  
SM78K4  
RX78K/IV  
MX78K4  
Note  
Note  
Note DOS based software  
Data Sheet U12255EJ2V1DS  
91  
µPD784927, 784928, 784927Y, 784928Y  
APPENDIX B. RELATED DOCUMENTS  
The documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked  
as such.  
Device-related documents  
Document  
Document No.  
Japanese  
U12648J  
English  
U12648E  
µPD784928, 784928Y Subseries User’s Manual - Hardware  
µPD784927, 784928, 784927Y, 784928Y Data Sheet  
µPD784928 Subseries Special Function Register Table  
µPD78F4928 Preliminary Product Information  
µPD784928Y Subseries Special Function Register Table  
µPD78F4928Y Preliminary Product Information  
µPD784915, 784928, 784928Y Subseries Application Note - VCR Servo  
78K/IV Series User’s Manual - Instruction  
U12255J  
U12798J  
U12188J  
U12719J  
U12271J  
U11361J  
U10905J  
U10594J  
U10595J  
U10095J  
This document  
U12188E  
U12271E  
U11361E  
U10905E  
78K/IV Series Instruction Table  
78K/IV Series Instruction Set  
78K/IV Series Application Note - Software Basics  
U10095E  
Development tool-related documents (User’s Manuals)  
Document  
Document No.  
Japanese  
English  
U11334E  
RA78K4 Assembler Package  
Operation  
Language  
U11334J  
U11162J  
U11743J  
U11572J  
U11571J  
U13356J  
U12903J  
U13819J  
U10931J  
U10093J  
U11162E  
U11743E  
U11572E  
U11571E  
U13356E  
EEU-1534  
U13819E  
U10931E  
U10093E  
U10092E  
RA78K4 Structured Assembler Preprocessor  
CC78K4 C Compiler  
Operation  
Language  
IE-78K4-NS  
IE-784000-R  
IE-784928-NS-EM1  
IE-784915-R-EM1, EP-784915GF-R  
SM78K4 System Simulator Windows Based  
SM78K Series System Simulator  
Reference  
External Part User Open U10092J  
Interface Specifications  
ID78K4-NS Integrated Debugger  
Reference  
Reference  
Reference  
U12796J  
U10440J  
U11960J  
U12796E  
U10440E  
U11960E  
ID78K4 Integrated Debugger Windows Based  
ID78K4 Integrated Debugger  
HP-UX, SunOS, NEWS-OS Based  
Caution The contents of the above related documents are subject to change without notice. Be sure to use  
the latest edition of the document when designing your system.  
92  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
Embedded software-related documents (User’s Manual)  
Document  
Document No.  
Japanese  
U10603J  
English  
U10603E  
U10604E  
78K/IV Series Real-Time OS  
Fundamental  
Installation  
Debugger  
U10604J  
U10364J  
U11779J  
78K/IV Series OS, MX78K4  
Fundamental  
Other Related Documents  
Document Name  
Document No.  
X13769X  
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -  
Semiconductor Device Mount Manual  
Note  
Quality Grades on NEC Semiconductor Devices  
NEC Semiconductor Device Reliability/Quality Control System  
C11531E  
C10983E  
C11892E  
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)  
Note See the “Semiconductor Device Mount Manual” website (http://www.necel.com/pkg/en/mount/index.html)  
Caution The contents of the above related documents are subject to change without notice. Be sure to  
use the latest edition of the document when designing your system.  
Data Sheet U12255EJ2V1DS  
93  
µPD784927, 784928, 784927Y, 784928Y  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is  
fixed, and also in the transition period when the input level passes through the area between VIL (MAX)  
and VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or  
GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins  
must be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
94  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
EEPROM and FIP are trademarks of NEC Electronics Corporation.  
Windows is either a registered trademark or a trademark of Microsoft Corporation in the  
United States and/or other countries.  
PC/AT and PC DOS are trademarks of IBM Corporation.  
HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
Solaris and SunOS are trademarks of Sun Microsystems, Inc.  
NEWS and NEW-OS are trademarks of Sony Corporation.  
Data Sheet U12255EJ2V1DS  
95  
µPD784927, 784928, 784927Y, 784928Y  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
Electronics product in your application, pIease contact the NEC Electronics office in your country to  
obtain a list of authorized representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
[GLOBAL SUPPORT]  
http://www.necel.com/en/support/support.html  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics America, Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
NEC Electronics (Europe) GmbH  
Duesseldorf, Germany  
Tel: 0211-65030  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Sucursal en España  
Madrid, Spain  
Tel: 091-504 27 87  
Tel: 02-558-3737  
Succursale Française  
Vélizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics Shanghai Ltd.  
Shanghai, P.R. China  
Tel: 021-5888-5400  
Filiale Italiana  
Milano, Italy  
Tel: 02-66 75 41  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
Branch The Netherlands  
Eindhoven, TheNetherlands  
Tel: 040-2654010  
NEC Electronics Singapore Pte. Ltd.  
Novena Square, Singapore  
Tel: 6253-8311  
Tyskland Filial  
Taeby, Sweden  
Tel: 08-63 87 200  
United Kingdom Branch  
Milton Keynes, UK  
Tel: 01908-691-133  
J05.6  
96  
Data Sheet U12255EJ2V1DS  
µPD784927, 784928, 784927Y, 784928Y  
These commodities, technology or software, must be exported in accordance  
with the export administration regulations of the exporting country.  
Diversion contrary to the law of that country is prohibited.  
The information in this document is current as of August, 2005. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD784927GF-A-A-A-3BA-A

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, LEAD FREE, PLASTIC, QFP-100
RENESAS

UPD784927Y

16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD784927YGF-A-A-A-3BA

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
RENESAS

UPD784927YGF-A-A-A-3BA-A

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, LEAD FREE, PLASTIC, QFP-100
RENESAS

UPD784928

16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD784928GC

16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD784928GC-A-A-A-8EU

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, FINE PITCH, PLASTIC, LQFP-100
RENESAS

UPD784928GC-XXX-8EU

IC,MICROCONTROLLER,16-BIT,UPD78K4 CPU,CMOS,QFP,100PIN,PLASTIC
RENESAS

UPD784928GF

16-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD784928GF-A-A-A-3BA

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
RENESAS

UPD784928GF-A-A-A-3BA-A

16-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP100, 14 X 20 MM, LEAD FREE, PLASTIC, QFP-100
RENESAS

UPD784928GF-XXX-3BA

Microcontroller, 16-Bit, MROM, 8MHz, MOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
NEC