UPD78CP18GF(A)-3BE [RENESAS]

UPD78CP18GF(A)-3BE;
UPD78CP18GF(A)-3BE
型号: UPD78CP18GF(A)-3BE
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

UPD78CP18GF(A)-3BE

光电二极管
文件: 总52页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78CP18(A)  
8-BIT SINGLE-CHIP MICROCOMPUTER  
DESCRIPTION  
The µPD78CP18(A) is a version of theµPD78C18(A) in which the internal mask ROM is replaced by one-time PROM.  
The one-time PROM version can be programmed once only by users, and is ideally suited for small-scall of many  
differnt products, and rapid development and time-to-market of a new product.  
The detailed functions are descrived in the following user's manual. Read this manual before starting design  
work.  
87AD series µPD78C18 user's manual: IEU-1314  
FEATURES  
High reliability compared to the µPD78CP18  
Compatible with the µPD78C11A(A), 78C12A(A), 78C14(A), 78C18(A)  
Internal PROM: 32768 W × 8  
• Internal PROM capacity can be changed by software to conform to the µPD78C11A(A), 78C12A(A), 78C14(A),  
78C18(A).  
PROM programming characteristics: µPD27C256A compatible  
Power supply voltage range: 5 V ± 10 %  
Supports QTOP microcomputer  
Remark  
QTOP microcomputer is the generic name of NEC's single-chip microcomputers for which NEC  
provides total service including writing, marking, screening, and inspection.  
ORDERING INFORMATION  
Part Number  
Package  
Internal ROM  
µPD78CP18GF(A)-3BE  
µPD78CP18GQ(A)-36  
64-pin plastic QFP (14 × 20 mm)  
One-time PROM  
One-time PROM  
64-pin plastic QUIP  
QUALITY GRADE  
Part Number  
Quality Grade  
µPD78CP18GF(A)-3BE  
µPD78CP18GQ(A)-36  
Special  
Special  
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
The information in this document is subject to change without notice.  
The mark shows major revised points.  
Document No. IC-3233A  
(O. D. No. IC-8702A)  
Date Published March 1995 P  
Printed in Japan  
1
1993  
©
µPD78CP18(A)  
PIN CONFIGURATION (TOP VIEW)  
A0/PA0  
A1/PA1  
A2/PA2  
A3/PA3  
A4/PA4  
A5/PA5  
A6/PA6  
A7/PA7  
PB0  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
DD  
2
STOP/VPP  
PD7/O7  
PD6/O6  
PD5/O5  
PD4/O4  
PD3/O3  
PD2/O2  
PD1/O1  
PD0/O0  
PF7  
3
4
5
6
7
8
9
PB1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PB2  
PB3  
PF6/A14  
PF5/A13  
PF4/A12  
PF3/A11  
PF2/A10  
PF1  
µ
PB4  
PB5  
CE/PB6  
OE/PB7  
PC0/T  
PC1/R  
X
D
D
X
PF0/A8  
ALE  
PC2/SCK  
PC3/INT2  
PC4/TO  
PC5/CI  
PC6/CO0  
PC7/CO1  
A9/NMI  
INT1  
WR  
RD  
AVDD  
V
AREF  
AN7  
AN6  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
AVSS  
MODE1  
RESET  
MODE0  
X2  
X1  
V
SS  
2
µPD78CP18(A)  
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
52  
O3/PD3  
O4/PD4  
O5/PD5  
O6/PD6  
O7/PD7  
PP/STOP  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
AN4  
AN3  
AN2  
AN1  
AN0  
AVSS  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
V
V
DD  
V
SS  
µPD78CP18GF(A)-3BE  
A0/PA0  
A1/PA1  
A2/PA2  
A3/PA3  
A4/PA4  
A5/PA5  
X1  
X2  
MODE0  
RESET  
MODE1  
INT1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
3
PF7/AB15  
8
16  
X1  
X2  
PF6/A14/AB14  
to PF2/A10/AB10  
PF1/AB9  
OSC  
LATCH  
INC/DEC  
PC  
5
8
8
8
PF0/A8/AB8  
SP  
15  
PC0/TXD  
EA  
8
8
SERIAL I/O  
PC1/RXD  
V
B
D
H
A
C
E
L
8
8
PC2/SCK  
MAIN  
G.R  
16  
PD7/O7/AD7  
to PD0/O0/AD0  
10  
A9/NMI  
INT1  
PROM  
(32-KBYTE)  
EA'  
Note  
V'  
B'  
D'  
H'  
A'  
C'  
E'  
L'  
INT.  
CONTROL  
DATA  
MEMORY  
(1-KBYTE)  
ALT  
G.R  
8
8
8
PC7 to PC0  
4
BUFFER  
8/16  
PC3/INT2/TI  
PC4/TO  
8
8
TIMER  
8
8
OE/PB7  
CE/PB6  
8
INTERNAL DATA BUS  
8
PC5/CI  
PC6/CO0  
PC7/CO1  
16  
16  
LATCH  
6
8
PB5 to PB0  
6
TIMER/EVENT  
COUNTER  
8
LATCH  
PSW  
INST. REG  
AN7 to AN0  
8
16  
16  
PA7/A7 to PA0/A0  
A/D  
CONVERTER  
8
V
AREF  
INST.  
DECODER  
ALU  
(8/16)  
AVDD  
AVSS  
16  
READ/WRITE  
CONTROL  
SYSTEM  
CONTROL  
STANDBY  
CONTROL  
µ
RD  
WR  
ALE MODE1 MODE0 RESET  
VPP/STOP  
VDD  
VSS  
Note Can be used only when RAE bit of MM register is 1.  
External memory is needed in case of 0.  
µPD78CP18(A)  
DIFFERENCES BETWEEN THE µPD78CP18(A) AND µPD78CP18  
Product  
Name  
µPD78CP18(A)  
µPD78CP18  
Item  
Special  
Quality grade  
Standard  
Electrical  
specifications  
Input leakage current  
AN7 to AN0; ±10 µA (MAX.)  
Input leakage current  
AN7 to AN0: ±1 µA (MAX.)  
• 64-pin plastic QFP (14 × 20 mm)  
• 64-pin plastic QUIP  
Package  
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic QUIP  
• 64-pin plastic QFP (14 × 20 mm)  
• 64-pin ceramic shrink DIP with  
window (750 mil)  
• 64-pin ceramic WQFN  
5
µPD78CP18(A)  
CONTENTS  
1. LIST OF PORT FUNCTIONS .......................................................................................................................7  
1.1 PORT FUNCTIONS ...............................................................................................................................................7  
1.2 NON-PORT FUNCTIONS (IN NORMAL OPERATION) .....................................................................................8  
1.3 NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ).....................................................10  
1.4 HANDLING OF UNUSED PINS .........................................................................................................................10  
2. MEMORY CONFIGURATION....................................................................................................................11  
3. MEMORY EXTENSION .............................................................................................................................16  
3.1 MODE PINS ........................................................................................................................................................16  
3.2 MEMORY MAPPING REGISTER (MM) ............................................................................................................17  
4. PROM PROGRAMMING ...........................................................................................................................20  
4.1 PROM PROGRAMMING OPERATING MODES...............................................................................................21  
4.2 PROM WRITING PROCEDURE .........................................................................................................................22  
4.3 PROM READING PROCEDURE .........................................................................................................................23  
5. SCREENING OF ONE-TIME PROM VERSIONS......................................................................................24  
6. ELECTRICAL SPECIFICATIONS................................................................................................................25  
7. CHARACTERISTIC CURVES (REFERENCE VALUE) ..............................................................................39  
8. PACKAGE DRAWINGS .............................................................................................................................42  
9. RECOMMENDED SOLDERING CONDITIONS ........................................................................................44  
10. DIFFERENCES BETWEEN THE µPD78CP18(A) AND µPD78C18(A) .....................................................45  
APPENDIX. DEVELOPMENT TOOLS ..........................................................................................................46  
6
µPD78CP18(A)  
1. LIST OF PORT FUNCTIONS  
1.1 PORT FUNCTIONS  
Pin Name  
I/O  
Function  
PA7 to PA0  
(Port A)  
Input/Output  
8-bit input-output port, which can specify input/output bit-wise.  
PB7 to PB0  
(Port B)  
PC7 to PC0  
(Port C)  
8-bit input-output port, which can specify input/output in byte units.  
8-bit input-output port, which can specify input/output bit-wise.  
PD7 to PD0  
(Port D)  
PF7 to PF0  
(Port F)  
Remark  
These port pins have alternate function pins as shown in 1.2 “NON-PORT FUNCTIONS (IN NORMAL  
OPERATION)” and 1.3 “NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ)”.  
7
µPD78CP18(A)  
1.2 NON-PORT FUNCTIONS (IN NORMAL OPERATION)  
Alternate  
Function  
Pin Name  
I/O  
Output  
Function Pin  
PC0  
TXD  
Serial data output pin  
Serial data input pin  
(Transmit Data)  
PC1  
PC2  
Input  
RXD  
(Receive Data)  
Serial clock input/output pin. Output when internal clock is used, input  
when external clock is used.  
Input/output  
SCK  
(Serial Clock)  
Edge trigger (falling edge) maskable interrupt input pin  
Timer external clock input pin  
INT2  
(Interrupt Request)  
Input  
Input  
PC3  
TI  
(Timer Input)  
Input  
AC input zero-cross detection pin  
Zero-cross  
TO  
Output  
PC4  
PC5  
During timer count time, square wave with one internal clock cycle as  
one half cycle is output.  
(Timer Output)  
Input  
Timer/event counter external pulse input pin  
CI  
(Counter Input)  
CO0 and CO1  
(Counter  
Square wave output programmable by timer/event counter.  
Output  
PC6 and PC7  
PD7 to PD0  
PF7 to PF0  
Output 0, 1)  
AD7 to AD0  
(Address/Data  
Bus 7 to 0)  
Multiplexed address/data bus when external memory is used  
Address bus when external memory is used  
Input/output  
AB15 to AB8  
(Address Bus  
Output  
Output  
15 to 8)  
Strobe signal which is output for write operation of external memory. It  
becomes high in any cycle other than the data write machine cycle of  
external memory. When RESET signal is either low or in the hardware  
STOP mode, this signal becomes high-impedance.  
WR  
(Write Strobe)  
Output  
Output  
RD  
Strobe signal which is output for read operation of external memory. It  
becomes high in any cycle other than the data read machine cycle of  
external memory. When RESET signal is either low or in the hardware STOP  
mode, this signal becomes output high-impedance.  
(Read Strobe)  
ALE  
Strobe signal to latch externally the lower address information which is  
output to PD7 to PD0 pins to access external memory. When RESET signal  
is either low or in the hardware STOP mode, this signal becomes high-  
impedance.  
(Address  
Latch Enable)  
Set MODE0 pin to “0” (low level), and MODE1 pin to “1” (high level)Note  
Input  
Input/output  
MODE0  
MODE1  
(Mode)  
Input  
Non-maskable interrupt input pin of the edge trigger (falling edge)  
NMI  
(Non-Maskable  
Interrupt)  
Note Pull-up. Pull-up resister R is 4 [k] R 0.4 tCYC [k] (tCYC is ns unit).  
8
µPD78CP18(A)  
Alternate  
Function  
Pin Name  
I/O  
Function Pin  
Input  
INT1  
(Interrupt  
Request)  
A maskable interrupt input pin of the edge trigger (rising edge). Also, it can  
be used as a zero-cross detection pin for AC input.  
8 pins of analog input to A/D converter. AN7 to AN4 can be used as edge  
detection (falling edge) input.  
Input  
Input  
AN7 to AN0  
(Analog Input)  
A common pin serving both as a reference voltage input pin for A/D  
converter and as a control pin for A/D converter operation.  
VAREF  
(Reference  
Voltage)  
Power supply pin for A/D converter.  
GND pin for A/D converter.  
AVDD  
(Analog VDD)  
AVSS  
(Analog VSS)  
X1, X2  
(Crystal)  
Crystal connection pins for system clock oscillation. X1 should be input  
when a clock is supplied from outside. Inverted clock of X1 should be input  
in X2.  
Input  
Input  
Low-level active system reset input.  
RESET  
(Reset)  
Hardware STOP mode control signal input pin. When the low level is input  
to this pin, the oscillation stops.  
STOP  
(Stop)  
VDD  
Positive power supply pin.  
GND pin.  
VSS  
9
µPD78CP18(A)  
1.3 NON-PORT FUNCTIONS (DURING PROM WRITE/VERIFY AND READ)  
Alternate  
Function  
Pin Name  
A7 to A0  
I/O  
Function Pin  
PA7 to PA0  
Input  
Input  
Input  
Address lower 8 bit input pins  
Chip enable signal input pin  
Output enable signal input pin  
Data input/output pins  
CE  
PB6  
PB7  
OE  
Input/output  
Input  
PD7 to PD0  
O7 to O0  
A14 to A10  
A8  
PF6 to PF2  
PF0  
Address higher 7 bit input pins  
Input  
Input  
NMI  
A9  
MODE0  
MODE1  
Set MODE0 pin to “1” (high level), and MODE1 pin to “0” (low level).  
Set to “0” (low level).  
Input  
RESET  
VPP  
High-voltage application pin  
STOP  
"1" (high level) is input when EPROM is read.  
1.4 HANDLING OF UNUSED PINS  
Pin  
Recommended Connection  
PA7 to PA0  
PB7 to PB0  
PC7 to PC0  
PD7 to PD0  
PF7 to PF0  
Connect to VSS or VDD via resistor.  
RD  
WR  
ALE  
Leave open.  
Connect to VDD.  
STOP  
INT1, NMI  
AVDD  
Connect to VSS or VDD.  
Connect to VDD.  
VAREF  
AVSS  
Connect to VSS.  
AN7 to AN0  
Connect to AVSS or AVDD.  
10  
µPD78CP18(A)  
2. MEMORY CONFIGURATION  
The µPD78CP18(A) memory can operate in the following 4 modes according to the mode specification.  
µPD78C11A mode (see Figure 2-1)  
µPD78C12A mode (see Figure 2-2)  
µPD78C14 mode (see Figure 2-3)  
µPD78C18 mode (see Figure 2-4)  
In addition, the internal PROM and internal RAM address ranges can be specified for efficient mapping of external  
memory (excluding PROM) (see 3.2 “MEMORY MAPPING REGISTER (MM)”).  
The vector area and call table area are common to all modes.  
Setting the hardware/software STOP mode or HALT mode enables internal RAM data to be retained at a low  
consumption current.  
11  
µPD78CP18(A)  
Figure 2-1. Memory Map (µPD78C11A Mode)  
0000H  
RESET  
0000H  
0004H  
Internal PROM  
NMI  
4096W × 8  
0008H  
0010H  
0018H  
0020H  
0028H  
0060H  
INTT0/INTT1  
0FFFH  
1000H  
INT1/INT2  
External Memory  
61184W × 8  
INTE0/INTE1  
INTEIN/INTAD  
INTSR/INTST  
SOFTI  
Vector  
Area  
FEFFH  
FF00H  
Internal RAM  
256W × 8  
FFFFH  
LOW ADRS  
HIGH ADRS  
LOW ADRS  
HIGH ADRS  
0080H  
0081H  
t = 0  
t = 1  
0082H  
0083H  
Call  
Table  
Area  
LOW ADRS  
HIGH ADRS  
00BEH  
00BFH  
00C0H  
t = 31  
USER'S AREA  
0FFFH  
12  
µPD78CP18(A)  
Figure 2-2. Memory Map (µPD78C12A Mode)  
0000H  
RESET  
0000H  
0004H  
Internal PROM  
NMI  
8192W × 8  
0008H  
0010H  
0018H  
0020H  
0028H  
0060H  
INTT0/INTT1  
1FFFH  
2000H  
INT1/INT2  
External Memory  
57088W × 8  
INTE0/INTE1  
INTEIN/INTAD  
INTSR/INTST  
SOFTI  
Vector  
Area  
FEFFH  
FF00H  
Internal RAM  
256W × 8  
FFFFH  
LOW ADRS  
HIGH ADRS  
LOW ADRS  
HIGH ADRS  
0080H  
0081H  
t = 0  
t = 1  
0082H  
0083H  
Call  
Table  
Area  
LOW ADRS  
HIGH ADRS  
00BEH  
00BFH  
00C0H  
t = 31  
USER'S AREA  
1FFFH  
13  
µPD78CP18(A)  
Figure 2-3. Memory Map (µPD78C14 Mode)  
0000H  
RESET  
0000H  
0004H  
Internal PROM  
NMI  
16384W × 8  
0008H  
0010H  
0018H  
0020H  
0028H  
0060H  
INTT0/INTT1  
3FFFH  
4000H  
INT1/INT2  
External Memory  
48896W × 8  
INTE0/INTE1  
INTEIN/INTAD  
INTSR/INTST  
SOFTI  
Vector  
Area  
FEFFH  
FF00H  
Internal RAM  
256W × 8  
FFFFH  
LOW ADRS  
HIGH ADRS  
LOW ADRS  
HIGH ADRS  
0080H  
0081H  
t = 0  
t = 1  
0082H  
0083H  
Call  
Table  
Area  
LOW ADRS  
HIGH ADRS  
00BEH  
00BFH  
00C0H  
t = 31  
USER'S AREA  
3FFFH  
14  
µPD78CP18(A)  
Figure 2-4. Memory Map (µPD78C18 Mode)  
0000H  
RESET  
0000H  
0004H  
Internal PROM  
NMI  
32768W × 8  
0008H  
0010H  
0018H  
0020H  
0028H  
0060H  
INTT0/INTT1  
7FFFH  
8000H  
INT1/INT2  
External Memory  
31744W × 8  
INTE0/INTE1  
INTEIN/INTAD  
INTSR/INTST  
SOFTI  
Vector  
Area  
FBFFH  
FC00H  
Internal RAM  
1024W × 8  
FFFFH  
LOW ADRS  
HIGH ADRS  
LOW ADRS  
HIGH ADRS  
0080H  
0081H  
t = 0  
t = 1  
0082H  
0083H  
Call  
Table  
Area  
LOW ADRS  
HIGH ADRS  
00BEH  
00BFH  
00C0H  
t = 31  
USER'S AREA  
7FFFH  
15  
µPD78CP18(A)  
3. MEMORY EXTENSION  
The µPD78CP18(A) allows external memory extension by means of the MEMORY MAPPING register (MM) or the  
MODE0 and MODE1 pins. Also, the internal PROM and internal RAM access areas can be specified by means of bits  
MM7, MM6 and MM5 of the MEMORY MAPPING register.  
3.1 MODE PINS  
The µPD78CP18(A) can be switched between programming mode and normal operation mode according to the  
specification of the MODE0 and MODE1 pins.  
Table 3-1 shows the modes set by the MODE pins.  
Table 3-1. Modes Set By MODE Pins  
MODE1  
MODE2  
Operating Mode  
Setting prohibited  
L
L
L
H
L
Programming modeNote  
Normal operation mode  
Setting prohibited  
H
H
H
Note See 4. “PROM PROGRAMMING”.  
When MODE0 and MODE1 are driven high, a 4 [k] R 0.4 tCYC [k] pull-up resistor should be used (tCYC: ns units).  
16  
µPD78CP18(A)  
3.2 MEMORY MAPPING REGISTER (MM)  
The MEMORY MAPPING register is an 8-bit register which performs the following controls:  
• Port/extension mode specification for PD7 to PD0 and PF7 to PF0  
• Enabling/disabling of internal RAM accesses  
• Specification of internal PROM and RAM access areas  
The configuration of the MEMORY MAPPING register is shown in Figure 3-1.  
(1) Bits MM2 to MM0  
These bits control the PD7 to PD0 port/extension mode specification, input/output specification, and the PF7 to  
PF0 address output specification.  
As shown in Figure 3-1, there is a choice of four capacities for the connectable external memory:  
• 256 bytes  
• 4 Kbytes  
• 16 Kbytes  
• 32 K/48 K/56 K/60 Kbytes (set by bits MM7 to MM5)  
Ports of PF7 to PF0 not used as address outputs can be used as general-purpose ports.  
When RESET signal is input or in the hardware STOP mode, these bits are reset to (0) and PD7 to PD0 are set  
to input port mode (high-impedance).  
(2) MM3 bit (RAE)  
This bit enables (RAE = 1) and disables (RAE = 0) internal RAM access. This bit should be set to “0” during standby  
operation and when externally connected RAM, not internal RAM, is used.  
In normal operation this bit retains its value when RESET signal is input. However, the RAE bit is undefined after  
a power-on reset, and must therefore be initialized by an instruction.  
(3) Bits MM7 to MM5  
These bits specify the access area of the internal PROM.  
When STOP or RESET signal is input, these bits are reset, selecting the 32-Kbyte mode (µPD78C18 mode).  
These bits are only valid in the µPD78CG14, 78CP14, 78CP18, 78CP14(A), and 78CP18(A); if data is written to these  
bits in the µPD78C11A(A), 78C12A(A), 78C14(A), or 78C18(A), it will be ignored. Therefore, a program developed  
on the µPD78CP18(A) can be directly ported to mask ROM.  
17  
µPD78CP18(A)  
Figure 3-1. MEMORY MAPPING Register Format  
7
6
5
4
3
2
1
0
RAE  
MM1  
MM6  
MM2  
MM0  
MM7  
MM5  
0
0
0
0
1
0
PD7 to PD0 = Input port  
PF7 to PF0 = Port mode  
PD7 to PD0 = Output port  
PF7 to PF0 = Port mode  
0
0
1
Port  
mode  
Singlechip  
256 bytes  
Exten-  
sion  
mode  
PD7 to PD0 = Extension  
mode  
PF7 to PF0 = Port mode  
1
1
1
0
0
1
Extension  
mode  
PF7 to PF4 = Port mode  
Extension  
mode  
PF7 & PF6 = Port mode  
0
1
1
PD7 to PD0 =  
PF3 to PF0 =  
4 Kbytes  
16 Kbytes  
PD7 to PD0 =  
PF5 to PF0 =  
Extension  
mode  
PD7 to PD0 =  
PF7 to PF0 =  
32 K/48 K/  
56K/60KNote  
bytes  
Note Depends on MM7 to MM5 bit-setting  
Internal RAM Access  
0
1
Disable  
Enable  
Internal PROM/RAM Access Areas  
Internal PROM  
Internal RAM  
Access Area  
MM7 MM6 MM5  
Access Area  
0
0
0
1
0
0
1
0
0
1
1
1
0000H to 7FFFH  
(32 Kbytes:  
µPD78C18 mode)  
FC00H to FFFFH  
(1 Kbyte)  
0000H to 3FFFH  
(16 Kbytes:  
µPD78C14 mode)  
FF00H to FFFFH  
(256 bytes)  
0000H to 1FFFH  
(8 Kbytes:  
µPD78C12A mode)  
FF00H to FFFFH  
(256 bytes)  
0000H to 0FFFH  
(4 Kbytes:  
FF00H to FFFFH  
(256 bytes)  
µPD78C11A mode)  
Other than above  
Setting Prohibited  
18  
µPD78CP18(A)  
Figure 3-2. External Extension Modes Set by MEMORY MAPPING Register  
Port Mode  
256-Byte Extension Mode  
4-KByte Extension Mode  
0
0
0
Internal PROM  
((44//88//1166//3322  
KKBByytteess))  
IInntteerrnnaall PPRROOMM  
(4/8/16/32  
KKBByytteess))  
Internal PROM  
(4/8/16/32  
KKBByytteess))  
Not Used  
Not Used  
Not Used  
External Memory(4 KBytes)  
Not Used  
External Memory(256 Bytes)  
Not Used  
Internal RAM  
IInntteerrnnaall RRAAMM  
Internal RAM  
64K  
64K  
64K  
32-/48-/56-/60-KByte  
Extension Mode  
16-KByte Extension Mode  
0
0
Internal PROM  
(4/8/16/32  
KKBByytteess))  
IInntteerrnnaall PPRROOMM  
(4/8/16/32  
KKBByytteess))  
EExxtteerrnnaall MMeemmoorryy  
(16 KBytes)  
External Memory  
((3322//4488//5566//  
6600 KKBByytteess))  
Not Used  
Internal RAM  
Internal RAM  
64K  
64K  
Caution  
The internal PROM and internal RAM access areas are determined by MM7 to MM5.  
19  
µPD78CP18(A)  
4. PROM PROGRAMMING  
The µPD78CP18(A) incorporates 32768 × 8-bit PROM as a program memory. The pins shown in Table 4-1 are used  
for write/verify operations on this PROM.  
µPD78CP18(A) program timing is compatible with the µPD27C256A.  
Please read the following in conjunction with documentation of the µPD27C256A.  
Table 4-1. Pins Used in PROM Programming  
Pin Name  
RESET  
Function  
Low-level input (at write/verify and read)  
High-level input (at write/verify and read)  
Low-level input (at write/verify and read)  
High-voltage input (at write/verify), high-level input (at read)  
Chip enable input  
MODE0  
MODE1  
Note  
VPP  
CENote  
OENote  
Output enable input  
A14 to A0Note Address input  
O7 to O0Note Data input (at write), data output (at verify, read)  
Note  
VDD  
Supply voltage input  
Note These pins correspond to the µPD27C256A.  
Caution  
The µPD78CP18(A) one-time PROM version is not equipped with an erasure window, and therefore  
ultraviolet erasure cannot be performed on it.  
20  
µPD78CP18(A)  
4.1 PROM PROGRAMMING OPERATING MODES  
The PROM programming operating mode is set as shown in Table 4-2. Pins not used for programming should  
be handled as shown in Table 4-3.  
Table 4-2. PROM Programming Modes  
Note  
Note  
Operating Mode  
Program  
CENote OENote  
VPP  
VDD  
RESET  
L
MODE0  
H
MODE1  
L
L
H
H
L
H
L
+12.5 V  
+6 V  
Program verify  
Program inhibit  
Read  
H
L
+5 V  
+5 V  
Output disable  
Standby  
L
H
H
L/H  
Note These pins correspond to the µPD27C256A.  
Caution When +12.5 V is applied to VPP and +6 V is applied to VDD, setting both CE and OE to “L” is prohibited.  
Table 4-3. Recommended Connection of Unused Pins (in PROM Programming Mode)  
Pin  
INT1  
Recommended Connection  
Connect to VSS.  
X1  
AN0 to AN7  
VAREF  
AVDD  
AVSS  
Pins other than the  
above  
Connect to VSS via individual resistor.  
Leave open.  
X2  
21  
µPD78CP18(A)  
4.2 PROM WRITING PROCEDURE  
The PROM writing procedure is as shown below, allowing high-speed writing.  
(1) Connect unused pins to VSS via a pull-down resistor, and supply +6 V to VDD and +12.5 V to VPP.  
(2) Provide the initial address.  
(3) Provide the write data.  
(4) Provide a 1-ms program pulse (active low) to the CE pin.  
(5) Verify mode. If written, go to (7); if not written, repeat (3) to (5). If the write operation has failed 25 times, go  
to (6).  
(6) Halt write operation due to defective device.  
(7) Provide write data and program pulse of X times x 3 ms (X; repeated times from (3) to (5)) (additional write).  
(8) Increment the address.  
(9) Repeat (3) to (8) until the final address.  
Figure 4-1. PROM Write/Verify Timing  
Repeated X Times  
Write  
Verify  
Additional Write  
A14/PF6-A10/PF2  
A9/NMI  
Address (Higher 7 Bits)  
A8/PF0  
A7/PA7-A0/PA0  
Address (Lower 8 Bits)  
Data Output  
Data Input  
Data Input  
O7/PD7-O0/PD0  
VPP  
VPP  
VIH  
VDD + 1  
VDD  
VDD  
VIH  
CE/PB6  
VIL  
VIH  
OE/PB7  
VIL  
22  
µPD78CP18(A)  
4.3 PROM READING PROCEDURE  
PROM contents can be read onto the external data bus (O7 to O0) using the following procedure.  
(1) Connect unused pins to VSS via a pull-down resistor.  
(2) Supply +5 V to the VDD and VPP pins.  
(3) Input address of data to be read to pins A14 to A0.  
(4) Read mode  
(5) Output data to pins O7 to O0.  
Timing for steps (2) to (5) above is shown in Figure 4-2.  
Figure 4-2. PROM Read Timing  
A14/PF6-A10/PF2  
A9/NMI  
A8/PF0  
Address Input  
CE/PB6  
OE/PB7  
O7/PD7-O0/PD0  
Data Output  
23  
µPD78CP18(A)  
5. SCREENING OF ONE-TIME PROM VERSIONS  
Because of their construction, one-time PROM versions cannot be fully tested by NEC before shipment. After the  
necessary data has been written, it is recommended that screening be implemented in which PROM verification is  
performed after high-temperature storage under the following conditions.  
Storage Temperature  
Storage Time  
24 hours  
125 °C  
NEC provides writing, marking, screening, and inspection services for single-chip microcomputers labeld QTOP  
microcomputers. For details, consult NEC.  
24  
µPD78CP18(A)  
6. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
PARAMETER  
SYMBOL  
VDD  
TEST CONDITIONS  
RATINGS  
–0.5 to +7.0  
AVSS to VDD + 0.5  
–0.5 to +0.5  
–0.5 to +13.5  
–0.5 to VDD + 0.5  
–0.5 to +13.5  
–0.5 to VDD + 0.5  
4.0  
UNIT  
V
AVDD  
AVSS  
VPP  
V
Power supply voltage  
V
V
Other than NMI/A9 pin  
NMI/A9 pin  
V
Input voltage  
VI  
VO  
IOL  
V
Output voltage  
Output current low  
V
All output pins  
mA  
mA  
mA  
mA  
Total of all output pins  
All output pins  
100  
–2.0  
Output current high  
IOH  
Total of all output pins  
–50  
A/D converter reference  
input voltage  
VAREF  
–0.5 to AVDD + 0.3  
V
Ambient operating temperature  
TA  
–40 to +85  
°C  
°C  
Storage temperature  
Tstg  
–65 to +150  
Caution  
If the absolute maximum rating of even one of the above parameters is exceeded even momentarily,  
the quality of the product may be degraded. The absolute maximum ratings, therefore, specify the  
values exceeding which the product may be physically damaged. Be sure to use the product with these  
rated values never exceeded.  
25  
µPD78CP18(A)  
OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V,  
VDD –0.8 V AVDD VDD, 3.4 V VAREF AVDD)  
RESONATOR  
RECOMMENDED CIRCUIT  
PARAMETER  
TEST CONDITIONS  
MIN.  
4
MAX.  
15  
UNIT  
MHz  
A/D converter not  
used  
X1  
X2  
Ceramic or  
crystal  
Oscillator frequency (fXX)  
resonator  
C1  
C2  
A/D converter used  
5.8  
4
15  
15  
A/D converter not  
used  
X1 input frequency (fX)  
MHz  
X1  
X2  
A/D converter used  
5.8  
0
15  
20  
External clock  
X1 rise time,  
fall time (tr, tf)  
ns  
ns  
HCMOS  
Inverter  
X1 input high-, low-  
level width (tΦH, tΦL)  
20  
250  
Cautions 1. Place the oscillator as close as possible to the X1 and X2 pins.  
2. Ensure that no other signal lines pass through the shaded area.  
26  
µPD78CP18(A)  
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)  
PARAMETER  
Input capacitance  
SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
pF  
CI  
CO  
CIO  
10  
20  
20  
fC = 1 MHz  
Unmeasured pins  
returned to 0 V  
Output capacitance  
Input-output capacitance  
pF  
pF  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
0
TYP.  
MAX.  
UNIT  
V
All except RESET, STOP, NMI,  
SCK, INT1, TI, AN4 to AN7  
VIL1  
0.8  
Input voltage low  
RESET, STOP, NMI, SCK, INT1,  
TI, AN4 to AN7  
VIL2  
VIH1  
0
0.2VDD  
VDD  
V
V
V
All except RESET, STOP, NMI,  
SCK, INT1, TI, AN4 to AN7, X1, X2  
2.2  
Input voltage high  
Output voltage low  
Output voltage high  
Input current  
RESET, STOP, NMI, SCK, INT1,  
TI, AN4 to AN7, X1, X2  
VIH2  
0.8 VDD  
VDD  
VOL  
IOL = 2.0 mA  
0.45  
V
V
VDD  
– 1.0  
IOH = –1.0 mA  
VOH  
VDD  
– 0.5  
IOH = –100 µA  
V
II  
INT1Note1, TI(PC3)Note2 ; 0 V VI VDD  
±200  
±10  
µA  
µA  
All except INT1, TI (PC3),  
AN7 to AN0; 0 V VI VDD  
Input leakage  
current  
ILI  
AN7 to AN0; 0 V VI VDD  
0 V VO VDD  
±1  
µA  
µA  
Output leakage  
current  
ILO  
±10  
AIDD1  
AIDD2  
IDD1  
Operating mode fXX = 15 MHz  
STOP mode  
0.5  
10  
16  
7
1.3  
20  
35  
13  
mA  
µA  
AVDD power supply  
current  
Operating mode fXX = 15 MHz  
HALT mode fXX = 15 MHz  
mA  
mA  
VDD power supply  
current  
IDD2  
Data retention  
voltage  
VDDDR  
IDDDR  
Hardware/software STOP mode  
2.5  
V
Hardware/softwareNote3 VDDDR = 2.5 V  
1
15  
50  
µA  
µA  
Data retention  
current  
STOP mode  
VDDDR = 5 V ± 10 %  
10  
Notes 1. If self-bias should be generated by ZCM register.  
2. If the control mode is set by MCC register, and self-bias should be generated by ZCM register.  
3. If self-bias is not generated.  
27  
µPD78CP18(A)  
AC CHARACTERISTICS (TA = –40 to +85 °C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V)  
READ/WRITE OPERATION:  
PARAMETER  
SYMBOL  
tCYC  
tAL  
TEST CONDITIONS  
MIN.  
66  
MAX.  
167  
UNIT  
ns  
X1 input cycle time  
Address setup time (to ALE)  
Address hold time (from ALE)  
RDdelay time from address  
Address float time from RD↓  
Data input time from address  
Data input time from ALE↓  
Data input time from RD↓  
RDdelay time from ALE↓  
Data hold time (from RD)  
ALEdelay time from RD↑  
30  
ns  
tLA  
fXX = 15 MHz, CL = 150 pF  
35  
ns  
tAR  
100  
ns  
tAFR  
tAD  
CL = 150 pF  
20  
250  
135  
120  
ns  
ns  
tLDR  
tRD  
ns  
fXX = 15 MHz, CL = 150 pF  
ns  
tLR  
15  
0
ns  
tRDH  
tRL  
CL = 150 pF  
ns  
fXX = 15 MHz, CL = 150 pF  
80  
ns  
In data read  
fXX = 15 MHz, CL = 150 pF  
215  
415  
ns  
ns  
RD low-level width  
tRR  
In OP code fetch  
fXX = 15 MHz, CL = 150 pF  
ALE high-level width  
tLL  
tAW  
tLDW  
tWD  
tLW  
fXX = 15 MHz, CL = 150 pF  
fXX = 15 MHz, CL = 150 pF  
CL = 150 pF  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WRdelay time from address  
Data output time from ALE↓  
Data output time from WR↓  
WRdelay time from ALE↓  
Data setup time (to WR)  
Data hold time (from WR)  
ALEdelay time from WR↑  
WR low-level width  
100  
197  
140  
15  
127  
60  
tDW  
tWDH  
tWL  
fXX = 15 MHz, CL = 150 pF  
80  
tWW  
215  
ZERO-CROSS CHARACTERISTICS :  
PARAMETER  
Zero-cross detection input  
Zero-cross accuracy  
SYMBOL  
TEST CONDITIONS  
MIN.  
1
MAX.  
1.8  
UNIT  
VACP-P  
mV  
VZX  
AZX  
AC coupling  
±135  
60-Hz sine wave  
Zero-cross detection input  
frequency  
fZX  
0.05  
1
kHz  
28  
µPD78CP18(A)  
SERIAL OPERATION :  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Note1  
MIN.  
800  
400  
1.6  
MAX.  
UNIT  
ns  
ns  
µs  
SCK input  
SCK output  
SCK input  
SCK output  
SCK input  
SCK cycle time  
tCYK  
Note2  
Note1  
Note2  
335  
160  
700  
335  
160  
700  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK low-level width  
SCK high-level width  
tKKL  
Note1  
Note2  
tKKH  
SCK output  
Note1  
RXD setup time (to SCK)  
RXD hold time (from SCK)  
TXD delay time from SCK↓  
tRXK  
tKRX  
tKTX  
Note1  
80  
Note1  
210  
Notes 1. If clock rate is × 1 in asynchronous mode, synchronous mode, or I/O interface mode.  
2. If clock rate is × 16 or × 64 in asynchronous mode.  
Remark  
The numeric values in the table are those when fXX = 15 MHz, CL = 100 pF.  
OTHER OPERATION :  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
6
MAX.  
UNIT  
TI high-, low-level width  
tTIH, tTIL  
tCYC  
• Event counter mode  
tCI1H, tCI1L  
6
tCYC  
tCYC  
• Frequency test mode  
• Pulse width test mode  
• ECNT latch and clear input  
• INTEIN set input  
CI high-, low-level width  
tCI2H, tCI2L  
48  
NMI high-, low-level width  
INT1 high-, low-level width  
INT2 high-, low-level width  
AN4 to AN7, low-level width  
RESET high-, low-level width  
tNIH, tNIL  
tI1H, tI1L  
10  
36  
36  
36  
10  
µs  
tCYC  
tCYC  
tCYC  
µs  
tI2H, tI2L  
tANH, tANL  
tRSH, tRSL  
29  
µPD78CP18(A)  
A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, VDD = +5.0 V ± 10 %, VSS = AVSS = 0 V,  
VDD – 0.5 V AVDD VDD, 3.4 V VAREF AVDD)  
PARAMETER  
Resolution  
SYMBOL  
TEST CONDITIONS  
MIN.  
8
TYP.  
MAX.  
UNIT  
Bits  
3.4 V VAREF AVDD, 66 ns tCYC 167 ns  
4.0 V VAREF AVDD, 66 ns tCYC 167 ns  
±0.8 %  
±0.6 %  
FSR  
FSR  
Absolute accuracyNote  
Conversion time  
TA = –10 to +70 °C,  
4.0 V VAREF AVDD, 66 ns tCYC 167 ns  
±0.4 %  
FSR  
66 ns tCYC 110 ns  
110 ns tCYC 167 ns  
66 ns tCYC 110 ns  
110 ns tCYC 167 ns  
576  
432  
96  
tCYC  
tCYC  
tCYC  
tCYC  
V
tCONV  
tSAMP  
Sampling time  
72  
Analog input voltage  
VIAN  
RAN  
–0.3  
V
AREF + 0.3  
Analog input  
impedance  
50  
MΩ  
Reference voltage  
VAREF  
IAREF1  
IAREF2  
AIDD1  
AIDD2  
3.4  
AVDD  
3.0  
1.5  
1.3  
20  
V
Operating mode  
STOP mode  
1.5  
0.7  
0.5  
10  
mA  
mA  
mA  
µA  
VAREF current  
AVDD power supply  
current  
Operating mode fXX = 15 MHz  
STOP mode  
Note Quantization error (±1/2 LSB) is not included.  
AC Timing Test Point  
VDD – 1.0 V  
2.2 V  
2.2 V  
0.8 V  
Test Points  
0.8 V  
0.45 V  
30  
µPD78CP18(A)  
tCYC-Dependent AC Characteristics Expression  
PARAMETER  
EXPRESSION  
MIN./MAX.  
MIN.  
UNIT  
ns  
tAL  
tLA  
tAR  
tAD  
tLDR  
tRD  
tLR  
tRL  
2T – 100  
T – 30  
MIN.  
ns  
3T – 100  
7T – 220  
5T – 200  
4T – 150  
T – 50  
MIN.  
ns  
MAX.  
MAX.  
MAX.  
MIN.  
ns  
ns  
ns  
ns  
2T – 50  
MIN.  
ns  
4T – 50 (In data read)  
7T – 50 (In OP code fetch)  
2T – 40  
tRR  
MIN.  
ns  
tLL  
MIN.  
MIN.  
MAX.  
MIN.  
MIN.  
MIN.  
MIN.  
MIN.  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
tLDW  
tLW  
3T – 100  
T + 130  
T – 50  
tDW  
tWDH  
tWL  
4T – 140  
2T – 70  
2T – 50  
tWW  
4T – 50  
12T  
(SCK input)Note1  
(SCK input)Note2  
(SCK output)  
tCYK  
tKKL  
tKKH  
6T  
MIN.  
MIN.  
MIN.  
ns  
ns  
ns  
24T  
5T + 5  
2.5T + 5  
(SCK input)Note1  
(SCK input)Note2  
12T – 100 (SCK output)  
5T + 5  
(SCK input)Note1  
(SCK input)Note2  
2.5T + 5  
12T – 100 (SCK output)  
Notes 1. If clock rate is ×1, in asynchronous mode, synchronous mode, or I/O interface mode.  
2. If clock rate is ×16, ×64 in asynchronous mode.  
Remarks 1. T = tCYC = 1/fXX  
2. Other items which are not listed in this table are not dependent on oscillator frequency (fXX).  
31  
µPD78CP18(A)  
Timing Waveforms  
Read Operation  
tCYC  
X1  
PF7 to PF0  
PD7 to PD0  
ALE  
Address (Higher)  
tAD  
Read Data  
Address (Lower)  
tLDR  
tRDH  
tRL  
tLL  
tLA  
tAFR  
tAL  
tRD  
tRR  
RD  
tLR  
tAR  
Write Operation  
X1  
PF7 to PF0  
PD7 to PD0  
ALE  
Address (Higher)  
t
LDW  
Write Data  
Address (Lower)  
t
DW  
t
WDH  
t
LL  
t
LA  
t
WD  
t
WW  
t
WL  
t
AL  
WR  
t
LW  
t
AW  
32  
µPD78CP18(A)  
Serial Operation  
tCYK  
tKKL  
tKKH  
SCK  
tKTX  
TXD  
RXD  
tRXK  
tKRX  
Timer Input Timing  
tTIH  
tTIL  
TI  
Timer/Event Counter Input Timing  
Event Counter Mode  
tCI1H  
tCI1L  
CI  
Pulse Width Test Mode  
tCI2H  
tCI2L  
CI  
33  
µPD78CP18(A)  
Interrupt Input Timing  
tNIH  
tI1L  
tI2H  
tNIL  
tI1H  
tI2L  
NMI  
INT1  
INT2  
Reset Input Timing  
tRSH  
tRSL  
RESET  
0.8VDD  
0.2VDD  
External Clock Timing  
tφH  
0.8VDD  
X1  
0.8 V  
tr  
tf  
tφL  
tCYC  
34  
µPD78CP18(A)  
DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = –40  
to +85 °C)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN.  
2.5  
TYP.  
MAX.  
5.5  
UNIT  
V
Data retention power  
supply voltage  
VDDDR  
VDDDR = 2.5 V  
1
15  
50  
µA  
µA  
µs  
Data retention power  
supply current  
IDDDR  
VDDDR = 5 V ± 10 %  
10  
VDD rise/fall time  
tRVD, tFVD  
tSSTVD  
200  
STOP setup time  
(to VDD)  
12T + 0.5  
Note  
µs  
µs  
STOP hold time  
(from VDD)  
12T + 0.5  
Note  
tHVDST  
Note T= tCYC = 1/fXX  
Data Retention Timing  
90 %  
10 %  
VDD  
VDDDR  
tFVD  
tRVD  
tSSTVD  
tHVDST  
VIH2  
VIL2  
STOP  
35  
µPD78CP18(A)  
DC PROGRAMMING CHARACTERISTICS (TA = 25 ± 5 °C, MODE1 = VIL, MODE0 = VIH, VSS = 0 V)  
PARAMETER  
SYMBOL SYMBOLNote  
TEST CONDITIONS  
MIN.  
2.4  
TYP.  
MAX.  
UNIT  
V
VDDP  
+ 0.3  
Input voltage high  
VIH  
VIH  
Input voltage low  
VIL  
VIL  
ILI  
–0.3  
0.8  
V
Input leakage current  
ILIP  
0 VI VDDP; except INT1, TI (PC3)  
±10  
µA  
VDD  
– 1.0  
Output voltage high  
Output voltage low  
VOH  
VOH  
IOH = –1.0 mA  
V
VOL  
ILO  
VOL  
––  
IOL = 2.0 mA  
0.45  
V
Output leakage  
current  
0 VO VDDP, OE = VIH  
±10  
µA  
EPROM programming mode  
EPROM read mode  
5.75  
4.5  
6.0  
6.25  
5.5  
V
V
VDDP supply voltage  
VPP supply voltage  
VDDP  
VPP  
VDD  
VPP  
5.0  
12.5  
EPROM programming mode  
EPROM read mode  
12.2  
12.8  
V
VPP = VDDP  
5
V
EPROM programming mode  
50  
50  
mA  
VDDP supply current  
VPP supply current  
IDD  
IPP  
IDD  
IPP  
EPROM read mode  
CE = VIL, VI = VIH  
5
mA  
EPROM programming mode  
CE = VIL, OE = VIH  
5
1
30  
mA  
EPROM read mode  
100  
µA  
Note Corresponding µPD27C256A symbol  
36  
µPD78CP18(A)  
AC PROGRAMMING CHARACTERISTICS (TA = 25 ± 5 °C, MODE1 = VIL, MODE0 = VIH, VSS = 0 V)  
Note1  
PARAMETER  
SYMBOL SYMBOL  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
µs  
Address setup time (to CE)  
OEdelay time from data  
Input data setup time (to CE)  
Address hold time (from CE)  
Input data hold time (from CE)  
Output data hold time (from OE)  
VPP setup time (to CE)  
tSAC  
tAS  
2
2
tDDOO  
tSIDC  
tHCA  
tOES  
tDS  
µs  
2
µs  
tAH  
2
µs  
tHCID  
tHOOD  
tSVPC  
tSVDC  
tWL1  
tDH  
2
µs  
tDF  
0
130  
ns  
tVPS  
tVDS  
tPW  
tOPW  
2
µs  
VDDP setup time (to CE)  
2
µs  
Initial program pulse width  
Additional program pulse width  
0.95  
2.85  
1.0  
1.05  
ms  
ms  
tWL2  
78.75  
EPROM programming/read mode  
tSMC  
––  
2
µs  
setup time (to CE)Note2  
Data output time from address  
Data output time from CE↓  
Data output time from OE↓  
Data hold time (from OE)  
Data hold time (from address)  
tDAOD  
tDCOD  
tDOOD  
tHCOD  
tHAOD  
tACC  
tCE  
OE = VIL  
1
1
µs  
µs  
µs  
ns  
ns  
tOE  
tDF  
1
0
0
130  
tOH  
OE = VIL  
Notes 1. Corresponding µPD27C256A symbol  
2. Indicates state in which MODE1 = VIL and MODE0 = VIH.  
37  
µPD78CP18(A)  
PROM Programming Mode Timing  
A12 to A0  
Effective Address  
tHOOD  
tHCA  
tSAC  
Data Input  
Data Output  
Data Input  
D7 to D0  
tSIDC  
tSMC  
tSVPC  
tHCID  
tSIDC  
tHCID  
VIH  
MODE1 = VIL  
MODE0 = VIH  
MODE1  
MODE0  
VIL  
VPP  
VDDP  
VPP  
VDDP + 1  
VDDP  
VDDP  
tSVDC  
VIH  
VIL  
CE  
tDDOO  
tWL1  
tWL2  
tDOOD  
VIH  
VIL  
OE  
Cautions 1. Ensure that VDDP is applied before VPP, and cut after VPP.  
2. Ensure that VPP does not exceed +13 V including overshoot.  
PROM Read Mode Timing  
A12 to A0  
Effective Address  
CE  
tDCOD  
OE  
t
HCOD  
tDOOD  
t
DAOD  
tHAOD  
Hi-Z  
Hi-Z  
Data Output  
D7 to D0  
Cautions 1. If you wish to read within the tDAOD range, the OE input delay time from the fall of CE should be a  
maximum of tDAOD - tDOOD.  
2. tHCOD is the time from the point at which OE or CE (whichever is first) reaches VIH.  
38  
µPD78CP18(A)  
7. CHARACTERISTIC CURVES (REFERENCE VALUE)  
IDD1, IDD2 vs. VDD  
(TA = 25 ˚C, fXX = 15 MHz)  
30  
25  
20  
15  
I
DD1 (TYP.)  
10  
5
I
DD2 (TYP.)  
0
0
4.5  
5.0  
5.5  
6.0  
Power Supply Voltage VDD [V]  
IDD1, IDD2 vs. fXX  
(T = 25 ˚C, VDD = 5 V)  
A
30  
20  
10  
0
I
DD1 (TYP.)  
I
DD2 (TYP.)  
0
5
10  
15  
Oscillator Frequency fXX [MHz]  
39  
µPD78CP18(A)  
IOL vs. VOL  
(TA = 25 ˚C, VDD = 5 V)  
2.5  
2.0  
1.5  
TYP.  
1.0  
0.5  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Output Voltage Low VOL [V]  
IOH vs. VOH  
(TA = 25 ˚C, VDD = 5 V)  
–1.5  
TYP.  
–1.0  
–0.5  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Power Supply Voltage – Output Voltage High VDD – VOH [V]  
40  
µPD78CP18(A)  
IDDDR vs. VDDDR  
(TA = 25 ˚C)  
10  
8
µ
6
TYP.  
4
2
0
0
2
3
4
5
6
Data Retention Power Supply Voltage VDDDR [V]  
41  
µPD78CP18(A)  
8. PACKAGE DRAWINGS  
64 PIN PLASTIC QUIP  
A
64  
33  
32  
1
W
X
M
N
H
I
M
J
K
P64GQ-100-36  
NOTE  
ITEM  
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.25 mm  
(0.010 inch) of its true position (T.P.) at maxi-  
mum material condition.  
A
C
H
I
41.5 +0.3  
+0.012  
1.634  
–0.008  
–0.2  
16.5  
0.650  
0.020  
0.010  
+0.10  
+0.004  
–0.005  
0.50  
0.25  
J
2.54 (T.P.)  
0.100 (T.P.)  
K
1.27 (T.P.)  
0.050 (T.P.)  
+0.25  
+0.011  
M
N
P
1.1  
0.043  
–0.15  
–0.006  
+0.10  
+0.004  
0.25  
0.010  
–0.05  
–0.003  
4.0+–0.3  
0.157  
+0.013  
–0.012  
3.6+–0.1  
+0.004  
S
0.142  
–0.005  
0.950+–0.042  
0.750+–0.042  
W
X
24.13+1.05  
19.05+1.05  
42  
µPD78CP18(A)  
64 PIN PLASTIC QFP (14×20)  
A
B
51  
52  
33  
32  
detail of lead end  
64  
20  
19  
1
G
M
N
H
I
J
K
L
P64GF-100-3B8,3BE,3BR-1  
NOTE  
ITEM  
A
MILLIMETERS  
23.6 0.4  
20.0 0.2  
14.0 0.2  
17.6 0.4  
1.0  
INCHES  
Each lead centerline is located within 0.20  
mm (0.008 inch) of its true position (T.P.) at  
maximum material condition.  
0.929 0.016  
+0.009  
B
0.795  
–0.008  
+0.009  
C
0.551  
–0.008  
D
F
0.693 0.016  
0.039  
G
H
I
1.0  
0.039  
+0.004  
0.40 0.10  
0.20  
0.016  
–0.005  
0.008  
J
1.0 (T.P.)  
1.8 0.2  
0.039 (T.P.)  
+0.008  
K
0.071  
–0.009  
+0.009  
0.031  
L
0.8 0.2  
–0.008  
+0.10  
+0.004  
0.15  
M
N
P
0.006  
–0.05  
–0.003  
0.12  
0.005  
2.7  
0.106  
Q
S
0.1 0.1  
3.0 MAX.  
0.004 0.004  
0.119 MAX.  
43  
µPD78CP18(A)  
9. RECOMMENDED SOLDERING CONDITIONS  
The µPD78CP18(A) should be soldered and mounted under the following recommended conditions.  
For details of recommended soldering conditions, refer to the information document "Semiconductor Device  
Mounting Technology Manual (IEI-1207)".  
For soldering methods and conditions other than those recommended below, contact an NEC representative.  
Table 9-1. Surface Mount Type Soldering Conditions  
µPD78CP18GF(A)-3BE: 64-Pin Plastic QFP (14 × 20 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or higher),  
IR35-00-2  
Count: Twice or less  
<Attention>  
(1)  
Perform the second reflow at the time the device temperature is lowered to  
the room temperature from the heating by the first reflow.  
(2)  
Do not wash the soldered portion with the flux following the first reflow.  
VPS  
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or higher),  
VP15-00-2  
Count: Twice or less  
<Attention>  
(1)  
Perform the second reflow at the time the device temperature is lowered to  
the room temperature from the heating by the first reflow.  
(2)  
Do not wash the soldered portion with the flux following the first reflow.  
Wave soldering  
Partial heating  
Solder bath temperature: 260 °C max., Duration: 10 sec. max., Count: Once  
Preheating temperature: 120 °C max. (package surface temperature)  
WS60-00-1  
——  
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side row of pins)  
Caution  
Use of more than one soldering method should be avoided (except in the case of pin part heating).  
Table 9-2. Through-Hole Type Soldering Conditions  
µPD78CP18GQ(A)-36: 64-Pin Plastic QUIP  
Soldering Method  
Soldering Conditions  
Wave soldering  
(pin part only)  
Solder bath temperature: 260 °C max., Duration: 10 sec. max.  
Pin temperature: 300 °C max., Duration: 3 sec. max. (per pin)  
Partial heating  
Caution  
Wave soldering is used on the pin only, and care must be taken to prevent solder from coming into  
direct contact with the body.  
44  
µPD78CP18(A)  
10. DIFFERENCES BETWEEN THE µPD78CP18(A) AND µPD78C18(A)  
Part Number  
µPD78C18(A)  
µPD78CP18(A)  
Item  
Internal ROM  
32 K × 8 bits  
32 K × 8 bits  
(PROM)  
(mask ROM)  
Internal RAM  
1 K × 8 bits  
PB7/OE  
1 K × 8 bits  
PB7  
Pin connection  
PB6/CE  
PB6  
STOP/VPP  
STOP  
NMI/A9  
NMI  
PA7/A7 to PA0/A0  
PF6/A14 to PF2/A10  
PF0/A8  
PA7 to PA0  
PF6 to PF2  
PF0  
PD7/O7 to PD0/O0  
PROM programming mode  
PD7 to PD0  
Mode set by MODE pins (when  
MODE0 is set to 1, and MODE1  
to 0)  
• Operates as the µPD78C17(A)  
(ROM-less mode)  
• External memory 16 K extension  
mode  
MODE0 pin input/output function  
Input onlyNote  
Yes  
Input/output  
No  
Internal memory access area  
setting by MM register  
Port A to Port C  
Pull-up resistors not incorporated  
Pull-up resistor incorporation  
selectable bit-wise by mask  
option  
Note An emulation control signal is not output even if the MODE0 pin is pulled high.  
45  
µPD78CP18(A)  
APPENDIX DEVELOPMENT TOOLS  
The following development tools are available to develop a system which uses the µPD78CP18(A).  
Language Processor  
87AD series  
This is a program which converts a program written in mnemonic to an object code for which  
microcomputer execution is possible.  
relocatable assembler  
(RA87)  
Moreover, it contains a function to automatically create a symbol/table, and optimize branch  
instructions.  
OS  
Ordering Code (Product Name)  
Host Machine  
Supply Medium  
3.5-inch 2HD  
MS-DOSTM  
Ver. 2.11  
to  
µS5A13RA87  
PC-9800  
series  
µS5A10RA87  
µS7B13RA87  
µS7B10RA87  
Ver. 5.00ANote  
5-inch 2HD  
3.5-inch 2HC  
5-inch 2HC  
PC DOSTM  
(Ver. 3.1)  
IBM PC/ATTM  
PROM Write Tools  
PG-1500  
With a provided board and an optional programmer adapter connected, this PROM programmer  
can manipulate from a stand-alone or host machine to perform programming on a single-chip  
microcomputer which incorporates PROM.  
It is also capable of programming a typical PROM ranging from 256 K to 4 M bits.  
PA-78CP14GF/  
GQ  
PROM programmer adapter for the µPD78CP18(A). Used by connecting to the PG-1500.  
For the µPD78CP18GF(A)-3BE  
For the µPD78CP18GQ(A)-36  
PA-78CP14GF  
PA-78CP14GQ  
Connects the PG-1500 to a host machine by using serial and parallel interface, to control the PG-  
1500 on a host machine.  
PG-1500  
controller  
OS  
Ordering Code (Product Name)  
Host Machine  
Supply Medium  
3.5-inch 2HD  
MS-DOS  
Ver. 2.11  
to  
µS5A13PG1500  
PC-9800  
series  
µS5A10PG1500  
µS7B10PG1500  
Ver. 5.00ANote  
5-inch 2HD  
5-inch 2HC  
PC DOS  
IBM PC/AT  
(Ver. 3.1)  
Note Versions 5.00 and 5.00A have a task swap function, but this function cannot be used with this software.  
Remark  
The operations of the assembler and the PG-1500 controller are guaranteed only on the above host  
machines and operating systems.  
46  
µPD78CP18(A)  
Debugging Tools  
An in-circuit emulator (IE-78C11-M) is available as a program debugging tool for theµPD78CP18(A). The following  
table shows its system configuration.  
IE-78C11-M  
The IE-78C11-M is an in-circuit emulator which works with the 87AD series.  
It can be connected to a host machine to perform efficient debugging.  
IE-78C11-M  
Connects the IE-78C11-M to host machine by using the RS-233C, to control the IE-78C11-M on  
host machine.  
control program  
(IE controller)  
OS  
Ordering Code (Product Name)  
Host Machine  
Supply Medium  
3.5-inch 2HD  
MS-DOS  
Ver. 2.11  
to  
µS5A13IE78C11  
PC-9800  
series  
µS5A10IE78C11  
µS7B10IE78C11  
5-inch 2HD  
5-inch 2HC  
Ver. 3.30D  
PC DOS  
IBM PC/AT  
(Ver. 3.1)  
Remark  
The operations of the IE controller are guaranteed only on the above host machines and operating  
systems.  
47  
µPD78CP18(A)  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static  
electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental  
control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid  
using insulators that easily build static electricity. Semiconductor devices must be stored and  
transported in an anti-static container, static shielding bag or conductive material. All test and  
measurement tools including work bench and floor should be grounded. The operator should be  
grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar  
precautions need to be taken for PW boards wiht semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does  
not define the initial operation status of the device. Immediately after the power source is turned  
ON, the devices with reset function have not yet been initialized. Hence, power-on does not  
guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
48  
µPD78CP18(A)  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on  
a customer designated “quality assurance program“ for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94.11  
QTOP is a trademark of NEC Corporation.  
MS-DOS is a trademark of Microsoft Corporation.  
PC/AT and PC DOS are trademarks of IBM Corporation.  

相关型号:

UPD78CP18GF-3BE

8-BIT SINGLE-CHIP MICROCOMPUTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18GFA-3BE

8-BIT SINGLE-CHIP MICROCOMPUTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18GQ

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18GQ(A)-36

Microcontroller, 8-Bit, OTPROM, 15MHz, CMOS, PQIP64, PLASTIC, QUIP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18GQ-36

8-BIT SINGLE-CHIP MICROCOMPUTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18GQA-36

8-BIT SINGLE-CHIP MICROCOMPUTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78CP18KB

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78E9860A

UPD789860.789861 Subseries User's Manual | UM Including Electrical Characteristics[09/2003]

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78E9860AMC-5A4

Microcontroller, 8-Bit, EEPROM, 5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78E9860AMC-5A4-A

Microcontroller, 8-Bit, EEPROM, 5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD78E9861A

UPD789860.789861 Subseries User's Manual | UM Including Electrical Characteristics[09/2003]

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UPD78E9861AMC-5A4

Microcontroller, 8-Bit, EEPROM, 5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC