X5323PZ-4.5A [RENESAS]

CPU Supervisor with 32Kb SPI EEPROM; PDIP8, SOIC8; Temp Range: See Datasheet;
X5323PZ-4.5A
型号: X5323PZ-4.5A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

CPU Supervisor with 32Kb SPI EEPROM; PDIP8, SOIC8; Temp Range: See Datasheet

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管
文件: 总19页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
X5323, X5325 (Replaces X25323, X25325)  
CPU Supervisor with 32kBit SPI EEPROM  
FN8131  
Rev 3.00  
December 9, 2015  
These devices combine four popular functions, Power-on  
Reset Control, Watchdog Timer, Supply Voltage Supervision,  
and Block Lock Protect Serial EEPROM Memory in one  
package. This combination lowers system cost, reduces  
board space requirements, and increases reliability.  
Features  
• Selectable watchdog timer  
• Low VCC detection and reset assertion  
- Five standard reset threshold voltages  
- Re-program low VCC reset threshold voltage using  
special programming sequence  
Applying power to the device activates the power-on reset  
circuit which holds RESET/RESET active for a period of  
time. This allows the power supply and oscillator to stabilize  
before the processor can execute code.  
- Reset signal valid to VCC = 1V  
• Determine watchdog or low voltage reset with a volatile  
flag bit  
The Watchdog Timer provides an independent protection  
mechanism for microcontrollers. When the microcontroller  
fails to restart a timer within a selectable time out interval,  
the device activates the RESET/RESET signal. The user  
selects the interval from three preset values. Once selected,  
the interval does not change, even after cycling the power.  
• Long battery life with low power consumption  
- <50µA max standby current, watchdog on  
- <1µA max standby current, watchdog off  
- <400µA max active current during read  
• 32kbits of EEPROM  
• Built-in inadvertent write protection  
- Power-up/power-down protection circuitry  
- Protect 0, 1/4, 1/2 or all of EEPROM array with Block  
Lockprotection  
The device’s low VCC detection circuitry protects the user’s  
system from low voltage conditions, resetting the system  
when VCC falls below the minimum VCC trip point.  
RESET/RESET is asserted until VCC returns to proper  
operating level and stabilizes. Five industry standard VTRIP  
thresholds are available, however, Intersil’s unique circuits  
allow the threshold to be reprogrammed to meet custom  
requirements or to fine-tune the threshold for applications  
requiring higher precision.  
- In circuit programmable ROM mode  
• 2MHz SPI interface modes (0,0 and 1,1)  
• Minimize EEPROM programming time  
- 32-byte page write mode  
- Self-timed write cycle  
- 5ms write cycle time (typical)  
• 2.7V to 5.5V and 4.5V to 5.5V power supply  
operation  
• Available packages  
- 14 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP  
• Pb-free (RoHS compliant)  
Block Diagram  
WATCHDOG TRANSITION  
DETECTOR  
WATCHDOG  
TIMER RESET  
WP  
PROTECT LOGIC  
RESET/RESET  
X5323 = RESET  
SI  
DATA  
REGISTER  
STATUS  
REGISTER  
SO  
RESET AND  
WATCHDOG  
TIMEBASE  
COMMAND  
DECODE AND  
CONTROL  
LOGIC  
X5325 = RESET  
SCK  
8kBITS  
8kBITS  
CS/WDI  
V
THRESHOLD  
RESET LOGIC  
CC  
16kBITS  
POWER-ON AND  
LOW VOLTAGE  
RESET  
V
+
-
CC  
GENERATION  
V
TRIP  
FN8131 Rev 3.00  
December 9, 2015  
Page 1 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Ordering Information  
VCC RANGE VTRIP RANGE TEMP RANGE  
PART NUMBER  
RESET (Active Low)  
PART MARKING  
(V)  
(V)  
(°C)  
PACKAGE  
X5323PZ-4.5A (Note)  
(No longer available, recommended  
replacement: X5323S8Z-4.5A)  
X5323P ZAL  
X5323P ZAM  
4.5 to 5.5  
4.5 to 4.75  
0 to +70  
8 Ld PDIP** (Pb-free)  
X5323PIZ-4.5A (Note)  
-40 to +85  
8 Ld PDIP** (Pb-free)  
(No longer available, recommended  
replacement: X5323S8IZ-4.5A)  
X5323S8Z-4.5A (Note)  
X5323S8IZ-4.5A* (Note)  
X5323V14-4.5A  
X5323 ZAL  
X5323 ZAM  
X5323 VAL  
X5323P Z  
0 to +70  
-40 to +85  
0 to +70  
0 to +70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
14 Ld TSSOP  
X5323PZ (Note)  
4.5 to 5.5  
2.7 to 5.5  
2.7 to 5.5  
4.25 to 4.5  
2.85 to 3.0  
2.55 to 2.7  
8 Ld PDIP** (Pb-free)  
(No longer available, recommended  
replacement: X5323S8Z)  
X5323PIZ (Note)  
(No longer available, recommended  
replacement: X5323S8IZ)  
X5323P ZI  
-40 to +85  
8 Ld PDIP** (Pb-free)  
X5323S8Z* (Note)  
X5323S8IZ* (Note)  
X5323 Z  
0 to +70  
-40 to +85  
0 to +70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld PDIP** (Pb-free)  
X5323 ZI  
X5323PZ-2.7A (Note)  
(No longer available, recommended  
replacement: X5323S8Z-2.7A)  
X5323P ZAN  
X5323PIZ-2.7A (Note)  
(No longer available, recommended  
replacement: X5323S8IZ-2.7A)  
X5323P ZAP  
-40 to +85  
8 Ld PDIP** (Pb-free)  
X5323S8Z-2.7A* (Note)  
X5323S8IZ-2.7A* (Note)  
X5323 ZAN  
X5323 ZAP  
X5323P ZF  
0 to +70  
-40 to +85  
0 to +70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld PDIP** (Pb-free)  
X5323PZ-2.7 (Note)  
(No longer available, recommended  
replacement: X5323S8Z-2.7)  
X5323PIZ-2.7 (Note)  
X5323P ZG  
-40 to +85  
8 Ld PDIP** (Pb-free)  
(No longer available, recommended  
replacement: X5323S8IZ-2.7)  
X5323S8Z-2.7* (Note)  
X5323S8IZ-2.7* (Note)  
RESET (Active High)  
X5325S8Z-4.5A (Note)  
X5325S8IZ-4.5A (Note)  
X5325S8Z* (Note)  
X5323 ZF  
X5323 ZG  
0 to +70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
-40 to +85  
X5325 ZAL  
X5325 ZAM  
X5325 Z  
4.5 to 5.5  
4.5 to 5.5  
2.7 to 5.5  
2.7 to 5.5  
4.5 to 4.75  
4.25 to 4.5  
2.85 to 3.0  
2.55 to 2.7  
0 to +70  
-40 to +85  
0 to +70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
8 Ld SOIC (Pb-free)  
X5325S8IZ* (Note)  
X5325 ZI  
-40 to +85  
0 to +70  
X5325S8Z-2.7A (Note)  
X5325S8IZ-2.7A (Note)  
X5325S8Z-2.7* (Note)  
X5325S8IZ-2.7* (Note)  
X5325 ZAN  
X5325 ZAP  
X5325 ZF  
X5325 ZG  
-40 to +85  
0 to +70  
-40 to +85  
*Add “-T1” for tape and reel. Please refer to TB347 for details on reel specifications.  
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
FN8131 Rev 3.00  
December 9, 2015  
Page 2 of 19  
 
X5323, X5325 (Replaces X25323, X25325)  
Pinouts  
X5323, X5325  
(8 LD SOIC, PDIP)  
TOP VIEW  
X5323, X5325  
(14 LD TSSOP)  
TOP VIEW  
1
2
14  
13  
12  
V
CS/WDI  
SO  
1
8
V
CC  
CS/WDI  
SO  
CC  
RESET/RESET  
2
3
7
6
RESET/RESET  
3
4
5
NC  
NC  
NC  
WP  
SCK  
SI  
11  
10  
9
NC  
NC  
WP  
V
SS  
4
5
NC  
SCK  
6
7
V
8
SI  
SS  
Pin Descriptions  
PIN NUMBER  
(SOIC/PDIP)  
PIN NUMBER  
TSSOP  
PIN NAME  
PIN FUNCTION  
1
1
CS/WDI  
Chip Select Input. CS HIGH, deselects the device and the SO output pin is at a high impedance  
state. Unless a nonvolatile write cycle is underway, the device will be in the stand-by power mode.  
CS LOW enables the device, placing it in the active power mode. Prior to the start of any operation  
after power-up, a HIGH to LOW transition on CS is required.  
Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the watchdog timer. The  
absence of a HIGH to LOW transition within the watchdog time out period results in  
RESET/RESET going active.  
2
5
2
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out on this pin. The  
falling edge of the serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and memory data on this  
pin. The rising edge of the serial clock (SCK) latches the input data. Send all opcodes (Table 1),  
addresses and data MSB first.  
6
3
9
6
SCK  
WP  
Serial Clock. The serial clock controls the serial bus timing for data input and output. The rising edge  
of SCK latches in the opcode, address, or data bits present on the SI pin. The falling edge of SCK  
changes the data output on the SO pin.  
Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to “lock” the setting  
of the watchdog timer control and the memory write protect bits.  
4
8
7
7
VSS  
VCC  
Ground  
14  
13  
Supply Voltage  
RESET/  
RESET  
Reset Output. RESET/RESET is an active LOW/HIGH, open drain output which goes active  
whenever VCC falls below the minimum VCC sense level. It will remain active until VCC rises above  
the minimum VCC sense level for 200ms. RESET/RESET goes active if the watchdog timer is  
enabled and CS remains either HIGH or LOW longer than the selectable watchdog time out  
period. A falling edge of CS will reset the watchdog timer. RESET/RESET goes active on power-  
up at about 1V and remains active for 200ms after the power supply stabilizes.  
3 to 5,10 to 12  
NC  
No internal connections  
FN8131 Rev 3.00  
December 9, 2015  
Page 3 of 19  
X5323, X5325 (Replaces X25323, X25325)  
and pulse CS/WDI LOW then HIGH. Remove VP and the  
sequence is complete.  
Principles of Operation  
Power-on Reset  
Application of power to the X5323/X5325 activates a power-on  
reset circuit. This circuit goes active at about 1V and pulls the  
RESET/RESET pin active. This signal prevents the system  
microprocessor from starting to operate with insufficient voltage  
or prior to stabilization of the oscillator. As long as  
RESET/RESET pin is active, the device will not respond to any  
Read/Write instruction. When VCC exceeds the device VTRIP  
value for 200ms (nominal) the circuit releases RESET/RESET,  
allowing the processor to begin executing code.  
CS  
V
P
SCK  
SI  
V
P
FIGURE 1. SET VTRIP VOLTAGE  
Low Voltage Monitoring  
Resetting the V  
Voltage  
TRIP  
During operation, the X5323/X5325 monitors the VCC level and  
asserts RESET/RESET if supply voltage falls below a preset  
minimum VTRIP. The RESET/RESET signal prevents the  
microprocessor from operating in a power fail or brown-out  
condition. The RESET/RESET signal remains active until the  
voltage drops below 1V. It also remains active until VCC returns  
and exceeds VTRIP for 200ms.  
This procedure sets the VTRIP to a “native” voltage level. For  
example, if the current VTRIP is 4.4V and the VTRIP is reset, the  
new VTRIP is something less than 1.7V. This procedure must  
be used to set the voltage to a lower value.  
To reset the VTRIP voltage, apply a voltage between 2.7V and  
5.5V to the VCC pin. Tie the CS/WDI pin, the WP pin, and the  
SCK pin HIGH. RESET/RESET and SO pins are left  
unconnected. Then apply the programming voltage VP to the  
SI pin ONLY and pulse CS/WDI LOW then HIGH. Remove VP  
and the sequence is complete.  
Watchdog Timer  
The watchdog timer circuit monitors the microprocessor activity  
by monitoring the WDI input. The microprocessor must toggle the  
CS/WDI pin periodically to prevent a RESET/RESET signal.  
The CS/WDI pin must be toggled from HIGH to LOW prior to  
the expiration of the watchdog time out period. The state of two  
nonvolatile control bits in the status register determine the  
watchdog timer period. The microprocessor can change these  
watchdog bits, or they may be “locked” by tying the WP pin  
LOW and setting the WPEN bit HIGH.  
CS  
V
CC  
SCK  
SI  
V
P
V
Threshold Reset Procedure  
CC  
The X5323/X5325 has a standard VCC threshold (VTRIP  
)
FIGURE 2. RESET VTRIP VOLTAGE  
voltage. This value will not change over normal operating and  
storage conditions. However, in applications where the  
standard VTRIP is not exactly right, or for higher precision in the  
VTRIP value, the X5323/X5325 threshold may be adjusted.  
Setting the V Voltage  
TRIP  
This procedure sets the VTRIP to a higher voltage value. For  
example, if the current VTRIP is 4.4V and the new VTRIP is 4.6V,  
this procedure directly makes the change. If the new setting is  
lower than the current setting, then it is necessary to reset the  
trip point before setting the new value.  
To set the new VTRIP voltage, apply the desired VTRIP  
threshold to the VCC pin and tie the CS/WDI pin and the WP  
pin HIGH. RESET/RESET and SO pins are left unconnected.  
Then apply the programming voltage VP to both SCK and SI  
FN8131 Rev 3.00  
December 9, 2015  
Page 4 of 19  
 
 
X5323, X5325 (Replaces X25323, X25325)  
V
PROGRAMMING  
EXECUTE  
TRIP  
RESET V  
TRIP  
SEQUENCE  
SET V = V APPLIED =  
CC  
CC  
DESIRED V  
TRIP  
EXECUTE  
SET V  
SEQUENCE  
NEW V APPLIED =  
CC  
NEW V APPLIED =  
CC  
TRIP  
OLD V APPLIED - ERROR  
CC  
OLD V APPLIED + ERROR  
CC  
EXECUTE  
APPLY 5V TO V  
CC  
RESET V  
TRIP  
SEQUENCE  
DECREMENT V  
CC  
(V = V - 10mV)  
CC  
CC  
NO  
RESET PIN  
GOES ACTIVE?  
YES  
ERROR EMAX  
ERROR EMAX  
MEASURED V  
-
TRIP  
DESIRED V  
TRIP  
ERROR < EMAX  
EMAX = MAXIMUM DESIRED ERROR  
DONE  
FIGURE 3. VTRIP PROGRAMMING SEQUENCE FLOW CHART  
V
P
NC  
NC  
4.7k  
RESET  
4.7k  
V
TRIP  
1
2
3
4
8
7
6
5
ADJ.  
NC  
X5323,  
X5325  
+
PROGRAM  
RESET V  
TRIP  
10k  
10k  
TEST V  
TRIP  
SET V  
TRIP  
FIGURE 4. SAMPLE VTRIP RESET CIRCUIT  
FN8131 Rev 3.00  
December 9, 2015  
Page 5 of 19  
 
 
X5323, X5325 (Replaces X25323, X25325)  
Status Register  
SPI Serial Memory  
The RDSR instruction provides access to the status register.  
The status register may be read at any time, even during a write  
cycle. The status register is formatted as follows:  
The memory portion of the device is a CMOS serial EEPROM  
array with Intersil’s block lock protection. The array is internally  
organized as x8. The device features a Serial Peripheral  
Interface (SPI) and software protocol allowing operation on a  
simple four-wire bus.  
7
6
5
4
3
2
1
0
WPEN  
FLB  
WD1  
WD0  
BL1  
BL0  
WEL  
WIP  
The device utilizes Intersil’s proprietary Direct Writecell,  
providing a minimum endurance of 100,000 cycles and a  
minimum data retention of 100 years.  
The Write-In-Progress (WIP) bit is a volatile, read only bit and  
indicates whether the device is busy with an internal  
nonvolatile write operation. The WIP bit is read using the  
RDSR instruction. When set to a “1”, a nonvolatile write  
operation is in progress. When set to a “0”, no write is in  
progress.  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many popular  
microcontroller families. It contains an 8-bit instruction register  
that is accessed via the SI input, with data being clocked in on  
the rising edge of SCK. CS must be LOW during the entire  
operation.  
The Write Enable Latch (WEL) bit indicates the status of the  
write enable latch. When WEL = 1, the latch is set HIGH and  
when WEL = 0 the latch is reset LOW. The WEL bit is a  
volatile, read only bit. It can be set by the WREN instruction  
and can be reset by the WRDS instruction.  
All instructions (Table 1), addresses and data are transferred  
MSB first. Data input on the SI line is latched on the first rising  
edge of SCK after CS goes LOW. Data is output on the SO line  
by the falling edge of SCK. SCK is static, allowing the user to  
stop the clock and then start it again to resume operations  
where left off.  
The block lock bits, BL0 and BL1, set the level of block lock  
protection. These nonvolatile bits are programmed using the  
WRSR instruction and allow the user to protect one quarter, one  
half, all or none of the EEPROM array. Any portion of the array  
that is block lock protected can be read but not written. It will  
remain protected until the BL bits are altered to disable block lock  
protection of that portion of memory.  
Write Enable Latch  
The device contains a write enable latch. This latch must be  
SET before a write operation is initiated. The WREN instruction  
will set the latch and the WRDI instruction will reset the latch  
(Figure 3). This latch is automatically reset upon a power-up  
condition and after the completion of a valid write cycle.  
TABLE 1. INSTRUCTION SET  
INSTRUCTION NAME  
WREN  
INSTRUCTION FORMAT*  
0000 0110  
OPERATION  
Set the write enable latch (enable write operations)  
Set flag bit  
SFLB  
0000 0000  
WRDI/RFLB  
RSDR  
0000 0100  
Reset the write enable latch/reset flag bit  
Read status register  
0000 0101  
WRSR  
0000 0001  
Write status register (watchdog, block lock, WPEN and flag bits)  
Read data from memory array beginning at selected address  
Write data to memory array beginning at selected address  
READ  
0000 0011  
WRITE  
0000 0010  
NOTE: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
TABLE 2. BLOCK PROTECT MATRIX  
WREN CMD  
STATUS REGISTER  
DEVICE PIN  
BLOCK  
Protected Block  
Protected  
BLOCK  
Unprotected Block  
Protected  
STATUS REGISTER  
WPEN, BL0, BL1 WD0, WD1  
Protected  
WEL  
WPEN  
WP  
X
0
1
1
1
X
1
0
X
0
Protected  
Writable  
Protected  
X
Protected  
Writable  
Writable  
1
Protected  
Writable  
Writable  
FN8131 Rev 3.00  
Page 6 of 19  
December 9, 2015  
 
 
X5323, X5325 (Replaces X25323, X25325)  
.
In Circuit Programmable ROM Mode  
STATUS  
This mechanism protects the block lock and watchdog bits  
from inadvertent corruption.  
REGISTER BITS  
ARRAY ADDRESSES PROTECTED  
BL1  
0
BL0  
0
X5323/X5325  
None (factory default)  
$0C00 to $0FFF  
$0800 to $0FFF  
$0000 to $0FFF  
In the locked state (programmable ROM mode) the WP pin is  
LOW and the nonvolatile bit WPEN is “1”. This mode disables  
nonvolatile writes to the device’s status register.  
0
1
1
0
Setting the WP pin LOW while WPEN is a “1” while an internal  
write cycle to the status register is in progress will not stop this  
write operation, but the operation disables subsequent write  
attempts to the status register.  
1
1
The watchdog timer bits, WD0 and WD1, select the watchdog  
time out period. These nonvolatile bits are programmed with  
the WRSR instruction.  
When WP is HIGH, all functions, including nonvolatile writes to  
the status register operate normally. Setting the WPEN bit in  
the status register to “0” blocks the WP pin function, allowing  
writes to the status register when WP is HIGH or LOW. Setting  
the WPEN bit to “1” while the WP pin is LOW activates the  
programmable ROM mode, thus requiring a change in the WP  
pin prior to subsequent status register changes. This allows  
manufacturing to install the device in a system with WP pin  
grounded and still be able to program the status register.  
Manufacturing can then load configuration data, manufacturing  
time and other parameters into the EEPROM, then set the  
portion of memory to be protected by setting the block lock bits,  
and finally set the “OTP mode” by setting the WPEN bit. Data  
changes now require a hardware change.  
STATUS REGISTER BITS  
WATCHDOG TIME-OUT  
WD1  
WD0  
(TYPICAL)  
0
0
1
1
0
1
0
1
1.4s  
600ms  
200ms  
disabled (factory default)  
The FLAG bit shows the status of a volatile latch that can be  
set and reset by the system using the SFLB and RFLB  
instructions. The flag bit is automatically reset upon power-up.  
This flag can be used by the system to determine whether a  
reset occurs as a result of a watchdog time out or power  
failure.  
Read Sequence  
When reading from the EEPROM memory array, CS is first  
pulled low to select the device. The 8-bit READ instruction is  
transmitted to the device, followed by the 16-bit address. After  
the READ opcode and address are sent, the data stored in the  
memory at the selected address is shifted out on the SO line.  
The data stored in memory at the next address can be read  
sequentially by continuing to provide clock pulses. The  
address is automatically incremented to the next higher  
address after each byte of data is shifted out. When the highest  
address is reached, the address counter rolls over to address  
Note: The Watch Dog Timer is shipped disabled. (WD1 = 1, WD0  
= 1. The factory default for Memory Block Protection is ‘None’.  
(BL1 = 0, BL0 = 0).  
The nonvolatile WPEN bit is programmed using the WRSR  
instruction. This bit works in conjunction with the WP pin to  
provide an in-circuit programmable ROM function (Table 2). WP is  
LOW and WPEN bit programmed HIGH disables all status  
register write operations.  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
16-BIT ADDRESS  
15 14 13  
INSTRUCTION  
3
2
1
0
DATA OUT  
HIGH IMPEDANCE  
SO  
7
6
5
4
3
2
1
0
MSB  
FIGURE 5. READ EEPROM ARRAY SEQUENCE  
FN8131 Rev 3.00  
December 9, 2015  
Page 7 of 19  
 
X5323, X5325 (Replaces X25323, X25325)  
$0000 allowing the read cycle to be continued indefinitely. The  
read operation is terminated by taking CS high. Refer to the  
read EEPROM Array Sequence (Figure 1).  
For the page write operation (byte or page write) to be  
completed, CS can only be brought HIGH after bit 0 of the last  
data byte to be written is clocked in. If it is brought HIGH at any  
other time, the write operation will not be completed (Figure 4).  
To read the status register, the CS line is first pulled low to  
select the device followed by the 8-bit RDSR instruction. After  
the RDSR opcode is sent, the contents of the status register  
are shifted out on the SO line. Refer to the read status register  
sequence (Figure 2).  
To write to the status register, the WRSR instruction is followed  
by the data to be written (Figure 5). Data bits 0 and 1 must be  
“0”.  
While the write is in progress following a status register or  
EEPROM Sequence, the status register may be read to check  
the WIP bit. During this time the WIP bit will be high.  
Write Sequence  
Prior to any attempt to write data into the device, the “Write  
Enable” Latch (WEL) must first be set by issuing the WREN  
instruction (Figure 3). CS is first taken LOW, then the WREN  
instruction is clocked into the device. After all eight bits of the  
instruction are transmitted, CS must then be taken HIGH. If the  
user continues the write operation without taking CS HIGH  
after issuing the WREN instruction, the write operation will be  
ignored.  
Operational Notes  
The device powers-up in the following state:  
• The device is in the low power standby state.  
• A HIGH to LOW transition on CS is required to enter an  
active state and receive an instruction.  
• SO pin is high impedance.  
• The write enable latch is reset.  
• The flag bit is reset.  
To write data to the EEPROM memory array, the user then  
issues the WRITE instruction followed by the 16-bit address  
and then the data to be written. Any unused address bits are  
specified to be “0’s”. The WRITE operation minimally takes 32  
clocks. CS must go low and remain low for the duration of the  
operation. If the address counter reaches the end of a page  
and the clock continues, the counter will roll back to the first  
address of the page and overwrite any data that may have  
been previously written.  
• Reset signal is active for tPURST  
.
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
• A WREN instruction must be issued to set the write enable  
latch.  
Note: When writing more than one page, you must wait one  
write cycle (10ms typical) when going from one page to  
another. This is required for the internal nonvolatile memory to  
be programmed correctly.  
• CS must come HIGH at the proper clock count in order to  
start a nonvolatile write cycle.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK  
INSTRUCTION  
SI  
DATA OUT  
HIGH IMPEDANCE  
SO  
7
6
5
4
3
2
1
0
MSB  
FIGURE 6. READ STATUS REGISTER SEQUENCE  
FN8131 Rev 3.00  
December 9, 2015  
Page 8 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Symbol Table  
CS  
WAVEFORM  
INPUTS  
OUTPUTS  
0
1
2
3
4
5
6
7
Must be  
steady  
Will be  
steady  
SCK  
SI  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
HIGH IMPEDANCE  
SO  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
FIGURE 7. WRITE ENABLE LATCH SEQUENCE  
N/A  
Center Line  
is High  
Impedance  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
INSTRUCTION  
16-BIT ADDRESS  
15 14 13  
DATA BYTE 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
DATA BYTE 2  
DATA BYTE 3  
DATA BYTE N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FIGURE 8. WRITE SEQUENCE  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
INSTRUCTION  
DATA BYTE  
7
6
5
4
3
2
1
0
SI  
HIGH IMPEDANCE  
SO  
FIGURE 9. STATUS REGISTER WRITE SEQUENCE  
FN8131 Rev 3.00  
December 9, 2015  
Page 9 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Absolute Maximum Ratings  
Thermal Information  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage on any Pin with Respect to VSS . . . . . . . . . . . .-1.0V to +7V  
DC Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
*Pb-free PDIPs can be used for through hole wave solder  
processing only. They are not intended for use in Reflow solder  
processing applications.  
Operating Conditions  
Temperature Range (Industrial) . . . . . . . . . . . . . . . . .-40°C to +85°C  
Temperature Range (Commercial). . . . . . . . . . . . . . . . 0°C to +70°C  
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
DC Electrical Specifications Over the recommended operating conditions, unless otherwise specified  
PARAMETER  
SYMBOL  
ICC1  
ICC2  
ISB1  
ISB2  
ISB3  
ILI  
TEST CONDITIONS  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz, SO = Open  
SCK = VCC x 0.1/VCC x 0.9 @ 2MHz, SO = Open  
CS = VCC, VIN = VSS or VCC, VCC = 5.5V  
CS = VCC, VIN = VSS or VCC, VCC = 5.5V  
CS = VCC, VIN = VSS or VCC, VCC =3.6V  
VIN = VSS to VCC  
MIN  
TYP  
MAX  
UNIT  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
V
V
CC Write Current (active)  
5
VCC Read Current (active)  
0.4  
V
V
CC Standby Current WDT = OFF  
CC Standby Current WDT = ON  
1
50  
VCC Standby Current WDT = ON  
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
20  
0.1  
0.1  
10  
ILO  
VOUT = VSS to VCC  
10  
VIL  
-0.5  
VCC x 0.3  
(Note 1)  
Input HIGH Voltage  
VIH  
VCC x 0.7  
VCC + 0.5  
V
(Note 1)  
Output LOW Voltage  
Output LOW Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Reset Output LOW Voltage  
VOL1  
VOL2  
VOL3  
VOH1  
VOH2  
VOH3  
VOLS  
VCC > 3.3V, IOL = 2.1mA  
2V < VCC 3.3V, IOL = 1mA  
VCC 2V, IOL = 0.5mA  
VCC > 3.3V, IOH = -1.0mA  
2V < VCC 3.3V, IOH = -0.4mA  
VCC 2V, IOH = -0.25mA  
IOL = 1mA  
0.4  
0.4  
0.4  
V
V
V
V
V
V
V
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
0.4  
Capacitance  
TA = +25°C, f = 1MHz, VCC = 5V  
SYMBOL  
TEST  
CONDITIONS  
VOUT = 0V  
VIN = 0V  
MAX  
UNIT  
pF  
C
OUT (Note 2) Output Capacitance (SO, RESET/RESET)  
IN (Note 2) Input Capacitance (SCK, SI, CS, WP)  
NOTES:  
8
6
C
pF  
1. VIL min and VIH max are for reference only and are not tested.  
2. This parameter is periodically sampled and not 100% tested.  
FN8131 Rev 3.00  
December 9, 2015  
Page 10 of 19  
 
 
X5323, X5325 (Replaces X25323, X25325)  
Equivalent AC Load Circuit at 5V V  
AC Test Conditions  
Input pulse levels  
CC  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
4.6k  
VCC x 0.5  
2.06k  
OUTPUT  
3.03k  
RESET/RESET  
30pF  
100pF  
AC Electrical Specifications  
Input pulse levels = VCC x 0.1 to VCC x 0.9; input rise and fall times = 10ns; input and ouput timing  
level = VCC x 0.5. Over recommended operating conditions, unless otherwise specified.  
2.7 TO 5.5V  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNIT  
SERIAL INPUT TIMING  
Clock Frequency  
Cycle Time  
fSCK  
tCYC  
tLEAD  
tLAG  
0
2
MHz  
ns  
500  
250  
250  
200  
250  
50  
CS Lead Time  
ns  
CS Lag Time  
ns  
Clock HIGH Time  
Clock LOW Time  
Data Set-up Time  
Data Hold Time  
Input Rise Time  
Input Fall Time  
tWH  
ns  
tWL  
ns  
tSU  
ns  
tH  
50  
ns  
t
RI (Note 3)  
100  
100  
ns  
tFI (Note 3)  
tCS  
ns  
CS Deselect Time  
Write Cycle Time  
500  
ns  
t
WC (Note 4)  
10  
ms  
Serial Input Timing  
t
CS  
CS  
t
t
LAG  
LEAD  
SCK  
t
t
t
t
FI  
SU  
H
RI  
SI  
MSB IN  
LSB IN  
HIGH IMPEDANCE  
SO  
FN8131 Rev 3.00  
December 9, 2015  
Page 11 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Serial Output Timing  
2.7 TO 5.5V  
MAX  
PARAMETER  
Clock Frequency  
SYMBOL  
MIN  
UNIT  
MHz  
ns  
fSCK  
tDIS  
0
2
Output Disable Time  
250  
250  
Output Valid From Clock Low  
Output Hold Time  
tV  
ns  
tHO  
0
ns  
Output Rise Time  
tRO (Note 3)  
100  
100  
ns  
Output Fall Time  
t
FO (Note 3)  
ns  
NOTES:  
3. This parameter is periodically sampled and not 100% tested.  
4. tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile write cycle.  
Serial Output Timing  
CS  
t
t
t
LAG  
CYC  
WH  
SCK  
SO  
SI  
t
t
t
t
DIS  
V
HO  
WL  
MSB OUT  
MSB–1 OUT  
LSB OUT  
ADDR  
LSB IN  
Power-Up and Power-Down Timing  
V
V
TRIP  
TRIP  
V
CC  
t
PURST  
0V  
t
t
F
PURST  
t
RPD  
t
R
RESET (X5323)  
RESET (X5323)  
FN8131 Rev 3.00  
December 9, 2015  
Page 12 of 19  
 
X5323, X5325 (Replaces X25323, X25325)  
RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
4.5  
TYP  
4.63  
4.38  
2.92  
2.63  
20  
MAX  
4.75  
4.5  
UNIT  
V
VTRIP  
Reset Trip Point Voltage, X5323-4.5A, X5323-4.5A  
Reset Trip Point Voltage, X5323, X5325  
4.25  
2.85  
2.55  
V
Reset Trip Point Voltage, X5323-2.7A, X5325-2.7A  
Reset Trip Point Voltage, X5323-2.7, X5325-2.7  
VTRIP Hysteresis (HIGH to LOW vs LOW to HIGH VTRIP Voltage)  
Power-up Reset Time-Out  
3.0  
V
2.7  
V
VTH  
mV  
ms  
ns  
µs  
µs  
V
tPURST  
100  
200  
280  
500  
t
RPD (Note 5) VCC Detect To Reset/Output  
tF (Note 5) VCC Fall Time  
100  
100  
1
tR (Note 5) VCC Rise Time  
VRVALID  
NOTE:  
Reset Valid VCC  
5. This parameter is periodically sampled and not 100% tested.  
CS/WDI vs RESET/RESET Timing  
CS/WDI  
t
CST  
RESET  
t
t
t
t
RST  
WDO  
RST  
WDO  
RESET  
RESET/RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tWDO  
Watchdog Time-Out Period  
WD1 = 1, WD0 = 0  
100  
450  
1
200  
600  
1.4  
300  
800  
2
ms  
ms  
s
WD1 = 0, WD0 = 1  
WD1 = 0, WD0 = 0  
tCST  
tRST  
CS Pulse Width to Reset the Watchdog  
Reset Time-Out  
400  
100  
ns  
ms  
200  
300  
FN8131 Rev 3.00  
December 9, 2015  
Page 13 of 19  
 
X5323, X5325 (Replaces X25323, X25325)  
V
Set Conditions  
TRIP  
t
THD  
V
V
CC  
TRIP  
t
TSU  
t
RP  
t
t
VPH  
t
P
VPS  
CS  
t
t
t
VPO  
VPH  
VPS  
V
P
SCK  
SI  
V
t
P
VPO  
V
Reset Conditions  
TRIP  
V
*
CC  
t
RP  
t
t
VP1  
t
P
VPS  
CS  
t
t
t
VPS  
VPO  
VPH  
V
CC  
V
SCK  
SI  
t
P
VPO  
*V > PROGRAMMED V  
CC  
TRIP  
V
Programming Specifications VCC = 1.7 to 5.5V; Temperature = 0°C to +70°C.  
TRIP  
PARAMETER  
DESCRIPTION  
MIN  
1
MAX  
UNIT  
µs  
tVPS  
tVPH  
tP  
SCK VTRIP Program Voltage Set-up Time  
SCK VTRIP Program Voltage Hold Time  
VTRIP Program Pulse Width  
1
µs  
1
µs  
tTSU  
tTHD  
VTRIP Level Set-up Time  
10  
10  
µs  
VTRIP Level Hold (Stable) Time  
ms  
FN8131 Rev 3.00  
December 9, 2015  
Page 14 of 19  
X5323, X5325 (Replaces X25323, X25325)  
V
Programming Specifications VCC = 1.7 to 5.5V; Temperature = 0°C to +70°C. (Continued)  
TRIP  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ms  
ms  
ms  
V
tWC  
tRP  
tVPO  
VP  
VTRAN  
Vta1  
VTRIP Write Cycle Time  
10  
VTRIP Program Cycle Recovery Period (Between Successive Programming Cycles)  
SCK VTRIP Program Voltage Off-Time Before Next Cycle  
10  
0
Programming Voltage  
15  
18  
5.0  
VTRIP Programed Voltage Range  
1.7  
-0.1  
-25  
-25  
-25  
V
Initial VTRIP Program Voltage Accuracy (VCC Applied-VTRIP) (Programmed at +25°C)  
Subsequent VTRIP Program Voltage Accuracy [(VCC Applied-Vta1)-VTRIP] (Programmed at +25°C)  
VTRIP Program Voltage Repeatability (Successive Program Operations; Programmed at +25°C)  
VTRIP Program Variation After Programming (0°C to +75°C; Programmed at +25°C)  
+0.4  
+25  
+25  
+25  
V
Vta2  
mV  
mV  
mV  
Vtr  
Vtv  
NOTE:  
6. VTRIP programming parameters are periodically sampled and are not 100% tested.  
Typical Performance Curves  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
18  
WATCHDOG TIMER ON (V = 5V)  
CC  
16  
14  
12  
10  
8
-40°C  
WATCHDOG TIMER ON (V = 5V)  
+25°C  
CC  
+90°C  
6
4
2
WATCHDOG TIMER OFF (V = 3V, 5V)  
CC  
0
-40  
25  
90  
)
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
TEMPERATURE (°C)  
VOLTAGE (V)  
FIGURE 10. V SUPPLY CURRENT vs TEMPERATURE (I  
FIGURE 11. T  
vs VOLTAGE/TEMPERATURE (WD1, 0 = 1, 1)  
WDO  
CC  
SB  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
5.025  
5.000  
V
= 5V  
TRIP  
-40°C  
4.975  
3.525  
3.500  
3.475  
2.525  
2.500  
2.475  
+25°C  
+90°C  
V
= 3.5V  
= 2.5V  
TRIP  
V
TRIP  
0.45  
1.7  
0
25  
85  
2.4  
3.1  
3.8  
4.5  
5.2  
TEMPERATURE (°C)  
VOLTAGE (V)  
FIGURE 12. V  
vs TEMPERATURE (PROGRAMMED AT +25°C)  
FIGURE 13. T  
vs VOLTAGE/TEMPERATURE (WD1, 0 = 1, 0)  
WDO  
TRIP  
FN8131 Rev 3.00  
December 9, 2015  
Page 15 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Typical Performance Curves  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
-40°C  
+25°C  
+90°C  
-40  
25  
90  
1.7  
2.4  
3.1  
3.8  
4.5  
5.2  
VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 14. T  
vs TEMPERATURE  
FIGURE 15. T  
vs VOLTAGE/TEMPERATURE (WD1, 0 0 = 0, 1)  
WDO  
PURST  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
FN8131.3  
CHANGE  
Updated Ordering Information Table on page 2.  
December 9, 2015  
Added Revision History and About Intersil sections.  
Replaced POD MDP0027 with M8.15E  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
FN8131 Rev 3.00  
December 9, 2015  
Page 16 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Plastic Dual-In-Line Packages (PDIP)  
E
N
1
D
PIN #1  
INDEX  
A2  
A
E1  
SEATING  
PLANE  
L
c
A1  
NOTE 5  
2
N/2  
eA  
eB  
e
b
b2  
MDP0031  
PLASTIC DUAL-IN-LINE PACKAGE  
INCHES  
SYMBOL  
PDIP8  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.375  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
8
PDIP14  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
14  
PDIP16  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
16  
PDIP18  
PDIP20  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
1.020  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.890  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
18  
MIN  
±0.005  
±0.002  
b2  
c
+0.010/-0.015  
+0.004/-0.002  
±0.010  
D
1
2
E
+0.015/-0.010  
±0.005  
E1  
e
Basic  
eA  
eB  
L
Basic  
±0.025  
±0.010  
N
Reference  
Rev. C 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.010” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.  
4. Dimension eB is measured with the lead tips unconstrained.  
5. 8 and 16 lead packages have half end-leads as shown.  
FN8131 Rev 3.00  
December 9, 2015  
Page 17 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN8131 Rev 3.00  
December 9, 2015  
Page 18 of 19  
X5323, X5325 (Replaces X25323, X25325)  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M14.173  
N
14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.041  
0.0118  
0.0079  
0.199  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.05  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.195  
0.169  
0.05  
0.80  
0.19  
0.09  
4.95  
4.30  
-
L
0.25  
0.010  
-
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
3
-C-  
E1  
e
4
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
14  
14  
7
NOTES:  
0o  
8o  
0o  
8o  
-
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
Rev. 2 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
© Copyright Intersil Americas LLC 2003-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8131 Rev 3.00  
December 9, 2015  
Page 19 of 19  

相关型号:

X5323S8

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5323S8

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS

X5323S8-1.8

SPI Serial EEPROM with Supervisory Features
ETC

X5323S8-2.7

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5323S8-2.7

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS

X5323S8-2.7-T

IC,SERIAL EEPROM,4KX8,CMOS,SOP,8PIN,PLASTIC
RENESAS

X5323S8-2.7-T1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS

X5323S8-2.7A

CPU Supervisor with 32Kb SPI EEPROM
INTERSIL

X5323S8-2.7A

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS

X5323S8-2.7A

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO8, PLASTIC, SOIC-8
XICOR

X5323S8-2.7A-T

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS

X5323S8-2.7AT1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8
RENESAS