X5328V14Z-4.5A [RENESAS]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, ROHS COMPLIANT, PLASTIC, TSSOP-14;
X5328V14Z-4.5A
型号: X5328V14Z-4.5A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO14, ROHS COMPLIANT, PLASTIC, TSSOP-14

光电二极管
文件: 总21页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5328, X5329  
®
(Replaces X25328, X25329)  
Data Sheet  
October 17, 2005  
FN8132.1  
DESCRIPTION  
CPU Supervisor with 32Kbit SPI EEPROM  
These devices combine three popular functions, Power-  
on Reset Control, Supply Voltage Supervision, and Block  
Lock Protect Serial EEPROM Memory in one package.  
This combination lowers system cost, reduces board  
space requirements, and increases reliability.  
FEATURES  
• Low V detection and reset assertion  
CC  
—Five standard reset threshold voltages  
—Re-program low V reset threshold voltage  
CC  
using special programming sequence  
Applying power to the device activates the power-on  
reset circuit which holds RESET/RESET active for a  
period of time. This allows the power supply and oscilla-  
tor to stabilize before the processor can execute code.  
—Reset signal valid to V = 1V  
CC  
• Long battery life with low power consumption  
—<1µA max standby current  
—<400µA max active current during read  
• 32Kbits of EEPROM  
The device’s low V  
detection circuitry protects the  
CC  
• Built-in inadvertent write protection  
—Power-up/power-down protection circuitry  
—Protect 0, 1/4, 1/2 or all of EEPROM array with  
user’s system from low voltage conditions by holding  
RESET/RESET active when V falls below a mini-  
CC  
mum V trip point. RESET/RESET remains asserted  
CC  
Block Lock protection  
until V  
returns to proper operating level and stabi-  
CC  
—In circuit programmable ROM mode  
• 2MHz SPI interface modes (0,0 & 1,1)  
• Minimize EEPROM programming time  
—32-byte page write mode  
lizes. Five industry standard V  
thresholds are  
TRIP  
available, however, Intersil’s unique circuits allow the  
threshold to be reprogrammed to meet custom  
requirements or to fine-tune the threshold in applica-  
tions requiring higher precision.  
—Self-timed write cycle  
—5ms write cycle time (typical)  
• 2.7V to 5.5V and 4.5V to 5.5V power supply  
operation  
• Available packages  
—14 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP  
• Pb-free plus anneal available (RoHS compliant)  
BLOCK DIAGRAM  
WP  
Protect Logic  
SI  
Data  
Status  
Register  
Register  
SO  
Command  
Decode &  
Control  
SCK  
CS  
8Kbits  
8Kbits  
Logic  
16Kbits  
Reset  
Timebase  
RESET/RESET  
Power-on and  
Low Voltage  
Reset  
VCC  
+
-
Generation  
X5328 = RESET  
X5329 = RESET  
VTRIP  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
X5328, X5329  
Ordering Information  
PART NUMBER  
PART NUMBER  
RESET  
RESET  
PART  
PART  
V
CC RANGE  
TEMP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKING  
(V)  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
8 Ld PDIP  
X5328P-4.5A  
X5329P-4.5A  
4.5-5.5  
4.5-4.75  
0 to 70  
0 to 70  
X5328PZ-4.5A (Note) X5328P Z AL X5329PZ-4.5A (Note) X5329P Z AL  
X5328PI-4.5A X5329PI-4.5A  
X5328PIZ-4.5A (Note) X5328P Z AM X5329PIZ-4.5A (Note) X5329P Z AM  
X5328S8-4.5A X5328 AL X5329S8-4.5A  
X5328S8Z-4.5A (Note) X5328 Z AL X5329S8Z-4.5A (Note) X5329 Z AL  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
X5328S8I-4.5A  
X5328 AM  
X5329S8I-4.5A  
-40 to 85  
-40 to 85  
X5328S8IZ-4.5A  
(Note)  
X5328 Z AM X5329S8IZ-4.5A  
(Note)  
X5329 Z AM  
X5329V Z AL  
X5329V Z AM  
8 Ld SOIC (Pb-free)  
X5328V14-4.5A  
X5329V14-4.5A  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5328V14Z-4.5A  
(Note)  
X5328V Z AL X5329V14Z-4.5A  
(Note)  
14 Ld TSSOP  
(Pb-free)  
X5328V14I-4.5A  
X5329V14I-4.5A  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5328V14IZ-4.5A  
(Note)  
X5328V Z AM X5329V14IZ-4.5A  
(Note)  
14 Ld TSSOP  
(Pb-free)  
X5328P  
X5328P  
X5329P  
X5329P  
4.5-5.5  
4.25-4.5  
0 to 70  
0 to 70  
8 Ld PDIP  
X5328PZ (Note)  
X5328PI  
X5328P Z  
X5328P I  
X5328P Z I  
X5328  
X5329PZ (Note)  
X5329PI  
X5329P Z  
X5329P I  
X5329P Z I  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5328PIZ (Note)  
X5328S8*  
X5329PIZ (Note)  
X5329S8*  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5328S8Z* (Note)  
X5328S8I*  
X5328 Z  
X5328 I  
X5329S8Z* (Note)  
X5329S8I*  
X5329 Z  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
X5328S8IZ* (Note)  
X5328V14*  
X5328 Z I  
X5328V  
X5329S8IZ* (Note)  
X5329V14*  
X5329 Z I  
X5329V Z  
8 Ld SOIC (Pb-free)  
14 Ld TSSOP  
X5328V14Z* (Note)  
X5328V Z  
X5329V14Z* (Note)  
0 to 70  
14 Ld TSSOP  
(Pb-free)  
X5328V14I*  
X5329V14I*  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5328V14IZ* (Note)  
X5328V Z I  
X5329V14IZ* (Note)  
X5329V Z I  
14 Ld TSSOP  
(Pb-free)  
X5328P-2.7A  
X5329P-2.7A  
2.7-5.5  
2.85-3.0  
0 to 70  
0 to 70  
8 Ld PDIP  
X5328PZ-2.7A (Note) X5328P Z AN X5329PZ-2.7A (Note) X5329P Z AN  
X5328PI-2.7A X5329PI-2.7A  
X5328PIZ-2.7A (Note) X5328P Z AP X5329PIZ-2.7A (Note) X5329P Z AP  
X5328S8-2.7A X5328 AN X5329S8-2.7A  
X5328S8Z-2.7A (Note) X5328 Z AN X5329S8Z-2.7A (Note) X5329 Z AN  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
X5328S8I-2.7A  
X5328 AP  
X5329S8I-2.7A  
-40 to 85  
-40 to 85  
X5328S8IZ-2.7A  
(Note)  
X5328 Z AP X5329S8IZ-2.7A  
(Note)  
X5329 Z AP  
8 Ld SOIC (Pb-free)  
X5328V14-2.7A  
X5328V AN  
X5329V14-2.7A  
0 to 70  
0 to 70  
14 Ld TSSOP  
X5328V14Z-2.7A  
(Note)  
X5328V Z AN X5329V14Z-2.7A  
(Note)  
X5329V Z AN  
14 Ld TSSOP  
(Pb-free)  
FN8132.1  
2
October 17, 2005  
X5328, X5329  
Ordering Information (Continued)  
PART NUMBER  
PART NUMBER  
RESET  
PART  
RESET  
PART  
V
CC RANGE  
TEMP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKING  
(V)  
V
TRIP RANGE RANGE (°C)  
PACKAGE  
X5328V14I-2.7A  
X5329V14I-2.7A  
2.7-5.5  
2.7-5.5  
2.85-3.0  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5328V14IZ-2.7A  
(Note)  
X5328V Z AP X5329V14IZ-2.7A  
(Note)  
X5329V Z AP  
14 Ld TSSOP  
(Pb-free)  
X5328P-2.7  
X5328P F  
X5328P Z F X5329PZ-2.7 (Note)  
X5328P G X5329PI-2.7  
X5329P-2.7  
X5329P F  
X5329P Z F  
X5329P G  
2.55-2.7  
0 to 70  
0 to 70  
8 Ld PDIP  
X5328PZ-2.7 (Note)  
X5328PI-2.7  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5328PIZ-2.7 (Note) X5328P Z G X5329PIZ-2.7 (Note) X5329P Z G  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5328S8-2.7*  
X5328S8Z-2.7* (Note) X5328 Z F  
X5328S8I-2.7* X5328 G  
X5328 F  
X5329S8-2.7*  
X5329S8Z-2.7* (Note) X5329 Z F  
X5329S8I-2.7*  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
X5328S8IZ-2.7* (Note) X5328 Z G  
X5328V14-2.7*  
X5329S8IZ-2.7* (Note) X5329 Z G  
X5329V14-2.7*  
8 Ld SOIC (Pb-free)  
14 Ld TSSOP  
X5328V14Z-2.7*  
(Note)  
X5328V Z F X5329V14Z-2.7*  
X5329V Z F  
0 to 70  
14 Ld TSSOP  
(Pb-free)  
(Note)  
X5328V14I-2.7*  
X5329V14I-2.7*  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5328V14IZ-2.7*  
(Note)  
X5328V Z G X5329V14IZ-2.7*  
(Note)  
X5329V Z G  
14 Ld TSSOP  
(Pb-free)  
*Add "T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8132.1  
3
October 17, 2005  
X5328, X5329  
PIN DESCRIPTION  
Pin  
Pin  
(SOIC/PDIP) TSSOP  
Name  
Function  
1
1
CS  
Chip Select Input. CS HIGH, deselects the device and the SO output pin is at  
a high impedance state. Unless a nonvolatile write cycle is underway, the device  
will be in the standby power mode. CS LOW enables the device, placing it in the  
active power mode. Prior to the start of any operation after power-up, a HIGH to  
LOW transition on CS is required.  
2
5
2
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out  
on this pin. The falling edge of the serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and  
memory data on this pin. The rising edge of the serial clock (SCK) latches the input  
data. Send all opcodes (Table 1), addresses and data MSB first.  
6
3
9
6
SCK  
WP  
Serial Clock. The Serial Clock controls the serial bus timing for data input and out-  
put. The rising edge of SCK latches in the opcode, address, or data bits present on  
the SI pin. The falling edge of SCK changes the data output on the SO pin.  
Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to  
“lock” the setting of the Watchdog Timer control and the memory write protect bits.  
4
8
7
7
VSS  
VCC  
Ground  
14  
13  
Supply Voltage  
RESET/ Reset Output. RESET/RESET is an active LOW/HIGH, open drain output  
RESET  
which goes active whenever VCC falls below the minimum VCC sense level. It  
will remain active until VCC rises above the minimum VCC sense level for 200ms.  
RESET/RESET goes active on power-up at about 1V and remains active for  
200ms after the power supply stabilizes.  
3-5,10-12  
NC  
No internal connections  
PIN CONFIGURATION  
14 Ld TSSOP  
8 Ld SOIC/PDIP  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
CS  
SO  
NC  
RESET/RESET  
VCC  
1
8
7
6
5
CS  
SO  
NC  
NC  
NC  
SCK  
SI  
2
3
4
RESET/RESET  
NC  
NC  
X5328/29  
X5328/29  
WP  
SCK  
SI  
VCC  
WP  
VSS  
8
FN8132.1  
4
October 17, 2005  
X5328, X5329  
PRINCIPLES OF OPERATION  
Power-On Reset  
Figure 1. Set V  
Voltage  
TRIP  
CS  
Application of power to the X5328/X5329 activates a  
Power-on Reset Circuit. This circuit goes active at  
about 1V and pulls the RESET/RESET pin active. This  
signal prevents the system microprocessor from start-  
ing to operate with insufficient voltage or prior to stabi-  
VP  
SCK  
VP  
lization of the oscillator. When V exceeds the device  
CC  
SI  
V
value for 200ms (nominal) the circuit releases  
TRIP  
RESET/RESET, allowing the processor to begin exe-  
cuting code.  
Resetting the V  
Voltage  
TRIP  
Low Voltage Monitoring  
This procedure sets the V  
to a “native” voltage  
TRIP  
level. For example, if the current V  
is 4.4V and the  
During operation, the X5328/X5329 monitors the V  
TRIP  
CC  
V
is reset, the new V  
is something less than  
level and asserts RESET/RESET if supply voltage  
TRIP  
TRIP  
1.7V. This procedure must be used to set the voltage  
to a lower value.  
falls below  
a
preset minimum  
V
.
The  
TRIP  
RESET/RESET signal prevents the microprocessor  
from operating in a power fail or brownout condition.  
The RESET/RESET signal remains active until the  
voltage drops below 1V. It also remains active until  
To reset the V  
voltage, apply a voltage between  
TRIP  
2.7 and 5.5V to the V  
pin. Tie the CS pin, the WP  
CC  
pin, and the SCK pin HIGH. RESET/RESET and SO  
pins are left unconnected. Then apply the program-  
V
returns and exceeds V  
for 200ms.  
CC  
TRIP  
ming voltage V to the SI pin ONLY and pulse CS  
P
V
Threshold Reset Procedure  
CC  
LOW then HIGH. Remove V and the sequence is  
P
The X5328/X5329 has a standard V  
(V  
threshold  
CC  
complete.  
) voltage. This value will not change over normal  
TRIP  
operating and storage conditions. However, in applica-  
tions where the standard V is not exactly right, or  
Figure 2. Reset V  
Voltage  
TRIP  
TRIP  
for higher precision in the  
V
value, the  
TRIP  
X5328/X5329 threshold may be adjusted.  
CS  
Setting the V Voltage  
TRIP  
VCC  
This procedure sets the V  
to a higher voltage  
SCK  
TRIP  
value. For example, if the current V  
is 4.4V and  
TRIP  
the new V  
is 4.6V, this procedure directly makes  
VP  
TRIP  
the change. If the new setting is lower than the current  
setting, then it is necessary to reset the trip point  
before setting the new value.  
SI  
To set the new V  
voltage, apply the desired V  
TRIP  
TRIP  
threshold to the V pin and tie the CS pin and the WP  
CC  
pin HIGH. RESET/RESET and SO pins are left uncon-  
nected. Then apply the programming voltage V to  
P
both SCK and SI and pulse CS LOW then HIGH.  
Remove V and the sequence is complete.  
P
FN8132.1  
5
October 17, 2005  
X5328, X5329  
Figure 3. V  
Programming Sequence Flow Chart  
TRIP  
VTRIP Programming  
Execute  
Reset VTRIP  
Sequence  
Set VCC = VCC Applied =  
Desired VTRIP  
Execute  
Set VTRIP  
Sequence  
New VCC Applied =  
Old VCC Applied + Error  
New VCC Applied =  
Old VCC Applied - Error  
Execute  
Reset VTRIP  
Sequence  
Apply 5V to VCC  
Decrement VCC  
(VCC = VCC - 10mV)  
NO  
RESET pin  
goes active?  
YES  
Error Emax  
Error > Emax  
Measured VTRIP  
Desired VTRIP  
-
Error < Emax  
DONE  
Emax = Maximum Desired Error  
Figure 4. Sample V  
Reset Circuit  
TRIP  
VP  
4.7K  
NC  
NC  
4.7K  
RESET  
1
2
3
4
8
7
6
5
NC  
X5328/29  
VTRIP  
Adj.  
+
Program  
Reset VTRIP  
Test VTRIP  
Set VTRIP  
10K  
10K  
FN8132.1  
6
October 17, 2005  
X5328, X5329  
SPI SERIAL MEMORY  
Write Enable Latch  
The device contains a Write Enable Latch. This latch  
must be SET before a Write Operation is initiated. The  
WREN instruction will set the latch and the WRDI  
instruction will reset the latch (Figure 3). This latch is  
automatically reset upon a power-up condition and  
after the completion of a valid Write Cycle.  
The memory portion of the device is a CMOS Serial  
EEPROM array with Intersil’s block lock protection. The  
array is internally organized as x 8. The device features a  
Serial Peripheral Interface (SPI) and software protocol  
allowing operation on a simple four-wire bus.  
The device utilizes Intersil’s proprietary Direct Write  
cell, providing a minimum endurance of 100,000  
cycles and a minimum data retention of 100 years.  
Status Register  
The RDSR instruction provides access to the Status  
Register. The Status Register may be read at any  
time, even during a Write Cycle. The Status Register  
is formatted as follows:  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families. It contains an 8-bit  
instruction register that is accessed via the SI input,  
with data being clocked in on the rising edge of SCK.  
CS must be LOW during the entire operation.  
7
6
5
4
3
2
1
0
WPEN FLB  
1*  
1* BL1 BL0 WEL WIP  
*Bits (5,4) should be written as ‘1’ only.  
All instructions (Table 1), addresses and data are  
transferred MSB first. Data input on the SI line is  
latched on the first rising edge of SCK after CS goes  
LOW. Data is output on the SO line by the falling edge  
of SCK. SCK is static, allowing the user to stop the  
clock and then start it again to resume operations  
where left off.  
The Write-In-Progress (WIP) bit is a volatile, read only  
bit and indicates whether the device is busy with an  
internal nonvolatile write operation. The WIP bit is read  
using the RDSR instruction. When set to a “1”, a non-  
volatile write operation is in progress. When set to a  
“0”, no write is in progress.  
Table 1. Instruction Set  
Instruction Name Instruction Format*  
Operation  
WREN  
SFLB  
0000 0110  
0000 0000  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Set the Write Enable Latch (Enable Write Operations)  
Set Flag Bit  
WRDI/RFLB  
RSDR  
Reset the Write Enable Latch/Reset Flag Bit  
Read Status Register  
WRSR  
Write Status Register (Block Lock, WPEN & Flag Bits)  
Read Data from Memory Array Beginning at Selected Address  
Write Data to Memory Array Beginning at Selected Address  
READ  
WRITE  
Note: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
Table 2. Block Protect Matrix  
WREN CMD Status Register Device Pin  
Block  
Block  
Status Register  
WPEN, BL0, BL1,  
WD0, WD1  
WEL  
WPEN  
WP#  
Protected Block  
Protected  
Unprotected Block  
Protected  
0
1
1
1
X
1
0
X
X
0
X
1
Protected  
Protected  
Writable  
Writable  
Protected  
Writable  
Protected  
Writable  
Protected  
Writable  
FN8132.1  
October 17, 2005  
7
X5328, X5329  
The Write Enable Latch (WEL) bit indicates the Status  
function (Table 2). WP is LOW and WPEN bit pro-  
grammed HIGH disables all Status Register Write  
Operations.  
of the Write Enable Latch. When WEL = 1, the latch is  
set HIGH and when WEL = 0 the latch is reset LOW.  
The WEL bit is a volatile, read only bit. It can be set by  
the WREN instruction and can be reset by the WRDS  
instruction.  
In Circuit Programmable ROM Mode  
This mechanism protects the block lock and Watchdog  
bits from inadvertent corruption.  
The block lock bits, BL0 and BL1, set the level of block  
lock protection. These nonvolatile bits are pro-  
grammed using the WRSR instruction and allow the  
user to protect one quarter, one half, all or none of the  
EEPROM array. Any portion of the array that is block  
lock protected can be read but not written. It will  
remain protected until the BL bits are altered to disable  
block lock protection of that portion of memory.  
In the locked state (Programmable ROM Mode) the WP  
pin is LOW and the nonvolatile bit WPEN is “1”. This  
mode disables nonvolatile writes to the device’s Status  
Register.  
Setting the WP pin LOW while WPEN is a “1” while an  
internal write cycle to the Status Register is in progress  
will not stop this write operation, but the operation dis-  
ables subsequent write attempts to the Status Register.  
Status Register Bits Array Addresses Protected  
When WP is HIGH, all functions, including nonvolatile  
writes to the Status Register operate normally.  
BL1  
BL0  
X5328/X5329  
None  
0
0
1
1
0
1
0
1
Setting the WPEN bit in the Status Register to “0”  
blocks the WP pin function, allowing writes to the Status  
Register when WP is HIGH or LOW. Setting the WPEN  
bit to “1” while the WP pin is LOW activates the Pro-  
grammable ROM mode, thus requiring a change in the  
WP pin prior to subsequent Status Register changes.  
This allows manufacturing to install the device in a sys-  
tem with WP pin grounded and still be able to program  
the Status Register. Manufacturing can then load Con-  
figuration data, manufacturing time and other parame-  
ters into the EEPROM, then set the portion of memory  
to be protected by setting the block lock bits, and finally  
set the “OTP mode” by setting the WPEN bit. Data  
changes now require a hardware change.  
$0C00-$0FFF  
$0800-$0FFF  
$0000-$0FFF  
The FLAG bit shows the status of a volatile latch that  
can be set and reset by the system using the SFLB and  
RFLB instructions. The Flag bit is automatically reset  
upon power-up.  
The nonvolatile WPEN bit is programmed using the  
WRSR instruction. This bit works in conjunction with the  
WP pin to provide an In-Circuit Programmable ROM  
Figure 5. Read EEPROM Array Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30  
SCK  
SI  
Instruction  
16 Bit Address  
15 14 13  
3
2
1
0
Data Out  
High Impedance  
7
6
5
4
3
2
1
0
SO  
MSB  
FN8132.1  
8
October 17, 2005  
X5328, X5329  
Read Sequence  
For the Page Write Operation (byte or page write) to  
be completed, CS can only be brought HIGH after bit 0  
of the last data byte to be written is clocked in. If it is  
brought HIGH at any other time, the write operation  
will not be completed (Figure 4).  
When reading from the EEPROM memory array, CS is  
first pulled low to select the device. The 8-bit READ  
instruction is transmitted to the device, followed by the  
16-bit address. After the READ opcode and address  
are sent, the data stored in the memory at the selected  
address is shifted out on the SO line. The data stored  
in memory at the next address can be read sequen-  
tially by continuing to provide clock pulses. The  
address is automatically incremented to the next  
higher address after each byte of data is shifted out.  
When the highest address is reached, the address  
counter rolls over to address $0000 allowing the read  
cycle to be continued indefinitely. The read operation  
is terminated by taking CS high. Refer to the Read  
EEPROM Array Sequence (Figure 1).  
To write to the Status Register, the WRSR instruction  
is followed by the data to be written (Figure 5). Data  
bits 0 and 1 must be “0”.  
While the write is in progress following a Status Regis-  
ter or EEPROM Sequence, the Status Register may  
be read to check the WIP bit. During this time the WIP  
bit will be high.  
OPERATIONAL NOTES  
The device powers-up in the following state:  
– The device is in the low power standby state.  
To read the Status Register, the CS line is first pulled  
low to select the device followed by the 8-bit RDSR  
instruction. After the RDSR opcode is sent, the contents  
of the Status Register are shifted out on the SO line.  
Refer to the Read Status Register Sequence (Figure 2).  
– A HIGH to LOW transition on CS is required to enter  
an active state and receive an instruction.  
– SO pin is high impedance.  
– The Write Enable Latch is reset.  
– The Flag Bit is reset.  
Write Sequence  
Prior to any attempt to write data into the device, the  
“Write Enable” Latch (WEL) must first be set by issu-  
ing the WREN instruction (Figure 3). CS is first taken  
LOW, then the WREN instruction is clocked into the  
device. After all eight bits of the instruction are trans-  
mitted, CS must then be taken HIGH. If the user con-  
tinues the Write Operation without taking CS HIGH  
after issuing the WREN instruction, the Write Opera-  
tion will be ignored.  
– Reset Signal is active for t  
.
PURST  
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
– A WREN instruction must be issued to set the Write  
Enable Latch.  
– CS must come HIGH at the proper clock count in  
order to start a nonvolatile write cycle.  
To write data to the EEPROM memory array, the user  
then issues the WRITE instruction followed by the  
16-bit address and then the data to be written. Any  
unused address bits are specified to be “0’s”. The  
WRITE operation minimally takes 32 clocks. CS must  
go low and remain low for the duration of the opera-  
tion. If the address counter reaches the end of a page  
and the clock continues, the counter will roll back to  
the first address of the page and overwrite any data  
that may have been previously written.  
FN8132.1  
9
October 17, 2005  
X5328, X5329  
Figure 6. Read Status Register Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SCK  
Instruction  
SI  
Data Out  
High Impedance  
SO  
7
6
5
4
3
2
1
0
MSB  
Figure 7. Write Enable Latch Sequence  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
High Impedance  
SO  
Figure 8. Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
Instruction  
16 Bit Address  
15 14 13  
Data Byte 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FN8132.1  
10  
October 17, 2005  
X5328, X5329  
Figure 9. Status Register Write Sequence  
CS  
0
1
2
3
4
5
6
7
8
7
9
6
10 11 12 13 14 15  
SCK  
Instruction  
Data Byte  
5
4
3
2
1
0
SI  
High Impedance  
SO  
SYMBOL TABLE  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8132.1  
11  
October 17, 2005  
X5328, X5329  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias.................... -65°C to+135°C  
Storage temperature ........................ -65°C to+150°C  
Voltage on any pin with  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those  
listed in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating con-  
ditions for extended periods may affect device reliability.  
respect to V ...................................... -1.0V to +7V  
SS  
D.C. output current...............................................5mA  
Lead temperature (soldering, 10s) .................... 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
70°C  
Voltage Option  
-2.7 or -2.7A  
Supply Voltage  
2.7V to 5.5V  
4.5V-5.5V  
-40°C  
+85°C  
BLank or -4.5A  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
ICC1  
VCC Write Current (Active)  
5
mA SCK = VCC x 0.1/VCC x 0.9 @ 2MHz,  
SO = Open  
ICC2  
ISB  
VCC Read Current (Active)  
VCC Standby Current  
0.4  
1
mA SCK = VCC x 0.1/VCC x 0.9 @ 2MHz,  
SO = Open  
µA  
CS = VCC, VIN = VSS or VCC  
VCC = 5.5V  
,
ILI  
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
0.1  
0.1  
10  
10  
µA  
µA  
V
VIN = VSS to VCC  
ILO  
VOUT = VSS to VCC  
(1)  
VIL  
-0.5  
VCC x 0.3  
VCC + 0.5  
0.4  
(1)  
VIH  
Input HIGH Voltage  
VCC x 0.7  
V
VOL1  
VOL2  
VOL3  
VOH1  
VOH2  
VOH3  
VOLS  
Output LOW Voltage  
Output LOW Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Reset Output LOW Voltage  
V
VCC > 3.3V, IOL = 2.1mA  
0.4  
V
2V < VCC 3.3V, IOL = 1mA  
VCC 2V, IOL = 0.5mA  
0.4  
V
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
V
VCC > 3.3V, IOH = -1.0mA  
2V < VCC 3.3V, IOH = -0.4mA  
VCC 2V, IOH = -0.25mA  
V
V
0.4  
V
IOL = 1mA  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Test  
Max.  
Unit  
Conditions  
VOUT = 0V  
VIN = 0V  
(2)  
COUT  
Output Capacitance (SO, RESET, RESET)  
Input Capacitance (SCK, SI, CS, WP)  
8
6
pF  
pF  
(2)  
CIN  
Notes: (1) VIL min. and VIH max. are for reference only and are not tested.  
(2) This parameter is periodically sampled and not 100% tested.  
FN8132.1  
October 17, 2005  
12  
X5328, X5329  
EQUIVALENT A.C. LOAD CIRCUIT AT 5V V  
A.C. TEST CONDITIONS  
CC  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
V
CC x0.5  
4.6kΩ  
2.06kΩ  
Output  
3.03kΩ  
RESET/RESET  
30pF  
100pF  
A.C. CHARACTERISTICS (Over recommended operating conditions, unless otherwise specified)  
Serial Input Timing  
2.7-5.5V  
Symbol  
fSCK  
tCYC  
tLEAD  
tLAG  
tWH  
Parameter  
Min.  
0
Max.  
Unit  
MHz  
ns  
Clock Frequency  
Cycle Time  
2
500  
250  
250  
200  
250  
50  
CS Lead Time  
CS Lag Time  
ns  
ns  
Clock HIGH Time  
Clock LOW Time  
Data Setup Time  
Data Hold Time  
Input Rise Time  
Input Fall Time  
CS Deselect Time  
Write Cycle Time  
ns  
tWL  
ns  
tSU  
ns  
tH  
50  
ns  
(3)  
tRI  
100  
100  
ns  
(3)  
tFI  
ns  
tCS  
500  
ns  
(4)  
tWC  
10  
ms  
FN8132.1  
October 17, 2005  
13  
X5328, X5329  
Serial Input Timing  
tCS  
CS  
tLEAD  
tLAG  
SCK  
tSU  
tH  
tRI  
tFI  
SI  
MSB IN  
LSB IN  
High Impedance  
SO  
Serial Output Timing  
Symbol  
2.7-5.5V  
Max.  
Parameter  
Min.  
Unit  
MHz  
ns  
fSCK  
tDIS  
tV  
Clock Frequency  
Output Disable Time  
0
2
250  
250  
Output Valid from Clock Low  
Output Hold Time  
ns  
tHO  
0
ns  
(3)  
tRO  
Output Rise Time  
100  
100  
ns  
(3)  
tFO  
Output Fall Time  
ns  
Notes: (3) This parameter is periodically sampled and not 100% tested.  
(4) tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile  
write cycle.  
Serial Output Timing  
CS  
SCK  
SO  
tCYC  
tWH  
tLAG  
tV  
tHO  
tWL  
tDIS  
MSB Out  
MSB–1 Out  
LSB Out  
ADDR  
LSB IN  
SI  
FN8132.1  
14  
October 17, 2005  
X5328, X5329  
Power-Up and Power-Down Timing  
VTRIP  
VTRIP  
VCC  
tPURST  
0 Volts  
tF  
tRPD  
tPURST  
tR  
RESET (X5328)  
RESET (X5329)  
RESET Output Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VTRIP  
Reset Trip Point Voltage, X5328-4.5A, X5328-4.5A  
Reset Trip Point Voltage, X5328, X5329  
Reset Trip Point Voltage, X5328-2.7A, X5329-2.7A  
Reset Trip Point Voltage, X5328-2.7, X5329-2.7  
4.5  
4.63  
4.38  
2.93  
2.63  
4.75  
4.5  
3.0  
4.25  
2.85  
2.55  
V
2.7  
VTH  
VTRIP Hysteresis (HIGH to LOW vs. LOW to HIGH VTRIP voltage)  
Power-up Reset Time Out  
VCC Detect to Reset/Output  
VCC Fall Time  
20  
mV  
ms  
ns  
µs  
µs  
V
tPURST  
100  
200  
280  
500  
(5)  
tRPD  
(5)  
tF  
100  
100  
1
(5)  
tR  
VCC Rise Time  
VRVALID  
Reset Valid VCC  
Note: (5) This parameter is periodically sampled and not 100% tested.  
FN8132.1  
15  
October 17, 2005  
X5328, X5329  
V
Set Conditions  
TRIP  
tTHD  
VCC  
VTRIP  
tTSU  
tRP  
tP  
tVPH  
tVPS  
CS  
tVPO  
tVPH  
tVPS  
VP  
SCK  
SI  
VP  
tVPO  
V
Reset Conditions  
TRIP  
VCC  
*
tRP  
tP  
tVP1  
tVPS  
CS  
tVPS  
tVPO  
tVPH  
VCC  
SCK  
SI  
VP  
tVPO  
*VCC > Programmed VTRIP  
FN8132.1  
16  
October 17, 2005  
X5328, X5329  
V
Programming Specifications V = 1.7-5.5V; Temperature = 0°C to 70°C  
CC  
TRIP  
Parameter  
tVPS  
tVPH  
tP  
Description  
SCK VTRIP Program Voltage Setup time  
Min. Max. Unit  
1
1
µs  
µs  
µs  
µs  
ms  
ms  
ms  
ms  
V
SCK VTRIP Program Voltage Hold time  
VTRIP Program Pulse Width  
1
tTSU  
tTHD  
tWC  
VTRIP Level Setup time  
10  
10  
VTRIP Level Hold (stable) time  
VTRIP Write Cycle Time  
10  
tRP  
VTRIP Program Cycle Recovery Period (Between successive programming cycles)  
SCK VTRIP Program Voltage Off time before next cycle  
Programming Voltage  
10  
0
tVPO  
VP  
VTRAN  
Vta1  
15  
1.7  
18  
VTRIP Programed Voltage Range  
5.0  
V
Initial VTRIP Program Voltage accuracy (VCC applied-VTRIP) (Programmed at 25°C.)  
-0.1 +0.4  
V
Vta2  
Subsequent VTRIP Program Voltage accuracy [(VCC applied-Vta1)-VTRIP  
(Programmed at 25°C.)  
]
-25  
-25  
-25  
+25  
+25  
+25  
mV  
Vtr  
VTRIP Program Voltage repeatability (Successive program operations.) (programmed at  
25°C)  
mV  
mV  
Vtv  
VTRIP Program variation after programming (0-75°C). (programmed at 25°C)  
VTRIP programming parameters are periodically sampled and are not 100% tested.  
FN8132.1  
17  
October 17, 2005  
X5328, X5329  
TYPICAL PERFORMANCE  
Supply Current vs. Temperature (I  
t
vs. Temperature  
V
)
SB  
PURST  
CC  
205  
200  
195  
190  
185  
180  
175  
170  
165  
2
(VCC = 3V, 5V)  
1
0
160  
-40  
25  
Degrees °C  
90  
-40C  
25C  
Temp°C  
90C  
V
vs. Temperature (programmed at 25°C)  
TRIP  
5.025  
V
V
TRIP = 5V  
5.000  
4.975  
3.525  
3.500  
TRIP = 3.5V  
3.475  
2.525  
2.500  
2.475  
VTRIP = 2.5V  
0
25  
85  
Temperature  
FN8132.1  
October 17, 2005  
18  
X5328, X5329  
PACKAGING INFORMATION  
8-Lead Plastic Dual In-Line Package Type P  
0.430 (10.92)  
0.360 (9.14)  
0.260 (6.60)  
0.240 (6.10)  
Pin 1 Index  
Pin 1  
0.060 (1.52)  
0.020 (0.51)  
0.300  
(7.62) Ref.  
Half Shoulder Width On  
All End Pins Optional  
0.145 (3.68)  
0.128 (3.25)  
Seating  
Plane  
0.025 (0.64)  
0.015 (0.38)  
0.065 (1.65)  
0.150 (3.81)  
0.125 (3.18)  
0.045 (1.14)  
0.110 (2.79)  
0.090 (2.29)  
0.020 (0.51)  
0.016 (0.41)  
0.325 (8.25)  
0.300 (7.62)  
.073 (1.84)  
Max.  
0°  
Typ. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
FN8132.1  
19  
October 17, 2005  
X5328, X5329  
PACKAGING INFORMATION  
8-Lead Plastic Small Outline Gull Wing Package Type S  
0.150 (3.80) 0.228 (5.80)  
0.158 (4.00) 0.244 (6.20)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.050 (1.27)  
0.010 (0.25)  
0.010 (0.25)  
0.020 (0.50)  
0.050" Typical  
X 45°  
0.050"  
Typical  
0° - 8°  
0.0075 (0.19)  
0.010 (0.25)  
0.250"  
0.016 (0.410)  
0.037 (0.937)  
0.030"  
Typical  
8 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8132.1  
20  
October 17, 2005  
X5328, X5329  
PACKAGING INFORMATION  
14-Lead Plastic Small Outline Gullwing Package Type S  
0.150 (3.80) 0.228 (5.80)  
0.158 (4.00) 0.244 (6.20)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.020 (0.51)  
0.336 (8.55)  
0.345 (8.75)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.10)  
0.010 (0.25)  
0.050 (1.27)  
0.050"Typical  
0.010 (0.25)  
X 45°  
0.020 (0.50)  
0.050"Typical  
0° - 8°  
0.250"  
0.0075 (0.19)  
0.010 (0.25)  
0.016 (0.410)  
0.037 (0.937)  
0.030"Typical  
14 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8132.1  
21  
October 17, 2005  

相关型号:

X5328V14ZT1

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO14, ROHS COMPLIANT, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5329

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329P

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329P-2.7A

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329P-4.5A

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PI

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PI-2.7A

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PI-4.5A

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PIZ

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PIZ

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5329PIZ-2.7A

CPU Supervisor with 32Kbit SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X5329PIZ-2.7A

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS