X9251UV24Z-2.7T1 [RENESAS]

QUAD 50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 256 POSITIONS, PDSO24, 4.40 MM, ROHS COMPLIANT, TSSOP-24;
X9251UV24Z-2.7T1
型号: X9251UV24Z-2.7T1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

QUAD 50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 256 POSITIONS, PDSO24, 4.40 MM, ROHS COMPLIANT, TSSOP-24

光电二极管
文件: 总20页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X9251  
®
Single Supply/Low Power/256-Tap/SPI Bus  
Data Sheet  
April 13, 2007  
FN8166.5  
Quad Digitally-Controlled (XDCP™)  
Potentiometer  
Features  
• Four potentiometers in one package  
The X9251 integrates four digitally controlled potentio-  
meters (XDCP) on a monolithic CMOS integrated circuit.  
• 256 resistor taps–0.4% resolution  
• SPI Serial Interface for write, read, and transfer operations  
of the potentiometer  
The digitally controlled potentiometers are imple-mented  
with a combination of resistor elements and CMOS switches.  
The position of the wipers are controlled by the user through  
the SPI bus interface. Each potentiometer has associated  
with it a volatile Wiper Counter Register (WCR) and four  
non-volatile Data Registers that can be directly written to and  
read by the user. The content of the WCR controls the  
position of the wiper. At power-up, the device recalls the  
content of the default Data Registers of each DCP (DR00,  
DR10, DR20, and DR30) to the corresponding WCR.  
• Wiper resistance: 100Ω typical @ V  
CC  
= 5V  
• 4 Non-volatile data registers for each  
potentiometer  
• Non-volatile storage of multiple wiper positions  
• Standby current <5µA max  
• V : 2.7V to 5.5V Operation  
CC  
• 50kΩ, 100kΩ versions of total resistance  
• 100 year data retention  
The XDCP can be used as a three-terminal potentiometer or  
as a two terminal variable resistor in a wide variety of  
applications including control, parameter adjustments, and  
signal processing.  
• Single supply version of X9250  
• Endurance: 100,000 data changes per bit per register  
• 24 Ld SOIC, 24 Ld TSSOP  
• Low power CMOS  
• Pb-free plus anneal available (RoHS compliant)  
Functional Diagram  
R
R
H3  
R
R
H2  
V
H1  
H0  
CC  
HOLD  
DCP1  
DCP3  
DCP2  
DCP0  
WCR1  
DR10  
DR11  
DR12  
DR13  
WCR3  
DR30  
DR31  
DR32  
DR33  
WCR2  
DR20  
DR21  
DR22  
DR23  
WCR0  
DR00  
DR01  
DR02  
DR03  
A1  
A0  
SO  
SI  
SPI  
Interface  
POWER UP,  
INTERFACE  
CONTROL  
AND  
STATUS  
SCK  
CS  
V
R
R
L3  
R
SS  
R
R
R
W3  
R
WP  
R
W0  
L1  
L2  
L0  
W1  
W2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
XDCP is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005-2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
X9251  
Ordering Information  
POTENTIOMENTER  
ORGANIZATION  
(kΩ)  
PART  
MARKING  
V
LIMITS  
(V)  
TEMP RANGE  
(°C)  
PKG.  
DWG. #  
CC  
PART NUMBER  
X9251US24  
PACKAGE  
X9251US  
5 ±10%  
50  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil)  
M24.3  
X9251US24Z (Note)  
X9251UV24  
X9251US Z  
X9251UV  
24 Ld SOIC (300 mil) (Pb-free) M24.3  
0 to +70  
24 Ld TSSOP (4.4mm)  
MDP0044  
X9251UV24Z (Note)  
X9251TS24  
X9251UV Z  
X9251TS  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
100  
0 to +70  
24 Ld SOIC (300 mil)  
24 Ld SOIC (300 mil) (Pb-free) M24.3  
24 Ld SOIC (300 mil) M24.3  
24 Ld SOIC (300 mil) (Pb-free) M24.3  
M24.3  
X9251TS24Z (Note)  
X9251TS24I  
X9251TS Z  
X9251TS I  
X9251TS ZI  
X9251TV I  
X9251TV ZI  
X9251US G  
0 to +70  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
0 to +70  
X9251TS24IZ (Note)  
X9251TV24I  
24 Ld TSSOP (4.4mm)  
MDP0044  
X9251TV24IZ (Note)  
X9251US24I-2.7  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
2.7 to 5.5  
50  
24 Ld SOIC (300 mil)  
M24.3  
X9251US24IZ-2.7 (Note) X9251US ZG  
X9251UV24-2.7 X9251UV F  
X9251UV24Z-2.7 (Note) X9251UV ZF  
X9251UV24I-2.7 X9251UV G  
X9251UV24IZ-2.7 (Note) X9251UV ZG  
X9251TS24-2.7 X9251TS F  
X9251TS24Z-2.7 (Note) X9251TS ZF  
X9251TV24-2.7 X9251TV F  
X9251TV24Z-2.7 (Note) X9251TV ZF  
X9251TV24I-2.7 X9251TV G  
24 Ld SOIC (300 mil) (Pb-free) M24.3  
24 Ld TSSOP (4.4mm)  
MDP0044  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
-40 to +85  
-40 to +85  
0 to +70  
24 Ld TSSOP (4.4mm)  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
24 Ld SOIC (300 mil) M24.3  
24 Ld SOIC (300 mil) (Pb-free) M24.3  
MDP0044  
100  
0 to +70  
0 to +70  
24 Ld TSSOP (4.4mm)  
MDP0044  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
-40 to +85  
-40 to +85  
24 Ld TSSOP (4.4mm)  
MDP0044  
X9251TV24IZ-2.7 (Note) X9251TV ZG  
*Add "T1" suffix for tape and reel.  
24 Ld TSSOP (4.4mm) (Pb-free) MDP0044  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8166.5  
April 13, 2007  
2
X9251  
Circuit Level Applications  
Pinout  
X9251  
• Vary the gain of a voltage amplifier  
(24 LD SOIC/TSSOP)  
TOP VIEW  
• Provide programmable dc reference voltages for  
comparators and detectors  
HOLD  
SCK  
SO  
A0  
1
24  
• Control the volume in audio circuits  
2
3
23  
22  
• Trim out the offset voltage error in a voltage amplifier  
circuit  
R
R
W3  
L2  
R
R
H3  
4
5
21  
20  
H2  
• Set the output voltage of a voltage regulator  
R
R
L3  
W2  
• Trim the resistance in Wheatstone bridge circuits  
NC  
NC  
6
7
19  
18  
X9251  
V
V
• Control the gain, characteristic frequency and  
Q-factor in filter circuits  
CC  
SS  
R
R
8
9
17  
16  
W1  
L0  
R
R
H0  
H1  
• Set the scale factor and zero point in sensor signal  
conditioning circuits  
R
R
W0  
10  
15  
14  
L1  
A1  
SI  
CS  
11  
12  
• Vary the frequency and duty cycle of timer ICs  
WP  
13  
• Vary the dc biasing of a pin diode attenuator in RF circuits  
• Provide a control variable (I, V, or R) in feedback  
circuits  
Pin Assignments  
System Level Applications  
• Adjust the contrast in LCD displays  
PIN  
(SOIC)  
SYMBOL  
FUNCTION  
1
2
SO  
A0  
Serial Data Output for SPI bus  
Device Address for SPI bus. (See Note 1)  
Wiper Terminal of DCP3  
High Terminal of DCP3  
• Control the power level of LED transmitters in  
communication systems  
3
R
• Set and regulate the DC biasing point in an RF power  
amplifier in wireless systems  
W3  
4
R
H3  
5
R
Low Terminal of DCP3  
• Control the gain in audio and home entertainment systems  
L3  
7
V
System Supply Voltage  
CC  
• Provide the variable DC bias for tuners in RF wireless  
systems  
8
R
Low Terminal of DCP0  
L0  
H0  
W0  
9
R
High Terminal of DCP0  
• Set the operating points in temperature control  
systems  
10  
11  
12  
13  
14  
15  
16  
17  
18  
20  
21  
22  
23  
24  
6, 19  
R
Wiper Terminal of DCP0  
SPI bus. Chip Select active low input  
Hardware Write Protect - active low  
Serial Data Input for SPI bus  
Device Address for SPI bus. (See Note 1)  
Low Terminal of DCP1  
CS  
WP  
SI  
• Control the operating point for sensors in industrial  
systems  
• Trim offset and gain errors in artificial intelligent  
systems  
A1  
R
L1  
H1  
W1  
R
High Terminal of DCP1  
R
Wiper Terminal of DCP1  
System Ground  
V
SS  
R
Wiper Terminal of DCP2  
High Terminal of DCP2  
W2  
R
H2  
R
Low Terminal of DCP2  
L2  
SCK  
HOLD  
NC  
Serial Clock for SPI bus  
Device select. Pauses the SPI serial bus.  
No Connect  
NOTE:  
1. A0 and A1 device address pins must be tied to a logic level.  
FN8166.5  
April 13, 2007  
3
X9251  
Supply Pins  
SYSTEM SUPPLY VOLTAGE (V ) AND SUPPLY  
Pin Descriptions  
Bus Interface Pins  
SERIAL OUTPUT (SO)  
CC  
GROUND (V  
)
SS  
The V  
CC  
pin is the system supply voltage. The V pin is  
SS  
SO is a serial data output pin. During a read cycle, data is  
shifted out on this pin. Data is clocked out by the falling edge  
of the serial clock.  
the system ground.  
Other Pins  
NO CONNECT  
SERIAL INPUT (SI)  
No connect pins should be left floating. This pins are  
used for Intersil manufacturing and testing purposes.  
SI is the serial data input pin. All opcodes, byte addresses  
and data to be written to the device registers are input on  
this pin. Data is latched by the rising edge of the serial clock.  
HARDWARE WRITE PROTECT INPUT (WP)  
SERIAL CLOCK (SCK)  
The WP pin when LOW prevents non-volatile writes to the  
Data Registers.  
The SCK input is used to clock data into and out of the  
X9251.  
Principles of Operation  
HOLD (HOLD)  
The X9251 is an integrated circuit incorporating four DCPs  
and their associated registers and counters, and a serial  
interface providing direct communication between a host  
and the potentiometers.  
HOLD is used in conjunction with the CS pin to select the  
device. Once the part is selected and a serial sequence is  
underway, HOLD may be used to pause the serial  
communication with the controller without resetting the serial  
sequence. To pause, HOLD must be brought LOW while  
SCK is LOW. To resume communication, HOLD is brought  
HIGH, again while SCK is LOW. If the pause feature is not  
used, HOLD should be held HIGH at all times.  
DCP Description  
Each DCP is implemented with a combination of resistor  
elements and CMOS switches. The physical ends of each  
DCP are equivalent to the fixed terminals of a mechanical  
potentiometer (R and R pins). The RW pin is an  
intermediate node, equivalent to the wiper terminal of a  
mechanical potentiometer.  
H
L
DEVICE ADDRESS (A1 AND A0)  
The address inputs are used to set the two least significant  
bits of the slave address. A match in the slave address serial  
data stream must be made with the address input in order to  
initiate communication with the X9251. Device pins A1 and  
A0 must be tied to a logic level which specifies the internal  
address of the device, see Figures 2, 3, 4, 5 and 6.  
The position of the wiper terminal within the DCP is  
controlled by an 8-bit volatile Wiper Counter Register  
(WCR).  
CHIP SELECT (CS)  
When CS is HIGH, the X9251 is deselected and the SO pin  
is at high impedance, and (unless an internal write cycle is  
underway) the device is in the standby state. CS LOW  
enables the X9251, placing it in the active power mode. It  
should be noted that after a power-up, a HIGH to LOW  
transition on CS is required prior to the start of any  
operation.  
Potentiometer Pins  
R , R  
H
L
The R and R pins are equivalent to the terminal  
H
L
connections on a mechanical potentiometer. Since there are  
4 potentiometers, there are 4 sets of R and R such that  
H
L
R
and R are the terminals of DCP0 and so on.  
L0  
H0  
R
W
The wiper pin are equivalent to the wiper terminal of a  
mechanical potentiometer. Since there are 4 potentiometers,  
there are 4 sets of R such that R  
is the terminals of  
W
W0  
DCP0 and so on.  
FN8166.5  
April 13, 2007  
4
X9251  
One of Four Potentiometers  
R
#: 0, 1, 2, or 3  
H
SERIAL  
BUS  
INPUT  
SERIAL DATA PATH  
FROM INTERFACE  
CIRCUITRY  
DR#0  
DR#2  
DR#1  
DR#3  
8
8
PARALLEL  
BUS  
INPUT  
COUNTER  
- - -  
DECODE  
DCP  
CORE  
R
W
WIPER  
COUNTER  
REGISTER  
(WCR#)  
INC/DEC  
LOGIC  
IF WCR = 00[H] then R is closet to R  
W
L
H
UP/DN  
IF WCR = FF[H] then R is closet to R  
UP/DN  
CLK  
W
MODIFIED SCK  
R
L
FIGURE 1. DETAILED POTENTIOMETER BLOCK DIAGRAM  
Power Up and Down Recommendations  
There are no restrictions on the power-up or power-down  
conditions of V and the voltages applied to the  
Data Registers (DR)  
Each of the four DCPs has four 8-bit non-volatile Data  
Registers. These can be read or written directly by the host.  
Data can also be transferred between any of the four Data  
Registers and the associated Wiper Counter Register. All  
operations changing data in one of the Data Registers is a  
non-volatile operation and takes a maximum of 10ms.  
CC  
potentiometer pins provided that V  
is always more  
CC  
positive than or equal to V , V , and V (i.e., V  
V , V ,  
H
L
W
CC  
H
L
V ). The V  
CC  
ramp rate specification is always in effect.  
W
Wiper Counter Register (WCR)  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can be  
used as regular memory locations for system parameters or  
user preference data.  
The X9251 contains four Wiper Counter Registers, one for  
each potentiometer. The Wiper Counter Register can be  
envisioned as a 8-bit parallel and serial load counter with its  
outputs decoded to select one of 256 wiper positions along  
its resistor array. The contents of the WCR can be altered in  
four ways: it may be written directly by the host via the Write  
Wiper Counter Register instruction (serial load); it may be  
written indirectly by transferring the contents of one of four  
associated data registers via the XFR Data Register  
instruction (parallel load); it can be modified one step at a  
time by the Increment/Decrement instruction (See  
Instruction section for more details). Finally, it is loaded with  
the contents of its Data Register zero (DR#0) upon  
power-up. (See Figure 1)  
Bits [7:0] are used to store one of the 256 wiper positions or  
data (0 ~ 255).  
Status Register (SR)  
This 1-bit Status Register is used to store the system status.  
WIP: Write In Progress status bit, read only.  
• When WIP = 1, indicates that high-voltage write cycle is in  
progress.  
• When WIP = 0, indicates that no high-voltage write cycle is  
in progress.  
The wiper counter register is a volatile register; that is, its  
contents are lost when the X9251 is powered-down.  
Although the register is automatically loaded with the value  
in DR#0 upon power-up, this may be different from the value  
present at power-down. Power-up guidelines are  
recommended to ensure proper loadings of the DR#0 value  
into the WCR#.  
FN8166.5  
April 13, 2007  
5
X9251  
TABLE 1. WIPER COUNTER REGISTER, WCR (8-bit), WCR[7:0]: USED TO STORE THE CURRENT WIPER POSITION (VOLATILE)  
WCR7  
(MSB)  
WCR6  
WCR5  
WCR4  
WCR3  
WCR2  
WCR1  
WCR0  
(LSB)  
TABLE 2. DATA REGISTER, DR (8-bit), DR[7:0]: USED TO STORE WIPER POSITIONS OR DATA (NON-VOLATILE)  
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
Bit 7  
Bit 0  
(MSB)  
(LSB)  
The least significant four bits of the Identification Byte are the  
Slave Address bits, AD[3:0]. For the X9251, A3 is 0, A2 is 0,  
A1 is the logic value at the input pin A1, and A0 is the logic  
value at the input pin A0. Only the device which Slave  
Address matches the incoming bits sent by the master  
executes the instruction. The A1 and A0 inputs can be actively  
Serial Interface  
The X9251 supports the SPI interface hardware conventions.  
The device is accessed via the SI input with data clocked in,  
on the rising SCK. CS must be LOW and the HOLD and WP  
pins must be HIGH during the entire operation.  
The SO and SI pins can be connected together, since they  
have three state outputs. This can help to reduce system pin  
count.  
driven by CMOS input signals or tied to V  
or V .  
SS  
CC  
Instruction Byte  
The next byte sent to the X9251 contains the instruction and  
register pointer information. The four most significant bits are  
used provide the instruction opcode (I[3:0]). The RB and RA  
bits point to one of the four Data Registers of each associated  
XDCP. The least two significant bits point to one of four Wiper  
Counter Registers or DCPs.The format is shown below in  
Table 4.  
Identification Byte  
The first byte sent to the X9251 from the host, following a CS  
going HIGH to LOW, is called the Identification Byte. The  
most significant four bits of the Identification Byte are a  
Device Type Identifier, ID[3:0]. For the X9251, this is fixed as  
0101 (refer to Table 3).  
TABLE 3. IDENTIFICATION BYTE FORMAT  
Device Type  
Identifier  
Slave Address  
ID3  
0
ID2  
1
ID1  
0
ID0  
1
A3  
0
A2  
0
A1  
A0  
Pin A1  
Pin A0  
Logic Value  
Logic Value  
(MSB)  
(LSB)  
TABLE 4. INSTRUCTION BYTE FORMAT  
Register  
Selection  
Instruction  
Opcode  
DCP Selection  
(WCR Selection)  
I3  
I2  
I1  
I0  
RB  
RA  
P1  
P0  
(LSB)  
(MSB)  
Data Register Selection  
REGISTER  
DR#0  
RB  
0
RA  
0
DR#1  
0
1
DR#2  
1
0
DR#3  
1
1
#: 0, 1, 2, or 3  
FN8166.5  
April 13, 2007  
6
X9251  
TABLE 5. INSTRUCTION SET  
INSTRUCTION SET  
INSTRUCTION  
I3  
I2  
I1  
I0  
RB  
RA  
P1  
P0  
OPERATION  
Read Wiper Counter Register  
1
0
0
1
0
0
1/0  
1/0 Read the contents of the Wiper Counter Register  
pointed to by P1 - P0  
Write Wiper Counter Register  
Read Data Register  
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
0
0
1/0  
1/0  
1/0  
1/0  
1/0 Write new value to the Wiper Counter  
Register pointed to by P1 - P0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0 Read the contents of the Data Register pointed to  
by P1 - P0 and RB - RA  
Write Data Register  
1/0 Write new value to the Data Register  
pointed to by P1 - P0 and RB - RA  
XFR Data Register to  
Wiper Counter Register  
1/0 Transfer the contents of the Data Register pointed to  
by P1 - P0 and RB - RA to its  
associated Wiper Counter Register  
XFR Wiper Counter  
Register to Data Register  
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
0
1/0  
1/0  
1/0  
0
1/0  
1/0  
1/0  
0
1/0  
0
1/0 Transfer the contents of the Wiper Counter Register  
pointed to by P1 - P0 to the Data Register pointed  
to by RB - RA  
Global XFR Data Registers to  
Wiper Counter Registers  
0
Transfer the contents of the Data Registers pointed  
to by RB - RA of all four pots to their respective  
Wiper Counter Registers  
Global XFR Wiper Counter  
Registers to Data Register  
0
0
Transfer the contents of both Wiper Counter  
Registers to their respective data Registers pointed  
to by RB - RA of all four pots  
Increment/Decrement  
Wiper Counter Register  
1/0  
1/0 Enable Increment/decrement of the Control Latch  
pointed to by P1 - P0  
NOTE: 1/0 = data is one or zero  
DRs; or it may occur globally, where the transfer occurs  
between all potentiometers and one associated register. The  
Read Status Register instruction is the only unique format  
(See Figure 5).  
Instructions  
Four of the nine instructions are three bytes in length. These  
instructions are:  
Read Wiper Counter Register – read the current wiper  
Four instructions require a two-byte sequence to complete.  
These instructions transfer data between the host and the  
X9251; either between the host and one of the data registers  
or directly between the host and the Wiper Counter Register.  
These instructions are:  
position of the selected potentiometer,  
Write Wiper Counter Register – change current wiper  
position of the selected potentiometer,  
Read Data Register – read the contents of the selected  
Data Register,  
XFR Data Register to Wiper Counter Register – This  
transfers the contents of one specified Data Register to  
the associated Wiper Counter Register.  
Write Data Register – write a new value to the selected  
Data Register,  
Read Status – this command returns the contents of the  
WIP bit which indicates if the internal write cycle is in  
progress.  
XFR Wiper Counter Register to Data Register – This  
transfers the contents of the specified Wiper Counter  
Register to the specified associated Data Register.  
The basic sequence of the three byte instructions is  
illustrated in Figure 3. These three-byte instructions  
exchange data between the WCR and one of the Data  
Registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the wiper to  
Global XFR Data Register to Wiper Counter  
Register – This transfers the contents of all specified Data  
Registers to the associated Wiper Counter Registers.  
Global XFR Wiper Counter Register to Data  
Register – This transfers the contents of all Wiper  
Counter Registers to the specified associated Data  
Registers.  
this action is delayed by t  
. A transfer from the WCR  
WRL  
(current wiper position), to a Data Register is a write to non-  
volatile memory and takes a minimum of t to complete.  
WR  
The transfer can occur between one of the four  
potentiometer’s WCR, and one of its associated registers,  
FN8166.5  
April 13, 2007  
7
X9251  
For each SCK clock pulse (t  
selected wiper moves one wiper position towards the R  
terminal. Similarly, for each SCK clock pulse while SI is  
) while SI is HIGH, the  
Increment/Decrement Command  
HIGH  
H
The final command is Increment/Decrement (See Figures 6  
and 7). The Increment/Decrement command is different from  
the other commands. Once the command is issued and the  
X9251 has responded with an Acknowledge, the master can  
clock the selected wiper up and/or down in one segment  
steps; thereby, providing a fine tuning capability to the host.  
LOW, the selected wiper moves one wiper position towards  
the R terminal. A detailed illustration of the sequence and  
L
timing for this operation are shown. See Instruction format  
for more details.  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
A1 A0  
ID3 ID2 ID1 ID0  
DEVICE ID  
RB RA  
P0  
I3  
I2  
I1  
I0  
P1  
REGISTER  
ADDRESS  
INSTRUCTION  
OPCODE  
DCP/WCR  
ADDRESS  
INTERNAL  
ADDRESS  
FIGURE 2. TWO-BYTE INSTRUCTION SEQUENCE  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
ID3 ID2 ID1 ID0  
P1  
P0  
A1 A0  
RB RA  
INSTRUCTION REGISTER  
I3 I2  
I0  
D7 D6 D5 D4 D3 D2 D1 D0  
DATA FOR WCR[7:0] OR DR[7:0]  
I1  
INTERNAL  
ADDRESS  
DCP/WCR  
ADDRESS  
DEVICE ID  
ADDRESS  
OPCODE  
FIGURE 3. THREE-BYTE INSTRUCTION SEQUENCE SPI INTERFACE; WRITE CASE  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
X
X
X
X
X
X
X
X
ID3 ID2 ID1 ID0  
DEVICE ID  
A1 A0  
I1  
RB RA P1 P0  
I2  
I3  
I0  
DON’T CARE  
INTERNAL  
ADDRESS  
DCP/WCR  
ADDRESS  
INSTRUCTION REGISTER  
OPCODE ADDRESS  
S0  
D7 D6 D5 D4 D3 D2 D1 D0  
WCR[7:0]  
OR  
DATA REGISTER BIT [7:0]  
FIGURE 4. THREE-BYTE INSTRUCTION SEQUENCE SPI INTERFACE, READ CASE  
FN8166.5  
April 13, 2007  
8
X9251  
CS  
SCK  
SI  
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
ID3 ID2 ID1 ID0  
I3  
A1 A0  
I2  
I1 I0  
RB RA  
P1 P0  
WIP  
INTERNAL  
ADDRESS  
INSTRUCTION  
OPCODE  
REGISTER  
ADDRESS  
POT/WCR  
ADDRESS  
STATUS  
BIT  
DEVICE ID  
FIGURE 5. THREE-BYTE INSTRUCTION SEQUENCE (READ STATUS REGISTER)  
CS  
SCK  
SI  
0
0
0
0
0
1
0
1
ID3 ID2 ID1 ID0  
DEVICE ID  
I2  
I3  
I0  
P1  
RB RA P0  
A1 A0  
I1  
I
N
C
I
N
C
D
E
C
I
D
E
C
n
N
C
n
INTERNAL  
ADDRESS  
INSTRUCTION  
OPCODE  
POT/WCR  
ADDRESS  
REGISTER  
ADDRESS  
1
2
1
FIGURE 6. INCREMENT/DECREMENT INSTRUCTION SEQUENCE  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
R
W
INC/DEC CMD ISSUED  
FIGURE 7. INCREMENT/DECREMENT TIMING SPEC  
FN8166.5  
April 13, 2007  
9
X9251  
Instruction Format  
Read Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Wiper Position  
(Sent by X9251 on SO)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
7
W
C
R
6
W
C
R
5
W
C
R
4
W
C
R
3
W
C
R
2
W
C
R
1
W
C
R
0
0
1
0
1
0
0
A1 A0  
1
0
0
1
0
0
0
0
Write Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W
C
R
7
W
C
R
6
W
C
R
5
W
C
R
4
W
C
R
3
W
C
R
2
W
C
R
1
W
C
R
0
0
1
0
1
0
0
A1 A0  
1
0
1
0
0
0
0
0
Read Data Register (DR)  
Device Type  
CS  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by X9271 on SO)  
CS  
Rising  
Edge  
Identifier  
Falling  
Edge  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
0
1
0
1
0
0
A1 A0  
1
0
1
1
RB RA P1 P0  
Write Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
Data Byte  
(Sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
0
1
0
1
0
0
A1 A0  
1
1
0
0
RB RA P1 P0  
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0  
0
0
0
1
RB RA  
0
0
NOTES:  
1. “A1 ~ A0”: stands for the device addresses sent by the master.  
2. WPx refers to wiper position data in the Counter Register  
3. “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
4. “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
FN8166.5  
April 13, 2007  
10  
X9251  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1
0
0
A1 A0  
1
0
0
0
RB RA  
0
0
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1
0
0
A1 A0  
1
1
1
0
RB RA  
0
0
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
DR and WCR  
Addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0  
1
1
0
1
RB RA  
0
0
Increment/Decrement Wiper Counter Register (WCR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Increment/Decrement  
(Sent by Master on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0  
0
0
1
0
X
X
0
0
I/D I/D  
.
.
.
.
I/D I/D  
Read Status Register (SR)  
Device Type  
Identifier  
Device  
Addresses  
Instruction  
Opcode  
WCR  
Addresses  
Data Byte  
(Sent by X9251 on SO)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
0
1
0
1
0
0
A1 A0  
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
WIP  
NOTES:  
1. “A1 ~ A0”: stands for the device addresses sent by the master.  
2. WPx refers to wiper position data in the Counter Register  
3. “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
4. “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
FN8166.5  
April 13, 2007  
11  
X9251  
Absolute Maximum Ratings  
Operating Conditions  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Commercial Temperature Range. . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial Temperature Range . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Voltage on SCK, CS, SI, SO, WP, HOLD, V  
Supply Voltage (V ) Limits (Note 4)  
X9251. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V ±10%  
X9251-2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +7V  
CC  
with respect to V  
SS  
ΔV = | (V - VL) | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
H
Lead Temperature (soldering, 10s) . . . . . . . . . . . . . . . . . . . .+300°C  
I
(10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
Wiper Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3mA  
Power Rating (each pot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50mW  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Analog Characteristics (Over the recommended operating conditions unless otherwise specified.)  
LIMITS  
SYMBOL  
PARAMETER  
End to End Resistance  
TEST CONDITIONS  
T version  
MIN  
TYP  
MAX  
UNITS  
R
R
100  
50  
kΩ  
kΩ  
%
TOTAL  
End to End Resistance  
End to End Resistance Tolerance  
Wiper Resistance  
U version  
TOTAL  
±20  
300  
R
Ω
W
V(V  
)
CC  
I
I
=
@ V  
@ V  
= 3V  
= 5V  
W
W
CC  
CC  
R
TOTAL  
220  
Ω
V(V  
)
CC  
=
R
TOTAL  
V
Voltage on any R or R Pin  
V
= 0V  
V
V
CC  
V
TERM  
H
L
SS  
SS  
Noise (Note 6)  
Resolution  
Ref: 1V  
-120  
0.4  
dBV/√Hz  
%
Absolute Linearity (Note 1)  
Relative Linearity (Note 2)  
Temperature Coefficient of R  
R
R
- R  
(Note 5)  
w(n)(expected)  
-1  
+1  
MI (Note 3)  
w(n)(actual)  
- [R  
] (Note 5)  
-0.6  
+0.6  
MI (Note 3)  
w(n + 1)  
w(n) + MI  
(Note 6)  
(Note 6)  
±300  
±20  
ppm/°C  
ppm/°C  
pF  
TOTAL  
Ratiometric Temp. Coefficient  
Potentiometer Capacitances  
C /C /C  
W
See Macro model, (Note 6)  
10/10/25  
H
L
NOTES:  
1. Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
2. Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
3. MI = RTOT/255 or (R - R )/255, single pot  
H
L
4. During power up V  
> V , V , and V .  
H L W  
CC  
5. n = 0, 1, 2, …,255; m = 0, 1, 2, …, 254.  
FN8166.5  
April 13, 2007  
12  
X9251  
DC Operating Characteristics (Over the recommended operating conditions unless otherwise specified.)  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN.  
MAX  
UNITS  
I
V
supply current  
f
= 2.5 MHz, SO = Open, V  
= 6V  
400  
μA  
CC1  
CC  
SCK  
Other Inputs = V  
CC  
(active)  
SS  
= 2.5MHz, SO = Open, V  
I
V
supply current  
f
= 6V  
1
5
3
mA  
CC2  
CC  
(non-volatile write)  
SCK  
Other Inputs = V  
CC  
SS  
I
V
current (standby)  
SCK = SI = V , Addr. = V ,  
SS  
CS = V  
μA  
SB  
CC  
SS  
= 6V  
CC  
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
V
V
= V to V  
10  
10  
μA  
μA  
V
LI  
IN  
SS  
CC  
CC  
I
= V to V  
LO  
OUT  
SS  
V
V
x 0.7  
IH  
CC  
V
V
x 0.3  
V
IL  
CC  
V
Output LOW voltage  
Output HIGH voltage  
Output HIGH voltage  
I
I
I
= 3mA  
0.4  
V
OL  
OH  
OH  
OL  
OH  
OH  
V
V
= -1mA, V  
+3V  
V
V
- 0.8  
- 0.4  
V
CC  
CC  
CC  
= -0.4mA, V  
+3V  
V
CC  
Endurance and Data Retention  
PARAMETER  
MIN  
100,000  
100  
UNITS  
Minimum endurance  
Data retention  
Data changes per bit per register  
years  
Capacitance  
SYMBOL  
TEST  
TEST CONDITIONS  
TYP  
UNITS  
C
(Note 6) Input/Output capacitance (SI)  
V
V
V
= 0V  
= 0V  
8
8
6
pF  
pF  
pF  
IN/OUT  
OUT  
OUT  
C
(Note 6)  
Output capacitance (SO)  
Input capacitance (A0, A1, CS, WP, HOLD, and SCK)  
OUT  
C
(Note 6)  
= 0V  
IN  
IN  
Power-Up Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t V  
(Note 6)  
V Power-up rate  
CC  
0.2  
V/ms  
ms  
r
CC  
t
t
(Note 7)  
(Note 7)  
Power-up to initiation of read operation  
Power-up to initiation of write operation  
1
PUR  
50  
ms  
PUW  
A.C. Test Conditions  
Input Pulse Levels  
V
x 0.1 to V  
x 0.5  
x 0.9  
CC  
CC  
Input rise and fall times  
Input and output timing level  
10ns  
V
CC  
NOTES:  
6. This parameter is not 100% tested  
7. t and t are the delays required from the time the (last) power supply (V -) is stable until the specific instruction can be issued. These  
PUR  
PUW  
CC  
parameters are periodically sampled and not 100% tested.  
FN8166.5  
April 13, 2007  
13  
X9251  
Equivalent A.C. Load Circuit  
V
CC  
SPICE Macromodel  
2kΩ  
R
TOTAL  
R
R
H
L
SO pin  
C
C
W
C
L
L
10pF  
2kΩ  
10pF  
25pF  
10pF  
R
W
AC TIMING  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
MHz  
ns  
f
SPI clock frequency  
SPI clock cycle rime  
SPI clock high rime  
SPI clock low time  
Lead time  
2
SCK  
t
500  
200  
200  
250  
250  
50  
CYC  
t
ns  
WH  
t
ns  
WL  
t
ns  
LEAD  
t
Lag time  
ns  
LAG  
t
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
ns  
SU  
t
50  
ns  
H
t
2
μs  
μs  
ns  
RI  
t
2
FI  
t
0
0
250  
200  
DIS  
t
SO output valid time  
ns  
V
t
SO output hold time  
ns  
HO  
t
(Note 6) SO output rise time  
(Note 6) SO output fall time  
100  
100  
ns  
RO  
t
ns  
FO  
t
HOLD time  
400  
100  
100  
ns  
HOLD  
t
HOLD setup time  
ns  
HSU  
t
HOLD hold time  
ns  
HH  
t
HOLD low to output in high Z  
HOLD high to output in low Z  
100  
100  
10  
ns  
HZ  
t
ns  
LZ  
T
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
ns  
I
t
CS deselect time  
WP, A0 setup time  
WP, A0 hold time  
2
0
0
μs  
ns  
CS  
t
WPASU  
t
ns  
WPAH  
High-Voltage Write Cycle Timing  
SYMBOL  
PARAMETER  
TYP  
MAX  
UNITS  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP Timing  
SYMBOL  
PARAMETER  
MIN  
5
MAX  
10  
UNITS  
μs  
t
(Note 6)  
Wiper response time after the third (last) power supply is stable  
WRPO  
t
(Note 6)  
Wiper response time after instruction issued (all load instructions)  
5
10  
μs  
WRL  
FN8166.5  
April 13, 2007  
14  
X9251  
Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from Low to  
High  
Will change  
from Low to  
High  
May change  
from High to  
Low  
Will change  
from High to  
Low  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
Timing Diagrams  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
t
t
t
t
RI  
FI  
t
t
WL  
SU  
WH  
H
...  
MSB  
LSB  
SI  
HIGH IMPEDANCE  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
FN8166.5  
April 13, 2007  
15  
X9251  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
...  
t
RO  
t
FO  
SO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
LSB  
MSB  
SI  
VWx  
HIGH IMPEDANCE  
SO  
Write Protect and Device Address Pins Timing  
(ANY INSTRUCTION)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
FN8166.5  
April 13, 2007  
16  
X9251  
Applications information  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
RW  
I
Three terminal  
Potentiometer;  
Variable voltage divider  
Two terminal Variable  
Resistor;  
Variable current  
Application Circuits  
NON INVERTING AMPLIFIER  
VOLTAGE REGULATOR  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
adj 2  
O
2
1
S
O
2
1
OFFSET VOLTAGE ADJUSTMENT  
COMPARATOR WITH HYSTERESIS  
R
R
2
1
V
+
S
V
V
S
O
100kΩ  
+
V
O
TL072  
R
R
1
2
10kΩ  
10kΩ  
+12V  
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
RL = {R /(R +R )} V (min)  
10kΩ  
-12V  
L
1
1
2
O
FN8166.5  
April 13, 2007  
17  
X9251  
Application Circuits (continued)  
ATTENUATOR  
FILTER  
C
V
+
S
R
V
R
R
2
O
1
+
R
V
O
V
S
3
R
2
R
4
R
= R = R = R = 10kΩ  
2 3 4  
1
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
INVERTING AMPLIFIER  
EQUIVALENT L-R CIRCUIT  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
FUNCTION GENERATOR  
C
R
R
1
2
+
+
R
R
}
A
}
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
FN8166.5  
April 13, 2007  
18  
X9251  
Small Outline Plastic Packages (SOIC)  
M24.3 (JEDEC MS-013-AD ISSUE C)  
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.020  
-
0.30  
-
1
2
3
L
0.51  
9
SEATING PLANE  
A
0.0091  
0.5985  
0.2914  
0.0125  
0.32  
-
-A-  
0.6141 15.20  
15.60  
7.60  
3
h x 45°  
D
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
α
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
24  
24  
7
0°  
8°  
0°  
8°  
-
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
FN8166.5  
April 13, 2007  
19  
X9251  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
MILLIMETERS  
N
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
0.20 C B A  
2X  
1
(N/2)  
c
N/2 LEAD TIPS  
B
D
TOP VIEW  
E
Basic  
E1  
e
±0.10  
Basic  
0.05  
H
e
L
±0.15  
C
L1  
Reference  
Rev. F 2/07  
SEATING  
PLANE  
NOTES:  
0.10 M C A B  
b
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEE DETAIL “X”  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8166.5  
April 13, 2007  
20  

相关型号:

X9251UV24ZT1

QUAD 50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 256 POSITIONS, PDSO24, 4.40 MM, ROHS COMPLIANT, TSSOP-24
RENESAS

X9251_07

Quad Digitally-Controlled (XDCP⑩) Potentiometer
INTERSIL

X9252

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252

Quad Digitally-Controlled (XDCP) potentiometer
XICOR

X9252TS24I-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252TS24IZ-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252TV24-2.7

Quad Digitally-Controlled (XDCP) potentiometer
XICOR

X9252TV24I-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252TV24I-2.7

Quad Digitally-Controlled (XDCP) potentiometer
XICOR

X9252TV24IZ-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252US24I-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL

X9252US24IZ-2.7

Low Power + Quad 256-Tap + 2-Wire Bus + Up/Down Interface
INTERSIL