X9421YV14Z-T1 [RENESAS]

2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO14, 4.40 MM, GREEN, PLASTIC, TSSOP-14;
X9421YV14Z-T1
型号: X9421YV14Z-T1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO14, 4.40 MM, GREEN, PLASTIC, TSSOP-14

光电二极管 转换器 电阻器
文件: 总20页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X9421  
®
Low Noise/Low Power/SPI Bus  
Sheet  
January 14, 2009  
FN8196.4  
Single Digitally Controlled (XDCP™)  
Potentiometer  
Features  
• Single Voltage Potentiometer  
• 64 Resistor Taps  
Description  
• SPI Serial Interface for Write, Read, and Transfer  
Operations of the Potentiometer  
The X9421 integrates a single digitally controlled  
potentiometer (XDCP) on a monolithic CMOS integrated  
circuit.  
• Wiper Resistance, 150Ω Typical at 5V  
• 4 Non-Volatile Data Registers  
The digital controlled potentiometer is implemented using 63  
resistive elements in a series array. Between each element  
are tap points connected to the wiper terminal through  
switches. The position of the wiper on the array is controlled  
by the user through the SPI bus interface. The potentiometer  
has associated with it a volatile Wiper Counter Register  
(WCR) and a four non-volatile Data Registers that can be  
directly written to and read by the user. The contents of the  
WCR controls the position of the wiper on the resistor array  
though the switches. Power-up recalls the contents of the  
default data register (DR0) to the WCR.  
• Non-Volatile Storage of Multiple Wiper Positions  
• Power-on Recall. Loads Saved Wiper Position on  
Power-up.  
• Standby Current < 5µA Max  
• V  
CC  
: 2.7V to 5.5V Operation  
• 2.5kΩ, 10kΩ End to End Resistance  
• 100 yr. Data Retention  
• Endurance: 100, 000 Data Changes per Bit per Register  
• 14 Ld TSSOP, 16 Ld SOIC  
The XDCP can be used as a three-terminal potentiometer or  
as a two terminal variable resistor in a wide variety of  
applications including control, parameter adjustments, and  
signal processing.  
• Low Power CMOS  
• Pb-Free Available (RoHS Compliant)  
Block Diagram  
V
R
/V  
H
CC  
H
WRITE  
READ  
10kΩ  
TRANSFER  
INC / DEC  
ADDRESS  
DATA  
STATUS  
POWER-ON RECALL  
64-TAPS  
WIPER  
WIPER COUNTER  
REGISTER (WCR)  
BUS  
INTERFACE &  
CONTROL  
POT  
SPI  
BUS  
INTERFACE  
DATA REGISTERS  
4 BYTES  
CONTROL  
R
/V  
W
V
R /V  
W
SS  
L
L
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
XDCP is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005, 2008, 2009. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
X9421  
Ordering Information  
POTENTIOMETER  
ORGANIZATION  
(kΩ)  
PART  
NUMBER  
PART  
MARKING  
V
LIMITS  
(V)  
TEMP  
RANGE (°C)  
CC  
PACKAGE  
X9421YS16*  
X9421YS  
5 ±10%  
2.5  
0 to +70  
0 to +70  
16 Ld SOIC (300 mil)  
X9421YS16Z* (Note)  
X9421YS16I*  
X9421YS Z  
X9421YS I  
X9421YS ZI  
X9421 YV  
16 Ld SOIC (300 mil) (Pb-Free)  
16 Ld SOIC (300 mil)  
-40 to +85  
-40 to +85  
0 to +70  
X9421YS16IZ* (Note)  
X9421YV14*  
16 Ld SOIC (300 mil) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
X9421YV14Z* (Note)  
X9421YV14I*  
X9421 YVZ  
X9421 YV I  
X9421 YVZI  
X9421WS  
0 to +70  
14 Ld TSSOP (4.4mm) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
-40 to +85  
-40 to +85  
0 to +70  
X9421YV14IZ* (Note)  
X9421WS16*  
14 Ld TSSOP (4.4mm) (Pb-Free)  
16 Ld SOIC (300 mil)  
10  
X9421WS16Z* (Note)  
X9421WS16I*  
X9421WS Z  
X9421WS I  
X9421WS ZI  
X9421 WV  
X9421 WV Z  
X9421 WV I  
X9421 WVZI  
X9421YS F  
X9421YS ZF  
X9421 YS G  
X9421 YS ZG  
X9421 YVF  
0 to +70  
16 Ld SOIC (300 mil) (Pb-Free)  
16 Ld SOIC (300 mil)  
-40 to +85  
-40 to +85  
0 to +70  
X9421WS16IZ* (Note)  
X9421WV14*  
16 Ld SOIC (300 mil) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
X9421WV14Z* (Note)  
X9421WV14I*  
0 to +70  
14 Ld TSSOP (4.4mm) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
-40 to +85  
-40 to +85  
0 to +70  
X9421WV14IZ* (Note)  
X9421YS16-2.7*  
X9421YS16Z-2.7* (Note)  
X9421YS16I-2.7*  
X9421YS16IZ-2.7* (Note)  
X9421YV14-2.7*  
14 Ld TSSOP (4.4mm) (Pb-Free)  
16 Ld SOIC (300 mil)  
2.7 to 5.5  
2.5  
0 to +70  
16 Ld SOIC (300 mil) (Pb-Free)  
16 Ld SOIC (300 mil)  
-40 to +85  
-40 to +85  
0 to +70  
16 Ld SOIC (300 mil) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
X9421YV14Z-2.7* (Pb-free) X9421 YVZF  
X9421YV14I-2.7* X9421 YVG  
X9421YV14IZ-2.7* (Pb-free) X9421 YVZG  
0 to +70  
14 Ld TSSOP (4.4mm) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
-40 to +85  
-40 to +85  
0 to +70  
14 Ld TSSOP (4.4mm) (Pb-Free)  
16 Ld SOIC (300 mil)  
X9421WS16-2.7*  
X9421WS F  
X9421WS ZF  
X9421WS G  
X9421WS ZG  
X9421 WVF  
10  
X9421WS16Z-2.7* (Note)  
X9421WS16I-2.7*  
0 to +70  
16 Ld SOIC (300 mil) (Pb-Free)  
16 Ld SOIC (300 mil)  
-40 to +85  
-40 to +85  
0 to +70  
X9421WS16IZ-2.7* (Note)  
X9421WV14-2.7*  
16 Ld SOIC (300 mil) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
X9421WV14Z-2.7* (Pb-free) X9421 WVZF  
X9421WV14I-2.7* X9421 WVG  
X9421WV14IZ-2.7* (Pb-free) X9421 WVZG  
*Add "T1" suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
0 to +70  
14 Ld TSSOP (4.4mm) (Pb-Free)  
14 Ld TSSOP (4.4mm)  
-40 to +85  
-40 to +85  
14 Ld TSSOP (4.4mm) (Pb-Free)  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020  
FN8196.4  
January 14, 2009  
2
X9421  
Detailed Functional Diagrams  
V
CC  
POWER-ON RECALL  
10kΩ  
DR0  
64-taps  
DR1  
R
/V  
H
H
WIPER  
HOLD  
COUNTER  
REGISTER  
(WCR)  
DR2 DR3  
CONTROL  
R /V  
CS  
SCK  
SO  
L
L
INTERFACE  
AND  
CONTROL  
R
/V  
W
W
CIRCUITRY  
SI  
A0  
DATA  
WP  
V
SS  
Circuit Level Applications  
System Level Applications  
• Vary the Gain of a Voltage Amplifier  
• Adjust the contrast in LCD displays  
• Provide Programmable DC Reference Voltages for  
Comparators and Detectors  
• Control the Power Level of LED Transmitters in  
Communication Systems  
• Control the Volume in Audio Circuits  
• Set and Regulate the DC Biasing Point in an RF Power  
Amplifier in Wireless Systems  
• Trim Out the Offset Voltage Error in a Voltage Amplifier  
Circuit  
• Control the Gain in Audio and Home Entertainment  
Systems  
• Set the Output Voltage of a Voltage Regulator  
• Trim the Resistance in Wheatstone Bridge Circuits  
• Provide the Variable DC Bias for Tuners in RF Wireless  
Systems  
• Control the Gain, Characteristic Frequency and  
Q-factor in Filter Circuits  
• Set the Operating Points in Temperature Control Systems  
• Control the Operating Point for Sensors in Industrial  
Systems  
• Set the Scale Factor and Zero Point in Sensor Signal  
Conditioning Circuits  
• Trim Offset and Gain Errors in Artificial Intelligent Systems  
• Vary the Frequency and Duty Cycle of Timer ICs  
• Vary the DC Biasing of a Pin Diode Attenuator in RF  
Circuits  
• Provide a Control Variable (I, V, or R) in Feedback Circuits  
FN8196.4  
January 14, 2009  
3
X9421  
X9421  
X9421  
(14 LD TSSOP)  
TOP VIEW  
(16 LD SOIC)  
TOP VIEW  
NC  
SO  
1
2
3
4
5
6
7
8
16 VCC  
15 NC  
S0  
VCC  
R /V  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
L
L
NC  
14 R /V  
L L  
R /V  
H
NC  
CS  
H
CS  
13 R /V  
H H  
R
/V  
W
W
SCK  
SI  
12 R /V  
W
W
SCK  
SI  
HOLD  
A0  
11 ISEN  
10 AO  
NC  
VSS  
8
WP  
9
WP  
VSS  
Pin Assignments  
TSSOP  
SOIC  
PIN NO.  
PIN NO.  
SYMBOL  
SO  
DESCRIPTION  
1
2, 3  
4
2
Serial Data Output  
No Connect  
3, 1, 7, 5  
NC  
4
5
CS  
Chip Select  
5
SCK  
SI  
Serial Clock  
6
6
Serial Data Input  
System Ground  
Hardware Write Protect  
Device Address  
7
8
VSS  
WP  
8
9
9
10  
A0  
10  
11  
12  
13  
14  
HOLD  
Device select. Pause the serial bus.  
Wiper Terminal of the Potentiometer.  
High Terminal of the Potentiometer.  
Low Terminal of the Potentiometer.  
System Supply Voltage  
12  
13  
14  
16  
R /V  
W
W
H
L
R /V  
H
R /V  
L
VCC  
CHIP SELECT (CS)  
Pin Descriptions  
Host Interface Pins  
SERIAL OUTPUT (SO)  
When CS is HIGH, the X9421 is deselected and the SO pin  
is at high impedance, and (unless an internal write cycle is  
underway) the device will be in the standby state. CS LOW  
enables the X9421, placing it in the active power mode. It  
should be noted that after a power-up, a HIGH to LOW  
transition on CS is required prior to the start of any  
operation.  
SO is a push/pull serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by the  
falling edge of the serial clock.  
SERIAL INPUT  
HOLD (HOLD)  
SI is the serial data input pin. All opcodes, byte addresses  
and data to be written to the potentiometer and pot register  
are input on this pin. Data is latched by the rising edge of the  
serial clock.  
HOLD is used in conjunction with the CS pin to select the  
device. Once the part is selected and a serial sequence is  
underway, HOLD may be used to pause the serial  
communication with the controller without resetting the serial  
sequence. To pause, HOLD must be brought LOW while  
SCK is LOW. To resume communication, HOLD is brought  
HIGH, again while SCK is LOW. If the pause feature is not  
used, HOLD should be held HIGH at all times.  
SERIAL CLOCK (SCK)  
The SCK input is used to clock data into and out of the  
X9421.  
FN8196.4  
January 14, 2009  
4
X9421  
DEVICE ADDRESS (A )  
0
enable, one of sixty-four switches. The block diagram of the  
potentiometer is shown in Figure 1.  
The address input is used to set the least significant bit of  
the 8-bit slave address. A match in the slave address serial  
data stream must be made with the address input in order to  
initiate communication with the X9421. A maximum of two  
devices may occupy the SPI serial bus.  
Wiper Counter Register (WCR)  
The X9421 contains a Wiper Counter Register. The WCR  
can be envisioned as a 6-bit parallel and serial load counter  
with its outputs decoded to select one of sixty-four switches  
along its resistor array. The contents of the WCR can be  
altered in four ways: it may be written directly by the host via  
the Write Wiper Counter Register instruction (serial load); it  
may be written indirectly by transferring the contents of one  
of four associated Data Registers via the XFR Data Register  
instruction (parallel load); it can be modified one step at a  
time by the Increment/Decrement instruction. Finally, it is  
loaded with the contents of its data register zero (DR0) upon  
power-up.  
Potentiometer Pins  
V /R , V /R  
L
H
H
L
The V /R and V /R inputs are equivalent to the terminal  
H
H
L
L
connections on either end of a mechanical potentiometer.  
V
/R  
W
W
The wiper output is equivalent to the wiper output of a  
mechanical potentiometer.  
HARDWARE WRITE PROTECT INPUT (WP)  
The Wiper Counter Register is a volatile register; that is, its  
contents are lost when the X9421 is powered-down.  
Although the register is automatically loaded with the value  
in DR0 upon power-up, this may be different from the value  
present at power-down.  
The WP pin when LOW prevents nonvolatile writes to the  
Data Registers. Writing to the Wiper Counter Register is not  
restricted.  
SYSTEM/DIGITAL SUPPLY (V  
)
CC  
VCC is the supply voltage for the system/digital section. VSS  
is the system ground.  
Data Registers  
The potentiometer has four 6-bit nonvolatile Data Registers.  
These can be read or written directly by the host. Data can  
also be transferred between any of the four Data Registers  
and the WCR. It should be noted all operations changing  
data in one of the Data Registers is a nonvolatile operation  
and will take a maximum of 10ms.  
Principles of Operation  
The X9421 is a highly integrated microcircuit incorporating a  
resistor array and associated registers and counter and the  
serial interface logic providing direct communication  
between the host and the XDCP potentiometer.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can be  
used as regular memory locations for system parameters or  
user preference data.  
Serial Interface  
The X9421 supports the SPI interface hardware  
conventions. The device is accessed via the SI input with  
data clocked in on the rising SCK. CS must be LOW and the  
HOLD and WP pins must be HIGH during the entire  
operation.  
Register Descriptions  
TABLE 1. DATA REGISTERS, (6-BIT), NONVOLATILE  
0
0
D5  
D4  
D3  
D2  
D1  
D0  
The SO and SI pins can be connected together, since they  
have three state outputs. This can help to reduce system pin  
count.  
(MSB)  
(LSB)  
There are four 6-bit Data Registers associated with the  
potentiometer.  
Array Description  
The X9421 is comprised of one resistor array containing 63  
discrete resistive segments that are connected in series. The  
physical ends of each array are equivalent to the fixed  
• {D5~D0}: These bits are for general purpose Nonvolatile  
data storage or for storage of up to four different wiper  
values.  
terminals of a mechanical potentiometer (V /R and V /R  
H
H
L
L
TABLE 2. WIPER COUNTER REGISTER, (6-BIT), VOLATILE  
inputs).  
At both ends of the array and between each resistor  
segment is a CMOS switch connected to the wiper (V /R )  
0
0
WP5  
WP4  
WP3  
WP2  
WP1  
WP0  
(MSB)  
(LSB)  
W
W
output. Within the individual array only one switch may be  
turned on at a time.  
• {WP5~WP0}: These bits specify the wiper position of the  
potentiometer.  
These switches are controlled by a Wiper Counter Register  
(WCR). The six bits of the WCR are decoded to select, and  
FN8196.4  
January 14, 2009  
5
X9421  
SERIAL DATA PATH  
V
SERIAL  
BUS  
INPUT  
H
FROM INTERFACE  
CIRCUITRY  
C
O
U
N
T
REGISTER 0  
REGISTER 1  
8
6
PARALLEL  
BUS  
INPUT  
E
R
WIPER  
D
E
C
O
D
E
REGISTER 2  
REGISTER 3  
COUNTER  
REGISTER  
(WCR)  
INC/DEC  
LOGIC  
IF WCR = 00[H] THEN V = V  
W
L
H
UP/DN  
MODIFIED SCK  
IF WCR = 3F[H] THEN V = V  
W
UP/DN  
V
V
L
CLK  
FIGURE 1. DETAILED POTENTIOMETER BLOCK DIAGRAM  
W
Write In Process  
DEVICE TYPE  
IDENTIFIER  
The contents of the Data Registers are saved to nonvolatile  
memory when the CS pin goes from LOW to HIGH after a  
complete write sequence is received by the device. The  
progress of this internal write operation can be monitored by a  
Write In Process bit (WIP). The WIP bit is read with a Read  
Status command.  
0
1
0
1
1
1
0
A0  
DEVICE ADDRESS  
FIGURE 2. ADDRESS/IDENTIFICATION BYTE FORMAT  
Instructions  
Instruction Byte  
Address/Identification (ID) Byte  
The next byte sent to the X9421 contains the instruction and  
register pointer information. The four most significant bits are  
the instruction. The next two bits point to one of four Data  
Registers. The format is shown below in Figure 3.  
The first byte sent to the X9421 from the host, following a CS  
going HIGH to LOW, is called the Address or Identification  
byte. The most significant four bits of the slave address are a  
device type identifier, for the X9421 this is fixed as 0101[B]  
(refer to Figure 2).  
REGISTER  
SELECT  
The least significant bit in the ID byte selects one of two  
devices on the bus. The physical device address is defined  
by the state of the A input pin. The X9421 compares the  
I3  
I2  
I1  
I0  
R1  
R0  
0
0
0
serial data stream with the address input state; a successful  
compare of the address bit is required for the X9421 to  
INSTRUCTIONS  
successfully continue the command sequence. The A input  
0
can be actively driven by a CMOS input signal or tied to V  
CC  
FIGURE 3. INSTRUCTION BYTE FORMAT  
or V  
.
SS  
The remaining three bits in the ID byte must be set to 110.  
The four high order bits of the instruction byte specify the  
operation. The next two bits (R and R ) select one of the  
1
0
four registers that is to be acted upon when a register  
oriented instruction is issued. The last two bits are defined  
as 0.  
FN8196.4  
January 14, 2009  
6
X9421  
Two of the eight instructions are two bytes in length and end  
with the transmission of the instruction byte. These  
instructions are:  
Registers or directly between the host and the WCR. These  
instructions are:  
• Read Wiper Counter Register—read the current wiper  
position of the pot,  
• XFR Data Register to Wiper Counter Register —This  
instruction transfers the contents of one specified Data  
Register to the Wiper Counter Register.  
• Write Wiper Counter Register—change current wiper  
position of the pot,  
• XFR Wiper Counter Register to Data Register—This  
instruction transfers the contents of the Wiper Counter  
Register to the specified associated Data Register.  
• Read Data Register—read the contents of the selected  
data register;  
• Write Data Register—write a new value to the selected  
data register.  
The basic sequence of the two byte instructions is illustrated  
in Figure 4. These two-byte instructions exchange data  
between the WCR and one of the Data Registers. A transfer  
from a Data Register to a WCR is essentially a write to a static  
RAM, with the static RAM controlling the wiper position. The  
• Read Status—This command returns the contents of the  
WIP bit which indicates if the internal write cycle is in  
progress.  
response of the wiper to this action will be delayed by t  
transfer from the WCR (current wiper position), to a Data  
Register is a write to nonvolatile memory and takes a  
. A  
The sequence of these operations is shown in Figure 5 and  
Figure 6.  
WRL  
The final command is Increment/Decrement. It is different  
from the other commands, because it’s length is  
indeterminate. Once the command is issued, the master can  
clock the wiper up and/or down in one resistor segment step;  
thereby, providing a fine tuning capability to the host. For  
minimum of t  
to complete. The transfer can occur between  
WR  
the potentiometer and one of its associated registers.  
Five instructions require a three-byte sequence to complete.  
These instructions transfer data between the host and the  
X9421; either between the host and one of the Data  
each SCK clock pulse (t  
) while SI is HIGH, the selected  
HIGH  
wiper will move one resistor segment towards the V /R  
H
H
terminal. Similarly, for each SCK clock pulse while SI is  
LOW, the selected wiper will move one resistor segment  
towards the V /R terminal. A detailed illustration of the  
L
L
sequence and timing for this operation are shown in Figure 7  
and 8.  
CS  
SCK  
SI  
0
1
0
1
1
1
0
A0 I3  
I2  
I1 I0  
R1 R0  
0
0
FIGURE 4. TWO-BYTE INSTRUCTION SEQUENCE  
CS  
SCL  
SI  
1
1
0
1
0
1
0
A0  
I3 I2  
I1 I0  
R1 R0  
0
0
0
0
D5 D4 D3 D2 D1 D0  
FIGURE 5. THREE-BYTE INSTRUCTION SEQUENCE (WRITE)  
FN8196.4  
January 14, 2009  
7
X9421  
CS  
SCL  
SI  
DON’T CARE  
1
1
0
1
0
1
0
A0  
I3 I2  
I1 I0  
R1 R0  
0
0
S0  
0
0
D5 D4 D3 D2 D1 D0  
FIGURE 6. THREE-BYTE INSTRUCTION SEQUENCE (READ)  
CS  
SCK  
SI  
0
1
0
1
1
1
0
A0  
I3  
I2  
I1 I0  
0
0
0
0
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
FIGURE 7. INCREMENT/DECREMENT INSTRUCTION SEQUENCE  
t
WRID  
SCK  
SI  
VOLTAGE OUT  
V
W
INC/DEC CMD ISSUED  
FIGURE 8. INCREMENT/DECREMENT TIMING LIMITS  
FN8196.4  
January 14, 2009  
8
X9421  
TABLE 3. INSTRUCTION SET  
INSTRUCTION SET  
INSTRUCTION  
Read Wiper Counter Register  
Write Wiper Counter Register  
Read Data Register  
I
I
I
I
R
R
0
OPERATION  
3
2
1
0
1
1
1
1
1
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Read the contents of the Wiper Counter Register  
Write new value to the Wiper Counter Register  
0
0
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
Read the contents of the Data Register pointed to by R - R  
1 0  
Write Data Register  
Write new value to the Data Register pointed to by R - R  
1 0  
XFR Data Register to Wiper  
Counter Register  
Transfer the contents of the Data Register pointed to by R -  
1
R
to the Wiper Counter Register  
0
XFR Wiper CounterRegister to Data  
Register  
1
0
0
1
0
1
1
1
0
0
0
1
1/0  
0
1/0  
0
0
0
0
0
0
1
Transfer the contents of the Wiper Counter  
Register to the Data Register pointed to by R - R  
1
0
Increment/Decrement Wiper  
Counter Register  
Enable Increment/decrement of the Wiper Counter Register  
Read Status (WIP bit)  
0
0
Read the status of the internal write cycle, by checking the WIP  
bit.  
Instruction Format  
NOTES:  
1. “A0”: stands for the device addresses sent by the master.  
2. WPx refers to wiper position data in the Wiper Counter Register  
“I”: stands for the increment operation, SI held HIGH during  
active SCK phase (high).  
3. “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Read Wiper Counter Register (WCR)  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
WIPER POSITION  
(SENT BY X9421 ON SO)  
CS  
FALLING  
EDGE  
CS  
RISING  
0
1
0
1
1
1
0
A0  
1
0
0
1
0
0
0
0
0
0
WP5 WP4 WP3 WP2 WP1 WP0 EDGE  
Write Wiper Counter Register (WCR)  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
DATA BYTE  
(SENT BY HOST ON SI)  
CS  
FALLING  
EDGE  
CS  
RISING  
EDGE  
0
1
0
1
1
1
0
A0  
1
0
1
0
0
0
0
0
0
0
WP5 WP4 WP3 WP2 WP1 WP0  
Read Data Register (DR)  
Read the contents of the Register pointed to by R1 - R0.  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
REGISTER  
ADDRESSES  
DATA BYTE  
(SENT BY X9421 ON SO)  
CS  
FALLING  
EDGE  
CS  
RISING  
0
1
0
1
1
1
0
A0  
1
0
1
1
R1 R0  
0
0
0
0
WP5 WP4 WP3 WP2 WP1 WP0 EDGE  
Write Data Register (DR)  
Write a new value to the Register pointed to by R1 - R0.  
DEVICE  
TYPE  
DEVICE  
INSTRUCTION  
OPCODE  
REGISTER  
ADDRESSES  
DATA BYTE  
(SENT BY HOST ON SI)  
IDENTIFIER ADDRESSES  
CS  
CS  
FALLING  
EDGE  
0
1
0
1
1
1
0
A
0
1
1
0
0
R
1
R
0
0
0
0
0
WP WP WP WP WP WP RISING  
EDGE  
HIGH-VOLTAGE  
WRITE CYCLE  
5
4
3
2
1
0
FN8196.4  
January 14, 2009  
9
X9421  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
Transfer the contents of the Register pointed to by R1 - R0 to the WCR.  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
REGISTER  
ADDRESSES  
CS  
FALLING  
EDGE  
CS  
RISING  
EDGE  
0
1
0
1
1
1
0
A0  
1
1
0
1
R1 R0  
0
0
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
REGISTER  
ADDRESSES  
CS  
FALLIN  
G EDGE  
CS  
RISING  
EDGE  
HIGH-VOLTAGE  
WRITE CYCLE  
0
1
0
1
1
1
0
A0  
1
1
1
0
R1 R0  
0
0
Increment/Decrement Wiper Counter Register (WCR)  
DEVICE TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
INCREMENT/DECREMENT  
(SENT BY MASTER ON SDA)  
CS  
FALLING  
EDGE  
CS  
RISING  
0
1
0
1
1
1
0
A0  
0
0
1
0
0
0
0
0
I/D I/D  
.
.
.
.
I/D I/D EDGE  
Read Status  
DEVICE  
TYPE  
IDENTIFIER  
DEVICE  
ADDRESSES  
INSTRUCTION  
OPCODE  
DATA BYTE  
(SENT BY X9421 ON SO)  
CS  
CS  
FALLING  
EDGE  
0
1
0
1
1
1
0
A0  
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
W
RISING  
IP EDGE  
FN8196.4  
January 14, 2009  
10  
X9421  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage (V  
Limits)  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
JA  
CC  
X9421. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±10%  
X9421-2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Voltage on SCK, SDA any address input  
14 Lead TSSOP. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
16 Lead SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
92  
82  
with respect to V : . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +7V  
SS  
ΔV = | (V - V ) | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V  
H
L
I
(10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
Any VH/RH, VL/RL, VW/RW . . . . . . . . . . . . . . . . . . . . . VSS to VCC  
Operating Conditions  
Temperature Range  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details  
JA  
Analog Specifications (Over recommended operating conditions unless otherwise stated.)  
LIMITS  
MIN.  
TYP.  
MAX.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 5)  
(Note 6)  
(Note 5)  
UNITS  
Rtotal  
End to End Resistance  
Tolerance  
-20  
+20  
%
Power Rating  
+25°C, each pot  
Wiper Current  
50  
mW  
R
Wiper Resistance  
150  
400  
250  
Ω
W
Iw = (V - V )/R  
, V  
= 5V  
= 3V  
H
L
TOTAL CC  
Wiper Current  
1000  
Ω
Iw = (V - V )/R  
, V  
H
L
TOTAL CC  
V
Voltage on any V /R , V /R ,  
V
= 0V  
V
V
CC  
V
TERM  
H
H
L
L
SS  
SS  
V
/R  
W
W
Noise  
Resolution (Note 4)  
Ref: 1kHz  
(Note 5)  
-120  
1.6  
dBV  
%
Absolute Linearity (Note 1)  
Relative Linearity (Note 2)  
Temperature Coefficient of  
V
V
- V  
w(n)(expected)  
-1  
+1  
MI (Note 3)  
MI (Note 3)  
ppm/°C  
w(n)(actual)  
- [V  
]
w(n) + MI  
-0.2  
+0.2  
w(n + 1)  
(Note 5)  
±300  
±20  
R
TOTAL  
Ratio metric Temperature  
Coefficient  
(Note 5)  
ppm/°C  
pF  
C /C /C  
Potentiometer Capacitances See “Circuit #3 SPICE Macro Model” on  
page 13  
10/10/25  
0.1  
H
L
W
I
Rh, RI, Rw leakage current  
VIN = VSS to VCC. Device is in stand-by  
mode.  
10  
µA  
AL  
FN8196.4  
January 14, 2009  
11  
X9421  
DC Electrical Specifications (Over the recommended operating conditions unless otherwise specified).  
LIMITS  
MIN  
(Note 5)  
TYP  
(Note 6)  
MAX  
(Note 5)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
I
V
Supply Current  
f = 2MHz, SO = Open,  
SCK  
400  
µA  
CC1  
CC  
(Active)  
Other Inputs = V  
SS  
I
V
Supply Current  
f
= 2MHz, SO = Open,  
3.5  
mA  
CC2  
CC  
(Nonvolatile Write)  
SCK  
Other Inputs = V  
SS  
I
V
Current (Standby)  
CC  
SCK = SI = V , Addr. = V  
SS SS  
3
µA  
µA  
µA  
V
SB  
I
Input Leakage Current  
Output Leakage Current  
Input HIGH Voltage  
Input LOW Voltage  
V
V
= V to V  
SS CC  
10  
10  
LI  
IN  
I
= V to V  
SS CC  
LO  
OUT  
V
V
x 0.7  
V
CC  
+ 0.3  
x 0.1  
IH  
CC  
V
-0.5  
V
V
IL  
CC  
V
Output LOW Voltage  
I
= 3mA  
OL  
0.4  
V
OL  
ENDURANCE AND DATA RETENTION  
PARAMETER  
Minimum Endurance  
Data Retention  
MIN  
UNITS  
100,000  
100  
Data Changes per Bit per Register  
Years  
CAPACITANCE  
SYMBOL  
(Note 5) Output Capacitance (SO)  
TEST  
TYP  
8
UNITS  
pF  
TEST CONDITIONS  
= 0V  
C
V
OUT  
OUT  
V = 0V  
IN  
C
(Note 5)  
Input Capacitance (A0, SI, and SCK)  
6
pF  
IN  
POWER-UP TIMING  
SYMBOL  
PARAMETER  
Power-up Ramp  
CC  
MIN  
0.2  
MAX  
UNITS  
t V (Note 5)  
CC  
V
50  
V/msec  
R
NOTES:  
1. Absolute Linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when used as a  
potentiometer.  
2. Relative Linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
3. MI = RTOT/63 or (V - V )/63, single pot  
H
L
4. Typical = Individual array resolution.  
5. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
6. Limits should be considered typical and are not production tested.  
7. This parameter is not production tested. Parameter established by characterization.  
position will not be complete until V  
value.  
reaches its final  
Power-up Requirements  
CC  
(Power-up sequencing can affect correct recall of the wiper  
registers) The preferred power-on sequence is as follows:  
First V  
and then the potentiometer pins, R , R , and R .  
CC  
Voltage should not be applied to the potentiometer pins  
before V is applied. The V ramp rate specification  
H
L
W
CC  
CC  
should be met, and any glitches or slope changes in the V  
CC  
line should be held to <100mV if possible. Also, V  
should  
CC  
not reverse polarity by more than 0.5V. Recall of wiper  
FN8196.4  
January 14, 2009  
12  
X9421  
AC Test Conditions  
Input pulse levels  
V
x 0.1 to V  
x 0.5  
x 0.9  
CC  
CC  
Input rise and fall times  
Input and output timing level  
10ns  
V
CC  
Equivalent AC Load Circuit  
5V  
2.7V  
1533Ω  
SDA Output  
100pF  
100pF  
Circuit #3 SPICE Macro Model  
R
TOTAL  
R
R
L
H
C
L
C
H
C
W
10pF  
10pF  
25pF  
R
W
FN8196.4  
January 14, 2009  
13  
X9421  
AC Timing  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
(Note 5)  
(Note 6)  
(Note 5)  
UNITS  
MHz  
ns  
f
SSI/SPI Clock Frequency  
SSI/SPI Clock Cycle Time  
SSI/SPI Clock High Time  
SSI/SPI Clock Low Time  
Lead Time  
2.0  
SCK  
t
500  
200  
200  
250  
250  
50  
CYC  
t
ns  
WH  
t
ns  
WL  
t
ns  
LEAD  
t
Lag Time  
ns  
LAG  
t
SI, SCK, HOLD and CS Input Setup Time  
SI, SCK, HOLD and CS Input Hold Time  
SI, SCK, HOLD and CS Input Rise Time  
SI, SCK, HOLD and CS Input Fall Time  
SO Output Disable Time  
ns  
SU  
t
50  
ns  
H
(7)  
t
t
2
µs  
µs  
ns  
RI  
(7)  
FI  
2
t
0
0
500  
150  
DIS  
t
SO Output Valid Time  
ns  
V
t
SO Output Hold Time  
ns  
HO  
RO  
t
SO Output Rise Time  
50  
50  
ns  
t
SO Output Fall Time  
ns  
FO  
t
HOLD Time  
400  
100  
100  
ns  
HOLD  
t
HOLD Setup Time  
ns  
HSU  
t
HOLD Hold Time  
ns  
HH  
t
HOLD Low to Output in High Z  
HOLD High to Output in Low Z  
100  
100  
20  
ns  
HZ  
t
ns  
LZ  
T
Noise Suppression Time Constant at SI, SCK, HOLD and CS inputs  
CS Deselect Time  
ns  
I
t
2
0
0
µs  
ns  
CS  
t
WP, A0 and A1 Setup Time  
WPASU  
t
WP, A0 and A1 Hold Time  
ns  
WPAH  
High-Voltage Write Cycle Timing  
TYP  
MAX  
SYMBOL  
PARAMETER  
High-voltage Write Cycle Time (Store Instructions)  
(NOTE 6)  
(NOTE 5)  
UNITS  
t
5
10  
ms  
WR  
XDCP Timing  
MIN  
MAX  
SYMBOL  
PARAMETER  
(NOTE 5) (NOTE 5) UNITS  
t
Wiper Response Time After The Power Supply Is Stable  
10  
10  
10  
µs  
µs  
µs  
WRPO  
t
Wiper Response Time After Instruction Issued (All Load Instructions)  
WRL  
t
Wiper Response Time From An Active SCL/SCK Edge (Increment/Decrement Instruction)  
WRID  
FN8196.4  
January 14, 2009  
14  
X9421  
Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
MUST BE  
STEADY  
WILL BE  
STEADY  
MAY CHANGE  
WILL CHANGE  
FROM LOW TO FROM LWO TO  
HIGH  
HIGH  
MAY CHANGE  
WILL CHANGE  
FROM HIGH TO FROM HIGH TO  
LOW  
LOW  
DON’T CARE:  
CHANGES  
ALLOWED  
CHANGING:  
STATE NOT  
KNOWN  
N/A  
CENTER LINE  
IS HIGH  
IMPEDANCE  
Timing Diagrams  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
t
t
t
RI  
FI  
t
t
t
WL  
SU  
WH  
H
...  
MSB  
LSB  
SI  
HIGH IMPEDANCE  
SO  
Output Timing  
CS  
SCK  
SO  
SI  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
FN8196.4  
January 14, 2009  
15  
X9421  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
SO  
...  
t
t
FO  
RO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
MSB  
LSB  
SI  
V
W
HIGH IMPEDANCE  
SO  
XDCP Timing (for Increment/Decrement Instruction)  
CS  
SCK  
...  
t
WRID  
...  
V
W
...  
ADDR  
INC/DEC  
SI  
INC/DEC  
HIGH IMPEDANCE  
SO  
FN8196.4  
January 14, 2009  
16  
X9421  
Write Protect and Device Address Pins Timing  
(ANY INSTRUCTION)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
2. The flexibility of computer-based digital controls)  
Applications information  
1. Electronic potentiometers provide three powerful  
application advantages: The variability and reliability of a  
solid-state potentiometer,  
3. the retentivity of nonvolatile memory used for the storage  
of multiple potentiometer settings or data.  
Basic Configurations of Electronic Potentiometers  
V
R
V
R
V
H
V
W
V
L
I
THREE TERMINAL POTENTIOMETER;  
VARIABLE VOLTAGE DIVIDER  
TWO TERMINAL VARIABLE RESISTOR;  
VARIABLE CURRENT  
FN8196.4  
January 14, 2009  
17  
X9421  
Application Circuits  
BUFFERED REFERENCE VOLTAGE  
CASCADING TECHNIQUES  
NONINVERTING AMPLIFIER  
R
+5V  
1
+V  
+V  
+V  
LM308A  
V
+
S
+5V  
-5V  
V
O
X
V
W
OP-07  
+
V
-5V  
W
V
= V  
W
OUT  
V
W
R
2
+V  
R
1
V
W
V
= (1+R /R )V  
2 1 S  
O
(a)  
(b)  
OFFSET VOLTAGE ADJUSTMENT  
COMPARATOR WITH HYSTERITISIS  
VOLTAGE REGULATOR  
317  
R
R
2
1
V
+
S
V
V (REG)  
O
IN  
V
V
S
O
100kΩ  
R
1
+
V
O
I
adj  
TL072  
R
R
1
2
R
2
10kΩ  
10kΩ  
V
V
= {R /CR +R } V (max)  
1 1 2 O  
UL  
LL  
10kΩ  
= {R /CR +R } V (min)  
1
1
2
O
V
(REG) = 1.25V (1+R /R )+I  
R
O
2
1
adj 2  
+12V  
-12V  
FN8196.4  
January 14, 2009  
18  
X9421  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M14.173  
N
14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.041  
0.0118  
0.0079  
0.199  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.05  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.195  
0.169  
0.05  
0.80  
0.19  
0.09  
4.95  
4.30  
-
L
0.25  
0.010  
-
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
3
-C-  
α
E1  
e
4
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
14  
14  
7
NOTES:  
o
o
o
o
0
8
0
8
-
α
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
Rev. 2 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
FN8196.4  
January 14, 2009  
19  
X9421  
Small Outline Plastic Packages (SOIC)  
M16.3 (JEDEC MS-013-AA ISSUE C)  
N
16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
10.10  
7.40  
MAX  
2.65  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.0200  
0.0125  
0.4133  
0.2992  
-
0.30  
-
1
2
3
L
0.51  
9
SEATING PLANE  
A
0.0091  
0.3977  
0.2914  
0.32  
-
-A-  
10.50  
7.60  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
16  
16  
7
0°  
8°  
0°  
8°  
-
NOTES:  
Rev. 1 6/05  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Interlead  
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above  
the seating plane, shall not exceed a maximum value of 0.61mm (0.024  
inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions are  
not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8196.4  
January 14, 2009  
20  

相关型号:

X9421YV14ZT1

2.5K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO14, 4.40 MM, GREEN, PLASTIC, TSSOP-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X9421YVI

Single Digitally Controlled (XDCP) Potentiometer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9421YVI-2.7

Single Digitally Controlled (XDCP) Potentiometer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9421_09

Single Digitally Controlled (XDCP?) Potentiometer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X9428

Single Digitally Controlled Potentiometer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X9428

Single Digitally Controlled Potentiometer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9428MP

Digital Potentiometer, 1 Func, 2000ohm, 2-wire Serial Control Interface, 64 Positions, CMOS, PDIP16, PLASTIC, DIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9428MP-2.7

Digital Potentiometer, 1 Func, 2000ohm, 2-wire Serial Control Interface, 64 Positions, CMOS, PDIP16, PLASTIC, DIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9428MP2.7

Industrial Control IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

X9428MPI

Digital Potentiometer, 1 Func, 2000ohm, 2-wire Serial Control Interface, 64 Positions, CMOS, PDIP16, PLASTIC, DIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9428MPI-2.7

Digital Potentiometer, 1 Func, 2000ohm, 2-wire Serial Control Interface, 64 Positions, CMOS, PDIP16, PLASTIC, DIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X9428MPI2.7

Industrial Control IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC