ZSC31150GEB [RENESAS]

Fast Automotive Sensor Signal Conditioner;
ZSC31150GEB
型号: ZSC31150GEB
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Fast Automotive Sensor Signal Conditioner

文件: 总27页 (文件大小:771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSC31150  
Fast Automotive Sensor Signal Conditioner  
Datasheet  
Brief Description  
Benefits  
The ZSC31150 is a CMOS integrated circuit for highly accurate  
amplification and sensor-specific correction of bridge sensor  
signals. Digital compensation of sensor offset, sensitivity,  
temperature drift, and non-linearity is accomplished via an internal  
16-bit RISC microcontroller running a correction algorithm, with  
calibration coefficients stored in an EEPROM.  
.
.
.
No external trimming components required  
Only a few external protection devices needed  
PC-controlled configuration and single pass calibration via  
I2C or ZACwireinterface: simple, cost efficient, quick, and  
precise  
.
.
End-of-line calibration via I2C or ZACwireinterface  
The ZSC31150 is adjustable to nearly all bridge sensor types.  
Measured values are provided at the analog voltage output or at  
the digital ZACwireand I2C interface. The digital interface can  
be used for a simple PC-controlled calibration procedure in order  
to program a set of calibration coefficients into an on-chip  
EEPROM. A specific sensor and a ZSC31150 can be mated  
digitally: fast, precise, and without the cost overhead associated  
with trimming by external devices or a laser.  
High accuracy (0.25% FSO at -25 to 85°C; 0.5% FSO  
at -40°C to 125°C)  
.
Excellent EMC/ESD robustness and AEC-Q100 qualification  
Available Support  
.
.
.
Evaluation Kits  
Application Notes  
Mass Calibration System  
Features  
.
Digital compensation of sensor offset, sensitivity,  
temperature drift, and non-linearity  
Physical Characteristics  
.
.
.
Adjustable to nearly all bridge sensor types  
Analog gain of up to 420  
.
Supply voltage: 4.5V to 5.5V  
Output options: ratiometric analog voltage output (5% to 95%  
maximum, 12.4-bit resolution) or ZACwire(digital one-wire-  
interface)  
.
Operation temperature: -40°C to 125°C  
(-40°C to +150°C extended temperature range)  
.
Available as 14-DFN (5 4 mm; wettable flanks), SSOP14,  
and die  
.
Temperature compensation: internal or external diode, bridge  
resistance, thermistor  
.
.
.
.
.
.
Sensor biasing by voltage or constant current  
Sample rate: up to 7.8kHz  
ZSC31150 Application Circuit  
High voltage protection up to 33V  
Supply current: max. 5.5mA  
Out / OWI  
GND  
Reverse polarity and short-circuit protection  
C2  
100nF  
Wide operation temperature depending on part number: up to  
-40°C to +150°C  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
VSUPP  
+4.5V to +5.5V  
C3  
47nF  
9
Sensor Bridge  
.
.
Traceability by user-defined EEPROM entries  
Safety and diagnostic functions  
10  
11  
12  
13  
14  
VBR_B  
VBP  
SCL  
SCL  
Serial Interface  
SDA  
SDA  
VBR_T  
IRTEMP  
VSSA  
VDDA  
C4  
C5  
C1  
100nF  
Temperature Sensor  
1
December 6, 2016  
ZSC31150  
Block Diagram  
ZACwire  
Digital  
Data I/O  
RAM  
EEPROM  
I2C  
Analog  
Out  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Block  
Digital Block  
ZSC31150  
Ordering Information  
Sales Code  
Description  
Package  
ZSC31150GE  
ZSC31150 Die Temperature range: -40°C to +150°C  
Unsawn on Wafer: add “B” to sales code  
Sawn on Wafer Frame: add “C”  
Waffle Pack: add “D”  
ZSC31150GEG2-R  
ZSC31150GAG2-R  
Tape and Reel  
ZSC31150 14-DFN (5 4 mm; wettable flanks) Temperature  
range: -40°C to 150°C  
Tape and Reel  
ZSC31150 14-DFN (5 4 mm; wettable flanks) Temperature  
range: -40°C to 125°C  
ZSC31150GAB  
ZSC31150GAC  
ZSC31150GEG1  
ZSC31150GLG1  
ZSC31150 Die Temperature range: -40°C to +125°C  
ZSC31150 Die Temperature range: -40°C to +125°C  
ZSC31150 14-SSOP Temperature range: -40°C to +150°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
Tube: add “-T” to sales code  
Tape & Reel: add “-R”  
ZSC31150 14-SSOP Temperature range: -40°C to +150°C  
(Long life: 5000h @150°C)  
ZSC31150GAG1  
ZSC31150 14-SSOP Temperature range: -40°C to +125°C  
ZSC31150KITV1P2  
ZSC31150 SSC Evaluation Kit V1.2: Three interconnecting boards, five ZSC31150 SSOP14 samples, USB cable  
(software can be downloaded from product page at www.IDT.com/ZSC31150)  
ZSC31150MCSV1P1  
Modular Mass Calibration System (MSC) V1.1 for ZSC31150: MCS boards, cable, connectors (software can be  
downloaded from product page)  
2
December 6, 2016  
 
Contents  
1. Electrical Characteristics ..............................................................................................................................................................................5  
1.1 Absolute Maximum Ratings.................................................................................................................................................................5  
1.2 Operating Conditions...........................................................................................................................................................................5  
1.3 Electrical Parameters ..........................................................................................................................................................................6  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
Supply Current and System Operation Conditions...............................................................................................................6  
Analog Front-End (AFE) Characteristics ..............................................................................................................................6  
Temperature Measurement [b]...............................................................................................................................................6  
Analog-to-Digital Conversion (ADC).....................................................................................................................................7  
Sensor Connection Check....................................................................................................................................................7  
Digital-to-Analog Conversion (DAC) and Analog Output (AOUT Pin) ..................................................................................7  
System Response ................................................................................................................................................................8  
1.4 Interface Characteristics and EEPROM ..............................................................................................................................................8  
1.4.1  
1.4.2  
1.4.3  
I2C Interface [a] ......................................................................................................................................................................8  
ZACwire™ One Wire Interface (OWI) ..................................................................................................................................9  
EEPROM..............................................................................................................................................................................9  
2. Circuit Description ......................................................................................................................................................................................10  
2.1 Signal Flow........................................................................................................................................................................................10  
2.2 Application Modes .............................................................................................................................................................................10  
2.3 Analog Front End (AFE) ....................................................................................................................................................................11  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
Programmable Gain Amplifier (PGA) .................................................................................................................................11  
Offset Compensation..........................................................................................................................................................11  
Measurement Cycle............................................................................................................................................................12  
Analog-to-Digital Converter ................................................................................................................................................13  
2.4 Temperature Measurement...............................................................................................................................................................15  
2.5 System Control and Conditioning Calculation ...................................................................................................................................15  
2.5.1  
2.5.2  
2.5.3  
Operation Modes................................................................................................................................................................15  
Start Up Phase ...................................................................................................................................................................15  
Conditioning Calculation.....................................................................................................................................................16  
2.6 Analog Output AOUT.........................................................................................................................................................................16  
2.7 Serial Digital Interface .......................................................................................................................................................................16  
2.8 Failsafe Features, Watchdog and Error Detection.............................................................................................................................17  
2.9 High Voltage, Reverse Polarity, and Short Circuit Protection............................................................................................................17  
3. Application Circuit Examples......................................................................................................................................................................18  
4. Pin Configuration, Latch-Up and ESD Protection.......................................................................................................................................20  
4.1 Pin Configuration and Latch-up Conditions .......................................................................................................................................20  
4.2 ESD Protection..................................................................................................................................................................................20  
5. Package......................................................................................................................................................................................................21  
5.1 SSOP14 Package..............................................................................................................................................................................21  
5.2 14-DFNPackage................................................................................................................................................................................21  
3
December 6, 2016  
6. Quality and Reliability.................................................................................................................................................................................22  
7. Customization.............................................................................................................................................................................................22  
8. Ordering Information...................................................................................................................................................................................23  
9. Related Documents and Tools ...................................................................................................................................................................23  
10. Glossary .....................................................................................................................................................................................................24  
11. Document Revision History ........................................................................................................................................................................25  
List of Figures  
Figure 2.1 Block Diagram of the ZSC31150.......................................................................................................................................................10  
Figure 2.2 Measurement Cycle...........................................................................................................................................................................13  
Figure 3.1 Bridge in Voltage Mode, External Diode Temperature Sensor..........................................................................................................18  
Figure 3.2 Bridge in Voltage Mode, External Thermistor....................................................................................................................................19  
Figure 3.3 Bridge in Current Mode, Temperature Measurement via Bridge TC .................................................................................................19  
Figure 5.1 SSOP14 Pin Diagram........................................................................................................................................................................21  
Figure 5.2 Outline Drawing for 14-DFN Package with Wettable Flanks .............................................................................................................22  
List of Tables  
Table 1.1 Absolute Maximum Ratings.................................................................................................................................................................5  
Table 1.2 Operating Conditions...........................................................................................................................................................................5  
Table 1.3 Electrical Parameters ..........................................................................................................................................................................6  
Table 1.4 Interface and EEPROM Characteristics ..............................................................................................................................................8  
Table 2.1 Adjustable Gains, Resulting Sensor Signal Spans, and Common Mode Ranges .............................................................................11  
Table 2.2 Analog Zero Point Shift Ranges (XZC)..............................................................................................................................................12  
Table 2.3 Analog Output Resolution versus Sample Rate ................................................................................................................................14  
Table 3.1 Application Circuit Parameters ..........................................................................................................................................................18  
Table 4.1 Pin Configuration and Latch-Up Conditions.......................................................................................................................................20  
Table 5.1 14-DFN Package Dimensions ...........................................................................................................................................................22  
4
December 6, 2016  
1.  
Electrical Characteristics  
1.1 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. The ZSC31150 might not function or be operable above the recommended operating  
conditions. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses  
above the recommended operating conditions might affect device reliability. IDT does not recommend designing to the “Absolute Maximum  
Ratings.”  
Parameters apply in operation temperature range and without time limitations.  
Table 1.1 Absolute Maximum Ratings  
No.  
1.1.1  
Parameter  
Supply voltage [a]  
Symbol  
VDDE  
Conditions  
To VSSE.  
Min  
-33  
-33  
-0.3  
Max  
33  
Unit  
VDC  
VDC  
VDC  
Potential at the AOUT pin [a]  
Analog supply voltage [a]  
VOUT  
Relative to VSSE.  
33  
1.1.2  
1.1.3  
VDDA  
Relative to VSSA.  
6.5  
VDDE - VDDA < 0.35V  
1.1.4  
1.1.5  
Voltage at all analog and  
digital IO pins  
VA_IO  
VD_IO  
Relative to VSSA.  
-0.3  
-55  
VDDA + 0.3  
150  
VDC  
Storage temperature  
TSTG  
C  
[a] Refer to the ZSC31150 Technical Note High Voltage Protection for specification and detailed conditions for high voltage protection.  
1.2 Operating Conditions  
All voltages are related to VSSA. See important table notes at the end of the table.  
Table 1.2 Operating Conditions  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
TQE ambient temperature range  
for part numbers ZSC31150xExx[a]  
TAMB_TQE TQE  
-40  
150  
C  
TQA ambient temperature range  
for part numbers  
TAMB_TQA TQA  
-40  
-25  
125  
85  
C  
1.2.1  
ZSC31150xAxx[b]  
TQI ambient temperature range  
for advanced performance[b]  
TAMB_TQI TQI  
VDDE  
C  
1.2.2  
1.2.3  
Supply voltage  
4.5  
2
5.0  
5.5  
25  
VDC  
Bridge resistanceBridge Voltage RBR_V  
Mode[b], [c]  
k  
1.2.4  
Bridge resistanceBridge Current RBR_C  
Excitation Mode[b], [c]  
See specification 1.2.6 for  
IBR_MAX  
10  
k  
Current reference resistor[b],[d]  
RIBR  
IBR = VDDA / (16 RIBR  
)
0.07 RBR  
*
1.2.5  
1.2.6  
k  
*
Maximum bridge current  
IBR_MAX  
2
mA  
5
December 6, 2016  
 
 
 
 
No.  
1.2.7  
1.2.8  
Parameter  
Symbol  
VBR_TOP  
TC RIBR  
Conditions  
Min  
Typ  
Max  
(15/16 VDDA) - 0.3  
Unit  
V
*
Maximum bridge top voltage  
TC current reference resistor[b]  
Behavior influences current  
generated  
50  
ppm/K  
[a] Refer to the temperature profile description in the ZSC31150 Technical Note Die and Package Specifications for operation in temperature  
range > 125°C.  
[b] No measurement in mass production; parameter is guaranteed by design and/or quality observation.  
[c] Symmetric behavior and identical electrical properties (especially with regard to the low pass characteristic) of both sensor inputs of the  
ZSC31150 are required. Unsymmetrical conditions of the sensor and/or external components connected to the sensor input pins of ZSC31150  
can generate a failure in signal operation.  
[d] See application circuit components in Table 3.1.  
1.3 Electrical Parameters  
All parameter values are valid for operating conditions specified in section 1.2 except as noted. All voltages related to VSSA. See important  
table notes at the end of the table.  
Table 1.3 Electrical Parameters  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.1 Supply Current and System Operation Conditions  
1.3.1.1  
1.3.1.2  
Supply current  
IS  
Without bridge and load  
5.5  
mA  
current; TAMB_TQA  
;
fCLK 3MHz  
Clock frequency [a]  
fOSC  
Guaranteed adjustment range  
(see the ZSC31150 Functional  
Description for details);  
TAMB_TQA  
2
3
4
MHz  
1.3.2 Analog Front-End (AFE) Characteristics  
1.3.2.1  
1.3.2.2  
Input span  
VIN_SP  
Analog gain: 420 to 2.8  
1
275  
300  
mV/V  
Analog offset compensation  
range  
Depends on gain adjust; refer  
to section 2.3.1  
-300  
% VIN_SP  
1.3.2.3  
1.3.2.4  
Parasitic differential input offset  
current [a]  
IIN_OFF  
Within TAMB_TQE  
Within TAMB_TQI  
-10  
-2  
10  
2
nA  
nA  
V
Common mode input range  
VIN_CM  
Depends on gain adjustment;  
no XZC; see section 2.3.1  
0.29  
VDDA  
0.65  
*
VDDA  
*
1.3.3 Temperature Measurement [b]  
1.3.3.1  
External temperature diode  
channel gain  
aTSED  
300  
6
1300  
20  
ppm FS  
/ (mV/V)  
1.3.3.2  
External temperature diode bias ITSE  
current  
10  
A  
6
December 6, 2016  
 
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.3.3  
External temperature diode  
input range [a]  
0
1.5  
V
1.3.3.4  
1.3.3.5  
1.3.3.6  
External temperature resistor  
channel gain  
aTSER  
VTSER  
STTSI  
1200  
0
3500  
600  
ppm FS  
/ (mV/V)  
External temperature resistor/  
input voltage range [a]  
mV/V  
Internal temperature diode  
sensitivity  
Raw values without  
conditioning  
700  
2700  
ppm FS  
/ K  
1.3.4 Analog-to-Digital Conversion (ADC)  
ADC resolution [a]  
rADC  
13  
16  
Bit  
1.3.4.1  
1.3.4.2  
ADC differential nonlinearity  
(DNL) [a]  
DNLADC  
0.95  
LSB  
rADC =13-bit; fCLK=3MHz;  
best fit, 2nd order; complete  
AFE; with ADC input range  
specified in 1.3.4.5  
1.3.4.3  
ADC integral nonlinearity (INL)  
within TQA [a]  
INLADC  
4
LSB  
1.3.4.4  
1.3.4.5  
ADC INL within TQE  
ADC input range  
INLADC  
Range  
5
LSB  
10  
90  
%VDDA  
1.3.5 Sensor Connection Check  
1.3.5.1  
Sensor connection loss  
detection threshold  
RSCC_min  
100  
k  
1.3.5.2  
1.3.5.3  
Sensor input short check  
RSSC_short  
RSSC_pass  
Short detection guaranteed  
0
50  
Sensor input no-short threshold  
A short is not indicated above  
this threshold  
1000  
1.3.6 Digital-to-Analog Conversion (DAC) and Analog Output (AOUT Pin)  
1.3.6.1  
1.3.6.2  
DAC resolution  
rDAC  
Analog output, 10-90%  
VOUT: 5-95%, RLOAD 2kΩ  
VOUT: 10-90%, RLOAD 1kΩ  
To VSSE or VDDE [c]  
@ RLOAD 2k  
12  
Bit  
mA  
Output current sink and source  
for VDDE=5V  
ISRC/SINK_OUT  
2.5  
5
mA  
1.3.6.3  
1.3.6.4  
Short circuit current  
IOUT_max  
VSR_OUT95  
VSR_OUT90  
SROUT  
-25  
0.05  
0.1  
25  
mA  
Addressable output signal  
range  
0.95  
0.9  
VDDE  
VDDE  
V/µs  
@ RLOAD 1k  
Output slew rate [a]  
CLOAD < 50nF  
0.1  
1.3.6.5  
1.3.6.6  
Output resistance in diagnostic  
mode  
ROUT_DIA  
Diagnostic Range:  
<4|96>%, RLOAD 2k  
<8|92>%, RLOAD 1k  
82  
Load capacitance [a]  
DNL (DAC)  
CLOAD  
C3 (see section 3)  
150  
1.5  
5
nF  
1.3.6.7  
1.3.6.8  
1.3.6.9  
DNLOUT  
INLOUT  
-1.5  
-5  
LSB  
LSB  
INL TQA (DAC) [a]  
Best fit, rDAC =12-bit  
7
December 6, 2016  
 
No.  
Parameter  
INL TQE (DAC)  
Output leak current @150°C  
Symbol  
INLOUT  
Conditions  
Best fit, rDAC =12-bit  
power or ground loss  
Min  
-8  
Typ  
Max  
8
Unit  
LSB  
µA  
1.3.6.10  
1.3.6.11  
ILEAK_OUT  
-25  
25  
1.3.7 System Response  
Startup time [d]  
tSTA  
To 1st output; fCLK=3MHz;  
no ROM check; ADC 14-bit  
and 2nd order  
5
ms  
µs  
1.3.7.1  
1.3.7.2  
Response time (100% jump)[a]  
Bandwidth [a]  
tRESP  
fCLK=4MHz; 13-bit, 2nd order;  
refer to Table 2.3  
256  
512  
1.3.7.3  
1.3.7.4  
Comparable to analog SSCs  
5
kHz  
mV  
Analog output noise  
peak-to-peak [a]  
VNOISE,PP  
VNOISE,RMS  
REOUT_5  
Shorted inputs;  
bandwidth 10kHz  
10  
3
Analog output noise RMS [a]  
Shorted inputs;  
bandwidth 10kHz  
mV  
1.3.7.5  
1.3.7.6  
1.3.7.7  
Ratiometricity error  
Maximum error of  
VDDE=5V to 4.5/5.5V  
1000  
ppm  
Overall failure (deviation from  
ideal line including the INL,  
gain, offset and temperature  
errors) [e]  
FALL TQI  
FALL TQA  
FALL TQE  
13-bit, 2nd order ADC;  
fCLK 3MHz; XZC=0  
No sensor caused effects;  
value in parentheses is the  
digital readout.  
0.25  
(0.1)  
% FS  
% FS  
% FS  
0.5  
(0.25)  
1.0  
(0.5)  
[a] No measurement in mass production; parameter is guaranteed by design and/or quality observation.  
[b] Refer to section 2.4.  
[c] Minimum output voltage to VDDE or maximum output voltage to VSSE.  
[d] Depends on resolution and configuration - start routine begins approximately 0.8ms after power on.  
[e] XZC is active: additional overall failure of 25ppm/K for XZC=31 at maximum; failure decreases linearly for XZC adjustments lower than 31.  
1.4 Interface Characteristics and EEPROM  
Table 1.4 Interface and EEPROM Characteristics  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.4.1 I2C Interface [a]  
Input-high level [b]  
Input-low level [b],  
VI2C_IN_H  
0.8  
VDDA  
VDDA  
VDDA  
pF  
1.4.1.1  
1.4.1.2  
1.4.1.3  
1.4.1.4  
VI2C_IN_L  
VI2C_OUT_L  
CSDA  
0.2  
0.15  
400  
Output-low level [b]  
SDA load capacitance [b]  
Open Drain, IOL<2mA  
8
December 6, 2016  
 
 
 
No.  
Parameter  
Symbol  
fSCL  
RI2C  
Conditions  
Min  
Typ  
Max  
400  
100  
Unit  
kHz  
k  
SCL clock frequency [b]  
Internal pull-up resistor [b]  
1.4.1.5  
1.4.1.6  
25  
1.4.2 ZACwire™ One Wire Interface (OWI)  
Input-low level [b]  
VOWI_IN_L  
VOWI_IN_H  
ROWI_PUP  
COWI_LOAD  
0.2  
VDDA  
VDDA  
k  
1.4.2.1  
1.4.2.2  
1.4.2.3  
1.4.2.4  
1.4.2.5  
Input-high level [b]  
0.75  
0.3  
Pull-up resistance master  
OWI load capacitance  
Start window [b]  
3.3  
Summarized OWI line load  
Typ: @ fCLK=3MHz  
50  
nF  
96  
175  
455  
ms  
1.4.3 EEPROM  
1.4.3.1  
Ambient temperature  
TAMB_EEP  
nWRI_EEP  
-40  
150  
C  
EEPROM programming [b]  
Write cycles [b]  
Write temperature: <=85°C  
100k  
100  
1.4.3.2  
Write temperature:  
up to 150°C  
Read cycles [b], [c]  
nREAD_EEP  
tRET_EEP  
Read temperature:  
<=175°C  
8 * 108  
15  
1.4.3.3  
1.4.3.4  
Data retention [b], [d]  
1300h at 175°C =100000h  
at 55°C; 27000h at 125°C;  
3000h at 150°C)  
years  
ms  
Programming time [b]  
tWRI_EEP  
Per written word,  
fCLK=3MHz  
12  
1.4.3.5  
[a] Refer to the ZSC31150 Functional Description for timing details.  
[b] No measurement in mass production; parameter is guaranteed by design and/or quality observation.  
[c] Note that the package and temperature versions cause additional restrictions.  
[d] Over lifetime; use calculation sheet SSC Temperature Profile Calculation Spreadsheet for temperature stress calculation; note additional restrictions are caused by  
different package and temperature versions.  
9
December 6, 2016  
 
 
 
2.  
Circuit Description  
Note: This data sheet provides specifications and a general overview of ZSC31150 operation. For details of operation, including configuration  
settings and related EEPROM registers, refer to the ZSC31150 Functional Description.  
2.1 Signal Flow  
The ZSC31150’s signal path includes both analog (shown in blue in Figure 2.1) and digital (pink) sections. The analog path is differential; i.e.,  
the differential bridge sensor signal is handled internally via two signal lines that are symmetrical around a common mode potential (analog  
ground = VDDA/2), which improves noise rejection.  
Consequently, it is possible to amplify positive and negative input signals, which are located within the common mode range of the signal  
input.  
Figure 2.1 Block Diagram of the ZSC31150  
ZACwire  
Digital  
Data I/O  
RAM  
EEPROM  
I2C  
Analog  
Out  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Block  
Digital Block  
ZSC31150  
The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The multiplexer (MUX) transmits the  
signals from either the bridge sensor, the external diode, or the separate temperature sensor to the analog-to-digital converter (ADC) in a  
specific sequence (the internal pn-junction (TS) can be used instead of the external temperature diode). Next, the ADC converts these signals  
into digital values.  
The digital signal correction takes place in the calibration microcontroller (CMC). It is based on a correction formula located in the ROM and  
sensor-specific coefficients stored in the EEPROM during calibration. Depending on the programmed output configuration, the corrected  
sensor signal is output as an analog value or in a digital format (I2C or ZACwire). The configuration data and the correction parameters can  
be programmed into the EEPROM via the digital interfaces.  
2.2 Application Modes  
For each application, a configuration set must be established (generally prior to calibration) by programming the on-chip EEPROM regarding  
to the following modes:  
Sensor Channel  
.
.
Sensor mode: ratiometric bridge excitation in voltage or current supply mode.  
Input range: the gain adjustment of the AFE with respect to the maximum sensor signal span and the zero point of the ADC have to be  
chosen.  
.
.
An additional analog offset compensation, the Extended Zero-Point Compensation (XZC), must be enabled if required; e.g., if the sensor  
offset voltage is close to or larger than the sensor span.  
Resolution/response time: The ADC must be configured for resolution and conversion settings (1st or 2nd order). These settings influence  
the sampling rate, signal integration time, and, as a result, the noise immunity.  
Temperature  
Temperature measurement: the source for the temperature correction must be chosen.  
.
10  
December 6, 2016  
 
2.3 Analog Front End (AFE)  
The analog front end (AFE) consists of the programmable gain amplifier (PGA), the multiplexer (MUX), and the analog-to-digital converter  
(ADC).  
2.3.1 Programmable Gain Amplifier (PGA)  
Table 2.1 shows the adjustable gains, the sensor signal spans, and the allowed common mode range.  
Table 2.1 Adjustable Gains, Resulting Sensor Signal Spans, and Common Mode Ranges  
Input Common Mode Range  
Max. Span  
VIN_SP  
[mV/V] [a]  
VIN_CM as % of VDDA [b]  
Overall Gain  
aIN  
Gain  
Amp1  
Gain  
Amp2  
Gain  
Amp3  
No.  
1
XZC = Off  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
32 to 57  
XZC = On  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
not applicable  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
30  
30  
15  
15  
7.5  
7.5  
3.75  
3.75  
3.75  
1
7
4.66  
7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3.6  
4
5.4  
4.66  
7
5
7.1  
6
10.7  
14.3  
21.4  
28.5  
53.75  
80  
4.66  
7
7
52.5  
35  
8
4.66  
3.5  
7
9
26.3  
14  
10  
11  
12  
13  
9.3  
7
1
4.66  
3.5  
1.4  
107  
267  
1
2.8  
1
[a] Recommended internal signal range maximum is 80% of the VDDA voltage. Span is calculated by the following formula:  
Span = 80% / gain.  
[b] Bridge in Voltage Mode with maximum input signal (with XZC = +300% Offset), 14-bit accuracy. Refer to the ZSC31150 Functional  
Description for usable input signal/common mode range at bridge in current mode. See section 2.3.2 for an explanation of the extended  
analog zero compensation (XZC).  
2.3.2 Offset Compensation  
The ZSC31150 supports two methods of sensor offset compensation (zero shift):  
.
.
Digital offset correction  
XZC: analog compensation for large offset values (up to a maximum of approximately 300% of the span, depending on the gain  
adjustment)  
The digital sensor offset correction will be processed during the digital signal correction/conditioning by the calibration microcontroller (CMC).  
Analog sensor offset pre-compensation is needed for compensation of large offset values, which would overdrive the analog signal path by  
uncompensated gaining. For analog sensor offset pre-compensation, a compensation voltage is added in the analog pre-gaining signal path  
(coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits (refer to the ZSC31150 Functional  
Description for details).  
11  
December 6, 2016  
 
 
 
 
Table 2.2 Analog Zero Point Shift Ranges (XZC)  
PGA gain  
aIN  
Max. Span VIN_SP  
[mV/V]  
Offset shift per step  
as % of full span  
Approximate maximum  
offset shift [mV/V]  
Approximate maximum  
shift [% VIN_SP] (at ± 31)  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
12.5%  
7.6%  
7.8  
7.1  
15.5  
14.2  
31  
388%  
237%  
388%  
237%  
388%  
237%  
388%  
237%  
161%  
388%  
237%  
161%  
26%  
3.6  
12.5%  
7.6%  
5.4  
7.1  
12.5%  
7.6%  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
28  
52.5  
35  
12.5%  
7.6%  
32  
57  
26.3  
14  
5.2%  
52  
12.5%  
7.6%  
194  
189  
161  
72  
9.3  
7
107  
267  
5.2%  
2.8  
0.83%  
2.3.3 Measurement Cycle  
The complete measurement cycle is controlled by the CMC. Depending on EEPROM settings, the multiplexer (MUX) selects the following  
input signals in a defined sequence:  
.
.
.
Temperature measured by external diode or thermistor, internal pn-junction, or bridge  
Internal offset of the input channel (VOFF  
Pre-amplified bridge sensor signal  
)
The cycle diagram in Figure 2.2 shows the basic structure of the measurement cycle. The bridge sensor measurement count can be  
configured in EEPROM for a value within n=<1,31>.  
After power-on, the startup routine is processed, which performs all measurements needed to acquire an initial valid conditioned sensor  
output. After the startup routine, the normal measurement cycle runs.  
Note: The “CMV,” “SSC/SCC+” and “SSC/SCC-measurements are always performed in every cycle independent of the EEPROM  
configuration.  
12  
December 6, 2016  
 
Figure 2.2 Measurement Cycle  
Start Routine  
1
n
1
n
1
n
1
n
1
n
1
n
Temperature auto-zero  
Bridge sensor measurement  
Temperature measurement  
Bridge sensor measurement  
Bridge sensor auto-zero  
Bridge sensor measurement  
CMV  
Bridge sensor measurement  
SSC/SCC+  
Bridge sensor measurement  
SSC/SCC-  
Bridge sensor measurement  
2.3.4 Analog-to-Digital Converter  
The ADC is an integrating analog-to-digital converter in full differential switched capacitor technique.  
Programmable ADC resolutions are rADC=<13, 14> or with segmentation, rADC=<15, 16> bit.  
The ADC can be used as a first or second order converter. In the first order mode, it is inherently monotone and insensitive to short and  
long-term instability of the clock frequency. The conversion cycle time depends on the desired resolution and can be roughly calculated by the  
following equation where rADC is the ADC resolution and tADC_1 is the conversion cycle time in seconds in first-order mode:  
2rADC  
tADC_1  
f
OSC   
2
In the second order mode, two conversions are stacked with the advantage of a much shorter conversion cycle time but the drawback of a  
lower noise immunity caused by the shorter signal integration period. The approximate conversion cycle time tADC_2 in second-order mode is  
calculated by the following equation:  
ADC 3) / 2  
2(r  
tADC_2  
f
OSC   
2
The calculation formulas for tADC give an overview of conversion time for one AD conversion. Refer to the ZSC31150 Bandwidth Calculation  
Spreadsheet for detailed calculations for sampling time and bandwidth.  
13  
December 6, 2016  
The result of the AD conversion is a relative counter result corresponding to the following equation (see the ZSC31150 Functional Description  
for more detailed equations):  
ZADC  
rADC  
Number of counts (result of the conversion)  
Selected ADC resolution in bits  
VADC_DIFF  
r
ADC  
ZADC 2  
RSADC  
VADC_REF  
VADC_DIFF Differential input voltage of the ADC  
VADC_REF Reference voltage of the ADC  
1
1
1
1
RSADC Digital ADC range shift (RSADC = /16, /8, /4, /2, controlled by the  
EEPROM setting)  
The sensor input signal can be shifted to the optimal input range of the ADC with the RSADC value.  
Table 2.3 Analog Output Resolution versus Sample Rate  
ADC  
Adjustment  
Approximated Output  
Resolution [a]  
Sample Rate  
Averaged  
Bandwidth at fCLK  
[b]  
fCON  
rADC  
[Bit]  
13  
Digital  
[Bit]  
13  
Analog  
[Bit]  
12  
fCLK=3MHz  
fCLK=4MHz  
[Hz]  
fCLK=3MHz  
fCLK=4MHz  
[Hz]  
172  
ADC Order  
[Hz]  
345  
178  
90  
[Hz]  
130  
67  
460  
14  
14  
12  
237  
89  
1
2
15  
14  
12  
120  
34  
45  
16  
14  
12  
45  
61  
17  
23  
13  
13  
12  
5859  
3906  
2930  
1953  
7813  
5208  
3906  
2604  
2203  
1469  
1101  
734  
2937  
1958  
1468  
979  
14  
14  
12  
15  
14  
12  
16  
14  
12  
[a] The ADC resolution should be one bit higher than the required output resolution if the AFE gain is adjusted so that more than 50% of the input  
range is used. Otherwise the ADC resolution should be more than one bit higher than the required output resolution.  
[b] The sampling rate (A/D conversion time) is only a part of the whole cycle; refer to the ZSC31150 Bandwidth Calculation Spreadsheet for  
detailed information.  
Note: The ADCs reference voltage ADCVREF is defined by the potential between <VBR_T> and <VBR_B> (or <VDDA> to <VSSA>, if  
selected in EEPROM by the bit CFGAPP:BREF=1). Theoretically, the input range ADCRANGE_INP of the ADC is equivalent to the ADCs  
reference voltage.  
In practice, the maximum ADC input range used should be from 10% to 90% of ADCRANGE_INP, which is a necessary condition for ensuring the  
specified accuracy, stability, and nonlinearity parameters of the AFE. This condition is also valid for whole temperature range and all  
applicable sensor tolerances. The ZSC31150 does not have an internal failsafe function that verifies that the input meets this condition.  
14  
December 6, 2016  
 
 
2.4 Temperature Measurement  
The ZSC31150 supports four different methods for acquiring the temperature data needed for calibration of the sensor signal in the specified  
temperature range.  
Temperature data can be acquired using one of these temperature sensors:  
.
.
.
.
an internal pn-junction temperature sensor  
an external pn-junction temperature sensor connected to sensor top potential (VBRTOP  
an external resistive half bridge temperature sensor  
)
the temperature coefficient of the sensor bridge at bridge current excitation  
Refer to the ZSC31150 Functional Description for a detailed explanation of temperature sensor adaptation and adjustment.  
2.5 System Control and Conditioning Calculation  
The system control supports the following tasks/features:  
.
.
Controlling the measurement cycle according to the EEPROM-stored configuration data  
Performing the16-bit correction calculation for each measurement signal using the EEPROM-stored calibration coefficients and ROM-  
based algorithms; i.e., the signal conditioning  
.
.
.
Managing the start-up sequence and starting signal conditioning  
Handling communication requests received by the digital interface  
Managing failsafe tasks for the functions of the ZSC31150 and indicating detected errors with diagnostic states  
Refer to the ZSC31150 Functional Description for a detailed description.  
2.5.1 Operation Modes  
The internal state machine has three main states:  
.
.
.
The continuously running signal conditioning mode, which is called Normal Operation Mode (NOM)  
The calibration mode with access to all internal registers and states, which is called Command Mode (CM)  
The failure messaging mode, which is called Diagnostic Mode (DM)  
2.5.2 Start Up Phase  
The start-up phase* consists of following segments:  
1. Internal supply voltage settling phase (i.e., the VDDA - VSSA potential), which is ended when the reset signal is disabled through  
the power-on clear block (POR). Refer to the ZSC31150 Technical Note High Voltage Protection document, section 4 for power  
on/off thresholds.  
Time (from beginning with VDDA-VSSA=0V): 500µs to 2000µs; AOUT is in tri-state  
2. System start, EEPROM read out, and signature check (and ROM check if selected by setting EEPROM bit CFGAPP:CHKROM=1).  
Time: ~200µs (~9000µs with ROM-check; i.e., 28180 clocks); AOUT is LOW (DM)  
3. Processing the start routine for signal conditioning (all measurements and conditioning calculations).  
Time: 5 x A/D conversion time; AOUT behavior depends on selected OWI mode (refer to section 2.6):  
.
.
OWIANA & OWIDIS => AOUT is LOW (DM)  
OWIWIN & OWIENA => AOUT is in tri-state  
* All timings described are roughly estimated values and are affected by the internal clock frequency. Timings are estimated for fCLK=3MHz.  
15  
December 6, 2016  
The analog output AOUT will be activated at the end of the start-up phase depending on the adjusted output and communication mode (refer  
to section 2.6). If errors are detected, the Diagnostic Mode (DM) is activated and the diagnostic output signal is driven at the output.  
After the start-up phase, the continuously running measurement and calibration cycle is started. Refer to ZSC31150 Bandwidth Calculation  
Spreadsheet for detailed information about output update rate.  
2.5.3 Conditioning Calculation  
The digitalized value for the bridge sensor measurement (acquired raw data) is processed with the correction formula to remove offset and  
temperature dependency and to compensate nonlinearity up to 3rd order. The result of the correction calculation is a non-negative 15-bit  
value for the bridge sensor in the range [0; 1). This value P is clipped with programmed limitation coefficients and continuously written to the  
output register of the digital serial interface and the output DAC.  
Note: The conditioning includes up to third-order nonlinearity sensor input correction. The available adjustment ranges depend on the  
specific calibration parameters; for a detailed description, refer to ZSC31150 Functional Description. Basically, offset compensation and linear  
correction are only limited by the loss of resolution they will cause. The second-order correction is possible up to approximately 30% of the full  
scale difference from a straight line; third order is possible up to approximately 20% (ADC resolution = 13-bit). The calibration principle used  
is able to reduce existing nonlinearity errors of the sensor up to 90%. The temperature calibration includes first and second order correction  
and should be fairly sufficient in all relevant cases. ADC resolution also influences calibration possibilities; e.g., 1 additional bit of resolution  
reduces the calibration range by approximately 50%. The maximum calculation input data width is 14-bit. The 15 or 16 bit ADC resolution  
mode uses only a 14-bit segment of the ADC range.  
2.6 Analog Output AOUT  
The analog output is used for outputting the analog signal conditioning result and for “end of line” communication via the ZACwireTM interface  
one-wire communication interface (OWI). The ZSC31150 supports four different modes of the analog output in combination with the OWI  
behavior:  
. OWIENA:  
. OWIDIS:  
. OWIWIN:  
Analog output is deactivated; OWI communication is enabled.  
Analog output is active (~2ms after power-on); OWI communication is disabled.  
Analog output will be activated after the time window;  
OWI communication is enabled in a time window of ~500ms (maximum);  
transmission of the “START_CM” command must be finished during the time window.  
. OWIANA:  
Analog output will be activated after a ~2ms power on time;  
OWI communication is enabled in a time window of ~500ms (maximum);  
transmission of the START_CM” command must be finished during time window;  
to communicate, the internal driven potential at AOUT must be overwritten  
by the external communication master (AOUT drive capability is current limited).  
The analog output potential is driven by a unity gain output buffer for which the input signal is generated by a 12.4-bit resistor-string DAC. The  
output buffer (BAMP), which is a rail-to-rail op amp, is offset compensated and current limited. Therefore, a short-circuit of the analog output  
to ground or the power supply does not damage the ZSC31150.  
2.7 Serial Digital Interface  
The ZSC31150 includes a serial digital interface (SIF), which is used for communication with the circuit to calibrate the sensor module. The  
serial interface is able to communicate with two communication protocols: I2C and the ZACwireone-wire communication interface (OWI).  
The OWI can be used to for an end of line” calibration via the analog output AOUT of the complete assembled sensor module.  
Refer to the ZSC31150 Functional Description for a detailed description of the serial interfaces and communication protocols.  
16  
December 6, 2016  
 
2.8 Failsafe Features, Watchdog and Error Detection  
The ZSC31150 detects various possible errors. A detected error is indicated by a change in the internal status in Diagnostic Mode (DM). In  
this case, the analog output is set to LOW (minimum possible output value; i.e., the lower diagnostic range LDR) and the output registers of  
the digital serial interface are set to a significant error code.  
A watchdog oversees the continuous operation of the CMC and the running measurement loop. The operation of the internal clock oscillator  
is verified continuously by the oscillator failure detection.  
A check of the sensor bridge for broken wires is done continuously by two comparators watching the input voltage of each input (sensor  
connection and short check). Additionally, the common mode voltages of the sensor and sensor input short are watched continuously (sensor  
aging).  
Different functions and blocks in the digital section, e.g. the RAM, ROM, EEPROM, and register content, are watched continuously. Refer to  
the ZSC31150 Functional Description for a detailed description of safety features and methods of error indication.  
2.9 High Voltage, Reverse Polarity, and Short Circuit Protection  
The ZSC31150 is designed for 5V power supply operation.  
The ZSC31150 and the connected sensor are protected from overvoltage and reverse polarity damage by an internal supply voltage limiter.  
The analog output AOUT can be connected with all potentials (short circuit, over-voltage, and reverse voltage) in the protection range under  
all potential conditions at the VDDE and VSSE pins.  
All external components (see section 3) are required to guarantee this operation. The protection is not time limited. Refer the ZSC31150  
Technical Note High Voltage Protection for a detailed description of protection cases and conditions.  
17  
December 6, 2016  
3. Application Circuit Examples  
The application circuits contain external components that are needed for over-voltage, reverse polarity, and short circuit protection.  
Recommendation: Check the ZSC31150 product page www.IDT.com/ZSC31150 for other application examples given in application notes.  
Note: Some application notes require a customer loginsee section 9 for details.  
Table 3.1 Application Circuit Parameters  
Symbol  
C1  
Parameter  
Min  
100  
100  
4
Typ  
Max  
Unit  
nF  
Notes  
C
C
C
470  
C2  
nF  
C3 [a]  
47  
160  
10  
nF  
The value of C3 is the sum of the load capacitor and  
the cable capacitance.  
C4, C5 [a]  
R1  
C
0
nF  
kΩ  
Recommended to increase EMC immunity.  
10  
RIBR  
R
Refer to section 1.2.  
[a] Higher values for C3, C4, and C5 increase EMC immunity.  
Figure 3.1 Bridge in Voltage Mode, External Diode Temperature Sensor  
Out / OWI  
GND  
VSUPP  
C2  
100nF  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
+4.5V to +5.5V  
C3  
47nF  
9
Sensor Bridge  
10  
11  
12  
13  
14  
VBR_B  
VBP  
SCL  
SCL  
SDA  
Serial Interface  
SDA  
VBR_T  
IRTEMP  
VSSA  
VDDA  
C4  
C5  
C1  
100nF  
Temperature Sensor  
18  
December 6, 2016  
 
 
 
Figure 3.2 Bridge in Voltage Mode, External Thermistor  
Out / OWI  
GND  
C2  
100nF  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
VSUPP  
+4.5V to +5.5V  
C3  
47nF  
9
Sensor Bridge  
10  
11  
12  
13  
14  
VBR_B  
VBP  
SCL  
SCL  
SDA  
Serial Interface  
SDA  
R1  
VBR_T  
IRTEMP  
VSSA  
VDDA  
PT1000  
C4  
C5  
C1  
100nF  
Temperature Sensor  
Figure 3.3 Bridge in Current Mode, Temperature Measurement via Bridge TC  
Out / OWI  
GND  
C2  
100nF  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
VSUPP  
+4.5V to +5.5V  
C3  
47nF  
9
10  
11  
12  
13  
14  
C4*  
C5*  
VBR_B  
VBP  
SCL  
SCL  
Serial Interface  
SDA  
SDA  
* C4 and C5 must be connected  
to VBR_B when using Current  
Mode because VBR_B and  
VSSA are not shorted in this  
case.  
VBR_T  
IRTEMP  
VSSA  
VDDA  
C1  
100nF  
Sensor Bridge  
RIBR  
19  
December 6, 2016  
 
 
4. Pin Configuration, Latch-Up and ESD Protection  
4.1 Pin Configuration and Latch-up Conditions  
Table 4.1 Pin Configuration and Latch-Up Conditions  
Usage/  
Latch-up Related Application Circuit  
Restrictions and/or Notes  
Pin  
1
Name  
VDDA  
Description  
Notes  
Connection [a]  
Required/-  
Required/-  
-/VDDA  
Positive analog supply voltage  
Analog IO  
2
VSSA  
SDA  
Negative analog supply voltage Analog IO  
3
I2C data IO  
Digital IO,  
pull-up  
Trigger Current/Voltage to VDDA/VSSA:  
+/-100mA or 8/-4V  
4
SCL  
I2C clock  
Digital IN,  
pull-up  
-/VDDA  
5
6
N.C.  
VDD  
No connection  
Positive digital supply voltage  
Analog IO  
Supply  
Ground  
IO  
Required or  
open/-  
Only capacitor to VSSA is allowed,  
otherwise no application access  
7
8
9
VDDE  
VSSE  
AOUT  
Positive external supply  
voltage  
Required/-  
Required/-  
Required/-  
Trigger Current/Voltage: -100mA/33V  
Negative external supply  
voltage  
Analog output and one wire  
IF IO  
Trigger Current/Voltage: -100mA/33V  
10  
11  
VBN  
Negative input sensor bridge  
Bridge bottom potential  
Analog IN  
Analog IO  
Required/-  
VBR_B  
Required/VSSA  
Depending on application circuit,  
short to VDDA/VSSA possible  
12  
13  
14  
VBP  
Positive input sensor bridge  
Bridge top potential  
Analog IN  
Analog IO  
Analog IO  
Required/-  
VBR_T  
IRTEMP  
Required / VDDA  
- / VDDA, VSSA  
Temp sensor and current  
source resistor  
Depending on application circuit  
[a] Usage: If “Required” is specified, an electrical connection is necessary; refer to the application circuits in section 3.  
Connection: To be connected to this potential if not used or if no application/configuration-related constraints are given.  
4.2 ESD Protection  
All pins have an ESD protection of > 2000V. Additionally, the pins VDDE, VSSE and AOUT have an ESD protection of >4000V.  
ESD protection referenced to the Human Body Model is tested with devices during product qualification. The ESD test follows the Human  
Body Model with 1.5k/100pF based on MIL 883, Method 3015.7.  
20  
December 6, 2016  
 
5. Package  
5.1 SSOP14 Package  
The standard packages of the ZSC31150 are the SSOP14 green package (5.3mm body width) with a lead pitch of 0.65mm and the DFN14  
(4mmx5mm) package with a lead pitch of 0.5mm.  
For the SSOP14 package markings shown in Figure 5.1, YYWW refers to the last two digits of the year (YY) and two digits for the work-week  
designation (WW). XXXXXXXX refers to the lot number.  
Figure 5.1 SSOP14 Pin Diagram  
VSSE  
AOUT  
VBN  
VDDE  
VDD  
N.C.  
VBR_B  
VBP  
SCL  
SDA  
VBR_T  
IRTEMP  
VSSA  
VDDA  
5.2 14-DFNPackage  
For the 14-DFN package, the pin assignment is the same as in SSOP14. Refer to the ZSC31150 Technical Note Die and Package  
Specifications for a description of package markings.  
Figure 5.2 provides the dimensions for the 14-DFN package option, which are based on JEDEC MO-229. The 14-DFN package has wettable  
flanks.  
21  
December 6, 2016  
 
Figure 5.2 Outline Drawing for 14-DFN Package with Wettable Flanks  
0,08  
Exposed Pad  
4.4 x 2.5 mm  
14  
8
8
14  
Top View  
Bottom View  
1
7
7
1
H
E
e
b
Table 5.1 14-DFN Package Dimensions  
Dimension  
Minimum  
Maximum  
0.9  
A
A1  
b
0.8  
0
0.05  
0.2  
0.3  
e
0.5 nominal  
HD  
HE  
L
3.9  
4.9  
0.3  
4.1  
5.1  
0.5  
6. Quality and Reliability  
The ZSC31150 is qualified according to the AEC-Q100 standard, operating temperature grade 0. A fit rate < 5fit (temperature =55°C, S=60%)  
is guaranteed. A typical fit rate of the C7D technology, which is used for ZSC31150, is 2.5fit.  
7. Customization  
For high-volume applications, which require an upgraded or downgraded functionality compared to the standard ZSC31150, IDT can  
customize the circuit design by adding or removing certain functional blocks.  
22  
December 6, 2016  
For this purpose, IDT has a considerable library of sensor-dedicated circuitry blocks. As a result, IDT can provide a custom solution quickly.  
Please contact IDT for further information.  
8. Ordering Information  
Product Sales Code  
ZSC31150GEB  
Description  
Package  
Unsawn on Wafer  
ZSC31150 Die Temperature range: -40°C to +150°C  
ZSC31150 Die Temperature range: -40°C to +150°C  
ZSC31150 Die Temperature range: -40°C to +150°C  
ZSC31150GEC  
Sawn on Wafer Frame  
Waffle Pack  
ZSC31150GED  
Tape & Reel  
ZSC31150 14-DFN (5 4 mm with wettable flankTemperature  
ZSC31150GEG2-R  
ZSC31150GAG2-R  
range: -40°C to 150°C  
Tape & Reel  
ZSC31150 14-DFN (5 4 mm with wettable flank Temperature  
range: -40°C to 125°C  
ZSC31150GAB  
ZSC31150GAC  
ZSC31150GEG1  
ZSC31150 Die Temperature range: -40°C to +125°C  
ZSC31150 Die Temperature range: -40°C to +125°C  
ZSC31150 SSOP14Temperature range: -40°C to +150°C  
Unsawn on Wafer  
Sawn on Wafer Frame  
Tube: add “-T” to sales code  
Tape & Reel: add “-R”  
ZSC31150GLG1  
ZSC31150GAG1  
ZSC31150 SSOP14Temperature range: -40°C to +150°C  
(Long life: 5000h @150°C)  
Tube: add “-T” to sales code  
Tape & Reel: add “-R”  
ZSC31150 SSOP14Temperature range: -40°C to +125°C  
Tube: add “-T” to sales code  
Tape & Reel: add “-R”  
ZSC31150KITV1P2  
ZSC31150MCSV1P1  
ZSC31150 SSC Evaluation Kit V1.2: three interconnecting boards, five ZSC31150 SSOP14 samples, USB  
cable (software can be downloaded from product page at www.IDT.com/ZSC31150)  
Modular Mass Calibration System (MSC) V1.1 for ZSC31150: MCS boards, cable, connectors  
(software can be downloaded from product page at www.IDT.com/ZSC31150)  
9. Related Documents and Tools  
Visit the ZSC31150 product page www.IDT.com/ZSC31150 on the IDT website at www.IDT.com or contact your nearest sales office for the  
latest version of this document and related documents.  
23  
December 6, 2016  
 
 
10. Glossary  
Term  
Description  
Analog-to-Digital Converter  
Automotive Electronics Council  
ADC  
AEC  
AFE  
Analog Front End  
AOUT  
BAMP  
CM  
Analog Output  
Buffer Amplifier  
Command Mode  
CMC  
CMV  
CMOS  
DAC  
DM  
Calibration Microcontroller  
Common Mode Voltage  
Complementary Metal Oxide Semiconductor  
Digital-to-Analog Converter  
Diagnostic Mode  
EEPROM  
ESD  
LDR  
MUX  
NOM  
OWI  
P
Electrically Erasable Programmable Read Only Memory  
Electrostatic Device  
Lower Diagnostic Range  
Multiplexer  
Normal Operation Mode  
One Wire Interface  
Bridge Sensor Measurement; e.g., Pressure Sensor  
Programmable Gain Amplifier  
Power on Clear  
PGA  
POC  
RAM  
RISC  
RMS  
ROM  
SCC  
SIF  
Random-Access Memory  
Reduced Instruction Set Computer  
Root-Mean-Square  
Read Only Memory  
Sensor Connection Check  
Serial Interface  
SSC+  
SSC-  
TS  
Positive-biased Sensor Short Check  
Negative-biased Sensor Short Check  
Temperature Sensor  
XZC  
eXtended Zero Compensation  
24  
December 6, 2016  
11. Document Revision History  
Date  
Description  
September 20, 2008  
(Revision 1.01)  
Section 6: fit rate added. Section 1.5.2: ROM check time revised/corrected.  
Section 5.3.4.3: SC no detection limit added.  
September 20, 2009  
(Revision 1.02)  
Update to new ZMDI template.  
October 2, 2009  
(Revision 1.03)  
Update to ZMDI denotation.  
October 22, 2009  
(Revision 1.04)  
Formatting and linking issues solved.  
February 26, 2010  
(Revision 1.05)  
Update for ZMDI template, including ZSC31150 Functional Description at page 2 and 3.  
Added ordering codes for ZSC31150 and evaluation kits. Extended glossary.  
Update for contact information.  
July 29, 2010  
Correct “Offset shift per step” and “Approx. maximum offset shift” in Table 2.2 for PGA gain = 105 and 52.5.  
Moved 1.4.1.6 “Internal pull-up resistor” into section 1.4.1 in Table 1.2. Redrew of Sensor Bridge in Figure  
3.1, Figure 3.2, and Figure 3.3.  
(Revision 1.06)  
Added comment for C4 and C5 in Figure 3.3. Renamed ZMD31150 as ZSC31150.  
August 31, 2010  
(Revision 1.07)  
Connection of RIBR in Figure 3.3 corrected.  
August 15, 2011  
(Revision 1.08)  
Update ordering information with “Long Life Automotive” in Ordering Informationon page 3 and section 8.  
December 15, 2012  
(Revision 2.00)  
Update for part numbers and IDT contact information. Minor edits.  
March 31, 2014  
(Revision 2.10)  
Revision of specifications in section 1.4.2. Recommended internal signal range revised to 80%. OWI interface  
parameters list extended. ADC formula corrected. DFN14 package added. Minor edits for clarity. Updated  
contact information. Updated imagery for cover and headings.  
April 30, 2014  
(Revision 2.20)  
Added notation that DFN14 package has wettable flanks.  
Update for contact information and addition of CAD model files to section 9.  
August 27, 2014  
(Revision 2.30)  
Minor edits on page 2.  
Minor edits for die description in part code tables.  
December 3, 2014  
(Revision 2.40)  
Corrected connection of temperature PTC sensor in Figure 3.2.  
Update for contact information.  
July 27, 2015  
Update for order code for ZSC31150 SSC Evaluation Kit order code.  
Update for contact information.  
(Revision 2.41)  
January 29, 2016  
December 6, 2016  
Changed to IDT branding. The document release date is now the revision reference.  
Added ZSC31150GAB and ZSC31150GAC order codes.  
Correction for order codes for kit and MCS.  
Updates for formatting and minor edits.  
25  
December 6, 2016  
1RWLFH  
ꢄꢃ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢅꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀRUꢀLQIRUPDWLRQꢃ  
ꢁꢃ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢅꢀFRS\ULJKWVꢅꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢅꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢅꢀWKHꢀSURGXFWꢀGDWDꢅꢀGUDZLQJVꢅꢀFKDUWVꢅꢀSURJUDPVꢅꢀDOJRULWKPVꢅꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ  
ꢆꢃ 1RꢀOLFHQVHꢅꢀH[SUHVVꢅꢀLPSOLHGꢀRUꢀRWKHUZLVHꢅꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢅꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢃ  
ꢇꢃ <RXꢀVKDOOꢀQRWꢀDOWHUꢅꢀPRGLI\ꢅꢀFRS\ꢅꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢅꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢅꢀPRGLILFDWLRQꢅꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢃ  
ꢈꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢉꢀꢊ6WDQGDUGꢊꢀDQGꢀꢊ+LJKꢀ4XDOLW\ꢊꢃꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢋVꢀTXDOLW\ꢀJUDGHꢅꢀDVꢀLQGLFDWHGꢀEHORZꢃ  
ꢊ6WDQGDUGꢊꢉ  
&RPSXWHUVꢌꢀRIILFHꢀHTXLSPHQWꢌꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢌꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢌꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢌꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢌꢀPDFKLQHꢀWRROVꢌꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢌꢀLQGXVWULDOꢀURERWVꢌꢀHWFꢃ  
ꢊ+LJKꢀ4XDOLW\ꢊꢉ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢍDXWRPRELOHVꢅꢀWUDLQVꢅꢀVKLSVꢅꢀHWFꢃꢎꢌꢀWUDIILFꢀFRQWUROꢀꢍWUDIILFꢀOLJKWVꢎꢌꢀODUJHꢏVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢌꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢌꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢌꢀHWFꢃ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢍDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢌꢀVXUJLFDOꢀLPSODQWDWLRQVꢌꢀHWFꢃꢎꢅꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢍVSDFHꢀV\VWHPꢌꢀ  
XQGHUVHDꢀUHSHDWHUVꢌꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢌꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢌꢀNH\ꢀSODQWꢀV\VWHPVꢌꢀPLOLWDU\ꢀHTXLSPHQWꢌꢀHWFꢃꢎꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢅꢀXVHUꢋVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢃ  
ꢐꢃ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢍGDWDꢀVKHHWVꢅꢀXVHUꢋVꢀPDQXDOVꢅꢀDSSOLFDWLRQꢀQRWHVꢅꢀꢊ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢊꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢅꢀHWFꢃꢎꢅꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢅꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢅꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢅꢀLQVWDOODWLRQꢅꢀHWFꢃꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢅꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢃ  
ꢑꢃ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢅꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢃꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢅꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢅꢀDQGꢒRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢅꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢅꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢃꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢅꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢃ  
ꢓꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢅꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢅꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢅꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃ  
ꢔꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢅꢀXVHꢅꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢃꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢃ  
ꢄꢂꢃ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢅꢀGLVSRVHVꢀRIꢅꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢅꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢃ  
ꢄꢄꢃ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢅꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢅꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢄꢁꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢃ  
ꢍ1RWHꢄꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢊꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢃ  
ꢍ1RWHꢁꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢍVꢎꢊꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢍ5HYꢃꢇꢃꢂꢏꢄꢀꢀ1RYHPEHUꢀꢁꢂꢄꢑꢎ  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date version  
of a document, or your nearest sales office, please visit:  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com/contact/  
www.renesas.com  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property of  
their respective owners.  
‹ꢀꢁꢂ20ꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢃꢀ$OOꢀULJKWVꢀUHVHUYHGꢃ  

相关型号:

ZSC31150GEC

Fast Automotive Sensor Signal Conditioner
RENESAS

ZSC31150GEC

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150GED

Fast Automotive Sensor Signal Conditioner
RENESAS

ZSC31150GED

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150GEG1

Fast Automotive Sensor Signal Conditioner
RENESAS

ZSC31150GEG1

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150GEG2-R

Fast Automotive Sensor Signal Conditioner
RENESAS

ZSC31150GEG2-R

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150GLG1

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150KITV1P2

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150MCSV1P1

Fast Automotive Sensor Signal Conditioner
IDT

ZSC31150_12

Fast Automotive Sensor Signal Conditioner
ETC