ZSSC3123AA2R [RENESAS]

cLite™ Capacitive Sensor Signal Conditioner;
ZSSC3123AA2R
型号: ZSSC3123AA2R
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

cLite™ Capacitive Sensor Signal Conditioner

文件: 总67页 (文件大小:1693K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSSC3123  
cLite™ Capacitive Sensor Signal Conditioner  
Datasheet  
Description  
Features  
The ZSSC3123 is a CMOS integrated circuit for accurate capaci-  
tance-to-digital conversion and sensor-specific correction of  
capacitive sensor signals. Digital compensation of sensor offset,  
sensitivity, and temperature drift is accomplished via an internal  
digital signal processor running a correction algorithm with cali-  
bration coefficients stored in a non-volatile EEPROM.  
.
Maximum target input capacitance: 260pF  
.
Sampling rates as fast as 0.7ms at 8-bit resolution; 1.6ms at  
10-bit; 5.0ms at 12-bit; 18.5ms at 14-bit  
.
Digital compensation of sensor: piece-wise 1st and 2nd order  
sensor compensation or up to 3rd order single-region sensor  
compensation  
The ZSSC3123 is configurable for capacitive sensors with capaci-  
tances up to 260pF and a sensitivity of 125aF/LSB to 1pF/LSB  
depending on resolution, speed, and range settings. It is com-  
patible with both single capacitive sensors (both terminals must be  
accessible) and differential capacitive sensors. Measured and  
corrected sensor values can be output as I2C, SPI, pulse density  
modulation (PDM), or alarms.  
.
.
Digital compensation of 1st and 2nd order temperature gain  
and offset drift  
Internal temperature compensation reference (no external  
components)  
.
.
Programmable capacitance span and offset  
Layout customized for die-die bonding with sensor for low-  
cost, high-density chip-on-board assembly  
The I2C interface can be used for a simple PC-controlled cali-  
bration procedure to program a set of calibration coefficients into  
an on-chip EEPROM. The calibrated ZSSC3123 and a specific  
sensor are mated digitally: fast, precise, and without the cost  
overhead of trimming by external devices or laser.  
.
.
.
Accuracy as high as ±0.25% FSO at -40°C to 125°C, 3V, 5V,  
Vsupply ±10% (see data sheet section 5 for restrictions)  
Minimized calibration costs: no laser trimming, one-pass  
calibration using a digital interface  
Wide capacitance range to support a broad portfolio of  
different sensor elements  
Available Support  
.
.
.
Excellent for low-power battery applications  
.
ZSSC3123 SSC Evaluation Kit available: SSC Evaluation  
Board, samples, software, documentation.  
I2C or SPI interfaceeasy connection to a microcontroller  
PDM outputs (Filtered Analog Ratiometric) for both  
capacitance and temperature  
.
.
Support for industrial mass calibration available.  
Quick circuit customization option for large production  
volumes.  
.
Up to two alarms that can act as full push-pull or open-drain  
switches  
.
.
Supply voltage: 2.3V to 5.5V  
Typical current consumption 750μA down to 60μA depending  
on configuration  
Application: Digital Output, Alarms  
.
.
Typical Sleep Mode current: ≤ 1μA at 85°C  
VDD  
VSUPPLY  
(2.3V to 5.5V)  
 
cLite  
Operation temperature: 40°C to +125°C depending on part  
code  
ZSSC3123  
Ready  
Vcore  
0.1µF  
GND  
0.1µF  
.
Die or 4.4 5.0 mm 14-TSSOP package  
VSS  
SDA/MISO  
SCL/SCLK  
SS  
C0  
CC  
Alarm_High  
Alarm_Low  
1
August 16, 2018  
Block Diagram  
ZSSC3123 cLite  Capacitive Sensor Signal Conditioner  
VDD (2.3V to 5.5V)  
Temp  
Sensor  
Ref  
Cap  
Offset  
Cap  
Vcore  
0.1µF  
Ready  
EEPROM  
CLK/Reset  
SCL/SCLK  
SDA/MISO  
Ready/PDM_C  
Alarm_Low/PDM_T  
SS  
PDM  
I2C / SPI  
LowAlarm  
High Alarm  
C/A  
0.1µF  
Sensor  
C0  
D
CDC  
DSP  
C0  
C1  
CC  
C1  
Alarm_High  
(Optional)  
MUX  
ROM  
Output  
Communication  
Analog Core  
Digital Core  
VSS  
Application: Analog Output  
Application: Differential Capacitance Input  
VSUPPLY  
(+2.3V to 5.5V)  
VDD  
VDD  
VSUPPLY  
(+2.3V to 5.5V)  
 
 
cLite  
cLite  
ZSSC3123  
ZSSC3123  
Ready  
Vcore  
Vcore  
0.1µF  
GND  
0.1µF  
Cap.  
Analog  
Output  
0.1µF  
GND  
0.1µF  
PDM_C  
VSS  
VSS  
C0  
SDA/MISO  
SCL/SCLK  
SS  
Temp  
Analog  
Output  
PDM_T  
C0  
CC  
C1  
LED  
Alarm_High  
Alarm_Low  
CC  
Alarm_High  
2
August 16, 2018  
Contents  
1. Pin Assignments...........................................................................................................................................................................................7  
2. Pin Descriptions............................................................................................................................................................................................7  
3. Absolute Maximum Ratings..........................................................................................................................................................................8  
4. Recommended Operating Conditions ..........................................................................................................................................................9  
5. Electrical Characteristics ............................................................................................................................................................................10  
6. Current Consumption Graphs.....................................................................................................................................................................12  
6.1 Update Mode Current Consumption..................................................................................................................................................12  
6.2 Sleep Mode Current Consumption ....................................................................................................................................................13  
7. Output Pad Drive Strength .........................................................................................................................................................................14  
8. Temperature Sensor Nonlinearity...............................................................................................................................................................15  
9. Circuit Description ......................................................................................................................................................................................16  
9.1 Signal Flow and Block Diagram.........................................................................................................................................................16  
9.2 Analog Front End...............................................................................................................................................................................16  
9.2.1  
9.2.2  
Capacitance-to-Digital Converter .......................................................................................................................................16  
Temperature Measurement................................................................................................................................................22  
9.3 Digital Core........................................................................................................................................................................................23  
10. Normal Operation Mode .............................................................................................................................................................................24  
10.1 Power-On Sequence .........................................................................................................................................................................25  
10.2 Measurement Cycle...........................................................................................................................................................................26  
10.3 Measurement Modes.........................................................................................................................................................................27  
10.3.1 Update Mode......................................................................................................................................................................27  
10.3.2 Sleep Mode ........................................................................................................................................................................30  
10.4 Status and Diagnostics......................................................................................................................................................................32  
10.4.1 EEPROM Error Detection and Correction ..........................................................................................................................33  
10.4.2 Alarm Diagnostics...............................................................................................................................................................33  
10.5 Output Modes....................................................................................................................................................................................33  
10.6 I2C and SPI .......................................................................................................................................................................................34  
10.6.1 I2C Features and Timing....................................................................................................................................................34  
10.6.2 SPI Features and Timing....................................................................................................................................................35  
10.6.3 I2C and SPI Commands.....................................................................................................................................................35  
10.6.4 Data Fetch (DF)..................................................................................................................................................................36  
10.6.5 Measurement Request (MR) ..............................................................................................................................................37  
10.6.6 Ready Pin...........................................................................................................................................................................38  
10.7 Pulse Density Modulation (PDM).......................................................................................................................................................38  
10.8 Alarm Output .....................................................................................................................................................................................39  
10.8.1 Alarm Registers..................................................................................................................................................................40  
10.8.2 Alarm Operation .................................................................................................................................................................40  
10.8.3 Alarm Output Configuration................................................................................................................................................41  
3
August 16, 2018  
10.8.4 Alarm Polarity .....................................................................................................................................................................41  
11. Command Mode.........................................................................................................................................................................................42  
11.1 Command Format..............................................................................................................................................................................42  
11.2 Command Encodings ........................................................................................................................................................................43  
11.3 Command Response and Data Fetch ...............................................................................................................................................43  
12. EEPROM....................................................................................................................................................................................................46  
12.1 IDT Configuration Register (ZMDI_Config, EEPROM Word 02HEX)...................................................................................................48  
12.2 Capacitance Analog Front-End Configuration (C_Config, EEPROM Word 06HEX)............................................................................49  
12.3 Temperature Analog Front End Configuration (T_Config, EEPROM Word 11HEX)............................................................................50  
12.4 Customer Configuration Register (Cust_Config, EEPROM Word 1CHEX)..........................................................................................51  
13. Calibration and Signal Conditioning Math...................................................................................................................................................52  
13.1 Capacitance Signal Conditioning.......................................................................................................................................................52  
13.2 Temperature Signal Compensation...................................................................................................................................................54  
13.3 Limits on Coefficient Ranges.............................................................................................................................................................54  
14. Application Circuit Examples......................................................................................................................................................................55  
14.1 Digital Output with Optional Alarms...................................................................................................................................................55  
14.2 Analog Output with Optional Alarms..................................................................................................................................................56  
14.3 Bang-Bang Control System...............................................................................................................................................................57  
14.4 Differential Input Capacitance ...........................................................................................................................................................58  
14.5 External Reference Capacitor ...........................................................................................................................................................59  
15. ESD/Latch-Up-Protection ...........................................................................................................................................................................60  
16. Test.............................................................................................................................................................................................................60  
17. Reliability ....................................................................................................................................................................................................60  
18. Customization.............................................................................................................................................................................................60  
19. Package Outline Drawings .........................................................................................................................................................................60  
20. Example Marking Diagram for TSSOP14 Parts..........................................................................................................................................61  
21. Storage and Soldering Conditions..............................................................................................................................................................61  
22. Glossary .....................................................................................................................................................................................................61  
23. Ordering Information...................................................................................................................................................................................62  
24. Revision History..........................................................................................................................................................................................62  
List of Figures  
Figure 1. Pin Assignments for 4.4mm 5.0mm 14-TSSOP Top View............................................................................................................7  
Figure 2. Best Case Settings (Typical Part)......................................................................................................................................................12  
Figure 3. Worst Case Settings (Typical Part) ...................................................................................................................................................13  
Figure 4. Typical Current Consumption during Sleep Mode (No Measurements) ............................................................................................13  
Figure 5. Output High Drive Strength Graph ....................................................................................................................................................14  
Figure 6. Output Low Drive Strength Graph .....................................................................................................................................................14  
Figure 7. First Order Fit (Typical Part)..............................................................................................................................................................15  
4
August 16, 2018  
Figure 8. Second Order Fit (Typical Part).........................................................................................................................................................15  
Figure 9. ZSSC3123 Block Diagram.................................................................................................................................................................16  
Figure 10. General Operation.............................................................................................................................................................................24  
Figure 11. Power-On Sequence with Fast Startup Bit Set in EEPROM .............................................................................................................25  
Figure 12. Measurement Cycle Timing...............................................................................................................................................................26  
Figure 13. Measurement Sequence in Update Mode .........................................................................................................................................27  
Figure 14. I2C and SPI Data Fetching in Update Mode......................................................................................................................................29  
Figure 15. Measurement Sequence in Sleep Mode (Only I2C, SPI, or Alarms).................................................................................................30  
Figure 16. I2C and SPI Data Fetching in Sleep Mode........................................................................................................................................31  
Figure 17. I2C Timing Diagram...........................................................................................................................................................................34  
Figure 18. SPI Timing Diagram ..........................................................................................................................................................................35  
Figure 19. I2C Measurement Packet Reads.......................................................................................................................................................36  
Figure 20. SPI Output Packet with Positive Edge Sampling...............................................................................................................................37  
Figure 21. I2C MR ..............................................................................................................................................................................................38  
Figure 22. SPI MR ..............................................................................................................................................................................................38  
Figure 23. Example of Alarm Function ...............................................................................................................................................................40  
Figure 24. Alarm Output Flow Chart...................................................................................................................................................................41  
Figure 25. I2C Command Format.......................................................................................................................................................................42  
Figure 26. Command Mode Data Fetch .............................................................................................................................................................45  
Figure 27. Digital Output with Optional Alarms Example....................................................................................................................................55  
Figure 28. Analog Output with Optional Alarms Example...................................................................................................................................56  
Figure 29. Bang-Bang Control System Example................................................................................................................................................57  
Figure 30. Differential Input Capacitance Example ............................................................................................................................................58  
Figure 31. External Reference Input Capacitance Example...............................................................................................................................59  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................7  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................8  
Table 3. Recommend Operating Conditions .....................................................................................................................................................9  
Table 4. Electrical Characteristics ...................................................................................................................................................................10  
Table 5. CDC Multiplier ...................................................................................................................................................................................19  
Table 6. Mult 1: Sensor Capacitors Ranging from 2pF to 10pF (Full Scale Values) .......................................................................................20  
Table 7. Mult 2: Sensor Capacitors Ranging from 8pF to 32pF (Full Scale Values) .......................................................................................20  
Table 8. Mult 4: Sensor Capacitors Ranging from 32pF to 130pF (Full Scale Values) ...................................................................................21  
Table 9. Mult 8: Sensor Capacitors Ranging from 130pF to 260pF (Full Scale Values) .................................................................................21  
Table 10. CDC Resolution and Conversion Times............................................................................................................................................26  
Table 11. Update Rate Settings (Power_Down_Period Bit Field in ZMDI_Config) ...........................................................................................27  
Table 12. Time Periods between Capacitance and Temperature Measurements for Mult1, Different Resolutions, and Update Rates ...........28  
Table 13. Time Periods between Capacitance and Temperature Measurements for Mult2, Different Resolutions, and Update Rates ...........28  
5
August 16, 2018  
Table 14. Time Periods between Capacitance and Temperature Measurements for Mult4, Different Resolutions, and Update Rates ...........28  
Table 15. Time Periods between Capacitance and Temperature Measurements for Mult8, Different Resolutions, and Update Rates ...........29  
Table 16. Status Bit Definitions .........................................................................................................................................................................32  
Table 17. Diagnostic Detection..........................................................................................................................................................................32  
Table 18. Normal Operation Diagnostic Table ..................................................................................................................................................32  
Table 19. Output Modes....................................................................................................................................................................................33  
Table 20. Pin Assignment for Output Selections...............................................................................................................................................33  
Table 21. I2C Parameters .................................................................................................................................................................................34  
Table 22. SPI Parameters .................................................................................................................................................................................35  
Table 23. I2C and SPI Command Types...........................................................................................................................................................35  
Table 24. Low Pass Filter Example for R = 10k.............................................................................................................................................39  
Table 25. Command List and Encodings...........................................................................................................................................................43  
Table 26. Response Bits ...................................................................................................................................................................................44  
Table 27. Command Diagnostic Bits .................................................................................................................................................................44  
Table 28. EEPROM Word Assignments............................................................................................................................................................46  
Table 29. ZMDI_Config Bit Assignments...........................................................................................................................................................48  
Table 30. C_Config Bit Assignments.................................................................................................................................................................49  
Table 31. T_Config Bit Assignments .................................................................................................................................................................50  
Table 32. Cust_Config Bit Assignments............................................................................................................................................................51  
Table 33. Limits on Coefficient Ranges.............................................................................................................................................................54  
Table 34. Example 1: Configuration Settings ....................................................................................................................................................55  
Table 35. Example 2: Configuration Settings ....................................................................................................................................................56  
Table 36. Example 3: Configuration Settings ....................................................................................................................................................57  
Table 37. Example 4: Configuration Settings ....................................................................................................................................................58  
Table 38. Example 5: Configuration Settings ....................................................................................................................................................59  
Table 39. Storage and Soldering Condition TSSOP14...................................................................................................................................61  
6
August 16, 2018  
1. Pin Assignments  
Figure 1. Pin Assignments for 4.4mm 5.0mm 14-TSSOP Top View  
VCORE  
C0  
SS  
1
2
3
4
5
6
7
14  
13  
12  
SCL/SCLK  
SDA/MISO  
VSS  
CC  
11 VSS  
VSS  
C1  
10 Ready/PDM_C  
9
8
Alarm_High  
VDD  
Alarm_Low/PDM_T  
2. Pin Descriptions  
Table 1.  
Pin Descriptions  
Pin  
Name  
Description  
Notes  
1
VCORE  
Core voltage  
Always connect the VCORE pin to an external capacitor  
to ground that is within the specifications given in  
section 4 for CVCORE_SM and CVCORE_UM. This is the only  
internal module pin.  
For ESD details, see section 15.  
2
3
C0  
Capacitor input 0  
Ground supply  
VSS  
Connecting to GND for shielding is strongly  
recommended.  
4
5
CC  
Common capacitor input  
Ground supply  
VSS  
Connecting to GND for shielding is strongly  
recommended.  
6
7
C1  
Capacitor input 1  
If not used, must be unconnected.  
VDD  
Supply voltage (1.8V to 5.5V)  
2.3V to 5.5V for ZSSC3123  
VDD must be connected to VSUPPLY. See section 4.  
8
9
Alarm_Low/PDM_T  
Alarm_High  
Low alarm output  
If not used, must be unconnected.  
If not used, must be unconnected.  
Temperature PDM (see Table 20)  
High alarm output  
7
August 16, 2018  
 
 
Pin  
Name  
Description  
Notes  
10  
Ready/PDM_C  
Ready signal (conversion complete output)  
Capacitance PDM (see Table 20)  
If not used, must be unconnected.  
11  
12  
VSS  
Ground supply  
Must connect to GND.  
SDA/MISO  
I2C data if in I2C Mode  
If not used, must connect to VDD.  
Master-In-Slave-Out if in SPI Mode (see Table 20)  
13  
14  
SCL/SCLK  
SS  
I2C clock if in I2C Mode  
If not used, must connect to VDD.  
Serial clock if in SPI Mode (see Table 20)  
Slave Select (input) if in SPI Mode (see Table 20) If not used, must be unconnected.  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed in Table 2 can cause permanent damage to the device.  
Functional operation of the device at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2.  
Absolute Maximum Ratings  
Symbol  
VDD  
Parameter  
Analog Supply Voltage  
Minimum  
-0.3  
Typical  
Maximum  
6.0  
Units  
V
VINA  
Voltages at Analog I/O In Pin  
Voltages at Analog I/O Out Pin  
Storage Temperature Range  
-0.3  
VDD+0.3  
VDD+0.3  
150  
V
VOUTA  
TSTOR  
-0.3  
V
-55  
°C  
8
August 16, 2018  
 
4. Recommended Operating Conditions  
Table 3.  
Recommend Operating Conditions  
Symbol  
VSUPPLY  
TAMB  
Parameter  
Supply Voltage to Ground  
Minimum  
2.3  
Typical  
Maximum  
5.5  
Units  
V
Ambient Temperature Range[a]  
-40  
125  
C  
IOUT  
Output Pads/Pins Drive Strength[b]  
External Capacitance between VDD pin and Ground  
1.5  
20  
mA  
nF  
CVSUPPLY  
CVCORE_SM  
100  
220  
470  
External Capacitance between Vcore and Ground –  
10  
110  
nF  
Sleep Mode  
CVCORE_UM  
External Capacitance between Vcore and Ground –  
90  
330  
nF  
Update Mode  
C0  
C1  
Input Capacitance Span (Full Scale Values)  
External Reference Capacitance  
2
2
260  
260  
16  
pF  
pF  
pF  
CCC  
External Isolating Capacitance (Mult1)  
(CC pin to sensor common node) [c], [d]  
RPU  
I2C Pull-up Resistor  
1
2.2  
k  
CSDA  
SDA/MISO Load Capacitance  
200  
pF  
[a] Caution: If buying die, select the proper package to ensure that the maximum junction temperature is not exceeded.  
[b] See section 7 for full details on output pad drive strengths.  
[c] An external isolating capacitor allows a non-galvanic connection to special differential or external reference sensor types. CCC could also be used  
to lower the overall capacitance level to a value that is supported by the ZSSC3123 because it limits the maximum capacitance seen by the  
ZSSC3123 input to CC even if C0 and C1 have higher values. See section 9.2.1.3 for more details.  
[d] The series combination of sensor and CC must not exceed the maximum capacitance allowed for the chosen Mult setting.  
9
August 16, 2018  
 
 
 
 
 
 
5. Electrical Characteristics  
Table 4.  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Supply Current  
Best case settings: [b]  
60  
100  
Mult 1, 8-bit, 125ms Power Down  
Update Mode Current (varies with  
part configuration) [a]  
IDD  
μA  
Worst case settings:  
750  
1100  
Mult 1, 14-bit, 0ms Power Down  
IPDM  
Extra Current with PDM enabled [b]  
Sleep Mode Current [a]  
150  
0.6  
1
μA  
μA  
μA  
-40 to 85°C  
1
3
ISLEEP  
-40 to 125°C  
Voltage Levels  
VPOR  
Power-On-Reset Level  
1.6  
2.4  
1.7  
2.2  
2.7  
V
V
Note: Regulated voltage can be  
measured on the Vcore pin.  
VREG  
Active Regulated Voltage  
2.55  
Capacitance-to-Digital Converter (CDC)  
RESCDC  
fMULT1  
Resolution  
8
14  
Bits  
kHz  
kHz  
kHz  
kHz  
%
Mult 1  
fSYS/2  
fSYS/4  
fSYS/8  
fSYS/16  
Excitation Frequency of External  
Capacitances C0 and C1  
(for a system frequency fSYS  
fMULT2  
Mult 2  
fMULT4  
Mult 4  
)
fMULT8  
Mult 8  
INLCDC  
DNLCDC  
EEPROM  
nWRI_EEP  
tWRI_EEP  
Integral Nonlinearity (INL) [c]  
Mult 1, 10% to 90% input, 14-bit  
Mult 1, 10% to 90% input, 14-bit  
0.2  
0.9  
Differential Nonlinearity (DNL) [b]  
LSB  
Number of Erase/Write Cycles  
Data Retention  
100k  
10  
At 85C  
Year  
°C  
At 100C  
Temperature Conversion  
-40 to 125°C, 8-bit mode  
-40 to 125°C, 14-bit mode  
-40 to 125°C  
0.64  
0.01  
0.96  
0.015  
±0.5  
±0.2  
0.03  
1.25  
1.6  
0.025  
±1  
RESTEMP  
Resolution in °C [b]  
INLCDC  
INLCDC  
Nonlinearity First Order Fit [b], [d]  
°C  
°C  
Nonlinearity Second Order Fit [b], [e] -40 to 125°C  
VSUPPLY > VREG+0.25V  
±0.4  
0.1  
PSRTEMP  
Voltage Dependency [b]  
°C/V  
2.3V ≤ VSUPPLY ≤ VREG + 0.25V  
2.25  
10  
August 16, 2018  
 
 
Symbol  
PDM Output  
VPDM_Range  
fPDM  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Output Range [b]  
10  
90  
%VSUPPLY  
kHz  
PDM Frequency  
Filter Settling Time [b], [f]  
Ripple [b], [f]  
fSYS/8  
tSETT  
9.2  
1.0  
0.5  
ms  
0% to 90% LP filter 10k/400nF  
0% to 90% LP filter 10k/400nF  
-40 to 125C  
VRIPP  
mV/V  
%
EPDM  
PDM Additional Error (Including  
Ratiometricity Error) [b]  
0.1  
Digital I/O  
VOL  
Voltage Output Level Low  
Voltage Output Level High  
Voltage Input Level Low  
Voltage Input Level High  
0
1
0
1
0.2  
0.2  
10  
VSUPPLY  
VSUPPLY  
VSUPPLY  
VSUPPLY  
pF  
VOH  
0.8  
0.8  
VIL  
VIH  
CIN  
Communication Pin Input  
Capacitance [b]  
Total System  
Ctol  
Capacitive Tolerance Between  
Parts [b]  
All capacitive values in the  
specification are subject to this  
variation  
±10  
%
fSYS  
fvar  
Trimmed System Frequency  
All timing in this specification is  
subject to this variation.  
1.76  
1.85  
1.94  
±10  
173  
288  
163  
MHz  
%
Frequency Variation Over Voltage All timing in this specification is  
and Temperature  
subject to this variation.  
tSTA  
Start-Up-Time [b], [g], [h]  
Power-on (POR) to data ready  
Fastest and slowest settings  
4.25  
0.70  
1.25  
ms  
ms  
ms  
tRESP_UP  
tRESP_SL  
Update Rate (Update Mode) [b], [g], Fastest and slowest settings  
[h]  
Response Time (Sleep Mode) [b],  
Fastest and slowest settings  
[g], [h]  
Mult 1  
10  
20  
40  
80  
20  
pF  
pF  
Parasitic to Ground Tolerance  
Including package parasitics  
(Pins C0, CC, and C1) [b]  
Mult 2  
Mult 4  
pF  
Mult 8  
pF  
NOUT  
Peak-to-Peak Noise @ output  
(100 measurements in 14 bit) [b]  
Mult 1, 2, 4, 8  
5
LSB  
11  
August 16, 2018  
Symbol  
Parameter  
Conditions  
3V10%, 3.3V10%, 5V10%  
2.5V10%  
Minimum  
Typical  
±0.25  
±0.50  
±0.50  
±1.50  
Maximum  
±0.75  
Units  
%FSO  
%FSO  
%FSO  
%FSO  
AEout  
Error Mult 1, -40 to 125°C [b], [i], [j], [k]  
±1.25  
±1.25  
3V10%, 3.3V10%, 5V10%  
2.5V10%  
AEout  
Mult 2, 4, 8, -40 to 125°C [b], [i], [j], [k]  
±3.00  
[a] See section 6 for full details for current consumption in each mode.  
[b] Parameter not tested during production but guaranteed by design.  
[c] Parameter measured using internal test capacitors (0pF to 7pF in Mult 1).  
[d] Assumes optimal calibration points of 0°C and 100°C; see section 8 for more details.  
[e] Assumes optimal calibration points of -20°C, 40°C and 100°C; see section 8 for more details.  
[f] See section 10.7 for more details.  
[g] See section 10 for more details.  
[h] Timing values are for a nominal oscillator, for worst case, ±10% total frequency variation, multiply by 0.9 (minimum time) or 1.1 (maximum time).  
[i] Accuracy specification includes a 2-point temperature calibration for correcting the internal TC.  
[j] Accuracy specification assumes maximum parasitics of 10pF to ground.  
[k] Accuracy specification does not include PDM errors; see the PDM Output electrical parameters for additional errors when using PDM.  
6. Current Consumption Graphs  
Part current consumption depends on a number of different factors including voltage, temperature, capacitive input, Mult, resolution, and power  
down time. The best method for calculating the ZSSC3123’s power consumption is to measure the current consumption with the actual setup.  
If measurement is not possible, then the graphs in this section can provide a starting point for estimating the current consumption.  
6.1 Update Mode Current Consumption  
Figure 2. Best Case Settings (Typical Part)  
12  
August 16, 2018  
 
 
 
 
 
Figure 3. Worst Case Settings (Typical Part)  
6.2 Sleep Mode Current Consumption  
Figure 4. Typical Current Consumption during Sleep Mode (No Measurements)  
13  
August 16, 2018  
7. Output Pad Drive Strength  
Figure 5. Output High Drive Strength Graph  
20mA Max. Allowed  
20  
Cold / Best Case  
Typical  
Hot / Worst Case  
0
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Vsupply (V)  
Figure 6. Output Low Drive Strength Graph  
20mA Max. Allowed  
20  
Cold / Best Case  
Typical  
Hot / Worst Case  
0
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Vsupply (V)  
14  
August 16, 2018  
8. Temperature Sensor Nonlinearity  
Temperature sensor nonlinearity can vary depending on the type of calibration and the selected calibration points. It is highly recommended  
that a temperature calibration is done with calibration points at least 20°C apart from each other. The following figures show the resulting  
nonlinearity error for the full temperature range (-40°C to 125°C) using the optimal calibration points 0°C and 100°C for a first-order fit  
and -20°C, 40°C, and 100°C for a second-order fit.  
Figure 7. First Order Fit (Typical Part)  
Temperature Error  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Temperature (°C)  
Figure 8. Second Order Fit (Typical Part)  
Temperature Error  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50  
0
50  
100  
150  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Temperature (°C)  
15  
August 16, 2018  
 
9. Circuit Description  
9.1 Signal Flow and Block Diagram  
As seen in the following figure, the ZSSC3123 comprises three main blocks: the analog core, digital core, and output communication. The  
capacitive input is first sampled by the analog core using a charge-balancing CDC and is adjusted for the appropriate capacitance range using  
the CDC_Offset, CDC_Reference, and CDC_Mult settings. The digital core corrects the digital sample with an on-chip digital signal processor  
(DSP), which uses coefficients stored in EEPROM for precise conditioning. An internal temperature sensor can be used to compensate for  
temperature effects of the capacitive input. A temperature value can also be calibrated and output as a 14-bit reading.  
The corrected capacitance value can be read using four different output types, I2C, SPI, PDM, and alarms. They can all be directly interfaced  
with a microcontroller, and optional filtering of the PDM output can provide a ratiometric analog output. The alarm pins can also be used to  
control a variety of analog circuitry.  
Figure 9. ZSSC3123 Block Diagram  
ZSSC3123 cLite  Capacitive Sensor Signal Conditioner  
VDD (2.3V to 5.5V)  
Temp  
Sensor  
Ref  
Cap  
Offset  
Cap  
Vcore  
Ready  
EEPROM  
CLK/Reset  
SCL/SCLK  
SDA/MISO  
Ready/PDM_C  
Alarm_Low/PDM_T  
SS  
0.1µF  
PDM  
I2C / SPI  
LowAlarm  
High Alarm  
C/A  
0.1µF  
Sensor  
C0  
D
CDC  
DSP  
C0  
C1  
(Optional)  
CC  
C1  
Alarm_High  
MUX  
ROM  
Output  
Communication  
Analog Core  
Digital Core  
VSS  
9.2 Analog Front End  
9.2.1 Capacitance-to-Digital Converter  
A 1st-order charge-balancing capacitance-to-digital converter (CDC) is used to convert the input capacitance to the digital domain. The CDC  
uses a chopper-stabilized design to decrease any drift over temperature. The CDC interfaces to the sensor capacitor through the input  
multiplexer that controls whether the measurement is a capacitance or a temperature measurement. The input multiplexer also allows for two  
sensor capacitance configurations: a single-sensor capacitance or a two-sensor, ratio-based differential capacitance configuration, where the  
reference capacitor is part of the sensor.  
As part of a switched-capacitor network, the reference capacitor C1 is driven by a square-wave voltage of the frequency fEXC (see section 5).  
The sensor capacitance C0 is not exposed to DC voltages in order to prevent the aging effects of some sensor types. The configuration of the  
CDC is controlled by programming settings in EEPROM word C_Config. (See Table 30 for settings.)  
16  
August 16, 2018  
 
9.2.1.1 Single Ended  
In the case of a single-sensor capacitor, the CDC output is proportional to the ratio of the sensor capacitor to an internal reference capacitor  
(CREF). This internal reference capacitor value can be adjusted using the 3-bit trim CDC_Reference and a 2-bit range selection CDC_Mult (bit  
settings in Table 30). To optimize the measured end-resolution further, another internal capacitor (COFF) allows the subtraction of a defined  
offset capacitance using the 3-bit trim CDC_Offset (bit setting in Table 30). Equation 1 and Equation 2 describe the CDC output for a single  
sensor capacitance measurement. For CMULT, use the multiplier in the “Total Capacitance Multiplier (CMULT)” column in Table 5. Select the  
values of CDC_Offset, and CDC_Reference by using the settings given in Table 6 to Table 9, depending on the Mult value. Note: Use the bit  
settings (0-7) and not the value in pF.  
(C0 COFF  
)
ZSENSOR  
Equation 1  
Equation 2  
CREF  
ZCDC 2RES ZSENSOR  
With  
Equation 3  
Equation 4  
C
OFF CMULT CDC _Offset 1pF  
And  
C
REF CMULT CDC _Reference 1pF  
Where:  
Symbol  
Description  
ZSENSOR  
C0  
Measured sensor ratio, must be in the range [0 to 1]  
Input sensor capacitance  
COFF  
Zero shift of CDC  
CREF  
Reference capacitance  
ZCDC  
Digital raw converted capacitance value  
RES  
Programmable CDC resolution of 8, 10, 12, or 14 bits (bit setting in Table 30.  
Capacitance range multiplier (see Table 5)  
CDC offset trim setting (see section 9.2.1.4 and bit setting see Table 30  
CDC reference setting (see section 9.2.1.4 and bit setting see Table 30)  
CMULT  
CDC_Offset  
CDC_Reference  
17  
August 16, 2018  
 
 
 
9.2.1.2 Single Ended with External Reference  
Some sensors include an external reference capacitor as part of the sensor construction. If the external reference capacitance (C1) is constant  
or increases with increasing input sensor capacitance (C0), then use CDC output Equation 5 through Equation 7. In this case, the  
CDC_Reference should be set to zero (bit setting in Table 30).  
(C0 COFF  
)
ZSENSOR  
Equation 5  
C1  
ZCDC 2RES ZSENSOR  
Equation 6  
Equation 7  
COFF CMULT CDC _Offset 1pF  
Where:  
Symbol  
Description  
ZSENSOR  
C0  
Measured sensor ratio; must be in the range [0 to 1]  
Input sensor capacitance  
COFF  
Zero shift of CDC  
C1  
External reference capacitance  
ZCDC  
Digital raw converted capacitance value  
Programmable CDC resolution of 8, 10, 12, or 14 bits (bit setting in Table 30)  
Capacitance range multiplier (see Table 5)  
CDC offset trim setting (see section 9.2.1.4 and Table 30)  
RES  
CMULT  
CDC_Offset  
18  
August 16, 2018  
 
 
 
9.2.1.3 Differential  
A differential capacitive sensor includes two capacitors C0 and C1 that are captured as a ratio. The differential sensor is built so that the sensor  
input capacitance C0 increases while the external reference capacitance C1 decreases over the input signal range, but the total sum always  
remains constant. Equation 8 and Equation 9 describe the CDC output for a differential sensor capacitance measurement. The CDC_Reference  
and CDC_Offset capacitor trim bits must be set to zero, and the Differential bit must be set to one. (See Table 30 for bit numbers and settings).  
The Mult bits should be set so that the total capacitance (C0 + C1) falls in the corresponding capacitance range (see Table 5). The sum of C0  
and C1 must not be larger than the selected Mult’s maximum input range, except when CC is used as a decoupling capacitor.  
In differential mode special sensor types can allow a non-galvanic connection with an external isolating capacitor CCC between the sensor and  
the CC pin to avoid wear caused by mechanical moving parts.  
C0  
ZSENSOR  
Equation 8  
Equation 9  
C C  
1  
0
ZCDC 2RES ZSENSOR  
Where:  
Symbol  
ZSENSOR  
C0  
Description  
Measured sensor ratio; must be in the range [0 to 1]  
Input sensor capacitance (moves in the opposite direction of C1)  
External reference capacitance (moves in the opposite direction of C0)  
Digital raw converted capacitance value  
C1  
ZCDC  
RES  
Programmable CDC resolution of 8, 10, 12, or 14 bits (bit setting in Table 30)  
9.2.1.4 Capacitive Range Selection  
Whether the application uses a single-ended or a differential sensor, the correct capacitance range as defined in Table 5 must be selected  
using the Mult bits, which are configured in the C_Config register (see Table 30). If using a single-ended sensor, then the minimum and  
maximum capacitance inputs should fall into the specified ranges. If using a differential sensor then the total capacitance (C0 + C1) must fall  
into this range. The Mult range affects the conversion time (see section 10.2).  
Note: If the externally applied capacitance exceeds the configured capacitance range, the converted output signal can still show an apparently  
correct value, which is not valid. The limit is about 500% of the selected maximum input value. For example, for a capacitance setting of Mult1,  
CDC_Offset at zero, and CDC_Reference at 7, an input value above 117pF will give a non-saturated input value.  
Table 5.  
CDC Multiplier  
Capacitance Range  
(Full Scale Values)  
EEPROM Encoding  
Frequency Multiplier  
(Mult)  
Total Capacitance  
Multiplier (CMULT)  
(CDC_Mult)  
00BIN  
Reference Multiplier  
1
2
4
8
1.44  
2.88  
1.44  
5.76  
2pF to 8pF  
8pF to 32pF  
01BIN  
10BIN  
5.76  
23.04  
92.16  
32pF to 130pF  
130pF to 260pF  
11BIN  
11.52  
19  
August 16, 2018  
 
 
 
 
 
For single-ended sensors, use Table 6, Table 7, Table 8, and Table 9 as guidance for selecting appropriate values for the CDC (COFF) and  
(CREF) for a particular capacitance input range. The CDC_Offset and CDC_Reference bits are found in EEPROM word C_Config. (Refer to  
Table 30 for bit numbers). Using the tables, the CDC input range can be adjusted to optimize the coverage of the sensor signal and offset  
values to give the maximum sensor span that can be processed without losing resolution. Choose a range by fitting the input sensor span within  
the narrowest range in the table, but note that these tables are only approximate, so the range should be chosen experimentally with the actual  
setup. Also note that since internal capacitance values can vary over process (see specification Ctol in Table 4), the minimum and maximum  
sensor span should be at least ±10% within the minimum and maximum of the chosen range respectively. Note: Take into consideration the  
effects of parasitics; if the parasitics for a particular Mult range exceed the parasitic to ground tolerance given in section 1, then the next Mult  
range should be considered since the CDC frequency is reduced by the Mult factor.  
Note: A CREF setting of 0 (marked with * in the following tables) is only supported with an external reference capacitor (C1) for single-ended  
sensors. C1 capacitance values should be within the defined range for each Mult setting.  
Selection settings for CREF, and COFF, and Mult are given in the following tables (capacitance ranges are nominal values).  
Table 6.  
Mult 1: Sensor Capacitors Ranging from 2pF to 10pF (Full Scale Values)  
CDC_Reference  
3-bit set  
0*  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0.0  
1.4  
2.9  
4.3  
5.8  
7.2  
8.6  
C1  
C1  
C1  
C1  
C1  
C1  
C1  
0.0  
1.4  
2.9  
4.3  
5.8  
7.2  
1.4  
2.9  
4.3  
5.8  
7.2  
8.6  
0.0  
1.4  
2.9  
4.3  
5.8  
2.9  
4.3  
5.8  
7.2  
8.6  
0.0  
1.4  
2.9  
4.3  
4.3  
5.8  
7.2  
8.6  
0.0  
1.4  
2.9  
5.8  
7.2  
8.6  
0.0  
1.4  
7.2  
8.6  
0.0  
8.6  
0.0 10.1  
1.4 10.1 1.4 11.5  
2.9 10.1 2.9 11.5 2.9 13.0  
4.3 10.1 4.3 11.5 4.3 13.0 4.3 14.4  
5.8 10.1 5.8 11.5 5.8 13.0 5.8 14.4 5.8 15.8  
7.2 10.1 7.2 11.5  
8.6 10.1 8.6 11.5 8.6 13.0  
PROHIBITED  
7 10.1 C1 10.1 11.5 10.1 13.0 10.1 14.4  
not recommended  
Table 7.  
Mult 2: Sensor Capacitors Ranging from 8pF to 32pF (Full Scale Values)  
CDC_Reference  
3-bit set  
0*  
1
2
3
4
5
6
7
0
1
0.0  
5.8  
C1  
C1  
0.0  
5.8  
0.0 11.5 0.0 17.3  
0.0  
5.8  
23.0 0.0 28.8 0.0 34.6 0.0 40.3  
28.8 5.8 34.6 5.8 40.3  
5.8 11.5 5.8 17.3 5.8 23.0  
2 11.5 C1 11.5 17.3 11.5 23.0 11.5 28.8 11.5 34.6 11.5 40.3  
3 17.3 C1 17.3 23.0 17.3 28.8 17.3 34.6 17.3 40.3  
4 23.0 C1 23.0 28.8 23.0 34.6 23.0 40.3  
5 28.8 C1 28.8 34.6 28.8 40.3  
PROHIBITED  
6 34.6 C1 34.6 40.3  
7
not recommended  
20  
August 16, 2018  
 
 
Table 8.  
Mult 4: Sensor Capacitors Ranging from 32pF to 130pF (Full Scale Values)  
CDC_Reference  
3-bit set  
0*  
1
2
3
4
5
6
7
0
0.0  
C1  
0.0 23.0 0.0 46.1 0.0 69.1 0.0 92.2 0.0 115.2 0.0 138.2 0.0 161.3  
1 23.0 C1 23.0 46.1 23.0 69.1 23.0 92.2 23.0 115.2 23.0 138.2 23.0 161.3  
2 46.1 C1 46.1 69.1 46.1 92.2 46.1 115.2 46.1 138.2 46.1 161.3  
3 69.1 C1 69.1 92.2 69.1 115.2 69.1 138.2 69.1 161.3  
4 92.2 C1 92.2 115.2 92.2 138.2 92.2 161.3  
5 115.2 C1 115.2 138.2 115.2 161.3  
PROHIBITED  
6 138.2 C1 138.2 161.3  
7
not recommended  
Table 9.  
Mult 8: Sensor Capacitors Ranging from 130pF to 260pF (Full Scale Values)  
CDC_Reference  
3-bit set  
0*  
1
2
3
4
5
6
7
0
0.0 C1 0.0 92.2 0.0 184.3 0.0 276.5  
1 92.2 C1 92.2 184.3 92.2 276.5  
2 184.3 C1 184.3 276.5  
3
4
5
PROHIBITED  
6
7
not recommended  
21  
August 16, 2018  
 
9.2.2 Temperature Measurement  
The temperature signal comes from an internal PTAT (proportional to absolute temperature) circuit that is a measure of the die temperature.  
The PTAT (VPTAT) voltage is used in the CDC to charge an internal capacitor (CT), while the bandgap voltage (VBG) is used to charge the  
offset and the reference trimmable capacitors. The CDC temperature output (ZTEMP) is defined by Equation 10 through Equation 13:  
(VPTAT / VBG )CT CTOFF  
ZTEMP 2RES   
Equation 10  
CTREF  
With  
CT 1.44Temp _Trim 1pF  
Equation 11  
Equation 12  
Equation 13  
With  
CTOFF 1.44CDC _Offset 1pF  
And  
CTREF 1.44CDC _Reference 1pF  
Where:  
Symbol  
Description  
ZTEMP  
RES  
Measured internal temperature  
Programmable CDC resolution of 8, 10, 12, or 14 bits (bit setting in Table 31)  
Internal PTAT voltage  
VPTAT  
VBG  
Internal bandgap voltage  
CT  
Temperature measurement capacitor  
Temperature CDC zero shift  
CTOFF  
CTREF  
Temperature reference capacitance  
Temp_Trim  
CDC_Offset  
CDC_Reference  
Temperature trim setting (bit setting in Table 31)  
CDC offset trim setting (bit setting in Table 31)  
CDC reference setting (bit setting in Table 31)  
Note: The factory settings for Temp_Trim, CDC_Offset, and CDC_Reference are optimized for the full temperature range of -40°C to 125°C  
guaranteeing a minimum effective resolution of 13 bits when 14 bits of resolution is selected. Unless a different temperature range is needed,  
it is strongly recommended that these settings not be changed.  
22  
August 16, 2018  
 
 
9.3 Digital Core  
The digital core provides control logic for the analog front-end, performs input signal conditioning, and handles external communication. A digital  
signal processor (DSP) is used for conditioning and correcting the converted sensor and temperature inputs. The DSP can correct for up to a  
two-region piece-wise non-linear sensor input, and up to a second-order non-linear temperature input. Alternatively a third-order correction of  
the sensor input for one region and up to a second-order, non-linear temperature input can be selected. Refer to section 13 for details on the  
signal conditioning and correction math. The analog front-end configuration and correction coefficients for both the capacitive sensor and the  
temperature sensor are stored in an on-chip EEPROM.  
Four different types of outputs are available: I2C, SPI, PDM, and the Alarms. These output modes are used in combination with the two  
measurement modes: Update Mode and Sleep Mode. For a full description of normal operation in each mode, refer to section 10.  
The ZSSC3123 has an internal 1.85MHz temperature-compensated oscillator that provides the time base for all operations. When VDD exceeds  
the POR level, the reset signal de-asserts and the clock generator starts. See section 10.1 for the subsequent power-on sequence. The exact  
clock frequency influences the measurement cycle time (see the frequency variation spec in section 5). To minimize the oscillator error as the  
VDD voltage changes, an on-chip regulator supplies the oscillator block.  
23  
August 16, 2018  
10. Normal Operation Mode  
The following figure gives a general overview of ZSSC3123 operation. Details of operation, including the power-up sequence, measurement  
modes, output modes, diagnostics, and commands, are given in the subsequent sections.  
Figure 10. General Operation  
Yes  
Start_CM  
Command = Start_CM?  
Power-On Reset  
No, after Command Window expires (3ms / 10ms)  
Start_NOM  
Normal Operation Mode  
Perform initial measurement.  
Command Mode  
(No measurement cycle.  
Full command set is available.)  
UPDATE MODE  
SLEEP MODE  
(I2C, SPI, PDM, or Alarms)  
(I2C, SPI, or Alarms)  
Update Digital Output Register  
& Alarms  
Command  
Received.  
Command =  
Update Digital Output Register,  
PDMs, & Alarms  
Yes  
Start_NOM?  
Power Down  
(Wait for command)  
Power Down  
Command  
Received  
No  
Execute  
Command  
Command =  
I2C DF or  
SPI DF?  
Update  
Period  
Over  
No  
Update Rate Period Over  
or Command Received?  
Yes  
Fetch Data  
Command  
Received  
(I2C/SPI only)  
Power Down  
(Wait for command.)  
Command =  
I2C DF or  
SPI DF?  
Command  
Received  
No  
Command =  
I2C MR or  
SPI MR?  
Yes  
No  
Fetch Data  
MR Measurement Request  
DF Data Fetch  
Yes  
Perform Measurement  
Perform Measurement  
24  
August 16, 2018  
 
 
10.1 Power-On Sequence  
The following figure shows the power-on sequence of the ZSSC3123. On system power-on reset (POR), the ZSSC3123 wakes as an I2C  
device regardless of the output protocol programmed in EEPROM. After power-on reset, the ZSSC3123 enters the command window. It then  
waits for a Start_CM command for 3ms if the Fast_Startup EEPROM bit is set or if the bit is not set, it waits10ms (see Table 32). If the ZSSC3123  
receives the Start_CM command during the command window, it enters and remains in Command Mode. Command Mode is primarily used in  
the calibration environment. See section 11 for details.  
If during the power-on sequence, the command window expires without receiving a Start_CM or if the part receives a Start_NOM command in  
Command Mode, the device will immediately assume its programmed output mode and will perform one complete measurement cycle. Timing  
for the initial measurement is described in section 10.2. At the end of the capacitance DSP calculation, the first data is written to the output  
register. Beyond this point, conversions are performed according to the programmed measurement mode settings (see section 11.3).  
Figure 11. Power-On Sequence with Fast Startup Bit Set in EEPROM  
Measurement Cycle  
Temperature  
Conversion  
(Temp Conv)  
Temp DSP  
Calculation  
(Temp Calc)  
Capacitance  
Conversion  
(Cap Conv)  
Cap DSP  
Calculation  
(Cap Calc)  
Command  
Window  
3ms  
1st corrected signal measurement written to  
output register (I2C, SPI, PDMs, Alarms)  
Power applied to device.  
Command window starts after  
a short power-on-reset window.  
When the Fast Startup bit is not set in EEPROM, the  
command window is 10ms.  
Note: See section 10.2 for timing of the measurement cycle. Timing values shown are typical; for the worst case values, multiply by 1.1 (nominal  
frequency ±10%).  
25  
August 16, 2018  
 
10.2 Measurement Cycle  
Figure 12 shows a typical measurement cycle. At the start of a measurement, there is a small wakeup period and then an internal temperature  
conversion/temperature DSP calculation is performed followed by a capacitance conversion/capacitance DSP calculation. The length of these  
conversions depends on the settings for the two Resolution bits in the C_Config and T_Config EEPROM words (refer to Table 10, Table 30, and  
Table 31). For capacitance measurements, conversion time also depends on the Mult selected by the CDC_Mult bits in C_Config (see Table 5  
and Table 30). Each conversion cycle is followed by a DSP calculation, which uses the programmed calibration coefficients to calculate  
corrected temperature and capacitance measurements. In Update Mode, a temperature conversion is not performed every measurement cycle  
because it is considered a slower moving quantity. In this case, the measurement cycle timing is the same as in the figure without the  
temperature conversion/ temperature DSP calculation (see section 10.3.1 for more information).  
Figure 12. Measurement Cycle Timing  
Legend:  
Timing for 8-bit resolution  
Timing for 10-bit resolution  
Timing for 12-bit resolution  
Timing for 14-bit resolution  
0.30ms  
1.15ms  
4.5ms  
18.0ms  
0.25ms  
0.30ms  
Capacitance DSP  
Calculation  
Temperature  
Conversion  
(Temp Conv)  
Temperature DSP  
Calculation  
(Temp Calc)  
Capacitance  
Conversion  
(Cap Conv)  
(Cap Calc)  
0.30ms x Mult  
1.15ms x Mult  
4.50ms x Mult  
18.0ms x Mult  
Corrected signal measurement written to  
output register (I2C, SPI, PDM, or Alarms)  
0.10ms  
Table 10. CDC Resolution and Conversion Times  
Resolution Bits  
in C_Config and T_Config Words  
Temperature Conversion  
Capacitance Conversion  
Time[a] (ms)  
CDC Resolution (Bits)  
Time[a] (ms)  
00BIN  
8
0.30  
0.30 Mult  
*
01BIN  
10BIN  
11BIN  
10  
12  
14  
1.15  
4.50  
18.0  
1.15 Mult  
*
4.50 Mult  
*
18.0 Mult  
*
[a] All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%).  
26  
August 16, 2018  
 
 
 
 
10.3 Measurement Modes  
The ZSSC3123 can be programmed to operate in either Sleep Mode or Update Mode. The measurement mode is selected with the  
Measurement_Mode bit in the ZMDI_Config EEPROM word (see Table 29). In Update Mode, measurements are taken at a fixed, selectable  
rate (see section 10.3.1). In Sleep Mode, the part waits for commands from the master before taking measurements (refer to section 10.3.2).  
Figure 10 shows the differences in operation between the two measurement modes.  
10.3.1 Update Mode  
In Update Mode, the digital core will perform conversions at an update rate selected with the Power_Down_Period bit field in the ZMDI_Config  
EEPROM word (see Table 29). Table 11 shows the power-down periods between conversions for the four Power_Down_Period settings. The  
benefit of slower update rates is power savings. Update Mode is compatible with all the different output modes; I2C, SPI, PDMs, and the Alarms.  
As shown in the following figure, at the completion of a measurement cycle, the digital output register, PDMs, and/or Alarms will be updated  
before powering down. When the power-down period expires, the ZSSC3123 will wake up and perform another measurement cycle. If the part  
is programmed for the fastest update rate, there is no power-down period, and measurements happen continuously.  
Table 11. Update Rate Settings (Power_Down_Period Bit Field in ZMDI_Config)  
Note: All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%).  
Power_Down_Period Setting  
Power Down Period (ms)  
00BIN  
01BIN  
10BIN  
11BIN  
0
5
25  
125  
Figure 13. Measurement Sequence in Update Mode  
Power down period depends  
on selected update rate  
ZSSC3123  
Core Activity  
Cap  
Conv  
Cap  
Calc  
Cap  
Conv  
Cap  
Calc  
Temp  
Conv  
Temp  
Calc  
Cap  
Conv  
Cap  
Calc  
Power Down  
Power Down  
Power Down  
Write new corrected signal  
measurement to output  
register (I2C, SPI, PDMs,  
Alarms)  
Write new corrected signal  
measurement to output  
register (I2C, SPI, PDMs,  
Alarms)  
Write new corrected signal  
measurement to output  
register (I2C, SPI, PDMs,  
Alarms)  
Temperature is measured  
after every sixth capacitive  
measurement  
Note: See section 10.2 for measurement cycle timing.  
To calculate the total time between capacitive measurements in Update Mode, add the measurement cycle timing from section 10.2 and the  
power down timing from Table 11. For example, typical settings might be a capacitance measurement resolution of 12-bits with a Mult of 1.  
In this example, the time between measurements = (4.5ms 1 + 0.1ms + 0.3ms) + (power down period). See Table 12 through Table 15 and  
Figure 12 for the time between measurements for the different update rate settings and bit resolutions.  
Temperature measurements are performed every six capacitive measurements. The actual frequency of temperature conversions varies with  
the update rate and AFE configuration settings. As shown in Figure 13, when a temperature measurement is performed, a capacitance  
measurement occurs immediately after, so the total measurement cycle time is increased by the length of the temperature conversion and  
temperature DSP calculation.  
27  
August 16, 2018  
 
 
 
 
To calculate the total time between temperature measurements in Update Mode, take the time between capacitive measurements as calculated  
in the above text and multiply that number by six (there are six capacitive measurements to every temperature measurement) and then add the  
temperature conversion time/temperature DSP calculation time from Table 11 For example a temperature measurement with a resolution of  
12-bits has a conversion time/DSP calculation time of 4.5ms +0.25ms (from Table 11) Continuing with the above example (12-bit capacitive  
measurement with a multiplier of 1) the time between temperature measurements is (capacitance update time * 6) + 4.75ms.  
Table 12. Time Periods between Capacitance and Temperature Measurements for Mult1,  
Different Resolutions, and Update Rates  
Total Time between  
Capacitance Measurements (ms)  
Total Time between  
Temperature Measurements (ms)  
Mult1  
CDC Res.  
(Bits)  
Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate  
00BIN  
01BIN  
10BIN  
25.70  
26.55  
29.90  
43.40  
11BIN  
00BIN  
01BIN  
34.75  
40.70  
64.15  
158.65  
10BIN  
11BIN  
8
0.70  
5.70  
125.70  
126.55  
129.90  
143.40  
4.75  
154.75  
160.70  
184.15  
278.65  
754.75  
760.70  
784.15  
878.65  
10  
12  
14  
1.55  
6.55  
10.70  
34.15  
128.65  
4.90  
9.90  
18.40  
23.40  
Table 13. Time Periods between Capacitance and Temperature Measurements for Mult2,  
Different Resolutions, and Update Rates  
Total Time between  
Capacitance Measurements (ms)  
Total Time between  
Temperature Measurements (ms)  
Mult2  
CDC Res.  
(Bits)  
Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate  
00BIN  
01BIN  
10BIN  
26.00  
27.70  
34.40  
61.40  
11BIN  
00BIN  
01BIN  
36.55  
47.60  
91.15  
266.65  
10BIN  
11BIN  
8
1.00  
6.00  
126.00  
127.70  
134.40  
161.40  
6.55  
156.55  
167.60  
211.15  
386.65  
756.55  
767.60  
811.15  
986.65  
10  
12  
14  
2.70  
7.70  
17.60  
61.15  
236.65  
9.40  
14.40  
41.40  
36.40  
Table 14. Time Periods between Capacitance and Temperature Measurements for Mult4,  
Different Resolutions, and Update Rates  
Total Time between  
Capacitance Measurements (ms)  
Total Time between  
Temperature Measurements (ms)  
Mult4  
CDC Res.  
(Bits)  
Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate  
00BIN  
01BIN  
10BIN  
26.60  
30.00  
43.40  
97.40  
11BIN  
00BIN  
01BIN  
10BIN  
11BIN  
760.15  
781.40  
865.15  
1202.65  
8
1.60  
6.60  
126.60  
130.00  
143.40  
197.40  
10.15  
40.15  
160.15  
181.40  
265.15  
602.65  
10  
12  
14  
5.00  
10.00  
23.40  
77.40  
31.40  
61.40  
18.40  
72.40  
115.15  
452.65  
145.15  
482.65  
28  
August 16, 2018  
Table 15. Time Periods between Capacitance and Temperature Measurements for Mult8,  
Different Resolutions, and Update Rates  
Total Time between  
Capacitance Measurements (ms)  
Total Time between  
Temperature Measurements (ms)  
Mult8  
CDC Res.  
(Bits)  
Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate Update Rate  
00BIN  
01BIN  
10BIN  
27.80  
34.60  
61.40  
169.40  
11BIN  
00BIN  
01BIN  
10BIN  
167.35  
209.00  
373.15  
1034.65  
11BIN  
767.35  
809.00  
973.15  
1634.65  
8
2.80  
7.80  
127.80  
134.60  
161.40  
269.40  
17.35  
47.35  
10  
12  
14  
9.60  
14.60  
41.40  
149.40  
59.00  
89.00  
36.40  
144.40  
223.15  
884.65  
253.15  
914.65  
10.3.1.1 Data Fetch in Update Mode  
In Update Mode, I2C and SPI are used to fetch data from the digital output register using a Data Fetch (DF) command (see section 10.6.3).  
Detecting when data is ready to be fetched can be handled either by polling or by monitoring the Ready pin (see section 10.6.6 for details on  
the Ready pin). The status bits of a DF tell whether or not the data is valid or stale (see section 10.4 regarding the status bits). As shown in  
Figure 14 after a measurement cycle is complete, valid data can be fetched. If the next data fetch is performed too early, the data will be the  
same as the previous fetch with stale status bits. As shown in the figure, a rise on the Ready pin can also be used to tell when valid data is  
ready to be fetched.  
Figure 14. I2C and SPI Data Fetching in Update Mode  
Power down period depends  
on selected update rate  
ZSSC3123  
Core Activity  
Cap  
Conv  
Cap  
Conv  
Temp  
Conv  
Temp  
Calc  
Cap  
Conv  
Power Down  
Power Down  
Power Down  
Cap Calc  
Cap Calc  
Cap Calc  
Write new corrected signal  
measurement to output  
register (I2C or SPI)  
Write new corrected signal  
measurement to output  
register (I2C or SPI)  
Write new corrected signal  
measurement to output  
register (I2C or SPI)  
I2C/SPI  
DF  
I2C/SPI  
DF  
I2C/SPI  
DF  
I2C/SPI  
DF  
I2C/SPI  
DF  
Serial Interface  
Activity  
Valid read occurs  
Stale values  
Valid read occurs  
Stale values  
Valid read occurs  
Ready Pin  
Note: See section 10.2 for timing of measurements.  
29  
August 16, 2018  
 
10.3.2 Sleep Mode  
In Sleep Mode, the digital core will only perform conversions when the ZSSC3123 receives a Measurement Request command (MR); otherwise,  
the ZSSC3123 is always powered down. Measurement Request commands can only be sent using I2C or SPI, so PDM is not available. The  
Alarms can be used in Sleep Mode but only in combination with I2C or SPI. More details about MR commands in Sleep Mode operation can be  
found in section 10.3.2.1.  
Note: Sleep Mode power consumption is significantly lower than Update Mode power consumption (see section 5 for exact values).  
The following figure shows the measurement and communication sequence for Sleep Mode. The master sends an MR command to wake the  
ZSSC3123 from power down. After the ZSSC3123 wakes up, a measurement cycle is performed consisting of both a temperature and a  
capacitance conversion followed by the DSP correction calculations.  
At the end of a measurement cycle, the digital output register and Alarms will be updated before powering down. An I2C or SPI data fetch (DF)  
is performed during the power-down period to fetch the data from the output register. In I2C the user can send another MR to start a new  
measurement cycle without fetching the previous data, but in SPI, a DF must be done before another MR can be sent. After the data has been  
fetched, the ZSSC3123 remains powered down until the master sends an MR command.  
Figure 15. Measurement Sequence in Sleep Mode (Only I2C, SPI, or Alarms)  
ZSSC3123  
Core Activity  
Power  
Down  
Temp  
Conv  
Temp  
Calc  
Cap  
Conv  
Cap  
Calc  
Power Down  
Write new corrected signal measurement to  
output register (I2C, SPI, Alarms)  
Command wakes ZSSC3123  
Serial Interface  
Activity  
MR  
DF  
Valid read  
occurs  
Note: See section 10.2 for timing of measurements.  
30  
August 16, 2018  
 
10.3.2.1 Data Fetch in Sleep Mode  
In Sleep Mode, I2C and SPI are used to request a measurement with a MR command and to fetch data from the digital output register using a  
Data Fetch (DF) command (see section 10.6.3).  
As shown in the following figure, after a measurement cycle is complete, valid data can be fetched. The preferred method of detecting valid  
data is to wait for a rise on the Ready pin (see section 10.6.6 for details on the Ready pin). If the Ready pin is not available, the user must wait  
for the measurements to complete before performing the DF. The status bits of the DF can be used to tell whether the data is valid or stale (see  
section 10.4 regarding the status bits), but polling for the result must not be done before the time required for conversion has elapsed.  
Figure 16. I2C and SPI Data Fetching in Sleep Mode  
ZSSC3123  
Core Activity  
Temp  
Conv  
Temp  
Calc  
Cap  
Conv  
Cap  
Calc  
Power Down  
Power Down  
Write new corrected signal  
measurement to output register  
(I2C or SPI)  
Serial Interface  
Activity  
ommand wakes ZSSC3123  
MR  
DF  
Valid read  
occurs  
Ready Pin  
Note: See section 10.2 for timing of measurements.  
31  
August 16, 2018  
 
 
10.4 Status and Diagnostics  
Status bits (the two MSBs of the fetched high data byte; see Table 16) are provided in I2C and SPI but not in PDM. The status bits are used to  
indicate the current state of the fetched data. Diagnostic detection is available in I2C, SPI, and PDM. In I2C and SPI diagnostics are reported  
as a saturated high capacitance and temperature output (see Table 16). In PDM, diagnostics are reported as a railed high output level for both  
PDM_C (capacitive PDM) and PDM_T (temperature PDM). If a diagnostic value is reported then one or more of the errors shown in Table 18  
occurred in normal operation.  
Configuration EEPROM diagnostics are detected at initial power-up of the ZSSC3123 or a wakeup in Sleep Mode and are permanent  
diagnostics. All other diagnostics are detected during a measurement cycle and reported in the subsequent data fetch for I2C or SPI or in an  
output register update for PDM.  
Table 16. Status Bit Definitions  
Status Bits (I2C or SPI)  
PDM Output  
Definition  
00BIN  
Clipped normal output  
Valid data: Data that has not been fetched since the last  
measurement cycle.  
01BIN  
Not applicable  
Stale data: Data that has already been fetched since the last  
measurement cycle.  
Note: If a data fetch is performed before or during the first  
measurement after power-on reset, then Stale data” will be  
returned, but this data is actually invalid since the first  
measurement has not been completed.  
10BIN  
11BIN  
Not applicable  
Not used  
Command Mode: The ZSSC3123 is in Command Mode.  
Not used  
Table 17. Diagnostic Detection  
I2C or SPI Output  
PDM Output  
Definition  
Saturated output 3FFFHEX  
High output (railed) level  
A diagnostic fault has occurred in normal operation (see the  
following table).  
Table 18. Normal Operation Diagnostic Table  
Diagnostic  
Type  
Definition  
Configuration Error  
Permanent  
Transient  
Transient  
Transient  
An EEPROM or RAM parity error occurred in the initial  
loading of the configuration registers.  
RAM Parity Error  
EEPROM Error  
Math Warning  
A RAM parity error occurred during a microcontroller  
instruction in the last measurement cycle.  
A double-bit error detection (DED) EEPROM error occurred  
in the last measurement cycle (see section 10.4.1).  
An internal math overflow has occurred in the last  
measurement cycle and the output might be invalid.  
32  
August 16, 2018  
 
 
 
10.4.1 EEPROM Error Detection and Correction  
The contents of the EEPROM are protected via error checking and correction (ECC). Each of the 32 16-bit words contains 6 parity bits enabling  
single-bit error correction (SEC) and double-bit error detection (DED) per word. In Command Mode both SEC and DED errors are reported in  
the response byte (see section 11.3). If the fetched EEPROM data has a DED error, then the fetched data will be incorrect; however, if a SEC  
error was reported then the fetched data has been corrected, and it is the user’s choice to write the data back to attempt to correct the error.  
During Normal Operation Mode, a diagnostic will be flagged on any DED error, but an SEC error will be automatically corrected and not flagged  
as a diagnostic.  
10.4.2 Alarm Diagnostics  
The alarm outputs do not report diagnostics. If diagnostics are needed with alarm outputs, then either digital or PDM outputs must also be used.  
10.5 Output Modes  
The ZSSC3123 has four different output modes as shown in the following table. See the corresponding reference sections for specifics on each  
mode.  
Table 19. Output Modes  
Output Mode  
I2C  
Reference Sections  
Section 10.6  
Read only SPI  
PDM  
Section 10.7  
Section 10.8  
Alarms  
As illustrated in the pin configuration in section 1, the output communication modes share pins. The Output_Selection bits in EEPROM word  
ZMDI_Config (see section 12.1) select which of these outputs will be enabled. The following table shows the pin configuration for the different  
output selections.  
Table 20. Pin Assignment for Output Selections  
Output Selection  
Pin  
I2C (001BIN)  
SPI (011BIN)  
PDM_C (100BIN)  
PDM_C+T (110BIN)  
Pin 8  
Alarm_Low  
Alarm_Low  
Alarm_Low  
PDM_T  
Pin 9  
Alarm_High  
Ready  
Alarm_High  
Ready  
Alarm_High  
PDM_C  
Alarm_High  
PDM_C  
Pin 10  
Pin 12  
Pin 13  
Pin 14  
SDA  
SCL  
MISO  
SCLK  
SS  
SDA  
SCL  
SDA  
SCL  
No input  
No input  
No Input  
33  
August 16, 2018  
 
 
 
10.6 I2C and SPI  
Two-wire I2C and three-wire read-only SPI are available for fetching data from the ZSSC3123. I2C is used to send calibration commands to  
the ZSSC3123. To choose I2C or SPI, set the corresponding Output_Selection bits in the EEPROM word ZMDI_Config.  
10.6.1 I2C Features and Timing  
The ZSSC3123 uses an I2C-compatible communication protocol1 with support for 100kHz and 400kHz bit rates. The ZSSC3123 I2C slave  
address (00HEX to 7FHEX) is selected by the Device_ID bits in the Cust_Config EEPROM word (see Table 32 for bit assignments). The device  
will respond only to this address if the communication lock is set by programming 011BIN in the Comm_lock bits in the ZMDI_Config EEPROM  
word (see Table 29 for bit assignments); otherwise, the device will respond to all I2C addresses. The factory setting for the I2C slave address  
is 28HEX with Comm_lock set.  
See Figure 17 for the I2C timing diagram, and see Table 21 for the definitions of the parameters shown in the diagram.  
Figure 17. I2C Timing Diagram  
SDA  
tSUDAT  
tBUS  
tLOW  
tHDSTA  
SCL  
tHDSTA  
tHDDAT  
tHIGH  
tSUSTA  
tSUSTO  
Table 21. I2C Parameters  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
SCL clock frequency[a]  
fSCL  
tHDSTA  
tLOW  
20  
0.1  
0.6  
0.6  
0.1  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Start condition hold time relative to SCL edge  
Minimum SCL clock low width[b]  
Minimum SCL clock high width[b]  
tHIGH  
Start condition setup time relative to SCL edge  
Data hold time on SDA relative to SCL edge  
Data setup time on SDA relative to SCL edge  
Stop condition setup time on SCL  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUS  
0.5  
0.1  
0.1  
1
Bus free time between stop condition and start condition  
[a] The min. frequency of 20kHz applies to calibration/test only (required to meet Command Window timing). There is no minimum for NOM.  
[b] Combined low and high widths must equal or exceed the minimum SCL period.  
1
For details, refer to the current version of the I2C specification available at https://www.nxp.com/docs/en/user-guide/UM10204.pdf?fsrch=1&sr=2&pageNum=1 or  
other websites for this specification.  
34  
August 16, 2018  
 
 
 
 
10.6.2 SPI Features and Timing  
SPI is available only as half duplex (read-only from the ZSSC3123). SPI speeds of up to 800kHz can be supported. The SPI interface can be  
programmed to allow the master to sample MISO on the falling-edge or rising-edge of SCL via the SPI_Phase bit in EEPROM word Cust_Config  
(see Table 32 for bit assignments). See the following figure for the SPI timing diagram and the following table for definitions of the parameters  
shown in the timing diagram.  
Figure 18. SPI Timing Diagram  
tHDSS  
tHIGH  
SCLK  
tSUSS  
tLOW  
HiZ  
HiZ  
MISO  
SS  
tCLKD  
tCLKD  
tBUS  
Table 22. SPI Parameters  
PARAMETER  
SYMBOL  
fSCL  
MIN  
50  
2.5  
0.6  
0.6  
0
TYP  
MAX  
UNITS  
kHz  
µs  
SCLK clock frequency  
800  
SS drop to first clock edge  
tHDSS  
tLOW  
Minimum SCLK clock low width[a]  
Minimum SCLK clock high width[a]  
Clock edge to data transition  
µs  
tHIGH  
µs  
tCLKD  
tSUSS  
tBUS  
0.5  
µs  
Rise of SS relative to last clock edge  
Bus free time between rise and fall of SS  
0.1  
2
µs  
µs  
[a] Combined low and high widths must equal or exceed minimum SCLK period.  
10.6.3 I2C and SPI Commands  
As detailed in Table 23, there are three types of commands that allow the user to interface with the ZSSC3123 in the I2C or SPI modes.  
Table 23. I2C and SPI Command Types  
Type  
Description  
Communication Supported Reference Sections  
Data Fetch (DF)  
Used to fetch data in any digital mode  
I2C and SPI  
I2C and SPI  
I2C Only  
Section 10.6.4  
Section 10.6.5  
Section 11.2  
Measurement Request (MR) Used to start measurements in Sleep Mode  
Calibration Commands Used in Command Mode during the calibration process  
35  
August 16, 2018  
 
 
 
10.6.4 Data Fetch (DF)  
The Data Fetch (DF) command is used to fetch data in any digital output mode. With the start of communication (for I2C after reading the slave  
address; for SPI at the falling edge of SS), the entire output packet will be loaded in a serial output register. The register will be updated after  
the communication is finished. The output is always scaled to 14 bits independent of the programmed resolution. The ordering of the bits is big-  
endian.  
10.6.4.1 I2C Data Fetch  
An I2C Data Fetch command starts with the 7-bit slave address and the 8th bit = 1 (READ). As the slave, the ZSSC3123 sends an acknowledge  
(ACK) indicating success. The number of data bytes returned by the ZSSC3123 is determined by when the master sends the NACK and stop  
condition. The following figure shows examples of fetching two and three bytes respectively. The full 14 bits of capacitive data are fetched in  
the first two bytes. The MSBs of the first byte are the status bits.  
If temperature data is needed, additional temperature bytes can be fetched. As illustrated in Figure 19, the three-byte data fetch returns 1 byte  
of temperature data (8-bit accuracy) after the capacitive data. A fourth byte can be fetched where the six MSBs of the fetched byte are the six  
LSBs of a 14-bit temperature measurement. The last two bits of the fourth byte are undetermined and should be masked off in the application.  
Figure 19. I2C Measurement Packet Reads  
I2C DF 2 Bytes: Slave returns only capacitance data to master in 2 bytes  
S
6 5 4 3 2 1 0 R A 15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 N S  
Device Slave Address [6:0]  
Wait for  
Cap. Data [13:8]  
Cap. Data [7:0]  
Slave ACK  
Master ACK  
Master ACK  
Master NACK  
S
6
5
4
3
2
1
0 R A 15 14 13 12 11 10 9  
8
A 7  
6
5
4
3
2
1
0 A 7  
6
5
4
3
2
1
0 N S  
Device Slave Address [6:0]  
Cap. Data [13:8]  
Cap. Data [7:0]  
Temp. Data [13:6]  
I2C DF 3 Bytes: Slave returns 2 capacitance data bytes and temperature high byte (T[13:6]) to master  
Start Condition  
Stop Condition  
Acknowledge (ACK)  
Not Acknowledge  
(NACK)  
Read/Write  
(Read = 1)  
S
2
S
A
N
R
Slave Address Bit (Example: Bit 2)  
2 Command or Data Bit (Example: Bit 2)  
Status Bit  
36  
August 16, 2018  
 
 
10.6.4.2 SPI Data Fetch  
By default, the SPI interface will have data change after the falling edge of SCLK. The master should sample MISO on the rising (opposite)  
edge of SCLK. This is configurable via the SPI_Phase bit in the EEPROM word Cust_Config (see Table 32 for bit assignments). The SPI  
protocol can handle high and low polarity of the clock line without a configuration change.  
As displayed in the following figure, the entire output packet is 4 bytes (32 bits). The high capacitive data byte comes first, followed by the low  
byte. Then 14 bits of corrected temperature (T[13:0]) are sent: first the T[13:6] byte and then the {T[5:0],xx} byte. The last 2 bits of the final byte  
are undetermined and should be masked off in the application. If the user only requires the corrected capacitance value, the read can be  
terminated after the 2nd byte. If the corrected temperature is also required but only at an 8-bit resolution, the read can be terminated after the  
3rd byte is read.  
Figure 20. SPI Output Packet with Positive Edge Sampling  
SCLK  
x
MISO  
SS  
HiZ  
S1  
S0  
C13  
C12  
C7  
C6  
C0  
T13  
T12  
T1  
T0  
HiZ  
Packet = [{S(1:0),C(13:8)}, {C(7:0)}, {T(13:6)},{T(5:0),xx}]  
Where  
S(1:0) = Status bits for the packet (normal, command, busy, diagnostic)  
C(13:8) = Upper 6 bits of the 14-bit capacitance data  
C(7:0) = Lower 8 bits of the 14-bit capacitance data  
T(13:6) = Corrected temperature data (if application does not require corrected temperature, terminate read early)  
T(5:0),xx =. Remaining bits of corrected temperature data for full 14-bit resolution  
HiZ = High impedance  
10.6.5 Measurement Request (MR)  
A measurement request (MR) is a Sleep-Mode-only command sent by the master to wake up the ZSSC3123 and start a new measurement  
cycle in both I2C and SPI modes. See section 10.3.2 for more information on Sleep Mode.  
10.6.5.1 I2C Measurement Request  
The I2C MR is used to wake up the device in Sleep Mode and start a complete measurement cycle starting with a temperature measurement,  
followed by a capacitance measurement, followed by the DSP calculations, and then the results are written to the digital output register. As  
shown in Figure 21, the communication contains only the slave address and the WRITE bit (0) sent by the master. After the ZSSC3123 responds  
with the slave ACK, the master creates a stop condition.  
Note: The I2C MR function can also be accomplished by sending “don’t care” data after the address instead of immediately sending a stop bit.  
37  
August 16, 2018  
 
Figure 21. I2C MR  
I2C MRMeasurement Request: Slave starts a measurement cycle  
S
6 5 4 3 2 1 0 W A S  
Wait for  
Slave ACK  
Device Slave Address [6:0]  
Start Condition  
Stop Condition  
Acknowledge (ACK)  
Slave Address Bit  
(Example: Bit 2)  
Read/Write bit  
W
S
S
A
(Example: Write = 0)  
10.6.5.2 SPI Measurement Request  
The SPI measurement request (SPI MR) is used to wake the device in Sleep Mode and then start a complete measurement cycle, starting with  
the temperature measurement / temperature DSP calculation, followed by the capacitance measurement / capacitance DSP calculations, and  
then the results are written to the digital output register. As shown in Figure 22, executing an SPI MR command is a read of 8 bits, ignoring the  
data that is returned.  
Note: The SPI MR function can also be accomplished by performing a full SPI Data Fetch (see section 10.6.4.2) and ignoring the invalid data  
that will be returned.  
Figure 22. SPI MR  
SS  
SCLK  
x
x
Ignore Data  
MISO  
10.6.6 Ready Pin  
A rise on the Ready pin indicates that new data is ready to be fetched from either the I2C or SPI interface. The Ready pin stays high until a  
Data Fetch (DF) command is sent (see section 10.6.3); it stays high even if additional measurements are performed before the DF. In Sleep  
Mode, sending a Measurement Request (MR) command resets the Ready pin.  
The Ready pin’s output driver type is selectable as either full push-pull or open drain via the Ready_Open_Drain bit in EEPROM word  
Cust_Config (see Table 32 for bit assignments and settings). Point-to-point communication typically uses the full push-pull driver. If an  
application requires interfacing to multiple parts, then the open-drain option can allow for just one wire and one pull-up resistor to connect all  
the parts in a bus format.  
10.7 Pulse Density Modulation (PDM)  
PDM outputs for both corrected capacitance and temperature are provided on the ZSSC3123. PDM_C (capacitance PDM) appears on the  
READY/PDM_C pin, and PDM_T (temperature PDM) appears on the ALARM_LOW/PDM_T pin if enabled using the Output_Selection bits (see  
Table 29). The PDM frequency is 231.25kHz ±10% (i.e., the oscillator frequency 1.85MHz ±10% divided by 8). Both PDM signals are 14-bit  
values. In PDM Mode, the ZSSC3123 must be programmed to Update Mode (see section 10.3.1). Every time a conversion cycle has finished,  
the PDM will begin outputting the new value.  
38  
August 16, 2018  
 
 
 
An analog output value is created by low-pass filtering the output; a simple first-order RC filter will work in this application. Select the time  
constant of the filter based on the requirements for settling time and/or peak-to-peak ripple.  
Important: The resistor of the RC filter must be ≥10k.  
The following table shows some filter examples using a 10kresistor.  
Table 24. Low Pass Filter Example for R = 10k  
PDM_C  
Desired Analog  
Filter Capacitance (nF)  
VPP Ripple (mV/V)  
0 to 90% Settling Time (ms)  
Output Resolution  
100  
400  
4.3  
1.0  
0.3  
0.1  
2.3  
9.2  
8
10  
12  
14  
1600  
6400  
36.8  
147.2  
For a different (higher) resistor, the normalized ripple VPP[mV/V] can be calculated as:  
4324  
VPP mV / V   
Equation 14  
(R k C nF )  
or the settling time tSETT for a 0% to 90% settling can be calculated as:  
tSETT ms 0.0023R kC nF  
Equation 15  
The ZSSC3123 provides high and low clipping limits for the PDM output. EEPROM words PDM_Clip_High and PDM_Clip_Low (EEPROM  
registers 16HEX and 17HEX; see Table 28) are the 14-bit high and low clipping limit registers respectively. The 14-bit values map directly to the  
output of the IC and can be calculated as:  
214 * clip _ level _%  
Equation 16  
PDM _Clip ROUND(  
)
100  
These registers apply to both PDM_C and PDM_T. Since diagnostics are reported via the PDM_C or PDM_T pin (see section 10.4), clipping  
limits allow diagnostics to be differentiated from the normal output. For detection of the diagnostic signal, a PDM_Clip_High limit of 97.5%  
(3E66HEX) or lower is recommended.  
Important: The default values for the high and low clipping limits (00HEX) are not compatible with PDM output, so the clipping limits must be  
changed if the PDM output is used. Otherwise, the PDM output will not function as expected. If the PDM output is not used, it is important to  
retain the default values of 00HEX for the clipping limits.  
10.8 Alarm Output  
The alarm output can be used to monitor whether a corrected capacitance reading has exceeded or fallen below pre-programmed values. The  
alarm can be used to drive an open-drain load connected to VDD, as demonstrated in section 14.2, or it can function as a full push-pull driver.  
If a high voltage application is required, external devices can be controlled with the Alarm pins, as demonstrated in section 14.3.  
The two alarm outputs can be used at the same time, and these alarms can be used in combination with any of the other three modes; I2C,  
SPI, or PDM.  
39  
August 16, 2018  
 
 
 
Note: When both PMD_C and PDM_T are selected, only Alarm_High is available (see section 10.5).  
The alarm outputs are updated when a conversion cycle is completed. The alarm outputs can be used in both Update Mode and Sleep Mode,  
but if Sleep Mode is used, I2C or SPI must also be used to control the measurements (see section 10.3).  
10.8.1 Alarm Registers  
Four registers are associated with the alarm functions: Alarm_High_On, Alarm_High_Off, Alarm_Low_On, and Alarm_Low_Off (see Table 28  
for EEPROM addresses). Each of these four registers is a 14-bit value that determines where the alarms turn on or off. The two high alarm  
registers form the output with hysteresis for the Alarm_High pin, and the two low alarm registers form the output with hysteresis for the  
Alarm_Low pin. Each of the two alarm pins can be configured independently using Alarm_Low_Cfg and Alarm_High_Cfg located in EEPROM  
word Cust_Config (see Table 32 for bit assignments).  
Note: If two high alarms or two low alarms are needed, see section 10.8.4.  
10.8.2 Alarm Operation  
As shown in the following figure, the Alarm_High_On register determines where the high alarm trip point is and the Alarm_High_Off register  
determines where the high alarm turns off if the high alarm has been activated. The high alarm hysteresis value is equal to Alarm_High_On –  
Alarm_High_Off. The same is true for the low alarm where Alarm_Low_On is the low alarm trip point with Alarm_Low_Off determining the alarm  
shut off point. The low alarm hysteresis value is equal to Alarm_Low_Off Alarm_Low_On. Figure 24 shows the output operation flowcharts  
for both the Alarm_High and Alarm_Low pins.  
Figure 23. Example of Alarm Function  
High Alarm Pin On  
Alarm_High_On  
High Alarm Pin Off  
Hysteresis  
Alarm_High_Off  
Low Alarm Pin Off  
Alarm_Low_Off  
Hysteresis  
Alarm_Low_On  
Low Alarm Pin On  
Time  
40  
August 16, 2018  
Figure 24. Alarm Output Flow Chart  
HIGH ALARM PIN  
No  
Yes  
Measurement >  
Alarm = Off  
Measurement ≤  
Alarm_High_Off?  
Alarm = On  
Alarm_High_On?  
No  
Yes  
No  
LOW ALARM PIN  
Yes  
Measurement <  
Alarm = Off  
Measurement ≥  
Alarm_Low_Off?  
Alarm = On  
Alarm_Low_On?  
No  
Yes  
10.8.3 Alarm Output Configuration  
The user can select the output driver configuration for each alarm using the Output Configuration bit in the Alarm_High_Cfg and Alarm_Low_Cfg  
registers in EEPROM word Cust_Config (see Table 32 for bit assignments). For applications, such as interfacing with a microcontroller or  
controlling an external device (as seen in section 14.3), select the full push-pull driver for the alarm output type. For an application that directly  
drives a load connected to VDD, as demonstrated in section 14.2, the typical selection is the open-drain output type.  
An advantage of making an alarm output open drain is that in a system with multiple devices, the alarm outputs of each ZSSC3123 can be  
connected together with a single pull-up resistance so that one can detect an alarm on any device with a single wire.  
10.8.4 Alarm Polarity  
For both alarm pins, the polarity of the alarm output is selected using the Alarm Polarity bit in the Alarm_High_Cfg and Alarm_Low_Cfg registers  
in EEPROM word Cust_Config (see Table 32 for bit assignments). As shown in the example in section 14.3, the alarms can be used to drive a  
high voltage humidity control system. Since the humidifier or dehumidifier relays must be on when the alarms are on, the alarm polarity bits are  
set to 0 (active high). In the example given in section 14.2, an alarm is used to turn on an LED in an open drain configuration. In order for the  
LED to be on when the alarm is on, the output must be low, so the alarm polarity bit is set to 1 (active low).  
Another feature of the polarity bits is the ability to create two high alarms or two low alarms. For example, with applications requiring two high  
alarms, flip the polarity bit of the Alarm_Low pin, and it will act as a high alarm. However, in this case, the effect of the alarm low registers is  
also changed: the Alarm_Low_On register would act like the Alarm_High_Off register and the Alarm_Low_Off register would act like the  
Alarm_High_On register. The same can be done to achieve two low alarms: the Alarm_High pin would have the polarity bit flipped, and the two  
Alarm_High registers would have opposite meanings.  
41  
August 16, 2018  
11. Command Mode  
The Command Mode is primarily used for calibrating the ZSSC3123. Command Mode is entered by sending a Start_CM during the command  
window (see section 3.1 for more details on how to enter Command Mode). In Command Mode, a set of commands is available to the user to  
calibrate the part (see Table 25).  
11.1 Command Format  
Command Mode commands are only supported for the I2C protocol. As shown in the following figure, commands are 4-byte packets with the  
first byte being a 7-bit slave address followed by 0 for the write operation. The second byte is the command byte and the last two bytes form a  
16-bit data field.  
Figure 25. I2C Command Format  
I2C WRITE, Command Byte, and 2 Command Data Bytes  
S
6
5
4
3
2
1
0 W A 7  
6
5
4
3
2
1
0 A 15 14 13 12 11 10 9 8 A  
7 6 5 4 3 2 1 0 A S  
Device Slave Address  
Command Byte  
Command Data [15:8]  
Command Data [7:0]  
Wait for  
Slave ACK  
Wait for  
Slave ACK  
Wait for  
Slave ACK  
Wait for  
Slave ACK  
S
2
Start Condition  
S
Stop Condition  
A
2
Acknowledge (ACK) W Read/Write Bit (Example: Write = 0)  
Slave Address Bit (Example: Bit 2)  
Command or Data Bit (Example: Bit 2)  
42  
August 16, 2018  
 
11.2 Command Encodings  
The following table describes all the commands that are offered in Command Mode.  
Note: Only the commands listed in the following table are valid. Other encodings might cause unpredictable results. If data is not needed for  
the command, zeros must be supplied as data to complete the 4-byte packet.  
Table 25. Command List and Encodings  
Third and  
Command Byte  
Fourth Bytes  
8 Command Bits (HEX) 16 Data Bits (HEX)  
Description  
Response Time [a]  
00HEX to 1FHEX  
40HEX to 5FHEX  
80HEX  
0000HEX  
EEPROM Read of addresses 00HEX to 1FHEX  
100μs  
After this command has been sent and executed, a data fetch  
must be performed (see section 10.6.4).  
YYYYHEX  
(Y = data)  
Write to EEPROM addresses 00HEX to 1FHEX  
12ms  
The 2 bytes of data sent will be written to the address specified  
in the 6 LSBs of the command byte.  
0000HEX  
Start_NOM  
Length of initial conversions  
depends on temperature and  
capacitance resolution set-  
tings and the capacitance  
“mult” setting (for details, see  
section 10)  
Ends Command Mode and transitions to Normal Operation  
Mode.  
A0HEX  
0000HEX  
0000HEX  
Start_CM  
100μs  
Start Command Mode: used to enter the command interpreting  
mode. Start_CM is only valid during the power-on Command  
Window (see section 10.1).  
B0HEX  
Get Revision  
100μs  
Get the revision of the part.  
After this command has been sent and executed, a data fetch  
must be performed (see section 10.6.4).  
[a] All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%).  
11.3 Command Response and Data Fetch  
After a command has been sent and the execution time defined in Table 25 has expired, an I2C Data Fetch (DF) can be performed to fetch the  
response. As shown in Figure 26, after the slave address has been sent, the first byte fetched is the response byte. The upper two status bits  
will always be 10BIN to represent Command Mode (see section 10.4). The lower two bits are the response bits. Table 26 describes the different  
responses that can be fetched.  
To determine if a command has finished executing, poll the part until a Busy response is no longer received. The middle four bits of the response  
byte are command diagnostic bits where each bit represents a different diagnostic (see Table 27). For more information on EEPROM errors,  
see section 10.4.1.  
Note: Regardless of what the response bits are, one or more of the diagnostic bits might be set, indicating an error occurred during the execution  
of the command.  
Note: Only one command can be executed at a time. After a command is sent, another command must not be sent until the execution time of  
the first command defined in Table 25 has expired.  
43  
August 16, 2018  
 
 
For all commands except EEPROM Read and Get Revision, the data fetch should be terminated after the response byte is read. If the command  
was a Get Revision, then the user will fetch the one-byte Revision value as shown in Figure 26, example 2. The revision is coded with the upper  
nibble being the letter corresponding to a full layer change and the lower nibble being the metal change number, for example A0. If the command  
was an EEPROM Read, then the user will fetch two more bytes as shown in Figure 26, example 3. If a Corrected EEPROM Error diagnostic  
was flagged after an EEPROM read, the user has the option to write this data back to attempt to fix the error.  
Instead of polling to determine if a command has finished executing, the user can use the Ready pin. In this case, wait for the Ready pin to rise,  
which indicates that the command has executed. Then a data fetch can be performed to get the response and data (see Figure 26). See section  
10.6.6 for more information on the Ready pin.  
Table 26. Response Bits  
Encoding  
00BIN  
Name  
Busy  
Description  
The command is busy executing.  
01BIN  
Positive Acknowledge  
The command executed successfully.  
The command was not recognized or an EEPROM write was attempted  
while the EEPROM was locked.  
10BIN  
Negative Acknowledge  
Table 27. Command Diagnostic Bits  
Bit Position  
Name  
Description  
2
Corrected EEPROM Error  
A corrected EEPROM error occurred during execution of the last  
command.  
3
4
Uncorrectable EEPROM Error  
RAM Parity Error  
An uncorrectable EEPROM error during execution of the last command.  
A RAM parity error occurred during a microcontroller instruction in the  
execution of the last command.  
5
Configuration Error  
An EEPROM or RAM parity error occurred in the initial loading of the  
configuration registers.  
44  
August 16, 2018  
Figure 26. Command Mode Data Fetch  
(1) I2C DF Command Status Response 1 Byte  
S
6 5 4 3 2 1 0 R A 7 6 5 4 3 2 1 0 N S  
Device Slave Address [6:0]  
Status Diagnostics Response  
[7:6]  
[5:2]  
[1:0]  
Wait for  
Slave ACK  
Master ACK  
Master NACK  
S
6 5 4 3 2 1 0 R A 7 6 5 4 3 2 1 0 A 7 6 5 4 3 2 1 0 N S  
Device Slave Address [6:0]  
Status Diagnostics Response  
[5:2]  
[1:0]  
cLite ꢀRevision  
Data Byte [7:0]  
[7:6]  
(2) I2CGet Revision DF Command Status Response and cLite ꢀRevision 2 Bytes  
Wait for  
Slave ACK  
Master ACK  
Master ACK  
Master NACK  
S
6
5
4
3
2
1
0
R A  
7
6
5
4
3
2
1
0
A 15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 N S  
Diagnostics  
[5:2]  
Status  
[7:6]  
Response  
[1:0]  
EEPROM Data  
Low Byte [7:0]  
Device Slave Address [6:0]  
EEPROM Data  
High Byte [15:8]  
(3) I2C EEPROM DF Command Status Response and EEPROM Data Fetch 3 Bytes  
Start Condition  
Stop Condition  
Acknowledge (ACK)  
Not Acknowledge  
(NACK)  
Read/Write Bit  
(Example: Read = 1)  
N
R
A
2
S
2
S
Slave Address Bit  
(Example: Bit 2)  
Command or Data Bit  
(Example: Bit 2)  
Status Bits  
(In Command Mode Always 10)  
45  
August 16, 2018  
12. EEPROM  
The EEPROM array contains the calibration coefficients for gain and offset, etc., and the configuration bits for the analog front-end, output  
modes, measurement modes, etc. The ZSSC3123 EEPROM is arranged as 32 16-bit words (see Table 28). The EEPROM is divided into two  
sections. Words 0HEX to 15HEX can only be written to if the EEPROM is unlocked. After the EEPROM is locked, these locations can no longer  
be written to. The EEPROM lock bits are in the ZMDI_Config register (see Table 28 for the bit assignment). Words 16HEX to 1FHEX (highlighted  
blue in Table 28) are always unlocked and available for writing to at all times. See section 11 for instructions on reading and writing to the  
EEPROM in Command Mode via the I2C interface. When programming the EEPROM, an internal charge pump voltage is used; therefore a  
high voltage supply is not needed.  
Note: If the EEPROM was accidentally locked, it can be unlocked with the following instructions (see section 11 for how to send commands).  
1. Enter Command Mode with a Start_CM command.  
2. Send an A2HEX for the command byte and 0000HEX for the command data.  
3. Send an F0HEX for the command byte and 0021HEX for the command data.  
4. Clear the EEPROM_Lock bits in the ZMDI_Config register with an EEPROM Write command.  
5. Reset the part.  
There are four Customer_ID words available for customer use, two in the locked region and two in the unlocked region. They can be used as a  
customer serial number for module traceability. (See the following table for Customer_ID EEPROM addresses.) The integrity of the contents of  
the EEPROM array is ensured via ECC (see section 10.4.1).  
The following table provides a summary of the EEPROM contents. The configuration register bits are explained in detail in the following  
subsections.  
Table 28. EEPROM Word Assignments  
Note: See important notes at the end of the table.  
EEPROM Word  
Bit Range  
IC Default  
Name  
Description and Notes  
00HEX  
15:0  
XXXXHEX  
Cust_ID0  
Customer ID byte 0: For use by customer (default value is the  
upper 16 bits of the lot number)  
01HEX  
15:0  
XXXXHEX  
(LLLLLLLLB  
0000ssssB)  
Cust_ID1  
Customer ID byte 1: For use by customer (default value is the  
lower 8 bits of the lot number and an 8 bit wafer number)  
02HEX  
03HEX  
04HEX  
05HEX  
06HEX  
07HEX  
08HEX  
09HEX  
0AHEX  
0BHEX  
0CHEX  
0DHEX  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
0B00HEX  
0006HEX  
00FTHEX  
0000HEX  
0C06HEX  
0000HEX  
0000HEX  
0000HEX  
0000HEX  
0000HEX  
2000HEX  
0000HEX  
ZMDI_Config  
Not Available  
Not Available  
Not Available  
C_Config  
SOT_tco  
Tco  
IDT configuration register (see section 12.1)  
Do Not Change; must leave at factory settings  
Do Not Change; must leave at factory settings [a]  
Do Not Change; must leave at factory settings  
AFE capacitance configuration register (see Table 30)  
2nd order temperature offset correction for capacitance  
Temperature offset correction for capacitance  
2nd order temperature gain correction for capacitance  
Temperature gain correction for capacitance  
Offset correction for capacitance  
SOT_tcg  
Tcg  
Offset  
Gain_1  
Gain correction for capacitance (region 1)  
SOT_1  
2nd order correction for capacitance (region 1)  
46  
August 16, 2018  
 
 
EEPROM Word  
0EHEX  
Bit Range  
15:0  
IC Default  
2000HEX  
Name  
Description and Notes  
Gain correction for capacitance (region 2)  
2nd order correction for capacitance (region 2);  
Gain_2  
0FHEX  
15:0  
0000HEX  
SOT_2  
alternatively 3rd order correction (only one region)  
Or TOT_1  
10HEX  
11HEX  
12HEX  
13HEX  
14HEX  
15HEX  
16HEX  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
13:0  
7FFFHEX  
8D92HEX  
0000HEX  
2000HEX  
0000HEX  
0000HEX  
0000HEX  
Raw_Break  
T_Config  
Offset_T  
Gain_T  
Break point dividing region 1 from region 2  
AFE temperature configuration register (see Table 31)  
Offset correction for temperature  
Gain correction for temperature  
SOT_T  
2nd order correction for temperature  
TREF  
Raw temperature reading reference point  
PDM_Clip_High PDM high clipping limit (keep at zero unless PDM is enabled; must  
change default if PDM is used)  
17HEX  
13:0  
0000HEX  
PDM_Clip_Low PDM low clipping limit (keep at zero unless PDM is enabled; may  
be changed if PDM is used)  
18HEX  
19HEX  
1AHEX  
1BHEX  
1CHEX  
1DHEX  
1EHEX  
13:0  
13:0  
13:0  
13:0  
15:0  
15:0  
15:0  
3FFFHEX  
3FFFHEX  
0000HEX  
0000HEX  
0028HEX  
0000HEX  
XXXXHEX  
Alarm_High_On High alarm on trip point  
Alarm_High_Off High alarm off trip point  
Alarm_Low_On Low alarm on trip point  
Alarm_Low_Off Low alarm off trip point  
Cust_Config  
Not Available  
Cust_ID2  
Customer configuration register (see section 12.4)  
Do Not Change; must leave at factory settings  
Customer ID byte 2; for use by customer (default value is the  
8-bit x and 8-bit y coordinates on the wafer)  
1FHEX  
15:0  
0000HEX  
Cust_ID3  
Customer ID byte 3; for use by customer  
[a] The T in the default setting for EEPROM word 04HEX represents the custom trim value determined by final test. Do not change this setting.  
47  
August 16, 2018  
12.1 IDT Configuration Register (ZMDI_Config, EEPROM Word 02HEX)  
This register is loaded at power-on reset and upon exiting Command Mode using a Start_NOM command.  
Table 29. ZMDI_Config Bit Assignments  
Bit Range  
IC Default  
Name  
Description and Notes  
0
0BIN  
Measurement_Mode  
0 = Update Mode  
1 = Sleep Mode  
2:1  
00BIN  
Power_Down_Period  
Scale_Sot_Tc  
Power Down Period: [a]  
00BIN = 0ms  
01BIN = 5ms  
10BIN = 25ms  
11BIN = 125ms  
3
0BIN  
Scales the SOT TC Terms:  
0 = Scale 1  
1 = Scale 2  
4
0BIN  
Gain4x_C  
Multiply Gain_1 and Gain_2 by  
0 = multiply by 1  
1 = multiply by 4  
7:5  
000BIN  
EEPROM_lock  
011BIN = locked  
All other = unlocked  
When EEPROM is locked, the internal charge pump is disabled  
and the EEPROM can no longer be programmed.  
Note: If the EEPROM was accidentally locked, see section 12 for  
instructions for unlocking it.  
10:8  
011BIN  
Comm_lock  
011BIN = locked  
All other = unlocked  
When communication is locked, I2C communication will only  
respond to its programmed address; otherwise if communication is  
unlocked, I2C will respond to any address.  
13:11  
001BIN  
Output_Selection  
001BIN = I2C  
011BIN = SPI  
100BIN = PDM Capacitance (+ 2 alarms)  
110BIN = PDM Capacitance + Temperature (+ 1 alarm)  
All other configurations are not allowed  
See Table 20 for more details.  
14  
15  
0BIN  
0BIN  
Third_order  
0 = Piece-wise linear calibration with breakpoint  
1 = Third-order calibration  
Not Available  
Do Not Change must leave at factory settings  
[a] All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%).  
48  
August 16, 2018  
 
 
12.2 Capacitance Analog Front-End Configuration (C_Config, EEPROM Word 06HEX)  
This register is loaded immediately before a capacitance measurement is taken, so a power cycle is not needed for changes to take effect.  
Table 30. C_Config Bit Assignments  
Bit Range  
2:0  
IC Default  
110BIN  
Name  
Description and Notes  
CDC_Reference  
CDC_Offset  
Not Available  
Resolution  
CDC reference capacitor selection (see Table 6 to Table 9)  
CDC offset capacitor selection (see Table 6 to Table 9)  
Do Not Change must leave at factory settings  
5:3  
000BIN  
9:6  
0000BIN  
11BIN  
11:10  
CDC resolution and sample rate: [a]  
00BIN = 8 bits at 0.7ms rate  
01BIN = 10 bits at 1.6ms rate  
10BIN = 12 bits at 5.0ms rate  
11BIN = 14 bits at 18.5ms rate  
13:12  
00BIN  
CDC_Mult  
CDC Multiplier:  
00BIN = 1 (2pF to 8pF)  
01BIN = 2 (8pF to 32pF)  
10BIN = 4 (32pF to 130pF)  
11BIN = 8 (130pF to 260pF)  
14  
15  
0BIN  
Differential  
Differential input capacitance selection:  
0 = Single-ended  
1 = Differential  
0BIN  
Not Available  
Do Not Change must leave at factory settings  
[a] All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%). See section 10.2 for additional  
timing factors.  
49  
August 16, 2018  
 
 
12.3 Temperature Analog Front End Configuration (T_Config, EEPROM Word 11HEX)  
This register is loaded immediately before a capacitance measurement is taken, so a power cycle is not needed for changes to take effect.  
Table 31. T_Config Bit Assignments  
Bit Range  
IC Default  
Name  
Description and Notes  
2:0  
010BIN  
CDC_Reference  
CDC reference capacitor selection. The factory settings are set for a  
full-span temperature range from -40°C to +125°C.  
Note: Do not change this setting from the factory setting unless a  
different temperature range is needed.  
5:3  
8:6  
010BIN  
110BIN  
CDC_Offset  
Temp_Trim  
CDC offset capacitor selection. The factory settings are set for a full-  
span temperature range from -40°C to +125°C.  
Note: Do not change this setting from the factory setting unless a  
different temperature range is needed.  
Trim setting used for the temperature measurement. The factory  
settings are set for a full-span temperature range from -40°C to  
+125°C.  
Note: Do not change this setting from the factory setting unless a  
different temperature range is needed.  
9
0BIN  
Not Available  
Resolution  
Do Not Change must leave at factory settings  
11:10  
11BIN  
Temperature resolution and sample rate: [a]  
00BIN = 8 bits at 0.7ms rate  
01BIN = 10 bits at 1.6ms rate  
10BIN = 12 bits at 5.0ms rate  
11BIN = 14 bits at 18.5ms rate  
15:12  
1000BIN  
Not Available  
Do Not Change must leave at factory settings  
[a] All time values shown are typical; for the worst case values, multiply by 1.1 (nominal frequency ±10%).  
50  
August 16, 2018  
 
 
12.4 Customer Configuration Register (Cust_Config, EEPROM Word 1CHEX)  
This register is loaded at power-on reset and upon exiting Command Mode after receiving a Start_NOM command.  
Table 32. Cust_Config Bit Assignments  
Bit Range  
6:0  
IC Default  
0101000BIN  
00BIN  
Name  
Description and Notes  
Device_ID  
I2C slave address  
Configure the Alarm_Low output pin:  
8:7  
Alarm_Low_Cfg  
Bits  
Description  
7
Alarm Polarity:  
0 = Active High  
1 = Active Low  
8
Output Configuration:  
0 = Full push-pull  
1 = Open-drain  
10:9  
00BIN  
Alarm_High_Cfg  
Configure the Alarm_High output pin:  
Bits  
Description  
9
Alarm Polarity:  
0 = Active High  
1 = Active Low  
10  
Output Configuration:  
0 = Full push-pull  
1 = Open drain  
11  
12  
0BIN  
SPI_Phase  
Ready_Open_Drain  
Fast_Startup  
The edge of SCLK that the master samples MISO on:  
0 = positive edge  
1 = negative edge  
0BIN  
Ready pin is  
0 = Full push-pull  
1 = Open-drain  
13  
0BIN  
Sets the Command Window length:  
0 = 10ms Command Window  
1 = 3ms Command Window  
15:14  
00BIN  
Not Available  
Do Not Change must leave at factory settings  
51  
August 16, 2018  
 
13. Calibration and Signal Conditioning Math  
IDT can provide software and hardware with samples to perform the calibration. For a complete description and detailed examples, see  
ZSSC3122/ZSSC3123_SSC_Modular_Evaluation_Kit_Description_RevX_xy.pdf.  
Note: For best results, the calibration should be done with all settings set to the final application including supply voltage, measurement mode,  
update rate, output mode, resolution, and AFE settings in the final packaging.  
13.1 Capacitance Signal Conditioning  
The ZSSC3123 supports signal conditioning for an up to two-region piece-wise, non-linear sensor input or a third-order correction, which is  
selectable. The general form of the capacitance signal conditioning equations are provided below.  
Note: The following equations are only meant to show the general form and capabilities of the ZSSC3123 sensor signal conditioning.  
Two-region piece-wise, non-linear sensor input:  
Raw _C OFFSET  T (Tco  T SOT _tco)  
RawTC   
Equation 17  
1 T (Tcg  T SOT _tcg )  
Raw1 MIN(RawTC,Raw _Break )  
Equation 18  
Equation 19  
Raw2 MAX(0,RawTC Raw _Break )  
Out SOT _1 (Gain _1 Raw1)2 Gain _1 Raw1  
SOT _ 2 (Gain _ 2 Raw2 )2 Gain _ 2 Raw2  
Equation 20  
Or alternatively  
Non-linear sensor input up to third-order correction:  
Raw _C OFFSET  T (Tco  T SOT _tco)  
Raw1   
Equation 21  
Equation 22  
1 T (Tcg  T SOT _tcg)  
Out TOT _1 (Gain_1 Raw1)3 SOT _1 (Gain_1 Raw1)2 Gain_1 Raw1  
Where:  
Symbol  
Raw_C  
RawTC  
Raw1  
Description  
Raw sensor reading.  
Temperature-corrected raw value.  
Raw value to be used for region 1 correction.  
Raw value used for region 2 correction.  
Raw2  
52  
August 16, 2018  
 
Symbol  
Raw_Break  
Offset  
Description  
Raw value at which the transition from region 1 to region 2 occurs.  
Offset correction for sensor applied at 50% full scale input.  
Gain correction for sensor applied to region 1.  
Gain_1  
SOT_1  
Second-order correction for sensor region 1.  
Gain_2  
Gain correction for sensor applied to region 2 not used if only 1 region is used.  
SOT_2,  
Second-order correction for sensor region 2 not used if only 1 region is used.  
alternatively TOT_1  
Used as third-order term TOT_1 for third-order correction.  
Tco  
Tcg  
Correction for offset drift due to temperature.  
Correction for sensitivity (gain) change due to temperature.  
Second-order correction for offset drift due to temperature.  
Second-order correction for sensitivity change due to temperature.  
SOT_tco  
SOT_tcg  
TREF  
Raw temperature reading used as a reference temperature for the removal of all TC  
components.  
Difference between current raw temperature and the reference temperature.  
Corrected capacitance output value.  
T  
OUT  
53  
August 16, 2018  
13.2 Temperature Signal Compensation  
Temperature is measured internally. Temperature correction contains both linear gain and offset terms as well as a second-order term to correct  
for any nonlinearity.  
Note: Equation 23 is only meant to show the general form and capabilities of the internal ZSSC3123 temperature signal conditioning.  
T SOT _T (Raw _T)2 Gain_T Raw _T Offset _T  
Equation 23  
Where:  
Symbol  
Raw_T  
Gain_T  
Offset_T  
SOT_T  
T
Range  
Description  
[0,16383]  
Raw temperature reading  
[-32768,32767]  
[-32768,32767]  
[-32768,32767]  
[-32768,32767]  
Gain correction for internal temperature  
Offset correction for internal temperature  
Second-order correction for internal temperature  
Corrected temperature output value  
13.3 Limits on Coefficient Ranges  
There are range limits on some of the calibration coefficients that will be enforced by the calibration routine provided by IDT. These limits ensure  
the integrity of the internal calculations and would only limit the most extreme cases of sensor correction.  
Note: For Alarm-only applications, it is critical that the coefficient verification feature of the calibration routine is used since diagnostics are not  
reported for the Alarms (see section 10.4 for more details).  
Table 6.1 shows the limits for correction for the grade of temperature dependency and 2nd nonlinearity of this dependency.  
Table 33. Limits on Coefficient Ranges  
Coefficient  
TCO  
Correction  
6060 PPM/K  
74 PPM/K2  
Condition  
SOT_TCO  
TCG  
12120 PPM/K  
147 PPM/K2  
Based on raw temperature values  
Based on raw temperature values  
SOT_TCG  
54  
August 16, 2018  
 
14. Application Circuit Examples  
The ZSSC3123 provides functionality for many different configurations. The following examples correspond to the example circuits shown at  
the beginning of the specification; however, there are many other possibilities. Combinations of these examples and many other options can  
give the user maximum design flexibility. Settings for the configuration registers are given with each example. See Table 28 for register  
addresses. In the examples below, bits 3 and 4 of the ZMDI_Config register are marked with an X because they are calculated during calibration  
and are coefficient dependent (see Calibration and Signal Conditioning Math).  
14.1 Digital Output with Optional Alarms  
Figure 27. Digital Output with Optional Alarms Example  
VDD  
VSUPPLY  
(2.3V to 5.5V)  
 
cLite  
ZSSC3123  
Ready  
Vcore  
0.1µF  
GND  
0.1µF  
VSS  
SDA/MISO  
SCL/SCLK  
SS  
C0  
CC  
Alarm_High  
Alarm_Low  
In this example, a single-ended input capacitance is converted to the digital domain, corrected, and output via I2C. The configuration settings  
are shown in the following table. The ZSSC3123 operates in Sleep Mode, in which measurement commands are used during normal operation.  
In this example, the I2C address is 28HEX and the Comm_lock is set.  
In this application, both Alarm_High and Alarm_Low are used for digital communication. As shown in the table, both alarms are configured as  
active high and full push-pull drivers for digital communication.  
The AFE configuration registers select 14-bit resolution for capacitance with a capacitance range from 2.9pF to 7.2pF. The internal temperature  
is set to 14-bit resolution.  
Table 34. Example 1: Configuration Settings  
Configuration Register  
ZMDI_Config (Table 29)  
Cust_Config (Table 32)  
C_Config (Table 30)  
15  
0†  
0†  
0†  
1†  
14  
0
13  
0
12  
0
11  
1
10  
0
9
1
8
1
7
0
6
0
5
0
4
X
0
3
X
1
2
0
1
0
0
1
0†  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0†  
0†  
0†  
1*  
0†  
1*  
0†  
0*  
0
1
0
0
1
1
T_Config (Table 31)  
0†  
0†  
0†  
1
1
0*  
1*  
0*  
0*  
1*  
0*  
* The factory settings are set for a full span temperature range from -40°C to +125°C. Do not change this setting unless a different temperature  
range is needed.  
Reserved setting do not change factory settings.  
55  
August 16, 2018  
14.2 Analog Output with Optional Alarms  
In this example, a single-ended input capacitance is converted and corrected, and then both capacitance and temperature are output via the  
PDM_C and PDM_T pins, which are then low-pass filtered for analog outputs. One of the optional alarms controls an LED. The configuration  
settings are shown Table 35. In the ZMDI_Config register, the output selection bits are set to 10 to select PDM. Example low-pass filter values  
are given in section 10.7.  
Figure 28. Analog Output with Optional Alarms Example  
VSUPPLY  
(+2.3V to 5.5V)  
0.1µF  
0.1µF  
VDD  
 
cLite  
ZSSC3123  
Vcore  
Cap.  
Analog  
Output  
PDM_C  
VSS  
Temp  
Analog  
Output  
GND  
PDM_T  
C0  
LED  
Alarm_High  
CC  
For PDM, Update Mode must be selected. In this application example, a 25ms power-down period has been used.  
In this application, Alarm_High is used to turn on an LED in an open-drain configuration. The output must be low for the LED to be on, so the  
Alarm_High polarity bit is set to active low. The PDM clipping limits are set for 10% (666HEX) to 90% (3999HEX) output.  
The AFE configuration registers show a resolution of 14 bits for capacitance; however, the PDM low-pass filter may be set for a lower resolution  
with a faster settling time (see section 10.7). A capacitance range of 1.4pF to 8.6pF has been chosen, which requires a Mult setting of 1. The  
internal temperature is set to 12-bit resolution.  
Table 35. Example 2: Configuration Settings  
Configuration Register  
ZMDI_Config (Table 29)  
Cust_Config (Table 32)  
C_Config (Table 30)  
T_Config (Table 31)  
PDM_Clip_High  
15  
0†  
0†  
0†  
1†  
0
14  
0
13  
1
12  
1
11  
0
10  
0
9
1
8
1
7
0
6
0
5
0
4
X
0
3
X
1
2
1
1
0
0
0
0†  
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
0†  
0†  
0
0†  
1*  
1
0†  
1*  
1
0†  
0*  
0
0
0
1
1
0
1
0†  
0
0†  
1
0†  
1
1
0
0*  
0
1*  
1
0*  
1
0*  
0
1*  
0
0*  
1
1
0
PDM_Clip_Low  
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
* The factory settings are set for a full span temperature range from -40°C to +125°C. Do not change this setting unless a different temperature  
range is needed.  
† Reserved setting – do not change factory settings.  
56  
August 16, 2018  
 
 
14.3 Bang-Bang Control System  
In this example, the only outputs are the alarm pins. They are programmed to control a high voltage bang-bang humidity control system. External  
devices are not needed if not using high voltage.  
If the humidity gets too high, the ZSSC3123 activates the dehumidifier using the Alarm_High pin. If the humidity gets too low, it activates the  
humidifier with the Alarm_Low pin. The alarm registers must be set to appropriate trip and hysteresis points (see section 3.8). The configuration  
settings are shown in Table 36.  
The output selection bits should either be set to I2C or SPI since, depending on the PDM configuration, both alarms are not supported.  
Additionally, I2C and SPI are lower power than PDM. This application does not use I2C or SPI, so Update Mode must be used because Sleep  
Mode commands cannot be sent. The fastest update rate is used for this example. External devices are needed to control the outputs because  
a voltage source greater than VDD is used.  
The alarm pins control NMOS devices so the alarm pins must be full push-pull and output high when the alarm is on, so the polarity bits are set  
to 0 and the open-drain bits are set to 0.  
In this example application, a faster response time may be needed, so the AFE configuration settings show 10-bit resolution for both capacitance  
and internal temperature. C_Config settings have been selected for a capacitance range of 5.8pF to 7.2pF (see Table 6).  
Figure 29. Bang-Bang Control System Example  
V supply +2.3V to 5.5V  
cLite  
ZSSC3123  
12V  
12V  
VDD  
0.1µF  
0.1µF  
Vcore  
Dehumidifier  
VSS  
Alarm_High  
Alarm_Low  
GND  
Humidifier  
C0  
GND  
CC  
GND  
Table 36. Example 3: Configuration Settings  
Configuration Register  
ZMDI_Config (Table 29)  
Cust_Config (Table 32)  
C_Config (Table 30)  
15  
0†  
0†  
0†  
1†  
14  
0
13  
0
12  
0
11  
10  
0
9
1
8
1
7
0
6
0
5
0
4
X
0
3
X
1
2
0
1
0
0
0
1
0
0
0
0†  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0†  
0†  
0†  
1*  
0†  
1*  
0†  
0*  
1
0
0
0
0
1
T_Config (Table 31)  
0†  
0†  
0†  
1
0*  
1*  
0*  
0*  
1*  
0*  
* The factory settings are set for a full span temperature range from -40°C to +125°C. Do not change this setting unless a different temperature  
range is needed.  
Reserved setting do not change factory settings.  
57  
August 16, 2018  
 
 
14.4 Differential Input Capacitance  
This example shows that the full functionality of the ZSSC3123 including the applications illustrated in examples 1, 2, and 3, can be implemented  
with a differential input capacitance. The capacitor CCC allows a non-galvanic connection (e.g., to the moving part of a motion sensor as part  
of the sensor construction), but it is not needed for sensor types with existing galvanic connections.  
The configuration settings are shown in Table 37. The differential bit is set to select differential input capacitance. In this example, SPI has been  
selected in Update Mode at the fastest update rate. The SPI phase is set to 1 so that the master samples MISO on the negative edge of SCLK.  
The EEPROM has been locked.  
The AFE configuration registers select 14-bit resolution for capacitance and 10-bit resolution for internal temperature. Because this is the  
differential configuration, both the internal reference and offset capacitors are set to zero.  
Figure 30. Differential Input Capacitance Example  
SUPPLY (+2.3V to 5.5V)  
V
VDD  
 
cLite  
ZSSC3123  
Ready  
Vcore  
0.1µF  
GND  
0.1µF  
VSS  
C0  
SDA/MISO  
SCL/SCLK  
SS  
CC  
C1  
Alarm_High  
Alarm_Low  
Table 37. Example 4: Configuration Settings  
Configuration Register  
ZMDI_Config (Table 29)  
Cust_Config (Table 32)  
C_Config (Table 30)  
15  
0†  
0†  
0†  
1†  
14  
0
13  
0
12  
1
11  
1
10  
0
9
0
8
0
7
0
6
1
5
1
4
X
0
3
X
1
2
0
1
0
0
0
0†  
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0†  
0†  
0†  
1*  
0†  
1*  
0†  
0*  
0
0
0
0
0
0
T_Config (Table 31)  
0†  
0†  
0†  
0
1
0*  
1*  
0*  
0*  
1*  
0*  
* The factory settings are set for a full span temperature range from -40°C to +125°C. Do not change this setting unless a different temperature  
range is needed.  
Reserved setting do not change factory settings.  
58  
August 16, 2018  
 
14.5 External Reference Capacitor  
This example demonstrates that the full functionality of the ZSSC3123, including the applications illustrated in examples 1, 2, and 3, can be  
implemented with an external reference capacitor in conjunction with a single-ended input capacitance. In this example, the digital output is  
used. The external reference is used. The configuration settings are shown in Table 38.  
Example configuration settings show I2C in Sleep Mode with the Comm_lock off so that the ZSSC3123 can respond to any I2C slave address.  
Also the Ready pin is configured as open-drain so that multiple devices can have their Ready lines connected together.  
The AFE configuration registers select 12-bit resolution for capacitance and 12-bit resolution for internal temperature. This example also shows  
an offset setting of 4.3pF.  
Figure 31. External Reference Input Capacitance Example  
VSUPPLY  
(+2.3V to 5.5V)  
VDD  
 
cLite  
ZSSC3123  
Ready  
Vcore  
0.1µF  
GND  
0.1µF  
VSS  
C0  
SDA/MISO  
SCL/SCLK  
SS  
CC  
C1  
Alarm_High  
Alarm_Low  
Ref.  
Cap  
Table 38. Example 5: Configuration Settings  
Configuration Register  
ZMDI_Config (Table 29)  
Cust_Config (Table 32)  
C_Config (Table 30)  
15  
0†  
0†  
0†  
1†  
14  
0
13  
0
12  
0
11  
1
10  
0
9
0
8
0
7
0
6
0
5
0
4
X
0
3
X
1
2
0
1
0
0
0
0†  
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0†  
0†  
0†  
1*  
0†  
1*  
0†  
0*  
0
1
1
0
0
0
T_Config (Table 31)  
0†  
0†  
0†  
1
0
0*  
1*  
0*  
0*  
1*  
0*  
* The factory settings are set for a full span temperature range from -40°C to +125°C. Do not change this setting unless a different temperature  
range is needed.  
Reserved setting do not change factory settings.  
59  
August 16, 2018  
 
15. ESD/Latch-Up-Protection  
All external module pins have an ESD protection of >4000V and a latch-up protection of ±100mA or (up to +8V / down to 4V) relative to  
VSS/VSSA. The internal module pin VCORE has an ESD protection of > 2000V. ESD protection referenced to the Human Body Model is tested  
with devices in TSSOP14 packages during product qualification. The ESD test follows the Human Body Model with 1.5k/100pF based on MIL  
883, Method 3015.7.  
16. Test  
The test program is based on this datasheet. The final parameters, which will be tested during production, are listed in the tables and graphs  
of section 5.  
17. Reliability  
A reliability investigation according to the in-house non-automotive standard will be performed.  
18. Customization  
For high-volume applications that require an upgraded or downgraded functionality compared to the ZSSC3123, IDT can customize the circuit  
design by adding or removing certain functional blocks.  
For this customization, IDT has a considerable library of sensor-dedicated circuitry blocks, which enable IDT to provide a custom solution  
quickly. Contact IDT for further information.  
19. Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
https://www.idt.com/document/psc/14-tssop-package-outline-drawing-44mm-body-065mm-pitch-pgg14t1  
60  
August 16, 2018  
20. Example Marking Diagram for TSSOP14 Parts  
Line1: Partial part number.  
Line 2: Next characters in the partial part number. Refer to section 23 for the  
available part code variations.  
Line 3: “YYWW” represents the last two digits of the year followed by two digits  
for the work week that the part was assembled. “R” indicates part is “RoHS  
compliant.”  
21. Storage and Soldering Conditions  
Table 39. Storage and Soldering Condition TSSOP14  
Conditions  
Less than 10hrs, before mounting  
At original packing only  
Minimum Typical  
Parameter  
Symbol  
Tmax  
Maximum  
Units  
C  
Maximum Storage Temperature  
Minimum Storage Temperature  
_
150  
storage  
Tmin_storage  
Tdrybake  
-55  
C  
Less than 100hrs in total, before  
mounting  
Maximum Drybake Temperature  
Soldering Peak Temperature  
125  
260  
C  
C  
Less than 30s  
(IPC/JEDEC-STD-020 Standard)  
Tpeak  
22. Glossary  
Term  
Description  
ADC  
CDC  
DAC  
ECC  
SSC  
Analog-to-Digital Converter  
Capacitance-to-Digital Converter  
Digital-to-Analog Converter  
Error Checking and Correction  
Sensor Signal Conditioner  
61  
August 16, 2018  
23. Ordering Information  
Note: Contact IDT Sales for additional information and for sales and support for the ZSSC3123 Mass Calibration System.  
Orderable Part Number  
ZSSC3123AA1B  
ZSSC3123AI1B  
Description and Package  
ZSSC3123 Die: Tested dice on un-sawn wafer  
ZSSC3123 Die: Tested dice on un-sawn wafer  
ZSSC3123 Die: Tested dice on frame  
ZSSC3123 Die: Tested dice on frame  
MSL Rating  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
1
Carrier Type  
Wafer  
Temperature  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +125°C  
Wafer  
ZSSC3123AA1C  
ZSSC3123AI1C  
Fame  
Frame  
Tube  
ZSSC3123AA2T  
ZSSC3123 TSSOP14 lead-free package  
(4.4 5.0 mm)  
ZSSC3123AA2R  
ZSSC3123AI2T  
ZSSC3123 TSSOP14 lead-free package  
(4.4 5.0 mm)  
1
1
1
Reel  
Tube  
Reel  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +85°C  
ZSSC3123 TSSOP14 lead-free package  
(4.4 5.0 mm)  
ZSSC3123AI2R  
ZSSC3123 TSSOP14 lead-free package  
(4.4 5.0 mm)  
ZSSC312223KITV1P0  
ZSSC3122-3123 SSC Evaluation Kit: Communication Board, SSC Board, Sensor Replacement Board, USB  
Cable, 5 IC Samples (software can be downloaded from www.IDT.com/ZSSC3123)  
24. Revision History  
Revision Date  
Description of Change  
August 16, 2018  
.
.
Update for template, including reorganization of sections.  
Update for typical current consumption value on page 1 to match existing typical specification (750µA) in  
section 5.  
.
.
.
.
.
.
.
Corrections for table notes in Table 3.  
Edits for the text in sections 9.2.1.4 and 10.3.1.  
Correction for CDC_Multi availability in Table 30.  
Removal of related documents section. Visit www.IDT.com/zssc3122 for related documents.  
Removal of references to ZSSC3123 Technical NoteDetailed Equations for ZSSC3123 Rev C Silicon Math.  
Correction for kit order code.  
Update for automatic web appending of the package outline drawing (POD). The POD is now located at the end  
of the document.  
.
.
.
Addition of the moisture sensitivity levels to the part order information table.  
Addition of the marking diagram description.  
Minor edits to text and figures.  
January 26, 2016  
July 4, 2013  
Changed to IDT branding.  
Update for part order codes.  
62  
August 16, 2018  
Revision Date  
Description of Change  
May 20, 2013  
.
.
.
Revisions to section 10.3.2.1 to explain preferred method for detecting valid data.  
Revision to section 10.6.6 to update Ready pin behavior in Sleep Mode.  
Revision to Figure 16.  
April 29, 2013  
July 23, 2012  
.
.
Updated part numbers with new parts.  
Update for IDT contact information.  
.
.
.
Added note for clarity to “Active Regulated Voltage” specification in section 5.  
Deleted redundant specification for fOSC in section 5.  
Revised the “Excitation Frequency of External Capacitances C0 and C1” (fEXC) specification in Table 1.3 to list  
a separate specification fMULTx for each Mult setting.  
.
.
.
Deleted inapplicable row for 2.0V for the “Error Mult 1, -40 to 125°C” specification in section 5.  
Revised specifications for CVCORE_SM and CVCORE_UM in specifications in section 4.  
Updated IDT contact information.  
October 15, 2012  
.
Revision to maximum specifications for “Start-Up-Time,” “Update Rate (Update Mode),” and “Response Time  
(Sleep Mode)” in section 5.  
.
.
.
Revision to equations in section 9.2.1.1 and 9.2.1.2  
Edits to text under Figure 13.  
Update for IDT contact information.  
August 16, 2011  
June 29, 2011  
.
.
.
Added specifications in section 5 for VPOR maximum, VREG typical and maximum, and PSRTEMP  
Revisions to section 10.3.2.1 to explain preferred method for detecting valid data.  
Revised product ordering codes.  
.
.
.
Added specification for “Excitation Frequency of External Capacitances C0 and C1” in section 5 and 9.2.1.  
Added “PDM frequency” specification to table in section 5. In section 5, clarified that clipping limit default values  
must be adjusted for PDM output functionality. Revised PDM frequency in sections 5 and 10.7 Revised PDM  
ripple and settling time specifications in section 5. Revised related examples in Table 24 and corrected  
Equation 14 for calculating ripple. Revisions to text explaining Equation 16 and subsequent text recommending  
limits for PDM_Clip_High. Revised Table 28 for PDM_Clip_High and PDM_Clip_Low. Added new settings for  
PDM clipping limits to section 14.2 and revised related settings in Table 35.  
.
.
.
.
.
.
Revised section 8 for addition of specifications for voltage dependency for the temperature channel to section 5.  
Revised section 9.2.1.3 regarding total capacitance.  
Revised default value for EEPROM word 04HEX from 007THEX to 00FTHEX in Table 28.  
Minor edits for clarity in section 14.3.  
Revised notes for VCORE pin 1 in Table 1.  
Revisions to section 10.3.2.1  
February 15, 2011  
First release.  
63  
August 16, 2018  
14-TSSOP Package Outline Drawing  
4.4mm Body, 0.65mm Pitch  
PGG14T1, PSC-4056-01, Rev 02, Page 1  
14-TSSOP Package Outline Drawing  
4.4mm Body, 0.65mm Pitch  
PGG14T1, PSC-4056-01, Rev 02, Page 2  
Package Revision History  
Description  
Date Created Rev No.  
Mar, 10 2017  
Rev 01 Added Land Pattern  
Dec, 19 2017 Rev 02 New Format  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

ZSSC3123AA2T

cLite™ Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3123AI1B

Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3123AI1B

cLite™ Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3123AI1C

Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3123AI1C

cLite™ Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3123AI2

Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3123AI2R

cLite™ Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3123AI2T

cLite™ Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3123KIT

Capacitive Sensor Signal Conditioner

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3131

Sensor Signal Conditioner for Cost- Optimized Switch Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3131BA1B

Sensor Signal Conditioner for Cost- Optimized Switch Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT

ZSSC3131BA1C

Sensor Signal Conditioner for Cost- Optimized Switch Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT