ZSSC3138BE2 [RENESAS]

Sensor Signal Conditioner for Ceramic Sensor Applications;
ZSSC3138BE2
型号: ZSSC3138BE2
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Sensor Signal Conditioner for Ceramic Sensor Applications

文件: 总26页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSSC3138  
Sensor Signal Conditioner for  
Ceramic Sensor Applications  
Datasheet  
Brief Description  
Benefits  
The ZSSC3138 is a member of the ZSSC313x  
product family of CMOS integrated circuits designed  
for automotive/ industrial sensor applications. All  
family members are well suited for highly accurate  
amplification and sensor-specific correction of  
resistive bridge sensor signals. An internal 16-bit  
RISC microcontroller running a correction algorithm  
compensates sensor offset, sensitivity, temperature  
drift, and non-linearity of the connected sensor  
element. The required calibration coefficients are  
stored by the one-pass calibration procedure on chip  
(EEPROM).  
Family approach offers the best fitting IC selec-  
tion to build cost-optimized applications  
No external trimming components required  
Low number of external components needed  
PC-controlled configuration and one-pass/  
end-of-line calibration via I²C™* or ZACwire™  
interface: simple, cost efficient, quick, and precise  
High accuracy (0.25% FSO** @ -25 to +85°C;  
0.5% FSO @ -40 to +125°C)  
Optimized for automotive/industrial environments  
due to robust protection circuitries, excellent  
electromagnetic compatibility and AEC-Q100  
qualification  
The ZSSC3138 offers a maximum analog gain of  
420 and two offset compensation features. These fit  
perfectly with the requirements of ceramic thick-film-  
based sensor elements as well as strain gauges.  
The high amplification in combination with the offset  
compensation offers the capability to set up ceramic  
thick-film-based sensor applications without laser  
trimming, which leads to better long-term stability.  
Available Support  
Evaluation Kits  
Application Notes  
Mass Calibration System  
Physical Characteristics  
Features  
Supply voltage 4.5 to 5.5 V  
Adjustable to nearly all resistive bridge sensor  
types, analog gain of 420, maximum overall gain  
of 1680  
Operation temperature: -40°C to +125°C  
(-40°C to +150°C extended temperature range  
depending on product version)  
Enhanced sample rate: 7.8 kHz maximum  
High ADC resolution 15/16 bit  
Available in RoHS-compliant JEDEC-SSOP14  
package or delivery as die  
Safety functionality sensor connection  
Internal temperature compensation  
Digital compensation of sensor offset, sensitivity,  
temperature drift, and non-linearity  
ZSSC3138 Minimum Application Requirements  
Output options: ratiometric analog voltage output  
(5 - 95% maximum, 12.4 bit resolution) or  
ZACwireTM (digital One-Wire Interface (OWI))  
VCC  
Sensor  
Module  
Sensor biasing by voltage  
High voltage protection up to 33 V  
Supply current: 5.5mA maximum  
Reverse polarity and short circuit protection  
OUT  
ZSSC3138  
Wide operation temperature range between  
-40 to +150°C  
Traceability by user-defined EEPROM entries  
GND  
*
Note: I2C™ is a trademark of NXP.  
** FSO = Full Scale Output.  
1
January 25, 2016  
ZSSC3138  
Sensor Signal Conditioner for  
Ceramic Sensor Applications  
Datasheet  
ZSSC3138 Application Example  
Out / OWI  
GND  
C2  
100nF  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
VSUPP  
+4.5V to +5.5V  
C3  
47nF  
9
Sensor Bridge  
10  
11  
12  
13  
14  
VBR_B  
VBP  
SCL  
SCL  
SDA  
Serial Interface  
SDA  
VBR_T  
N.C.  
VSSA  
VDDA  
C4  
C5  
C1  
100nF  
Ordering Information (See data sheet section 8 for complete delivery options.)  
Product Sales Code  
Description  
Package  
ZSSC3138BE1  
ZSSC3138 die – tested; temperature range -40 to +150°C  
Unsawn wafer: add “B” to sales code  
Die on frame: add “C” to sales code  
ZSSC3138BA1  
ZSSC3138BE2  
ZSSC3138BA2  
ZSSC313xKITV1.1  
ZSSC3138 die – tested; temperature range -40 to +125°C  
ZSSC3138 SSOP14 – temperature range -40 to +150°C  
ZSSC3138 SSOP14 – temperature range -40 to +125°C  
Unsawn wafer: add “B” to sales code  
Die on frame: add “C” to sales code  
Tube: add “T” to sales code  
Tape & Reel: add “R”  
Tube: add “T” to sales code  
Tape & Reel: add “R”  
ZSSC313x Evaluation Kit, version 1.1, including Evaluation  
Board, ZSSC3138 IC samples, USB cable  
Kit  
ZSSC313x Mass  
Calibration System V1.1  
Modular Mass Calibration System (MSC) for ZSSC313x  
including MCS boards, cable, connectors  
Kit  
2
January 25, 2016  
Contents  
1
Electrical Characteristics...............................................................................................................................5  
1.1. Absolute Maximum Ratings....................................................................................................................5  
1.2. Operating Conditions..............................................................................................................................5  
1.3. Electrical Parameters .............................................................................................................................6  
1.3.1. Supply Current and System Operation Conditions..........................................................................6  
1.3.2. Analog Front-End (AFE) Characteristics .........................................................................................6  
1.3.3. Temperature Measurement .............................................................................................................6  
1.3.4. A/D Conversion................................................................................................................................6  
1.3.5. Sensor Check...................................................................................................................................7  
1.3.6. DAC and Analog Output ..................................................................................................................7  
1.3.7. System Response............................................................................................................................8  
1.4. Interface Characteristics and EEPROM.................................................................................................9  
1.4.1. I²CTM Interface..................................................................................................................................9  
1.4.2. ZACwire™ One-Wire Interface (OWI) .............................................................................................9  
1.4.3. EEPROM..........................................................................................................................................9  
Circuit Description .......................................................................................................................................10  
2.1. Signal Flow ...........................................................................................................................................10  
2.2. Application Modes ................................................................................................................................11  
2.3. Analog Front-End (AFE).......................................................................................................................11  
2.3.1. Programmable Gain Amplifier (PGA).............................................................................................12  
2.3.2. Offset Compensation .....................................................................................................................12  
2.3.3. Measurement Cycle .......................................................................................................................13  
2.3.4. Analog-to-Digital Converter............................................................................................................14  
2.4. Temperature Measurement..................................................................................................................16  
2.5. System Control and Conditioning Calculation......................................................................................16  
2.5.1. General Working Modes ................................................................................................................16  
2.5.2. Startup Phase ...............................................................................................................................17  
2.5.3. Conditioning Calculation ................................................................................................................17  
2.6. Analog or Digital Output .......................................................................................................................18  
2.7. Serial Digital Interface ..........................................................................................................................18  
2.8. Failsafe Features..................................................................................................................................18  
2.9. High Voltage, Reverse Polarity, and Short Circuit Protection ..............................................................19  
Application Circuit Examples.......................................................................................................................20  
Pin Configuration and Package...................................................................................................................21  
ESD Protection............................................................................................................................................22  
Quality and Reliability..................................................................................................................................22  
Customization..............................................................................................................................................22  
Ordering Information ...................................................................................................................................22  
2
3
4
5
6
7
8
3
January 25, 2016  
9
Related Documents.....................................................................................................................................23  
10 Glossary ......................................................................................................................................................24  
11 Document Revision History.........................................................................................................................25  
List of Figures  
Figure 2.1 Block Diagram of the ZSSC3138...................................................................................................10  
Figure 2.2 Measurement Cycle with 1 Bridge Sensor Signal Measurement per Special Measurement........14  
Figure 3.1 Application with On-Chip Diode Temperature Sensor...................................................................20  
Figure 4.1 ZSSC3138 SSOP14 Pin Diagram .................................................................................................21  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 1.4  
Table 2.1  
Table 2.2  
Table 2.3  
Table 3.1  
Table 4.1  
Absolute Maximum Ratings.............................................................................................................5  
Operating Conditions .......................................................................................................................5  
Electrical Parameters.......................................................................................................................6  
Interface Characteristics and EEPROM ..........................................................................................9  
Adjustable Gains, Resulting Sensor Signal Spans and Common Mode Ranges .........................12  
Extended Analog Zero Compensation Ranges (XZC) ..................................................................13  
ADC Resolution versus Output Resolution and Sample Rate.......................................................16  
External Components for Application Circuit Examples ................................................................20  
Pin Configuration and Definition ....................................................................................................21  
4
January 25, 2016  
1
Electrical Characteristics  
1.1. Absolute Maximum Ratings  
Parameters apply in operation temperature range and without time limitations.  
Table 1.1  
No.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
1.1.1  
Supply voltage 1)  
VDDEAMR  
To VSSE, refer to  
section 3 for application  
circuits  
-33  
33  
VDC  
1.1.2  
1.1.3  
Potential at AOUT pin 1)  
Analog supply voltage 1)  
VOUT  
Referenced to VSSE  
-33  
33  
VDC  
VDC  
VDDAAMR  
Referenced to VSSA,  
VDDE - VDDA < 0.35V  
-0.3  
6.5  
1.1.4  
Voltage at all analog and  
digital IO pins  
VA_IO  
VD_IO  
Referenced to VSSA  
-0.3  
-55  
VDDA + 0.3  
150  
VDC  
1.1.5  
Storage temperature  
TSTG  
°C  
1)  
Refer to the ZSSC313x High Voltage Protection Description for specification and detailed conditions.  
1.2. Operating Conditions  
All voltages are referenced to VSSA.  
Table 1.2  
No.  
Operating Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.2.1  
Ambient temperature 1) 2)  
TAMB_TQE  
Extended Temperature  
Range (TQE)  
-40  
150  
°C  
TAMB_TQA  
Advanced-Performance  
Temperature Range  
(TQA)  
-40  
125  
85  
°C  
°C  
TAMB_TQI  
Best-Performance  
Temperature Range (TQI)  
-25  
1.2.2  
1.2.3  
Supply voltage  
Bridge resistance 3) 4)  
VDDE  
RBR  
4.5  
2
5.0  
5.5  
25  
VDC  
kΩ  
1)  
2)  
3)  
4)  
Maximum operation temperature range depends on product version (refer to section 8).  
See the temperature profile description in the ZSSC313x Dice Package Document.  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
Symmetric behavior and identical electrical properties (especially the low pass characteristic) of both sensor inputs of the ZSSC3138 are required.  
Unsymmetrical conditions of the sensor and/or external components connected to the sensor input pins of the ZSSC3138 can generate a failure in  
signal operation.  
5
January 25, 2016  
 
 
 
 
 
 
 
 
 
 
1.3. Electrical Parameters  
All parameter values are valid under the operating conditions specified in section 1.2 (special definitions  
excluded). All voltages referenced to VSSA.  
Note: See important notes at the end of Table 1.3.  
Table 1.3  
Electrical Parameters  
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.1. Supply Current and System Operation Conditions  
1.3.1.1 Supply current  
IS  
Without bridge and load  
current, fOSC 3 MHz  
5.5  
4
mA  
1.3.1.2 Oscillator frequency 1)  
fOSC  
Adjustment guaranteed for  
whole temperature range  
(TAMB_TQE)  
2
3
MHz  
1.3.2. Analog Front-End (AFE) Characteristics  
1.3.2.1 Input span  
VIN_SP  
Analog gain: 105 to 2.8  
Analog gain: 420 to 2.8  
8
1
275  
275  
10  
mV/V  
mV/V  
nA  
1.3.2.2 Parasitic differential input  
IIN_OFF  
Temperature range  
TAMB_TQE  
-10  
1)  
offset current  
Temperature range  
TAMB_TQI  
-2  
2
nA  
1.3.2.3 Common mode  
input range  
VIN_CM  
Depends on gain adjust;  
XZC off (refer to section  
2.3.1)  
0.29  
0.65  
VDDA  
1.3.2.4 Analog offset  
compensation range  
Depends on gain  
adjustment; refer to  
section 2.3.2  
-300  
300  
% VIN_SP  
1.3.3. Temperature Measurement  
(Refer to section 2.4.)  
1.3.3.1 Internal temperature diode  
sensitivity  
STTSI  
Raw values,  
without conditioning  
700  
13  
2700  
ppm FS  
/ K  
1.3.4. A/D Conversion  
1.3.4.1 A/D resolution 1)  
1.3.4.2 DNL 1)  
rADC  
16  
Bit  
DNLADC  
rADC=13bit, fOSC=3MHz,  
best fit, complete AFE,  
range according to 1.3.4.5  
0.95  
LSB  
6
January 25, 2016  
 
 
 
 
 
 
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.4.3 INL TQA  
INLADC  
rADC=13bit, fOSC=3MHz,  
best fit, complete AFE,  
range according to 1.3.4.5  
4
LSB  
1.3.4.4 INL TQE  
INLADC_TQE rADC=13bit, fOSC=3MHz,  
best fit, complete AFE,  
5
LSB  
range according to 1.3.4.5,  
temperature range TAMB_TQE  
1.3.4.5 ADC input range  
1.3.5. Sensor Check  
VADC_IN  
0.1  
0.9  
VDDA  
1.3.5.1 Sensor connection loss  
1.3.5.2 Sensor input short  
RSCC_min  
Detection threshold  
100  
0
kΩ  
RSSC_short  
Short detection  
guaranteed  
50  
1.3.5.3 Sensor input no short  
RSSC_pass  
Corresponds with  
minimum sensor output  
resistance  
1000  
1.3.6. DAC and Analog Output  
1.3.6.1 D/A resolution  
rDAC  
Analog output, 10-90%  
12  
Bit  
mA  
1.3.6.2 Output current sink and  
source for VDDE=5V  
IOUT_SRC/SINK VOUT: 5-95%, RLOAD 2kΩ  
VOUT: 10-90%, RLOAD 1kΩ  
2.5  
5
mA  
1.3.6.3 Short circuit current  
1.3.6.4 Output signal range  
IOUT_max  
To VDDE/VSSE 2)  
With RLOAD 2kΩ  
With RLOAD 1kΩ  
CLOAD < 50nF  
-25  
0.05  
0.1  
25  
mA  
VOUT_RANGE  
0.95  
0.90  
VDDE  
VDDE  
V/µs  
1.3.6.5 Output slew rate 1)  
SROUT  
0.1  
1.3.6.6 Output resistance in  
diagnostic mode  
ROUT_DM  
Diagnostic range:  
<4 to 96>%, RLOAD 2kΩ  
<8 to 92>%, RLOAD 1kΩ  
82  
1.3.6.7 Load capacitance 1)  
CLOAD  
C3 + CLOAD  
150  
nF  
(refer to section 3)  
1.3.6.8 DNL  
DNLOUT  
INLOUT  
-1.5  
-5  
1.5  
5
LSB  
LSB  
LSB  
1.3.6.9 INL TQA  
1.3.6.10 INL TQE  
Best fit, rDAC=12bit  
INLOUT_TQE Best fit, rDAC=12bit,  
temperature range TAMB_TQE  
-8  
8
1.3.6.11 Output leakage current  
at 150°C  
IOUT_LEAK  
In case of power or  
ground loss  
-25  
25  
µA  
7
January 25, 2016  
 
 
No.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.3.7. System Response  
1) 3)  
1.3.7.1 Startup time  
tSTARTUP  
1-step ADC, fOSC=3MHz  
rADC=14bit)  
35  
ms  
(To 1st output, ROM check  
disabled)  
2-step ADC, fOSC=3MHz,  
rADC=14bit)  
5
ms  
ms  
1.3.7.2 Response time 1)  
tRESPONSE  
1-step ADC, fOSC=4MHz,  
rADC=13bit  
8.7  
13.1  
384  
17.4  
(100% input step; refer to  
Table 2.3)  
2-step ADC, fOSC=4MHz,  
rADC=13bit  
256  
512  
µs  
1.3.7.3 Bandwidth 1)  
BW  
1-step ADC  
2-step ADC  
200  
7.8  
Hz  
(In comparison to an  
equivalent analog SSC.  
Refer to Table 2.3)  
kHz  
1.3.7.4 Analog output noise  
VNOISE_PP  
Shorted inputs  
10  
3
mV  
mV  
1)  
peak-to-peak  
bandwidth 10kHz  
1.3.7.5 Analog output noise  
RMS 1)  
VNOISE_RMS Shorted inputs  
bandwidth 10kHz  
1.3.7.6 Ratiometricity error  
RE  
Maximum error for  
1000  
ppm  
VDDE=5V to 4.5/5.5V  
1.3.7.7 Overall failure 4)  
FOVERALL_TQI fOSC3MHz, rADC=13bit,  
0.25  
(0.1)  
% FS  
temperature range TAMB_TQI  
Deviation from ideal line  
including INL, gain, offset  
and temperature errors.  
FOVERALL_TQA fOSC3MHz, rADC=13bit,  
0.5  
% FS  
% FS  
temperature range TAMB_TQA  
(0.25)  
No sensor-caused effects.  
FOVERALL_TQE fOSC3MHz, rADC=13bit,  
1.0  
Failure for digital readout  
shown in parenthesis.  
temperature range TAMB_TQE  
(0.5)  
1)  
2)  
3)  
4)  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
Minimum output voltage to VDDE or maximum output voltage to VSSE.  
Depends on resolution and configuration. Start routine begins approximately 0.8ms after power on.  
If XZC is active, additional overall failure of 25ppm/K for XZC=31 maximum. Failure decreases linearly for XZC<31.  
8
January 25, 2016  
 
 
 
 
 
1.4. Interface Characteristics and EEPROM  
Table 1.4  
Interface Characteristics and EEPROM  
No.  
Parameter Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
1.4.1. I²CTM Interface  
(Refer to the ZSSC313x Functional Description for timing details)  
1.4.1.1 I²C voltage level HIGH  
VI²C,HIGH  
0.8  
VDDA  
VDDA  
VDDA  
pF  
1.4.1.2 I²C voltage level LOW 1)  
1.4.1.3 Slave output level LOW 1)  
1.4.1.4 SDA load capacitance 1)  
1.4.1.5 SCL clock frequency 1)  
1.4.1.6 Internal pull-up resistor 1)  
VI²C,LOW  
0.2  
0.15  
400  
400  
100  
VI²C,LOW_OUT Open drain, IOL<2mA  
CSDA  
fI²C  
fOSC≥2MHz  
kHz  
RI²C,PULLUPI  
25  
kΩ  
1.4.2. ZACwire™ One-Wire Interface (OWI)  
(Refer to the ZSSC313x Functional Description for timing details)  
1.4.2.1 OWI voltage level HIGH 1)  
1.4.2.2 OWI voltage level LOW 1)  
1.4.2.3 Slave output level LOW 1)  
1.4.2.4 Start window 1)  
VOWI,HIGH  
0.75  
VDDA  
VDDA  
VDDA  
ms  
VOWI,LOW  
0.2  
0.15  
455  
VOWI,LOW_OUT Open drain, IOL<2mA  
tOWI,STARTWIN At fOSC=3MHz  
96  
175  
1.4.3. EEPROM  
1.4.3.1 Ambient temperature for  
EEPROM programming 1)  
TAMB_EEP  
-40  
150  
°C  
1.4.3.2 Write cycles 1)  
nEEP_WRI  
Write <= 85°C  
Write up to 150°C  
175°C  
100 000  
100  
8 * 108  
1.4.3.3 Read cycles 1) 2)  
1.4.3.4 Data retention 1) 3)  
nEEP_READ  
tEEP_RETENTION 1300h at 175°C  
( = 3000h at 150°C  
15  
a
+ 27000h at 125°C  
+ 100000h at 55°C)  
1.4.3.5 Programming time 1)  
tEEP_WRI  
Per written word  
12  
ms  
1)  
2)  
3)  
No measurement in mass production, parameter is guaranteed by design and/or quality observation.  
Valid for the dice. Note that the package and the temperature version causes additional restrictions.  
Over lifetime and valid for the dice. Use the calculation sheet IDT Temperature Profile Calculation Sheet for temperature stress calculation. Note that  
the package and the temperature version causes additional restrictions.  
9
January 25, 2016  
 
 
 
 
 
 
 
 
2
Circuit Description  
2.1. Signal Flow  
The ZSSC3138’s signal path is partly analog and partly digital. The analog section is differential – this means the  
differential bridge sensor signal is internally handled via two signal lines that are rejected symmetrically around an  
internal common mode potential (analog ground = VDDA/2).  
As a result of the differential design, it is possible to amplify positive and negative input signals that are within the  
common mode range of the signal input.  
Figure 2.1  
Block Diagram of the ZSSC3138  
ZACwire  
Digital  
Data I/O  
EEPROM  
RAM  
I2C  
*
Analog  
Output  
PGA  
TS  
ADC  
CMC  
DAC  
BAMP  
ROM  
Analog Domain  
Digital Domain  
ZSSC3138  
* Note: I2C™ is a trademark of NXP.  
PGA  
Programmable Gain Amplifier  
TS  
On-chip Temperature Sensor (pn-junction)  
Multiplexer  
MUX  
ADC  
Analog-to-Digital Converter  
Calibration Microcontroller  
CMC  
ROM  
RAM  
EEPROM  
DAC  
Read-Only Memory for Correction Formula and Algorithm  
Volatile Memory for Calibration Parameters and Configuration  
Non-volatile Memory for Calibration Parameters and Configuration  
Digital-to-Analog Converter  
BAMP  
Output Buffer Amplifier  
The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The  
multiplexer (MUX) transmits the signals from either the bridge sensor or the internal temperature sensor to the  
analog-to-digital converter (ADC) in a specific sequence. The ADC converts these signals into digital values.  
10  
January 25, 2016  
 
 
 
The digital signal conditioning is processed by the calibration microcontroller (CMC). It is based on a correction  
formula that uses sensor-specific coefficients determined during calibration. The formula is located in ROM, and  
the sensor-specific coefficients are stored in EEPROM. Depending on the programmed output configuration, the  
conditioned sensor signal is output as an analog signal, or alternatively can be readout via a digital serial interface  
(I²C™ or ZACwire™). The configuration data and the correction parameters must also be programmed into the  
EEPROM via the digital interfaces.  
2.2. Application Modes  
For each application, a configuration set must be established by programming the on-chip EEPROM for the  
following modes:  
Sensor channel  
. Input range: The gain adjustment of the analog front-end (AFE) with respect to the maximum sensor  
signal span and the zero point of the A/D conversion must be selected.  
. Extended analog offset compensation (XZC): If required, this compensates large sensor offsets; e.g., if  
the sensor offset voltage is near to or larger than the sensor span.  
. Resolution/response time: The A/D converter must be configured for resolution. The ADC order (first or  
second order) must also be configured. These settings influence the sampling rate and the signal  
integration time, and thus, the noise immunity.  
Temperature  
. Temperature measurement  
2.3. Analog Front-End (AFE)  
The analog front-end (AFE) consists of the three-stage programmable gain amplifier (PGA), the multiplexer  
(MUX), and the analog-to-digital converter (ADC).  
11  
January 25, 2016  
 
 
2.3.1.  
Programmable Gain Amplifier (PGA)  
Table 2.1 shows the adjustable gains, the sensor signal spans, and the valid common mode range.  
Table 2.1  
Adjustable Gains, Resulting Sensor Signal Spans and Common Mode Ranges  
Input Common Mode Range  
VIN_CM [% VDDA] 2)  
XZC = Off  
PGA Gain  
aIN  
Maximum Span  
VIN_SP [mV/V] 1)  
XZC = On  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
45 to 55  
Not applicable  
420  
280  
210  
140  
105  
70  
1.8  
2.7  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
29 to 65  
32 to 57  
3.6  
5.4  
7.1  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
52.5  
35  
26.3  
14  
9.3  
7
107  
267  
2.8  
1)  
2)  
Recommended maximum internal signal range is 75% of supply voltage.  
Span is calculated by the following formula: Span = 0.75 (VBR_T – VBR_B) / Gain.  
Refer to section 2.3.2 for an explanation of the extended analog zero compensation (XZC).  
2.3.2.  
Offset Compensation  
The ZSSC3138 processes a sensor-offset correction during the digital signal conditioning by the calibration  
microcontroller (CMC).  
The ZSSC3138 also supports an extended analog zero compensation (XZC) for large offsets up to a maximum of  
approximately 300% of signal span, depending on the gain adjustment (Table 2.2). This prevents overdriving the  
analog signal path in the case of a large sensor offset by adding a compensation voltage to the second  
amplification stage.  
12  
January 25, 2016  
 
 
 
 
 
Table 2.2  
PGA Gain  
Extended Analog Zero Compensation Ranges (XZC)  
Maximum Span  
VIN_SP [mV/V]  
Offset Shift / XZC Step  
Maximum Offset Shift  
[mV/V]  
Maximum Shift (XZC =  
±31)  
aIN  
[% VIN_SP]  
[% VIN_SP  
388%  
237%  
388%  
237%  
388%  
237%  
388%  
237%  
161%  
388%  
237%  
161%  
26%  
]
420  
280  
210  
140  
105  
70  
1.8  
2.7  
12.5 %  
7.6 %  
7.8  
7.1  
15.5  
14.2  
31  
3.6  
12.5 %  
7.6 %  
5.4  
7.1  
12.5 %  
7.6 %  
10.7  
14.3  
21.4  
28.5  
53.75  
80  
28  
52.5  
35  
12.5 %  
7.6 %  
32  
57  
26.3  
14  
5.2 %  
52  
12.5 %  
7.6 %  
194  
189  
161  
72  
9.3  
7
107  
267  
5.2 %  
2.8  
0.83 %  
2.3.3.  
Measurement Cycle  
The measurement cycle is controlled by the CMC. Depending on EEPROM settings, the multiplexer (MUX)  
selects the following input signals in a defined sequence:  
Pre-amplified bridge sensor signal  
Temperature sensor signal  
Internal offset of the input channel (VOFF  
)
The cycle diagram in Figure 2.2 shows the basic structure of the measurement cycle. After power-on, the startup  
routine is processed, which performs all required measurements to expedite acquiring an initial valid conditioned  
sensor output. After the startup routine, the normal measurement cycle runs.  
13  
January 25, 2016  
 
 
Figure 2.2  
Measurement Cycle with 1 Bridge Sensor Signal Measurement per Special Measurement  
Measurement Cycle with Bridge Signal Output  
CTAZ CT BRAZ  
CFGAPP:BRCNT = 0  
Startup  
(1 bridge sensor signal measurement per special measurement)  
12  
BR CTAZ BR  
CT  
BR  
CMV  
BR SSCP BR SSCN BR BRAZ  
Measurements  
per Cycle  
Measurement Cycle  
Measurement Cycle Phases  
Main Signals Measurement  
Safety Functions Measurement *  
Analog Output Updated  
Bridge Sensor  
BR  
Calibration Temperature  
Measurement  
Sensor Short Check  
Positive-Biased Measurement  
Sensor Common Mode Voltage  
Measurement  
Bridge Sensor Signal  
CT  
SSCP  
SSCN  
CMV  
Measurement  
Bridge Sensor  
BRAZ  
Calibration Temperature  
Auto-Zero Measurement  
Sensor Short Check  
Negative-Biased Measurement  
CTAZ  
* Not available for all ZSSC313x products. See Table 1.1  
in the ZSSC313x Functional Description.  
Auto-Zero Measurement  
2.3.4.  
Analog-to-Digital Converter  
The A/D converter is implemented using full-differential switched-capacitor technique.  
Programmable ADC resolutions are rADC=<13, 14>bit. The ZSSC3138 supports <15, 16>bit resolution with  
range zooming.  
The A/D conversion is integrating, inherently monotone, and insensitive to short and long term instability of the  
clock frequency. The conversion time tADC depends on the desired resolution and can be roughly calculated by  
equation (1):  
2rADC  
tADC  
=
f
(1)  
OSC  
2
Where  
rADC  
fOSC  
Resolution of A/D conversion  
Frequency of internal oscillator (refer to 1.3.1)  
14  
January 25, 2016  
 
 
 
The ZSSC3138 supports a high sample rate ADC mode (2-step conversion) with the advantage of a much shorter  
conversion time but with the drawback of a lower noise immunity caused by the shorter signal integration time.  
The conversion time tADC,2step in this mode is roughly calculated by equation (2):  
2(r  
ADC +3 2  
)
tADC,2-step  
=
f
(2)  
OSC  
2
Refer to the ZSSC313x Bandwidth Calculation Sheet for a detailed calculation of sampling time and bandwidth.  
The result of the A/D conversion is a relative counter result Z corresponding to the following equation:  
VADC_DIFF  
r
ADC  
Z = 2  
(  
RS)  
(3)  
VADC_REF  
Where  
rADC  
Resolution of A/D conversion  
VADC_DIFF  
VADC_REF  
RS  
Differential ADC input voltage  
ADC reference voltage (VVBR_T-VVBR_B or VVDDA-VVSSA, if BRREF=1)  
Digital ADC Range Shift (RS = 1/16, 1/8, 1/4, 1/2; controlled by the EEPROM contents)  
With the RS value, a sensor input signal can be shifted in the optimal input range of the ADC.  
The condition required for ensuring the specified accuracy, stability, and non-linearity parameters of the analog  
front-end is that the differential ADC input voltage VADC_DIFF does not exceed the range of 10% to 90% of the ADC  
reference voltage VADC_REF. This requirement must be met for the whole temperature range and for all sensor  
tolerances.  
15  
January 25, 2016  
 
Table 2.3  
ADC Resolution versus Output Resolution and Sample Rate  
Output Resolution 1) Sample Rate 2)  
ADC Adjustment  
Averaged Bandwidth 2)  
ADC  
Sample  
Rate Mode  
rADC  
[bit]  
Digital  
[bit]  
Analog  
[bit]  
fOSC=3MHz  
[Hz]  
fOSC=4MHz  
[Hz]  
fOSC=3MHz  
[Hz]  
fOSC=4MHz  
[Hz]  
13  
14  
15  
16  
13  
14  
15  
16  
13  
14  
14  
14  
13  
14  
14  
14  
12  
12  
12  
12  
12  
12  
12  
12  
345  
178  
460  
237  
130  
67  
172  
89  
Normal  
High  
90  
120  
34  
45  
45  
61  
17  
23  
5859  
3906  
2930  
1953  
7813  
5208  
3906  
2604  
2203  
1469  
1101  
734  
2937  
1958  
1468  
979  
1)  
2)  
Output resolution does not exceed ADC resolution. PGA gain should be such that the differential ADC input signal uses at least 50% of ADC input  
range to ensure maximum achievable output resolution.  
Refer to the ZSSC313x Bandwidth Calculation Sheet for a detailed calculation of sampling time and bandwidth.  
2.4. Temperature Measurement  
The ZSSC3138 supports acquiring temperature data needed for conditioning of the sensor signal using an  
internal pn-junction temperature sensor.  
Refer to the ZSSC313x Functional Description for a detailed explanation of temperature sensor adaptation and  
adjustment.  
2.5. System Control and Conditioning Calculation  
The system control supports the following tasks/features:  
Managing the startup sequence  
Controlling the measurement cycle regarding to the EEPROM-stored configuration data  
Sensor signal conditioning (calculation of the 16-bit correction for each measurement signal using the  
EEPROM-stored conditioning coefficients and the ROM-based formulas)  
Processing communication requests received via the digital interfaces  
Performing failsafe tasks and message detected errors by setting diagnostic states  
2.5.1.  
General Working Modes  
ZSSC3138 supports three different working modes:  
Normal Operation Mode (NOM) – for continuous processing of signal conditioning  
Command Mode (CM) – for calibration and access to all internal registers  
Diagnostic Mode (DM) – for failure messages  
16  
January 25, 2016  
 
 
 
 
 
 
1
2.5.2.  
Startup Phase  
After power-on, the startup phase is processed, which includes  
Internal supply voltage settling including reset of the circuitry by the power-on reset block (POR).  
Refer to the ZSSC313x High Voltage Protection Description for power-on/off thresholds.  
Duration (beginning with VVDDA-VVSSA=0V): 500µs to 2ms; AOUT: high impedance.  
System start and configuration, EEPROM readout, and signature check.  
Duration: ~200µs; AOUT: lower diagnostic range (LDR).  
Processing the measurement cycle start routine.  
Duration: 5x A/D conversion time; AOUT behavior depends on configured one-wire communication mode  
(refer to section 2.6):  
OWIANA or OWIDIS AOUT: lower diagnostic range (LDR)  
OWIWIN or OWIENA AOUT: tri-state  
If an error is detected during the startup phase, the Diagnostic Mode (DM) is activated and the analog output at  
the AOUT pin remains in the lower diagnostic range.  
After the startup phase, the continuous running measurement and sensor signal conditioning cycle is started, and  
analog or digital output of the conditioned sensor signal is activated. If the one-wire communication mode  
OWIWIN is selected, the OWI startup window expires before analog output is available.  
2.5.3.  
Conditioning Calculation  
The digitalized value for the bridge signal is processed with a conditioning formula to remove offset and  
temperature dependency and to compensate nonlinearity up to 3rd order. The result is a non-negative 15-bit value  
for the measured bridge sensor signal in the range [0; 1). This value is available for readout via I²C or OWI  
communication. For the analog output, the value is clipped to the programmed output limits.  
Note: The extent of signal deviation that can be compensated by the conditioning calculation depends on the  
specific sensor signal characteristics. For a rough estimation, assume the following: offset compensation  
and gain correction are not limited. Notice that resolution of the digitally gained signal is determined by  
the ADC resolution in respect to the dynamic input range used. The temperature correction includes first  
and second order terms and should be adequate for all practically relevant cases. The non-linearity  
correction of the sensor signal is possible for second-order up to about 30% FS regarding ideal fit and for  
third-order up to about 20% FS. Overall, the conditioning formula applied is able to reduce the non-  
linearity of the sensor signal by a factor of 10.  
1
All timing values are roughly estimated for an oscillator frequency fOSC=3MHz and are proportional to that frequency.  
17  
January 25, 2016  
 
 
 
2.6. Analog or Digital Output  
The AOUT pin is used for analog output and for one-wire communication (OWI). The latter can be used for digital  
readout of the conditioned sensor signal and for end-of-line sensor module calibration. The ZSSC3138 supports  
different modes for the analog output in interaction with OWI communication:  
OWIENA:  
OWIWIN:  
Analog output is deactivated; OWI readout of the signal data is enabled.  
Analog output starts after the startup phase and after the OWI startup window if OWI  
communication is not initiated; OWI communication for configuration or for end-of-line  
calibration can be started during the OWI startup window (maximum ~500ms) by sending the  
START_CM command.  
OWIANA:  
OWIDIS:  
Analog output starts after the startup phase; OWI communication for configuration or for end-  
of-line calibration can be started during the OWI startup window (maximum ~500ms) by  
sending the START_CM command; for command transmission, the driven analog output at  
the AOUT pin must be overwritten by the external communication master (AOUT drive  
capability is current-limited).  
Analog output starts after the startup phase; OWI readout of the signal data is disabled.  
The analog output signal is driven by an offset compensated, rail-to-rail output buffer that is current-limited to  
prevent damage to the ZSSC3138 from a short circuit between the analog output and power supply or ground.  
Output resolution of at least 12-bit in the range of 10% to 90% FS is ensured by a 12.4-bit resistor string DAC.  
2.7. Serial Digital Interface  
The ZSSC3138 includes a serial digital I²CTM interface and a ZACwireTM interface for one-wire communication  
(OWI). The digital interfaces allow configuration and calibration of the sensor module. OWI communication can be  
used to perform an end-of-line calibration via the analog output pin AOUT of a completely assembled sensor  
module. The interfaces also provide the readout of the conditioned sensor signal data during normal operation.  
Refer to the ZSSC313x Functional Description for a detailed description of the serial interfaces and the  
communication protocols.  
2.8. Failsafe Features  
The ZSSC3138 detects various failures. When a failure is detected, Diagnostic Mode (DM) is activated. DM is  
indicated by setting the output pin AOUT to the Lower Diagnostic Range (LDR). When using digital serial  
communication protocols (I²C™ or OWI) to read conditioning results data, the error status is indicated by a  
specific error code.  
A watchdog timer controls the proper operation of the microcontroller. The operation of the internal oscillator is  
monitored by an oscillator-failure detection circuit. EEPROM and RAM content are checked when accessed.  
Control registers are parity protected.  
The sensor connection is checked with regard to broken wires or short circuits (sensor connection check, sensor  
short check).  
Refer to the ZSSC313x Functional Description for a detailed description of failsafe features and methods of error  
indication.  
18  
January 25, 2016  
 
 
 
2.9. High Voltage, Reverse Polarity, and Short Circuit Protection  
The ZSSC3138 is designed for 5V power supply operation.  
The ZSSC3138 and the connected sensor are protected from overvoltage and reverse polarity damage by an  
internal supply voltage limiter. The analog output AOUT can be connected (short circuit, overvoltage, and reverse  
polarity) with all potentials in the protection range under all potential conditions at the pins VDDE and VSSE.  
To guarantee this operation, all external components (see application circuit in section 3) are required. The  
protection is not time-limited.  
Refer to the ZSSC313x High Voltage Protection Description for a detailed description of protection cases and  
conditions.  
19  
January 25, 2016  
 
3
Application Circuit Examples  
The application circuits contain external components that are needed for overvoltage, reverse polarity, and short  
circuit protection.  
Note:  
Table 3.1  
Symbol  
C1  
Also check the ZSSC313x application notes for application examples and board layout.  
External Components for Application Circuit Examples  
Component  
Capacitor  
Capacitor  
Capacitor  
Min  
100  
100  
4
Typ 2)  
Max  
Unit Remarks  
470  
nF  
nF  
C2  
C3 1)  
47  
160  
10  
nF  
Value includes the load capacitor C3 and the  
capacitance of the connection cable.  
C4, C5 1)  
Capacitor  
0
nF  
Recommended to increase EMI immunity.  
Value includes the filter capacitor C4 and C5  
and the sensor connection line capacitance.  
1)  
2)  
Increasing capacitors C3, C4, and C5 increases EMI immunity.  
Dimensioning is only for example and must be adapted to the requirements of the application.  
Figure 3.1  
Application with On-Chip Diode Temperature Sensor  
Out / OWI  
GND  
C2  
100nF  
8
7
6
5
4
3
2
1
VSSE  
AOUT  
VBN  
VDDE  
VDD  
n.c.  
VSUPP  
+4.5V to +5.5V  
C3  
47nF  
9
Sensor Bridge  
10  
11  
12  
13  
14  
VBR_B  
VBP  
SCL  
SCL  
SDA  
Serial Interface  
SDA  
VBR_T  
n.c.  
VSSA  
VDDA  
C4  
C5  
C1  
100nF  
20  
January 25, 2016  
 
 
 
 
 
4
Pin Configuration and Package  
Table 4.1  
Pin Configuration and Definition  
Pin No Pin Name Description  
Remarks  
1
2
3
4
5
6
7
8
9
VDDA  
VSSA  
SDA  
Positive Analog Supply Voltage  
Negative Analog Supply Voltage  
I²C™ Serial Data  
Internal analog supply  
Internal analog ground  
Digital I/O; internal pull-up to VDDA  
Digital input; internal pull-up to VDDA  
SCL  
I²C™ Clock  
N.C.  
Not connected  
VDD  
Positive Digital Supply Voltage  
Positive External Supply Voltage  
Negative External Supply Voltage  
Internal digital supply  
High voltage analog supply  
Ground  
VDDE  
VSSE  
AOUT  
Analog Output  
High voltage analog I/O  
and ZACwireTM Serial Data  
10  
11  
VBN  
Negative Input from Sensor Bridge  
Analog input  
Analog I/O  
VBR_B  
Negative Sensor Bridge Supply Voltage  
Depending on application circuit, short to VSSA  
12  
13  
VBP  
Positive Input from Sensor Bridge  
Analog input  
VBR_T  
Positive Sensor Bridge Supply Voltage  
Analog I/O  
Depending on application circuit, short to VDDA  
14  
N.C.  
Not connected  
The standard package of the ZSSC3138 is an RoHS-compliant SSOP14 “green” package (5.3mm body width)  
with a lead pitch of 0.65 mm.  
Figure 4.1  
ZSSC3138 SSOP14 Pin Diagram  
VSSE  
AOUT  
VBN  
VDDE  
VDD  
N.C.  
VBR_B  
VBP  
SCL  
SDA  
B
Revision  
VBR_T  
N.C.  
VSSA  
VDDA  
PPPP  
Product and Package Code  
LLLLLLLL Lot Number  
YYWW Date Code (Year, Work Week)  
21  
January 25, 2016  
 
 
 
5
ESD Protection  
All pins have an ESD protection of >2000V according to the Human Body Model (HBM). The pins VDDE, VSSE  
and AOUT have an additional ESD protection of >4000V (HBM).  
ESD protection is tested with devices in SSOP14 packages during product qualification. The ESD test follows the  
Human Body Model with 1.5kOhm/100pF based on MIL 883, Method 3015.7.  
6
Quality and Reliability  
The ZSSC3138 is qualified according to the AEC-Q100 standard, operating temperature grade 0.  
A fit rate <5fit (T=55°C, S=60%) is guaranteed. A typical fit rate of the semiconductor technology used is 2.5fit.  
7
Customization  
For high-volume applications that require an upgraded or downgraded functionality compared to the ZSSC3138,  
IDT can customize the circuit design by adding or removing certain functional blocks.  
Please contact IDT for further information.  
8
Ordering Information  
Product Sales Code  
ZSSC3138BA2T  
Description  
Package  
Tube  
ZSSC3138 SSOP14 – temperature range -40 to +125°C  
ZSSC3138 SSOP14 – temperature range -40 to +125°C  
ZSSC3138 die – temperature range -40 to +125°C  
ZSSC3138BA2R  
ZSSC3138BA1B  
Reel  
Tested dice on unsawn  
wafer  
ZSSC3138BA1C  
ZSSC3138BE2T  
ZSSC3138BE2R  
ZSSC3138BE1B  
ZSSC3138BE1C  
ZSSC313xKITV1.1  
ZSSC3138 die – temperature range -40 to +125°C  
ZSSC3138 SSOP14 – temperature range -40 to +150°C  
ZSSC3138 SSOP14 – temperature range -40 to +150°C  
ZSSC3138 die – temperature range -40 to +150°C  
ZSSC3138 die – temperature range -40 to +150°C  
Tested dice on frame  
Tube  
Reel  
Tested dice on unsawn wafer  
Tested dice on frame  
ZSSC313x Evaluation Kit, revision 1.1, including Evaluation Board, Kit  
ZSSC3138 IC samples, USB cable  
ZSSC313x Mass  
Modular Mass Calibration System (MSC) for ZSSC313x including  
Kit  
Calibration System V1.1 MCS boards, cable, connectors  
22  
January 25, 2016  
 
 
 
 
9
Related Documents  
Document  
ZSSC3135 Feature Sheet  
ZSSC313x Functional Description  
ZSSC313x Evaluation Kit Description  
ZSSC313x Technical Note—EMC Design  
Guidelines*  
ZSSC313x Technical Note—High Voltage  
Protection*  
ZSSC313x Technical Note Die & Package  
Dimensions**  
ZSSC313x Temperature Profile Calculation  
Spread Sheet  
ZSSC313x Bandwidth Calculation Spread Sheet**  
Visit the ZSSC3138 product page (www.IDT.com/ZSSC3138) or contact your nearest sales office for the latest version of  
these documents.  
* Documents marked with an asterisk (*) require a login account for access on the web.  
** Documents marked with a double asterisk (**) are available only on request.  
23  
January 25, 2016  
 
10 Glossary  
Term  
ADC  
AEC  
AFE  
Description  
Analog-to-Digital Converter  
Automotive Electronics Council  
Analog Front-end  
AOUT  
BAMP  
BR  
Analog Output  
Buffer Amplifier  
Bridge Sensor Signal  
CM  
Command Mode  
CMC  
CMOS  
DAC  
DM  
Calibration Microcontroller  
Complementary Metal Oxide Semiconductor  
Digital-to-Analog Converter  
Diagnostic Mode  
EEPROM  
ESD  
LDR  
MUX  
NOM  
OWI  
PGA  
POR  
RAM  
RISC  
ROM  
SCC  
SSC  
T
Electrically Erasable Programmable Read-Only Memory  
Electrostatic Device  
Lower Diagnostic Range  
Multiplexer  
Normal Operation Mode  
One-Wire Communication  
Programmable Gain Amplifier  
Power-on Reset  
Random-Access Memory  
Reduced Instruction Set Computer  
Read-Only Memory  
Sensor Connection Check  
Sensor Signal Conditioner or Sensor Short Check depending on context.  
Temperature Sensor Signal  
TS  
Temperature Sensor  
XZC  
eXtended Zero Compensation  
24  
January 25, 2016  
 
11 Document Revision History  
Revision  
1.00  
Date  
Description  
October 18, 2011  
January 20, 2012  
September 25, 2012  
February 15, 2013  
First released revision.  
Full revision.  
1.10  
1.20  
Minor edits. Update for IDT contact information.  
1.21  
Updates to specifications 1.3.7.1, 1.3.7.2, and 1.3.7.3.  
Addition of RS factor (ADC Range Shift) to equation (2).  
Minor edits. Update for ZMD America contact information.  
1.22  
1.23  
1.24  
October 22, 2013  
April 21, 2014  
Updates for contact information and imagery for cover and headers.  
Updates for related documents.  
Update for available part codes and kit contents listed in ordering tables.  
Corrections for part ordering table on page 3.  
Update for cover imagery.  
Update for contact information.  
April 10, 2015  
Update for contact info.  
January 25. 2016  
Changed to IDT branding.  
 
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

ZSSC3138BE2R

Sensor Signal Conditioner for Ceramic Sensor Applications
IDT

ZSSC3138BE2R

Sensor Signal Conditioner for Ceramic Sensor Applications
RENESAS

ZSSC3138BE2T

Sensor Signal Conditioner for Ceramic Sensor Applications
IDT

ZSSC3138BE2T

Sensor Signal Conditioner for Ceramic Sensor Applications
RENESAS

ZSSC313XKITV1.1

Sensor Signal Conditioner for Ceramic Sensor Applications
RENESAS

ZSSC3154

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3154BA1B

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3154BA1C

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3154BA3R

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3154BE3R

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3154KIT

Automotive Sensor Signal Conditioner with Dual Analog Output
IDT

ZSSC3170

Automotive Sensor Signal Conditioner with LIN and PWM Interface
IDT