ZSSC3240CC1B [RENESAS]

Sensor Signal Conditioner IC for Resistive Sensors;
ZSSC3240CC1B
型号: ZSSC3240CC1B
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Sensor Signal Conditioner IC for Resistive Sensors

文件: 总64页 (文件大小:1714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
ZSSC3240  
Sensor Signal Conditioner IC for Resistive Sensors  
Description  
Features  
The ZSSC3240 is a sensor signal conditioning IC  
(SSC) for highly accurate amplification, digitization,  
and sensor-specific correction of resistive sensor  
signals. The ZSSC3240 is suitable for bridge and  
half-bridge sensors, as well as external voltage-  
source element and single-element sensors (e.g.,  
Pt100 and external temperature sensor diodes)  
powered by an on-chip current source. Digital  
compensation of the sensor offset, sensitivity,  
temperature drift, and non-linearity is accomplished  
via a 26-bit math core running a correction algorithm  
with calibration coefficients stored in a non-volatile,  
reprogrammable memory. The programmable,  
integrated sensor front-end allows optimally applying  
various sensors for a broad range of applications.  
Digital communication and calibration interfaces  
o SPI up to 10MHz  
o I2C (Standard, Fast, and High-Speed Mode)  
o One-wire-interface (OWI), up to 100kBit/s  
Accommodates nearly all resistive bridge sensor  
types (signal spans from 1mV/V up to 500mV/V)  
Supports different sensor element configurations:  
o Resistive bridge or half-bridge  
o Resistive divider string  
o Voltage source  
On-chip temperature sensor  
External temperature sensing supported, e.g.  
sensor-bridge as temperature detector, external  
diode, etc.  
The ZSSC3240 provides measurement value  
readouts and programming capabilities via an I2C,  
SPI, or one-wire interface (OWI). Three different  
operation modes allow optimal development of  
digital, digital-analog, and analog-output smart  
sensor modules including wake-up on request,  
continuous-on/fast-response, and automatic/cyclic  
sensor measurement operations. Absolute and  
ratiometric voltage, current-loop, or interrupt analog  
outputs are supported by the ZSSC3240. The  
analog output options and digital interface options  
(for calibration and/or a digital application interface)  
can be combined.  
Support for Pt100  
Programmable 16-bit digital-to-analog-converter and  
output:  
o (0V to 1V) or (0V to 5V) absolute voltage output  
o VDD-ratiometric voltage output  
o 4mA to 20mA current-loop output supported  
o 0V to 10V absolute-voltage output supported  
On-chip voltage regulators for sensor supply, and IC  
operation  
Support for extra regulation by external transistor, for  
example JFET  
Programmable 24-bit sensor-signal-conditioning  
Basic Application Diagram  
math core  
Sensor  
Element  
Reprogrammable, nonvolatile memory (NVM)  
VDD  
Programmable measurement scheduler for  
continuous sensing applications, with optimized  
balance of  
VSS  
OUTANA  
ZSSC3240  
o Energy consumption  
o Output update rate  
o Sensor-signal-conditioning accuracy  
o Self-diagnostic coverage and system safety  
On-chip diagnostics:  
Optional Digital Master  
(I2C, SPI, OWI)  
o Sensor connection  
o Broken-chip-check / chipping-check  
o Memory integrity  
Nov.27.20  
Page 1  
ZSSC3240  
Datasheet  
Physical Characteristics  
Typical Applications  
Supply voltage, VDD: 2.7V to 5.5V;  
with external transistor, for example  
JFET: 5V to 48V  
Calibrated, continuously operating sensors with  
digital interface and/or analog output: (absolute or  
ratiometric) voltage or current loop output  
Operating temperature: -40°C to 125°C  
Enables smart, digital sensors for energy-efficient  
solutions  
Supported sensor elements: 0.5kΩ to 60kΩ  
Pressure, flow, and level sensing  
Available as die on wafers or 4 4 mm2 24-QFN  
with wettable flanks, allowing visual inspection of  
QFN reflow quality  
Industrial applications; e.g. process/factory  
automation  
Consumer / white goods, e.g. HVAC, weight scales  
Medical applications, e.g. blood pressure,  
continuous smart health monitors  
Block Diagram  
Sensor Supply: voltage / ratiometric  
LDOctrl  
TEXT  
external  
Transistor  
Regulation  
VDDA int  
Internal  
Voltage  
Regulators  
VDD  
VSS  
Internal  
VTP  
VTN  
Sensor  
Bias  
AGND / CM  
Generator  
IC Bias Current  
Generator  
Temp.  
Sensor  
Element  
VDDB  
Sensor  
Power Ctr.  
Current  
Ana  
Dig  
Sensor Supply:  
current mode  
ZSSC3240  
AOUT /  
OWI1  
DAC  
13-16Bit  
A
RESQ  
INP  
VSSB  
INN  
D
12-24Bit  
FB  
PGA  
OWI2in  
OWI  
Digitial Control and  
Math Core  
EOC  
Analog  
SCLK/SCL  
SS  
MOSI/SDA  
MISO  
Clock  
Generator  
Sensor  
Connection  
Diagnostics  
System  
Control  
Unit  
SPI  
Chipping  
Check  
Power-ON  
Reset  
NVM  
Oscillator  
I2C  
Typical Application Examples  
Digital Half-Bridge Sensor, e.g. PT100  
Analog Sensor with Absolute Voltage Out  
VDD  
(2.7-5.5V)  
VDD  
(2.7 to 5.5V  
VDDB  
VSS  
VDDB  
INP  
VSS  
PTC /  
NTC  
INP  
VSSB  
INN  
AOUT / OWI1  
ZSSC3240  
OWI  
VSSB  
INN  
AOUT / OWI1  
VOUT, absolute  
(0 to 1V / 0 to 5V)  
ZSSC3240  
SS  
Sensor Half-  
Bridge  
Sensor Bridge  
Digital Interface:  
I2C or SPI or OWI  
Sensor with Ratiometric Voltage Output and Digital Interface  
Analog Sensor with Current Loop Output, OWI, and External JFET  
VDD  
Loop+  
(2.7 to 5.5V)  
(7 to 48V)  
5 to  
5.5V  
OWI  
VDDB  
VSS  
INP  
VOUT, ratiometric  
(2.5% to 97.5% of VDD  
AOUT  
OWI1  
/
VSSB  
INN  
VDDB  
INP  
VSS  
ZSSC3240  
FB  
Sensor Bridge  
VSSB  
INN  
AOUT / OWI1  
VDD  
(2.7 to  
5.5V)  
ZSSC3240  
SS  
OWI2in  
Digital Interface:  
I2C or SPI or OWI  
Sensor Bridge  
Loop-  
4 to 20mA  
Rsens  
Nov.27.20  
Page 2  
 
ZSSC3240  
Datasheet  
Contents  
1. Pin Assignments............................................................................................................................................ 6  
2. Pin Descriptions ............................................................................................................................................ 7  
3. Absolute Maximum Ratings.......................................................................................................................... 8  
4. Recommended Operating Conditions ......................................................................................................... 8  
5. Electrical Characteristics.............................................................................................................................. 8  
6. Device Description ...................................................................................................................................... 11  
6.1 Signal Flow .......................................................................................................................................... 12  
6.2 Analog (Sensor) Front-End.................................................................................................................. 12  
6.2.1.  
6.2.2.  
6.2.3.  
6.2.4.  
Programmable-Gain Amplifier (PGA).................................................................................... 13  
Analog-to-Digital Converter (ADC)........................................................................................ 15  
Internal Temperature Sensor ................................................................................................ 17  
Supported Supplies for Sensor Elements and Additional, External Temperature Sensing.. 17  
6.3 On-Chip Diagnostics............................................................................................................................ 22  
6.4 Digital Interfaces.................................................................................................................................. 24  
6.4.1.  
6.4.2.  
6.4.3.  
SPI......................................................................................................................................... 24  
I2C......................................................................................................................................... 27  
One-Wire-Interface, OWI ...................................................................................................... 28  
6.5 Measurement and Output Options ...................................................................................................... 32  
6.5.1.  
6.5.2.  
6.5.3.  
6.5.4.  
Single Measurements, Digital Raw Results, and SSC Results ............................................ 32  
Cyclic, Continuous, Repeated Measurements Measurement Scheduler .......................... 34  
Analog Outputs: Digital-to-Analog Converter (DAC)............................................................. 35  
Output Interrupt Signaling ..................................................................................................... 38  
6.6 System Setup and Control................................................................................................................... 40  
6.6.1.  
6.6.2.  
6.6.3.  
Digital Commands................................................................................................................. 40  
Nonvolatile Memory (NVM)................................................................................................... 43  
Digital Sensor-Signal-Conditioning Mathematics.................................................................. 55  
6.7 External, Extra LDO (LDOctrl) for Applications for > 5.5V .................................................................. 58  
7. Calibration .................................................................................................................................................... 59  
8. Package Outline Drawings.......................................................................................................................... 59  
9. Marking Diagram.......................................................................................................................................... 59  
10. Ordering Information................................................................................................................................... 60  
11. Glossary........................................................................................................................................................ 60  
12. Revision History .......................................................................................................................................... 61  
Nov.27.20  
Page 3  
ZSSC3240  
Datasheet  
Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Pin Assignments for 4 4 mm2 24-QFN Package Top View.......................................................6  
Pin (Pad) Assignments for Bare Die ...............................................................................................6  
Main Operating Modes of the ZSSC3240.....................................................................................11  
Analog Sensor Front-End Topology..............................................................................................13  
SPI Configuration CPHA=0...........................................................................................................25  
SPI Configuration CPHA=1...........................................................................................................25  
SPI Command Request ................................................................................................................26  
SPI Read Data ..............................................................................................................................26  
SPI Read Status............................................................................................................................26  
I2C Command Request ................................................................................................................27  
I2C Read Data ..............................................................................................................................27  
I2C Read Status............................................................................................................................27  
General Block Schematic of the OWI Interface ............................................................................28  
OWI Timing Diagram.....................................................................................................................29  
OWI Extra (Activation) Pulse for Concurrent OWI and Analog Output Configuration ..................29  
OWI Command Request...............................................................................................................30  
OWI Response by ZSSC3240 ......................................................................................................31  
Example Configuration for the Measurement Scheduling and Cyclic Mode Operation................34  
Measurement Result Output Update in Cyclic Operation (with “Slow” Interface Polling).............35  
DAC and Analog Output Topology................................................................................................35  
Current Loop Configuration...........................................................................................................38  
EOC-Behavior: Signalization of End-of-Conversion (INT_setup = 00BIN).....................................38  
EOC and Interrupt Thresholds......................................................................................................39  
Digital IC Section Architecture ......................................................................................................40  
LDOctrl Application Topology .......................................................................................................58  
Nov.27.20  
Page 4  
ZSSC3240  
Datasheet  
Tables  
Table 1.  
Pin Descriptions ..............................................................................................................................7  
Absolute Maximum Ratings ............................................................................................................8  
Recommended Operating Conditions.............................................................................................8  
Electrical Characteristics.................................................................................................................8  
PGA Gain: Stage 1........................................................................................................................13  
PGA Gain: Stage 2........................................................................................................................14  
Absolute Offset Shift Properties.................................................................................................14  
Absolute Offset Shift – Differential Sensor Signal’s Offset Compensation...................................14  
PGA Input Span Ranges...............................................................................................................15  
Single Analog-to-Digital Conversion .............................................................................................16  
ADC Offset Shift............................................................................................................................16  
Sensor Supply Options .................................................................................................................17  
Sensor Supply Main Sensing.....................................................................................................18  
Sensor Bias Currents Sensor Sourcing in Current Mode ..........................................................19  
Sensor Supply Temperature Sensing........................................................................................19  
Diagnostic Signalization Options with ZSSC3240 ........................................................................22  
Information Assignment for CHECK_DIAG Command: Output Register diagnosticreg [15:0].....23  
General Status Byte......................................................................................................................24  
Mode Status..................................................................................................................................24  
SPI Interface Parameter ...............................................................................................................26  
I2C Interface Parameter................................................................................................................27  
OWI Dimensioning Examples .......................................................................................................29  
OWI Interface Parameters ............................................................................................................29  
Data Format of Raw ADC Readings.............................................................................................32  
Data Format of Corrected, SSC Results (S and T).......................................................................32  
Typical Conversion Times for Complete SSC Sensor Measurements: SM, TM ..........................33  
Typical Conversion Times and Noise Performance for Complete SSC Measurements ..............33  
DAC Configurations ......................................................................................................................35  
Direct Voltage Outputs..................................................................................................................36  
Recommended Operating Conditions for Voltage Output ............................................................36  
ZSSC3240 Current-Loop-Specific Properties...............................................................................37  
Data Format of Interrupt Thresholds (TRSH1 and TRSH2)..........................................................39  
Command List...............................................................................................................................40  
Memory (NVM) Content Assignments ..........................................................................................44  
Data Format of 24-bit SSC Coefficients........................................................................................55  
Data Format of Corrected, SSC Results (S and T).......................................................................56  
IC Supply, VDD Target Level Selection with External Voltage Regulation, External LDO.............58  
External LDO Operating Conditions..............................................................................................58  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Nov.27.20  
Page 5  
ZSSC3240  
Datasheet  
1. Pin Assignments  
The ZSSC324x is available as 8-inch wafers and in a 24-QFN package. Detailed information about die and  
wafers is available on request (see last page for contact information).  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VDDB  
INP  
VSS  
FB  
VSSB  
INN  
AOUT / OWI1  
OWI2in  
EOC  
ZSSC324x  
IDT-Test  
SS  
IDT-Test  
7
8
9
10  
11  
12  
: QFN-bottom plate, Exposed PAD.  
Figure 1. Pin Assignments for 4 4 mm2 24-QFN Package Top View  
IC Core  
Seal Ring  
LDOctrl  
VDD  
VSS  
FB  
Text  
VDDB  
INP  
AOUT / OWI1  
OWI2in  
VSSB  
INN  
EOC  
IDT-Test  
IDT-Test  
RESQ  
SS  
MISO  
MOSI / SDA  
SCLK / SCL  
IDT-Test  
Figure 2. Pin (Pad) Assignments for Bare Die  
Nov.27.20  
Page 6  
ZSSC3240  
Datasheet  
2. Pin Descriptions  
Table 1.  
Pin Number  
1
Pin Descriptions  
Name  
Type  
Description  
Analog  
Input/Output  
Positive sensor (bridge) supply or sensor-signal input.  
VDDB  
2
3
4
5
6
7
8
INP  
Analog Input  
Positive sensor (bridge) signal.  
VSSB  
INN  
Analog Input  
Sensor (bridge) ground or sensor-signal input.  
Negative sensor (bridge) signal.  
Analog Input  
IDT-test  
IDT-test  
RESQ  
IDT-test  
Renesas-internal use only. Connect to VSS or no connection; leave pin floating.  
Renesas-internal use only. Connect to VSS or no connection; leave pin floating.  
Digital IC reset (low active); internal pull-up.  
Digital Input  
Renesas-internal use only. Connect to VSS or no connection; leave pin floating.  
Digital data input for SPI or bidirectional data I/O for I2C. Pull-up to VDD.  
Digital  
Input/Output  
9
MOSI/SDA  
10  
11  
n.c.  
No connection. Leave pin floating.  
SCLK/SCL  
Digital Input  
Clock input for SPI or I2C interface. Referenced to applied VDD level.  
Data output from ZSSC3240 to master for SPI interface. Referenced to applied  
VDD level.  
12  
MISO  
Digital Output  
13  
14  
15  
SS  
Digital Input  
Digital Output  
Digital Input  
Slave select (interface enable) for SPI. Referenced to applied VDD level.  
End-of-conversion and output interrupt signal.  
EOC  
OWI2in  
Optional OWI interface input line for current-loop applications.  
Analog smart-sensor output signal and/or OWI-interface input/output line.  
Analog Output;  
Digital  
16  
AOUT/OWI1  
Input/Output  
Current-loop application feedback output (level below VSS!). No connection if not  
used.  
17  
FB  
Analog Output  
18  
19  
20  
VSS  
VDD  
n.c.  
Ground  
Supply  
Power supply ground.  
Power supply.  
No connection. Leave pin floating.  
Current drive output for external temperature sensor and/or bridge in Current  
Mode. A 1500Ω serial resistor is built in the IC internally for pad-protection  
purposes.  
21  
TEXT  
Analog Output  
22  
23  
24  
25  
n.c.  
LDOctrl  
No connection. Leave pin floating.  
Control output (reference signal) for (optional) external regulator / supply control  
loop.  
Analog Output  
n.c.  
No connection. Leave pin floating.  
QFN-bottom plate, i.e. Die-bottom/substrate. Leave pin floating (no electrical  
connection), PAD to be used for heat dissipation only.  
Exposed PAD  
-
Nov.27.20  
Page 7  
ZSSC3240  
Datasheet  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause  
permanent damage to the device. Functional operation of the ZSSC3240 at absolute maximum ratings is not  
implied. Exposure to absolute maximum rating conditions might affect device reliability.  
Table 2.  
Absolute Maximum Ratings  
Symbol  
Parameter  
Junction temperature  
Conditions  
Minimum  
Maximum  
135  
Units  
°C  
°C  
V
TJ  
TS  
Storage temperature  
-45  
150  
ESD Human Body Model  
ESD Charged Device Model  
Latch-up  
4000  
750  
V
-100  
-0.3  
-0.3  
+100  
6.5  
mA  
V
VDD_max  
VIF_max  
Maximum allowed for voltage supply  
Voltage at digital interface pins  
Referenced to VSS.  
I2C pins: SDA, SCL  
4mA to 20mA current loop  
interface  
5.5  
V
VFB_max  
Voltage at FB pin  
-2  
2
V
4. Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Symbol  
Parameter  
Power supply voltage  
Minimum  
2.7  
Typical  
Maximum  
5.5  
Units  
V
VDD  
TA  
Ambient temperature (depending on the part code)  
-40  
125  
°C  
External (parasitic) capacitance between VDD and VSS,  
without external supply transistor regulation  
0
80  
0
10  
100  
6.8  
120  
8
CVDD  
nF  
nF  
External (parasitic) capacitance between VDD and VSS, with  
(optional) external supply transistor regulation  
Recommended, external capacitance between VDDB and  
VSS for electro-magnetic immunity (EMI)  
CVDDB,EMC  
Recommended, external capacitance between AOUT versus  
VSS, and versus VDD for EMI [a]  
Load current through external sensor element [b]  
External temperature diode and RTD input range, drop over  
external element referenced to TEXT pin  
CAOUT,EMC  
ISensor  
VDioDrop  
VSens_in  
0
22  
0.5  
33  
4
nF  
mA  
V
0.02  
-0.2  
1
Absolute sensor signal input level, INN, INP pins  
Minimum level at VDDB [b]  
Maximum level at VSSB [b]  
0.5  
0.9  
-
-
1.2  
V
V
VDDBratio_min  
VSSBratio_max  
Imax_AOUT_V  
0.7  
18  
V
Maximum current load at AOUT pin for voltage outputs  
Recommended VDD rise slew rate for power-on-reset (POR) [c]  
-
mA  
V/ms  
SRVDD_POR  
1.5  
[a] For applications with OWI-interface or analog voltage-output.  
[b] With ratiometric sensor supply configuration; e.g. a ratiometric bridge or bridge as temperature sensor with internal or external Rt.  
[c] Per design, there is no (theoretical) minimum VDD slew rate to trigger a clean POR. Nevertheless, a reasonable slew rate is  
recommended.  
5. Electrical Characteristics  
All parameter values are valid only under specified operating conditions. All voltages are referenced to VSS.  
Table 4.  
Electrical Characteristics  
Note: See important notes at the end of this table.  
Symbol  
IIC  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
IC Supply  
Excluding connected sensor elements  
(with LDOctrl enabled)  
Current consumption,  
active IC  
2.3  
1.5  
2.80  
mA  
µA  
Idle current consumption,  
IC in Idle State  
Typical value at 30°C, maximum value at  
85°C (125°C)  
6
IIDLE  
(22)  
OWI and LDOctrl disabled  
Nov.27.20  
Page 8  
 
 
 
 
 
ZSSC3240  
Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Average current draw  
Mean current consumption for one  
complete SSC measurement cycle per  
second at 16-bit digital-only output  
3.5  
µA  
IAVE  
Target level regulation  
range to generate VDD  
after external transistor,  
for example JFET  
Using LDOctrl and external transistor;  
programmable setup: VDD_ldoctrl_target  
(see section 6.7)  
4.6  
5.2  
5.5  
V
VDD,LDOctrl  
Sensor Supply  
ISUP  
Sensor bias  
5
80  
-1  
500  
1.5  
µA  
%
In the case of a Current Mode sensor  
supply; setup in temp_source and  
sensor_sup (see section 6.2)  
Relative sensor bias  
current error [a]  
-3.5  
ErrTBIAS  
Drop over sensor bias  
current source  
referenced VDDAint from internal analog  
regulator  
200  
230  
mV  
V
VTBIAS  
Internally regulated  
analog (bridge) sensor  
front-end supply  
In the case of a ratiometric sensor  
supply, setup in temp_source and  
sensor_sup  
1.68  
1.75  
1.80  
VDDB  
(VDDAint)  
Attenuation of VDD fluctuations in the  
range of fVDD = 0Hz to 10MHz  
45  
20  
12  
50  
dB  
dB  
Power supply rejection  
ratio[b], only internal  
regulator  
PSRRLOW  
PSRRHIGH  
fVDD > 10MHz  
Analog-to-Digital Converter (ADC, A2D)  
rADC  
fS,raw  
Resolution  
16  
24  
Bit  
Single-conversion rate,  
conversions per second  
Single external sensor A2D conversion  
(without auto-zero measurement AZ);  
resolution dependent  
0.21  
(ADC:  
24-bit)  
3.39  
(ADC:  
16-bit)  
13.00  
(ADC:  
12-bit)  
kHz  
Differential ADC input  
common mode[c]  
With internal regulator supplying VDDB  
pin, typical: VDDB/2 = 875mV (equals  
PGA output common mode level)  
0.5  
VDDB  
Bit  
VADCmid  
(AGND)  
Effective number of bits,  
3Noise based  
For gain < 78, shorted input, rADC =  
24-bit, no oversampling  
15.8  
18.1  
ENOB [g]  
Digital-to-Analog Converter (DAC) and Analog Output  
rDAC  
Resolution  
13  
14  
65  
16  
Bit  
µs  
Analog voltage output  
settling time  
Time from 30% steady state until 99% of  
new DAC output (100% out) value is  
reached; varies with level differences  
0
150  
tDACsettle  
Absolute output, Aout_setup = 010BIN  
(see section 6.5.3.1)  
0.025  
0.025  
1
5
V
V
Addressable output  
voltage at AOUT pin  
VDACout  
Absolute output, VDD > 5.01V,  
Aout_setup = 011BIN  
Ratiometric output, Aout_setup = 001BIN  
0.1  
12  
20  
100  
20  
-
%VDD  
kHz  
BWDAC  
SRout  
Output filter bandwidth  
Output slew rate  
Without external components  
15  
Resistive load > 2kΩ,  
100  
mV/µs  
capacitive load < 20nF at Aout,  
temperature = 25°C  
Maximum output current  
This current level must be overdriven  
from an OWI-Master, if concurrent DAC-  
output and OWI communication is  
configured.  
10  
12  
18  
mA  
µA  
IOUTmax  
Current loop driving  
current  
Aout_setup = 000BIN; depends on  
connected bipolar transistor for current  
loop application  
IDRloop  
100  
160  
Programmable-Gain Amplifier (PGA)  
120 steps  
Gamp  
Gerr  
Gain  
1.32  
-2.5  
540  
2.5  
V/V  
%
Gain error  
Referenced to nominal gain, T = 25°C  
VDDAint = 1.75V, valid for ratiometric and  
current mode sensor supply  
0
Supported input common  
mode  
VCMin  
0.70  
0.85  
1.00  
V
Sensor Signal Conditioning Performance  
Cyclic operation  
0.07  
1.45  
1.20  
2.91  
kHz  
kHz  
SSC-corrected (S, T ) digital output rate,  
ADC:16-bit (see section 6.5.1)  
fSSCout  
Output (Update) rate [d]  
Complete SSC cycle (S, T ) including  
analog output update; ADC: 14-bit; DAC:  
14-bit  
1.35  
1.45  
1.60  
kHz  
Nov.27.20  
Page 9  
ZSSC3240  
Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
ZSSC3240 accuracy  
error  
Accuracy error with an ideally linear  
sensor (in temperature and measurand)  
ErrA,IC  
0.01  
15  
% FSO  
Correctable (in PGA),  
absolute, differential input ±5% referenced to nominal setup  
offset  
Programmable in 1mV steps; accuracy:  
Vioffsc  
-15  
0
0
mV  
%
Correctable (in ADC),  
relative, differential input  
offset  
Percentage of sensor signal offset  
versus maximum sensor signal  
ΔADC,c  
98  
Input  
Absolute sensor input  
Voltages at INP and INN pin; resulting  
minimum/maximum differential voltages:  
-700mV < VINdiff < 700mV  
VINP, VINN  
0.5  
0.5  
1.20  
1.25  
V
V
External temperature  
diode or RTD input range  
At TEXT pin  
VTEXT  
VDDB = 1.75V  
0.5  
1.6  
60  
60  
kΩ  
kΩ  
External sensor (bridge)  
resistance  
RSENSOR  
For 4mA to 20mA current loop output  
Differential input signal  
range  
Referenced to sensor supply (VDDAint);  
leading to full scale analog excitation  
Diagnostics  
|VDIFFin  
|
2.6  
50  
700  
mV  
Sensor connection loss;  
i.e., open threshold  
INP vs. INN  
Ropen  
Rshort  
70  
kΩ  
Sensor connection short  
threshold  
INP vs. INN; TEXT vs. VDDB  
100  
Valid sensor input signal  
Beyond Vs,valid, sensor connection checks  
(such as in-range, etc.) signalize  
Diagnostic FAULTs  
Vs,valid  
0.44  
1.31  
V
Power-Up  
tSTA1  
tSTA2  
VDD ramp up to interface communication  
VDD ramp up to analog operation  
2
ms  
ms  
Start-up Time  
Wake-up Time  
2.5  
Sleep to Active State interface  
communication  
tWUP1  
tWUP2  
2
10  
2
µs  
Sleep to Active State analog operation  
ms  
Oscillator  
Internal oscillator  
frequency  
fCLK  
5.9  
12  
6.0  
35  
6.1  
MHz  
Counts/K  
kΩ  
Temperature Sensor(s)  
Setup: ADTTsens,int = 13-bit  
Internal temperature  
sensor resolution  
Internal low TC[f]  
top/bottom resistance for  
external temperature  
rTemp  
Programmable with internal_rt and  
extra_rt;  
applied if temp_source є {010; 110} (see  
section 6.2.4)  
Rt, Rt'  
1.34  
40  
Interface and Memory  
fC,SPI  
fC,I2C  
SPI clock frequency  
I2C clock frequency  
OWI data rate  
0.05  
-
1
12  
3.4  
10  
7
MHz  
MHz  
CDOWI  
tPROG  
0.33  
kBit/s  
ms  
NVM program time  
NVM endurance  
Data retention  
Programming time per 16-bit word  
Number of reprogramming cycles  
3
10000  
nNVM  
1000  
10  
Numeric  
Years  
tRET,NVM  
[a] Referenced to nominal value. Relative errors are typically < 1% for sensor bias current setups > 20µA.  
[b] PSRR = 20·log10(VDD/VDDB): will be improved when applying external filter elements at VDD and/or also using an external JFET  
regulator.  
[c] This parameter must be taken into account if automatic common mode regulation in the PGA is switched off (pga_en_shift; see  
section 6.2.1) and a non-symmetric sensor supply and input to the PGA ADC path have been configured.  
[d] There are several setups and parameters that allow optimizing and maximizing the output update rate; e.g., ADC and DAC  
resolutions, configurations for the measurement sequence, usage of the internal or an external temperature sensor.  
[e] Vioffsc and ΔADC,c can be arbitrarily set up and combined. They work independently on each other.  
[f] Typical residual temperature variation of voltage across Rt, Rt': 10ppm/K; maximum deviation: 150ppm/K at  
40kand >100°C, all other setups and conditions < 60ppm/K.  
[g] ENOB = log2( 2rADC / 3Noise ) with, for example rADC[Bit] = 24.  
Nov.27.20  
Page 10  
 
ZSSC3240  
Datasheet  
6. Device Description  
The ZSSC3240 can be set up to for one of three main operating modes:  
Sleep Mode  
The Sleep Mode is recommended for smart sensors with purely digital output. The  
ZSSC3240 automatically enters the idle state after command execution for minimum  
current consumption, whereas the interface is still listening and accepts commands.  
After receiving a valid command, the ZSSC3240 wakes up, executes the command,  
provides the results at the digital interface, where the results must be read, and returns  
to idle state after the data fetch. The results are only available once; repeated data fetch  
is not supported. In Sleep Mode, sensor measurement results cannot be provided at the  
analog output of ZSSC3240.  
Command Mode  
Cyclic Mode  
The Command Mode is most appropriate for evaluation, test, and calibration purposes.  
In this mode, all commands are available, both digital and analog outputs are supported  
and all functionality is available. Command Mode can be used for applications requiring  
re-occurring (or even continuous) digital interaction, potential analog output, and  
minimum latency. Applications in Command Mode are only active on command request.  
In Cyclic Mode, autonomous, cyclically repeated sensor measurements are performed  
and related digital and/or analog output updates are provided. Cyclic Mode is  
recommended for analog output applications. The cyclic sequence for measurements,  
diagnostics, and hence the output update rate is configurable.  
The ZSSC3240 always enters the programmed default_mode after power-on (reset). One of the three operating  
modes can be set up as the default. After the ZSSC3240 is powered and has entered its default mode, changing  
to one of the other operating modes is possible via the mode change and start commands: START_CM,  
START_CYC, START_SLEEP (see section 6.6.1 for details).  
Power-On (VDD),  
Reset  
Initialization  
(load fromconfigurations from NVM,  
interfaces, default_mode, etc.)  
10BIN  
default_mode  
01BIN  
00BIN  
Sleep Mode  
(wake up on command, automatic  
sleep after command execution, no  
Command Mode  
(activity on command, digital and  
analog output supported, fastest  
Cyclic Mode  
(autonomous measurements, digital  
and analog output supported, limited  
START_SLEEP  
START_CM  
START_CYC  
START_CM  
analog output)  
response, all commands)  
commands)  
START_CYC  
START_SLEEP  
Figure 3. Main Operating Modes of the ZSSC3240  
The ZSSC3240 supports three different types of digital interfaces: I2C, SPI, and OWI. All interface types allow  
application and control of each of the main operating modes.  
Exception: The combination of Sleep Mode as the default mode (see the default_mode bit in the SSF1 register in  
Table 34) and the OWI interface is not supported. The OWI interface must be disabled (owi_off = 1, bit[13] in the  
SSF1 register) for correct Sleep Mode operation.  
Nov.27.20  
Page 11  
ZSSC3240  
Datasheet  
When using commands to change the operating mode, e.g. START_CM or START_SLEEP, validation of the  
new operating mode is recommended; e.g., by reading an NVM register or simply retrieving the status byte.  
Note: The ZSSC3240 always requires two or more interface command interactions after an operating mode  
change prior to any additional changes in the mode.  
6.1  
Signal Flow  
See the figures on page 2 for the ZSSC3240 block diagram and circuit diagrams for different input sensors. The  
ZSSC3240 supports two sensor supplies: ratiometric voltage and current mode, i.e., sensor current bias. In the  
ratiometric sensor-supply configuration, VDDB and the power supply for analog circuitry are provided by an on-  
chip voltage regulator, which is optimized for power supply disturbance rejection (PSRR). To improve noise  
suppression, the digital blocks are powered by a separate voltage regulator. A power supervision circuit monitors  
all supply voltages and generates appropriate reset signals for initializing the digital blocks.  
The System Control Unit controls the analog circuitry to perform the measurement types: external sensor,  
external or internal temperature, and offset measurement. The multiplexer selects the signal input to the  
amplifier, which can be the external signals from the input pins INP, INN, TEXT, VDDB, and VSSB or the internal  
temperature reference sensor signals. A full measurement request will trigger an automatic sequence of all  
measurement types and all input signals. The basic sensor signal source configuration is set up in the SSF1  
register (see Table 34) in the on-chip memory.  
The programmable gain amplifier (PGA) consists of two stages with programmable gain values. The ZSSC3240  
employs a programmable analog-to-digital converter (ADC) optimized for conversion speed and noise  
suppression. The programmable resolution from 12 to 24 bits provides flexibility for adapting the conversion  
characteristics. To improve power supply noise suppression, the ADC uses the external sensor supply voltage,  
e.g., VDDB for the ratiometric supply of a connected full-bridge sensor element, as its reference voltage leading  
to a ratiometric measurement topology. The remaining IC-internal offset and the sensor element offset, i.e., the  
overall system offset for the amplifier and ADC, can be canceled via an offset and auto-zero measurement,  
respectively.  
The math core accomplishes the auto-zero, span, and 1st and 2nd order temperature compensation of the  
measured external sensor signal. The correction coefficients are stored in the non-volatile memory.  
The ZSSC3240 supports SPI, OWI, and I2C interface communication for controlling the ZSSC3240,  
configuration, and measurement result output. Analog output signals can be provided, which are proportional to  
the sensor signal that has been compensated for nonlinearity and temperature. The ZSSC3240 can also check  
and signalize numerous sensor and self-check diagnostic values.  
6.2  
Analog (Sensor) Front-End  
The main blocks and functions of the analog sensor front-end of the ZSSC3240 are illustrated in Figure 4. As a  
typical first setup, the type and supply of the connected (external) sensor element should be determined and  
configured. The sensor_sup and temp_source bits in the SSF1 register (03HEX; see Table 34) of the NVM must  
be set up according to the connected sensor configuration.  
Important: If using the current mode sensor biasing via the “Sensor Bias Current” block, which is configured with  
the Tbiasout bit field (see section 6.2.4), ensure that the selection for bias current combined with the  
dimensioning for the connected external sensor is within the input common mode constraints, VCMin (typical  
0.85V) as defined in Table 4.  
Nov.27.20  
Page 12  
 
ZSSC3240  
Datasheet  
VDDAint   1.75V  
Sensor Supply: Voltage / Ratiometric  
TEXT  
Internal  
Temp.  
Sensor  
VTP  
VTN  
Sensor  
Bias  
Current  
VDDB  
Sensor Supply:  
Current Mode  
A
INP  
VSSB  
INN  
D
PGA  
adc_bits  
gain_polarity  
Gain_stage1  
ioffsc Gain_stage2  
adc_en_shift adc_offset  
Tbiasout  
sensor_sup  
Figure 4. Analog Sensor Front-End Topology  
6.2.1.  
Programmable-Gain Amplifier (PGA)  
The amplifier has a fully differential architecture and consists of two stages. The amplification of each stage and  
the external sensor gain polarity are programmable via settings in the measurement configuration register:  
For the main sensor element: SM_config1 and SM_config2 (NVM addresses 14HEX and 15HEX; see Table 34)  
For an optional external temperature sensor: extTemp_config1 and extTemp_config2 (NVM addresses 16HEX  
and 17HEX; see Table 34).  
The first 7 bits of the *_config1 registers are the programmable gain settings Gain_stage1 and Gain_stage2. The  
options for the programmable gain settings are listed in Table 5 and Table 6. The resulting analog gain is the  
linear product of the stage 1 and stage 2 selection: GainPGA = Gain1 Gain2. With the programmable  
Gain_polarity bit in the *_config1 registers, the sign of the effective PGA gain can be swapped; e.g., to invert the  
sensor characteristic’s slope and invert signal processing of the differential signal between INP and INN.  
Table 5.  
PGA Gain: Stage 1  
Gain_stage1[3:0]  
Gain1 [V/V]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.2  
2
4
6
12  
20  
30  
40  
60  
80  
120  
150  
200  
240  
300  
Not assigned  
Nov.27.20  
Page 13  
 
ZSSC3240  
Table 6.  
Datasheet  
PGA Gain: Stage 2  
Gain_stage2[2:0]  
Gain2 [V/V]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
In addition to the amplification of the sensor input signals, the PGA’s first stage can perform an absolute offset  
shifting of the differential sensor signal. This shift operation can be programmed in 1mV steps with the  
configuration setup ioffsc bit field in the SM_config2 and extTemp_config2 registers. The effective voltage-shift  
depends on the selected Gain1, Gain_stage1. The VIOFFSC values (in Table 8) correspond to the higher Gain1  
values, i.e. Gain1 > 100. The PGA-operation including shift effect for a differential input signal, VDIFFin can be  
described as:  
(
)
Gain2  
VADC,IN = Gain2  
Gain1  
VDIFFin + V  
V
Equation 1  
IOFFSC  
IOFFSC  
Table 7.  
Symbol  
Absolute Offset Shift Properties  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Relative accuracy of the effectively applied Offset Shift  
referenced to the selected setup per ioffsc[4:0], IC-to-IC variation  
IOFFSC  
0.89  
0.98  
1.07  
-
1st order temperature coefficient for the change of the effective  
Offset Shift voltage for negative-voltage shift effects, i.e.  
ioffsc[4]=0  
TCneg,IOFFSC  
-0.25  
-0.21  
0
PPT/K  
1st order temperature coefficient for the change of the effective  
Offset Shift voltage for positive-voltage shift effects, i.e.  
ioffsc[4]=1  
TCpos,IOFFSC  
0
0.21  
74  
0.25  
PPT/K  
dB  
Fluctuation of output offset signal (VIOFFSC) versus nominal value  
SNRIOFFSC  
at 25°C; 20·log10(VIOFFSC/VIOFFSC  
)
The shifting can be configured independently for the main sensor and the optional, external temperature sensor.  
If the absolute offset shifting is enabled, then the ZSSC3240 current consumption increases by 100µA. The  
advantage of absolute offset shifting is an increase of analog dynamic range in the ZSSC3240’s sensor front-  
end, which results in higher measurement result quality (less noise/fluctuations).  
Table 8.  
Absolute Offset Shift – Differential Sensor Signal’s Offset Compensation  
ioffsc[4:0]  
Shift Effect, VIOFFSC  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0mV, no shift  
-1mV  
-2mV  
-3mV  
-4mV  
-5mV  
-6mV  
-7mV  
-8mV  
-9mV  
-10mV  
-11mV  
-12mV  
-13mV  
-14mV  
-15mV  
Nov.27.20  
Page 14  
 
ZSSC3240  
Datasheet  
ioffsc[4:0]  
Shift Effect, VIOFFSC  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0mV, no shift  
1mV  
2mV  
3mV  
4mV  
5mV  
6mV  
7mV  
8mV  
9mV  
10mV  
11mV  
12mV  
13mV  
14mV  
15mV  
The PGA can perform an automatic adjustment for the PGA input to ADC input common mode. This can be  
enabled via the pga_en_shift bit in the *_config2 registers. The supportable input common mode range at the  
PGA, i.e. at the sensor front-end input, is constant per IC because it is derived from the internally regulated  
voltage VDDAint.  
Table 9.  
PGA Input Span Ranges  
Gain1  
Total Gain, GAMP Examples  
Gain2  
Max. Input Span, Differential Signal Range [mV]  
540  
420  
330  
280  
220  
144  
103  
88  
300  
300  
300  
200  
200  
120  
80  
80  
60  
40  
40  
30  
20  
12  
12  
6
1.8  
1.4  
1.1  
1.4  
1.1  
1.2  
1.3  
1.1  
1.2  
1.5  
1.2  
1.3  
1.5  
1.6  
1.1  
1.7  
1.3  
1.5  
1.1  
5.0  
6.4  
8.1  
9.6  
12.2  
18.5  
25.9  
30.5  
37.5  
45  
72  
60  
48  
56  
39  
69  
30  
90  
19.2  
13.2  
10.2  
5.2  
140  
204  
264  
519  
900  
1400  
4
3.0  
1.32 [a]  
2
1.2  
[a] There is a general PGA-input range constraint to support VINdiff of ±700mV at maximum, which is especially dominating for GAMP < 2.  
6.2.2.  
Analog-to-Digital Converter (ADC)  
An analog-to-digital converter (ADC) is used to digitize the amplifier signal. To allow optimizing the trade-off  
between conversion time and resolution, the resolution can be programmed from 12-bit to 24-bit (adc_bits bit  
fields in the SM_config1, and extTemp_config1 registers; see section 6.6.2.1). The ADC processes differential  
input signals around its input common mode level: VADCmid. Table 10 lists the ADC resolution, signal ranges,  
conversion times for a single Analog-to-Digital conversion.  
Nov.27.20  
Page 15  
 
ZSSC3240  
Datasheet  
Table 10. Single Analog-to-Digital Conversion  
adc_bits[3:0]  
ADC  
Resolution  
[Bits]  
Ratiometric ADC  
Input Range [a]  
Absolute ADC  
Conversion  
Time, Typical  
[µs]  
Conversion  
Rate, Typical  
[kHz]  
,
Input Range [b]  
VADC,IN [V]  
,
Bit[3] Bit[2] Bit[1]  
Bit[0]  
VADC,IN [V]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
12  
±1.42  
±1.43  
±1.41  
±1.42  
±1.41  
±1.42  
±1.41  
±1.42  
±1.41  
±1.42  
±1.41  
±1.42  
±1.40  
±1.07  
±1.08  
±1.06  
±1.07  
±1.06  
±1.07  
±1.06  
±1.07  
±1.06  
±1.07  
±1.06  
±1.07  
±1.06  
162  
192  
235  
294  
380  
497  
670  
903  
1245  
1715  
2400  
3335  
4705  
6.1  
5.2  
4.2  
3.4  
2.6  
2.0  
1.4  
1.1  
0.8  
0.5  
0.4  
0.3  
0.2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Not assigned  
Not assigned  
Not assigned  
[a] With the following settings: ratiometric reference, sel_ref* = 1, and no ADC-shift (adc_en_shift = 0) nor extra ADC-gain, i.e. GainADC=1  
[b] With the following settings: absolute reference, sel_ref* = 0, and no ADC-shift (adc_en_shift = 0) nor extra ADC-gain, i.e. GainADC=1  
The ADC can perform an additional offset shift (independent of the PGA shifting with ioffsc) in order to adapt  
input signals with offsets to the ADC input range. The shift feature is enabled by setting adc_en_shift = 1 (bit[8]  
in the SM_config2 or extTemp_config2 registers). As defined in Table 11, the respective analog offset shift can  
be selected with bits [14:12], adc_offset in SM_config1 or extTemp_config1.  
Note: Enabling the offset shift causes the ADC to perform an additional amplification of the ADC’s input signal by  
factor 2. This must be considered for a correct analog sensor setup by means of the PGA’s gain, the absolute  
offset shift in the PGA, the ADC offset shift, and the potential ADC gain.  
The overall analog amplification GainTOTAL = GainPGA · GainADC can be determined for the following potential use  
cases using Equation 2 or Equation 3 depending on the ADC offset setting:  
If no ADC offset shift is selected, i.e., adc_en_shift = 0 and adc_offset = 000, then  
GainTOTAL = GainPGA 1  
Equation 2  
If ADC offset shift is selected, i.e., adc_en_shift = 1 (adc_offset is configurable), then  
GainTOTAL = GainPGA 2  
Equation 3  
Table 11. ADC Offset Shift  
adc_offset[2:0]  
Compensation of Percentage  
Offset in Input Signal  
ADC Input Signal  
Range [VADC,IN]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0%  
-0.5 to 0.5  
-0.44 to 0.56  
-0.38 to 0.62  
-0.31 to 0.69  
-0.25 to 0.75  
-0.19 to 0.81  
-0.13 to 0.87  
-0.06 to 0.94  
-1 to +1  
6.25%  
12.50%  
18.75%  
25.00%  
31.25%  
37.50%  
44.00%  
ADC-offset shift disabled, adc_en_shift = 0  
0% (compensation, 2-gain off)  
Nov.27.20  
Page 16  
 
 
 
 
 
 
ZSSC3240  
Datasheet  
6.2.3.  
Internal Temperature Sensor  
The ZSSC3240 provides an internal temperature sensor measurement to allow compensation for temperature  
effects. The temperature output signal is a differential voltage that is adapted by the amplifier (PGA) for the ADC  
input, comparable to the external sensor’s signal. For ZSSC3240-internal temperature measurements, the  
respective settings are defined and programmed in the NVM by Renesas.  
6.2.4.  
Supported Supplies for Sensor Elements and Additional, External Temperature Sensing  
There are two options to supply and bias the external sensor element, which can be selected by the sensor_sup  
bit field in the SSF1 register (03HEX) in the NVM (see Table 34). The differential sensor signal (e.g., from a  
sensor bridge) is fed into the ZSSC3240 at the INP pin for the positive and the INN pin for the negative signal  
level.  
Table 12. Sensor Supply Options  
sensor_sup[1:0]  
External Sensor Supply  
bit[1]  
bit[0]  
0
0
0
1
Ratiometric voltage: VDDB to VSSB.[a]  
Bias current out of VDDB. [a]  
No supply, INN internally connected to AGND, absolute voltage-source measurement (e.g., thermopile  
between INP and INN).  
1
1
0
1
Not assigned.  
[a] The combination of settings temp_source = 100 and sensor_sup=01 returns the sensor to be supplied by a ratiometric voltage.  
There are multiple possible combinations of an external main sensing supply and the SSC-input signal  
generation with different sensing elements and approaches for generating a temperature signal for temperature-  
dependency compensation. Table 13 illustrates the possible sensor connections, application circuits, and  
ZSSC3240 configurations.  
Note: The applications circuits S1 to S3 and T1 to T5 highlight the supply paths in blue and the input signal paths  
in red for the main sensing element connection and supply in Table 13 and for the supporting, external  
temperature sensing in Table 15.  
Nov.27.20  
Page 17  
 
 
 
ZSSC3240  
Datasheet  
Table 13. Sensor Supply Main Sensing  
Application  
Front-End Configuration, Sensor Application, and Connection Circuit  
Setup and Remarks  
General sensor front-end overview for  
main and supporting temperature  
sensor connection and setup  
TEXT  
Internal  
Temp.  
Sensor  
Sensor  
Bias  
Current  
VTP  
VTN  
VDDB  
Rt  
S0  
INP  
VSSB  
INN  
PGA  
extra_rt  
Rt´  
Ratiometric bridge-type sensor setup:  
Sensor element supplied through an  
ZSSC3240-internal, regulated  
voltage  
Regulated Voltage,  
VDDA  
TEXT  
Internal  
Temp.  
Sensor  
Bias  
Current  
Sensor  
Element  
VDDB  
Sensor  
sensor_sup = 00BIN  
Could also be combined with the  
internal temperature sensor or any  
external temperature sensor  
configuration using a ratiometric  
supply  
Vsup  
S1  
INP  
VSSB  
INN  
PGA  
Note: if temp_source = 100BIN  
(temperature application T3.2) is also  
set up, the sensor_sup = 01BIN must be  
configured in order to get the S1  
application functionality.  
Current Mode bridge-type sensor  
setup:  
Sensor element biased through an  
ZSSC3240-internal current source  
via VDDB pad  
Regulated Voltage,  
VDDA  
Internal  
Temp.  
Sensor  
TEXT  
Isup  
Sensor  
Bias  
Current  
Sensor  
VDDB  
Element  
sensor_sup = 01BIN  
S2  
Could also be combined with the  
internal temperature sensor or any  
external temperature sensor  
configuration using the Current  
Mode supply  
INP  
VSSB  
INN  
PGA  
Absolute-voltage sensor setup:  
Sensor element not supplied  
sensor_sup = 10BIN  
Regulated Voltage,  
VDDA  
TEXT  
Internal  
Temp.  
Sensor  
Bias  
Current  
VDDB  
Could also be combined with the  
internal temperature sensor  
Sensor  
(temp_source = 000BIN) or an  
external single-diode temperature  
sensor configuration in Current  
Sensor  
Element  
S3  
Mode (temp_source = 100BIN  
)
INP  
VSSB  
INN  
Voltage  
Source  
Note: Only up to a maximum of 50% of  
the input dynamic range is useable in  
this configuration  
PGA  
AGND  
For a ratiometric sensor supply, the VDDAint voltage from the ZSSC3240-internal regulator is used. As defined in  
Table 14, the alternative sensor bias current source generates a bias current that is programmable with the  
Tbiasout in bit field in the *_config2 registers (see Table 34).  
Nov.27.20  
Page 18  
 
ZSSC3240  
Datasheet  
Table 14. Sensor Bias Currents Sensor Sourcing in Current Mode  
Tbiasout  
Nominal Sensor  
bit[2]  
bit[1]  
bit[0]  
Bias Current [µA]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
10  
20  
39  
79  
157  
196  
494  
The ZSSC3240 supports internal and external temperature sensing for sensor-signal conditioning (SSC)  
purposes; i.e. an extra, separate temperature measurement in order to compensate temperature effects in the  
measurand signal from the main sensing element; e.g., a pressure sensor. The respective setup must be  
configured via the temp_source bit field in the SSF1 register.  
If the main sensing element itself with its inherent temperature sensitivity is used to generate the temperature  
information for SSC correction, then the internal_rt and extra_rt bit fields in the SFF1 register must be  
programmed. Table 15 provides an overview for the some of the supported temperature measurement options.  
The internal resistors Rt and Rt’ have been designed for flat, almost zero-sensitivity to temperature, such that the  
resulting temperature sensor measurements’ characteristic is mainly dominated only by the (typically spurious)  
temperature characteristic of the main sensor element itself. The use of the bottom resistance Rt’, selectable by  
extra_rt, is recommended for most related applications in order to have a bridge-resistance-related, symmetric  
temperature excitation, and not to introduce further differential signal offset when using the bridge-sensor  
element as the temperature sensor.  
In any configuration, the constraints for the minimum/maximum absolute and differential input signal dynamics  
must be considered.  
Table 15. Sensor Supply Temperature Sensing  
Application  
Front-End Configuration, Temperature Sensor Application, and Connection Circuit  
Setup and Comments  
Bridge as the temperature  
sensor with the internal Rt in  
Current Mode  
Sensor element supplied  
through the ZSSC3240-  
internal bias; i.e., the  
current source  
Regulated Voltage,  
TEXT  
VDDA  
Isup  
Internal  
Temp.  
VTP  
VTN  
Sensor  
Bias  
Current  
Sensor  
Element  
VDDB  
Sensor  
Rt  
temp_source = 001BIN  
internal_rt = User selected  
extra_rt = 0BIN  
T1  
Rsens  
INP  
VSSB  
INN  
Note: Only combine this T1  
application with  
sensor_sup = 01BIN (i.e.,  
main sensing application S2  
in Table 13)  
PGA  
Rt´  
extra_rt  
Nov.27.20  
Page 19  
 
ZSSC3240  
Datasheet  
Application  
Front-End Configuration, Temperature Sensor Application, and Connection Circuit  
Setup and Comments  
Bridge as temperature  
sensor with an external Rt in  
Current Mode:  
Sensor element supplied  
through the ZSSC3240-  
internal bias, i.e. the  
current source  
Isup  
Regulated Voltage,  
Sensor  
Element  
TEXT  
VDDA  
Internal  
Temp.  
VTP  
VTN  
Sensor  
Bias  
Current  
VDDB  
Sensor  
Rt,external  
Rt  
temp_source = 010BIN  
T2  
internal_rt = value close to  
Rt,external  
Rsens  
INP  
VSSB  
INN  
extra_rt = 0BIN  
PGA  
Note: Only combine this T2  
application with  
sensor_sup = 01BIN (i.e.,  
main sensing application S2  
in Table 13)  
Rt´  
extra_rt  
Separate diode / PTC-  
resistor as temperature  
sensor in Current Mode:  
Sensor element supplied  
through the ZSSC3240-  
internal bias, i.e. the  
Isup  
Regulated Voltage,  
VDDA  
TEXT  
Internal  
Sensor  
Bias  
Current  
Temp.  
Sensor  
VDDB  
Sensor  
Element  
current source  
temp_source = 100BIN  
internal_rt = any  
INP  
AGND  
extra_rt = 0BIN and  
sensor_sup = 10BIN (no Rt‘  
and absolute voltage  
sensor, i.e. main sensing  
application S3)  
T3.1  
PGA  
VSSB  
INN  
extra_rt  
Rt´  
sel_ref2 = 0BIN must be  
selected  
Note: The voltage at TEXT  
must fulfill input conditions  
and must be in the range of  
0.5V to 1.25V  
Separate diode / PTC-  
resistor as temperature  
sensor in Current Mode:  
Sensor element supplied  
through the ZSSC3240-  
internal bias, i.e. the  
Isup  
Sensor Element  
Regulated Voltage,  
VDDA  
Internal  
Temp.  
Sensor  
TEXT  
Sensor  
Bias  
Current  
VTP  
VTN  
VDDB  
Rt  
current source  
Rsens  
temp_source = 100BIN  
internal_rt = any  
INP  
VSSB  
INN  
AGND  
PGA  
extra_rt = 0BIN and  
sensor_sup = 01BIN  
(different from other  
application cases, Rt‘ is  
connected here and the  
Main Sensor Bridge is  
supplied ratiometrically,  
i.e. main sensing  
Rt´  
extra_rt  
T3.2  
application S1)  
sel_ref2 = 0BIN must be  
selected  
Note: The voltage at TEXT  
must fulfill input conditions  
and must be in the range of  
0.5V to 1.25V  
Nov.27.20  
Page 20  
ZSSC3240  
Datasheet  
Application  
Front-End Configuration, Temperature Sensor Application, and Connection Circuit  
Setup and Comments  
Temperature sensor with  
internal Rt with ratiometric  
supply  
Sensor element supplied  
through the ZSSC3240-  
internal regulated voltage  
VDDA, i.e. radiometric  
supply  
Regulated Voltage,  
TEXT  
VDDA  
Internal  
VTP  
VTN  
Sensor  
Bias  
Current  
Sensor  
Element  
Temp.  
Sensor  
VDDB  
Rt  
Rsens  
T4  
temp_source = 101BIN  
internal_rt = User selected  
extra_rt = 0BIN  
INP  
VSSB  
INN  
Vsup  
PGA  
Note: Only combine this T4  
application with  
sensor_sup = 00BIN (i.e.,  
main sensing application S1  
in Table 13)  
Rt´  
extra_rt  
Temperature Sensor with  
external Rt with ratiometric  
supply  
Sensor element supplied  
through the ZSSC3240-  
internal regulated voltage  
VDDA; i.e., the  
Regulated Voltage,  
VDDA  
Internal  
Temp.  
Sensor  
Sensor  
Element  
TEXT  
Sensor  
Bias  
Current  
VTP  
VTN  
VDDB  
Rt,external  
Rt  
radiometric supply  
Rsens  
temp_source = 110BIN  
INP  
VSSB  
INN  
T5  
internal_rt = any value  
close to the external Rt  
value  
PGA  
Rt´  
extra_rt = 0BIN  
extra_rt  
Note: Only combine this T5  
application with  
sensor_sup = 00BIN only (i.e.,  
main sensing application S1  
in Table 13)  
When using scenario T1, “Bridge as the temperature sensor with the internal Rt in Current Mode” in Table 15,  
the setup for bias current (Isup) and internal Rt must fulfill the requirements given in Equation 4 and Equation 5:  
Equation 4  
(0.5 Rsens + Rt) Isup = 0.85V ±125mV  
Where Rsens is the nominal resistance of the sensor element; i.e. the typical, effective resistance  
generating the differential sensor signal as input to the INP and INN pads.  
Important: Take into consideration the maximum specifications for the PGA common mode input  
level, VCmin (see Table 4).  
Equation 5  
(MAX[Rsens ] MIN[Rsens]) Isup < 700mV  
Important: Take into consideration the maximum specifications for the input signal, MAX[VDIFFin  
]
(see Table 4).  
The best method for deriving the respective values for Rt and Isup is to choose an Rt value close to but greater  
than Rsens and to calculate Isup accordingly.  
When using scenario T4, “Temperature sensor with internal Rt with ratiometric supply,” in Table 15 the setup for  
bias current (Isup) and internal Rt must fulfill Equation 6:  
Important: Take into consideration the maximum specifications for the PGA common mode input  
level, VCmin, which is automatically ensured if Rt and the extra Rt’ are selected.  
Nov.27.20  
Page 21  
 
 
ZSSC3240  
Datasheet  
Equation 6  
(MAX[Rsens] MIN[Rsens]) / (Rsens + 2 Rt) VDDBtyp < 700mV  
Important: Take into consideration the maximum specifications for the input signal, MAX[VDIFFin  
]
with VDDBtyp = 1.85V.  
In most cases, a low Rt value will suffice for ratiometrically supplied configurations. The lower the applied Rt  
value, the less the noise-level effect onto the temperature measurement signal.  
Sensor-bridge elements, which already contain a top resistor for temperature sensing purposes, can use the  
internal extra Rt’.  
6.3  
On-Chip Diagnostics  
The ZSSC3240 offers analog and digital self-test and sensor-diagnostic features to ensure robust system  
operation. If the part is programmed and operated with analog output (cont_ANAoutn = 0BIN in the SSF2 register;  
see Table 34), then diagnostic states are indicated by upper and lower levels at the AOUT pin; see Table 16.  
With the SPI, I2C, and OWI digital interfaces, the default status byte contains fault-diagnostics information. If  
further detailed diagnostic information is required, the CHECK_DIAG command B0HEX must be issued to retrieve  
the detailed diagnostics’ results in the diagnosticreg output register. The content of diagnosticreg (see Table 17)  
is updated each time new respective diagnostic information becomes available. This is also the case with the  
default ZSSC3240 initialization after power-on-reset (POR) or if specific commands are triggered in order to  
perform diagnostic checks or influence diagnosticreg:  
RESET_DIAG, B1HEX  
UPDATE_DIAG, B2HEX  
Resets the contents of diagnosticreg.  
Performs all enabled diagnostic checks (selected via the select_checks bit field  
[9:0] in register 21HEX in NVM; see Table 34) and default diagnostic checks  
including checksum validation of the NVM; results in complete update of  
diagnosticreg.  
Connection Checks  
These are scheduled connection checks in the Cyclic Mode setup. All enabled  
checks (as selected with select_checks) are performed, and diagnosticreg is  
updated accordingly.  
The analog signalization of diagnostic states at the AOUT pin for the different analog output options can be  
enabled/disabled via the diagouten bit in the SSF2 register 04HEX in the NVM (see Table 34). In Cyclic Mode, the  
analog signalization of a diagnostic state is present with the SSC Calculation and Output Update phase of the  
same measurement slot; see section 6.5.2. In Command Mode (with enabled analog output at AOUT pin), the  
diagnostic state at AOUT will be present with completion of the next SSC-conversion command, i.e. AAHEX or  
ACHEX to AFHEX; see Table 33).  
Table 16. Diagnostic Signalization Options with ZSSC3240  
Analog Ratiometric  
Analog Absolute Diagnostic OWI, SPI, I2C Status  
Detected Fault  
No Error / Fault  
Memory Error  
Comments  
Diagnostic Level, AOUT [a]  
Level, AOUT [a]  
Byte [7:0]  
0.125 to 4.875 V [b]  
0.025 to 0.975 V [c]  
0 to 0.125 V [b]  
Status after “reset.”  
2.5% to 97.5%  
Lower  
01XXX000BIN  
Checksum failure of  
NVM.  
0XXXX1XXBIN  
0 to 0.025 V [c]  
Loss of INP  
Connection, INP  
Open [d]  
4.875 V to VDD[b]  
0.975 to 1.0 V [c]  
Upper  
Upper  
A detailed, digital  
decoding of the  
respective connection  
check fault can be  
fetched using the B0HEX  
CHECK_DIAG  
command, which returns  
the diagnosticreg register  
content.  
Loss of INN  
Connection, INN  
Open [d]  
4.875 V to VDD[b]  
0.975 to 1.0 V [c]  
0XXXXX1XBIN  
4.875 V to VDD[b]  
0.975 to 1.0 V [c]  
4.875 V to VDD[b]  
0.975 to 1.0 V [c]  
0 to 0.125 V [b]  
INN or INP Signals  
Out of Range  
Upper  
Upper  
Lower  
Bridge/Sensor  
Short (INN=INP) [d]  
T_ext Pin Open  
0 to 0.025 V [c]  
Nov.27.20  
Page 22  
 
 
ZSSC3240  
Datasheet  
Analog Ratiometric  
Analog Absolute Diagnostic OWI, SPI, I2C Status  
Detected Fault  
Comments  
Diagnostic Level, AOUT [a]  
Level, AOUT [a]  
0 to 0.125 V [b]  
Byte [7:0]  
T_ext Pin Out of  
Range  
Lower  
Lower  
0 to 0.025 V [c]  
0 to 0.125 V [b]  
0 to 0.025 V [c]  
0 to 0.125 V [b]  
0 to 0.025 V [c]  
0 to 0.125 V [b]  
0 to 0.025 V [c]  
4.875 V to VDD[b]  
0.975 to 1.0 V [c]  
T_ext Pin Short to  
INP  
T_ext Pin Short to  
INN  
Lower  
Die Crack /  
Chipping Check  
Lower  
SSC Calculation  
Unit Saturation  
Upper (extra)  
0XXX XXX1BIN  
[a] Only signalized if diagouten = 1BIN  
.
[b] With VDD = 5V ±10%, for 0 to 5V absolute analog out.  
[c] With any VDD, for 0 to 1V absolute analog out.  
[d] Do not enable if the IC is connected to an absolute voltage source sensor, for example, Thermopile (sensor_sup = 10BIN) with  
typical internal resistances >60k.  
If multiple failures are detected leading to analog outputs that would be contradictory to each other, the high  
signal is always provided. The effective absolute, analog diagnostic-output level is constant for lower and upper  
diagnostic signal output. This absolute level may vary from IC to IC slightly. Hence, the effective lower and upper  
level for the absolute AOUT signal in the event of a valid diagnostic and failure event, respectively, are not  
influenced by any diagnostic-related setup in NVM nor by calibration coefficients, etc., per the Aout_setup bit  
field in register 04HEX in NVM (see Table 34). However, the threshold (i.e., the sensor-signal-valid maximum for  
the upper and minimum for the lower diagnostic band) can be programmed and adjusted via proper calibration  
and the diagouten bit in register 04HEX  
.
Table 17. Information Assignment for CHECK_DIAG Command: Output Register diagnosticreg [15:0]  
Bit-Number  
Connection Check  
Content  
DAC  
Meaning  
No Error / Fault  
Output[a] 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Yes  
Yes  
From SSC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Fault information improved since  
last status information  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
Loss of sensor positive  
connection, INP  
2dacres 7  
2dacres 7  
2dacres 7  
2dacres 7  
Yes  
Yes  
Yes  
Yes  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Loss of sensor negative  
connection, INN  
Signal at INP pin out of range  
(leaking / short to VSS or VDDB)  
Signal at INN pin out of range  
(leaking / short to VSS or VDDB)  
Sensor short (INN = INP)  
TEXT pin open  
Yes  
Yes  
2dacres 7  
0007HEX  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
Signal at TEXT pin out of range  
(leaking / short to VSS or VDDB)  
0007HEX  
Yes  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
TEXT pin short to INN  
Yes  
No  
0007HEX  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SSC Calculation Unit saturation  
2dacres 7  
0007HEX  
Memory error, checksum-check  
failure  
No  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
TEXT pin short to INP  
Yes  
No  
0007HEX  
0007HEX  
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Die crack / chipping check failure  
[a] The effective low limit for the DAC and resulting AOUT output signaling scales with the set up DAC resolution and is 16-bit =  
0007HEX, 15-bit = 000EHEX, 14-bit = 0015HEX, or 13-bit = 001CHEX.  
If a bit reset, i.e. a change from 1BIN (FAULT) back to 0BIN (NO-FAULT), for any bit occurs, diagnosticreg[0] is set  
in order to signal an improvement of fault states during the ZSSC3240 operation. This is especially relevant for  
Cyclic Mode and Continuous Analog-Output Mode operation.  
Nov.27.20  
Page 23  
 
 
 
 
ZSSC3240  
Datasheet  
The select_checks bit field in NVM register 21HEX 1 can be programed to select which (analog) checks are  
executed and/or signalized when the UPDATE_DIAG command is triggered or when a connection check is  
performed during Cyclic Mode operation. Checks that are not selected do not result in diagnosticreg register  
updates and are not signalized at the DAC and AOUT output.  
6.4  
Digital Interfaces  
The ZSSC3240 supports three different digital interface protocols: SPI, I2C, and OWI. The implementation of the  
interfaces is such that the available commands (section 6.6.1) and request codes for the ZSSC3240 are the  
same regardless on the interface type used.  
The selection of whether the ZSSC3240 operates with SPI, I2C, or OWI interface is determined in the start-up  
phase after power-on. Initially all interface relevant parameters are loaded from address 02HEX in the NVM (slave  
address, SPI configuration). If the first command after power-on is a valid and properly formatted I2C request  
including the correct slave address, the interface is fixed as an I2C slave. If, instead, there is an active signal at  
the SS pin as the first valid activity, then the IC is fixed as an SPI slave. Alternatively, a valid OWI start (within  
the start-up window) will fix the interface as OWI. Once, the interface is established and fixed, a change of the  
interface can only be done by means of a power-on-reset. The status byte defined in Table 18 is common for all  
supported interface types, and it is part of the ZSSC3240’s digital response to read requests.  
Table 18. General Status Byte  
Bit-Number  
Meaning  
7
6
5
4
3
2
1
0
Connection  
Check  
Fault?  
Memory  
Error?  
Math  
Saturation  
0
Powered?  
Busy?  
Mode  
Table 19. Mode Status  
Status[4:3]  
Mode  
00  
01  
10  
11  
Command Mode  
Cyclic Mode  
Sleep Mode  
Renesas reserved  
6.4.1.  
SPI  
The SPI interface mode is available if the first interface activity after ZSSC3240 power-up is an active signal at  
the SS pin. The polarity and phase of the SPI clock are programmable via the CKP_CKE setting in bits [11:10] in  
address 02HEX as described in Table 34. CKP_CKE is two bits: CPHA (bit 10), which selects which edge of  
SCLK latches data, and CPOL (bit 11), which indicates whether SCLK is high or low when it is idle. The polarity  
of the SS signal and pin are programmable via the SS_polarity setting (bit 9).  
The different combinations of polarity and phase are illustrated in Figure 5 and Figure 6. See Table 20 for the  
timing parameters.  
1
Recommendation for current loop applications: To minimize the effect of varying current draw in current loop applications, do not perform  
short-connection checks (sens_short_check, text_inn_short_check, text_inp_short_check).  
Nov.27.20  
Page 24  
 
 
 
ZSSC3240  
Datasheet  
CPHA=0  
SCLK (CPOL=0)  
SCLK (CPOL=1)  
MOSI  
MSB  
MSB  
Bit6  
Bit6  
Bit5  
Bit5  
Bit4  
Bit4  
Bit3  
Bit3  
Bit2  
Bit2  
Bit1  
Bit1  
LSB  
LSB  
MISO  
/SS  
SAMPLE  
tssd  
tssa  
Figure 5. SPI Configuration CPHA=0  
CPHA=1  
SCLK (CPOL=0)  
SCLK (CPOL=1)  
MOSI  
MSB  
Bit6  
Bit6  
Bit5  
Bit5  
Bit4  
Bit4  
Bit3  
Bit3  
Bit2  
Bit2  
Bit1  
LSB  
MISO  
MSB  
Bit1  
LSB  
/SS  
SAMPLE  
tssa  
tssd  
Figure 6. SPI Configuration CPHA=1  
In SPI Mode, each command except NOP is started as shown in Figure 7. After the execution of a command  
(busy = 0), the expected data can be read as illustrated in Figure 8 or if no data are returned by the command,  
the next command can be sent. The status can be read at any time with the NOP command (see Figure 9).  
Note: If SS and SCLK do not end after one complete read-response cycle, but continue for any reason, the  
ZSSC3240 will start repeating; e.g. the measurement result data would repeat in the following sequence  
(comparable to the OWI response shown in Figure 17):  
Status SensorData [23:16] SensorData [15:8] SensorData [7:0] TempData[23:16] TempData[15:8]  
TempData[7:0] SensorData [23:16] SensorData [15:8] ...  
Nov.27.20  
Page 25  
ZSSC3240  
Datasheet  
Command Request  
Command  
otherthan  
NOP  
CmdDat  
<15:8>  
CmdDat  
<7:0>  
MOSI  
MISO  
Status  
Data  
Data  
Note: A command request always consists of 3 bytes. If the command is shorter, then  
it must be completed with 0s. The data on MISO depend on the preceding command.  
Figure 7. SPI Command Request  
Read Data  
(a) Example: after the completion of a Memory Read command  
Command  
= NOP  
MOSI  
MISO  
00HEX  
00HEX  
MemData MemData  
<15:8> <7:0>  
Status  
(b) Example: after the completion of a Measure command (AAHEX  
)
Command  
= NOP  
MOSI  
MISO  
00HEX  
00HEX  
00HEX  
00HEX  
00HEX  
00HEX  
SensorData SensorData SensorData TempData TempData TempData  
<23:16> <15:8> <7:0> <23:16> <15:8> <7:0>  
Status  
Figure 8. SPI Read Data  
Read Status  
Command  
MOSI  
= NOP  
MISO  
Status  
Figure 9. SPI Read Status  
Table 20. SPI Interface Parameter  
Note: See important table notes at the end of the table.  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
fSCLK  
DSPI  
Interface clock  
Duty cycle  
0.05  
40  
1
50  
12  
60  
MHz  
%
Vhigh,SPI  
Input high level voltage  
Input low level voltage  
Referenced to external  
supply voltage VDD  
(maximum 5.5V)  
0.7  
1.0  
VDD  
Vlow,SPI  
SRSPI  
0.0  
0.3  
1
VDD  
Input rising and falling edge slew rate  
0.26  
V/ns  
Delay time[a] between SS-activation  
edge and first edge of SLCK, MOSI or  
MISO  
Delay time [a] between SS-deactivation  
edge and last edge of SLCK, MOSI or  
MISO  
tssa  
1
1
50  
50  
ns  
ns  
“Typical” is for fSCLK 3MHz  
operation  
tssd  
Delay between SS-deactivation edge of  
last command and of SS-activation edge  
for next command  
tss  
10  
µs  
IMISO  
Driving current of SPI output (peak)  
40  
180  
mA  
[a] Typical: For conditions with no clocks prior and after the command and data bytes, the maximum values for tssa and tssd are not  
relevant; under conditions with clocks prior to and after command and data, there is a maximum for tssa and tssd = 0.3/fSCLK  
.
Nov.27.20  
Page 26  
 
ZSSC3240  
Datasheet  
6.4.2.  
I2C  
I2C Mode is selected if the first interface activity after the ZSSC3240 power-up is an I2C command with valid  
slave address. In I2C Mode, each command is started as shown in Figure 10. Only the number of bytes that are  
needed for the command must be sent. An exception is the I2C High Speed Mode where 3 bytes must always  
be sent as in SPI Mode. After the execution of a command (busy = 0), the expected data can be read as  
illustrated in Figure 11 or if no data are returned by the command, the next command can be sent. The status  
can be read at any time as described in Figure 12.  
Command Request (IC Write)  
From master to slave  
From slave to master  
S
P
A
N
START condition  
STOP condition  
Acknowledge  
S
S
SlaveAddr 0 A Command A P  
write  
CmdData  
<15:8>  
CmdData  
<7:0>  
SlaveAddr 0 A Command  
write  
A
A
A P  
Not acknowledge  
Figure 10. I2C Command Request  
Read Data (I2C Read)  
(a) Example: after the completion of a Memory Read command  
MemData  
<15:8>  
MemData  
<7:0>  
S
SlaveAddr 1 A  
read  
Status  
A
A
N P  
(b) Example: after the completion of a Measure command (AAHEX  
)
SensorData  
<23:16>  
SensorData  
<15:8>  
SensorData  
TempData  
<23:16>  
TempData  
<15:8>  
TempData  
<7:0>  
S
SlaveAddr 1 A  
read  
Status  
A
A
A
A
A
A
N P  
<7:0>  
Figure 11. I2C Read Data  
Read Status (I2C Read)  
S
SlaveAddr 1 A  
Status  
N P  
read  
Figure 12. I2C Read Status  
Table 21. I2C Interface Parameter  
Symbol  
fSCL  
Parameter  
Interface clock  
Duty cycle  
Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
%
0.1  
33  
3.4  
50  
DSPI  
Input high level  
voltage  
Referenced to external supply  
voltage VDD.  
Vhigh,I2C  
Vlow,I2C  
0.7  
0.0  
1.0  
0.3  
VDD  
VDD  
Input low level  
voltage  
Nov.27.20  
Page 27  
 
 
 
ZSSC3240  
Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Capacitive load at  
input pin, SDA  
100pF: maximum for Standard and  
Fast Mode; in HS Mode  
fSCL,max = 3.4MHz  
CSDA  
100  
400  
pF  
400pF: only in HS Mode;  
fSCL,max = 1.7MHz  
Low level output  
current  
VSDA=0.4V; Standard and Fast  
Mode with 400kHz; 400pF load  
IOL  
3
6
40  
mA  
Details for timing and protocol of the ZSSC3240-supported I2C communication in Standard Mode, Fast Mode,  
and High-Speed Mode are given in I2C-Bus Specification, Rev.6, UM10204.  
6.4.3.  
One-Wire-Interface, OWI  
The ZSSC3240 employs a one-wire digital interface concept (OWI). It combines a simple and easy protocol  
adaptation with a cost-saving pin sharing. The communication principle of the OWI interface is derived from the  
I2C protocol.  
OWI-Slave  
OWI-Master  
Dynamic Driving,  
switch-on only  
during OWI-Slave-  
Output phases  
ZSSC3240  
5µA  
ROWI,PULLUP  
AOUT  
VSS  
ROWI,LINE  
COWI,LINE  
Figure 13. General Block Schematic of the OWI Interface  
Both the analog output signal and the digital OWI interface use the same pin, AOUT. An advantage of the OWI is  
that it enables “end of line” calibration – no additional pins are required to digitally calibrate a finished assembly.  
Although the OWI is integrated mainly for calibration, it can also be used to read out the calibrated sensor signal  
continuously or retrieve diagnostic detail information.  
The OWI protocol is defined as follows:  
Idle State: During inactivity of the bus, the OWI line is pulled up to the supply voltage VDD by an external  
resistor.  
Start Condition: When the OWI line is in idle mode, a low pulse with a minimum width of tOWI,START ≥ 10μs and  
then a return to high indicates a start condition. Every request must be initiated by a start condition sent by a  
master. A master can generate a start condition only when the OWI line is in idle mode.  
Valid Data: Data is transmitted in bytes (8 bits) starting with the most significant bit (MSB). Transmitted bits  
are recognized after a start condition at every transition from low to high at the OWI line. The value of the  
transmitted bit depends on the duty ratio between the high phase and high/low period (bit period, tOWI,BIT in  
Figure 14). A duty ratio greater than 1/8 and less than 3/8 is detected as 0; a duty ratio greater than 5/8 and  
less than 7/8 is detected as 1. The bit period of consecutive bits must not increase to more than 1.5 times the  
previous bit period or decrease to less than half of the previous bit period because a stop condition is detected  
in this case.  
The length of the OWI-line and the size of ROWI,PULL (if it is statically connected to AOUT), and consequently the  
resistive and capacitive load influence the maximum possible interface speed and minimum Bit period,  
respectively. Further, it can be beneficial for harsh EMC conditions to intentionally add capacitance to the OWI1  
(AOUT) line in order to improve RF disturbance robustness. Table 22 shows some practical OWI-interface  
dimensioning examples and the resulting maximum signal frequencies (minimum possible Bit periods). The  
complete ZSSC3240’s OWI interface properties and timing capabilities are given in Table 23.  
Nov.27.20  
Page 28  
 
ZSSC3240  
Datasheet  
Table 22. OWI Dimensioning Examples  
ROWI,PULL  
(+ ROWI,LOAD  
)
1.8 kΩ  
2.5 kΩ  
3.3 kΩ  
5.5 kΩ  
10.0 kΩ  
[a]  
COWI,LOAD  
20µs  
113µs  
249µs  
373µs  
497µs  
576µs  
20µs  
157µs  
345µs  
518µs  
691µs  
801µs  
21µs  
207µs  
456µs  
684µs  
912µs  
1057µs  
35µs  
63µs  
1nF  
345µs  
628µs  
10nF  
22nF  
33nF  
44nF  
51nF  
760µs  
1381µs  
2070µs  
2762µs  
3205µs  
1140µs  
1520µs  
1760µs  
[a] Examples are shown with statically connected ROWI,PULL, and with minimum bit period: tOWI,BIT  
.
OWI protocol timing and parameters are specified in Figure 14, Figure 15, and Table 23.  
Start  
1
0
1
Stop Start  
0
tOWI,STOP  
tOWI,IDLE  
tOWI,START  
tOWI,BIT  
tOWI,0  
tOWI,1  
Figure 14. OWI Timing Diagram  
Note: Configuration for SSF1 register 03HEX in NVM (see Table 34) to allow continuous OWI and concurrent  
analog output: owi_off = 0, cont_ANAoutn = 0, owi_su_case = 1.  
Start  
1
0
tOWIextraH  
tOWIextraL  
tOWI,START  
tOWI,BIT  
Figure 15. OWI Extra (Activation) Pulse for Concurrent OWI and Analog Output Configuration  
Table 23. OWI Interface Parameters  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Programmable window length , see  
owi_su_length, bit[2] in SSF1  
register  
OWI start-up “listening”  
window  
tSUlength  
50  
ms  
For Cyclic and Command Mode  
operation  
1
20  
Bus free time between  
START and STOP  
condition  
tOWI,IDLE  
30  
µs  
Minimum in ZSSC3240 Sleep Mode  
operation  
Hold time for START  
condition  
0.5 ×  
tOWI_BIT  
tOWI,START  
20µs  
20  
µs  
µs  
Robust operation with:  
tOWI,BIT ≥ 10 ROWI,PULL COWI,LOAD  
tOWI,BIT  
tOWI,0  
tOWI,1  
Bit period, bit time  
40  
3000  
Duty ratio bit ‘0’  
Duty ratio bit ‘1’  
0.125  
0.625  
0.25  
0.75  
0.375  
0.875  
tOWI_BIT  
tOWI_BIT  
tOWI_BIT_L is the bit period of the last  
valid bit  
tOWI,STOP  
Hold time STOP condition  
1.5  
3
tOWI_BIT_L  
Duration of most recent bit versus  
previous bit duration  
tOWI_BIT_DEV  
tOWIextraL  
Bit time deviation  
0.55  
43.5  
43.5  
1.0  
1.45  
49.5  
tOWI_BIT  
µs  
Length of extra pulse [a]  
Duration of HIGH after  
Aout-to-OWI extra pulse  
OWI configuration to allow  
continuous OWI and concurrent  
analog output; see Figure 15.  
tOWIextraH  
µs  
Minimize COWI,LOAD if ratiometric  
DAC-output, Aout_setup = 001BIN is  
configured for AOUT/OWI1  
Capacitive load at OWI  
line  
COWI,LOAD  
0.05  
2.2  
66  
nF  
Nov.27.20  
Page 29  
 
 
 
 
 
ZSSC3240  
Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
If ROWI,PULL values greater than  
3.3kΩ were applied, the shortest  
tOWI,BIT times cannot be achieved  
anymore.  
Pull-up resistance –  
master [b]  
ROWI,PULL  
1.8  
2.5  
3.3  
kΩ  
If ROWI,LOAD>35Ω, OWI-timing  
parameter (tOWI,*) low-limits, i.e.  
highest speeds are not guaranteed.  
0.01 x  
ROWI,PULL  
ROWI,LOAD  
Resistive OWI line load  
0
Ω
VOWI,inL  
VOWI,inH  
Voltage level LOW  
Voltage level HIGH  
0.1  
0.9  
0.25  
VDD  
VDD  
0.80  
Open drain output at AOUT pin,  
max. allowed current draw 5mA,  
otherwise: VOWI-S,LOW >0.1*VDD  
VOWI-S,LOW  
Slave output level LOW  
0.1  
VDD  
[a] To switch from analog output to “OWI listen” at AOUT pin.  
[b] For the selection of ROWI,PULL, the minimum current limit of the AOUT buffer and maximal VDD supply must take into account if  
OWI and analog output voltage mode are set up to work concurrently; that is owi_off = 0, cont_ANAoutn = 0, and owi_su_case = 1.  
If the current limitation condition (IOUTmax, see Table 4) is exceeded, it is recommended to use the Dynamic Driving Approach for  
ROWI,PULL at the OWI-master, and only switch the ROWI,PULL to AOUT when the OWI-master starts communication. This setting is  
specifically recommended for the phases when the OWI-master listens to the AOUT-line, and the OWI-slave (the ZSSC3240) has  
to respond, respectively.  
The effective OWI properties depend on the load conditions at the OWI1 pin. Additional to Table 22, some  
further applicable configurations are as follows:  
For maximum operation speed (50kHz) of OWI1, the capacitive load, COWI,LOAD can be up to 1nF and the  
maximum ROWI,PULL is 2.5kΩ.  
For high operation speed (10kHz) of OWI1, the capacitive load, COWI,LOAD can be up to 4.7nF and ROWI,PULL  
must be 3.3kΩ.  
For an equivalent frequency of 1kHz of OWI1, it should be ensured that COWI,LOAD 22nF and ROWI,PULL 7kΩ,  
or for example that COWI,LOAD 66nF combined with ROWI,PULL 4.5kΩ.  
Example 1: OWI Request, 1 Command Byte, 1 Data Word:  
Optional  
S 6 5 4 3 2 1 0 W 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 S  
Slave Address [6:0]  
Data Byte  
Data Byte  
Data Byte  
Command Byte [7:0]  
Data Word [15:0]  
Example 2: OWI Request, 1 Command Byte, no Data:  
S 6 5 4 3 2 1 0 W 7 6 5 4 3 2 1 0 S  
S Start condition S Stop  
condition  
Read/write bit  
(write = 0)  
Data bit  
(example: Bit 2)  
W
2
Slave Address [6:0]  
Data Byte  
Slave address  
(example: Bit 5)  
5
Command Byte [7:0]  
Sent by  
Master  
Figure 16. OWI Command Request  
Nov.27.20  
Page 30  
 
ZSSC3240  
Datasheet  
Example: OWI Read Operation, Status Byte (+n) Data Bytes*:  
Response data is sent in a loop, i.e. repeated until master generates stop condition  
Optional  
...  
7 6 5 4 3 2 1 0 S  
S
6
5
4
3
2
1
0 R 7  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Slave Address [6:0]  
Status Byte [7:0]  
Data Byte [7:0]  
...nth Data Byte  
* n data bytes could be:  
NVM read: 2 bytes,  
Measure: 6 bytes,  
Get_Raw: 3 bytes  
Sent by  
Master  
Slave  
Master  
Read/write bit  
(read = 1)  
Slave address  
(example: Bit 5)  
Data bit  
(example: Bit 2)  
Stop condition  
S
Start condition  
S
R
5
2
Figure 17. OWI Response by ZSSC3240  
The ZSSC3240 allows utilization of the OWI interface in different application configurations:  
OWI Disable: The OWI interface can be deactivated by owi_off = 1 (bit[13] in SSF1 register 03HEX). For  
example, this could be applied in cases when an analog-output smart sensor is configured and calibrated  
using the OWI interface and the OWI will not be available after calibration and final setup/programming.  
OWI Only (no analog output): With the NVM configuration owi_off = 0 and cont_ANAoutn = 1, the AOUT will  
not provide any analog outputs and is only used as the OWI pin. There is no startup window limitation  
(owi_su_length is ignored by the ZSSC3240). If the first (valid) digital interface activity is the Startup OWI  
(D2HEX) command, the ZSSC3240’s interface type will be fixed as OWI communication (SPI and I2C will be  
disabled/ignored).  
OWI with Startup Window and Analog Output: The OWI startup window followed by subsequent activation  
of the analog output is possible with owi_off = 0, cont_ANAoutn = 0, and owi_su_case = 0. AOUT works as a  
(listening) OWI signal pin after power-up until the selected startup window (owi_su_length) has elapsed. If the  
Startup OWI (D2HEX) command is received within the startup window, AOUT persists as the OWI  
communication pin until a power-on reset occurs. If the ZSSC3240 does not receive the  
Startup OWI command (D2HEX) during the startup window, the OWI interface will be disabled and AOUT starts  
functioning as an analog output.  
Continuous OWI and Analog Output: The configuration owi_off = 0, cont_ANAoutn = 0, and  
owi_su_case = 1 results in AOUT providing analog output levels as soon as they are available after power-up  
(in Cyclic Mode). Concurrently, the OWI listens to the AOUT 1 pin in order to check for valid OWI commands.  
The OWI still needs to be enabled by means of the Startup OWI command. The physical protocol in this  
configuration requires an extra pulse (see Figure 15) prior the Startup OWI command. After the release of the  
extra OWI initialization pulse, the analog output is switched off 2 and AOUT becomes the OWI I/O pin until the  
OWI startup window (according to owi_su_length) has elapsed.  
The OWI-master implements Dynamic Driving to avoid dynamic currents (due to DAC-output level changes)  
causing unwanted pull-up signal generation (via ROWI,PULL). When Dynamic Driving Approach is not applied in  
this configuration, set the constantly connected OWI-master pull-up resistances (ROWI,PULL) to 5.5kΩ to  
prevent erroneous OWI-start detections that can be triggered by changing DAC-output levels. Limit the  
interface speed to slower values with the proper setting, such as longer bit period.  
1
Dependent on Aout_setup, OWI2 is the alternative input pin, e.g., in the case of the current loop setup, i.e. the Aout_setup bit field = 000 in  
register 04HEX  
.
2
The DAC switch-off time point is variable and depends on the activity status in the measurement cycle, measurement execution, etc. It can  
be anytime between the extra-pulse and a received, completed Startup OWI command.  
Nov.27.20  
Page 31  
ZSSC3240  
Datasheet  
6.5  
Measurement and Output Options  
Sensor or diagnostic measurement results of the ZSSC3240 can be provided in both domains, digital and  
analog. Any of the supported digital interfaces and output options can be used as the only active interaction  
path, or it can be combined with any of the analog output configurations. For digital communication, only one  
interface type can be active and supported (see section 6.4).  
Digital communication via SPI and I2C are fully independent of the configuration and application of the  
ZSSC3240’s analog outputs. For digital OWI communication combined with analog output, special application  
circuits and constraints might have to be considered, as the OWI interface and the analog outputs use the same  
pin, AOUT.  
6.5.1.  
Single Measurements, Digital Raw Results, and SSC Results  
The IC generates digital raw values, which are processed by the ZSSC3240-internal math core generating the  
SSC-corrected (linearized, temperature-compensated) output signal. See section 6.6.3 for details about the SSC  
math, etc. In addition to the SSC-corrected digital measurement results, the ZSSC3240 can provide raw values  
without SSC correction for evaluation and/or calibration purposes. The respective results are provided at the  
digital interface as a 24-bit wide data word. Raw values and SSC results are MSB-aligned. Raw values are  
formatted as two’s-complement, whereas SSC results are formatted as unsigned absolute value.  
Table 24. Data Format of Raw ADC Readings  
Bit-Number  
23  
22  
21  
20  
2
1
0
Meaning,  
Weighting  
-20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
Table 25. Data Format of Corrected, SSC Results (S and T)  
Bit-Number  
23  
22  
21  
20  
2
1
0
Meaning,  
Weighting  
20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
The ZSSC3240 can process and digitize the following signals:  
SM: Direct sensor signal inputs; i.e., perform sensor measurements  
AZS: Auto-zero signals for the sensor channel  
TM: Direct temperature signal inputs, i.e. perform temperature measurements  
AZT: Auto-zero signals for the temperature channel  
The internal sequence (in time) of A2D-conversions with both auto-zero measurements enabled is: first is AZS,  
second is SM, third is AZT, and forth is TM. The utilization of auto-zero measurements allows further  
optimization and reduction of the noise level for the sensor signal in combination with the inherent compensation  
of the residual offsets of the analog sensor front-end. If an auto-zero measurement is enabled, then the sensor  
signal remains the input for the auto-zero measurement with the gain and ADC set up as for the original signal  
measurement, but with swapped inputs and offset configurations of the PGA and ADC such that the following  
holds for the resulting raw value:  
Sensor raw value with auto-zero: S_raw = 0.5 (SM AZS)  
Temperature raw value with auto-zero: T_raw = 0.5 (TM AZT)  
The application benefits with enabled auto-zero measurements are  
ZSSC3240 front-end offset cancellation residual signal degradation1 or drift for the application is eliminated  
Improvement of the signal-to-noise ratio for the raw or SSC-corrected output signal  
1 Worst-case IC-offset drift is < 2ppm/day at 125°C.  
Nov.27.20  
Page 32  
ZSSC3240  
Datasheet  
On the other hand, the default application benefit without auto-zero measurements is an approximately 50%  
faster output update rate compared to an equivalent configuration with enabled auto-zero measurements.  
Recommendations: For applications where a faster update rate is the priority, disable and not apply the auto-  
zero measurements. For applications where a better signal-to-noise level and maximum signal quality are the  
priority, enable and apply the auto-zero measurements.  
The NVM configuration and measurement-request commands can be used to select which measurements are  
performed, processed, and provided at the digital interface. See Table 33 for command details.  
Examples of options for a single measurement request and output:  
SSC-corrected sensor readings (requested by the Measure command AAHEX) generating an output of SSC-  
corrected, 24-bit sensor data followed by SSC-corrected, 24-bit temperature data.  
Raw sensor measurement with or without auto-zero correction (requested by the Raw Sensor Measure  
command A2HEX) generating an output of raw 24-bit sensor data.  
Raw temperature measurement with or without auto-zero correction (requested by the Raw Temperature  
Measure command, A4HEX) generating an output of raw 24-bit temperature data.  
The auto-zero measurements can be disabled/enabled via the AZMs_on and AZMt_on bits in NVM registers  
04HEX (see Table 34).  
Table 26 and Table 27 provide some exemplary, typical conversion times and noise performance values for the  
ZSSC3240’s Front-End (PGA and ADC) in order provide some guidance for understanding effects and signal-  
quality-related consequences while defining an application setup.  
Table 26. Typical Conversion Times for Complete SSC Sensor Measurements: SM, TM  
ADC Resolution (Main) Sensor  
ADC Resolution Temperature Sensor  
Typical Measurement Duration [ms] [a]  
12  
14  
14  
16  
16  
18  
24  
12 (external temperature sensor)  
13 (internal temperature sensor)  
14 (external temperature sensor)  
14 (external temperature sensor)  
16 (external temperature sensor)  
18 (external temperature sensor)  
24 (external temperature sensor)  
0.38  
0.47  
0.53  
0.67  
0.82  
1.40  
9.47  
[a] The time from the end of the SSC-measurement command request AAHEX to signalization for the end-of-conversion at the EOC pin  
with the ZSSC3240 in Command Mode; INT_setup bit field = 00BIN in register 02HEX (see Table 34); 25°C; VDD=5V; AZMs_on = 0BIN  
and AZMt_on = 0BIN  
;
.
The data is shown with ZSSC3240 default NVM configuration.  
Table 27. Typical Conversion Times and Noise Performance for Complete SSC Measurements  
ADC Resolution:  
External Sensor [Bits]  
Reference Source for External  
Typical 3-sigma Noise for SSC-  
Corrected (Digital) Output [b], S, T  
Typical Measurement[a]  
Duration [c] [ms]  
Sensor (sel_ref1)  
12  
12  
16  
16  
20  
20  
24  
24  
Absolute, sel_ref1=0  
Ratiometric, sel_ref1=1  
Absolute, sel_ref1=0  
Ratiometric, sel_ref1=1  
Absolute, sel_ref1=0  
Ratiometric, sel_ref1=1  
Absolute, sel_ref1=0  
Ratiometric, sel_ref1=1  
5 LSB12Bit  
7 LSB12Bit  
0.8  
1.2  
2.9  
9.8  
26 LSB16Bit  
51 LSB16Bit  
182 LSB20Bit  
270 LSB20Bit  
1122 LSB24Bit  
1354 LSB24Bit  
[a] Measurements including AZS, SM, AZT, TM with internal temperature measurement.  
[b] Reference noise values normalized to the respective external sensor’s ADC resolution, obtained with the following setup:  
10kΩ sensor bridge, 25°C, Gain=28, VDD=3.3V, ioffsc=00000 for sel_ref1=1, ioffsc=01111 for sel_ref1=0, adc_en_shift=0,  
pga_en_shift=0, sensor_sup=00, cp_off=0.  
[c] The time from the end of the SSC-measurement command request AAHEX to signalization for the end-of-conversion at the EOC pin  
with the ZSSC3240 in Command Mode; INT_setup bit field = 00BIN in register 02HEX (see Table 34).  
Nov.27.20  
Page 33  
 
 
 
 
 
 
ZSSC3240  
Datasheet  
6.5.2.  
Cyclic, Continuous, Repeated Measurements Measurement Scheduler  
In addition to single measurement requests, such as AAHEX, or the Oversample-x Measure requests (ACHEX to  
AFHEX; see Table 33), the ZSSC3240 can be configured for cyclic measurement sequences. The continuously  
running measurement sequence consists of individual measurement slots in which all or a selectable subset of  
measurements and checks can be scheduled and allocated including sensor measurement (S), auto-zero  
measurement for the sensor (AZS), temperature measurement (T), auto-zero measurement for temperature  
(AZT), and diagnostic checks (see section 6.3). If AZS is enabled (AZMs_on = 1BIN in register 04HEX  
;
see Table 34 for details for registers), the sensor measurement (S) and auto-zero measurement for the sensor  
(AZS) must be scheduled to always occur together for correct signal processing; i.e., these settings are required:  
slots_S = slots_AZS in register 1FHEX and startS_wfirstn = startAZS_wfirstn in register 1EHEX. If AZT is enabled  
(AZMt_on = 1BIN in register 04HEX), the temperature measurement (T) and auto-zero measurement for  
temperature (AZT) must be scheduled to always occur together for correct signal processing; i.e., these settings  
are required: slots_T = slots_AZT and startT_wfirstn = startAZT_wfirstn (see registers 1EHEX and 1FHEX). For  
applications where obtaining the fastest possible update rate is the highest priority, disabling the auto-zero  
measurements is recommended, i.e., AZM*_on = 0BIN, for which slot scheduling is user programmable without  
constraints.  
The automatically, continuously running measurement sequence is executed in Cyclic Mode, which is either  
entered as the default main operating mode after power-on or entered by means of the START_CYC command,  
ABHEX  
.
Figure 18 shows an example of the measurement sequence configurability. During the pauses in the sequence,  
the ZSSC3240 signals that it is not busy (i.e., the Busy? bit = 0BIN in the general status byte; see Table 18). The  
available measurement results are updated at the end of each SSC calculation and output operation and are  
kept valid at the digital interface or DAC output until the next SSC calculation and output operation.  
The configuration of the measurement scheduler is done in the NVM registers 1EHEX to 20HEX  
.
Measurement example with the following requirements:  
.
.
.
S every slot, start with first  
.
.
No AZS (AZMs_on = 0BIN  
)
T every 7 slots, start with first  
AZT every 7 slots, start with first  
Sensor Connection Check every 10 slots, no start with first slot  
Individual Measurement Slot Numbers  
0
1
2
3
4
5
6
7
8
9
10  
...  
Time  
Figure 18. Example Configuration for the Measurement Scheduling and Cyclic Mode Operation  
A slot denotes all measurements that are conducted and updated before the next SSC calculation. There can be  
pauses from one slot to the start of the next slot. The first slot has the slot number 0.  
If the digital interface clock speed is too slow or contains long no-read pauses related to the SSC output update  
rate in Cyclic Mode, intermediate results can be lost, and the respective read result can be outdated compared  
to the related, read-concurrent, physical situation at the sensor (especially for very long pauses between two  
interface read operations). This digital interface behavior is valid for all options: SPI, I2C, OWI.  
In Cyclic Mode, the present data word (measurement result) at the interface output always follows the last data  
(result) that was read at the interface. See Figure 19 for relatively slow interface polling compared to the internal  
measurement data update rate in Cyclic Mode.  
Nov.27.20  
Page 34  
 
ZSSC3240  
Datasheet  
result not output at interface ó Lost  
Information  
time  
IC-internal operation  
 ꢀmeasurement result  
ADC/SSC: measure  
ADC/SSC: measure  
ADC/SSC: measure  
data 3  
ADC/SSC: measure  
ADC/SSC: measure  
data 5  
ADC/SSC: measure  
data 6  
data 1  
data 2  
data 4  
generation  
data 1 to interface  
register ó release  
for external read  
data 4 to interface  
register ó release  
for external fetch  
data 2 to interface  
register ó release  
for external read  
interface  
interface released to  
get IC-internal data update  
(next available data: data 2)  
Data availability at Digital  
Interface  
 ꢀfor result data polling  
released to get IC-  
internal data update  
(next avail. data:  
data 4)  
result read at dig.  
interface: data1  
result read at dig.  
interface: data 2  
result fetch at I2C  
interface: data 4  
time between 2 subsequent reads longer than  
time to get next ADC/SSC result update ó  
most recent data lost  
Figure 19. Measurement Result Output Update in Cyclic Operation (with “Slow” Interface Polling)  
6.5.3.  
Analog Outputs: Digital-to-Analog Converter (DAC)  
The integrated, programmable digital-to-analog converter (DAC) generates an IC-internal analog signal that can  
be output at AOUT as an absolute voltage, VDD-ratiometric voltage, or control signal for an externally connected  
current loop circuit. The analog output must be configured by Aout_setup in the SSF2 register, 04HEX  
.
13-16 bit  
Alternative input by  
DAC-Diagnostic, B3HEX  
Aout_setup  
ADC Raw Results  
D
bit[0]  
bit[8]  
bit[15]  
AOUT  
A
DAC-Input Register  
Digitial Control and  
Math Core  
...  
Truncated  
T or S  
SSC-Result Register  
FB  
bit[23]  
bit[0]  
Figure 20. DAC and Analog Output Topology  
The ZSSC3240 provides only analog outputs for signals that have been processed by the SSC calculation unit  
(see section 6.6.3), or that are directly transferred (via the digital command, DAC-Diagnostic, B3HEX; see Table  
33) as input to the DAC; e.g., for test or calibration purposes. The setup parameter dacouttype, bit[3] of the  
SSF2 register, 04HEX defines if either the SSC-corrected sensor value, S, or the SSC-corrected temperature  
value, T, is provided at AOUT; see Figure 20.  
Table 28. DAC Configurations  
dacres  
Applied DAC Resolution  
Maximum DAC Output Voltage tDACsettle Settling Time [a]  
bit[1]  
bit[0]  
0
0
1
1
0
1
0
1
13-Bit  
14-Bit  
15-Bit  
16-Bit  
150µs  
160µs  
180µs  
200µs  
[a] tDACsettle is the step-response time for the DAC and analog output stage (only); i.e., the time to reach 99% of the new analog output  
level after a DAC input change. For analog-output smart-sensor step-response time, the time for generating a new SSC-result as  
input to the DAC must also be considered.  
For the suppression of spuriously emitted tones in the analog output signal, dithering within the DAC operation  
can be enabled/disabled via the dither_off bit in the SSF2 register. If spurious tone emission is irrelevant in the  
application, dithering can be switched off in order to improve the analog output signal’s noise level.  
For analog diagnostic level signalization, enabled by the diagouten bit = 1BIN in the SSF2 register (see Table 16),  
the ZSSC3240 directly ties the analog output signal to 0% or 100% with the selected output stage, supported by  
digital pre-scaling to reserve approximately 1.5%-wide signal bands for diagnostic outputs. Strong  
recommendation: If the ZSSC3240 provides diagnostic levels, activate analog signalization of diagnostic levels  
before sensor calibration.  
Nov.27.20  
Page 35  
 
 
ZSSC3240  
Datasheet  
6.5.3.1. Voltage Outputs  
The ZSSC3240 can provide one of three direct voltage outputs at the AOUT pin. The Aout_setup bit field in the  
SSF2 register (bits [7:5]; see Table 34) is used to configure the ZSSC3240 and select the analog voltage output  
stage as defined in Table 29. It is also possible to set up the analog voltage output for 0V to 10V systems using  
additional external components.  
Table 29. Direct Voltage Outputs  
Aout_setup  
Voltage Output (Range/Type) [a]  
Comments  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Current loop; see section 6.5.3.3  
Typical 0 to 5V; with VDD > 5V, rail-to-rail output  
Any (valid) VDD  
0 to VDD, ratiometric  
0 to 1V, absolute  
0 to 5V, absolute  
Requires VDD > 5.01V  
Not assigned  
0 to VDD, ratiometric  
Typical 0 to 5V; with VDD > 5V, rail-to-rail output,  
OWI2in enabled as OWI input pin  
1
1
1
0
1
1
1
0
1
0 to 1V, absolute  
0 to 5V, absolute  
Any (valid) VDD, OWI2in enabled as OWI input  
Requires VDD > 5.01V, OWI2in enabled as OWI  
input  
[a] The voltage outputs listed are directly supported, requiring minimal (for ratiometric output) or no (for absolute voltage output)  
additional external devices.  
Table 30. Recommended Operating Conditions for Voltage Output  
Symbol  
RLout  
Parameter  
Typical Value  
Unit  
kΩ  
Comments  
External, resistive load at AOUT  
External, capacitive load at AOUT  
1
For 1kHz to 5kHz output bandwidth, as RC low-  
pass filter configuration.  
CLout  
10  
nF  
6.5.3.2. Accuracy and Calibration of the DAC-Output  
The 16-bit-DAC of ZSSC3240 is optimized from design prospective for high stability. Low drift over operational  
conditions can be achieved with minimal additional effort during the calibration phase, by compensating absolute  
errors/mismatches with mathematical adaptation of sensor calibration coefficients.  
The functional, analog main-components of the ZSSC3240’s DAC come with some residual level of IC-to-IC  
variation for DAC-characteristic’s offset and gain. It is recommended to calibrate the DAC-characteristic and  
consider the linearity IC-to-IC-variation of the DAC at the IC’s calibration, especially for applications with high  
requirements for absolute accuracy of the output voltage. For analog output configurations, the SSC coefficients  
can be derived such that the digital SSC-results and hence the DAC’s digital input (S or T) is pre-shaped in order  
to compensate the residual DAC’s (non-)linearity variation.  
To avoid taking analog measurement values during the smart sensors’ calibration procedure, the ZSSC3240  
provides two high-precision DAC-calibration point measurement results in the NVM, DAC10RM5V and  
DAC90RM5V in the NVM registers 22HEX and 23HEX, see Table 34. Using these two high-precision DAC  
calibration points for the determination of the SSC-coefficients, the ZSSC3240 achieves a low residual, absolute  
DAC-output error of less than ±0.15% over the device specified temperature range, and over the DAC output  
swinging from 1% to 100% of the specified range . This approach can be also interpreted as mapping of the  
digital SSC-outputs (S or T) to an IC-to-IC-varying best fit straight line characteristic of the DAC. The residual  
DAC-error is typically higher in the signal range 0% to 1%, as the ZSSC3240’s does not provide exactly 0V for  
zero-value digital DAC-inputs, S or T.  
If more than two DAC-calibration points is considered, absolute accuracies below ±0.15% become possible,  
down to the analog output (AOUT) line’s noise-and-distortion level.  
Nov.27.20  
Page 36  
 
 
ZSSC3240  
Datasheet  
6.5.3.3. Current Loop Output  
The analog current loop is a typical output signal configuration, especially for industrial sensors. Using only two  
wires, the sensor is supplied with power and transmits its output signal to the processing unit. With  
Aout_setup = 000BIN (bits [7:5] in the SSF2 register; see Table 34), the ZSSC3240 will generate a SSC-corrected  
sensor-signal-proportional control signal at AOUT that allows generating a related loop current according the  
application in Figure 21.  
Table 31. ZSSC3240 Current-Loop-Specific Properties  
Symbol  
Parameter  
Typical Value  
Unit  
Comments  
Combined with external RSENS, defines the  
current-loop gain: R1/RSENS  
Control feedback resistor,  
internal  
R1  
120  
kΩ  
R1-process-variation in the range of ±20%  
Using a low-TC resistor is recommended to  
minimize spurious temperature influence  
RSENS  
β TLOOP  
BWL  
External loop-sensing resistor  
50  
100  
20  
Current gain of external-loop  
bipolar transistor, TLOOP  
Numeric  
kHz  
Transfer bandwidth of internal  
current loop op amp.  
With a ratiometric supply and resistances that  
are too low, the overall current consumption  
(ISensor + IIC) at VDD could exceed the 4mA low-  
limit for typical current loops (see Table 3 for  
ISensor specifications, and see Table 4 for IIC  
specifications)  
External sensor element’s  
minimum resistance  
RSENSOR,MIN  
1.6  
kΩ  
Loop-response current for  
logical-1; OWI over current-loop  
Effective current modulation when ZSSC3240 is  
OWI slave modulating the slave-to-master  
response via the loop current (controlled by  
AOUT/OWI1)  
ILoop,high  
ILoop,low  
14…18  
4…6  
mA  
mA  
Loop-response current for  
logical-0; OWI over current-loop  
Strong recommendation: Use the Zener diode between FB and VDD to protect the VDD line from positive over-  
voltage conditions and protect the FB input from negative over-voltages. The 100nF capacitor performs a low-  
pass-filter function for short/fast changes in the total current consumption for the sensor element plus the  
ZSSC3240 (ISENS + IIC), such that current consumption changes do not lead to short-term fluctuations of AOUT  
and the loop current.  
An equivalent effect of slight loop current fluctuations might be observable if a sensor-connection check is  
sometimes executed between the normal sensor measurements. Here, the connected sensor element, e.g., a  
resistive bridge, will be unsupplied briefly in order to determine the electrical connection properties; whereas an  
overall load change (sensor measurements sensor-connection check sensor-measurement) at VDD and  
hence in the current loop will be present. Therefore, diagnostic features should be carefully enabled and  
selected for current loop applications that have strong requirements for output signal quality under any  
circumstances.  
Nov.27.20  
Page 37  
ZSSC3240  
Datasheet  
ISENSOR+ IIC < 4mA !  
VDD (VDD~5V)  
JFET  
Loop+  
7 to 48V  
LDO Control /  
Regulation  
LDOctrl  
detect  
Iloop  
13-16 bit  
A
100n  
D
IDAC  
+
-
A
Tloop  
Vloop  
AOUT  
VSS  
ISENSOR+ IIC  
R1  
Rsens  
ILoop  
Loop-  
FB  
4..20mA  
Figure 21. Current Loop Configuration  
Output Interrupt Signaling  
6.5.4.  
The EOC pin can be programmed to operate either as a simple “measurement busy” and end-of-conversion  
transducer or as a configurable interrupt transducer, which is configured using the INT_setup[1:0] bits in NVM  
register 02HEX, bits[8:7]. Further, one or two 24-bit quantized thresholds can be programmed via TRSH1 and  
TRSH2 (Interrupt Level Setup registers 18HEX, 19HEX and 1AHEX in NVM; see Table 34). Depending on the  
INT_setup selection, the EOC pin provides a logic 1 or logic 0 (also dependent on the respective interface setup;  
e.g., SPI with either logic 0 = VDD or logic 0 = VSS, etc.) according to the SSC-corrected measurement result. The  
respective thresholds must be programmed left-aligned in the memory with the threshold’s MSB in the memory  
register’s MSB, etc. The LSBs of the 24-bit threshold in memory are ignored depending on the number of bits of  
the ADC resolution as selected with adc_bits (see Table 10).  
With INT_setup = 00BIN, only the effective end-of-conversion is signalized. The EOC signal is a pulse of  
approximately 5µs (see Figure 22). The next command will be executed only after this EOC signaling period.  
ZSSC3240 internal activity  
configured ADC-  
measurements: SM,  
TM, AZS, AZT  
configured ADC-  
measurements: SM,  
TM, AZS, AZT  
configured ADC-  
measurements: SM,  
TM, AZS, AZT  
SSC-Measurement Result  
Time  
EOC  
5µs  
1
0
Time  
Note: timing relations are not to scale, they are qualitative illustrations only  
Figure 22. EOC-Behavior: Signalization of End-of-Conversion (INT_setup = 00BIN  
)
Nov.27.20  
Page 38  
 
 
ZSSC3240  
Datasheet  
The interrupt functionality is only available for digital values from the SSC-calculation unit. The interrupt feature  
cannot monitor raw values. The encoding and data format of the interrupt thresholds is the same as for SSC-  
corrected measurement results (see Table 32).  
Table 32. Data Format of Interrupt Thresholds (TRSH1 and TRSH2)  
Bit-Number  
23  
22  
21  
20  
2
1
0
Meaning,  
Weighting  
20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
INT_setup = 01BIN  
INT_setup = 10BIN  
Measurement  
Result  
Measurement  
Result  
max.  
max.  
threshold 1  
threshold 1  
0
0
Time  
Time  
Time  
EOC  
EOC  
1
0
1
0
Time  
INT_setup = 11BIN  
Case A:  
threshold1 > threshold2  
Case B:  
threshold1 < threshold2  
Measurement  
Result  
Measurement  
Result  
max.  
max.  
threshold 1  
threshold 2  
threshold 2  
threshold 1  
0
0
Time  
Time  
Time  
Time  
EOC  
EOC  
1
0
1
0
Figure 23. EOC and Interrupt Thresholds  
Nov.27.20  
Page 39  
 
ZSSC3240  
Datasheet  
6.6  
System Setup and Control  
The digital blocks of the ZSSC3240 are organized functionally as shown in Figure 24. In addition to the central  
blocks, which are the “Interfaces,” “Digital Main Core,” and “Memory (NVM)” blocks, there is also the Shadow  
Registers block, which in most cases, is a direct copy of the NVM registers. The shadow registers are loaded  
from NVM during the power-up sequence and allow acceleration of command processing and NVM-independent  
configuration adaptability; e.g., during adaptive sensor setup, evaluation, or smart sensor test. For the main  
function of the ZSSC3240 to conduct a sensor measurement and ADC-conversion, the setups (for main Sensor  
or Temperature) are loaded or activated from the corresponding Shadow Registers in order to set all IC-internal  
configuration switches for sensor supply, PGA gain, offset compensation, reference voltage sources, etc. After a  
settling time for the analog signals and levels, the A2D conversion takes place. This course of activities is  
(re-)done for each individual measurement, i.e. once for SM, AZS, TM, AZT, with setups for SM and AZS  
according the Shadow Registers for SM_config1 and SM_config2, and for TM, AZT from registers  
extTemp_config1 and extTemp_config2. If the internal temperature sensor was selected as signal source for TM,  
AZT, the setups are loaded from a Renesas-preprogrammed register different to extTemp_config1 and  
extTemp_config2.  
Analog Front-End  
Analog Output  
. Internal Temp. Sensor  
. PGA  
. DAC  
. AOUT driver stages  
.
.
ADC  
inMUX  
.
MUXout  
Shadow Registers  
Interfaces  
Select  
Digital Main Core  
(De)activate  
OWI  
.
.
.
IC Control  
Command Interpreter  
SSC Math  
Overwrite  
Shadow  
Register 02HEX  
Digital Request,  
Response  
Register 03HEX  
...  
Read  
SPI  
I2C  
Load Shadow from NVM  
Memory (NVM)  
Read/Write NVM  
Register 00HEX  
Register 01HEX  
...  
Dashed line indicates control line  
Register 35HEX  
...  
Green line indicates data transfer line  
Figure 24. Digital IC Section Architecture  
6.6.1.  
Digital Commands  
The availability of commands depends on the active main operating mode: Command, Sleep, or Cyclic Mode.  
Table 33. Command List  
Note: See important table notes as the end of this table.  
Command Code  
(Byte)  
Available in  
Sleep Mode Command Mode Cyclic Mode  
Available in  
Available in  
Return  
Description  
00HEX to 3F HEX  
16-bit data  
Memory Read address 00HEX to 3FHEX  
Yes  
Yes  
Yes  
Yes  
No  
No  
40HEX to 75HEX  
followed by data  
(0000HEX to  
Memory Write addresses 00HEX to 35HEX (NVM  
register address is command minus 40HEX); if the  
NVM is locked, write requests are not acknow-  
ledged or are ignored  
FFFFHEX  
)
Nov.27.20  
Page 40  
 
 
ZSSC3240  
Datasheet  
Command Code  
(Byte)  
Available in  
Sleep Mode Command Mode Cyclic Mode  
Available in  
Available in  
Return  
Description  
Calculate NVM Checksum and write it to the  
memory  
90HEX  
Yes  
Yes  
No  
Raw Sensor Measurement[a] Configuration is  
loaded in the controlling shadow registers from  
the SM_config1 and SM_config2 registers in  
NVM  
A2HEX  
24-bit raw data  
Yes  
Yes  
No  
Note: auto-zero sensor measurement is  
performed if set up in the AZMs_on bit in the  
SSF2 register  
Raw Temperature Measurement[a]  
Configuration is loaded in the controlling shadow  
registers from the extTemp_Config1/2 or  
T_config1/2 registers in NVM as well as the  
SSF1/2 registers  
Note: Auto-zero correction will be performed if  
set up via the AZMt_on bit in the SSF2 register  
Note: If a raw data measurement with an external  
setup (different from the NVM content) will be  
performed, then pre-load the measurement  
configuration via the Overwrite SSF1/2 Register  
and Overwrite T_config1/2 Shadow Register  
commands.  
A4HEX  
24-bit raw data  
Yes  
Yes  
No  
Note: The internal or external temperature  
measurement will be performed if set up via the  
temp_source bit field in the SSF1 register  
START_SLEEP Exit Command Mode or Cyclic  
Mode and transition to Sleep Mode  
Note: The response to Start_Sleep is only the  
status byte  
A8HEX  
A9HEX  
No  
Yes  
No  
Yes  
Yes  
START_CM Exit Sleep Mode or Cyclic Mode  
and transition to Command Mode  
Yes  
24-bit SSC-  
corrected  
Measure Trigger a full measurement (auto-  
zero-sensor, sensor, auto-zero-temperature,  
sensor data and temperature) and perform SSC correction  
AAHEX  
ABHEX  
ACHEX  
24-bit SSC-  
corrected  
temperature  
data  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Note: Auto-zero correction is performed with this  
command if set up in the AZMs_on and AZMt_on  
bits in the SSF2 register  
START_CYC Enter the Cyclic Mode:  
continuous measurement cycles, SSC  
corrections, and automatic, continuous digital  
and/or analog output updates  
Oversample-2 Measure [b] Mean value  
generation; 2 full measurements (triggered  
similar to AAHEX, not cyclic) are performed and  
the resulting mean value is provided as output  
Note: Auto-zero correction is performed with this  
command if set up in the AZMs_on and AZMt_on  
bits in the SSF2 register  
Oversample-4 Measure [b] Mean value  
generation; 4 full measurements (triggered  
similar to AAHEX, not cyclic) are performed and  
the resulting mean value is provided as output  
Note: Auto-zero correction is performed with this  
command if set up in the AZMs_on and AZMt_on  
bits in the SSF2 register  
Oversample-8 Measure [b] Mean value  
generation; 8 full measurements (triggered  
similar to AAHEX, not cyclic) are performed and  
the resulting mean value is provided as output  
Note: Auto-zero correction is performed with this  
command if set up in the AZMs_on and AZMt_on  
bits in the SSF2 register  
24-bit SSC-  
corrected  
sensor data and  
24-bit SSC-  
corrected  
ADHEX  
Yes  
Yes  
Yes  
Yes  
No  
No  
temperature  
data  
AEHEX  
Nov.27.20  
Page 41  
ZSSC3240  
Datasheet  
Command Code  
(Byte)  
Available in  
Sleep Mode Command Mode Cyclic Mode  
Available in  
Available in  
Return  
Description  
Oversample-16 Measure [b] Mean value  
generation; 16 full measurements (triggered  
similar to AAHEX, not cyclic) are performed and  
the resulting mean value is provided as output  
Note: Auto-zero correction is performed with this  
command if set up in the AZMs_on and AZMt_on  
bits in the SSF2 register  
AFHEX  
Yes  
Yes  
No  
16-bit  
diagnostic  
result data  
CHECK_DIAG The ZSSC3240 responds with  
the detailed fault-result status in the  
diagnosticreg register  
B0HEX  
B1HEX  
Yes  
Yes  
Yes  
Yes  
No  
No  
RESET_DIAG Resets the contents of  
diagnosticreg to 00HEX  
Update_DIAG Causes a complete diagnostics  
check cycle including memory CRC calculation,  
etc., and results in a reset and update of  
diagnosticreg  
B2HEX  
Yes  
Yes  
No  
Note: If a measurement cycle is running concur-  
rently, the diagnostic update happens after  
completion of the measurement cycle and SSC  
calculations (and might delay the next cyclic  
measurement cycle)  
DAC Diagnostic Set the DAC output register  
with the data in the command and enable/output  
the respective analog signal through AOUT  
(according to the AOUT_setup)  
B3HEX followed by  
data (0000HEX to  
No  
Yes  
No  
FFFFHEX  
)
Note: The DAC output can be switched off by the  
RESQ pin, POR, or a change in the main  
operating mode  
Self-Diagnostic Measure The ADC performs a  
raw measurement with the setup from the  
SM_config registers, and the PGA input is  
disconnected from the external sensor and  
internally shorted (INN = INP = AGND). The  
ZSSC3240-internal setup, which is configured  
according to the ioffsc bit field in the SM_config2  
register, is changed to XXHEX (transmitted with  
the command). The respective pseudo-offset  
signal becomes the input test signal to the PGA-  
ADC-path.  
B4HEX followed by  
00XXHEX  
24-bit raw data  
No  
Yes  
No  
The original ioffsc and SM_config2 contents are  
restored after the self-diagnostic measurement  
completion.  
Note: alternatively, also a changed setup (PGA,  
ADC) could be used by applying Overwrite  
commands prior to the self-diagnostic  
measurement.  
Set Post-Calibration Offset Set recent SSC-  
output to expected value XXXXHEX in command  
by means of offset adjustment with coefficient  
SENS_shift  
D1HEX followed by  
XXXXHEX  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
No  
Startup OWI Initialization command to enter  
OWI interface operation; only valid for OWI (see  
section 6.4.3)  
D2HEX  
Overwrite SM_config1 shadow register –  
Content (originally from NVM register 14HEX) in  
the digital shadow register for SM_config1 is  
directly overwritten with the command data [c]  
D6HEX followed by  
data (0000HEX to  
FFFFHEX  
)
Overwrite SM_config2 shadow register –  
Content (originally from NVM register 15HEX) in  
the digital shadow register for SM_config2 is  
directly overwritten with the command data [c]  
D7HEX followed by  
data (0000HEX to  
No  
Yes  
No  
FFFFHEX  
)
Nov.27.20  
Page 42  
ZSSC3240  
Datasheet  
Command Code  
(Byte)  
Available in  
Sleep Mode Command Mode Cyclic Mode  
Available in  
Available in  
Return  
Description  
Overwrite T_config1 shadow register –  
Content (originally from NVM register 16HEX or  
3CHEX) in the digital shadow register for the  
temperature measurement is directly overwritten  
with the command data [c]  
D8HEX followed by  
data (0000HEX to  
No  
No  
Yes  
Yes  
No  
No  
FFFFHEX  
)
Overwrite T_config2 shadow register –  
Content (originally from NVM register 17HEX or  
3DHEX) in the digital shadow register for the  
temperature measurement is directly overwritten  
with the command data [c]  
D9HEX followed by  
data (0000HEX to  
FFFFHEX  
)
Overwrite SSF1 shadow register Content  
(originally from NVM register 03HEX) n the digital  
shadow register for SSF1 is directly overwritten  
with the command data [c]  
Note: transferred bits[1:0] and bits[15:13] are  
ignored; i.e., are not overwritten in the shadow  
register  
DAHEX followed  
by data (0000HEX  
-
-
No  
Yes  
No  
to FFFFHEX  
)
Overwrite SSF2 shadow register Content  
(originally from NVM register 04HEX) the digital  
shadow register for SSF2 is directly overwritten  
with the command data [c]  
DBHEX followed  
by data (0000HEX  
No  
Yes  
Yes  
No  
to FFFFHEX  
)
Status followed NOP Output of read results; only valid for SPI  
FXHEX  
by last 24-bit  
data  
(see section 6.4.1)  
Yes  
Yes  
[a] These commands can be used to conduct a measurement without an SSC correction; e.g., during the smart sensor calibration  
procedure. No digital correction is performed on the measurement result. The setup and configuration for the raw measurement is  
the content in the shadow registers that can be pre-loaded (automatically loaded during power-on) from the NVM or by means of  
the Overwrite commands, D6HEX to DBHEX  
.
[b] Use Oversample measurements to obtain noise-minimized measurement results in Sleep or Command Mode. With higher  
oversampling factors, the command execution time increases proportionally.  
[c] Overwrite commands can be used to optimize evaluation and test routine execution time for analog front-end setup or to configure  
self-diagnostic measurement setups without needing to change the ZSSC3240’s NVM content. The content and effects from  
Overwrite commands are cleared and reset with the ZSSC3240 reset via the RESQ pin or POR.  
6.6.2.  
Nonvolatile Memory (NVM)  
In the ZSSC3240, the memory is organized in 16-bit wide registers and can be programmed multiple times  
(approximately 10000). There are 54 16-bit registers available for customer use. Each register can be re-  
programmed.  
Basically, there are two NVM content sectors:  
Customer Use: Accessible via regular write operations: 40HEX to 75HEX. This sector contains the customer ID,  
interface setup data, measurement setup information, calibration coefficients, analog output configuration, etc.  
Renesas Use: Only accessible for write operations by Renesas. This sector (36HEX to 3FHEX) contains  
specific trim information and is programmed during manufacturing test by Renesas, e.g. setups for the internal  
temperature sensor are stored there.  
The whole NVM can be locked by programming lock = 1BIN in the SSF1 register, NVM address 03HEX, bit[14]. No  
change of the NVM content is possible once the NVM lock has been activated.  
Recommendations when using the NVM lock:  
Write all required setups, configurations, and SSC coefficients to the NVM first.  
Then write the SSF1 register content with the lock bit set.  
Then trigger the generation and writing of the CRC via the Calculate NVM Checksum command, 90HEX  
.
The NVM lock will be effective after a ZSSC3240 reset with POR or RESQ.  
Nov.27.20  
Page 43  
 
ZSSC3240  
Datasheet  
6.6.2.1. Memory Contents  
Table 34. Memory (NVM) Content Assignments  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Customer ID byte 0 (combines with memory word 01HEX to  
form customer ID)[a]  
00HEX  
15:0  
15:0  
0000HEX  
0000HEX  
Cust_ID0  
Customer ID byte 1 (combines with memory word 00HEX to  
form customer ID).  
01HEX  
Cust_ID1  
Interface Configuration  
I2C and OWI slave address; valid range: 00HEX to 7FHEX  
(default: 00HEX).  
6:0  
000 0000BIN  
Slave_Addr  
Note: address codes 04HEX to 07HEX are reserved for entering  
the I2C High Speed Mode.  
Interrupt configuration, EOC pin functionality:  
00 = End-of-conversion signal  
01 = 0 to 1 transition if threshold1 (TRSH1) is exceeded  
and 1 to 0 transition if threshold1 is underrun again  
10 = 0 to 1 transition if threshold1 is underrun and 1 to 0  
transition if threshold1 is exceeded again  
11 = EOC is determined by threshold settings (see section  
6.5.4):  
8:7  
00BIN  
INT_setup  
If (TRSH1 > TRSH2) then EOC/INT (interrupt  
level) = 0 if (TRSH1 > MEAS ≥ TRSH2) where  
MEAS is the conditioned measurement result.  
Otherwise EOC/INT = 1.  
If (TRSH1 TRSH2) then EOC = 1 if (TRSH1 ≤  
MEAS < TRSH2). Otherwise EOC = 0.  
Determines the polarity of the Slave Select pin (SS) for SPI  
operation:  
0 = Slave Select is active low (SPI and ZSSC3240 are  
active if SS==0)  
9
0BIN  
SS_polarity  
1 = Slave Select is active high (SPI and ZSSC3240 are  
active if SS==1)  
02HEX  
Clock polarity and clock-edge select. CKP_CKE determines  
polarity and phase of SPI interface clock with the following  
modes:  
00 = SCLK is low in idle state; data latch with rising edge  
and data output with falling edge  
01 = SCLK is low in idle state; data latch with falling  
edge and data output with rising edge  
11:10  
00BIN  
CKP_CKE  
10 = SCLK is high in idle state; data latch with falling  
edge and data output with rising edge  
11 = SCLK is high in idle state; data latch with rising  
edge and data output with falling edge  
Update period in cyclic operation:  
000 = 0.0ms  
001 = 0.1ms  
010 = 1.0ms  
011 = 2.5ms  
100 = 5.0ms  
101 = 10ms  
110 = 50ms  
111 = 87.5ms  
14:12  
000BIN  
CYC_period  
SOT_curve  
Note: A slower measurement rate, i.e., a higher CYC_period,  
can improve the analog output signal quality due to lower  
system bandwidth.  
Type/shape of second-order curve correction for the sensor  
signal:  
15  
0BIN  
0 = Parabolic curve  
1 = S-shaped curve  
Smart Sensor Feature Configuration Register 1 (SSF1)  
Defines the default operating mode that is automatically  
entered after power-on:  
00 = Command Mode  
01 = Cyclic Mode  
03HEX  
1:0  
00BIN  
default_mode  
10 = Sleep Mode  
11 = Not assigned  
Nov.27.20  
Page 44  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Defines the length of the OWI startup window, during which  
the OWI interface can be activated if analog output through  
the AOUT pin is also set up via cont_ANAoutn = 0BIN (see  
register 04HEX).  
2
3
0BIN  
owi_su_length  
OWI_ListenTime:  
0 = 50ms  
1 = 3ms  
Defines the activation level for the analog output at AOUT  
with or without concurrent OWI1 I/O behavior (see section  
6.4.3 for OWI application cases):  
0BIN  
owi_su_case  
0 = Regular, separate Startup Window for OWI first, then  
switch over to AOUT behavior  
1 = Direct start with output of analog signal at AOUT  
Selection of utilized temperature sensor source:  
000 = Integrated PTAT temperature sensor (no extra  
setup required)  
001 = Bridge as temperature sensor with internal Rt in  
Current Mode[b]  
010 = Current Mode through TEXT [b] for one of the  
following:  
Bridge as the temperature sensor with external  
Rt at TEXT  
Single diode/resistor at TEXT  
6:4  
000BIN  
temp_source  
011 = Not assigned  
100 = Current Mode operation for diode or PTC between  
TEXT and VSSB [b]  
101 = Ratiometric supply for the sensor (bridge) as the  
temperature sensor with the internal Rt [b]  
110 = Ratiometric supply for sensor (bridge) as the  
temperature sensor with the external Rt between  
sensor (bridge) top and TEXT pin[b]  
111 = Not assigned  
Front-end operation and supply setup for main measurand  
sensor measurements:  
00 = Ratiometric supply at VDDB  
01 = Current Mode out of VDDB from Tbias  
(see section 6.2)  
8:7  
00BIN  
sensor_sup  
10 = Absolute voltage (Thermopile)  
11 = Not assigned  
Note: if temp_source = 100 (temperature application T3.2) is  
also set up, sensor_sup = 01 must be configured in order to  
get ratiometric main sensor supply at VDDB.  
Top resistance set up for “Bridge as temperature sensor”  
configuration (see Table 15).  
Selection of resistance value (internal Rt) for re-using the  
sensor (bridge) as the temperature sensor with internal Rt  
(temp_source = 001 or 101).  
Selected Rt value is as follows:  
11:9  
000BIN  
internal_rt  
000 = 1.34kΩ  
001 = 4kΩ  
010 = 8kΩ  
011 = 10kΩ  
100 = 15kΩ  
101 = 20kΩ  
110 = 30kΩ  
111 = 40kΩ  
Note: the same value is selected for the bottom Rt’, if  
extra_rt = 1BIN is selected  
Nov.27.20  
Page 45  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Bottom resistance set up for the “Bridge as temperature  
sensor” configuration.  
If temp_source = 110 or 010 (or 100 combined with  
sensor_sup = 01), then extra_rt defines whether an internal  
bottom resistor Rt’ equivalent to the internal_rt selection is  
placed between VSSB and PGA negative input:  
0 =Use internal Rt’ (no extra external Rt’)  
12  
0BIN  
extra_rt  
1 =Extra external Rt’ (do not apply internal Rt’)  
Note: with temp_source = 100 AND sensor_sup = 10, the  
meaning of extra_rt bit is swapped (that is extra_rt = 0  
means internal Rt’ is not enabled)  
Setup bit to disable OWI interface:  
0 =OWI is enabled and usable  
13  
14  
0BIN  
owi_off  
lock  
1 = OWI is disabled and cannot be used  
Note: This setting has no effect on SPI or I2C operation  
Lock bit: no further NVM writing is possible if this bit is set.  
0 =NVM write allowed  
0BIN  
1 = NVM locked  
Note: Once this bit is set to 1, the lock becomes effective  
after the next IC reset.  
Switch off the charge pump for the internal regulators:  
0 = Charge pump on (recommended setting for better  
PSRR, or when external VDD<4.3V)  
1 = Charge pump off (less current consumption and  
lower distortion risks, e.g. coupling to VSS); this  
might be needed to ensure the 4mA low-limit in  
current loop applications (default setting for pre-  
configured Current-Loop application products, for  
example, ZSSC3240CL1B and ZSSC3240CL3R)  
15  
0BIN  
cp_off  
Note: Switch off the charge pump only if VDD > 4.3V is  
ensured  
Smart Sensor Feature Configuration Register 2 (SSF2):  
Setup of DAC output resolution:  
00 = 13-bit  
01 = 14-bit  
1:0  
2
00BIN  
dacres  
10 = 15-bit  
11 = 16-bit  
Switch on/off the dithering function for the DAC:  
1BIN  
dither_off  
0 =  
1 =  
Dither is applied for DAC outputs  
Dither is switched off  
Defines if the SSC-corrected sensor(bridge) signal S or the  
temperature signal T is the output at the DAC:  
0 =Sensor signal S is output at the DAC  
3
4
0BIN  
dacouttype  
04HEX  
1 =Temperature signal T is output at DAC  
Selects whether the ZSSC3240 provides analog output in  
general:  
0 = Analog (DAC) output is enabled  
0BIN  
cont_ANAoutn  
1 = No analog output (cyclic operation with digital  
outputs is still possible)  
Note: If cont_ANAoutn is set to 1, then Aout_setup is ignored;  
there is no analog output in Sleep Mode in general  
Nov.27.20  
Page 46  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Definition of the basic AOUT pin behavior:  
000 = Current loop enabled, output through error  
amplifier for current loop[c], OWI listens to both  
the OWI2in and OWI1 pins concurrently  
(default setting for pre-configured Current-Loop  
application products, for example,  
ZSSC3240CL1B and ZSSC3240CL3R )  
001 = External VDD-ratiometric, rail-to-rail out  
010 = 0V to 1.0V absolute output  
011 = 0V to 5V absolute output  
100 = not assigned  
7:5  
001BIN  
Aout_setup  
101 = External VDD-ratiometric, rail-to-rail out (OWI2in  
enabled)  
110 = 0V to 1.0V absolute output (OWI2in enabled)  
111 = 0V to 5V absolute output (OWI2in enabled)  
Enable diagnostic level output mode: The lower and upper  
analog output range levels are reserved for diagnostic  
signaling according to Table 16. The ZSSC3240 performs an  
automatic DAC-output scaling (if already digitally calibrated)  
to reserve the lower and upper 1.56% band or absolute  
voltage levels:  
8
0BIN  
diagouten  
0 =  
1 =  
No analog signalization  
Analog diagnostic signaling is enabled  
Switch off the internal output regulator circuit running the  
LDOctrl pin if no external supply transistor (such as JFET) is  
used; this reduces current consumption, etc.  
0 =  
1 =  
LDOctrl output is switched/kept on  
LDOctrl output switched off  
9
0BIN  
disable_ldoctrl  
Note: If enabled (= 0), then the charge-pump can be off (the  
cp_off bit = 1 in register 03HEX  
)
Set point for regulated VDD using external supply transistor  
JFET or depletion MOSFET:  
00 = VDD = 4.8V  
VDD_ldoctrl  
_target  
11:10  
10BIN  
01 = VDD = 5.0V  
10 = VDD = 5.2V  
11 = VDD = 5.4V  
Enable/disable for auto-zero measurement for (bridge)  
sensor measurement:  
0 = No auto-zero measurements for sensor signal  
12  
13  
0BIN  
AZMs_on  
AZMt_on  
1 = Auto-zero measurement of sensor bridge is  
performed and processed  
Note: This setup is ignored for raw data measurements with  
setup via the interface, i.e. command A2HEX  
Enable/disable for auto-zero measurement for temperature  
measurement:  
0 = No auto-zero measurements for temperature signal  
0BIN  
1 = Auto-zero measurement for temperature signal  
performed and processed  
Selection for applied digital oversampling in Cyclic Mode  
operation:  
00 = No oversampling  
01 = Oversample-4: Results of 4 SSC cycles per last  
meas_scheduler sequence  
15:14  
00BIN  
oversamp_cyc  
10 = Oversample-8: Results of 8 SSC cycles per last  
meas_scheduler sequence  
11 = Oversample-16: Results of 16 SSC cycles per last  
meas_scheduler sequence  
Note: This setup is ignored for any measurement in  
Command and Sleep Mode  
Nov.27.20  
Page 47  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Signal Conditioning Parameters  
Bits [15:0] of the 24-bit-wide sensor offset correction  
05HEX  
06HEX  
15:0  
15:0  
0000HEX  
0000HEX  
Offset_S[15:0] coefficient Offset_S. The MSBs including sign are  
Offset_S[23:16], which is [15:8] in register 0FHEX  
.
Bits [15:0] of the 24-bit-wide value of the sensor gain  
Gain_S[15:0]  
Tcg[15:0]  
coefficient Gain_S. The MSBs including sign are  
Gain_S[23:16], which is [7:0] in register 0FHEX  
.
Bits [15:0] of the 24-bit-wide coefficient Tcg for the  
temperature correction of the sensor gain. The MSBs  
including sign are Tcg[23:16], which is bits [15:8] in  
07HEX  
15:0  
0000HEX  
register 10HEX  
.
Bits [15:0] of the 24-bit-wide coefficient Tco for temperature  
08HEX  
09HEX  
0AHEX  
15:0  
15:0  
15:0  
0000HEX  
0000HEX  
0000HEX  
Tco[15:0]  
correction of the sensor offset. The MSBs with sign are  
Tco[23:16], which is bits [7:0] in register 10HEX  
Bits [15:0] of the 24-bit-wide 2nd order term SOT_tco applied  
SOT_tco[15:0] to Tco. The MSBs of this term including sign are  
.
SOT_tco[23:16], which is bits [15:8] in register 11HEX  
Bits [15:0] of the 24-bit-wide 2nd order term SOT_tcg applied  
SOT_tcg[15:0] to Tcg. The MSBs of this term including sign are  
.
SOT_tcg[23:16], which is bits[7:0] in register 11HEX  
.
Bits [15:0] of the 24-bit-wide 2nd order term SOT_sens  
applied to the sensor readout. The MSBs of this term  
including sign are SOT_sens[23:16], which is bits[15:8] in  
0BHEX  
15:0  
0000HEX  
SOT_sens[15:0]  
register 12HEX  
Bits [15:0] of the 24-bit-wide temperature offset correction  
Offset_T[15:0] coefficient Offset_T. The MSBs of this coefficient including  
.
0CHEX  
0DHEX  
0EHEX  
15:0  
15:0  
15:0  
7:0  
0000HEX  
0000HEX  
0000HEX  
20HEX  
sign are Offset_T[23:16], which is bits[7:0] in register 12HEX  
.
Bits [15:0] of the 24-bit-wide absolute value of the  
Gain_T[15:0]  
SOT_T[15:0]  
temperature gain coefficient Gain_T. The MSBs including  
sign are Gain_T[23:16], which is bits[15:8] in register 13HEX  
Bits [15:0] of the 24-bit-wide 2nd-order term SOT_T applied to  
the temperature reading. The MSBs including sign are  
.
SOT_T[23:16], which is bit[7:0] in register 13HEX  
Bits [23:16] including sign for the 24-bit-wide sensor gain  
Gain_S[23:16] correction coefficient Gain_S. The LSBs of this coefficient are  
Gain_S[15:0] in register 06HEX  
.
.
0FHEX  
10HEX  
11HEX  
12HEX  
13HEX  
Bits [23:16] including sign for the 24-bit-wide sensor offset  
Offset_S[23:16] correction coefficient Offset_S. The LSBs are Offset_S[15:0]  
15:8  
7:0  
00HEX  
in register 05HEX  
.
Bits [23:16] including sign for the 24-bit-wide coefficient Tco  
for temperature correction for the sensor offset. The LSBs are  
00HEX  
Tco[23:16]  
Tcg[23:16]  
Tco[15:0] in register 08HEX  
.
Bits [23:16] including sign for the 24-bit-wide coefficient Tcg  
for the temperature correction of the sensor gain. The LSBs  
15:8  
7:0  
00HEX  
are Tcg[15:0] in register 07HEX  
Bits [23:16] including sign for the 24-bit-wide 2nd order term  
SOT_tcg[23:16] SOT_tcg applied to Tcg. The LSBs are SOT_tcg[15:0] in  
register 0AHEX  
.
00HEX  
.
Bits [23:16] including sign for the 24-bit-wide 2nd order term  
15:8  
7:0  
00HEX  
SOT_tco[23:16] SOT_tco applied to Tco. The LSBs are SOT_tco[15:0] in  
register 09HEX  
.
Bits [23:16] including sign for the 24-bit-wide temperature  
Offset_T[23:16] offset correction coefficient Offset_T. The LSBs are  
00HEX  
Offset_T[15:0] in register 0CHEX  
.
Bits [23:16] including sign for the 24-bit-wide 2nd order term  
15:8  
7:0  
00HEX  
SOT_sens[23:16] SOT_sens applied to the sensor readout. The LSBs are  
SOT_sens[15:0] in register 0BHEX  
.
Bits [23:16] including sign for the 24-bit-wide 2nd-order term  
00HEX  
SOT_T[23:16]  
SOT_T applied to the temperature reading. The LSBs are  
SOT_T[15:0] in register 0EHEX  
Bits [23:16] including sign for the 24-bit-wide absolute value  
Gain_T[23:16] of the temperature gain coefficient Gain_T. The LSBs are  
Gain_T[15:0] in register 0DHEX  
.
15:8  
20HEX  
.
Nov.27.20  
Page 48  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Measurement Configuration Register 1 (SM_config1)  
Gain setting for the 1st PGA stage with Gain_stage1[3:0]:  
Description  
Notes/Explanations  
Parameters are valid for  
GainPGA ≤ 192:  
Parameters are limited for  
GainPGA > 192:  
0000 = 1.2  
0001 = 2  
0010 = 4  
0011 = 6  
0100 = 12  
0101 = 20  
0110 = 30 1011 = 150  
0111 = 40 1100 = 200  
3:0  
0000BIN  
Gain_stage1  
1000 = 60 1101 = 240  
1001 = 80 1110 = 300  
1010 = 120 1111 = Not assigned  
Gain setting for the 2nd PGA stage with Gain_stage2[1:0]:  
000 = 1.1  
001 = 1.2  
010 = 1.3  
011 = 1.4  
100 = 1.5  
101 = 1.6  
110 = 1.7  
111 = 1.8  
6:4  
7
000BIN  
Gain_stage2  
Gain_polarity  
Set up the polarity of the sensor bridge’s gain  
(invert chopper 1):  
0BIN  
0 =  
1 =  
positive (no polarity change)  
negative (180° polarity change)  
Resolution, i.e. absolute number of bits for the ADC with  
adc_bits[3:0]:  
14HEX  
0000 = 12  
0111 = 19  
0001 = 13  
1000 = 20  
0010 = 14  
1001 = 21  
11:8  
0100BIN  
adc_bits  
0011 = 15  
1010 = 22  
0100 = 16 (default)  
0101 = 17  
1011 = 23  
1100 = 24  
0110 = 18  
1101 to 1111 = Not assigned  
Differential signal’s offset shift in the ADC including gain x2;  
compensation of x% signal offset:  
000 = 0%, no offset compensation 100 = 25.00% offset  
14:12  
000BIN  
adc_offset  
sel_ref1  
001 = 6.25% offset  
010 = 12.50% offset  
011 = 18.75% offset  
101 = 31.25% offset  
110 = 37.50% offset  
111 = 44.00% offset  
Reference source for main sensor measurement:  
0 = Absolute (internal) bandgap is the reference  
15  
0BIN  
1 = Ratiometric reference; recommended for  
ratiometrically supplied sensors  
Measurement Configuration Register 2 (SM_config2)  
Absolute voltage input shift for input signals to the PG, e.g.  
INP-INN  
The input signal is shifted by the following voltages:  
00000 =  
00001 =  
00010 =  
00011 =  
0mV, no shift  
-1mV  
-2mV  
-3mV  
15HEX  
4:0  
0 0000BIN  
ioffsc  
01110 =  
01111 =  
10000 =  
10001 =  
10010 =  
-14mV  
-15mV  
0mV, no shift  
+1mV  
+2mV  
11110 =  
11111 =  
+14mV  
+15mV  
Nov.27.20  
Page 49  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Current Mode sensor bias selection; nominal sensor supply  
current Isup  
(if sensor_sup = 01 ):  
000 =  
001 =  
010 =  
011 =  
100 =  
5µA  
10µA  
20µA  
39µA  
79µA  
7:5  
000BIN  
Tbiasout  
101 = 157µA  
110 = 196µA  
111 = 494µA  
General disable/enable of the ADC feature to apply the extra  
gain x2 and signal offset compensation adc_offset in register  
14HEX  
:
8
0BIN  
adc_en_shift  
0 =Gain: 2 and signal offset compensation off  
1 =Gain: 2 and signal offset compensation on  
Automatic common mode adjust feature, which allows  
automatically, optimally adapting the sensor-input common  
mode to AGND at the PGA output.[d]  
9
0BIN  
pga_en_shift  
0 =Automatic common mode adjustment off  
1 =Automatic common mode adjustment on  
15:10  
00 0000BIN  
Not assigned  
External Temperature Measurement Configuration Register 1 (extTemp_config1)  
Gain setting for the 1st PGA stage with Gain_stage1[3:0] for  
external temperature measurements:  
Parameters are valid for GainPGA ≤ 192:  
0000 = 1.2  
0001 = 2  
0010 = 4  
0011 = 6  
0100 = 12  
0101 = 20  
0110 = 30  
0111 = 40  
1000 = 60  
1001 = 80  
1010 = 120  
3:0  
0000BIN  
Gain_stage1  
Parameters are limited for GainPGA > 192:  
1011 = 150  
1100 = 200  
1101 = 240  
1110 = 300  
1111 = Not assigned  
Gain setting for the 2nd PGA stage with Gain_stage2[1:0] for  
external temperature measurements:  
16HEX  
000 = 1.1  
001 = 1.2  
010 = 1.3  
011 = 1.4  
100 = 1.5  
101 = 1.6  
110 = 1.7  
111 = 1.8  
6:4  
000BIN  
Gain_stage2  
Gain_polarity  
Set up the polarity of the temperature sensor gain (invert  
input) with:  
0 = Positive (no polarity change)  
1 = Negative (180° polarity change)  
7
0BIN  
Resolution, i.e. absolute number of bits for the ADC for  
external temperature measurements with adc_bits[3:0]:  
0000 = 12  
0111 = 19  
0001 = 13  
1000 = 20  
0010 = 14  
1001 = 21  
11:8  
0100BIN  
adc_bits  
0011 = 15  
1010 = 22  
0100 = 16 (default)  
0101 = 17  
1011 = 23  
1100 = 24  
0110 = 18  
1101 to 1111 = Not assigned  
Nov.27.20  
Page 50  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Differential signal’s offset shift in ADC including gain x2 for  
external temperature measurements; compensation of x%  
signal offset:  
000 = 0%, no offset compensation  
001 = 6.25% offset  
010 = 12.50% offset  
14:12  
000BIN  
adc_offset  
011 = 18.75% offset  
100 = 25.00% offset  
101 = 31.25% offset  
110 = 37.50% offset  
111 = 44.00% offset  
Reference source for external temperature sensing and  
conversion:  
0 = Absolute (internal) bandgap is reference  
15  
0BIN  
sel_ref2  
1 = Ratiometric reference; recommended for  
ratiometrically supplied sensors  
External Temperature Measurement Configuration Register 2 (extTemp_config2)  
Absolute voltage input shift for input signals for external  
temperature measurements to the PG, e.g. INP-INN  
The input signal is shifted by the following voltages:  
00000 = 0mV, no shift  
00001 = -1mV  
00010 = -2mV  
00011 = -3mV  
4:0  
0 0000BIN  
ioffsc  
01110 = -14mV  
01111 = -15mV  
10000 = 0mV, no shift  
10001 = +1mV  
10010 = +2mV  
11110 = +14mV  
11111 = +15mV  
Current Mode sensor bias selection for external temperature  
measurements; nominal sensor supply current  
(if temp_source є {001BIN, 010BIN, 011 BIN, 100 BIN }):  
17HEX  
000 = 5µA  
001 = 10µA  
010 = 20µA  
011 = 39µA  
100 = 79µA  
101 = 157µA  
110 = 196µA  
111 = 494µA  
7:5  
000BIN  
Tbiasout  
General disenable/enable of the ADC feature for external  
temperature measurements to apply the extra gain x2 and  
signal offset compensation adc_offset in register 16HEX  
0 = Gain: x2 and signal offset compensation off  
1 = Gain: x2 and signal offset compensation on  
:
8
9
0BIN  
adc_en_shift  
Automatic common mode adjust feature, which allows  
automatically, optimally adapting the sensor-input common  
mode to AGND at the PGA output for external temperature  
measurements.[d]  
0BIN  
pga_en_shift  
0 = Automatic common mode adjustment off  
1 = Automatic common mode adjustment on  
15:10  
15:0  
00 0000BIN  
Not assigned  
Interrupt Level Setup and Post-Calibration (Digital) Offset Calibration  
Bits [15:0] of the 24-bit-wide interrupt threshold1, TRSH1.  
18HEX  
0000HEX  
TRSH1[15:0]  
(The MSBs for this threshold are TRSH1[23:16], which is bits  
[7:0] of register 1AHEX.)  
Nov.27.20  
Page 51  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Bits [15:0] of the 24-bit-wide interrupt threshold2, TRSH2.  
(The MSBs for this threshold are TRSH2[23:16], which is  
bits[15:8] of register 1AHEX.)  
19HEX  
15:0  
7:0  
0000HEX  
00HEX  
TRSH2[15:0]  
Bits [23:16] of the 24-bit-wide interrupt threshold1, TRSH1.  
TRSH1[23:16] (The LSBs for this threshold are TRSH1[15:0], which is  
bits[15:0] of register 18HEX.)  
1AHEX  
Bits [23:16] of the 24-bit-wide interrupt threshold2, TRSH2.  
TRSH2[23:16] (The LSBs for this threshold are TRSH2[15:0], which is  
bits[15:0] of register 19HEX.)  
15:8  
15:0  
15:0  
7:0  
00HEX  
Bits [15:0] of the post-calibration sensor offset shift coefficient  
SENS_Shift[15:0] SENS_Shift.  
1BHEX  
1CHEX  
0000HEX  
0000HEX  
00HEX  
(The MSBs of SENS_Shift are bits [15:8] of register 1DHEX.)  
Bits [15:0] of the post-calibration temperature offset shift  
coefficient T_Shift.  
(The MSBs of T_Shift are bits [7:0] of register 1DHEX.)  
T_Shift[15:0]  
Bits [23:16] of the post-calibration temperature offset shift  
T_Shift[23:16] coefficient T_Shift. (The LSBs of T_Shift are in register  
1CHEX.)  
1DHEX  
Bits [23:16] of the post-calibration sensor offset shift  
SENS_Shift[23:16] coefficient SENS_Shift. (The LSBs of SENS_Shift are in  
register 1BHEX.)  
15:8  
00HEX  
Measurement Scheduler (Cyclic Operation Sequence)  
Cyclic measurement operation is performed with/including  
the sensor measurement:  
0 = Sensor measurement is performed  
0
1
0BIN  
cycwsn  
cycwtn  
1 = Sensor measurement is not performed  
Note: Whether AZS is to be performed in the cyclic  
measurement sequence is set up with AZMs_on (see register  
04HEX  
)
Cyclic measurement operation is performed with the  
temperature measurement:  
0 = Temperature measurement is performed  
1 = Temperature measurement is not performed  
Note: whether AZT is to be performed in the cyclic  
measurement sequence is set up with AZMt_on (see register  
1EHEX  
0BIN  
04HEX  
)
2
3
0BIN  
-
Not assigned  
Cyclic measurement operation is performed with/including  
the sensor-connection check:  
0BIN  
cycwscn  
0 = Sensor connection check is performed  
1 = Sensor connection check is not performed  
The bits [9:4] in the 1EHEX register define whether the cycle measurement sequence performs the respective  
measurement type in the first slot or only after respective slots_X have been completed for the first time.  
Note: The SSC and analog output will only become valid after the sensor, temperature, and related auto-zero  
measurements have already been conducted for the first time. The first output signals maybe invalid until this condition  
is reached.  
0 = Perform the sensor measurement in the first slot  
1 = Do not perform the sensor measurement in the first slot  
4
0BIN  
startS_wfirstn  
0 = Perform the auto-zero sensor measurement in the  
first slot  
1EHEX  
(continued)  
1 = Do not perform the auto-zero sensor measurement  
in the first slot  
5
0BIN  
startAZS_wfirstn  
Note: The startAZS_wfirstn bit is ignored for the cyclic  
operation if the AZMs_on = 0 = “off.”  
0 = Perform the temperature measurement in the first  
slot  
6
0BIN  
startT_wfirstn  
1 = Do not perform the temperature measurement in the  
first slot  
Nov.27.20  
Page 52  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
0 = Perform the auto-zero temperature measurement in  
the first slot  
1 = Do not perform the auto-zero temperature  
measurement in the first slot  
7
0BIN  
startAZT_wfirstn  
Note: The startAZT_wfirstn bit is ignored for the cyclic  
operation if the AZMt_on = 0 = “off.”  
8
9
0BIN  
Not assigned  
Diagnostics: sensor connection checks:  
0 = Perform sensor connection checks in the first slot  
0BIN  
startSC_wfirstn  
1 = Do not perform sensor connection checks in the first  
slot  
Defines the number of pause slots between two subsequent  
temperature measurements:  
0 =  
No pause, measure temperature at each  
slot  
15:10  
00 0000BIN  
slots_T  
1DEC to 63DEC  
=
Pause slots after the slot with the  
temperature measurement  
Note: Set slots_T = slots_AZT for correct Cyclic  
Operation.  
Defines the number of pause slots between two subsequent  
auto-zero temperature (AZT) measurements:  
0 =  
No pause, measure AZT at each slot  
5:0  
00 0000BIN  
slots_AZT  
1 to 63DEC = Number of pause slots after the slot with the  
AZT measurement  
Note: If AZMt_on = 0, no auto-zero temperature  
measurement will be performed.  
Defines the number of pause slots between two subsequent  
sensor/bridge measurements:  
0 =  
No pause, measure sensor at each slot  
9:6  
0000BIN  
slots_S  
1DEC to 15DEC  
=
Number of pause slots after the slot with  
the sensor measurement  
1FHEX  
Note: Set slots_S = slots_AZS for correct Cyclic  
Operation.  
Defines the number of pause slots between two subsequent  
auto-zero-sensor (AZS) measurements:  
0 =  
No pause, measure AZS at each slot  
13:10  
0000BIN  
slots_AZS  
1DEC to 15DEC  
=
Number of pause-slots after the slot with  
sensor measurement  
Note: If AZMs_on = 0, no auto-zero-sensor measurement is  
performed.  
15:14  
5:0  
00BIN  
These bits must be 00BIN to ensure proper Cyclic Operation  
00 0000BIN  
Not assigned.  
Defines the number of pause slots between two subsequent  
sensor connection check runs:  
0 =  
No pause, always check sensor  
connection  
20HEX  
15:6  
00 0000 0000BIN  
slots_SC  
1DEC to 1023DEC  
=
Number of pause-slots after slot with  
Sensor-Connection check  
Selection of (Sensor) Connection Checks to be Conducted  
The first 10 bits of register 21HEX are the select_checks[9:0] bit field:  
Loss of sensor positive connection, INP [f]  
0
0BIN  
inp_check  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
Loss of bridge/sensor negative connection, INN [f]  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
21HEX  
1
0BIN  
inn_check  
Nov.27.20  
Page 53  
ZSSC3240  
Datasheet  
NVM Address  
Word/Bit Range Default Setting  
Description  
Notes/Explanations  
Signal at pin INP out of range (leaking/short to VSS or  
VDDB)  
2
3
0BIN  
inp_range_check  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
Signal at pin INN out of range (leaking/short to VSS or  
VDDB)  
0BIN  
inn_range_check  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
Sensor short (INN = INP) [f]  
sens_short  
_check  
4
5
0BIN  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
TEXT pin open  
0BIN  
text_open_check 0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
Signal at pin TEXT out of range (leaking / short to VSS or  
VDDB)  
6
0BIN  
text_range_check  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
TEXT pin short to INN  
text_inn_short  
7
8
0BIN  
0 = Check is not performed; result is not signalized  
_check  
1 = Check is performed; result is signalized  
TEXT pin short to INP  
text_inp_short  
0BIN  
0 = Check is not performed; result is not signalized  
_check  
1 = Check is performed; result is signalized  
Broken-chip check / chipping check  
9
0BIN  
crack_check  
0 = Check is not performed; result is not signalized  
1 = Check is performed; result is signalized  
Not assigned  
15:10  
00 0000BIN  
DAC (Output Calibration Data)  
Encoded, 16bit-quantized measurement value of DAC-output  
at VDD=5V with 10%-DAC-excitation, digital code (199AHEX).  
Programmed at Renesas’ device test. The measured DAC-  
voltage [e] can be derived as: VDAC10,AOUT[V] :=  
22HEX  
15:0  
XXXXHEX  
XXXXHEX  
DAC10RM5V  
DAC90RM5V  
DAC10RM5V[dec] / 296000 + 0.39  
Encoded, 16bit-quantized measurement value of DAC-output  
at VDD=5V with 90%-DAC-excitation, digital code (E666HEX).  
Programmed at Renesas’ device test. The measured DAC-  
voltage [e] can be derived as: VDAC90,AOUT[V] :=  
23HEX  
15:0  
15:0  
DAC90RM5V[dec] / 284000 + 4.45  
Free Memory (Available for Customer Use)  
Not assigned (e.g., can be used for Cust_IDx customer  
identification number)  
24HEX  
0000HEX  
Not assigned (e.g., can be used for Cust_IDx customer  
identification number)  
Not assigned (e.g., can be used for Cust_IDx customer  
identification number)  
34HEX  
15:0  
15:0  
0000HEX  
Generated (checksum) for the entire memory through a linear  
feedback shift register (LFSR); signature is checked on  
power-up to ensure memory content integrity  
35HEX  
-
Checksum  
[a] For I3C operation, this should contain the Legacy Virtual Register (LVR) information: 1XHEX to Index 0. Fast-Mode is supported.  
[b] Use the extTemp_config1 and extTemp_config2 registers for temperature sensor related front-end configuration.  
[c] In Current Loop Operation Mode, it must be ensured that a sufficient external VDD-level > 4.8V is present (e.g., with external supply  
transistor, such as JFET or depletion MOSFET, and extra LDO-control option).  
[d] If pga_en_shift is enabled, the ZSSC3240 current consumption increases by approximately 100µA. Usage is recommended for  
optimizing the analog front-end setup.  
[e] The IC provides the originally measured DAC-output voltage VDAC*0,AOUT[V] with VDD=5V, Aout_setup=(001BIN or 101BIN) as reaction on  
B3HEX command, see Table 33.  
[f] Do not enable (that is, set to 0BIN) if the IC is connected to an absolute voltage source sensor, for example, Thermopile  
(sensor_sup = 10BIN).  
Nov.27.20  
Page 54  
 
 
ZSSC3240  
Datasheet  
The NVM-consistence checksum is calculated (internally by the ZSSC3240 for the whole NVM) using the  
polynomial: x16 + x15 + x2 + 1. The checksum verification is only realized directly after VDD power-on. If the  
checksum is successfully verified, then the “Memory Error” status bit is set to 0BIN  
.
6.6.3. Digital Sensor-Signal-Conditioning Mathematics  
The saturation check (signalized by SSC Calculation Unit Saturation, see Table 16) in the ZSSC3240 detects  
saturation effects of the internal calculation steps, allowing the final correction output to be determined despite  
the saturation. It is possible to get potentially useful signal conditioning results that have had an intermediate  
saturation during the calculations. These cases are detectable; e.g., by observing the status bit[0] for each  
measurement result. Details about the saturation limits and the valid ranges for values are provided in the  
equations in the following sections.  
The calibration math description assumes a calculation with integer numbers. The description is numerically  
correct concerning values, dynamic range, and resolution.  
6.6.3.1. Sensor Signal Correction  
The configuration parameter SOT_curve in NVM register 02HEX selects whether second-order equations  
compensate for sensor nonlinearity with a parabolic or S-shaped curve. The parabolic compensation is  
recommended for most sensor types.  
The following equations describe the available SSC capabilities. The equation terms are as follows:  
S
Corrected sensor reading output via I2C, OWI, or SPI; range [0HEX to FFFFFFHEX  
S_Raw Raw sensor reading from ADC (after AZ correction, if selected); range [-7FFFFFHEX to  
7FFFFFHEX  
Gain_S Sensor gain term; range [-7FFFFFHEX to 7FFFFFHEX  
Offset_SSensor offset term; range [-7FFFFFHEX to 7FFFFFHEX  
]
]
]
]
Tcg  
Tco  
Temperature coefficient gain term; range [-7FFFFFHEX to 7FFFFFHEX  
]
Temperature coefficient offset term; range [-7FFFFFHEX to 7FFFFFHEX  
]
T_Raw Raw temperature reading (after AZ correction); range [-7FFFFFHEX to 7FFFFFHEX  
]
SOT_tcgSecond-order term for Tcg non-linearity; range [-7FFFFFHEX to 7FFFFFHEX  
]
]
SOT_tcoSecond-order term for Tco non-linearity; range [-7FFFFFHEX to 7FFFFFHEX  
SOT_sens Second-order term for sensor non-linearity; range [-7FFFFFHEX to 7FFFFFHEX  
]
SENS_shift Post-calibration, post-assembly offset shift; range [-7FFFFFHEX to 7FFFFFHEX  
]
Absolute value  
ul  
ll  
Bound/saturation number range from ll to ul, overflow/underflow is reported as saturation in the  
status byte  
The correction formula for the differential signal reading is represented as a two-step process depending on the  
SOT_curve setting.  
Table 35. Data Format of 24-bit SSC Coefficients  
Bit-Number:  
23  
22  
21  
20  
2
1
0
0 = positive  
1 = negative  
Meaning, Weighting  
21  
20  
2-1  
2-19  
2-20  
2-21  
Nov.27.20  
Page 55  
ZSSC3240  
Datasheet  
Table 36. Data Format of Corrected, SSC Results (S and T)  
Bit-Number:  
23  
22  
21  
20  
2
1
0
Meaning, Weighting  
20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
Equations for the parabolic SOT_curve setting (SOT_curve = 0):  
Simplified:  
T_Raw  
223  
4
SOT_tcg  
223  
K1 = 223  
+
TRaw + 4 Tcgꢁ  
Equation 7  
Equation 8  
T_Raw  
223  
4
SOT_tco  
223  
K = 4 Offset_S + S_raw +  
T
Raw  
+ 4 Tcoꢁ  
2
4
Gain_S  
K
1
+ 223 (delimited to positive number range)  
2
Equation 9  
ZSP  
=
K
∙ ∙  
23  
23  
2
2
Z
SOT_sens  
4  
Z
SP + 223+ SENS_shift  
(delimited to positive number range)  
SP  
23  
Equation 10  
S =  
23  
2
2
Complete:  
25  
2
-1  
25  
2
-1ꢋ  
25  
2
[
-1
ꢋ  
[
25  
2
-1  
T_Raw  
223  
SOT_tcg  
ꢆꢇ  
Equation 11  
Equation 12  
K1 = 223  
+
T
Raw  
]
+ 4 Tcgꢈ  
25  
-2  
221  
-2  
-2  
25  
25  
-2  
25  
25  
2
-1  
25  
2
-1
ꢋ  
25  
2
-1
ꢋ  
25  
2
[
-1
ꢋ  
25  
2
-1  
T_Raw  
223  
SOT_tco  
221  
K = 4 Offset_S + S_raw +  
ꢆꢇ  
T
]
Raw  
+ 4 Tcoꢈ  
25  
2
[
[
-2  
25  
25  
-2  
-2  
25  
-2  
25  
-2  
25  
2
-1  
25  
2
-1  
25  
2
-1  
[
Gain_S  
221  
K1  
223  
Equation 13  
Equation 14  
23
ꢊ  
ZSP  
=
K ]  
+ 2  
2
25  
-2  
25  
-2  
0  
24  
2
-1  
25  
2
-1  
25  
2
-1  
[
ZSP  
SOT_sens  
221  
S =  
ꢆꢇ  
Z
]
-2  
+ 223  
+ SENS_shift  
SP  
23  
25  
2
25  
-2  
0  
Equations for the S-shaped SOT_curve setting (SOT_curve = 1):  
Simplified:  
4
Gain_S  
K
1
Equation 15  
Equation 16  
ZSS  
=
K
2
(K1 and K2 according to Equation 7 and Equation 8)  
∙ ∙  
23  
23  
2
2
SOT_sens  
S =Z  
4  
ZSS + 223+ 223+ SENS_shift  
(delimited to positive number range)  
SS  
23  
|
|
23  
2
2
Complete:  
25  
2
-1  
25  
2
-1
ꢋ  
25  
2
-1  
Gain_S  
221  
K1  
223  
Equation 17  
[
ZSS  
=
K ]  
25  
2
-2  
-2  
25  
25  
-2  
Nov.27.20  
Page 56  
 
 
ZSSC3240  
Datasheet  
Equation 18  
24  
2
-1  
25  
2
-1  
25  
2
-1
ꢋ  
[
25  
2
-1  
Z
SOT_sens  
221  
[
SP  
23  
S =  
ꢆꢇ  
+ 223  
+ 223+ SENS_shift  
|
ZSS  
|
]
25  
2
-2  
25  
25  
-2  
-2  
0  
6.6.3.2. Temperature Signal Correction  
Temperature is measured either internally by the ZSSC3240 or through an additional external element or by  
means of a combination of ZSSC3240-internal and external temperature sensing capabilities; see sections 6.2.3  
and 6.2.4. Temperature correction contains both linear gain and offset terms as well as a second-order term to  
correct for any nonlinearities. For temperature, second-order compensation for nonlinearity is always parabolic.  
The correction equation terms are as follows:  
T
Corrected temperature sensor reading output via digital interface; range [0HEX to FFFFFFHEX  
Gain_T Gain coefficient for temperature; range [-7FFFFFHEX to 7FFFFFHEX  
T_Raw Raw temperature reading after AZ correction; range [-7FFFFFHEX to 7FFFFFHEX  
Offset_TOffset coefficient for temperature; range [-7FFFFFHEX to 0x7FFFFFHEX  
SOT_T Second-order term for temperature source nonlinearity; range [-7FFFFFHEX to 7FFFFFHEX  
]
]
]
]
]
T_Shift Shift for post-calibration/post-assembly offset compensation [-7FFFFFHEX to 7FFFFFHEX  
The correction formula is best represented as a two-step process as follows:  
Simplified:  
]
4
Gain_T  
23  
Equation 19  
(
)
ZT =  
T_Raw + 4 Offset_T + 2  
(delimited to positive number range)  
23  
2
T = Z  
4 × SOT_T Z + 223+ T_shift (delimited to positive number range)  
T
23  
Equation 20  
23  
T
2
2
Complete:  
25  
2
-1  
25  
2
-1  
25  
Gain_T  
221  
+ 223  
-1  
Equation 21  
Equation 22  
2  
25  
-2  
ZT = ꢆꢇ  
T_Raw + 4 Offset_T  
]
-2  
25  
0
24  
2
-1  
25  
2
-1  
25  
2
-1  
ZT  
23  
SOT_T  
221  
T =  
ꢆꢇ  
Z ]  
T
+ 223  
+ T_shift  
[
25  
2
-2  
25  
-2  
0  
Nov.27.20  
Page 57  
ZSSC3240  
Datasheet  
6.7  
External, Extra LDO (LDOctrl) for Applications for > 5.5V  
The ZSSC3240 has integrated voltage regulators that generate separate analog and digital ZSSC3240-internal  
voltages for any valid external supply voltage, VDD (2.7V to 5.5V). For proper ZSSC3240 function, the directly  
applied supply voltage should not exceed the maximum VDD limit.  
The ZSSC3240 also supports applications with higher application-inherent supply voltages greater than 5.5V.  
The ZSSC3240 provides a voltage regulation signal at the LDOctrl pin and a programmable IC supply, i.e. VDD  
-
level regulation target level, VDD_ldoctrl_target in the SSF2 register. The use of an additional external regulator  
transistor (by means of, for example JFET, depletion MOSFET, or comparable) further improves the power-  
supply rejection ratio (PSRR); i.e., it reduces effects from the external supply voltage onto the sensor  
measurement results in addition to the ZSSC3240-internal regulator properties. If the external extra supply  
regulation is not used or needed, the respective feature should be disabled by disable_ldoctrl = 1BIN  
Table 37. IC Supply, VDD Target Level Selection with External Voltage Regulation, External LDO  
VDD_ldoctrl_target  
.
VDD Target Level  
Notes  
Bit[1]  
Bit[0]  
0
0
1
1
0
1
0
1
4.8V  
5.0V  
5.2V  
5.4V  
Recommended, typical settings.  
Recommendation: Use the clamping diode at VDD (to FB for current-loop output configurations or to VSS in all  
other cases with external LDO as shown by gray dashed line in Figure 24) to ensure over-voltage protection at  
the initial application power-on. The external transistor, depicted as JFET1 can be a real JFET type, or, for  
example, depletion MOSFET and comparable. It must be selected such that the drain-source voltage can be at  
least VDDext 5V.  
JFET  
ISENSOR + IIC  
Application Supply  
VDDext > 5.5V  
VDD  
IC-Internal  
Regulators  
LDO Control /  
Regulation  
VDDA  
VDDD  
LDOctrl  
AOUT  
Analog Front-End  
Digital Core  
CVDD  
- Internal Temp.Sensor  
- PGA  
- ADC  
- IC Control  
- Memory  
- SSC Math  
- inMUX  
Analog Output  
VSS  
FB  
- DAC  
- AOUT Driver Stages  
- MUXout  
ZSSC3240  
LDO control circuitry  
Figure 25. LDOctrl Application Topology  
Table 38. External LDO Operating Conditions  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Cctrl  
Allowed parasitic capacitance at LDOctrl pin  
Buffer/filter capacitance between VDD and VSS  
150  
100  
500  
120  
pF  
nF  
CVDD  
80  
1
Depending on the VDDext>5.5V application main supply, different external transistors can be applied, for example BSS169 (Infineon),  
DN3545N8 (Microchip-Supertex), MMBF4392LT1G (Fairchild), etc.  
Nov.27.20  
Page 58  
ZSSC3240  
Datasheet  
7. Calibration  
Calibration essentially involves collecting raw signal and temperature data from the sensor-ZSSC3240 system  
for different known sensor-element values (i.e., for a resistive bridge or an absolute voltage source) and  
temperatures. This raw data can then be processed by the calibration master (assumed to be the user’s  
computer), and the calculated calibration coefficients can then be written to on-chip memory.  
Brief overview of the three mains steps involved in calibrating the ZSSC3240:  
1. Assigning a unique identification to the ZSSC3240. This identification is written to shadow RAM and  
programmed in NVM. This unique identification can be stored in the two 16-bit registers dedicated to the  
customer ID. It can be used as an index into a database stored on the calibration PC. This database will  
contain all the raw values of the connected sensor-element readings and temperature readings for that part,  
as well as the known sensor-element measurand conditions and temperature to which the sensor-element  
was exposed.  
2. Data collection. Data collection involves getting uncorrected (raw) data from the external sensor at different  
known measurand values and temperatures. Then this data is stored on the calibration master using the  
unique identification of the device as the index to the database.  
3. Coefficient calculation and storage in NVM. After enough data points have been collected to calculate all the  
desired coefficients, the coefficients can be calculated by the calibration master. Then the coefficients can be  
programmed to the memory.  
4. Result. The sensor signal and the characteristic temperature effect on output will be linearized according to  
the setup-dependent maximum output range.  
It is essential to perform the calibration with a fixed programming setup during the data collection phase.  
Strong recommendation: To prevent any accidental misprocessing, keep the sensor front-end NVM setup  
(registers SSF1, SSF2, SM_config1, SM_config2, extTemp_config1, extTemp_config2) stable during the entire  
calibration process as well as in the subsequent operation.  
Note: A ZSSC3240 calibration only fits the setup used during its calibration. Changes of functional parameters  
after a successful calibration can decrease the precision and accuracy performance of the ZSSC3240 as well as  
of the entire application.  
8. Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below.  
The package information is the most current data available.  
https://www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-085-mm-body05mm-pitch-  
epad-25-x-25-wettable-flank-side  
9. Marking Diagram  
1. Line 1 is the truncated part number.  
3240C  
YYWW  
2. Line 2 – “YYWW” are the last two digits of the year and  
week that the part was assembled.  
XXXXX  
3. Line 3 – “XXXXX” denotes assembly lot number.  
Nov.27.20  
Page 59  
ZSSC3240  
Datasheet  
10. Ordering Information  
Orderable Part Number Description and Package  
MSL Rating  
Carrier Type  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
13 inch Reel  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
13 inch Reel  
7 inch Reel  
Temperature  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
-40 to 85°C  
-40 to 125°C  
-40 to 125°C  
-40 to 125°C  
-40 to 125°C  
-40 to 125°C  
-40 to 125°C  
ZSSC3240CC1B  
ZSSC3240CC2B  
ZSSC3240CC5B  
ZSSC3240CC6B  
ZSSC3240CC3R  
ZSSC3240CI1B  
ZSSC3240CI2B  
ZSSC3240CI5B  
ZSSC3240CI6B  
ZSSC3240CI3R  
ZSSC3240CI3W  
DICE on 304µm wafer no inking  
DICE on 725µm wafer no inking  
DICE on 304µm wafer with inking  
DICE on 725µm wafer with inking  
4 4 mm2 24-QFN  
MSL1  
DICE on 304µm wafer no inking  
DICE on 725µm wafer no inking  
DICE on 304µm wafer with inking  
DICE on 725µm wafer with inking  
4 4 mm2 24-QFN  
MSL1  
MSL1  
4 4 mm2 24-QFN  
DICE on 304µm wafer no inking, pre-configured for  
Current-Loop  
ZSSC3240CL1B  
ZSSC3240CL3R  
ZSSC3240KIT  
Wafer Box  
-40 to 125°C  
-40 to 125°C  
4 4 mm2 24-QFN, pre-configured for Current-Loop  
MSL1  
13 inch Reel  
Modular ZSSC3240 SSC Evaluation Kit including three interconnecting boards, five ZSSC3240 24-VFPQFN  
samples, and cable. Software is available for download on www.IDT.com/ZSSC3240.  
11. Glossary  
Term  
Description  
A2D  
ACK  
ADC  
AGND  
AZ  
Analog-to-Digital  
Acknowledge (interface’s protocol indicator for successful data/command transfer)  
Analog-to-Digital Converter or Conversion  
Analog-Ground, ZSSC3240-internal … VDDAint/2  
Auto-Zero (unspecific)  
AZS  
AZT  
CLK  
DAC  
EMC  
EMI  
Auto-Zero Measurement for (External) Sensor Path  
Auto-Zero Measurement for (External or Internal) Temperature Path  
Clock  
Digital-to-Analog Converter or Conversion  
Electromagnetic Compatibility  
Electromagnetic Immision (Immunity), i.e. immunity on spuriously coupled high-frequency disturbances  
End of Conversion  
EOC  
FSO  
LFSR  
LSB  
MSB  
MSL  
NACK  
NVM  
Op amp  
PGA  
POR  
PPT  
PSRR  
PTC  
S
Full Scale Output (value in percent relative to the ADC maximum output code; resolution dependent)  
Linear Feedback Shift Register  
Least Significant Bit  
Most Significant Bit  
Moisture Sensitivity Level  
Not Acknowledge (interface’s protocol indicator for unsuccessful data/command transfer)  
Nonvolatile Memory  
Operating Amplifier  
Programmable Gain Amplifier  
Power-On Reset  
Parts-per-Thousand, 1PPT=1/1000  
Power Supply (Disturbance) Rejection Ratio  
Positive Temperature Coefficient (sensing element)  
SSC-corrected Sensor Readout / Result  
Sensor Measurement  
SM  
SOT  
SSF  
T
Second Order Term  
Smart-Sensor Function (specific NVM registers)  
SSC-corrected (extra) Temperature Readout / Result  
Temperature Coefficient  
TC  
Nov.27.20  
Page 60  
ZSSC3240  
Datasheet  
12. Revision History  
Revision Date  
Description of Change  
Nov.27.20  
Explanations for EOC  
New product version ZSSC3240CL* pre-configured NVM for current-loop applications  
Correction of Marking Diagram corrected for “3240C”  
slots_S corrected to be up to 15DEC, slots_AZS definition updated  
Added note, not to apply sensor-open/short diagnostic checks together with Thermopile sensors  
Corrected Equation 1  
Reduced conversion time for internal temp. sensor and typ. SSC-conversion time  
Added figure and explanation for digital output behavior in cyclic mode  
Mar.13.20  
Initial release  
Nov.27.20  
Page 61  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.85 mm Body,0.50mm Pitch,Epad 2.50 x 2.50 mm Wettable Flank (Side Plate)  
NLG24S1, PSC-4192-04, Rev 02, Page 1  
© Integrated Device Technology, Inc.  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.85 mm Body,0.50mm Pitch,Epad 2.50 x 2.50 mm Wettable Flank (Side Plate)  
NLG24S1, PSC-4192-04, Rev 02, Page 2  
Package Revision History  
Description  
Rev 02 New Format, Add Land Pattern, Change EPC Code  
Update Title  
Date Created Rev No.  
Nov 5, 2018  
Jul 5, 2017  
Rev 01  
© Integrated Device Technology, Inc.  
1RWLFH  
ꢄꢃ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢅꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀRUꢀLQIRUPDWLRQꢃ  
ꢁꢃ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢅꢀFRS\ULJKWVꢅꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢅꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢅꢀWKHꢀSURGXFWꢀGDWDꢅꢀGUDZLQJVꢅꢀFKDUWVꢅꢀSURJUDPVꢅꢀDOJRULWKPVꢅꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ  
ꢆꢃ 1RꢀOLFHQVHꢅꢀH[SUHVVꢅꢀLPSOLHGꢀRUꢀRWKHUZLVHꢅꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢅꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢃ  
ꢇꢃ <RXꢀVKDOOꢀQRWꢀDOWHUꢅꢀPRGLI\ꢅꢀFRS\ꢅꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢅꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢅꢀPRGLILFDWLRQꢅꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢃ  
ꢈꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢉꢀꢊ6WDQGDUGꢊꢀDQGꢀꢊ+LJKꢀ4XDOLW\ꢊꢃꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢋVꢀTXDOLW\ꢀJUDGHꢅꢀDVꢀLQGLFDWHGꢀEHORZꢃ  
ꢊ6WDQGDUGꢊꢉ  
&RPSXWHUVꢌꢀRIILFHꢀHTXLSPHQWꢌꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢌꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢌꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢌꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢌꢀPDFKLQHꢀWRROVꢌꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢌꢀLQGXVWULDOꢀURERWVꢌꢀHWFꢃ  
ꢊ+LJKꢀ4XDOLW\ꢊꢉ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢍDXWRPRELOHVꢅꢀWUDLQVꢅꢀVKLSVꢅꢀHWFꢃꢎꢌꢀWUDIILFꢀFRQWUROꢀꢍWUDIILFꢀOLJKWVꢎꢌꢀODUJHꢏVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢌꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢌꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢌꢀHWFꢃ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢍDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢌꢀVXUJLFDOꢀLPSODQWDWLRQVꢌꢀHWFꢃꢎꢅꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢍVSDFHꢀV\VWHPꢌꢀ  
XQGHUVHDꢀUHSHDWHUVꢌꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢌꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢌꢀNH\ꢀSODQWꢀV\VWHPVꢌꢀPLOLWDU\ꢀHTXLSPHQWꢌꢀHWFꢃꢎꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢅꢀXVHUꢋVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢃ  
ꢐꢃ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢍGDWDꢀVKHHWVꢅꢀXVHUꢋVꢀPDQXDOVꢅꢀDSSOLFDWLRQꢀQRWHVꢅꢀꢊ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢊꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢅꢀHWFꢃꢎꢅꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢅꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢅꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢅꢀLQVWDOODWLRQꢅꢀHWFꢃꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢅꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢃ  
ꢑꢃ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢅꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢃꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢅꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢅꢀDQGꢒRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢅꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢅꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢃꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢅꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢃ  
ꢓꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢅꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢅꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢅꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃ  
ꢔꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢅꢀXVHꢅꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢃꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢃ  
ꢄꢂꢃ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢅꢀGLVSRVHVꢀRIꢅꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢅꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢃ  
ꢄꢄꢃ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢅꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢅꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢄꢁꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢃ  
ꢍ1RWHꢄꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢊꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢃ  
ꢍ1RWHꢁꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢍVꢎꢊꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢍ5HYꢃꢇꢃꢂꢏꢄꢀꢀ1RYHPEHUꢀꢁꢂꢄꢑꢎ  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date version  
of a document, or your nearest sales office, please visit:  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com/contact/  
www.renesas.com  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property of  
their respective owners.  
‹ꢀꢁꢂ20ꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢃꢀ$OOꢀULJKWVꢀUHVHUYHGꢃ  

相关型号:

ZSSC3240CC2B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CC3R

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CC5B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CC6B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI1B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI2B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI3R

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI3W

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI5B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS

ZSSC3240CI6B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
RENESAS