ZSSC5101BE2B [RENESAS]

xMR Sensor Signal Conditioner;
ZSSC5101BE2B
型号: ZSSC5101BE2B
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

xMR Sensor Signal Conditioner

文件: 总29页 (文件大小:804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSSC5101  
xMR Sensor Signal Conditioner  
Datasheet  
Brief Description  
Benefits  
The ZSSC5101 is a CMOS integrated circuit for con-  
verting sine and cosine signals obtained from  
magnetoresistive bridge sensors into a ratiometric  
analog voltage with a user-programmable range of  
travel and clamping levels.  
No external trimming components required  
PC-controlled configuration and single-pass  
calibration via one-wire interface allows  
programming of fully assembled sensors  
Can be used with low-cost ferrite magnets  
The ZSSC5101 accepts sensor bridge arrangements  
for both rotational as well as linear movement.  
Depending on the type of sensor bridge, a full-scale  
travel range of up to 360 mechanical degrees can be  
obtained.  
Allows large air gaps between sensors and  
magnets  
Optimized for automotive environments with  
extended temperature range and special  
protection circuitry with excellent electro-  
magnetic compatibility  
Programming of the device is performed through the  
output pin, allowing in-line programming of fully  
assembled 3-wire sensors. Programming param-  
eters are stored in an EEPROM and can be re-pro-  
grammed multiple times.  
Power supply monitoring  
Sensor monitoring  
Detection of EEPROM memory failure  
Connection failure management  
The ZSSC5101 is fully automotive-qualified with an  
ambient temperature range up to 160°C.  
High accuracy: ± 0.15° integral nonlinearity (INL)  
after calibration  
Features  
Available Support  
Ratiometric analog output  
Up to 4608 analog steps  
Step size as small as 0.022°  
Evaluation Kit  
Application Notes  
Programming through output pin via  
one-wire interface  
Physical Characteristics  
Wide operation temperature: -40 C to +160 C (die)  
Supply voltage: 4.5V to 5.5V  
Offset calibration of the bridge input signals  
Programmable linear transfer characteristic:  
SSOP-14 package, bare die, or unsawn wafer  
.
.
.
.
Zero position  
Angular range  
ZSSC5101 Typical Application Circuit  
Upper and lower clamping levels  
Rising or falling slope  
Sensor Bridges  
VDDS  
Loss of magnet indication with programmable  
threshold level  
Accepts anisotropic, giant, and tunnel magneto-  
resistive bridge sensors (AMR, GMR and TMR)  
VSINP  
VSINN  
CB  
100nF  
+5V  
Load  
Circuit  
VDDE  
VOUT  
VSSE  
Programmable 32-bit user ID  
CRC, error detection, and error correction  
on EEPROM data  
VCOSP  
VCOSN  
Rout  
Cout  
Diagnostics: broken-wire detection  
Automotive-qualified to AEC-Q100, grade 0  
VSSS  
1
January 22, 2016  
ZSSC5101  
xMR Sensor Signal Conditioner  
Datasheet  
ZSSC5101 Block Diagram  
Applications  
VDDE  
Absolute Rotary Position Sensor  
Steering Wheel Position Sensor  
Pedal Position Sensor  
Digital Signal Processing and Control  
VDDS  
VSSS  
VDDS  
VSSS  
One-Wire  
EEPROM  
Sin  
Power Supply Regulators  
Interface  
Throttle Position Sensor  
Float-Level Sensor  
VSINP  
VSINN  
VCOSP  
VCOSN  
Cordic  
DAC  
Buffer  
Amp.  
VOUT  
VDDS  
VSSS  
MUX  
PGA  
ADC  
Ride Height Position Sensor  
Non-Contacting Potentiometer  
Rotary Dial  
Algorithm  
Cos  
Analog Frontend AFE  
Interface  
VSSE  
Application Circuit for AMR Sensors  
Application Circuit for TMR Sensors  
TMR Sensor Bridge  
e.g., MDT MMA253F  
AMR Sensor Bridge  
VDDS  
1
VCC  
VDDS  
Rs  
VSINP  
VSINN  
CB  
100nF  
3
X+  
VSINP  
+5V  
Load  
Circuit  
+5V  
VDDE  
VOUT  
VSSE  
10  
12  
Load  
Circuit  
Rp  
Rs  
VDDE  
VOUT  
VSSE  
CB  
100nF  
X-  
5
2
VSINN  
Rs  
Rs  
VCOSP  
VCOSN  
Rout  
Cout  
Y+  
Rout  
Cout  
VCOSP  
11  
Rp  
6
4
VCOSN  
VSSS  
GND  
Y-  
VSSS  
Rs=51k  
Rp = 5k  
Ω
Ω
to 10kΩ  
Ordering Information  
Sales Code  
Description  
Delivery Package  
ZSSC5101BE1B  
ZSSC5101BE2B  
ZSSC5101BE3B  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
8” tested wafer, unsawn, thickness = 390 ±15µm  
8” tested wafer, unsawn, thickness = 725 ±15µm  
8” tested wafer, unsawn, thickness = 250 ±15µm  
ZSSC5101BE1C ZSSC5101 Die – Temperature range: -40°C to +160°C  
8” tested wafer, sawn on frame, thickness = 390 ±15µm  
ZSSC5101BE4R ZSSC5101 SSOP-14 – Temperature range: -40°C to +150°C 13” tape and reel  
ZSSC5101BE4T  
ZSSC5101 KIT  
ZSSC5101 SSOP-14 – Temperature range: -40°C to +150°C Tube  
Evaluation Kit: USB Communication Board, ZSSC5101 AMR board, adapters. Software is downloaded (see data sheet).  
2
January 22, 2016  
Contents  
1
IC Characteristics ............................................................................................................................................. 5  
1.1. Absolute Maximum Ratings....................................................................................................................... 5  
1.2. Operating Conditions................................................................................................................................. 5  
1.3. Electrical Parameters ................................................................................................................................ 6  
1.3.1. ZSSC5101 Characteristics.................................................................................................................. 6  
1.3.2. Input Stage Characteristics................................................................................................................. 7  
1.3.3. Digital Calculation Characteristics ...................................................................................................... 8  
1.3.4. Analog Output Stage Characteristics (Digital to VOUT) ..................................................................... 9  
1.3.5. Analog Input to Analog Output Characteristics (Full Path) ...............................................................10  
1.3.6. Digital Interface Characteristics (CMOS compatible) .......................................................................10  
1.3.7. Supervision Circuits .......................................................................................................................... 11  
1.3.8. Power Loss Circuit ............................................................................................................................ 11  
Circuit Description .......................................................................................................................................... 12  
2.1. Overview.................................................................................................................................................. 12  
2.2. Functional Description............................................................................................................................. 12  
2.3. One-Wire Interface and Command Mode (CM) ...................................................................................... 13  
2.4. Power-Up/Power-Down Characteristics .................................................................................................. 14  
2.5. Power Loss / GND Loss .......................................................................................................................... 14  
2.5.1. Purpose............................................................................................................................................. 14  
2.5.2. Power Loss Behavior........................................................................................................................ 14  
2.6. Diagnostics Mode (DM)........................................................................................................................... 15  
EEPROM........................................................................................................................................................ 16  
3.1. User Programmable Parameters in EEPROM ........................................................................................ 16  
3.2. CRC Algorithm......................................................................................................................................... 16  
3.3. EDC Algorithm......................................................................................................................................... 16  
Application Circuit Examples.......................................................................................................................... 17  
4.1. Typical Application Circuit for AMR Double Wheatstone Sensor Bridges...............................................17  
4.2. Typical Application Circuit for TMR Sensor Bridges................................................................................ 18  
4.3. Mechanical Set-up for Absolute Angle Measurements ........................................................................... 18  
4.4. Mechanical Set-up for Linear Distance Measurements .......................................................................... 20  
4.5. Input-to-Output Characteristics Calculation Examples............................................................................ 21  
ESD and Latch-up Protection......................................................................................................................... 22  
5.1. Human Body Model................................................................................................................................. 22  
5.2. Machine Model ........................................................................................................................................ 22  
5.3. Charged Device Model............................................................................................................................ 22  
5.4. Latch-Up .................................................................................................................................................. 22  
Pin Configuration and Package Dimensions.................................................................................................. 23  
2
3
4
5
6
3
January 22, 2016  
6.1. Package Drawing – SSOP-14 ................................................................................................................. 24  
6.2. Die Dimensions and Pad Coordinates .................................................................................................... 25  
Layout Requirements ..................................................................................................................................... 25  
Reliability and RoHS Conformity.................................................................................................................... 25  
Ordering Information ...................................................................................................................................... 26  
7
8
9
10 Related Documents........................................................................................................................................ 26  
11 Glossary ......................................................................................................................................................... 27  
12 Document Revision History............................................................................................................................ 28  
List of Figures  
Figure 2.1 ZSSC5101 Block Diagram................................................................................................................ 12  
Figure 4.1 ZSSC5101 with AMR Sensor Bridge................................................................................................ 17  
Figure 4.2 ZSSC5101 with TMR Sensor Bridge ................................................................................................ 18  
Figure 4.3 Mechanical Set-up for Rotational Measurements and Programming Options .................................19  
Figure 4.4 Mechanical Set-up for Linear Distance Measurements and Programming Options ........................20  
Figure 4.5 Input-to-Output Characteristics with Parameters.............................................................................. 21  
Figure 6.1 Package Dimensions – SSOP-14..................................................................................................... 24  
Figure 6.2 Pin Map and Pad Position of the ZSSC5101 SSOP-14 Package ....................................................25  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 1.4  
Table 1.5  
Table 1.6  
Table 1.7  
Table 1.8  
Table 1.9  
Absolute Maximum Ratings................................................................................................................ 5  
Operating Conditions .......................................................................................................................... 5  
Electrical Characteristics .................................................................................................................... 6  
Input Stage Characteristics................................................................................................................. 7  
Digital Calculation Characteristics ...................................................................................................... 8  
Analog Output Stage Characteristics ................................................................................................. 9  
Full Analog Path Characteristics....................................................................................................... 10  
Digital Interface Characteristics........................................................................................................ 10  
Supervision Circuits .......................................................................................................................... 11  
Table 1.10 Power Loss Circuit............................................................................................................................ 11  
Table 2.1  
Table 2.2  
Table 2.3  
Table 3.1  
Table 6.1  
Output Modes during Power-Up and Power-Down .......................................................................... 14  
Power Loss Behavior........................................................................................................................ 14  
Diagnostics Mode ............................................................................................................................. 15  
EEPROM — User Area .................................................................................................................... 16  
Pin Configuration .............................................................................................................................. 23  
4
January 22, 2016  
1
IC Characteristics  
1.1. Absolute Maximum Ratings  
Table 1.1 Absolute Maximum Ratings  
Parameter  
Symbol  
VDDE  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
Typ.  
Max  
Unit  
1.1.1.1.  
1.1.1.2.  
1.1.1.3.  
1.1.1.4.  
1.1.1.5.  
Supply voltage at VDDE pin  
Voltage at VDDS pin  
5.7  
V
V
VDDS  
VDDE+0.3  
VDDS  
Voltage at VSINP, VSINN, VCOSP, and VCOSN pins  
Voltage at VOUT pin  
V
VOUT  
TS  
VDDE+0.3  
160  
V
Storage temperature  
-60  
°C  
1.2. Operating Conditions  
Table 1.2 Operating Conditions  
Note: See important notes at the end of the table.  
Parameter  
Symbol  
VDDE  
TA  
Min  
Typ. Max  
Unit  
V
1.2.1.1.  
1.2.1.2.  
1.2.1.3.  
1.2.1.4.  
1.2.1.5.  
1.2.1.6.  
1.2.1.7.  
1.2.1.8.  
1.2.1.9.  
1.2.1.10.  
1.2.1.11.  
Supply voltage for normal operation  
4.5  
-40  
-60  
-40  
10  
5.0  
5.7  
160  
160  
150  
150  
Operating ambient temperature range, bare die 1)  
°C  
°C  
°C  
°C  
nF  
mA  
nF  
k  
°/s  
ms  
1), 2)  
Extended ambient temperature range, bare die  
Operating ambient temperature range, SSOP-14  
Temperature range – EEPROM programming  
Blocking capacitance between VDDE and VSSE pins  
Sensor bridge current (sine and cosine)  
Capacitive load at outputs  
TA  
TA  
TA-EEP  
CB  
75  
100  
IBRIDGE  
COUT  
RLOAD  
4.0  
20  
Output pull-up or pull-down load  
5
Angular rate (mechanical)  
1000  
EEPROM programming time for a single address  
(condition: fDIGITAL is within specification; see 1.3.1.7)  
tPROG  
tRET  
20  
17  
1.2.1.12.  
Data retention time of memory over lifetime at  
maximum average temperature 50°C  
years  
1.2.1.13.  
1.2.1.14.  
EEPROM endurance  
200  
cycles  
mV/V  
Range of differential input voltage  
(range of differential sensor output signal)  
VIN-RANGE  
±23  
+4  
1.2.1.15.  
1.2.1.16.  
Range of offset voltage at input that can be digitally  
compensated  
VOFFSET-COMP  
TCOEFF-RANGE  
-4  
-4  
mV/V  
Range of offset temperature compensation at input  
that can be digitally compensated  
+4  
(µV/V)/K  
5
January 22, 2016  
 
 
 
 
 
 
Parameter  
Symbol  
CMR  
Min  
30%  
1
Typ. Max  
70%  
Unit  
1.2.1.17.  
1.2.1.18.  
Common mode input voltage range  
VDDE  
ms  
Waiting time after enabling EEPROM charge pump  
clock  
tVPP-RISE  
1)  
2)  
RTHJA = 160 K/W assumed.  
With reduced performance.  
1.3. Electrical Parameters  
The following electrical specifications are valid for the operating conditions as specified in table 1.2  
(TA = -40°C to 160°C).  
1.3.1.  
ZSSC5101 Characteristics  
Table 1.3 Electrical Characteristics  
Parameter  
Symbol  
Min  
Typ.  
Max  
Unit  
1.3.1.1.  
Leakage current at VSINP, VSINN, VCOSP, and  
VCOSN pins  
IIN-LEAK  
1
µA  
1.3.1.2.  
1.3.1.3.  
1.3.1.4.  
1.3.1.5.  
1.3.1.6.  
1.3.1.7.  
Leakage current at VOUT in high-impedance state  
Leakage current difference Vsinp/n, Vcosp/n 1)  
Current consumption  
IOUT-LEAK  
IIN-DIFF-LEAK  
ISUPPLY  
IPEAK  
-12  
+12  
35  
7
µA  
nA  
mA  
mA  
V
Peak current consumption at startup 1) 2)  
10  
4.2  
1.8  
Sensor supply voltage  
VDDS  
3.8  
1.5  
4
Internal digital master clock frequency  
(after calibration)  
fDIGITAL  
1.6  
MHz  
1)  
2)  
Maximum characterized on samples, not measured in production.  
ZSSC5101 can start with such a peak current for ramps of the power supply with a rise-up time > 100 µs.  
6
January 22, 2016  
 
 
 
 
 
 
 
 
1.3.2.  
Input Stage Characteristics  
Table 1.4 Input Stage Characteristics  
Parameter  
Symbol  
CMRR  
Conditions  
Min  
Typ.  
Max  
Unit  
1.3.2.1.  
1.3.2.2.  
1.3.2.3.  
1.3.2.4.  
1.3.2.5.  
Common mode  
rejection ratio  
Input frequency < 100Hz  
60  
dB  
Input preamp offset  
voltage drift  
TCVD-IN-OFFSET With chopped amplifier  
5
µV/K  
LSBADC  
ppm  
Input stage offset  
INPOFFSET  
DNLADC  
Referenced to ADCaverage  
register  
±32  
Input differential  
nonlinearity  
±2 LSB at 12-bit ADC  
±500  
±500  
(guaranteed monotony) 1)  
Input integral  
nonlinearity  
INLINPUT  
Half input range  
ppm  
±2 LSB at 12-bit ADC  
1.3.2.6.  
Output referred noise  
Full range input  
16  
LSB eff  
Referenced to ADC steps  
after average (16-bit  
ADCaverageSin register) 1)  
1.3.2.7.  
1.3.2.8.  
1.3.2.9.  
1.3.2.10.  
Gain low  
(programmable)  
17.8  
35.6  
18  
36  
18.2  
36.4  
0.6  
Gain high  
(programmable)  
Gain matching between  
high and low gain  
%
Input noise voltage  
density  
At bandwidth < 5kHz  
100  
nV/sqrt(Hz)  
1)  
Refer to the ZSSC5101 Application Note – Programming.  
7
January 22, 2016  
 
 
 
1.3.3.  
Digital Calculation Characteristics  
Table 1.5 Digital Calculation Characteristics  
Parameter  
Symbol  
RESINPUT  
RESOFFSET  
Condition  
Min  
Typ.  
12  
Max  
Unit  
bit  
1.3.3.1.  
1.3.3.2.  
Input stage resolution  
Resolution at offset  
measurement  
14  
bit  
1.3.3.3.  
1.3.3.4.  
1.3.3.5.  
1.3.3.6.  
CORDIC calculation  
length  
16  
bit  
bit  
bit  
CORDIC accuracy for  
angle value  
13  
10  
CORDIC accuracy for  
magnitude value  
Channel switching  
frequency (i.e., the  
ADC conversion time)  
fADC  
1/16  
1/32  
fDIGITAL  
fDIGITAL  
With average16not8 bit field  
in eep_ctrl_manu register 1)  
set to ‘0’  
1.3.3.7.  
1.3.3.8.  
Update rate of VOUT  
fUPDATE  
tSKEW  
2
3.125  
1
kHz  
Channel time skew  
1/fADC  
between sampling of sine  
and cosine channels  
1.3.3.9.  
Digitally programmable  
output angular range  
aMAX  
AMR sensors  
GMR, TMR  
5
180  
° mech  
° mech  
° mech  
10  
360  
1.3.3.10.  
Angular resolution  
AMR sensors  
0.022  
0.04  
Vout = 5 to 95% VDDE  
GMR, TMR  
0.044  
0.08  
° mech  
Vout = 5 to 95% VDDE  
1.3.3.11.  
Zero point adjustment  
range  
AMR sensors  
GMR, TMR  
0
0
180  
360  
° mech  
° mech  
(digitally programmable)  
8
January 22, 2016  
 
 
 
Parameter  
Symbol  
Condition  
Min  
Typ.  
Max  
95  
Unit  
1.3.3.12.  
1.3.3.13.  
1.3.3.14.  
Upper output clamping  
level  
VCLAMP-HIGH Max. digital DAC value  
4864, fixed resolution (see  
RESCLAMP below)  
40  
%VDDE  
Lower output clamping  
level  
VCLAMP-LOW Min. digital DAC value 256,  
fixed resolution  
5
30.5  
%VDDE  
(see RESCLAMP  
)
Resolution of clamping  
levels  
RESCLAMP  
1 / 5120  
VDDE  
(1/4608  
of output  
range)  
(digitally programmable)  
1.3.3.15.  
DAC resolution  
RESDAC  
1 / 5120  
VDDE  
(0.02% of  
VDDE)  
1)  
Refer to the ZSSC5101 Application Note – Programming.  
1.3.4.  
Analog Output Stage Characteristics (Digital to VOUT)  
Table 1.6 Analog Output Stage Characteristics  
Parameter  
Symbol  
Condition  
Min  
Typ. Max  
Unit  
1.3.4.1.  
1.3.4.2.  
Output voltage range  
VOUT  
At full supply working range  
4.5 V < VDDE < 5.7 V  
5
95  
%VDDE  
Error of upper and lower  
clamping level 1)  
-0.18  
0.18  
%VDDE  
1.3.4.3.  
1.3.4.4.  
Output offset  
Chopped output  
±5  
±2  
LSBDAC  
LSBDAC  
Differential nonlinearity of  
DAC  
DNLDAC Guaranteed monotony  
1.3.4.5.  
1.3.4.6.  
Integral nonlinearity of DAC  
Output current  
INLDAC  
±3.9  
3
LSBDAC  
mA  
IOUT  
Analog output in Normal  
Operating Mode  
Output current limit 2)  
IOUT-LIMIT Analog output  
20  
mA  
1.3.4.7.  
1)  
2)  
Can be digitally compensated during calibration.  
Overwrite-able for entering the Command Mode. See section 2.3.  
9
January 22, 2016  
 
 
 
 
 
 
 
 
 
1.3.5.  
Analog Input to Analog Output Characteristics (Full Path)  
Table 1.7 Full Analog Path Characteristics  
Parameter  
Symbol  
Condition  
Min  
Typ.  
Max  
Unit  
1.3.5.1.  
1.3.5.2.  
Output voltage  
temperature drift  
VOUT-TEMP-DRIFT For full angular range  
including complete function  
1.6  
mV  
Overall linearity  
error  
INLALL  
Full mechanical input range 1)  
±0.18  
% VDDE  
5% to 95% VDDE output  
range  
8.2 LSB of DAC, orthogonal  
analog input to analog output  
1.3.5.3.  
1.3.5.4.  
Output voltage noise  
VNOISE-OUT  
tPROP-DELAY  
With external low pass filter  
fC = 0.7kHz  
1.3  
1.8  
mVeff  
ms  
Propagation delay  
time to 90% output  
level change  
45°mech step for AMR,  
90°mech step for GMR;TMR  
1.3.5.5.  
Power-on time  
tON  
Time until first valid data on  
VOUT after  
VDDE > VPW-ON (see  
specification 1.3.7.2)  
256  
1/fDIGITAL  
ms  
5
1)  
Corresponds to 180° mechanical range for AMR sensors or 360° for GMR, TMR sensors.  
1.3.6.  
Digital Interface Characteristics (CMOS compatible)  
Table 1.8 gives the digital signal levels during one-wire interface (OWI) communication.  
Table 1.8 Digital Interface Characteristics  
Parameter  
Input HIGH level  
Input LOW level  
Output HIGH level  
Output LOW level  
Switching level  
Symbol  
VIN-HIGH  
Condition  
Min  
Typ.  
Max  
Unit  
VDDE  
VDDE  
VDDE  
VDDE  
VDDE  
%VDDE  
1.3.6.1.  
1.3.6.2.  
1.3.6.3.  
1.3.6.4.  
1.3.6.5.  
1.3.6.6.  
75%  
VIN-LOW  
25%  
VOUT-HIGH  
VOUT-LOW  
VSWITCH  
IOUT-HIGH = 2mA  
90%  
10  
IOUT-LOW = 2mA  
10%  
16  
50%  
Hysteresis of Schmitt-triggers VOUT-ST-HYST  
on VOUT pin  
Centered around VSWITCH  
10  
January 22, 2016  
 
 
 
 
 
1.3.7.  
Supervision Circuits  
See section 2.4 for details for specifications in Table 1.9 that are related to power-up/power-down characteristics.  
Table 1.9 Supervision Circuits  
Parameter  
Symbol  
tCODE  
Condition  
Min  
Typ. Max  
Unit  
1.3.7.1.  
Time to enter Command  
Mode 1)  
Start-up sequence  
16  
20  
26  
ms  
Power watch on-level 2)  
Power watch off-level 3)  
Hysteresis on/off  
VPW-ON  
VPW-OFF  
VHYST  
4.05  
3.9  
4.30  
4.2  
4.45  
4.3  
V
V
1.3.7.2.  
1.3.7.3.  
1.3.7.4.  
VHYST  
=
100  
350  
mV  
VPW-ON – VPW-OFF  
Power-on level 4)  
VON  
2.4  
2.7  
3.3  
4%  
V
1.3.7.5.  
1.3.7.6.  
1.3.7.7.  
Lower diagnostic range  
Upper diagnostic range  
VDIAG-LOW  
VDIAG-HIGH  
Fixed as DAC value 96  
VDDE (min)  
VDDE (min)  
Fixed as DAC value  
5024  
96%  
1)  
2)  
3)  
4)  
After power-on, device checks for correct signature until tCODE expires.  
If VDDE is above this level, VOUT is on in Normal Operating Mode.  
If VDDE is below this level, VOUT is set to the defined Diagnostics Mode.  
If VDDE is equal to or below this level, VOUT is in reset state or diagnostics LOW state (see Table 2.1).  
1.3.8.  
Power Loss Circuit  
Table 1.10 Power Loss Circuit  
Parameter  
Symbol  
Condition  
Min  
Typ. Max  
200  
Unit  
1.3.8.1.  
Output impedance at VOUT  
for power loss  
RP-LOSS  
VDDE – VSSE < 0.7V  
Ω
Corresponds to  
diagnostics range for  
pull-up/pull-down ≥ 5kΩ  
11  
January 22, 2016  
 
 
 
 
 
 
 
 
 
 
 
 
2
Circuit Description  
2.1. Overview  
The ZSSC5101 is a sensor signal conditioner and encoder for magnetoresistive sensor bridges. In a typical set-  
up for rotational or linear motion, the sensor bridges provide two sinusoidal signals, which are phase-shifted by  
90° (Vsin and Vcos). The ZSSC5101 converts these two signals into a linear voltage ramp, proportional to the  
rotation angle or linear distance by means of a CORDIC (Coordinate Rotation Digital Computer) algorithm.  
The output voltage VOUT (see specification 1.3.4.1) is ratiometric to VDDE; the typical supply voltage is 5V ±10%.  
Using the ZSSC5101’s one-wire interface (OWI), a sensor assembly containing an xMR sensor bridge and the  
ZSSC5101 can be connected to a host controller by means of just three wires:  
VDDE (4.5 to 5.5V)  
VOUT (sensor output and programming input)  
VSSE (ground)  
The VOUT pin is used for sensor output, programming, and diagnostics for the ZSSC5101 through the OWI (see  
section 2.3). All parameters are stored in a nonvolatile memory (EEPROM) and can be read and re-programmed  
by the user.  
By using the output pin for programming, no additional wires are required to calibrate the sensor. This facilitates  
in-line programming and re-programming of fully assembled sensor modules.  
The ZSSC5101 also provides failure mode detection, such as broken supply or broken ground detection. In  
Normal Operating Mode, the output voltage ranges from ≥5% VDDE to ≤95% VDDE. Both clamping levels are  
programmable (see specifications 1.3.3.12 and 1.3.3.13).  
In the case of failure detection, the output voltage will be outside the normal operating range (<4%VDDE and  
>96%VDDE).  
2.2. Functional Description  
Figure 2.1 provides the block diagram for the ZSSC5101. See section 11 for the definitions of the abbreviations.  
Figure 2.1 ZSSC5101 Block Diagram  
VDDE  
Digital Signal Processing and Control  
VDDS  
VDDS  
VSSS  
One-Wire  
Interface  
Sin  
VSSS  
Power Supply Regulators  
EEPROM  
VSINP  
VSINN  
VCOSP  
VCOSN  
Cordic  
Algorithm  
Buffer  
Amp.  
VOUT  
VDDS  
VSSS  
MUX  
PGA  
ADC  
DAC  
Cos  
Analog Frontend AFE  
Interface  
VSSE  
12  
January 22, 2016  
 
 
 
 
The ZSSC5101 is supplied by a single supply voltage VDDE of 5V ±10%. Internal low-dropout linear voltage  
regulators (LDOs) generate the required analog and digital supply voltages as well as the supply voltage for the  
sensor bridge, VDDS.  
The ZSSC5101 accepts fully differential signals from both sine and cosine sensor bridges. These signals are  
connected to the VSINP, VSINN pins and the VCOSP, VCOSN pins, respectively.  
Both sine and cosine signals are then multiplexed, sequentially pre-amplified, and sampled by a 12-bit ADC. The  
xMR COS/SIN-bridge circuitry is alternately sampled at a frequency of ~200kHz to ensure an identical signal  
conversion in both sine and cosine paths.  
Following data conversion, the digital sine and cosine values representing X and Y rectangular coordinates are  
converted into their respective polar coordinates, phase, and magnitude by means of coordinate transformation  
using a CORDIC algorithm.  
Phase information ranges from 0 to 2π, which is equivalent to one full wave of the input signal. This information  
is further used to calculate the analog output voltage, depending on the user-programmable settings, such as  
zero position or angle range. See section 4.3 for further details.  
The magnitude information is equivalent to the strength of the input signal (Vpeak). This information is further  
used to determine a “magnet loss” error state. See section 2.6 for further details.  
Based on the calculated phase information and the user-programmed zero, slope, and clamping parameters, the  
corresponding output values are calculated and routed to the DAC input. The DAC output is driven by a buffer  
amplifier and routed to the output pin VOUT.  
2.3. One-Wire Interface and Command Mode (CM)  
In Normal Operating Mode (NOM), the VOUT pin is a buffered, analog output, providing an output voltage  
equivalent to the sensor input signals.  
Because the same pin is used for programming via the OWI, a specific sequence is required to put the ZSSC5101  
into command / programming mode (CM):  
After power-on, the circuit starts in NOM and provides a valid output signal after t_on.  
In parallel, the ZSSC5101 monitors the VOUT pin for a valid signature command from the programming  
system to enable the Command Mode (authorization). Therefore, the programming system must be able to  
overdrive the output buffer with a driver strength greater than IOUT-LIMIT (see 1.3.4.7).  
The ZSSC5101 can only be unlocked by receiving a predefined user-programmable signature. This  
signature is stored in the EEPROM in a write-only register.  
If CM is active, the output buffer is switched to high impedance and communication over the one-wire  
interface is enabled.  
The time frame to enter CM with a valid signature command is limited to tCODE, but it is always open in  
Diagnostics Mode (see section 2.6).  
Digital data transmission over the one-wire-interface bus is accomplished using PWM-coded signals. For  
further information on the OWI protocol, please contact IDT technical support (see contact information on  
page 28).  
13  
January 22, 2016  
 
2.4. Power-Up/Power-Down Characteristics  
Table 2.1 describes the behavior of the ZSSC5101 during ramp-up and ramp-down of the power supply voltage  
DDE. See Table 1.7 and Table 1.9 for the timing and voltage specifications. In each condition, the ZSSC5101 is in  
V
a defined state, which is a substantial feature for safety-critical applications.  
Table 2.1 Output Modes during Power-Up and Power-Down  
VDDE Voltage  
Description  
Range [V]  
Behavior at VOUT  
0.0 to 1.5  
The ZSSC5101 is in reset state.  
Active driven output to a voltage level  
between 0 and VDDE/2  
1.5 to 2.5  
2.5 to 4.2  
VOUT is driven to LOW state.  
Diagnostics LOW level  
If VDDE > VON, the power-on reset is released and all modules Diagnostics Mode (see section 2.6)  
are activated.  
4.2 to 4.5  
If VDDE> VPW-ON, VOUT is turned on after tON and drives the  
last calculated angle value from the DAC. If VDDE < VPW-OFF,  
the ZSSC5101 enters Diagnostics Mode; however, brief  
voltage drops are ignored.  
Analog output with reduced accuracy  
4.5 to 5.7  
Normal operation range.  
Normal Operation Mode  
Analog output with specified accuracy  
2.5. Power Loss / GND Loss  
2.5.1. Purpose  
In NOM, the output voltage of the ZSSC5101 is within the range of 5%VDDE ≤ VOUT ≤ 95% VDDE.  
In the event of a loss of VDDE or VSSE, for example due to a broken supply wire, the output voltage VOUT will  
be driven into the diagnostics range, which is a voltage level outside of the normal operating range. This makes a  
power loss easily identifiable by the host controller.  
The diagnostic levels are defined as  
Diagnostics LOW level: VOUT <= 4% VDDE; see specification 1.3.7.6  
Diagnostics HIGH level: VOUT >= 96% VDDE; see specification 1.3.7.7  
2.5.2.  
Power Loss Behavior  
In order to ensure that the output can be safely driven to the Diagnostics Mode levels, a pull-up or pull-down  
resistor 5kmust be connected at the receiving side of the VOUT signal.  
Table 2.2 Power Loss Behavior  
External Resistor  
Pull-Up 5kΩ  
VDDE Loss  
VSSE Loss  
Diagnostics LOW level  
Diagnostics HIGH level  
Pull-Down 5kΩ  
14  
January 22, 2016  
 
 
 
 
 
 
2.6. Diagnostics Mode (DM)  
In addition to the power loss indication described above, the ZSSC5101 also indicates other error states by  
switching the output VOUT into Diagnostics Mode. These errors are described in Table 2.3.  
Table 2.3 Diagnostics Mode  
Error Source  
Error Condition  
Error De-activation  
Loss of input signal  
Loss of magnet; magnitude is below a  
pre-programmed threshold  
Magnitude must be above the threshold;  
power-on reset  
EEPROM  
EEPROM  
DAC  
CRC error  
Power-on reset  
EEPROM read failure  
No valid DAC values  
Power-on reset  
Valid DAC values are available  
Supply voltage  
Low VDDE; VDDE < VPW-OFF  
see specification 1.3.7.3  
;
VDDE > VPW-ON; see specification 1.3.7.2  
The state of the Diagnostics Mode is programmable in the EEPROM, it has the following options:  
Diagnostics LOW level  
Diagnostics HIGH level  
High impedance (in this setting, external pull-up or pull-down resistors must be connected to VOUT)  
15  
January 22, 2016  
 
 
3
EEPROM  
The ZSSC5101 contains a non-volatile EEPROM memory for storing manufacturer codes and calibration values  
as well as user-programmable data. Access to the EEPROM is available over the output pin VOUT by using IDT’s  
one-wire interface (see section 2.3).  
3.1. User Programmable Parameters in EEPROM  
Table 3.1 shows the user accessible settings of the EEPROM. These settings are used to adjust the analog  
output VOUT to the mechanical movement range and provide space for a user-selectable identification number.  
Table 3.1 EEPROM — User Area  
Function  
Zero angle  
Description  
Mechanical zero position  
Magnet loss  
Threshold that defines when the magnet loss error diagnostic state is turned on/off  
Multiplication factor for determining the slope of the analog output  
Angular range slope  
Clamp low and high  
Upper and lower clamping levels when the mechanical angle is at the minimum, maximum, or  
outside of the normal operation range  
User ID  
32-bit user-selectable identification number  
Clamp switch angle  
Slope direction  
PGA gain  
Angle position at which the output changes the clamping level state  
Rising or falling slope of output voltage vs. rotation; clockwise or counterclockwise operation  
Input preamplifier gain: low/high  
Diagnostics Mode  
VOUT state in Diagnostics Mode: LOW, HIGH, or high impedance  
For detailed information about EEPROM programming and register settings, refer to the ZSSC5101 Application  
Note – Programming.  
3.2. CRC Algorithm  
EEPROM data is verified by implementing an 8-bit cyclic redundancy check (CRC).  
3.3. EDC Algorithm  
The EEPROM is protected against bit errors through an error detection and correction (EDC) algorithm. The  
protection logic corrects any single-bit error in a data word and can detect all double-bit errors. A single-bit error is  
corrected, and the ZSSC5101 continues in Normal Operating Mode. On detection of a double-bit error, the  
ZSSC5101 enters the Diagnostics Mode.  
16  
January 22, 2016  
 
 
 
 
 
4
Application Circuit Examples  
4.1. Typical Application Circuit for AMR Double Wheatstone Sensor Bridges  
Figure 4.1 ZSSC5101 with AMR Sensor Bridge  
AMR Sensor Bridge  
e.g. Sensitec AA747  
1
VCC  
VDDS  
3
+VO2  
VSINP  
+5V  
10  
Load  
Circuit  
5
VDDE  
VOUT  
VSSE  
VSINN  
CB  
100nF  
-VO2  
+VO1  
12  
11  
2
6
VCOSP  
VCOSN  
Rout  
Cout  
4
GND  
-VO1  
VSSS  
The circuit diagram in Figure 4.1 shows a typical application for the ZSSC5101 with an AMR double Wheatstone  
sensor bridge. Due to the nature of AMR sensors, the periodicity of these sensor signals is 180 mechanical  
degrees.  
The sensor bridges are mechanically rotated by 45° from each other, providing differential output signals that are  
90 electrical degrees apart. The ZSSC5101 converts these sine and cosine signals into a linear output voltage  
with a programmable full-scale angle range from 0° to 5° up to 0° to 180° with a resolution of 0.022° to 0.04° per  
step (see specification 1.3.3.10). The ZSSC5101 accepts sensor signals with a sensitivity up to ±23mV/V (see  
specification 1.2.1.14), which is sufficient for a typical AMR sensor bridge. No external components are required  
at the sensor inputs.  
17  
January 22, 2016  
 
 
 
4.2. Typical Application Circuit for TMR Sensor Bridges  
Figure 4.2 ZSSC5101 with TMR Sensor Bridge  
TMR Sensor Bridge  
e.g. MDT MMA253F  
1
VCC  
VDDS  
Rs  
3
X+  
VSINP  
+5V  
10  
12  
Load  
Circuit  
Rp  
VDDE  
Rs  
Rs  
CB  
100nF  
X-  
5
2
VSINN  
VOUT  
VSSE  
Y+  
Rout  
Cout  
VCOSP  
11  
Rp  
Rs  
6
4
VCOSN  
VSSS  
GND  
Y-  
Rs=51k  
Rp = 5k  
to 10k  
The circuit diagram in Figure 4.2 shows a typical application for the ZSSC5101 with two TMR sensor bridges.  
TMR and GMR sensors have a periodicity of 360 mechanical degrees; therefore this configuration can be used to  
measure the absolute angle of a full mechanical turn.  
The sensor bridges are mechanically rotated by 90° from each other, providing differential output signals that are  
90 electrical degrees apart. The ZSSC5101 converts these sine and cosine signals into a linear output voltage  
with a programmable full-scale angle range from 0° to 10° up to 0° to 360° with a resolution of 0.044° to 0.08° per  
step (see specification 1.3.3.10). As a TMR sensor bridge has a much higher sensitivity than an AMR Sensor (up  
to 2 orders of magnitude), a resistive divider consisting of 2x Rs and Rp is added to each sensor input channel  
(sin, cos) of the ZSSC5101 to match the sensor bridge with the ZSSC5101 inputs.  
For best temperature compensation, Rs and Rp should have the same temperature coefficient TC and routed  
close together on the same printed circuit board (PCB).  
4.3. Mechanical Set-up for Absolute Angle Measurements  
Figure 4.3 shows a typical set-up for an absolute rotation angle measurement. A diametrically magnetized magnet  
is mounted at the end of a rotating shaft with a specific gap. The rotation axis of the magnet is centered over the  
xMR sensor (see sensor manufacturer’s data sheet for exact location). Depending on the maximum angle to be  
measured, the sensor can be either an AMR sensor with a maximum absolute angle of 180° or a TMR/GMR  
sensor with a maximum absolute angle of 360° (see 4.1 and 4.2 for further details).  
The ZSSC5101 converts the sine and cosine signals generated by the xMR sensor bridge into a linear ramp that  
is proportional to the rotation angle.  
The gap between magnet and sensor is determined by the strength of the magnet and the type of sensor.  
Stronger magnets allow larger air gaps, and due to their higher sensitivity, TMR sensors allow larger air gaps than  
AMR sensors. The air gap should be chosen such that the sensor output signal remains undistorted and  
sinusoidal.  
18  
January 22, 2016  
 
 
 
In order to adjust the linear ramp to the mechanical angle range, the ZSSC5101 provides several programmable  
parameters. These parameters are stored in an on-chip EEPROM and can be re-programmed by the user (see  
Figure 4.3):  
Zero angle position: aligns the mechanical zero position to the electrical zero position  
Maximum angle position: matches the full stroke of the ramp to the mechanical angular range  
Clamp switch angle: defines the angle position where the output voltage returns from Vout,max to Vout,min  
Maximum output voltage, upper clamping level Vout,max  
Minimum output voltage, lower clamping level Vout,min  
Ramp direction: rising or falling ramp  
Figure 4.3 Mechanical Set-up for Rotational Measurements and Programming Options  
Full turn operation (TMR)  
Ferrite or  
rare earth magnet  
Vout  
95%  
5%  
0
180  
360° angle  
Adjustable angle range and clamp  
levels  
Vout  
2
3
4
+5V  
Vout  
95%  
6
5
xMR sensor  
ZSSC5101  
5%  
1
0°  
180°  
360°  
angle  
= programmable options  
19  
January 22, 2016  
 
4.4. Mechanical Set-up for Linear Distance Measurements  
Figure 4.4 shows a typical set-up for a linear distance measurement. The xMR sensor provides a sinusoidal  
signal that is proportional to the length of a magnetic pole (AMR) or to the length of a magnetic pole pair (TMR).  
The graph shown below shows a setup for an AMR sensor (e.g., Sensitec AA700 family; www.sensitec.com,  
Measurement Specialties KMT series, www.meas-spec.com).  
As the magnet is moving on a linear path, one output ramp is generated with each pole; hence an absolute linear  
distance measurement is possible within the length of one pole:  
Vout Vout,min  
absolute _ position = LP *  
Vout,max Vout,min  
where: LP =  
VOUT  
pole length of the sensor magnet  
output voltage of the ZSSC5101  
=
V
,
OUT max =maximum output clamping voltage of ZSSC5101 ( programmable; e.g. 95% VDD)  
V
,
OUT min = minimum output clamping voltage of ZSSC5101 ( programmable; e.g. 5% VDD)  
Longer linear distances can be measured by using multi-pole magnetic strips and by counting the number of  
ramps from a defined home position. Each full ramp (VOUT min to VOUT max) corresponds to the length of one  
magnetic pole.  
,
,
Figure 4.4 Mechanical Set-up for Linear Distance Measurements and Programming Options  
Vout  
95%  
Dipole or  
multi-pole magnet  
5%  
0
1LP  
2 LP distance  
+5V  
Vout  
xMR sensor  
ZSSC5101  
20  
January 22, 2016  
 
 
4.5. Input-to-Output Characteristics Calculation Examples  
Figure 4.5 shows a detailed view of the possible settings for clamping levels, zero position, ramp slope, and  
clamp switch angle.  
The total output range VOUT from 0 to 100% VDDE is 5120 DAC steps.  
In the normal operating range (5 to 95% VDDE), the DAC output can range from 256 to 4864, allowing 4608 steps  
(12.17bit) for the analog output voltage.  
The full-scale angular range is 180° for AMR sensors and 360° for GMR and TMR sensors. Consequently, the  
full-scale angular step resolution is  
180°/4608 = 0.039 mechanical degrees for AMR sensors and  
360°/4608 = 0.078 mechanical degrees for GMR and TMR sensors  
Smaller angular ranges result in a finer angular step resolution. The smallest angle step is 0.022° (= 180°/8192).  
For example, a total stroke of 30° (e.g., in a pedal application) will yield the following results:  
30°/0.022° = 1365 steps (using an AMR sensor)  
Figure 4.5 Input-to-Output Characteristics with Parameters  
Ouput voltage (%VDDE  
)
5120  
100%  
95%  
4864  
clamp_switch_angle  
VCLAMP-HIGH  
2048  
1562  
40%  
30.5%  
VCLAMP-LOW  
256  
5%  
0
0°  
180°  
(360°)  
mechanical  
angle  
zero_angle  
angular_range  
21  
January 22, 2016  
 
 
5
ESD and Latch-up Protection  
5.1. Human Body Model  
The ZSSC5101 conforms to standard MIL-STD-883D Method 3015.7, rated at 4000V, 100pF, 1.5kΩ according to  
the Human Body Model. This protection is ensured at all external pins (VOUT) including the device supply  
(VDDE, VSSE). ESD protection on all other pins (VDDS, VSSS, VSINP, VSINN, VCOSP, VCOSN) is up to  
2000V.  
5.2. Machine Model  
The ZSSC5101 conforms to standard EIA/JESD22-A115-A, rated at 400V, 200pF, and 0kΩ according to the  
machine model. This protection is ensured at all external pins (VOUT) including device supply (VDDE, VSSE).  
ESD protection on all other pins (VDDS, VSSS, VSINP, VSINN, VCOSP, VCOSN) is up to 200V.  
5.3. Charged Device Model  
The ZSSC5101 conforms to standard AEC Q100 (Rev. F) and EIA/JESD22/C101, rated at 750V for corner pins  
and 500V for all other pins (class C3B) according to the Charge Device Model. This protection is ensured at all  
external pins,  
5.4. Latch-Up  
The ZSSC5101 conforms to EIA/JEDEC Standard No. 78.  
22  
January 22, 2016  
 
 
 
 
 
6
Pin Configuration and Package Dimensions  
The ZSSC5101 is available in a SSOP14 green package or as bare die.  
Table 6.1 Pin Configuration  
Pin No  
Die  
Pin No  
Pin  
Name  
Description  
Notes  
SSOP-14  
1
2
3
4
10  
11  
12  
1
VDDE  
Positive analog supply voltage  
Negative analog supply voltage  
Analog output/one-wire interface (OWI)  
Positive sensor supply voltage  
Positive supply voltage, 5V ±10%  
VSSE  
VOUT  
VDDS  
Negative supply voltage, must connect to GND  
Positive sensor signal cosine channel  
input  
5
2
VCOSP  
Positive sensor signal sine channel  
input  
6
7
8
3
4
5
VSINP  
VSSS  
VSINN  
Negative sensor supply voltage  
Negative sensor signal sine channel  
input  
Negative sensor signal cosine channel  
input  
9
6
VCOSN  
7
8
N.C.  
Unconnected pin  
Factory test pin  
Unconnected pin  
Unconnected pin  
Factory test pin  
Must be left open  
Must be left open  
Must be left open  
Must be left open  
Must be left open  
TEST  
N.C.  
9
13  
14  
N.C.  
TEST  
23  
January 22, 2016  
 
 
6.1. Package Drawing – SSOP-14  
The SSOP-14 package is a delivery option for the ZSSC5101. The package dimensions based on the JEDEC  
JEP95: MO-150 standard illustrated in Figure 6.1.  
Figure 6.1 Package Dimensions – SSOP-14  
Weight  
0.3g  
Package Body Material Low stress epoxy  
Lead Material  
Lead Finish  
Lead Form  
FeNi-alloy or Cu-alloy  
Solder plating  
Z-bends  
Dimension  
Minimum  
1.73  
Maximum  
1.99  
A
A1  
A2  
bP  
c
0.05  
0.21  
1.68  
1.78  
0.25  
0.38  
0.09  
0.20  
D *  
e
6.07  
6.33  
0.65 nominal  
E *  
HE  
k
5.20  
7.65  
0.25  
0.63  
0°  
5.38  
7.90  
LP  
θ
10°  
* Without mold-flash  
24  
January 22, 2016  
 
 
Figure 6.2 Pin Map and Pad Position of the ZSSC5101 SSOP-14 Package  
VDDS  
VCOSP  
VSINP  
VSSS  
TEST  
N.C.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Package SSOP-14  
Package marking codes:  
VOUT  
vv  
Version code  
yymm Manufacturing date:  
yy = last two digits of year  
mm = two digits for month  
VSSE  
VDDE  
N.C.  
VSINN  
VCOSN  
N.C.  
R
indicates RoHS compliance  
TEST  
8
6.2. Die Dimensions and Pad Coordinates  
Die dimensions and pad coordinates are available on request in a separate document. See section 10.  
7
Layout Requirements  
Recommendation: Keep the traces between the xMR sensor and the ZSSC5101 (VDDS, VSSS, VSINP, VSINN,  
VCOSP, and VCOSN pins) as short as possible. Additional resistors for using TMR sensors (see Figure 4.2)  
should have the same temperature coefficient TC and be routed close together on the same PCB.  
8
Reliability and RoHS Conformity  
The ZSSC5101 is qualified according to the AEC-Q100 standard, operating temperature grade 0.  
The ZSSC5101 complies with the RoHS directive and does not contain hazardous substances.  
The complete RoHS declaration update can be downloaded at www.IDT.com.  
25  
January 22, 2016  
 
 
 
 
9
Ordering Information  
Sales Code  
ZSSC5101BE1B  
Description  
Delivery Package  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
ZSSC5101 Die – Temperature range: -40°C to +160°C  
8” tested wafer, unsawn, thickness = 390 ±15µm  
8” tested wafer, unsawn, thickness = 725 ±15µm  
8” tested wafer, unsawn, thickness = 250 ±15µm  
8” tested wafer, sawn on frame, thickness = 390 ±15µm  
ZSSC5101BE2B  
ZSSC5101BE3B  
ZSSC5101BE1C ZSSC5101 Die – Temperature range: -40°C to +160°C  
ZSSC5101BE4R ZSSC5101 SSOP-14 – Temperature range: -40°C to +150°C 13” tape and reel  
ZSSC5101BE4T  
ZSSC5101 KIT  
ZSSC5101 SSOP-14 – Temperature range: -40°C to +150°C Tube  
ZSSC5101 Evaluation Kit including USB Communication Board, ZSSC5101 AMR board, adapters. Software can be  
downloaded from www.IDT.com/ZSSC5101 after free customer login, which is described in section 10 (see the  
ZSSC5101 Evaluation Kit and GUI Description for details).  
10 Related Documents  
Document  
ZSSC5101 Feature Sheet  
ZSSC5101 Evaluation Kit and GUI Description *  
ZSSC5101 Technical Note – Die Dimensions **  
ZSSC5101 Application Note – Programming **  
Visit the ZSSC5101 product page www.IDT.com/ZSSC5101 or contact your local sales office for the latest version  
of these documents.  
*
Note: Documents marked with an asterisk (*) require a free customer login account.  
** Note: Documents marked with two asterisks (**) are available only on request.  
26  
January 22, 2016  
 
 
11 Glossary  
Term  
AFE  
Description  
Analog Frontend  
AMR  
CM  
Anisotropic Magnetoresistance  
Command Mode  
CORDIC  
DAC  
DM  
Coordinate Rotation Digital Computer  
Digital-to-Analog Converter  
Diagnostic Mode  
EDC  
GMR  
INL  
Error Detection and Correction  
Giant Magnetoresistance  
Integral Nonlinearity  
LDO  
MUX  
NOM  
OWI  
PCB  
THJA  
TMR  
Low-Dropout Linear Voltage Regulators  
Multiplexer  
Normal Operating Mode  
One-Wire Interface  
Printed Circuit Board  
Junction to Ambient Thermal Resistance  
Tunnel Magnetoresistance  
27  
January 22, 2016  
 
12 Document Revision History  
Revision  
1.00  
Date  
Description  
August 25, 2014  
September 10, 2014  
April 13, 2015  
First release document  
Add package drawing  
1.10  
1.20  
Updates for INLDAC, TMR application schematic, pin names.  
Addition of package marking codes in Figure 6.2.  
Removal of references to half-bridge applications.  
Corrections for step number in section 4.5 and Figure 4.5.  
Update for contact information.  
Minor edits for clarity.  
1.21  
1.22  
April 17, 2015  
April 29, 2015  
January 22,2016  
Correction for maximum temperature for SSOP-14.  
Removal of reference to amplitude calibration on page 1.  
Changed to IDT branding.  
 
 
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

ZSSC5101BE3B

xMR Sensor Signal Conditioner
RENESAS

ZSSC5101BE3B

xMR Sensor Signal Conditioner
IDT

ZSSC5101BE4R

xMR Sensor Signal Conditioner
RENESAS

ZSSC5101BE4R

xMR Sensor Signal Conditioner
IDT

ZSSC5101BE4T

xMR Sensor Signal Conditioner
RENESAS

ZSSC5101BE4T

xMR Sensor Signal Conditioner
IDT

ZSSC5101KIT

xMR Sensor Signal Conditioner
RENESAS

ZST-103-01-G-D-515

Board Stacking Connector, 6 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
SAMTEC

ZST-103-01-S-D-450-04

Board Stacking Connector,
SAMTEC

ZST-103-02-G-D-510-LL

Board Stacking Connector
SAMTEC

ZST-103-02-LM-D-510-LL

Board Stacking Connector
SAMTEC

ZST-103-02-TM-D-510-LL

Board Stacking Connector
SAMTEC