RF2705 [RFMD]

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER; 低噪音,多模四频,正交调制器和PA驱动器
RF2705
型号: RF2705
厂家: RF MICRO DEVICES    RF MICRO DEVICES
描述:

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER
低噪音,多模四频,正交调制器和PA驱动器

驱动器 电信集成电路 信息通信管理
文件: 总24页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF2705  
LOW NOISE, MULTI-MODE, QUAD-BAND,  
QUADRATURE MODULATOR AND PA DRIVER  
0
Typical Applications  
• EDGE/GSM (GSM850/900) Handsets  
• EDGE/GSM (DCS/PCS) Handsets  
• W-CDMA Handsets/Data Cards  
• W-CDMA/GSM/EDGE Multimode Handsets  
and Data Cards  
Product Description  
-A-  
1.00  
0.80  
4.00  
-B-  
The RF2705 is a low noise, multi-mode, quad-band direct  
I/Q to RF modulator and PA driver designed for handset  
applications where multiple modes of operation are  
required. Frequency doublers, dividers and LO buffers  
are included to support a variety of LO generation  
options. Dynamic power control is supported through a  
single analog input giving 90dB of power control range for  
the W-CDMA mode and 40dB of power control in the  
other two modes. Three sets of RF outputs are provided:  
high band and low band low noise EDGE/GMSK outputs,  
as well as one wideband W-CDMA output. The device is  
designed for 2.7V to 3.3V operation, and is assembled in  
a plastic, 24-pin, 4mmx4mm QFN.  
0.10 C  
4.00  
0.10 C  
0.10 C  
0.10 C  
-C-  
+0.10  
-0.10  
2.45  
SEATING  
PLANE  
Shaded lead is pin 1.  
0.50 TYP  
Dimensions in mm.  
Scale: None  
0.05  
0.00  
0.10 C  
+0.10  
-0.10  
2.45  
0.08 C  
0.30  
0.18  
0.10 M C A B  
0.50  
TYP  
0.30  
TYP  
Optimum Technology Matching® Applied  
Package Style: QFN, 24-Pin, 4x4  
Si BJT  
GaAs HBT  
SiGe HBT  
GaN HEMT  
GaAs MESFET  
Si Bi-CMOS  
InGaP/HBT  
Si CMOS  
Features  
SiGe Bi-CMOS  
9
• W-CDMA High/Mid/Low Power Modes  
• Quad-Band Direct Quadrature Modulator  
• Variable Gain PA Drivers  
24  
23  
22  
21  
20  
19  
RF OUT  
WB P  
VCC2  
1
2
18  
17  
16  
15  
14  
13  
• GMSK Bypass Amplifiers  
Note: The die flag is the  
chip's main ground.  
RF OUT  
WB N  
LO HB P  
• LO Frequency Doubler and Divider  
• Baseband Filtering  
DIV  
2
+45°  
-45°  
RF OUT  
HB P  
LO HB N  
3
Σ
RF OUT  
HB N  
+45°  
-45°  
Flo  
x2  
LO LB P  
LO LB N  
4
5
RF OUT  
LB P  
Ordering Information  
Mode Control  
and Biasing  
Power  
Control  
RF2705  
Low Noise, Multi-Mode, Quad-Band, Quadrature  
Modulator and PA Driver  
RF OUT  
LB N  
MODE C  
6
RF2705PCBA-41XFully Assembled Evaluation Board  
7
8
9
10  
11  
12  
RF Micro Devices, Inc.  
Tel (336) 664 1233  
7628 Thorndike Road  
Greensboro, NC 27409, USA  
Fax (336) 664 0454  
http://www.rfmd.com  
Functional Block Diagram  
Rev A4 041026  
5-113  
RF2705  
Absolute Maximum Ratings  
Parameter  
Rating  
Unit  
V
°C  
°C  
V
dBm  
Caution! ESD sensitive device.  
Supply Voltage  
-0.5 to 3.6  
-40 to +150  
-40 to +85  
-0.5 to +3.6  
+5  
Storage Temperature  
Operating Ambient Temperature  
Input Voltage, any pin  
Input Power, any pin  
RF Micro Devices believes the furnished information is correct and accurate  
at the time of this printing. However, RF Micro Devices reserves the right to  
make changes to its products without notice. RF Micro Devices does not  
assume responsibility for the use of the described product(s).  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with Modulated Baseband Inputs  
Low Band EDGE 8PSK Mode (GSM850/GSM900)  
Mode=Low Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C  
Output Power  
CC  
Maximum Output Power with  
8PSK Modulated Signal*  
Maximum VGC  
Minimum VGC  
Gain Range  
0
+2.5  
-39  
42  
dBm  
dBm  
dB  
While meeting spectral mask  
While meeting spectral mask  
Difference between output power at  
GC=2.0V and GC=0.2V.  
-37  
Out-of-Band Emission  
Spectrum Emission Mask*  
Frequency Spacing  
200kHz  
250kHz  
400kHz  
-36  
-43  
-67  
-73  
-73  
-73  
-75  
TBD  
TBD  
TBD  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
30kHz BW  
30kHz BW  
30kHz BW  
30kHz BW  
100kHz BW  
100kHz BW  
100kHz BW  
8PSK Modulation  
600kHz to 1800kHz  
1800kHz to 3000kHz  
3000kHz to 6000kHz  
>6000kHz  
Error Vector Magnitude  
RMS*  
2
-40  
4
3
-34  
9
%
dB  
%
Origin Offset*  
Peak*  
Output Noise  
At F ±20MHz*  
C
Relative Noise at:  
Maximum Gain  
-156  
-152  
dBc/Hz  
dBc/Hz  
GC=2.0V, IQ=1.2V  
GC=2.0V to 1.4V  
8PSK  
P-P  
Absolute Noise at:  
Maximum Gain  
-156  
-154  
dBm  
dBm  
GC=2.0V, IQ=0V  
P-P  
All Gain Settings  
IQ=1.2V  
8PSK  
P-P  
General Conditions  
Local Oscillator  
LO LB Input Frequency  
RF LB Output Frequency  
Input Power  
824  
824  
-6.0  
915  
915  
+3.0  
MHz  
MHz  
dBm  
0.0  
1.2  
IQ Baseband Inputs  
8PSK  
IQ Level  
V
Input IQ signal driven differentially and in  
quadrature.  
P-P  
IQ Common Mode  
Input Bandwidth  
Baseband Filter Attenuation  
* Not tested in Production  
1.2  
1.0  
V
MHz  
dB  
0.7  
20  
At 20MHz offset  
5-114  
Rev A4 041026  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with Modulated Baseband Inputs  
High Band EDGE 8PSK Mode (DCS1800/PCS1900)  
Mode=High Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C  
Output Power  
CC  
Maximum Output Power with  
8PSK Modulated Signal*  
Maximum VGC  
Minimum VGC  
Gain Range  
-1  
+1.5  
-40  
42  
dBm  
dBm  
dB  
While meeting spectral mask  
While meeting spectral mask  
Difference between output power at  
GC=2.0V and GC=0.2V.  
-38  
Out-of-Band Emission  
Spectrum Emission Mask*  
Frequency Spacing  
200kHz  
250kHz  
400kHz  
-36  
-43  
-67  
-73  
-73  
-73  
-75  
TBD  
TBD  
TBD  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
30kHz BW  
30kHz BW  
30kHz BW  
30kHz BW  
100kHz BW  
100kHz BW  
100kHz BW  
8PSK Modulation  
600kHz to 1800kHz  
1800kHz to 3000kHz  
3000kHz to 6000kHz  
>6000kHz  
Error Vector Magnitude  
RMS*  
1.3  
-37  
3
3
-30  
11  
%
dB  
%
Origin Offset*  
Peak*  
Output Noise  
At F ±20MHz*  
C
Relative Noise at:  
Maximum Gain  
-154  
-150  
dBc/Hz  
dBc/Hz  
GC=2.0V, IQ=1.2V  
GC=2.0V to 1.4V  
8PSK  
P-P  
Absolute Noise at:  
Maximum Gain  
-153  
-151  
dBm  
dBm  
GC=2.0V, IQ=0V  
P-P  
All Gain Settings  
IQ=1.2V  
8PSK  
P-P  
General Conditions  
Local Oscillator  
LO HB Input Frequency  
RF HB Output Frequency  
Input Power  
1710  
1710  
-6.0  
1910  
1910  
+3.0  
MHz  
MHz  
dBm  
0.0  
1.2  
IQ Baseband Inputs  
8PSK  
IQ Level  
V
Input IQ signal driven differentially and in  
quadrature.  
P-P  
IQ Common Mode  
Input Bandwidth  
Baseband Filter Attenuation  
* Not tested in Production  
1.2  
1.0  
V
MHz  
dB  
0.7  
20  
At 20MHz offset  
Rev A4 041026  
5-115  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with Modulated Baseband Inputs  
W-CDMA Mode  
Mode=Wideband F x2 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C, while meeting 48dBc  
CC  
Output Power  
ALCR  
Maximum Output Power with  
W-CDMA Modulated Signal*  
High Power Mode  
Medium Power Mode  
3
-4  
6
-1  
dBm  
dBm  
GC=2.0V  
GC=1.5V  
Difference between output power at  
GC=2.0V and GC=0.2V.  
Gain Range  
High Power Mode  
90  
dB  
Gain step when switching between power  
modes in either direction.  
GC=1.4V  
Gain Step  
High Power to Medium Power  
Medium Power to Low Power  
Out-of-Band Emission  
±0.5  
TBD  
dB  
dB  
GC=TBD  
Adjacent Channel Leakage  
Power Ratio (ALCR)*  
Channel Spacing  
±5MHz  
50  
65  
dBc  
dBc  
3.84MHz relative to channel power  
3.84MHz relative to channel power  
±10MHz  
Error Vector Magnitude  
RMS*  
1.4  
%rms  
3GPP W-CDMA  
Output Noise  
At F ±40MHz*  
-152  
-146  
-146  
dBc/Hz  
dBc/Hz  
GC=2.0V  
C
GC=2.0V to 1.5V  
General Conditions  
Local Oscillator  
LO LB Input Frequency  
RF WB Output Frequency  
Input Power  
960  
1920  
-10.0  
990  
1980  
+3.0  
MHz  
MHz  
dBm  
0.0  
0.8  
IQ Baseband Inputs  
3GPP W-CDMA  
HQPSK, 1DPCCH+1DPDCH  
Input IQ signal driven differentially and in  
quadrature.  
IQ Level  
V
P-P  
IQ Common Mode  
Input Bandwidth  
Baseband Filter Attenuation  
* Not tested in Production  
1.2  
11  
V
MHz  
dB  
8
10  
At 40MHz offset  
5-116  
Rev A4 041026  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with CW Baseband Inputs  
Wideband Mode  
Mode=Wideband F x2 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C, LO=975MHz to  
CC  
990MHz at -10dBm, IQ=540mV ** at  
VGA and PA Driver  
P-P  
100kHz, unless otherwise noted  
Output Power W-CDMA Modu-  
lated*  
Output Power CW  
Gain Control Voltage Range  
Gain Control Range  
5
5
dBm  
GC=2.0V, IQ=0.8V  
at HQPSK  
P-P  
2
0.2  
8
2.0  
dBm  
V
dB  
GC=2.0V  
92  
73  
Difference between output power at  
GC=2.0V and GC=0.2V  
Calculated between GC=1.0V and 0.5V  
Gain Control Slope  
dB/V  
Modulator  
Sideband Suppression  
-48  
-50  
-50  
-50  
-42  
-41  
-38  
-23  
-55  
-30  
-30  
-30  
-30  
-30  
-30  
-30  
-10  
-50  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=2.0V  
*
*
*
Carrier Suppression  
3rd Harmonic of Modulation  
Suppression at F -3x300kHz  
C
Spurious Outputs  
Spurious Output at Integer Multi-  
ples of FLO LB*  
FLO LB  
GC=2.0V, I/Q=540mV  
at 100kHz  
P-P  
-60.0  
-14.0  
-47.0  
dBm  
dBm  
dBm  
FLO LB leakage  
Second harmonic of carrier  
Third harmonic of carrier  
4xFLO LB  
6xFLO LB  
0
0
Output Compression  
Output P1dB*  
+11.5  
+20  
dBm  
dBm  
I/Q=100kHz  
Intermodulation  
Output IP3*  
GC=2.0V. Extrapolated from IM3 with two  
baseband tones at 90kHz and 110kHz  
applied differentially, in quadrature, at both I  
and Q inputs, each tone 400mV  
.
P-P  
Intermodulation IM3 tone at  
-37  
dBc  
GC=2.0V  
F +70kHz and F +130kHz  
C
C
relative to tones at  
F +90kHz and F +110kHz  
C
C
-40  
dBc  
GC=1.5V  
* Not tested in Production  
** Provides the same output power as modulated signal with associated crest factor.  
Rev A4 041026  
5-117  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with CW Baseband Inputs  
Low Band Mode (GSM850/GSM900)  
Mode=Low Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C,  
CC  
LO=824MHz to 915MHz at 0dBm,  
VGA and PA Driver  
IQ=800mV ** at 100kHz,  
P-P  
unless otherwise noted  
Output Power 8PSK Modulated*  
Output Power CW  
+2.5  
2.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
GC=2.0V, IQ=1.2V  
8PSK  
P-P  
0
+5  
GC=2.0V, IQ=800mV  
GC=1.5V, IQ=800mV  
GC=1.0V, IQ=800mV  
GC=0.5V, IQ=800mV  
GC=0.2V, IQ=800mV  
at 100kHz  
P-P  
P-P  
P-P  
P-P  
P-P  
-1.2  
-13.5  
-30  
at 100kHz  
at 100kHz  
at 100kHz  
at 100kHz  
*
-44  
0.2  
-40  
-37  
2.0  
Gain Control Voltage Range  
Gain Control Range  
V
dB  
42  
28  
Difference between output power at  
GC=2.0V and GC=0.2V  
Calculated between GC=0.5V and 1.5V  
Gain Control Slope  
dB/V  
Modulator  
Sideband Suppression  
-36  
-36  
-36  
-36  
-36  
-44  
-44  
-44  
-44  
-40  
-30  
-30  
-30  
-30  
-30  
-34  
-34  
-34  
-34  
-34  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=0.2V, No I/Q adjustment  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=0.2V, No I/Q adjustment  
*
*
*
*
Carrier Suppression  
*
3rd Harmonic of Modulation  
Suppression at F -3x300kHz  
-49  
-40  
dBc  
GC=2.0V  
C
F
/2 Mode  
Spurious Outputs  
LO  
Spurious Outputs at Integer  
Harmonics of 1/2xFLOHB*  
FLO HB  
GC=2.0V, I/Q=800mV  
at 100kHz  
P-P  
-62.0  
-19.0  
dBm  
dBm  
Second harmonic of carrier and LO leakage  
Third harmonic of carrier  
(3/2)xFLO LB  
Output Compression  
Output P1dB*  
+7.0  
dBm  
I/Q=100kHz  
* Not tested in Production  
** Provides the same output power as modulated signal with associated crest factor.  
5-118  
Rev A4 041026  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with CW Baseband Inputs  
Low Band Mode (GSM850/GSM900), cont’d  
Mode=Low Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
Intermodulation  
Output IP3*  
+20.0  
dBm  
GC=2.0V. Extrapolated from IM3 with two  
baseband tones at 90kHz and 110kHz  
applied differentially, in quadrature, at both I  
and Q inputs, each tone 400mV  
.
P-P  
Intermodulation IM3 tone at  
F +70kHz and F +130kHz  
C
C
relative to tones at  
F +90kHz and F +110kHz  
-48  
dBc  
GC=2.0V  
C
C
Low Band Bypass Mode (GSM850/GSM900)  
Mode=Low Band Bypass (see Control Logic Truth Table for Mode Control Settings)  
V
=2.7V  
PA Driver  
CC  
GMSK Input Power*  
GMSK Output Power  
Output Impedance*  
-3  
5.0  
0
7.5  
50  
+3  
10.0  
dBm  
dBm  
At LO LB input from a 50source.  
At RF LB output  
Output Noise  
At F ±20MHz*  
-161  
-159  
dBc/Hz  
AM+PM noise, LO=0dBm  
C
* Not tested in Production  
Rev A4 041026  
5-119  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with CW Baseband Inputs  
High Band Mode (DCS1800/PCS1900)  
Mode=High Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C,  
CC  
LO=1710MHz to 1910MHz at 0dBm,  
VGA and PA Driver  
IQ=800mV ** at 100kHz,  
P-P  
unless otherwise noted  
Output Power 8PSK Modulated*  
Output Power CW  
0
0
2.2  
2
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
GC=2.0V, IQ=1.2V  
8PSK  
P-P  
+6.0  
GC=2.0V, IQ=800mV  
GC=1.5V, IQ=800mV  
GC=1.0V, IQ=800mV  
GC=0.5V, IQ=800mV  
GC=0.2V, IQ=800mV  
at 100kHz  
P-P  
P-P  
P-P  
P-P  
P-P  
-1.6  
-17.6  
-30  
-40  
at 100kHz  
at 100kHz  
at 100kHz  
at 100kHz  
*
-44  
0.2  
-37  
2.0  
Gain Control Voltage Range  
Gain Control Range  
V
dB  
42  
28  
Difference between output power at  
GC=2.0V and GC=0.2V  
Calculated between GC=0.5V and 1.5V  
Gain Control Slope  
dB/V  
Modulator  
Sideband Suppression  
-45  
-45  
-45  
-45  
-45  
-40  
-40  
-40  
-39  
-37  
-30  
-30  
-30  
-30  
-30  
-34  
-34  
-33  
-30  
-30  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=0.2V, No I/Q adjustment  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=0.2V, No I/Q adjustment  
*
*
*
*
Carrier Suppression  
*
3rd Harmonic of Modulation  
Suppression at F -3x300kHz  
-50  
-40  
dBc  
GC=2.0V  
C
F
x2 Mode  
Spurious Outputs  
LO  
Spurious Outputs at Integer  
Harmonics of 1/2xFLOHB  
FLO LB  
GC=2.0V, I/Q=800mV  
at 100kHz  
P-P  
-70.0  
-25.0  
-40.0  
dBm  
dBm  
dBm  
FLO LB leakage  
Second harmonic of carrier  
Third harmonic of carrier  
4xFLO LB  
6xFLO LB  
Output Compression  
Output P1dB*  
+8.0  
dBm  
I/Q=100kHz  
* Not tested in Production  
** Provides the same output power as modulated signal with associated crest factor.  
5-120  
Rev A4 041026  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Output Performance with CW Baseband Inputs  
High Band Mode (DCS1800/PCS1900), cont’d  
Mode=High Band F x1 (see Control Logic Truth Table for Mode Control Settings)  
LO  
Intermodulation  
Output IP3*  
+20  
dBm  
dBc  
GC=2.0V. Extrapolated from IM3 with two  
baseband tones at 90kHz and 110kHz  
applied differentially, in quadrature, at both I  
and Q inputs, each tone 400mV  
.
P-P  
Intermodulation IM3 tone at  
F +70kHz and F +130kHz  
C
C
relative to tones at  
F +90kHz and F +110kHz  
-53  
-42  
GC=2.0V  
C
C
Output Performance with CW Baseband Inputs  
Wideband Mode  
Mode=Wideband F x2 (see Control Logic Truth Table for Mode Control Settings)  
LO  
V
=2.7V, T=+25°C, LO=975MHz to  
CC  
990MHz at -10dBm, IQ=540mV ** at  
VGA and PA Driver  
P-P  
100kHz, unless otherwise noted  
Output Power W-CDMA Modu-  
lated*  
Output Power CW  
Gain Control Voltage Range  
Gain Control Range  
5
5
dBm  
GC=2.0V, IQ=0.8V  
at HQPSK  
P-P  
2
0.2  
8
2.0  
dBm  
V
dB  
GC=2.0V  
92  
73  
Difference between output power at  
GC=2.0V and GC=0.2V  
Calculated between GC=1.0V and 0.5V  
Gain Control Slope  
dB/V  
Modulator  
Sideband Suppression  
-48  
-50  
-50  
-50  
-42  
-41  
-38  
-23  
-55  
-30  
-30  
-30  
-30  
-30  
-30  
-30  
-10  
-50  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=2.0V, No I/Q adjustment  
GC=1.5V, No I/Q adjustment  
GC=1.0V, No I/Q adjustment  
GC=0.5V, No I/Q adjustment  
GC=2.0V  
*
*
*
Carrier Suppression  
3rd Harmonic of Modulation  
Suppression at F -3x300kHz  
C
Spurious Outputs  
Spurious Output at Integer Multi-  
ples of FLO LB*  
FLO LB  
GC=2.0V, I/Q=540mV  
at 100kHz  
P-P  
-60.0  
-14.0  
-47.0  
dBm  
dBm  
dBm  
FLO LB leakage  
Second harmonic of carrier  
Third harmonic of carrier  
4xFLO LB  
6xFLO LB  
0
0
Output Compression  
Output P1dB*  
+11.5  
+20  
dBm  
dBm  
I/Q=100kHz  
Intermodulation  
Output IP3*  
GC=2.0V. Extrapolated from IM3 with two  
baseband tones at 90kHz and 110kHz  
applied differentially, in quadrature, at both I  
and Q inputs, each tone 400mV  
.
P-P  
Intermodulation IM3 tone at  
-37  
dBc  
GC=2.0V  
F +70kHz and F +130kHz  
C
C
relative to tones at  
F +90kHz and F +110kHz  
C
C
-40  
dBc  
GC=1.5V  
* Not tested in Production  
** Provides the same output power as modulated signal with associated crest factor.  
Rev A4 041026  
5-121  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
High Band Bypass Mode (DCS1800/PCS1900)  
Mode=High Band Bypass (see Control Logic Truth Table for Mode Control Settings)  
V
=2.7V  
PA Driver  
CC  
GMSK Input Power*  
GMSK Output Power  
Output Impedance*  
-3  
4.0  
0
6.8  
50  
+3  
9.0  
dBm  
dBm  
At LO LB input from a 50source.  
At RF LB output  
Output Noise  
At F ±20MHz*  
-161  
-159  
dBc/Hz  
AM+PM noise, LO=0dBm  
C
* Not tested in Production  
5-122  
Rev A4 041026  
RF2705  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
General Specifications  
Operating Range  
Supply Voltage  
Temperature  
2.7  
-40  
3.3  
+85  
V
°C  
Refer to Logic Control Truth Table for Mode  
Control Pin Voltages.  
Current Consumption  
Sleep  
<1  
10  
µA  
Wideband F x1 (high power)  
114  
mA  
GC=2.0V  
LO  
*
85  
89  
54  
63  
42  
mA  
mA  
mA  
mA  
mA  
mA  
GC=0.2V  
GC=2.0V  
GC=0.2V  
GC=2.0V. See Note 1.  
GC=0.2V. See Note 1.  
GC=2.0V  
(medium power)  
*
(low power)  
*
Wideband F x2 (high power)  
110  
LO  
84  
80  
53  
54  
41  
72  
mA  
mA  
mA  
mA  
mA  
mA  
GC=0.2V  
GC=2.0V  
GC=0.2V  
GC=2.0V. See Note 1.  
GC=0.2V. See Note 1.  
GC=2.0V  
(medium power)  
(low power)  
High Band F x2  
LO  
Low Band F /2  
82  
mA  
GC=2.0V  
LO  
High Band Bypass  
Low Band Bypass  
23  
22  
76  
mA  
mA  
mA  
High Band F x1  
GC=2.0V  
GC=2.0V  
LO  
Low Band F x1  
74  
mA  
LO  
Logic Levels  
Input Logic 0  
Input Logic 1  
0
1.4  
0.4  
V
CC  
V
V
Logic Pins Input Current  
LO Input Ports  
LO LB Input Frequency Range  
LO HB Input Frequency Range  
Input Impedance  
<1.0  
50  
µA  
CMOS inputs  
800  
1600  
1000  
2000  
MHz  
MHz  
Externally matched  
I/Q Baseband Inputs  
Baseband Input Voltage  
Baseband Input Level  
1.15  
1.25  
1.0  
V
Common mode voltage  
EDGE  
1.2  
0.8  
V
V
V
Differential  
P-P  
P-P  
P-P  
W-CDMA  
GMSK  
1DPCCH+1DPDCH. See Note 1.  
Differential  
Baseband Input Impedance  
Input Bandwidth  
100k||1pF  
Measured at 100kHz  
EDGE  
W-CDMA  
0.7  
8.0  
1.0  
11.0  
MHz  
MHz  
Baseband Filter Attenuation  
EDGE  
W-CDMA  
Baseband Input DC Current  
20  
10  
-10  
dB  
dB  
µA  
At 20MHz  
At 40MHz  
0
10  
Gain Control  
Gain Control Voltage  
Gain Control Impedance  
0.2  
2.2  
V
kΩ  
10  
Note 1: In low power mode it is recommended that the IQ level be reduced to 0.4V . If IQ level is >0.4V , this mode should be used  
P-P  
P-P  
for W-CDMA TX power levels below -20dBm (measured at antenna).  
Rev A4 041026  
5-123  
RF2705  
Pin  
Function Description  
Interface Schematic  
Supply for LO buffers, frequency doubler and dividers.  
1
VCC2  
VCC2  
Modulator and  
VGA  
High band local oscillator input (1800MHz).  
2
LO HB P  
In “low band F /2” modes the signal (LOHBP-LOHBN) undergoes a  
LO  
frequency division of 2 to provide the low band LO signal for the modu-  
lator.  
VCC  
In “high band F x1” modes the signal (LOHBP-LOHBN) is used as  
LO  
the high band LO signal for the modulator.  
In “high band bypass” a modulated DCS1800/PCS1900 signal  
(LOHBP-LOHBN) is switched into the RF signal path. The modulator  
is disabled and the signal is routed to the RFOutHb outputs through a  
differential PA driver amplifier.  
The LOHBP input is AC-coupled internally.  
LO HB P  
LO HB N  
The noise performance, carrier suppression at low output powers and  
sideband suppression all vary with LO power. The optimum LO power  
is between -3dBm and +3dBm. The device will work with LO powers as  
low as -20dBm however this is at the expense of higher phase noise in  
the LO circuitry and poorer sideband suppression.  
The input impedance should be externally matched to 50. The port  
can be driven either differentially or single ended. The port impedance  
does not vary significantly between active and power down modes.  
The RF2705 is intended for use with the RF6002. This performs the  
GSM GMSK modulation within a Frac-N synthesizer loop. The 8PSK  
EDGE and W-CDMA signal modulations are performed in the RF2705  
and uses the RF6002’s synthesizers to generate the LO signals. The  
LO signal for EDGE900 mode is derived by frequency division by 2 of  
the RF6002’s DCS1800 VCO. This helps protect the system against PA  
pulling.  
The complementary LO input for both LOHBP LO signals.  
In any of the modes the LOHB input may be driven either single ended  
or differentially. If the LO is driven single ended then the PCB board  
designer can ground this pin.  
See pin 2.  
3
LO HB N  
It is recommended that if this pin is grounded that it is kept isolated  
from the GND1 pin and the die flag ground. All connections to any other  
ground should be made through a ground plane. Poor routing of this  
ground signal can significantly degrade the LO leakage performance.  
5-124  
Rev A4 041026  
RF2705  
Pin  
4
Function Description  
Interface Schematic  
Low band local oscillator input (900MHz).  
In “wideband F x2” and “high band F x2” modes the signal  
LO LB P  
LO  
LO  
(LOLBP-LOLBN) is doubled in frequency to provide the LO signal for  
the modulator.  
In “Low band F x1” modes the signal (LOLBP-LOLBN) is used as  
the LO signal for the modulator.  
LO  
VCC  
In “Low band Bypass” a modulated GSM900 signal (LOLBP-LOLBN)  
is switched into the RF signal path. The modulator is disabled and the  
signal is routed to the RFOutLb outputs through a differential PA driver  
amplifier.  
This LOLBP input is AC-coupled internally.  
The noise performance, carrier suppression at low output powers and  
sideband suppression performance are functions of LO power. The  
optimum LO power is between -3dBm and +3dBm. The device will  
work with LO powers as low as -20dBm however this is at the expense  
of higher noise performance at high output powers and poorer side-  
band suppression.  
LO LB P  
LO LB N  
The input impedance should be externally matched to 50. The port  
impedance does not vary significantly between active and powered  
modes.  
The RF2705 is intended for use with the RF6002 which performs the  
GSM GMSK modulation within a Frac-N synthesizer loop. The 8PSK  
EDGE and W-CDMA signal modulations are performed in the RF2705  
and uses the RF6002’s synthesizers to generate the LO signals. The  
LO signal for DCS1800 mode is derived by frequency doubling  
RF6002’s GSM900 VCO. This helps protect the system against PA pull-  
ing.  
The complementary LO input for both LOLBP LO signals.  
In any of the modes the LOLB input may be driven either single ended  
or differentially. If the LO is driven single ended then the PCB board  
designer can ground this pin.  
It is recommended that if this pin is grounded that it is kept isolated  
from the GND1 pin and the die flag ground. All connections to any other  
ground should be made through a ground plane. Poor routing of this  
GndLO signal can significantly degrade the LO leakage performance.  
See pin 4.  
5
6
LO LB N  
MODE C  
Chip enable control pin. See the Logic Truth table.  
VCC2  
CMOS Logic inputs: Logic 0=0V to 0.4V; Logic 1=1.4V to V  
.
CC  
Mode control pin. See the Logic Truth table.  
CMOS Logic inputs: Logic 0=0V to 0.4V; Logic 1=1.4V to V  
See pin 6.  
7
MODE D  
.
CC  
Rev A4 041026  
5-125  
RF2705  
Pin  
Function Description  
Interface Schematic  
Quadrature Q channel negative baseband input port.  
Best performance is achieved when the QSIGP and QSIGN are driven  
differentially with a 1.2V common mode DC voltage. The recom-  
8
Q SIG N  
mended differential drive level (V  
-V  
) is 1.2V  
for EDGE,  
QSIGP QSIGN  
P-P  
0.8V  
for W-CDMA modulation and 1.0V  
for GMSK modulation.  
P-P  
P-P  
This input should be DC-biased at 1.2V. In sleep mode an internal FET  
switch is opened, the input goes high impedance and the modulator is  
de-biased.  
VCC2  
Phase or amplitude errors between the QSIGP and QSIGN signals will  
result in a common-mode signal which may result in an increase in the  
even order distortion of the modulation in the output spectrum.  
DC offsets between the QSIGP and QSIGN signals will result in  
increased carrier leakage. Small DC offsets may be deliberately  
applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to can-  
cel out the LO leakage. The optimum corrective DC offsets will change  
with mode, frequency and gain control.  
x1  
Common-mode noise on the QSIGP and QSIGN should be kept low  
as it may degrade the noise performance of the modulator.  
Phase offsets from quadrature between the I and Q baseband signals  
results in degraded sideband suppression.  
Quadrature Q channel negative baseband input port. See pin 8.  
See pin 8.  
9
10  
Q SIG P  
VREF  
Voltage reference decouple.  
External 10nF decoupling capacitor to ground.  
VCC2  
The voltage on this pin is typically 1.67V when the chip is enabled. The  
voltage is 0V when the chip is powered down.  
4 k  
-
The purpose of this decoupling capacitor is to filter out low frequency  
noise (20MHz) on the gain control lines.  
+
Poor positioning of the VREF decoupling capacitor can cause a degra-  
dation in LO leakage.  
A voltage of around 2.5V on this pin indicates that the die flag under  
the chip is not grounded and the chip is not biased correctly.  
Gain control voltage decouple with an external 1nF decoupling capaci-  
tor to ground.  
11  
GC DEC  
VCC2  
The voltage on this pin is a function of gain control (GC) voltage when  
the chip is enabled. The voltage is 0V when the chip is powered down.  
The purpose of this decoupling capacitor is to filter out low frequency  
noise (20MHz) on the gain control lines. The size capacitor on the GC  
DEC line will effect the settling time response to a step in gain control  
voltage. A 1nF capacitor equates to around 200ns settling time and a  
0.5nF capacitor equates to a 100ns settling time. There is a trade-off  
between settling time and noise contributions by the gain control cir-  
cuitry as gain control is applied.  
4 kΩ  
-
+
Poor positioning of the VREF decoupling capacitor can cause a degra-  
dation in LO leakage.  
Gain control voltage. Maximum output power at 2.0V. Minimum output  
power at 0V. When the chip is enabled the input impedance is 10kto  
12  
GC  
VCC2  
1.67V . When the chip is powered down a FET switch is opened and  
DC  
4 k  
the input goes high impedance.  
10 kΩ  
-
1.7 V  
+
5-126  
Rev A4 041026  
RF2705  
Pin  
13  
Function Description  
Interface Schematic  
Differential low band PA driver amplifier output.  
RF OUT  
LB N  
VCC VCC  
This output is intended for low band (GSM850/900) operation and  
drives a differential SAW.  
A bypass mode allows the low band PA driver amplifier’s input to be  
switched between the signal from the modulator and the signal applied  
at LOLB. This enables a GMSK-modulated signal on the LOLB input to  
be switched into the RF signal path.  
VCC  
The output is an open collector. The outputs are matched off-chip.  
RF OUT LB P  
RF OUT LB N  
Complementary differential low band PA driver amplifier output.  
See pin 13.  
See pin 13.  
14  
15  
RF OUT  
LB P  
RF OUT  
HB N  
Differential high band PA Driver amplifier output.  
VCC VCC  
This output is intended for DCS1800/PCS1900 band operation.  
A bypass mode allows the high band PA driver amplifier’s input to be  
switched between the signal from the modulator and the signal applied  
at LOHB. This enables a GMSK-modulated DCS1800/PCS1900 signal  
on the LOHB input to be switched into the RF signal path.  
The output is an open collector. The outputs are matched off-chip.  
VCC  
RF OUT HB P  
RF OUT HB N  
Complementary differential high band PA driver amplifier output.  
See pin 15.  
See pin 15.  
16  
17  
RF OUT  
HB P  
RF OUT  
WB N  
Differential high band PA driver amplifier output.  
This output is intended for wide band (W-CDMA) applications.  
The output is an open collector. The output are matched off-chip.  
VCC VCC  
VCC  
RF OUT WB P  
RF OUT WB N  
Complementary differential wideband PA driver amplifier output.  
See pin 17.  
See pin 17.  
18  
RF OUT  
WB P  
Ground.  
19  
20  
GND  
MODE A  
Mode control pin. See the Logic Truth table.  
CMOS Logic inputs: Logic 0=0V to 0.4V; Logic 1=1.4V to V  
See pin 6.  
.
CC  
Supply for modulator, VGA and PA driver amplifiers.  
21  
VCC1  
VCC1  
LO Quadrature  
Generator and  
Buffers  
GND1  
Rev A4 041026  
5-127  
RF2705  
Pin  
Function Description  
Interface Schematic  
In-phase I channel positive baseband input port.  
Best performance is achieved when the ISIGP and ISIGN are driven  
differentially with a 1.2V common mode DC voltage. The recom-  
22  
I SIG P  
mended differential drive level (V  
-V  
) is 1.2V  
for EDGE,  
ISIGP ISIGN  
P-P  
0.8V  
W-CDMA modulation and 1.0V  
for GMSK modulation.  
P-P  
P-P  
This input should be DC-biased at 1.2V. In sleep mode an internal FET  
switch is opened, the input goes high impedance and the modulator is  
de-biased.  
VCC2  
Phase or amplitude errors between the ISIGP and ISIGN signals will  
result in a common-mode signal which may result in an increase in the  
even order distortion of the modulation in the output spectrum.  
DC offsets between the ISIGP and ISIGN signals will result in  
increased carrier leakage. Small DC offsets may be deliberately  
applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to can-  
cel out the LO leakage. The optimum corrective DC offsets will change  
with mode, frequency and gain control.  
x1  
Common-mode noise on the ISIGP and ISIGN should be kept low as it  
may degrade the noise performance of the modulator.  
Phase offsets from quadrature between the I and Q baseband signals  
results in degrades sideband suppression.  
In-phase I channel negative baseband input port. See pin 22.  
See pin 22.  
See pin 6.  
23  
24  
I SIG N  
MODE B  
Mode control pin. See the Logic Truth table.  
CMOS Logic inputs: Logic 0=0V to 0.4V; Logic 1=1.4V to V  
.
CC  
Ground for LO section, modular, biasing, variable gain amplifier, and  
substrate.  
Pkg  
Base  
DIE FLAG  
5-128  
Rev A4 041026  
RF2705  
LO Frequency Planning Options for European 3GPP W-CDMA/EDGE  
Recommended Frequency Plan: Frequency Doubler/Divide by 2/GMSK Modulator Bypass Modes  
Modulation  
Format  
Output Frequency Band  
LO Port  
LO Frequency Range  
Lower Limit Upper Limit  
Comments  
Band  
Lower Limit Upper Limit  
GSM850  
GSM850  
GSM900  
GSM900  
DCS1800  
DCS1800  
PCS1900  
PCS1900  
824MHz  
824MHz  
880MHz  
880MHz  
1710MHz  
1710MHz  
1850MHz  
1850MHz  
849MHz  
849MHz  
915MHz  
915MHz  
1785MHz  
1785MHz  
1910MHz  
1910MHz  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
LOHB  
LOLB  
LOHB  
LOLB  
LOLB  
LOHB  
LOLB  
LOHB  
LOLB  
1648MHz  
824MHz  
1760MHz  
880MHz  
855MHz  
1710MHz  
925MHz  
1850MHz  
960MHz  
1698MHz  
849MHz  
1830MHz  
915MHz  
892.5MHz  
1785MHz  
955MHz  
1910MHz  
990MHz  
F
/2  
LO  
Divide by 2  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
/2  
F
LO  
Divide by 2  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
x2  
F
LO  
Frequency Doubler  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
x2  
F
LO  
Frequency Doubler  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
F x2  
LO  
W-CDMA1950 1920MHz  
1980MHz 3GPP W-CDMA  
Frequency Doubler  
On Frequency LO with GMSK Modulator Bypass Modes  
Modulation  
Output Frequency Band  
Format  
LO Port  
LO Frequency Range  
Lower Limit Upper Limit  
Comments  
Band  
Lower Limit Upper Limit  
GSM850  
824MHz  
824MHz  
880MHz  
880MHz  
1710MHz  
1710MHz  
1850MHz  
1850MHz  
849MHz  
849MHz  
915MHz  
915MHz  
1785MHz  
1785MHz  
1910MHz  
1910MHz  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
EDGE 8PSK  
GSM GMSK  
LOLB  
LOLB  
LOLB  
LOLB  
LOHB  
LOHB  
LOHB  
LOHB  
LOHB  
824MHz  
824MHz  
880MHz  
880MHz  
1710MHz  
1710MHz  
1850MHz  
1850MHz  
1920MHz  
849MHz  
849MHz  
915MHz  
915MHz  
1785MHz  
1785MHz  
1910MHz  
1910MHz  
1980MHz  
F
x1  
LO  
On Frequency  
F _bypass Bypass,  
LO  
GSM850  
GSM900  
GSM900  
DCS1800  
DCS1800  
PCS1900  
PCS1900  
GMSK-modulated LO  
x1  
F
LO  
On Frequency  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
x1  
F
LO  
On Frequency  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
x1  
F
LO  
On Frequency  
_bypass Bypass,  
F
LO  
GMSK-modulated LO  
x1  
W-CDMA1950 1920MHz  
1980MHz 3GPP W-CDMA  
F
LO  
On Frequency  
Rev A4 041026  
5-129  
RF2705  
Control Logic Truth Table  
ActiveRF  
I/Os  
Input Logic  
Comment  
Mode Description  
Expected Mode of  
Operation  
Mode A Mode B Mode C Mode D  
Sleep Mode  
X
0
0
0
Sleep  
Sleep  
Frequency Doubler/Divide by 2 Options  
Wideband F x2 (High Power)  
1
1
1
1
1
0
0
0
1
1
1
1
0
1
0
0
1
1
1
1
LoLbP LoLbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and frequency doubler  
enabled  
Wideband F x2 (Medium Power)  
LoLbP LoLbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and frequency doubler  
enabled  
Wideband F x2 (Low Power)  
LoLbP LoLbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and frequency doubler  
enabled  
High Band F x2  
LoLbP LoLbN Bands: DCS1800 or PCS1900  
RFOutHb P Modulation: GMSK, TDMA and  
LO  
Modulator and frequency doubler  
enabled  
RFOutHb N  
8PSK EDGE  
Low Band F /2  
LoHbP LoHbN Bands: GSM900 or GSM850  
RFOutLb P Modulation: GMSK, TDMA and  
LO  
Modulator and divide by 2 enabled  
RFOutLb N  
8PSK EDGE  
GMSK Modulator Bypass Options  
Low Band Bypass  
X
X
1
0
0
LoLbP LoLbN Bands: GSM850 or GSM900  
RFOutLb P Modulation: GMSK  
RFOutLb N  
LoHbP LoHbN Bands: DCS1800 or PCS1900  
RFOutHb P Modulation: GMSK  
RFOutHb N  
Modulator bypass enabled  
High Band Bypass  
1
1
0
Modulator bypass enabled  
On-Frequency LO Options  
Wideband F x1 (High Power)  
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
0
1
1
1
1
LoHbP LoHbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and on-frequency LO  
enabled  
Wideband F x1 (Medium Power)  
LoHbP LoHbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and on-frequency LO  
enabled  
Wideband F x1 (Low Power)  
LoHbP LoHbN Bands: 1920MHz to 1980MHz  
RFOutWb P Modulation: 3GPP W-CDMA  
RFOutWb N  
LO  
Modulator and on-frequency LO  
enabled  
High Band F x1  
LoHbP LoHbN Bands: DCS1800 or PCS1900  
RFOutHb P Modulation: GMSK, TDMA and  
LO  
Modulator and on-frequency LO  
enabled  
RFOutHb N  
8PSK EDGE  
Low Band F x1  
LoLbP LoLbN Bands: GSM900 to GSM850  
RFOutLb P Modulation: GMSK, TDMA and  
LO  
Modulator and on-frequency LO  
enabled  
RFOutLb N  
8PSK EDGE  
5-130  
Rev A4 041026  
RF2705  
Application Information  
The baseband inputs of the RF2705 must be driven with balanced signals. Amplitude and phase matching <0.5dB and  
<0.5 degrees are recommended. Phase or gain imbalances between the complementary input signals will cause addi-  
tional distortion including some second order baseband distortion.  
The RF2705 is designed to be driven with either single-ended or differential LO signals. Driving the chip differentially is  
beneficial in improving the LO leakage performance. Decreasing the LO drive level will also improve LO leakage, but the  
output noise performance will be degraded. Driving the LO level too high will degrade linearity.  
The ground lines for the LO sections are brought out of the chip independently from the ground to the RF and modulator  
sections. This is intended to give the board design the independence of isolating the LO signals from the RF output sec-  
tions.  
The RF2705 includes frequency doubler and divider modes that allow the LO to operate at half or twice the frequency  
depending on the application. This provides some flexibility in improving VCO isolation and LO leakage through fre-  
quency translation.  
The RF outputs use open collector architecture and may be biased at voltages higher than VCC. In practice, biasing at a  
higher voltage may improve the intermodulation performance. The load resistors are selected to provide sufficient output  
power while maintaining good linearity.  
The GC DEC and VREF output pins should be decoupled to ground. A 10nF capacitor on VREF and a 1nF capacitor on  
GC CEC are recommended. The purpose of these capacitors is to filter out low frequency noise (20MHz) in the gain  
control lines that may cause noise on the RF signal. The capacitor on the GC DEC line will effect the settling time of the  
step response in power control voltage. A 1nF capacitor equates to around a 200ns settling time; a 0.5nF capacitor  
equates to a 100ns settling time. There is a trade-off between setting time and phase noise as gain control is applied.  
As with any RF circuit, the RF2705 is sensitive to PC board layout. The suggested schematic and board layout is  
included as a guideline. Proper grounding of the die flag under the chip is essential in achieving acceptable RF perfor-  
mance. A symmetric output structure will maintain signal balance while keeping the RF lines short will reduce losses.  
Proper routing and bypassing of the supply lines will improve stability and performance, especially under low gain control  
settings where carrier suppression becomes crucial. The location and value of the bypass capacitor on pin 1 is critical in  
promoting good carrier suppression and is designated to resonate out the series wire bond and PC board inductance.  
Rev A4 041026  
5-131  
RF2705  
Application Schematic  
VCC  
MODE A  
VCC  
2.2 nH  
4.3 pF  
T1  
RF OUT WB  
I SIG P  
1 k  
1 pF  
4.3 pF  
2.2 nH  
I SIG N  
1 nF  
MODE B  
2:1  
VCC  
VCC  
5.6 pF  
24  
23  
22  
21  
20  
19  
VCC  
1
2
3
18  
17  
16  
15  
14  
13  
3.9 nH  
1.8 pF  
Note: The die flag is the  
chip's main ground.  
LO HB  
430 Ω  
4.3 nH  
T2  
RF OUT HB  
1.6 pF  
1.6 pF  
+45°  
-45°  
DIV  
2
Σ
2:1  
22.0 nH  
3 pF  
LO LB  
430 Ω  
4.3 nH  
VCC  
VCC  
+45°  
-45°  
Flo  
x2  
4
Mode Control  
and Biasing  
Power  
Control  
5
6
12 nH  
1 kΩ  
3.3 pF  
3.3 pF  
MODE C  
T3  
RF OUT LB  
7
8
9
10  
11  
12  
0.5 pF  
MODE D  
Q SIG N  
Q SIG P  
2:1  
10 nF  
1 nF  
12 nH  
VCC  
GC  
5-132  
Rev A4 041026  
RF2705  
Evaluation Board Schematic  
VCC  
MODE A  
VCC  
C7  
12 pF  
J2  
I SIG P  
50 Ω µstrip  
J4  
50 Ω µstrip  
50 Ω µstrip  
WB RF OUT  
J1  
I SIG N  
L2  
2.2 nH  
L3  
2.2 nH  
C12  
1.3 pF  
T1  
C1  
1 nF  
Murata  
LDB211G9020C-001  
MODE B  
C2  
4.3 pF  
C3  
4.3 pF  
R1  
1 kΩ  
C6  
5.6 pF  
24  
23  
22  
21  
20  
19  
VCC  
1
2
3
18  
17  
16  
15  
14  
13  
C11  
22 pF  
Note: The die flag is the  
chip's main ground.  
50 Ω µstrip  
L1  
3.9 nH  
J5  
HB RF OUT  
J3  
HB LO  
50 Ω µstrip  
50 Ω µstrip  
C4  
1.8 pF  
R2  
430 Ω  
L4  
4.3 nH  
L5  
4.3 nH  
C5  
DNI  
T2  
Murata  
DIV  
2
+45°  
-45°  
LDB211G8020C-001  
C9  
1.6 pF  
R3  
430 Ω  
C10  
1.6 pF  
Σ
L6  
22 nH  
J6  
LB LO  
+45°  
-45°  
Flo  
x2  
4
C13  
3 pF  
VCC  
Mode Control  
and Biasing  
Power  
Control  
5
6
C8  
100 pF  
50 Ω µstrip  
J7  
LB RF OUT  
MODE C  
MODE D  
7
8
9
10  
11  
12  
L7  
12 nH  
L8  
12 nH  
C18  
0.5 pF  
T3  
Murata  
LDB21906M20C-001  
C14  
10 nF  
C15  
1 nF  
50 Ω µstrip  
50 Ω µstrip  
J8  
Q SIG N  
C17  
3.3 pF  
C16  
3.3 pF  
R4  
1 kΩ  
J9  
Q SIG P  
P2  
1
P1  
GC  
1
2
3
P2-1  
VCC  
MODE D  
MODE C  
MODE B  
MODE A  
P1-1  
P2-2  
GND  
2
P2-3  
GC  
P1-3  
3
P2-4  
4
CON3  
CON4  
Rev A4 041026  
5-133  
RF2705  
Evaluation Board Layout  
Board Size 2.250” x 2.250”  
Board Thickness 0.032”, Board Material FR-4, Multi-Layer  
Assembly  
Top  
Mid  
Back  
5-134  
Rev A4 041026  
RF2705  
PCB Design Requirements  
PCB Surface Finish  
The PCB surface finish used for RFMD’s qualification process is Electroless Nickel, immersion Gold. Typical thickness is  
3µinch to 8µinch Gold over 180µinch Nickel.  
PCB Land Pattern Recommendation  
PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and  
tested for optimized assembly at RFMD; however, it may require some modifications to address company specific  
assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.  
PCB Metal Land Pattern  
A = 0.69 x 0.28 (mm) Typ.  
B = 0.28 x 0.69 (mm) Typ.  
C = 2.50 (mm) Sq.  
2.50 (mm)  
Typ.  
0.50 (mm) Typ.  
Pin 24  
B
B
B
B
B
B
Pin 18  
Pin 1  
A
A
A
A
A
A
A
A
A
A
A
A
0.50 (mm) Typ.  
1.25 (mm)  
Typ.  
2.50 (mm)  
Typ.  
C
0.57 (mm) Typ.  
0.57 (mm) Typ.  
B
B
B
B
B
B
Pin 12  
1.25 (mm)  
Typ.  
Figure 1. PCB Metal Land Pattern (Top View)  
Rev A4 041026  
5-135  
RF2705  
PCB Solder Mask Pattern  
Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the  
PCB Metal Land Pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all  
pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask  
clearance can be provided in the master data or requested from the PCB fabrication supplier.  
A = 0.79 x 0.38 (mm) Typ.  
B = 0.38 x 0.79 (mm) Typ.  
C = 2.60 (mm) Sq.  
2.50 (mm)  
Typ.  
0.50 (mm) Typ.  
Pin 24  
B
B
B
B
B
B
Pin 18  
Pin 1  
A
A
A
A
A
A
A
A
A
A
A
A
0.50 (mm) Typ.  
1.25 (mm)  
Typ.  
2.50 (mm)  
Typ.  
C
0.57 (mm) Typ.  
0.57 (mm) Typ.  
B
B
B
B
B
B
Pin 12  
1.25 (mm)  
Typ.  
Figure 2. PCB Solder Mask Pattern (Top View)  
Thermal Pad and Via Design  
The PCB land pattern has been designed with a thermal pad that matches the exposed die paddle size on the bottom of  
the device.  
Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern shown  
has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommo-  
dating routing strategies.  
The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size  
on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested  
that the quantity of vias be increased by a 4:1 ratio to achieve similar results.  
5-136  
Rev A4 041026  

相关型号:

RF2705-000

PTC Resettable Fuse
LITTELFUSE

RF2705G

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER
RFMD

RF2705GPCBA-41X

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER
RFMD

RF2705G_1

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER
RFMD

RF2705PCBA-41X

LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER
RFMD

RF2706-000

PTC Resettable Fuse
LITTELFUSE

RF2707-000

PTC Resettable Fuse
LITTELFUSE

RF2708-000

PTC Resettable Fuse, 0.08ohm, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
LITTELFUSE

RF2709-000

PTC Resettable Fuse
LITTELFUSE

RF2710-000

PTC Resettable Fuse
LITTELFUSE

RF2711-000

PTC Resettable Fuse, 0.13ohm, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
LITTELFUSE

RF2712-000

PTC Resettable Fuse
LITTELFUSE