RF2945

更新时间:2024-09-18 02:17:59
品牌:RFMD
描述:433/868/915MHZ FSK/ASK/OOK TRANSCEIVER

RF2945 概述

433/868/915MHZ FSK/ASK/OOK TRANSCEIVER 868分之433 / 915MHZ FSK / ASK / OOK收发器

RF2945 数据手册

通过下载RF2945数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
RF2945  
433/868/915MHZ FSK/ASK/OOK TRANSCEIVER  
11  
Typical Applications  
• Wireless Meter Reading  
• Keyless Entry Systems  
• Wireless Data Transceiver  
• Wireless Security Systems  
• 433, 868 and 915MHz ISM Band Systems • Battery-Powered Portable Devices  
Product Description  
-A-  
7.00  
0.15  
The RF2945 is a monolithic integrated circuit intended for  
use as a low cost FM transceiver. The device is provided  
in 32-lead plastic LQFP packaging and is designed to be  
used with a PLL IC to provide a fully functional FM trans-  
ceiver. The chip is intended for digital (ASK, FSK, OOK)  
applications in the North American 915MHz ISM band  
and European 433/868MHz ISM bands. The integrated  
VCO has a buffered output to feed the RF signal back to  
the PLL IC to form the frequency synthesizer. Internal  
decoding of the RX ENABL and TX ENABL lines allow for  
half duplex operation as well as turning on the VCO to  
give the synthesizer time to settle and complete power  
downmode. The DATA REF line allows the use of an  
external capacitor to control the DC level at the adaptive  
Data Slicer input for setting the bit decision threshold.  
+ 0.20 sq.  
0.05  
0.50  
0.22  
+ 0.05  
1.40  
+ 0.05  
5.00  
+ 0.10 sq.  
Dimensions in mm.  
7° MAX  
0° MIN  
0.60  
0.127  
0.15  
+
0.10  
Optimum Technology Matching® Applied  
Package Style: LQFP-32_5x5  
GaAs HBT  
GaAs MESFET  
üSi BJT  
11  
Si Bi-CMOS  
SiGe HBT  
Si CMOS  
Features  
• Fully Monolithic Integrated Transceiver  
• 2.4V to 5.0V Supply Voltage  
32  
31  
30  
29  
28  
27  
26  
25  
Control  
Logic  
• Narrowband and Wideband FSK  
• 300MHz to 1000MHz Frequency Range  
• 10dB Cascaded Noise Figure  
TX ENABL  
1
24 RESNTR-  
Gain  
Control  
PA  
TX OUT  
GND2  
2
3
4
5
6
7
8
23 MOD IN  
22 DATA REF  
21 DEMOD IN  
20 GND6  
RX IN  
• 10mW Output Power With Power Control  
GND1  
LNA  
LNA OUT  
GND3  
19 IF2 BP-  
18 IF2 BP+  
17 IF2 IN  
Linear  
RSSI  
MIX IN  
Ordering Information  
9
10  
11  
12  
13  
14  
15  
16  
RF2945  
433/868/915MHz FSK/ASK/OOK Transceiver  
RF2945 PCBA-L Fully Assembled Evaluation Board (433MHZ)  
RF2945 PCBA-M Fully Assembled Evaluation Board (868MHZ)  
RF2945 PCBA-H Fully Assembled Evaluation Board (915MHz)  
RF Micro Devices, Inc.  
7628 Thorndike Road  
Greensboro, NC 27409, USA  
Tel (336) 664 1233  
Fax (336) 664 0454  
http://www.rfmd.com  
Functional Block Diagram  
Rev A10 000919  
11-215  
RF2945  
Absolute Maximum Ratings  
Parameter  
Supply Voltage  
Ratings  
-0.5 to +5.5  
-0.5 to +5.0  
Unit  
V
DC  
Control Voltages  
V
Caution! ESD sensitive device.  
DC  
Input RF Level  
+10  
dBm  
Output Load VSWR  
Operating Ambient Temperature  
Storage Temperature  
50:1  
-40 to +85  
-40 to +150  
RF Micro Devices believes the furnished information is correct and accurate  
at the time of this printing. However, RF Micro Devices reserves the right to  
make changes to its products without notice. RF Micro Devices does not  
assume responsibility for the use of the described product(s).  
°C  
°C  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
T=25 °C, V =3.6V, Freq=915MHz  
Overall  
CC  
RF Frequency Range  
VCO and PLL Section  
VCO Frequency Range  
VCO OUT Impedance  
VCO OUT Level  
300 to 1000  
MHz  
300 to 1000  
MHz  
dBm  
dBc/Hz  
dBc/Hz  
50  
-20  
-72  
-98  
Freq=915MHz  
10kHz offset, 5kHz loop BW  
100kHz offset, 5kHz loop BW  
VCO/PLL Phase Noise  
Transmit Section  
Max Modulation Frequency  
Min Modulation Frequency  
Maximum Power Level  
2
MHz  
Set by loop filter bandwidth  
+7  
1
12  
+8.5  
+3  
dBm  
dBm  
dB  
dB/V  
kHz  
Freq=433MHz  
Freq=915MHz  
5
Power Control Range  
Power Control Sensitivity  
Max FM Deviation  
10  
200  
Instantaneous frequency deviation is  
inversely proportional with the modulation  
voltage. Dependent on external circuitry.  
TX ENABL=“1”, RX ENABL=“0”  
Antenna Port Impedance  
Antenna Port VSWR  
Modulation Input Impedance  
Harmonics  
50  
1.5:1  
TX Mode  
4
kΩ  
dBc  
dBc  
11  
-38  
Freq=915MHz, with eval board filter  
Compliant to Part 15.249 and I-ETS 300 220  
Spurious  
Overall Receive Section  
Frequency Range  
Cascaded Voltage Gain  
300 to 1000  
MHz  
dB  
dB  
35  
23  
Freq=433MHz  
Freq=915MHz  
Cascaded Noise Figure  
10  
dB  
Cascaded Input IP  
-31  
dBm  
Freq=433MHz  
3
-26  
-96  
-55  
dBm  
dBm  
dBm  
V
Freq=915MHz  
IF BW=400kHz, Freq=915MHz, S/N=8dB  
Freq=915MHz  
RX Sensitivity  
LO Leakage  
RSSI DC Output Range  
-91.5  
70  
0.5 to 2.5  
R
=51kΩ  
LOAD  
RSSI Sensitivity  
RSSI Dynamic Range  
22.5  
80  
mV/dB  
dB  
11-216  
Rev A10 000919  
RF2945  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
LNA  
Voltage Gain  
23  
16  
4.8  
5.5  
-27  
dB  
dB  
dB  
dB  
dBm  
433MHz  
915MHz  
433MHz  
915MHz  
433MHz  
Noise Figure  
Input IP  
3
-20  
-37  
dBm  
dBm  
915MHz  
433MHz  
Input P  
1dB  
-30  
50  
dBm  
915MHz  
RX ENABL=“1”, TX ENABL=“0”  
RX Mode  
433MHz and 915MHz  
Single-ended configuration  
Antenna Port Impedance  
Antenna Port VSWR  
Output Impedance  
Mixer  
1.5:1  
Open Collector  
Conversion Voltage Gain  
8
7
10  
17  
-21  
dB  
dB  
dB  
dB  
dBm  
433MHz  
915MHz  
433MHz  
915MHz  
433MHz  
Noise Figure (SSB)  
Input IP  
3
-17  
-31  
dBm  
dBm  
915MHz  
433MHz  
Input P  
1dB  
-28  
dBm  
915MHz  
First IF Section  
IF Frequency Range  
Voltage Gain  
0.1  
0.1  
10.7  
34  
25  
25  
MHz  
dB  
IF=10.7MHz, Z =330Ω  
L
Noise Figure  
13  
330  
330  
dB  
IF1 Input Impedance  
IF1 Output Impedance  
Second IF Section  
IF Frequency Range  
Voltage Gain  
10.7  
60  
MHz  
dB  
IF=10.7MHz  
IF2 Input Impedance  
IF2 Output Impedance  
Demod Input Impedance  
Data Output Bandwidth  
330  
1
10  
kΩ  
kΩ  
MHz  
11  
At IF2 OUT pin  
1.4  
0.3  
3dB Bandwidth, Z  
=1M|| 3pF  
LOAD  
Data Output Level  
V
-0.3  
V
Z
=1M|| 3pF. Output voltage is pro-  
LOAD  
CC  
portional with the instantaneous frequency  
deviation.  
Rev A10 000919  
11-217  
RF2945  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Power Down Control  
Logical Controls “ON”  
Logical Controls “OFF”  
Control Input Impedance  
Turn On Time  
2.0  
V
V
ms  
ms  
µs  
Voltage supplied to the input  
Voltage supplied to the input  
1.0  
25k  
1
1
100  
Turn on/off times are dependent upon  
PLL loop parameters  
Turn Off Time  
RX to TX and TX to RX Time  
Power Supply  
Voltage  
3.6  
V
V
Specifications  
Operating limits  
Temperature range -40°C to +85°C  
Operating limits  
2.7  
2.4  
5.0  
V
Temperature range +10°C to +40°C  
TX ENABL, LVLADJ=3.6V, RX ENABL=0V  
TX ENABL=3.6V, LVLADJ, RX ENABL=0V  
TX ENABL=0V, RX ENABL=3.6V  
TX ENABL, LVLADJ, RX ENABL=0V  
PLL Only Mode, TX ENABL,  
RX ENABL=3.6V, LVLADJ=0V  
Current Consumption  
17  
4.8  
4.4  
22  
6.1  
6.1  
27.4  
7.2  
6.8  
1
mA  
mA  
mA  
µA  
3.6  
mA  
11  
11-218  
Rev A10 000919  
RF2945  
Pin  
1
Function Description  
Interface Schematic  
Enables the transmitter circuits. TX ENABL>2.0V powers up all trans-  
TX ENABL  
20 k  
TX ENABL  
mitter functions. TX ENABL<1.0V turns off all transmitter functions  
except the PLL functions.  
40 k  
RF output pin for the transmitter electronics. TX OUT output impedance  
is a low impedance when the transmitter is enabled. TX OUT is a high  
impedance when the transmitter is disabled.  
2
TX OUT  
VCC  
20  
TX OUT  
Ground connection for the 40 dB IF limiting amplifier and Tx PA func-  
tions. Keep traces physically short and connect immediately to ground  
plane for best performance.  
3
4
GND2  
RX IN  
RF input pin for the receiver electronics. RX IN input impedance is a  
low impedance when the transmitter is enabled. RX IN is a high imped-  
ance when the receiver is disabled.  
RX IN  
500  
Ground connection for RF receiver functions. Keep traces physically  
short and connect immediately to ground plane for best performance.  
5
6
GND1  
Output pin for the receiver RF low noise amplifier. This pin is an open  
collector output and requires an external pull up coil to provide bias and  
tune the LNA output. A capacitor in series with this output can be used  
to match the LNA to 50impedance image filters.  
LNA OUT  
VCC  
LNA OUT  
Same as pin 3.  
7
8
GND3  
MIX IN  
RF input to the RF Mixer. An LC matching network between LNA OUT  
and MIX IN can be used to connect the LNA output to the RF mixer  
input in applications where an image filter is not needed or desired.  
MIX IN  
GND5  
11  
GND5 is the ground connection shared by the input stage of the trans-  
mit power amplifier and the receiver RF mixer.  
9
GND5  
IF output from the RF mixer. Interfaces directly to 10.7MHz ceramic IF  
filters as shown in the application schematic. A pull-up inductor and  
series matching capacitor should be used to present a 330termina-  
tion impedance to the ceramic filter. Alternately, an IF tank can be used  
to tailor the IF frequency and bandwidth to meet the needs of a given  
application.  
MIX OUT  
10  
MIX OUT  
15 pF  
15 pF  
GND5  
GND5  
DC voltage reference for the IF limiting amplifiers. A 10nF capacitor  
from this pin to ground is required.  
.
11  
12  
VREF IF  
RSSI  
A DC voltage proportional to the received signal strength is output from  
this pin. The output voltage range is 0.5V to 2.3V and increases with  
increasing signal strength.  
VCC  
RSSI  
IF input to the 40dB limiting amplifier strip. A 10nF DC blocking capaci-  
tor is required on this input.  
13  
IF1 IN  
IF1 BP+  
IF1 BP-  
60 kΩ  
60 k  
330  
330  
IF1 IN  
Rev A10 000919  
11-219  
RF2945  
Pin  
14  
Function Description  
Interface Schematic  
DC feedback node for the 40dB limiting amplifier strip. A 10nF bypass See pin 13.  
IF1 BP+  
IF1 BP-  
IF1 OUT  
capacitor from this pin to ground is required.  
Same as pin 14.  
See pin 13.  
15  
16  
IF output from the 40dB limiting amplifier. The IF1 OUT output presents  
a nominal 330 output resistance and interfaces directly to 10.7MHz  
ceramic filters.  
IF1 OUT  
IF input to the 60dB limiting amplifier strip. A 10nF DC blocking capaci-  
tor is required on this input. The IF2 IN input presents a nominal 330 Ω  
input resistance and interfaces directly to 10.7MHz ceramic filters.  
17  
IF2 IN  
IF2 BP+  
60 k  
IF2 BP-  
60 k  
330  
330  
IF2 IN  
DC feedback node for the 60dB limiting amplifier strip. A 10nF bypass See pin 17.  
capacitor from this pin to ground is required.  
18  
IF2 BP+  
Same as pin 18.  
See pin 17.  
19  
20  
IF2 BP-  
GND6  
Ground connection for 60dB IF limiting amplifier. Keep traces physically  
short and connect immediately to ground plane for best performance.  
This pin is the input to the FM demodulator. This pin is NOT AC cou-  
pled. Therefore, a DC blocking capacitor is required on this pin to avoid  
shorting the demodulator input with the LC tank. A ceramic discrimina-  
tor or DC blocked LC tank resonant at the IF should be connected to  
this pin.  
21  
DEMOD IN  
VCC  
10 k  
DEMOD IN  
This pin is used for setting the adaptive Data Slicer DC reference level.  
A capacitor from this pin to ground can be used to set the reference  
level at the average DC level of the data bit stream.The DC level deter-  
mines the bit decision threshold.  
22  
23  
DATA REF  
MOD IN  
50k  
11  
DATA REF  
FM analog or digital modulation can be imparted to the VCO through  
this pin. The VCO varies in accordance to the voltage level presented  
to this pin. To set the deviation to a desired level, a voltage divider refer-  
enced to Vcc is the recommended. This deviation is also dependent  
upon the overall capacitance of the external resonant circuit.  
See pin 24.  
This port is used to supply DC voltage to the VCO as well as to tune the  
center frequency of the VCO. Equal value inductors should be con-  
nected to this pin and pin 25 although a small imbalance can be used  
to tune in the proper frequency range.  
24  
RESNTR+  
RESNTR+  
RESNTR-  
4 k  
MOD IN  
See RESNTR+ description.  
See pin 24.  
25  
26  
RESNTR-  
VCO OUT  
This pin is used is supply a buffered VCO output to go to the PLL chip.  
This pin has a DC bias and needs to be AC coupled.  
VCO OUT  
GND4 is the ground shared on chip by the VCO, prescaler, and PLL  
electronics.  
27  
GND4  
11-220  
Rev A10 000919  
RF2945  
Pin  
28  
Function Description  
Interface Schematic  
This pin is used to supply DC bias to the LNA, Mixer, 1st IF Amp and  
VCC1  
Bandgap reference. A RF bypass capacitor should be connected  
directly to this pin and returned to ground. A 22pF capacitor is recom-  
mended for 915MHz applications. A 68 pF capacitor is recommended  
for 433MHz applications.  
Demodulated data output from the demodulator. Output levels on this  
are TTL/CMOS compatible. The magnitude of the load impedance is  
intended to be 1Mor greater.  
29  
30  
DATA OUT  
DATA OUT  
This pin is used to supply DC bias and collector current to the transmit-  
VCC3  
nd  
ter PA. It also supplies voltage to the 2 IF Amplifier, Demod and data  
slicer. A RF bypass capacitor should be connected directly to this pin  
and returned to ground. A 22pF capacitor is recommended for 915MHz  
applications. A 68pF capacitor is recommended for 433MHz applica-  
tions.  
This pin is used to vary the transmitter output power. An output level  
adjustment range greater than 12dB is provided through analog volt-  
age control of this pin. DC current of the transmitter power amp ia also  
reduced with output power.  
40 kΩ  
31  
32  
LVL ADJ  
LVL ADJ  
NOTE: This pin MUST be low when the transmitter is disabled.  
400  
4 kΩ  
Enable pin for the receiver circuits. RX ENABL>2.0V powers up all  
receiver functions. RX ENABL<1.0V turns off all receiver functions  
except the PLL functions and the RF mixer.  
RX ENABL  
50 k  
RX ENABL  
Operation  
TX ENABL RX ENABL  
Function  
Mode  
11  
Low  
High  
Low  
High  
Low  
Low  
High  
High  
Entire chip is powered down. Total current consumption is <1µA. *  
Transmitter, VCO are on.  
Sleep Mode  
Transmit Mode  
Receive Mode  
Receiver, VCO are on. *  
VCO is on. This mode allows time for a synthesizer loop to lock without  
spending current on the transmitter or receiver.  
PLL Lock  
* LVL ADJ pin must be low to disable transmitter.  
Rev A10 000919  
11-221  
RF2945  
RF2945 Theory of Operation and Application Information  
The RF2945 is part of a family of low-power RF trans-  
ceiver IC’s that was developed for wireless data com-  
munication devices operating in the European 433MHz  
to 868MHz ISM band, and 915MHz U.S. ISM band.  
This IC has been implemented in a 15GHz silicon  
bipolar process technology that allows low-power  
transceiver operation in a variety of commercial wire-  
less products.  
best operation of the on-chip data slicer, FM deviation  
needs to be larger than 40kHzP-P  
.
The data slicer itself is a transconductance amplifier,  
and the DATA OUT pin is capable of driving rail-to-rail  
output only into a very high impedance and a small  
capacitance. The amount of capacitance will determine  
the bandwidth of DATA OUT. In a 3pF load, the band-  
width is in excess of 500kHz. The rail-to-rail output of  
the data slicer is also limited by the frequency deviation  
and bandwidth of IF filters. With the 400kHz bandwidth  
filters on the evaluation boards, the rail-to-rail output is  
limited to less than 320kHz. Choosing the right IF  
bandwidth and deviation versus data rate (mod index)  
is important in evaluating the applicability of the  
RF2945 for a given data rate.  
In its basic form, the RF2945 can be implemented as a  
two-way half-duplex FSK transceiver with the addition  
of some crystals, filters, and passive components. The  
RF2945 is designed to interface with common PLL IC’s  
to form a multi-channel radio. The receiver IF section is  
optimized to interface with low-cost 10.7MHz ceramic  
filters and has a 3dB bandwidth of 25MHz and can still  
be used (with lower gain) at higher frequencies with  
other types of filters. The PA output and LNA input are  
available on separate pins and are designed to be con-  
nected together through a DC blocking capacitor. In the  
transmit mode, the PA will have a 50impedance and  
the LNA will have a high impedance. In the receive  
mode, the LNA will have a 50impedance and the PA  
will have a high impedance. This eliminates the need  
for a TX/RX switch, and allows for a single RF filter to  
be used in transmit and receive modes. Separate  
access to the PA and LNA allows the RF2945 to inter-  
face with external components such as a high power  
PA, lower NF LNA, upconverters, and downconverters,  
for a variety of implementations.  
The primary consideration when directly modulating  
the VCO is the data rate versus PLL bandwidth. The  
PLL will track out the modulation to the extent of its  
bandwidth, which distorts the modulating data. There-  
fore, the lower frequency components of the modulat-  
ing data should be five to 10 times the loop bandwidth  
to minimize the distortion. The lower frequency compo-  
nents are generated by long strings of 1’s and 0’s in  
data stream. By limiting the number of consecutive,  
same bits, lower frequency components can be set. In  
addition, the data stream should be balanced to mini-  
mize distortion. Using a coding pattern such as  
Manchester is highly recommended to optimize system  
performance.  
11  
FM/FSK SYSTEMS  
The PLL loop bandwidth is important in several system  
parameters. For example, switching from transmit to  
receive requires the VCO to retune to another fre-  
quency. The switching speed is proportional to the loop  
bandwidth: the higher the loop bandwidth, the faster  
the switching times. Phase noise of the VCO is another  
factor. Phase noise outside the bandwidth is because  
of the VCO itself, rather than a crystal reference. The  
design trade-offs must be made here in selecting a  
PLL loop bandwidth with acceptable phase noise and  
switching characteristics, as well as minimal distortion  
of the modulation data.  
The MOD IN pin drives an internal varactor for modu-  
lating the VCO. This pin can be driven with a voltage  
level needed to generate the desired deviation. This  
voltage can be carried on a DC bias to select desired  
slope (deviation/volt) for FM systems. Or, a resistor  
divider network referenced to VCC or ground can  
divide down logic level signals to the appropriate level  
for a desired deviation in FSK systems.  
On the receiver demod, the DATA OUT pin is the out-  
put of an internal data slicer providing logic level out-  
puts. The digital output is generated by a data slicer  
that compares the demodulator with a DC reference  
voltage recovered from the demodulator. The refer-  
ence voltage is obtained by a filter capacitor on pin 22.  
An on-chip 1.6MHz RC filter is provided at the demod-  
ulator output to filter the undesirable 2xIF product. This  
type data slicer has the ability to track out minor fre-  
quency errors in the system, but requires a longer  
period of time for the preamble for optimum results. For  
ASK/OOK SYSTEMS  
The transmitter of the RF2945 has an output power  
level adjust (LVL ADJ) that can be used to provide  
approximately 18dB of power control for amplitude  
modulation. The RSSI output of the receiver section  
can be used to recover the modulation. The RSSI out-  
put is from a current source, and needs to have a resis-  
11-222  
Rev A10 000919  
RF2945  
tor to convert to a voltage. A 51kresistor load  
typically produces an output of 0.7V to 2.5V. A parallel  
capacitor is suggested to band limit the signal. For  
ASK applications, the 18dB range of the LVL ADJ  
does not produce enough voltage swing in the RSSI for  
reliable communications. The on/off keying (OOK) is  
suggested to provide reliable communications. To  
achieve this, the LVL ADJ and TX ENABL need to be  
controlled together (please note that LVL ADJ cannot  
be left high when TX ENABL is low). This will provide  
an on/off ratio of greater than 50dB. One of the unfor-  
tunate consequences of modulating in this manner is  
VCO pulling by the PA. This results in a spurious out-  
put outside the desired transmit band, as the PLL  
momentarily loses lock and reacquires. This may be  
avoided by pulse-shaping TX data to slow the change  
in the VCO load to a pace which the PLL can track with  
its given loop bandwidth. The loop bandwidth may also  
be increased to allow it to track faster changes brought  
about by load pulling.  
the trace length should be as short as possible. The  
inductors may be placed further away, and reducing  
the value of the inductors can compensate any trace  
inductance. Printed inductors may also be used with  
careful design. For best results, physical layout should  
be as symmetrical as possible. Figure 1 is a recom-  
mended layout pattern for the VCO components. When  
using the loop bandwidth lower than 5kHz shown on  
the evaluation board, better filtering of the VCC at the  
resonators (and lower VCC noise, as well) will help  
reduce phase noise of the VCO. A series resistor of  
100to 200, and a 1µF or larger capacitor may be  
used.  
Loop  
Voltage  
For the ASK/OOK receiver demodulator, an external  
data slicer is required. The RSSI output is used to pro-  
vide both the filter data and a very low pass filter (rela-  
tive to the data rate) DC reference to the data slicer.  
Because the very low pass filter has a slow time con-  
stant, a longer preamble may be required to allow for  
the DC reference to acquire a stable state. Here, as in  
the case of the FSK transmitter, the data pattern also  
affects the DC reference and the reliability of the  
VCC  
24  
23  
Not to Scale  
Representative of Size  
Figure 1. Recommended VCO Layout  
receive data. Again,  
a coding scheme such as  
Manchester should be used to improve data integrity.  
11  
For the interface between the LNA/mixer, the coupling  
capacitor should be as close to the RF2945 pins as  
possible, with the bias inductors further away. Once  
again, the value of the inductor may be changed to  
compensate for trace inductance. The output imped-  
ance of the LNA is in the order of several k, which  
makes matching to 50very difficult. If image filtering  
is desired, a high impedance filter is recommended.  
APPLICATION AND LAYOUT CONSIDERATIONS  
Both the RX IN and the TX OUT have a DC bias on  
them. Therefore, a DC blocking cap is required. If the  
RF filter has DC blocking characteristics (such as a  
ceramic dielectric filter), then only one DC blocking cap  
would be needed to separate the DC of the RX and TX.  
These are RF signals and care should be taken to run  
the signal keeping them physically short. Because of  
the 50/high impedance nature of these two signals,  
they may be connected together into a single 50Ω  
device (such as a filter). An external LNA or PA may be  
used, if desired, but an external RX/TX switch may be  
required.  
The quad tank of the discriminator may be imple-  
mented with ceramic discriminator available from a  
couple of sources. This design works well for wideband  
applications where temperature range is limited. The  
temperature coefficient of ceramic discriminators may  
be in the order of +50ppm/°C. The alternative to the  
ceramic discriminator is the LC tank, which provides a  
broadband discriminator more useful for high data  
rates.  
The VCO is a very sensitive block in the system. RF  
signals feeding back into the VCO (either radiated or  
coupled by traces) may cause the PLL to become  
unlocked. The trace(s) for the anode of the tuning var-  
actor should also be kept short. The layout of the reso-  
nator and varactor are very important. The capacitor  
and varactor should be close to the RF2945 pins, and  
Rev A10 000919  
11-223  
RF2945  
PLL Synthesizer  
The RF2945 evaluation board uses an LMX2316 PLL  
IC from National Semiconductor. This PLL IC may be  
programmed from the software available from National  
Semiconductor (codeloader at www.national.com/  
appinfo/wireless/). An external reference oscillator is  
required for the PLL IC allowing for the evaluation of  
different reference frequencies or step sizes. The  
National Semiconductor software also has a calculator  
for determining the R and C component values for a  
given loop bandwidth.  
The RF2945 is controlled by RX ENABL and TX  
ENABL which are decoded to put the RF2945 into one  
of four states. It may be put into a PLL-only mode with  
TX ENABL and RX ENABL both high. This condition is  
used to provide time for the synthesizer to turn on and  
obtain lock before turning on the receiver or transmit-  
ter. Note that LVL ADJ needs to be held low for PLL-  
only mode. Sometimes, it is desirable to ramp up the  
power amplifier to minimize load pulling on the VCO.  
To do this with the RF2945, first put the RF2945 into  
PLL mode by putting TX ENABL and RX ENABL high.  
Then, ramp up LVL ADJ to turn on the transmitter and  
PA. The rate at which LVL ADJ is allowed to ramp up is  
dependent on the PLL loop bandwidth. VCC pushing  
also affects the VCO frequency. A good low pass filter  
on VCC will minimize the VCC pushing effects.  
For applications requiring fast switching speeds or  
turn-on times, and low data rate loop filter bandwidths,  
the LMX2316 may be configured to drive the loop filter  
in a fast switching mode. Please refer to literature on  
the LMX2316 for more information.  
11  
11-224  
Rev A10 000919  
RF2945  
Pin Out  
32  
31  
30  
29  
28  
27  
26  
25  
TX ENABL  
TX OUT  
GND2  
RESNTR+  
MOD IN  
DATA REF  
DEMOD IN  
GND6  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
RX IN  
GND1  
LNA OUT  
GND3  
IF2 BP-  
IF2 BP+  
IF2 IN  
MIX IN  
9
10  
11  
12  
13  
14  
15  
16  
11  
Rev A10 000919  
11-225  
RF2945  
Application Schematic - 915 MHz  
VCC  
VCC  
10 k  
PLL  
IC  
10  
10 Ω  
10 nF  
22 pF  
10 nF  
22 pF  
4.7  
nF  
330  
pF  
33 pF  
TBD  
10 k  
100  
30 k  
VCC  
DATA OUT  
8.2  
nH  
LVL ADJ  
2
pF  
RX ENABL  
100 Ω  
32  
31  
30  
29  
28  
27  
26  
25  
D1  
SMV1233-  
011  
22 pF  
10 nF  
8.2  
nH  
Control  
Logic  
TX ENABL  
1
24  
Gain  
Control  
100 pF  
100 pF  
PA  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
MOD IN  
915 MHz SAW  
TBD  
1.5 k  
LNA  
VCC  
FM Disc.  
10 nF  
10 nH  
22 pF  
10  
10 nF  
10 nF  
Linear  
RSSI  
10 nF  
10 pF  
9
10  
11  
12  
13  
10 nF  
14  
15  
16  
10 nF  
Filter  
VCC  
8.2 uH  
22 pF  
RSSI  
10  
11 pF  
Filter  
10 nF  
51 k  
10 pF  
11  
11-226  
Rev A10 000919  
RF2945  
Application Schematic - 915 MHz  
IF=25MHz, BW=2MHz  
VCC2  
R4  
C81  
4.7 uF  
C18  
0.1 uF  
C17  
22 pF  
100  
VPLL  
R11  
10  
C33  
C32  
0.1 uF  
22 pF  
P6  
DB9  
VPLL/VCC2  
L3  
8.2 nH  
L2  
8.2 nH  
R13  
30 kΩ  
R2  
10  
1
FLo  
Vp 16  
+
+
C29  
4.7 uF  
C82  
4.7 uF  
C3  
0.1 uF  
C4  
22 pF  
R12*  
100  
C16  
D1  
CPo VCC2  
2
3
4
5
6
7
8
15  
C48  
4.7 nF  
2 pF SMV1233-011  
R1  
10  
GND Fo/LD 14  
C2  
0.1 uF  
C1  
22 pF  
R14  
C47  
330 pF  
10 k  
GND  
fINb  
fIN  
LE 13  
DATA OUT  
LVL ADJ  
L7*  
TBD  
C50  
22 pF  
Data  
12  
Clock 11  
CE 10  
C41  
100 pF  
RX ENABL  
R29  
R26  
32  
31  
30  
29  
28  
27  
26  
25  
12 k  
R60  
27 k  
0
VPLL  
C44  
22 pF  
VCC1  
VPLL  
R28  
C43  
0.1 uF  
Control  
Logic  
12 k  
R25  
TX ENABL  
1
24  
OSCin GND  
LMX2316  
9
Gain  
Control  
C34  
1 nF  
C6  
22 pF  
27 k  
50  
Ω µstrip  
PA  
J4  
MOD IN  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
R27  
12 k  
L1  
8.2 nH  
R80  
0
50 Ω µstrip  
R30  
J2  
RF  
C7  
22 pF  
51  
R24  
27 k  
C19  
2.2 nF  
C9  
4 pF  
C8  
4 pF  
C30*  
4 pF  
50  
µstrip  
L4  
10 nH  
LNA  
C51*  
4-22 pF  
L8  
680 nH  
C31  
39 pF  
R7  
10  
J5  
REF OSC  
Linear  
RSSI  
C20  
10 nF  
C21  
10 pF  
R6*  
N/C  
C23  
0.1 uF  
C22  
22 pF  
P2  
1
P3  
1
C15  
10 nF  
17  
P2-1  
LVL ADJ  
GND  
P3-1  
P3-1  
TX ENABL  
GND  
C14  
10 nF  
P1  
1
P1-1  
VCC1  
GND  
2
3
2
9
10  
11  
12  
13  
14  
15  
16  
2
N/C  
3
RX ENABL  
C10  
10 nF  
C12  
10 nF  
C13  
10 nF  
C54  
C56  
C52  
10 pF  
CON2  
CON3  
CON3  
10 pF  
3 pF  
L5  
680 nH  
VCC  
C53  
47 pF  
L10  
680 nH  
C59  
47 pF  
L9  
680 nH  
P4  
1
P7  
1
P8  
1
R9  
+
C5  
4.7 uF  
C26  
0.1 uF  
C25  
22 pF  
10  
P4-1  
RSSI  
GND  
P7-1  
P7-3  
VCC2  
GND  
P8-1  
RX OUT  
GND  
C57  
100 pF  
2
2
2
RSS  
I
CON2  
CON2  
3
VPLL  
C27  
39 pF  
C24  
5 pF  
C55  
39 pF  
L11  
680 nH  
R3  
51 k  
C11  
10 pF  
CON3  
11  
Rev A10 000919  
11-227  
RF2945  
Evaluation Board Schematic - 915MHz  
(Download Bill of Materials from www.rfmd.com.)  
R2  
10  
VCC  
C3  
C4  
0.1 uF  
22 pF  
R13  
1.2k  
R1  
VPLL  
10  
PLL LOOP BW ~5 kHz  
1
2
3
4
5
6
7
8
FLD  
CPD  
GND  
GND  
fNb  
Vp 16  
Vcc2 15  
FD/LD 14  
LE 13  
C2  
0.1 uF  
C1  
22 pF  
R12  
100  
C42 0.1 uF  
R14  
C32  
C33  
C49  
TBD  
22 pF 0.1 uF  
C47  
6.8nF  
10 k  
J1  
RX OUT  
R4  
100  
VCC  
C81 4.7 uF  
C18 0.1 uF  
C50  
22 pF  
LMX2316  
C41  
100 pF  
LVL ADJ  
L3  
P2-1  
P3-3  
RX ENABL  
8.2 nH  
DATA 12  
CLK 11  
CE 10  
C17 22 pF  
D1  
SMV1233  
-011  
C16  
2 pF  
32  
31  
30  
29  
28  
27  
26  
25  
fIN  
R60  
L7*  
TBD  
L2  
0
Vcc1  
OSCin  
Control  
Logic  
8.2 nH  
TX ENABL  
R87*  
P3-2  
1
2
3
4
5
6
7
8
24  
C58*  
10 nF  
Gain  
Control  
C6  
22 pF  
0
GND  
9
J4  
23  
PA  
VPLL  
C34  
1 nF  
L1  
8.2 nH  
MOD IN  
R80  
C19  
2.2 nF  
R88  
0
50 Ω µstrip  
0
J2  
RF  
22  
21  
20  
19  
18  
U4  
CDF  
107B-  
A0-001  
10.7 MHz  
C9  
5 pF  
C8  
5 pF  
C30*  
5 pF  
L8 C31 R5*  
C51*  
CAPVAR  
4.7  
uH  
39  
pF  
4.3  
C43  
.01 uF 22 pF  
C44  
J5  
kΩ  
REF OSC  
C7  
22 pF  
R30  
51  
LNA  
C20  
10 nF  
P6  
DB9  
C15  
10 nF  
L4  
12 nH  
R27  
R7  
10  
VCC  
Linear  
RSSI  
12 k  
R28  
12 k  
R6*  
N/C  
C23  
0.1  
C22  
22 pF  
C14  
10 nF  
µ
f
17  
R29  
12 k  
BW=400 kHz  
10.7 MHz  
C21  
10 pF  
F2  
SFE10.7MA21  
R86  
R85  
R24  
27 k  
R25  
27 k  
R26  
27 kΩ  
9
10  
C10  
10nF  
11  
12  
13  
14  
C12  
15  
16  
0
0 Ω  
L5  
6.8 uH  
C13  
10nF 10nF  
C54*  
100 pF  
C52*  
100 pF  
VCC1  
R9  
10  
C26  
0.1 uF  
C25  
22 pF  
C24  
11 pF  
RSSI  
C11  
10 pF  
R8  
R83  
0 Ω  
8.2 k  
R3  
51 k  
P1  
1
C53*  
330 pF  
L10*  
680 nH  
R81*  
560 Ω  
C55*  
100 pF  
R84  
0 Ω  
P1-1  
P1-3  
VCC (RF2945)  
GND  
F1  
SFE10.7MA21  
2
2945400B  
P3  
1
C27*  
10 nF  
3
VPLL (LMX2315)  
C57*  
100 pF  
R82*  
560  
L11*  
C56*  
680 nH 330 pF  
GND  
TX ENABL  
P3-2  
2
P2  
1
L6*  
2.2 uH  
C28*  
120 pF  
P3-3  
P3-4  
P3-5  
3
RX ENABL P2-1  
NC  
LVL ADJ  
P4  
1
2
GND  
NC  
P4-1  
RSSI  
GND  
J3  
MIX OUT  
4
* Denotes components that are normally depopulated.  
NC  
P2-3  
3
2
5
11  
11-228  
Rev A10 000919  
RF2945  
Evaluation Board Schematic - 433MHz  
R13  
4.7 kΩ  
VPLL  
VC  
C
C2  
0.1  
C 3  
VC  
C
R1  
10  
R2  
10  
µF  
0.1  
µ
F
PLL LO O P BW ~5 kHz  
1
2
3
4
5
6
7
8
FLD  
Vp 16  
R12*  
100  
C 47  
2.2 nF  
C 42 33 nF  
R14  
C1  
C4  
C32  
Vcc2 15  
C33  
0.1 uF  
CPD  
G N D  
G N D  
fNb  
22 pF 22 pF  
C49  
220 pF  
22 pF  
20 kΩ  
FD /LD 14  
J1  
RX O UT  
VC  
C
C81 4.7 uF  
R4 100  
C 50  
100 pF  
LM X2316  
LE 13  
LVL ADJ  
L3  
12 nH  
P2-1  
C18 0.1 uF  
C 17 100 pF  
C41  
100pF  
DATA 12  
CLK 11  
CE 10  
RX ENABL  
P3-3  
D1  
S M V12 35  
-011  
C 16  
10 pF  
32  
31  
30  
29  
28  
27  
26  
25  
fIN  
R 60  
TX ENABL  
L7*  
TBD  
L2  
12 nH  
0
P3-2  
Vcc1  
O SC in  
Control  
Logic  
R 87*  
C58*  
1
2
3
4
5
6
7
8
24  
C6  
100 pF  
G ain  
Control  
0
10 nF  
L1  
22 nH  
L9  
22 nH  
G ND  
9
J4  
23  
PA  
VPLL  
C34  
1nF  
M O D IN  
C19  
2.2 nF  
J2  
RF  
R 88  
0
C9  
pF  
C8  
15 pF  
C30  
8 pF  
U4  
22  
21  
20  
19  
18  
17  
C7  
100 pF  
8
C DF  
107B-  
A 0-001  
10.7  
L8  
4.7  
uH  
C31  
39  
pF  
R5*  
4.3  
kΩ  
C51*  
3-10 pF  
C43  
.01 uF  
C44  
22 pF  
J5  
M Hz  
REF O SC  
R30  
51  
LNA  
C20  
10 nF  
P6  
D B9  
C15  
L4  
47 nH  
10 nF  
R 27  
kΩ  
Linear  
RSSI  
12  
R 28  
12  
VC  
R7  
10  
R6*  
N/C  
C14  
k
C
10 nF  
R29  
12  
C22  
100 pF  
C23  
0.1  
B W =400 kH z  
10.7 M H z  
C21  
33 pF  
k
µ
F
F2  
SFE10.7 M A21  
R86  
0
R85  
R24  
27  
R25  
27  
R26  
9
10  
C10  
11  
12  
13  
14  
15  
16  
0 Ω  
k
k
27  
k
L5  
6.8 uH  
R9  
10  
C12  
C13  
10 nF  
10 nF  
10nF  
C54*  
100 pF  
C 52*  
100 pF  
VC C1  
C 26  
0.1 uF  
C25  
100 pF  
C24  
12 pF  
RSSI  
C 11  
10 pF  
R8  
R 83  
8.2  
k
0
R3  
51  
P1  
1
C53*  
330 pF  
L10*  
680 nH  
R81*  
560 Ω  
k
C55*  
100 pF  
R84  
0 Ω  
P1-1  
P1-3  
VC C (RF2945)  
G ND  
F1  
SFE10.7M A 21  
2
2945401-  
P3  
1
C27*  
10 nF  
3
VP LL (LM X2315)  
C57*  
100 pF  
R82*  
560  
L11*  
680 nH 330 pF  
C56*  
G ND  
TX ENABL  
2
P3-2  
P2  
1
L6*  
2.2 uH  
C28*  
120 pF  
P3-3  
P3-4  
P3-5  
3
RX ENABL  
P2-1  
P2-3  
LVL AD J  
P4  
1
4
NC  
NC  
2
G ND  
NC  
P4-1  
RSSI  
G ND  
J3  
M IX O UT  
*
Denotes com ponents that are norm ally depopulated.  
3
2
5
11  
Rev A10 000919  
11-229  
RF2945  
Evaluation Board Schematic - 868MHz  
R2  
10  
VCC  
C3  
C4  
0.1 uF  
47 pF  
VPLL  
R13  
R1  
30 k  
R11  
10  
10  
PLL LOOP BW ~5 kHz  
1
2
3
4
5
6
7
8
FL0  
Vp 16  
C2  
0.1 uF  
C1  
47 pF  
R12  
100  
C48 4.7 nF  
R14  
C32  
47 pF 0.1 uF  
C33  
CP0  
VCC2 15  
C49*  
TBD  
C47  
330 pF  
10 k  
GND  
GND  
fINb  
F
0/LD 14  
LE 13  
J1  
RX OUT  
R4  
100  
VCC  
C81 4.7 uF  
C18 0.1 uF  
C50  
47 pF  
LMX2316  
LVL ADJ  
L3  
8.2 nH  
P2-1  
P3-3  
RX ENABL  
DATA 12  
CLK 11  
CE 10  
C17 47 pF  
C41  
47 pF  
D1  
SMV1233  
-011  
C16  
3 pF  
32  
31  
30  
29  
28  
27  
26  
25  
fIN  
R60  
TX ENABL  
P3-2  
L7*  
TBD  
L2  
8.2 nH  
0
VCC1  
OSCin  
Control  
Logic  
R87*  
1
2
3
4
5
6
7
8
24  
C58*  
10 nF  
Gain  
Control  
C6  
47 pF  
0
GND  
9
J4  
23  
PA  
VPLL  
C34  
1 nF  
L1  
8.2 nH  
MOD IN  
R80  
C19  
2.2 nF  
R88  
0
50 Ω µstrip  
0
J2  
RF  
22  
21  
20  
19  
18  
U4  
CDF  
107B-  
C9  
5 pF  
C8  
5 pF  
C30*  
5 pF  
L8 C31 R5*  
C51*  
CAPVAR  
4.7  
uH  
39  
pF  
4.3  
k
C43  
C44  
.01 uF 47 pF  
A0-001  
10.7 MHz  
J5  
REF OSC  
C7  
47 pF  
R30  
51  
LNA  
C20  
10 nF  
P6  
DB9  
C15  
10 nF  
L4  
12 nH  
R27  
R7  
10  
VCC  
Linear  
RSSI  
12 k  
R28  
12 k  
R6*  
N/C  
C23  
0.1  
C22  
47 pF  
C14  
10 nF  
µ
f
17  
R29  
12 k  
BW=400 kHz  
10.7 MHz  
C21  
9 pF  
F2  
SFE10.7MA21  
R86  
R85  
0 Ω  
R24  
27 k  
R25  
R26  
27 kΩ  
9
10  
C10  
10 nF  
11  
12  
13  
C12  
10 nF  
14  
15  
16  
0
27 k  
L5  
8.2 uH  
C13  
10 nF  
C54*  
C52*  
VCC1  
100 pF  
100 pF  
R9  
10  
C26  
0.1 uF  
C25  
47 pF  
C24  
12 pF  
RSSI  
C11  
10 pF  
R8  
8.2 k  
R83  
0 Ω  
R3  
51 k  
P1  
1
C53*  
330 pF  
L10*  
680 nH  
R81*  
560 Ω  
C55*  
100 pF  
R84  
0 Ω  
P1-1  
P1-3  
V
CC (RF2945)  
F1  
SFE10.7MA21  
2
GND  
2945402-  
P3  
1
C27*  
10 nF  
3
V
PLL (LMX2315)  
C57*  
100 pF  
R82*  
560  
L11*  
680 nH 330 pF  
C56*  
GND  
TX ENABL  
P3-2  
2
P2  
1
L6*  
2.2 uH  
C28*  
120 pF  
P3-3  
P3-4  
P3-5  
3
RX ENABL P2-1  
NC  
LVL ADJ  
GND  
P4  
1
J3  
MIX OUT  
4
2
P4-1  
RSSI  
GND  
* Denotes components that are normally depopulated.  
NC  
P2-3  
3
NC  
2
5
11  
11-230  
Rev A10 000919  
RF2945  
Evaluation Board Layout - 915MHz  
Board Size 3.050” x 3.050”  
Board Thickness 0.031”, Board Material FR-4  
11  
Rev A10 000919  
11-231  
RF2945  
11  
11-232  
Rev A10 000919  
RF2945  
Evaluation Board Layout - 433MHz  
11  
Rev A10 000919  
11-233  
RF2945  
11  
11-234  
Rev A10 000919  
RF2945  
Evaluation Board Layout - 868MHz  
11  
Rev A10 000919  
11-235  
RF2945  
11  
11-236  
Rev A10 000919  
RF2945  
RSSI Output versus Temperature  
CC = 2.4 V, 915 MHz  
POUT versus Level Control and VCC  
915 MHz and Temperature = 25°C  
V
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10.0  
0.0  
-40C  
10C  
25C  
40C  
85C  
-10.0  
-20.0  
-30.0  
Vcc=2.4V  
Vcc=2.7V  
Vcc=3.0V  
Vcc=3.3V  
Vcc=3.6V  
Vcc=3.9V  
Vcc=4.2V  
Vcc=4.5V  
Vcc=4.8V  
-130.0  
-110.0  
-90.0  
-70.0  
-50.0  
-30.0  
-10.0  
10.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
Received Signal Strength (dBm)  
Level Control (V)  
TX Power Output and ICC versus Level Adjust  
at 433MHz, 3.6V VCC  
TX Power Output and ICC versus Level Adjust  
at 868MHz, 3.6V VCC  
10.0  
5.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5.0  
0.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Pout(433)  
Icc(433)  
Pout(868)  
Icc(868)  
0.0  
-5.0  
-5.0  
-10.0  
-15.0  
-20.0  
-10.0  
-15.0  
11  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
LVL ADJ (V)  
LVL ADJ (V)  
TX Power Output and ICC versus Level Adjust  
at 905MHz, 3.6V VCC  
Receive Current versus VCC  
(Excluding PLL IC)  
5.0  
0.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
Icc (433)  
Icc (868)  
Icc (905)  
Pout(905)  
Icc(905)  
-5.0  
-10.0  
-15.0  
-20.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LVL ADJ (V)  
Supply Voltage (V)  
Rev A10 000919  
11-237  
RF2945  
11  
11-238  
Rev A10 000919  

RF2945 相关器件

型号 制造商 描述 价格 文档
RF2945-000 LITTELFUSE TVS DIODE 7VWM 10VC DFN 获取价格
RF2948B RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2948BPCBA RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2948BTR13 RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2958 RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2958PCBA RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2958TR13 RFMD 2.4GHz SPREAD-SPECTRUM TRANSCEIVER 获取价格
RF2968 RFMD BLUETOOTHTM TRANSCEIVER 获取价格
RF299D0050 ADAM-TECH RF CONNECTORS 获取价格
RF299D0075 ADAM-TECH RF CONNECTORS 获取价格

RF2945 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6