RT8525 [RICHCO]

Boost Controller with Dimming Control; 升压控制器,调光控制
RT8525
型号: RT8525
厂家: RICHCO, INC.    RICHCO, INC.
描述:

Boost Controller with Dimming Control
升压控制器,调光控制

控制器
文件: 总10页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8525  
Boost Controller with Dimming Control  
General Description  
Features  
z VIN Range : 4.5V to 29V  
The RT8525 is a wide input operating voltage range step  
up controller. High voltage output and large output current  
are feasible by using an externalN-MOSFET. The RT8525  
input operating range is from 4.5V to 29V.  
z Programmable Soft-Start Time  
z Programmable Boost SW Frequency from 50kHz to  
600kHz  
z Output Over Voltage Protection  
z Output Under Voltage Protection  
z 14-Lead SOP Package  
The RT8525 is an optimized design for wide output voltage  
range applications. The output voltage of the RT8525 can  
be adjusted by the FB pin. The PWMI pin can be used as  
a digital input, allowing WLED brightness control with a  
logic-level PWM signal.  
z RoHS Compliant and Halogen Free  
Applications  
z LCD TV, Monitor Display Backlight  
Ordering Information  
RT8525  
z LEDDriverApplication  
Package Type  
S : SOP-14  
Pin Configurations  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
(TOP VIEW)  
Note :  
14  
VDC  
VIN  
COMP  
SS  
FSW  
AGND  
PWMI  
DRV  
PGND  
EN  
ISW  
OOVP  
FB  
Richtek products are :  
2
3
4
5
6
7
13  
12  
11  
10  
9
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
8
FAULT  
Marking Information  
SOP-14  
RT8525GS : Product Number  
RT8525  
GSYMDNN  
YMDNN : Date Code  
Typical Application Circuit  
L1  
33µH  
D1  
V
V
50V  
IN  
OUT  
24V  
C
C
OUT  
IN  
RT8525  
100µF x 2  
100µF  
14  
11  
2
1
VIN  
M1  
DRV  
R
SLP  
C
VIN  
2.4k  
1µF  
VDC  
ISW  
C
1µF  
DC  
R
S
50m  
3
COMP  
R
13  
FB1  
117k  
PGND  
C
C2  
R
C
9
7
33k  
C
FB  
5
4
PWMI  
PWMI  
12V  
R
3k  
C1  
FSW  
SS  
FB2  
R
FLT  
27nF  
R
150k  
OVP1  
R
100k  
SW  
8
FAULT  
OOVP  
56k  
C
SS  
10  
0.33µF  
R
OVP2  
6k  
6
C
12  
OVP  
AGND  
Chip Enable  
EN  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8525-01 March 2012  
www.richtek.com  
1
RT8525  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
2
3
4
VDC  
Output of Internal Pre-Regulator.  
IC Power Supply.  
VIN  
COMP  
SS  
Compensation for Error Amplifier. Connect a compensation network to ground.  
External Capacitor to Adjust Soft-Start Time.  
Frequency Adjust Pin. This pin allows setting the switching frequency with a resistor  
from 50kHz to 600kHz.  
5
FSW  
6
7
AGND  
PWMI  
Analog Ground.  
External Digital Input for Dimming Function.  
Open Drain Output for Fault Detection.  
Feedback to Error Amplifier Input.  
8
FAULT  
FB  
9
10  
OOVP  
Sense Output Voltage for Over Voltage Protection and Under Voltage Protection.  
External MOSFET Switch Current Sense Pin. Connect the current sense resistor  
between the external N-MOSFET switch and ground.  
11  
ISW  
12  
13  
14  
EN  
Chip Enable (Active High).  
PGND  
DRV  
Power Ground of Boost Controller.  
Drive Output for the N-MOSFET.  
Function Block Diagram  
FSW  
+
-
0.1V  
2.5V  
VIN  
UVLO  
OTP  
OOVP/OUVP  
Logic  
OOVP  
DRV  
+
-
VDC  
12V LDO  
FAULT  
Protection  
OSC  
S
R
Q
Q
FAULT  
+
OC  
EN  
PWMI  
PGND  
AGND  
0.4V  
-
Blanking  
ISW  
V
OS  
+
-
-
PWM  
Controller  
+
1.25V  
EA  
FB  
-
COMP  
4µA  
SS  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8525-01 March 2012  
www.richtek.com  
2
RT8525  
Absolute Maximum Ratings (Note 1)  
z VINtoGND------------------------------------------------------------------------------------------------------------------ 0.3V to 32V  
z VDC, DRV, FAULT toGND----------------------------------------------------------------------------------------------- 0.3V to 13.2V  
z EN, COMP, SS, FSW, FB, OOVP, ISW, PWMI to GND--------------------------------------------------------- 0.3V to 6V  
z Power Dissipation, PD @ TA = 25°C  
SOP-14 ---------------------------------------------------------------------------------------------------------------------- 1.000W  
z Package Thermal Resistance (Note 2)  
SOP-14 , θJA ---------------------------------------------------------------------------------------------------------------- 100°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM -------------------------------------------------------------------------------------------------------------------------- 2kV  
MM---------------------------------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 4.5V to 29V  
z Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 21V, VOUT = 50V, TA = 25°C, unless otherwise specified)  
Parameter  
Input Power Supply  
Quiescent Current  
Shutdown Current  
Symbol  
Test Conditions  
Min Typ Max Unit  
I
No Switching, R = 56kΩ  
--  
--  
1.3  
10  
2
mA  
Q
SW  
I
V
EN  
= 0V  
--  
μA  
SHDN  
Under Voltage Lockout  
Threshold  
Under Voltage Lockout  
Hysteresis  
V
V
IN  
Rising  
--  
--  
3.8  
--  
--  
V
UVLO  
ΔV  
500  
mV  
UVLO  
12V Regulator  
13.5V < V < 16V, 1mA < I  
< 100mA  
LOAD  
IN  
Regulator Output Voltage  
V
11.4 12 12.6  
V
16V < V < 20V, 1mA < I  
< 50mA  
LOAD  
DC  
IN  
20V < V < 29V, 1mA < I  
< 20mA  
LOAD  
IN  
Dropout Voltage  
V
V
V , V = 12V, I = 100mA  
LOAD  
--  
--  
500  
270  
--  
--  
mV  
mA  
DROP  
IN  
DC IN  
Short-Circuit Current Limit  
Control Input  
I
VDC Short to GND  
SC  
Logic-High V  
2
--  
--  
--  
--  
5
--  
0.8  
--  
EN Threshold  
Voltage  
IH  
IL  
V
Logic-Low  
V
I
EN Sink Current  
V
EN  
= 5V  
μA  
IH  
Sleeping  
Mode  
Shutdown  
Mode  
t
t
R
= 56kΩ, EN = L, 12V Regular Shutdown 55  
--  
--  
--  
--  
ms  
SLEEP  
SHDN  
SW  
SW  
Shutdown Delay  
R
= 56kΩ, EN = L, IC Shutdown  
110  
ms  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
3
DS8525-01 March 2012  
RT8525  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Unit  
Boost Controller  
Switching Frequency  
Minimum On-Time  
Maximum Duty  
f
t
R
= 56kΩ  
SW  
--  
--  
200  
250  
--  
--  
--  
--  
kHz  
ns  
%
SW  
MON  
D
Switching  
90  
MAX  
Feedback Voltage  
Slope Compensation  
V
I
1.225 1.25 1.275  
V
FB  
Peak Magnitude of Slope  
Compensation Current  
--  
3
50  
4
--  
5
μA  
μA  
SLOPE, PK  
Soft-Start  
Soft-Start Current  
Gate Driver  
I
SS  
R
R
I
I
= 100mA (N-MOSFET)  
= 100mA (P-MOSFET)  
SOURCE  
--  
--  
--  
--  
--  
--  
1
1.5  
2.2  
2.55  
6
--  
--  
--  
--  
--  
--  
Ω
Ω
DS(ON)_N  
SINK  
DRV On-Resistance  
DS(ON)_P  
Peak Sink Current  
Peak Source Current  
Rise Time  
I
I
t
t
C
C
C
C
= 1nF  
= 1nF  
= 1nF  
= 1nF  
A
PEAKsk  
LOAD  
LOAD  
LOAD  
LOAD  
A
PEAKsr  
ns  
ns  
r
f
Fall Time  
5
PWM Dimming Control  
PWMI  
Threshold  
Logic-Low  
Voltage  
Logic-High  
V
V
2
--  
--  
--  
PWMI_H  
PWMI_L  
V
--  
0.8  
Protection Function  
OCP Threshold  
V
V
V
Including Slope Compensation Magnitude  
--  
0.4  
--  
V
V
V
OCP  
OVP  
UVP  
V
V
OVP Threshold  
UVP Threshold  
2.375 2.5 2.625  
OUT  
--  
--  
0.1  
--  
--  
OUT  
Thermal Shutdown  
Temperature  
Thermal Shutdown  
Hysteresis  
T
150  
°C  
°C  
SD  
ΔT  
--  
50  
--  
SD  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a low effective thermal conductivity single-layer test board per JEDEC 51-3.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions..  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8525-01 March 2012  
www.richtek.com  
4
RT8525  
Typical Operating Characteristics  
Quiescent Current vs. Temperature  
Quiescent Current vs. Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
No Switching  
24 29  
No Switching  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
4
9
14  
19  
Temperature (°C)  
Input Voltage (V)  
Feedback Voltage vs. Input Voltage  
Feedback Voltage vs. Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
4
9
14  
19  
24  
29  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Input Voltage (V)  
Switching Frequency vs. Temperature  
Boost Efficiency vs. Load Current  
300  
260  
220  
180  
140  
100  
100  
90  
80  
70  
60  
50  
RSW = 56kΩ  
VIN = 24V, VOUT = 50V  
1.2 1.6 2  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.4  
0.8  
Temperature (°C)  
Load Current (A)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
DS8525-01 March 2012  
5
RT8525  
Applications Information  
The RT8525 is a wide input operating voltage range step  
up controller. High voltage output and large output current  
are feasible by using an external N-MOSFET. The  
protection functions include output over voltage, output  
under voltage, over temperature and current limiting  
protection.  
VIN = 24V, VOUT = 50V, COUT = 100μF x 2, L1 = 33μH,  
while the recommended value for compensation is as  
follows : RC = 33kΩ, CC1 = 27nF.  
Soft-Start  
The soft-start of the RT8525 can be achieved by connecting  
a capacitor from the SS pin toGND. The built-in soft-start  
circuit reduces the start-up current spike and output  
voltage overshoot. The external capacitor charged by an  
internal 4μAconstant charging current determines the soft-  
start time. The SS pin limits the rising rate of the COMP  
pin voltage and thereby limits the peak switch current.  
The soft-start interval is set by the soft-start capacitor  
Boost Output Voltage Setting  
The regulated output voltage is set by an external resistor  
divider according to the following equation :  
RFB1  
RFB2  
VOUT = VFB × 1+  
, where VFB = 1.25V (typ.)  
The recommended value of RFB2 should be at least 1kΩ  
for saving sacrificing. Moreover, placing the resistor divider  
as close as possible to the chip can reduce noise  
sensitivity.  
according to the following equation :  
5
t
C ×5×10  
SS  
SS  
A typical value for the soft-start capacitor is 0.33μF. The  
soft-start capacitor is discharged when EN voltage falls  
below its threshold after shutdown delay or UVLO occurs.  
Boost Switching Frequency  
The RT8525 boost driver switching frequency is able to  
be adjusted by a resistor RSW ranging from 18kΩ to  
220kΩ. The following figure illustrates the corresponding  
switching frequency within the resistor range.  
Slope Compensation and Current Limiting  
A slope compensation is applied to avoid sub-harmonic  
oscillation in current-mode control. The slope  
compensation voltage is generated by the internal ramp  
Switching Frequency vs. RSW  
600  
current flow through a slope compensation resistor RSLP  
.
500  
400  
300  
200  
100  
0
The inductor current is sensed by the sensing resistor  
RS. Both of them are added and presented on the ISW  
pin. The internal ramp current is rising linearly form zero  
at the beginning of each switching cycle to 50μA in  
maximum on-time of each cycle. The slope compensation  
resistor RSLP can be calculated by the following equation :  
V
V ×R  
IN S  
(
>
)
OUT  
RSLP  
2×L×50μ×fSW  
where RS is current sensing resistor, L is inductor value,  
and fSW is boost switching frequency.  
0
50  
100  
150  
200  
250  
RSW (k )  
Ω
The current flow through inductor during charging period  
is detected by a sensing resistor RS. Besides, the slope  
compensation voltage also attributes magnitude to ISW.  
As the voltage at the ISW pin is over 0.4V, the DRV will  
be pulled low and turn off the external N-MOSFET. So  
that the inductor will be forced to leave charging stage  
and enter discharging stage to prevent over current. The  
current limiting can be calculated by the following equation:  
Figure 1. Boost Switching Frequency  
Boost Loop Compensation  
The voltage feedback loop can be compensated by an  
external compensation network consisted of RC, CC1 and  
CC2. Choose RC to set high frequency gain for fast  
transient response. Select CC1 and CC2 to set the zero  
and pole to maintain loop stability. For typical application,  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8525-01 March 2012  
www.richtek.com  
6
RT8525  
0.4 DMAX ×RSLP ×50μ  
be under 0.25V. Then the protection function will perform  
action 2 to turn off the driver. When protection function is  
released, the RT8525 will re-start.  
RS  
<
IL, PK  
where IL, PK is peak inductor current, andDMAX is maximum  
duty.  
On the other hand, if the triggered protection is OOVP,  
the voltage at node A will be decided by voltage divider  
composed of RFLT and the internal 8kΩ resistor. This  
voltage must be designed between 0.25V and 1.25V by  
choosing RFLT appropriately. Once the OOVP turns on the  
Switch 2, the divided FAULT voltage will activate action 1  
to turn off the driver without resetting soft-start. Therefore,  
when protection function OOVP is released, the RT8525  
will be in normal operation.  
Output Over Voltage Protection  
The output voltage can be clamped at the voltage level  
determined by the following equation :  
ROVP1  
ROVP2  
VOUT (OOVP) = VOOVP × 1+  
,
where VOOVP = 2.5V (typ.)  
where ROVP1 and ROVP2 are the voltage divider connected  
to the OOVP pin.  
Power MOSFET Selection  
Fault Protection  
For the applications operating at high output voltage,  
switching losses dominate the overall power loss.  
Therefore, the power N-MOSFET switch is typically  
chosen for drain voltage, VDS, rating and low gate charge.  
Consideration of switch on-resistance RDS(ON) is usually  
secondary. The VDC regulator in the RT8525 has a fixed  
output current limit to protect the IC and provide 12VDRV  
voltage forN-MOSFET switch gate driver.  
The FAULT pin will be pulled low once a protection is  
triggered, and a suitable pulled-high RFLT is required. The  
suggested RFLT is 100kΩ if the pulled-high voltage was  
12V. The following figure illustrates the fault protection  
function block. If one of the OUVP and OTP occurs, the  
switch 1 will be turned on, and the voltage at node A will  
12V  
R
FLT  
100k  
FAULT  
+
-
+
+
8k  
Action 1  
Node A Comparator 1  
1.25V  
0.25V  
OUVP, OTP  
OOVP  
+
Action 2  
-
Switch 1  
Switch 2  
Comparator 2  
Figure 2. Fault Protection Function Block  
Inductor Selection  
fsw is the operating frequency,  
The boundary value of the inductance L between  
Discontinuous Conduction Mode (DCM) and Continuous  
Conduction Mode (CCM) can be approximated by the  
following equation :  
IOUT is the sum of current from all LED strings,  
and D is the duty cycle calculated by the following  
equation :  
V
V  
IN  
OUT  
OUT  
V
D =  
2
D× 1D × V  
(
)
OUT  
L =  
The boost converter operates inDCM over the entire input  
voltage range if the inductor value is less than the boundary  
value L. With an inductance greater than L, the converter  
operates in CCM at the minimum input voltage and may  
transit to DCM at higher voltages. The inductor must be  
2×f  
×I  
SW OUT  
where  
VOUT is the maximum output voltage,  
VIN is the minimum input voltage,  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
7
DS8525-01 March 2012  
RT8525  
selected with a saturated current rating greater than the  
peak current provided by the following equation :  
ΔI  
L
V
×I  
VIN×D×T  
2×L  
Input Current  
OUT OUT  
Inductor Current  
I
=
+
LPK  
η × V  
IN  
where η is the efficiency of the power converter.  
Output Current  
Diode Selection  
Time  
Output Ripple  
(1-D)T  
S
Schottky diodes are recommended for most applications  
because of their fast recovery time and low forward voltage.  
The power dissipation, reverse voltage rating and pulsating  
peak current are the important parameters for Schottky  
diode selection. Make sure that the diode's peak current  
rating exceeds ILPK, and reverse voltage rating exceeds  
the maximum output voltage.  
Voltage (ac)  
Time  
ΔV  
OUT1  
Figure 3. The Output Ripple Voltage without the  
Contribution of ESR  
Thermal Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
Capacitor Selection  
Output ripple voltage is an important index for estimating  
the performance. This portion consists of two parts, one  
is the product of input current and ESR of output capacitor,  
another part is formed by charging and discharging  
process of output capacitor. Refer to figure 3, evaluate  
ΔVOUT1 by ideal energy equalization. According to the  
definition of Q, the Q value can be calculated as following  
equation :  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
V
1
2
1
2
1
2
⎞ ⎛  
+ I  
IN  
Q =  
×
I
IN  
+
ΔI I  
ΔI I  
L OUT  
×
L
OUT  
IN  
⎟ ⎜  
⎠ ⎝  
V
OUT  
thermal resistance.  
1
×
= C  
× ΔV  
OUT OUT1  
f
SW  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
SOP-14 packages, the thermal resistance, θJA, is 100°C/  
W on a standard JEDEC 51-3 single-layer thermal test  
board. The maximum power dissipation at TA = 25°C can  
be calculated by the following formula :  
where fSW is the switching frequency, and ΔIL is the  
inductor ripple current. Move COUT to the left side to  
estimate the value of ΔVOUT1 as the following equation :  
D×I  
OUT  
×f  
ΔV  
=
OUT1  
η ×C  
OUT SW  
Finally, by taking ESR into consideration, the overall output  
ripple voltage can be determined as the following  
equation :  
PD(MAX) = (125°C 25°C) / (100°C/W) = 1.000W for  
SOP-14 package  
D×I  
OUT  
×f  
ΔV  
= I ×ESR+  
IN  
OUT  
η×C  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curve in Figure 4 allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
OUT SW  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8525-01 March 2012  
www.richtek.com  
8
RT8525  
Layout Considerations  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Single-Layer PCB  
PCB layout is very important for designing switching power  
converter circuits. The following layout guides should be  
strictly followed for best performance of the RT8525.  
` The power components L1, D1, CIN, COUT M1 and RS  
,
must be placed as close as possible to reduce current  
loop. The PCB trace between power components must  
be as short and wide as possible.  
` Place components RFB1, RFB2, ROVP1 and ROVP2 close  
to IC as possible. The trace should be kept away from  
the power loops and shielded with a ground trace to  
prevent any noise coupling.  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 4. Derating Curve of Maximum PowerDissipation  
` The compensation circuit should be kept away from  
the power loops and should be shielded with a ground  
trace to prevent any noise coupling. Place the  
compensation components to the COMP pin as close  
as possible, no matter the compensation is RC, CC1 or  
CC2.  
Place the power components as close as possible. The traces  
should be wide and short especially for the high-current loop.  
V
IN  
The compensation circuit  
should be kept away from  
the power loops and should  
be shielded with a ground  
trace to prevent any noise  
PGND  
V
V
IN  
OUT  
D1  
L1  
C
IN  
C
coupling.  
OUT  
14  
VDC  
VIN  
COMP  
DRV  
PGND  
EN  
ISW  
OOVP  
FB  
M1  
2
3
4
5
6
7
13  
12  
11  
10  
9
PGND  
R
S
AGND is suggested  
that connect to PGND  
from the sense resistor  
R
SLP  
R
SS  
FSW  
AGND  
PWMI  
C
R
C
OVP2  
C2  
C
C1  
R
for better stability.  
S
R
OVP1  
OUT  
AGND  
R
FB2  
8
FAULT  
R
FB1  
V
The feedback voltage divider resistors must near the  
feedback pin. The divider center trace must be  
shorter and avoid the trace near any switching nodes.  
Figure 5. PCB Layout Guide  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
DS8525-01 March 2012  
9
RT8525  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
8.738  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.198  
1.270  
Min  
Max  
0.344  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
A
B
C
D
F
H
I
8.534  
3.810  
1.346  
0.330  
1.194  
0.178  
0.102  
5.791  
0.406  
0.336  
0.150  
0.053  
0.013  
0.047  
0.007  
0.004  
0.228  
0.016  
J
M
14Lead SOP Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS8525-01 March 2012  
www.richtek.com  
10  

相关型号:

RT8525D

Current Mode Boost Controller
RICHTEK

RT8532-10-4M0

Current-compensated Chokes
Schaffner

RT8532-12-3M6

Current-compensated Chokes
Schaffner

RT8532-16-3M0

Current-compensated Chokes
Schaffner

RT8532-20-2M5

Current-compensated Chokes
Schaffner

RT8532-6-6M0

Current-compensated Chokes
Schaffner

RT8532-8-4M8

Current-compensated Chokes
Schaffner

RT8532A

暂无描述
RICHTEK

RT8541

暂无描述
RICHTEK

RT8541A

暂无描述
RICHTEK

RT8547

暂无描述
RICHTEK

RT8560

High Voltage 4 Channel LED Driver
RICHTEK