C3225X5R0J476M [RICHTEK]

2A, 18V, 800kHz Synchronous Step-Down Converter; 2A , 18V , 800kHz的同步降压型转换器
C3225X5R0J476M
型号: C3225X5R0J476M
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

2A, 18V, 800kHz Synchronous Step-Down Converter
2A , 18V , 800kHz的同步降压型转换器

转换器
文件: 总15页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT7247C  
2A, 18V, 800kHz Synchronous Step-Down Converter  
General Description  
Features  
z
1.5% High Accuracy Reference Voltage  
The RT7247C is a high efficiency, monolithic synchronous  
step-down DC/DC converter that can deliver up to 2A  
output current from a 4.5V to 18V input supply. The  
RT7247C's current mode architecture and external  
compensation allow the transient response to be  
optimized over a wide input range and loads. Cycle-by-  
cycle current limit provides protection against shorted  
outputs, and soft-start eliminates input current surge during  
start-up. The RT7247C also provides under voltage  
protection and thermal shutdown protection. The low  
current (<3μA) shutdown mode provides output  
disconnection, enabling easy power management in  
battery-powered systems. The RT7247C is available in  
an SOP-8 (Exposed Pad) package.  
z 4.5V to 18V Input Voltage Range  
z 2A Output Current  
z Integrated N-MOSFET Switches  
z Current Mode Control  
z Fixed Frequency Operation : 800kHz  
z Output Adjustable from 0.8V to 12V  
z Stable with Low ESR Ceramic Output Capacitors  
z Up to 95% Efficiency  
z Programmable Soft-Start  
z Cycle-by-Cycle Over Current Limit  
z Input Under Voltage Lockout  
z Output Under Voltage Protection  
z Thermal Shutdown Protection  
z RoHS Compliant and Halogen Free  
Marking Information  
Applications  
RT7247CHGSP : Product Number  
z Wireless AP/Router  
RT7247CH  
GSPYMDNN  
YMDNN : Date Code  
z Set-Top-Box  
z Industrial and Commercial Low Power Systems  
z LCDMonitors and TVs  
z Green Electronics/Appliances  
z Point of Load Regulation of High-PerformanceDSPs  
Simplified Application Circuit  
BOOT  
RT7247C  
VIN  
V
IN  
C
BOOT  
C
IN  
L
SW  
V
OUT  
Chip Enable  
R1  
R2  
EN  
SS  
C
OUT  
FB  
C
SS  
C
C
R
C
GND  
COMP  
C
P
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
1
®
RT7247C  
Ordering Information  
RT7247C  
Pin Configurations  
(TOP VIEW)  
Package Type  
SP : SOP-8 (Exposed Pad-Option 2)  
8
7
6
5
BOOT  
VIN  
SS  
2
3
4
EN  
GND  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
SW  
COMP  
FB  
9
GND  
H : UVP Hiccup  
SOP-8 (Exposed Pad)  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Bootstrap for High Side Gate Driver. Connect a 0.1μF or greater ceramic  
capacitor from BOOT to SW pins.  
1
BOOT  
Power Input. The Input Voltage range is from 4.5V to 18V. Must bypass with a  
suitable large ceramic capacitor.  
2
3
VIN  
SW  
Switch Node. Connect this pin to an external L-C filter.  
4,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
GND  
9 (Exposed Pad)  
Feedback Input. It is used to regulate the output of the converter to a set value  
via an external resistive voltage divider.  
5
6
7
8
FB  
Compensation Node. COMP is used to compensate the regulation control  
loop. Connect a series RC network from COMP to GND. In some cases, an  
additional capacitor from COMP to GND is required.  
COMP  
EN  
Enable Input. A logic high enables the converter; a logic low forces the IC into  
shutdown mode reducing the supply current to less than 3μA.  
Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor  
from SS to GND to set the soft-start period. A 0.1μF capacitor sets the  
soft-start period to 13.5ms.  
SS  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
2
®
RT7247C  
Function Block Diagram  
VIN  
Internal  
Regulator  
Oscillator  
Current Sense  
Amplifier  
Slope Comp  
Shutdown  
Comparator  
V
V
CC  
A
+
V
A
Foldback  
R
SENSE  
-
Control  
1.2V  
+
-
0.4V  
+
BOOT  
SW  
Lockout  
Comparator  
-
S
Q
Q
150mΩ  
130mΩ  
UV  
5kΩ  
Comparator  
-
EN  
+
R
-
+
1.8V  
Current  
GND  
Comparator  
V
CC  
6µA  
0.8V  
+
+
-
EA  
SS  
FB  
COMP  
Operation  
Foldback Control  
Internal Regulator  
Dynamically adjust the internal clock. It provides a slower  
frequency as a lower FB voltage.  
Provide internal power for logic control and switch gate  
drivers.  
UV Comparator  
Shutdown Comparator  
As FB voltage is lower than the UV voltage, it will activate  
a UV protect scheme.  
Activate internal regulator once EN input level is higher  
than the target level. Force IC to enter shutdown mode  
when the EN input level is lower than 0.4V.  
Error Amplifier  
The output voltage COMP of the error amplifier is adjusted  
by comparing FB signal with the internal reference voltage  
and SS signal.  
Lockout Comparator  
Activate the current comparator, release lock-out logic,  
and enable the switches as EN input level is higher than  
lockout threshold voltage. Otherwise, the switches still  
lock out.  
Current Sense Amplifier  
RSENSE detects the peak current of the high side switch.  
This signal is amplified by the current sense amplifier and  
added with a slope compensation signal. Then, It controls  
the switches by comparing this signal with the COMP  
voltage.  
Oscillator  
The oscillator provides internal clock and controls the  
converter's switching frequency.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
3
RT7247C  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 0.3V to 20V  
z Switch Voltage, SW ------------------------------------------------------------------------------------------------ 0.3V to (VIN + 0.3V)  
z VBOOT VSW ---------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z Other Pins Voltage ------------------------------------------------------------------------------------------------- 0.3V to 20V  
z Power Dissipation, PD @ TA = 25°C  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------- 1.333W  
z Package Thermal Resistance (Note 2)  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 75°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------- 15°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 4.5V to 18V  
z Junction Temperature Range-------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, TA = 25°C, unless otherwise specified)  
Parameter  
Shutdown Supply Current  
Supply Current  
Symbol  
Test Conditions  
Min  
--  
Typ  
0.5  
0.8  
0.8  
Max  
3
Unit  
μA  
mA  
V
VEN = 0V  
VEN = 3V, VFB = 0.9V  
--  
1.2  
Reference Voltage  
VREF  
GEA  
4.5V VIN 18V  
0.788  
0.812  
Error Amplifier  
ΔIC = ±10μA  
--  
--  
--  
940  
150  
130  
--  
--  
--  
μA/V  
mΩ  
Transconductance  
High Side Switch  
On-Resistance  
Low Side Switch  
On-Resistance  
High Side Switch Leakage  
Current  
RDS(ON)1  
RDS(ON)2  
mΩ  
VEN = 0V, VSW = 0V  
--  
--  
--  
--  
--  
0
10  
--  
μA  
A
Upper Switch Current Limit  
Min. Duty Cycle, VBOOT VSW = 4.8V  
5.1  
3.7  
800  
270  
COMP to Current Sense  
Transconductance  
GCS  
--  
A/V  
kHz  
kHz  
Oscillation Frequency  
fOSC1  
fOSC2  
--  
Short Circuit Oscillation  
Frequency  
VFB = 0V  
--  
Maximum Duty Cycle  
Minimum On-Time  
DMAX  
tON  
VFB = 0.7V  
--  
--  
84  
--  
--  
%
100  
ns  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS7247C-02 September 2012  
RT7247C  
Parameter  
Logic-High VIH  
Logic-Low VIL  
Symbol  
Test Conditions  
Min  
2
Typ  
--  
Max  
18  
Unit  
EN Input Threshold  
Voltage  
V
--  
--  
0.4  
Input Under Voltage Lockout  
Threshold  
Input Under Voltage Lockout  
Hysteresis  
VUVLO  
VIN Rising  
3.8  
--  
4.2  
4.5  
--  
V
ΔVUVLO  
320  
mV  
Soft-Start Current  
Soft-Start Period  
Thermal Shutdown  
ISS  
tSS  
TSD  
VSS = 0V  
--  
--  
--  
6
--  
--  
--  
μA  
ms  
°C  
CSS = 0.1μF  
13.5  
150  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
5
RT7247C  
Typical Application Circuit  
1
3
V
2
IN  
VIN  
BOOT  
RT7247C  
4.5V to 18V  
C
C
BOOT  
0.1µF  
IN  
L
10µF x 2  
6.8µH  
V
3.3V  
OUT  
SW  
Chip Enable  
R1  
7
8
EN  
SS  
75k  
C
OUT  
22µF x 2  
5
6
FB  
C
C
C
0.1µF  
R
C
SS  
R2  
3.3nF  
17k  
24k  
4, 9 (Exposed Pad)  
COMP  
GND  
C
P
Open  
Table 1. Suggested Components Selection  
VOUT (V) R1 (kΩ) R2 (kΩ) RC (kΩ) CC (nF)  
L (μH)  
15  
COUT (μF)  
8
27  
62  
3
11.8  
24  
40  
25  
17  
13  
7
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
5
10  
3.3  
2.5  
1.5  
1.2  
1
75  
6.8  
4.7  
3.6  
2
25.5  
10.5  
12  
12  
12  
24  
6
3
12  
5
2
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS7247C-02 September 2012  
RT7247C  
Typical Operating Characteristics  
Output Voltage vs. Input Voltage  
Efficiency vs. Output Current  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
100  
90  
VIN = 4.5V  
VIN = 12V  
VIN = 17V  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V  
1.5 2  
VIN = 4.5V to 17V  
4
6
8
10  
12  
14  
16  
18  
0
0.5  
1
Input Voltage (V)  
Output Current (A)  
Output Voltage vs. Temperature  
Output Voltage vs. Output Current  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
VIN = 12V  
VIN = 17V  
VIN = 12V, VOUT = 3.3V  
VOUT = 3.3V  
1.75 2  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.25 0.5 0.75  
1
1.25 1.5  
Temperature (°C)  
Output Current (A)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
820  
810  
800  
790  
780  
770  
760  
750  
740  
800  
790  
780  
770  
760  
750  
740  
730  
720  
VIN = 17V  
VIN = 12V  
VIN = 4.5V  
VIN = 4.5V to 17V, VOUT = 3.3V, IOUT = 0A  
VOUT = 3.3V, IOUT = 0A  
4
6
8
10  
12  
14  
16  
18  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (°C)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
7
RT7247C  
Output Current Limit vs. Temperature  
UVLO Threshold vs. Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
Rising  
Falling  
VIN = 12V, VOUT = 3.3V  
50 75 100 125  
-50  
-25  
0
25  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Load Transient Response  
Load Transient Response  
VOUT  
(200mV/Div)  
VOUT  
(200mV/Div)  
IOUT  
(1A/Div)  
IOUT  
(1A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 1A to 2A  
VIN = 12V, VOUT = 3.3V, IOUT = 0A to 2A  
Time (100μs/Div)  
Time (100μs/Div)  
Output Ripple Voltage  
Output Ripple Voltage  
VOUT  
(5mV/Div)  
VOUT  
(5mV/Div)  
VSW  
(10V/Div)  
VSW  
(10V/Div)  
IL  
IL  
(1A/Div)  
(1A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 1A  
Time (500ns/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (500ns/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS7247C-02 September 2012  
RT7247C  
Power On from VIN  
Power Off from VIN  
VIN  
(5V/Div)  
VIN  
(5V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (10ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (25ms/Div)  
Power On from EN  
Power Off from EN  
VEN  
(5V/Div)  
VEN  
(5V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (10ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 2A  
Time (10ms/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
9
RT7247C  
Application Information  
Output Voltage Setting  
Soft-Start  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
The RT7247C provides soft-start function. The soft-start  
function is used to prevent large inrush current while  
converter is being powered-up. The soft-start timing can  
be programmed by the external capacitor between SS and  
GND. An internal current source ISS (6μA) charges an  
external capacitor to build a soft-start ramp voltage. The  
VFB voltage will track the internal ramp voltage during soft-  
start interval. The typical soft-start time is calculated as  
V
OUT  
R1  
FB  
RT7247C  
GND  
R2  
follows :  
0.8×C  
SS , if CSS capacitor  
Figure 1. Output Voltage Setting  
Soft-Start time tSS  
=
ISS  
0.8×0.1μ  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
is 0.1μF, then soft-start time =  
13.5ms  
6μ  
R1  
R2  
Chip Enable Operation  
VOUT = VREF 1+  
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shut down the device. During shutdown  
mode, the RT7247C quiescent current drops to lower than  
3μA. Driving the EN pin high (>2V, <18V) will turn on the  
device again. For external timing control, the EN pin can  
also be externally pulled high by adding a REN resistor  
and CEN capacitor from the VIN pin (see Figure 3).  
Where VREF is the reference voltage (0.8V typ.).  
External Bootstrap Diode  
Connect a 0.1μF low ESR ceramic capacitor between the  
BOOT pin and SW pin. This capacitor provides the gate  
driver voltage for the high side MOSFET.  
It is recommended to add an external bootstrap diode  
between an external 5V and BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
ratio is higher than 65% .The bootstrap diode can be a  
low cost one such as IN4148 or BAT54. The external 5V  
can be a 5V fixed input from system or a 5V output of the  
RT7247C. Note that the external boot voltage must be  
lower than 5.5V  
EN  
R
EN  
V
IN  
EN  
RT7247C  
C
EN  
GND  
Figure 3. Enable Timing Control  
An external MOSFET can be added to implement digital  
control on the EN pin when no system voltage above 2V  
is available, as shown in Figure 4. In this case, a 100kΩ  
pull-up resistor, REN, is connected between VIN and the  
EN pin. MOSFET Q1 will be under logic control to pull  
down the EN pin.  
5V  
BOOT  
0.1µF  
RT7247C  
SW  
R
EN  
100k  
V
EN  
RT7247C  
GND  
IN  
Q1  
EN  
Figure 2. External Bootstrap Diode  
Figure 4. Digital Enable Control Circuit  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS7247C-02 September 2012  
RT7247C  
Under Voltage Protection  
Hiccup Mode  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
the highest efficiency operation. However, it requires a  
large inductor to achieve this goal.  
For the RT7247C, it provides Hiccup Mode Under Voltage  
Protection (UVP). When the VFB voltage drops below 0.4V,  
the UVP function will be triggered to shut down switching  
operation. If the UVP condition remains for a period, the  
RT7247C will retry automatically. When the UVP condition  
is removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX  
)
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
Hiccup Mode  
⎤ ⎡  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
⎥ ⎢  
L(MAX)  
⎦ ⎣  
The inductor's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
VOUT  
(2V/Div)  
ILX  
(2A/Div)  
Table 2. Suggested Inductors for Typical  
Application Circuit  
IOUT = Short  
Time (50ms/Div)  
Component  
Supplier  
TDK  
Dimensions  
(mm)  
Series  
VLF10045  
SLF12565  
10 x 9.7 x 4.5  
Figure 5. Hiccup Mode Under Voltage Protection  
TDK  
12.5 x 12.5 x 6.5  
TAIYO  
YUDEN  
NR8040  
8 x 8 x 4  
Over Temperature Protection  
The RT7247C features an Over Temperature Protection  
(OTP) circuitry to prevent from overheating due to  
excessive power dissipation. The OTP will shut down  
switching operation when junction temperature exceeds  
150°C. Once the junction temperature cools down by  
approximately 20°C, the converter will resume operation.  
To maintain continuous operation, the maximum junction  
temperature should be lower than 125°C.  
CIN and COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
approximate RMS current is given :  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
Inductor Selection  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief. Choose a capacitor  
rated at a higher temperature than required. Several  
capacitors may also be paralleled to meet size or height  
requirements in the design. For the input capacitor, two  
10μF low ESR ceramic capacitors are suggested. For the  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
V
VOUT  
OUT ⎤ ⎡  
× 1−  
⎥ ⎢  
ΔIL =  
f ×L  
V
IN  
⎦ ⎣  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
11  
RT7247C  
suggested capacitor, please refer to Table 3 for more  
details. The selection of COUT is determined by the  
required ESR to minimize voltage ripple. Moreover, the  
amount of bulk capacitance is also a key for COUT selection  
to ensure that the control loop is stable. Loop stability  
can be checked by viewing the load transient response  
as described in a later section.  
θJA is 75°C/W on the standard JEDEC 51-7 four-layers  
thermal test board. The maximum power dissipation at  
TA = 25°C can be calculated by following formula :  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W  
(min.copper area PCB layout)  
PD(MAX) = (125°C 25°C) / (49°C/W) = 2.04W  
(70mm2copper area PCB layout)  
The output ripple, ΔVOUT, is determined by :  
The thermal resistance θJA of SOP-8 (Exposed Pad) is  
determined by the package architecture design and the  
PCB layout design. However, the package architecture  
design had been designed. If possible, it's useful to increase  
thermal performance by the PCB layout copper design.  
The thermal resistance θJA can be decreased by adding  
copper area under the exposed pad of SOP-8 (Exposed  
Pad) package.  
1
ΔV  
≤ ΔI ESR +  
OUT  
L
8fC  
OUT  
The output ripple will be the highest at the maximum input  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement. Higher values,  
lower cost ceramic capacitors are now becoming available  
in smaller case sizes. Their high ripple current, high voltage  
rating and low ESR make them ideal for switching regulator  
applications. However, care must be taken when these  
capacitors are used at input and output. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. At best, this  
ringing can couple to the output and be mistaken as loop  
instability. At worst, a sudden inrush of current through  
the long wires can potentially cause a voltage spike at  
VIN large enough to damage the part.  
As shown in Figure 6, the amount of copper area to which  
the SOP-8 (Exposed Pad) is mounted affects thermal  
performance. When mounted to the standard  
SOP-8 (Exposed Pad) pad (Figure 6.a), θJA is 75°C/W.  
Adding copper area of pad under the SOP-8 (Exposed  
Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,  
increasing the copper area of pad to 70mm2 (Figure 6.e)  
reduces the θJA to 49°C/W.  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curve in Figure 7 of derating  
curves allows the designer to see the effect of rising  
ambient temperature on the maximum power dissipation  
Thermal Considerations  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
allowed.  
2.2  
Four-Layer PCB  
2.0  
1.8  
Copper Area  
1.6  
2
70mm  
50mm  
1.4  
2
2
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
30mm  
10mm  
PD(MAX) = (TJ(MAX) TA ) / θJA  
2
Min.Layout  
Where TJ(MAX) is the maximum operation junction  
temperature , TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance θJA is layout dependent. For  
SOP-8 (Exposed Pad) package, the thermal resistance  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 7. Derating Curve of Maximum PowerDissipation  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS7247C-02 September 2012  
RT7247C  
Layout Consideration  
Follow the PCB layout guidelines for optimal performance  
of the RT7247C.  
` Keep the traces of the main current paths as short and  
wide as possible.  
(a) Copper Area = (2.3 x 2.3) mm2, θJA = 75°C/W  
` Put the input capacitor as close as possible to the device  
pins (VINandGND).  
` SW node is with high frequency voltage swing and  
should be kept at small area. Keep analog components  
away from the SW node to prevent stray capacitive noise  
pick-up.  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT7247C.  
(b) Copper Area = 10mm2,θJA = 64°C/W  
` An example of PCB layout guide is shown in Figure 8  
for reference.  
(c) Copper Area = 30mm2 ,θJA = 54°C/W  
(d) Copper Area = 50mm2 ,θJA = 51°C/W  
(e) Copper Area = 70mm2 ,θJA = 49°C/W  
Figure 6. Thermal Resistance vs. CopperArea Layout  
Design  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS7247C-02 September 2012  
www.richtek.com  
13  
RT7247C  
SW  
C
V
V
GND  
GND  
IN  
IN  
The feedback components  
must be connected as close  
to the device as possible.  
R
BOOT  
EN  
C
SS  
Input capacitor must  
be placed as close  
to the IC as possible.  
C
IN  
C
C
8
7
6
5
BOOT  
VIN  
SS  
2
3
4
R
C
EN  
C
P
L
GND  
V
OUT  
SW  
COMP  
FB  
9
R1  
GND  
R2  
V
OUT  
C
OUT  
GND  
SW node is with high frequency voltage swing and should  
be kept at small area. Keep analog components away from  
the SW node to prevent stray capacitive noise pick-up  
Figure 8. PCB Layout Guide  
Table 3. Suggested Capacitors for CIN and COUT  
Location  
CIN  
Component Supplier  
MURATA  
TDK  
Part No.  
Capacitance (μF)  
Case Size  
1206  
GRM31CR61E106K  
C3225X5R1E106K  
TMK316BJ106ML  
GRM31CR60J476M  
C3225X5R0J476M  
GRM32ER71C226M  
C3225X5R1C22M  
10  
10  
10  
47  
47  
22  
22  
CIN  
1206  
CIN  
TAIYO YUDEN  
MURATA  
TDK  
1206  
COUT  
COUT  
COUT  
COUT  
1206  
1210  
MURATA  
TDK  
1210  
1210  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS7247C-02 September 2012  
RT7247C  
Outline Dimension  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS7247C-02 September 2012  
www.richtek.com  
15  

相关型号:

C3225X5R0J476M250AA

Ceramic Capacitor, Multilayer, Ceramic, 6.3V, 20% +Tol, 20% -Tol, X5R, 15% TC, 47uF, Surface Mount, 1210, CHIP, ROHS COMPLIANT
TDK

C3225X5R0J476MT

60-A, 3.3/5-V INPUT, NONISOLATED WIDE-OUTPUT ADJUST POWER MODULE
TI

C3225X5R0J686M200AC

CAP CER 68UF 6.3V X5R 1210
TDK

C3225X5R1A010BTXXXX

General Application
TDK

C3225X5R1A010WTXXXX

General Application
TDK

C3225X5R1A0R5BTXXXX

General Application
TDK

C3225X5R1A0R5WTXXXX

General Application
TDK

C3225X5R1A102BTXXXX

General Application
TDK

C3225X5R1A102WTXXXX

General Application
TDK

C3225X5R1A105KB

Ceramic Capacitors
TDK

C3225X5R1A105KT

Ceramic Capacitors
TDK

C3225X5R1A105MB

Ceramic Capacitors
TDK