GRM31CR71A106KA01 [RICHTEK]

2.25MHz 1A Synchronous Step-Down Converter; 的2.25MHz 1A同步降压转换器
GRM31CR71A106KA01
型号: GRM31CR71A106KA01
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

2.25MHz 1A Synchronous Step-Down Converter
的2.25MHz 1A同步降压转换器

转换器
文件: 总11页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT8057  
2.25MHz 1A Synchronous Step-Down Converter  
General Description  
Features  
z 2.7V to 5.5V Wide Input Operation Range  
z 2.25MHz Fixed-Frequency PWM Operation  
z Up to 1A Output Current  
The RT8057 is a high efficiency Pulse-Width-Modulated  
(PWM) step-downDC/DC converter, capable of delivering  
1Aoutput current over a wide input voltage range from 2.7V  
to 5.5V. The RT8057 is ideally suited for portable electronic  
devices that are powered from 1-cell Li-ion battery or from  
other power sources such as cellular phones, PDAs, hand-  
held devices, game console and related accessories.  
z Up to 90% Efficiency  
z 0.6V Reference Allows Low Output Voltage  
z Internal Soft-Start  
z No Schottky Diode Required  
z Internal Compensation to Reduce External  
Components  
The internal synchronous rectifier with low RDS(ON)  
dramatically reduces conduction loss at PWM mode.  
No external Schottky diode is required in practical  
applications. The RT8057 enters LowDropout Mode when  
normal Pulse -Width Mode cannot provide regulated output  
voltage by continuously turning on the upper P-MOSFET.  
The RT8057 enters shut-down mode and consumes less  
than 1μA when the EN pin is pulled low. The switching  
ripple is easily smoothed-out by small package filtering  
elements due to a fixed operating frequency of 2.25MHz.  
z Low Dropout Operation : 100% Duty Cycle  
z RoHS Compliant and Halogen Free  
Applications  
z Portable Instruments  
z Game Console and Accessories  
z Microprocessors and DSP Core Supplies  
z Cellular Phones  
z Wireless and DSL Modems  
z PC Cards  
The RT8057 is available in a smallWDFN-6SL2x2 package.  
Ordering Information  
Pin Configurations  
(2)  
RT8057  
(TOP VIEW)  
Taping Type ( Pin1 at Q2)  
1
2
3
6
5
4
LX  
NC  
FB  
GND  
VIN  
EN  
Package Type  
QW : WDFN-6SL 2x2 (W-Type)  
7
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
WDFN-6SL 2x2  
Note :  
Marking Information  
Richtek products are :  
J7 : Product Code  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
W : Date Code  
J7W  
` Suitable for use in SnPb or Pb-free soldering processes.  
DS8057-03 November 2011  
www.richtek.com  
1
RT8057  
Typical Application Circuit  
L1  
2.2µH  
RT8057  
1
3
5
V
OUT  
2.3V  
V
IN  
LX  
FB  
VIN  
C
C
IN  
4.7µF  
OUT  
10µF  
4
R1  
C1  
10pF  
EN  
680k  
6, 7 (Exposed Pad)  
R2  
240k  
GND  
Function Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
2
3
4
5
LX  
Switch Node. Connect to the external inductor.  
No Internal Connection. Connect to GND.  
NC  
FB  
Feedback Pin. Connect to the external resistor divider.  
Chip Enable (Active High).  
EN  
VIN  
Power Input. Connect to the input capacitor.  
6,  
Power GND. The Exposed Pad must be soldered to a large PCB and connected  
to GND for maximum power dissipation.  
GND  
7 (Exposed Pad)  
Function Block Diagram  
EN  
VIN  
R
S1  
OSC &  
Shutdown  
Control  
Current  
Limit  
Detector  
Slope  
Compensation  
Current  
Sense  
Error  
Control  
Logic  
Driver  
Amplifier  
FB  
LX  
PWM  
Comparator  
R
C
R
S2  
COMP  
UVLO &  
Power Good  
Detector  
GND  
V
REF  
www.richtek.com  
2
DS8057-03 November 2011  
RT8057  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------------ 6.5V  
z PowerDissipation, PD @ TA = 25°C  
WDFN-6SL 2x2 ------------------------------------------------------------------------------------------------------------ 0.606W  
z Package Thermal Resistance (Note 2)  
WDFN-6SL 2x2, θJA ------------------------------------------------------------------------------------------------------- 165°C/W  
WDFN-6SL 2x2, θJC ------------------------------------------------------------------------------------------------------ 8.2°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM -------------------------------------------------------------------------------------------------------------------------- 2kV  
MM---------------------------------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------------ 2.7V to 5.5V  
z Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 3.6V, TA = 25°C unless otherwise specified)  
Parameter  
Output Current  
Symbol  
Test Conditions  
= 2.7V to 5.5V  
IN  
Min  
--  
Typ  
--  
Max Unit  
I
V
I
1
--  
A
OUT  
Quiescent Current  
IQ  
= 0mA  
--  
81  
μA  
OUT  
2  
2.5  
2
--  
2
Reference Voltage  
VREF  
%
Note 5  
Rising  
--  
2.5  
2.4  
--  
V
2.2  
0.2  
0.1  
2.25  
--  
V
V
IN  
Under Voltage Lockout Threshold V  
UVLO  
Hysteresis  
--  
Shutdown Current  
ISHDN  
--  
1
μA  
MHz  
V
Switching Frequency  
--  
--  
Logic-High  
V
V
1
V
IN  
IH  
IL  
EN Threshold  
Voltage  
Logic-Low  
--  
--  
0.4  
--  
V
Thermal Shutdown Temperature  
T
SD  
--  
150  
250  
200  
°C  
High Side  
Switch On  
R
R
I
= 0.2A  
= 0.2A  
--  
--  
mΩ  
mΩ  
DS(ON)_H SW  
Resistance  
Low Side  
I
--  
--  
DS(ON)_L SW  
Peak Current Limit  
ILIM  
1.1  
--  
1.5  
--  
2
1
A
%/V  
%
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Start-Up Time  
V
= 2.7V to 5.5V  
IN  
0mA < I  
< 0.6A  
--  
--  
1
OUT  
t
ss  
Guaranteed by Design  
200  
300  
400  
μs  
DS8057-03 November 2011  
www.richtek.com  
3
RT8057  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may  
remain possibility to affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a low-effective thermal conductivity test board of JEDEC 51-3  
thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. The reference voltage accuracy is 2.5% at recommended ambient temperature range, guaranteed by design.  
www.richtek.com  
4
DS8057-03 November 2011  
RT8057  
Typical Operating Characteristics  
Output Voltage vs. Input Voltage  
Efficiency vs. Output Current  
2.38  
2.36  
2.34  
2.32  
2.30  
2.28  
2.26  
2.24  
2.22  
100  
VIN = 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.3V  
VOUT = 2.3V, IOUT = 0A  
VOUT = 2.3V  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Output Current (A)  
Frequency vs. Input Voltage  
Frequency vs. Temperature  
2.40  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
VIN = 3.3V  
VIN = 5V  
VIN = 5V, VOUT = 2.3V,  
IOUT = 0.2A  
VOUT = 2.3V, IOUT = 0.2A  
50 75 100 125  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50  
-25  
0
25  
Input Voltage (V)  
Temperature (°C)  
Output Current Limit vs. Input Voltage  
Output Current Limit vs. Temperature  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
VOUT = 2.3V  
VIN = 5V, VOUT = 2.3V  
-50  
-25  
0
25  
50  
75  
100  
125  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Temperature (°C)  
Input Voltage (V)  
DS8057-03 November 2011  
www.richtek.com  
5
RT8057  
Reference Voltage vs. Temperature  
Output Voltage vs. Temperature  
2.35  
2.34  
2.33  
2.32  
2.31  
2.30  
2.29  
2.28  
2.27  
2.26  
2.25  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
VIN = 5V, VOUT = 2.3V,  
IOUT = 0A  
VIN = 5V, VOUT = 2.3V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Output Ripple  
Output Ripple  
VLX  
VLX  
(5V/Div)  
(5V/Div)  
VOUT  
(5mV/Div)  
VOUT  
(5mV/Div)  
VIN = 3.3V, VOUT = 2.3V,  
IOUT = 1A  
VIN = 5V, VOUT = 2.3V, IOUT = 1A  
Time (250ns/Div)  
Time (250ns/Div)  
Load Transient Response  
Load Transient Response  
VOUT  
VOUT  
(100mV/Div)  
(100mV/Div)  
IOUT  
IOUT  
(500mA/Div)  
(500mA/Div)  
VIN = 5V, VOUT = 2.3V,  
IOUT = 0A to 1A  
VIN = 5V, VOUT = 2.3V,  
IOUT = 0.4A to 1A  
Time (100μs/Div)  
Time (100μs/Div)  
www.richtek.com  
6
DS8057-03 November 2011  
RT8057  
Power On from EN  
Power Off from EN  
VIN = 5V, VOUT = 2.3V,  
IOUT = 1A  
VEN  
VEN  
(2V/Div)  
(2V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
VIN = 5V, VOUT = 2.3V,  
IOUT = 1A  
Time (100μs/Div)  
Time (100μs/Div)  
UVLO vs. Temperature  
En Threshold vs. Temperature  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
0.80  
0.78  
0.76  
0.74  
0.72  
0.70  
0.68  
0.66  
0.64  
0.62  
0.60  
Turn On  
Turn On  
Turn Off  
Turn Off  
VIN = 5V, VOUT = 2.3V  
50 75 100 125  
VOUT = 2.3V  
75 100 125  
-50  
-25  
0
25  
-50  
-25  
0
25  
50  
Temperature (°C)  
Temperature (°C)  
Output Voltage vs. Output Current  
2.34  
2.33  
2.32  
2.31  
2.30  
2.29  
2.28  
2.27  
2.26  
VIN = 5V, VOUT = 2.3V  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Output Current (A)  
DS8057-03 November 2011  
www.richtek.com  
7
RT8057  
Application Information  
Low Supply Operation  
The basic RT8057 application circuit is shown in Typical  
Application Circuit. External component selection is  
determined by the maximum load current and begins with  
the selection of the inductor value and operating frequency  
The RT8057 is designed to operate down to an input supply  
voltage of 2.7V. One important consideration at low input  
supply voltages is that the RDS(ON) of the P-Channel and  
N-Channel power switches increases. The user should  
calculate the power dissipation when the RT8057 is used  
at 100% duty cycle with low input voltages to ensure that  
thermal limits are not exceeded.  
followed by CIN and COUT  
.
Output Voltage Setting  
The output voltage is set by an external resistive divider  
according to the following equation :  
R1  
Under Voltage Protection (UVP)  
VOUT = VREF x (1+  
)
R2  
Theoutput voltage canbe continuously monitored for under  
voltage protection. When the output voltage is less than  
33% of its set voltage threshold after OCP occurs, the  
under voltage protection circuit will be triggered to auto  
re-softstart.  
where VREF equals to 0.6V typical. The resistive divider  
allows the FB pin to sense a fraction of the output voltage  
as shown in Figure 1.  
V
OUT  
R1  
Input Voltage Over Voltage protection (VIN OVP)  
FB  
RT8057  
When the input voltage (VIN) is higher than 6V, VIN OVP  
will be triggered and the IC stops switching. Once the  
input voltage drops below 6V, the IC will return to normal  
operation.  
R2  
GND  
Figure 1. Setting the Output Voltage  
Soft-Start  
Output Over Voltage Protection (VOUT OVP)  
When the output voltage exceeds more than 5% of the  
nominal reference voltage, the feedback loop forces the  
internal switches off within 50ms. Therefore, the output  
over voltage protection is automatically triggered by the  
loop.  
The RT8057 contains an internal soft-start clamp that  
gradually raises the clamp on the FB pin.  
100% Duty Cycle Operation  
When the input supply voltage decreases toward the output  
voltage, the duty cycle increases toward the maximum  
on-time. Further reduction of the supply voltage forces  
the main switch to remain on for more than one cycle,  
eventually reaching 100% duty cycle.  
Short Circuit Protection  
When the output is shorted to ground, the inductor current  
decays very slowly during a single switching cycle. A  
current runaway detector is used to monitor inductor  
current.As current increases beyond the control of current  
loop, switching cycles will be skipped to prevent current  
runaway from occurring.  
The output voltage will then be determined by the input  
voltage minus the voltage drop across the internal  
P-MOSFET and the inductor.  
Table 1. Inductors  
Component  
Supplier  
Series  
Inductance (mH)  
2.2mH  
DCR (mW)  
Current Rating (mA)  
Dimensions (mm)  
NR4018  
T2R2M  
TAIYO YUDEN  
60  
2700  
4 X 4 X 1.8  
www.richtek.com  
8
DS8057-03 November 2011  
RT8057  
CIN and COUT Selection  
current handling requirements. Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR, but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density, but it is important to only use  
types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR, but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long term reliability. Ceramic capacitors  
have excellent low ESR characteristics, but can have a  
high voltage coefficient and audible piezoelectric effects.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large ripple voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current is given by :  
V
V
IN  
OUT  
I
= I  
- 1  
RMS  
OUT(MAX)  
V
V
OUT  
IN  
This formula has a maximum at VIN = 2VOUT, where IRMS  
=
IOUT/2. This simple worst case condition is commonly used  
for design because even significant deviations do not result  
in much difference. Choose a capacitor rated at a higher  
temperature than required.  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
Several capacitors may also be paralleled to meet size or  
height requirements in the design.  
Using Ceramic Input and Output Capacitors  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response. The output ripple, DVOUT, is  
determined by :  
Higher value, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used at the input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
é
ù
ú
1
DV  
£ DI ESR +  
ê
L
OUT  
8fC  
ë
OUT û  
Theoutputripple is highest at maximuminput voltage since  
DIL increases with input voltage. Multiple capacitors placed  
in parallel may be needed to meet the ESR and RMS  
Table 2. Capacitors for CIN and COUT  
Part No. Capacitance (mF)  
Component Supplier  
MuRata  
Case Size  
1206  
GRM31CR71A475KA01  
GRM31CR71A106KA01  
4.7mF  
10mF  
MuRata  
1206  
DS8057-03 November 2011  
www.richtek.com  
9
RT8057  
Thermal Considerations  
Layout Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
Follow the PCB layout guidelines for optimal performance  
of the RT8057.  
} Connect the terminal of the input capacitor(s), CIN, as  
close as possible to the VIN pin. This capacitor provides  
the AC current into the internal power MOSFETs.  
} LX node experiences high frequency voltage swing and  
should be kept within a small area. Keep all sensitive  
small-signal nodes away from the LX node to prevent  
stray capacitive noise pick up.  
PD(MAX) = (TJ(MAX) - TA) / qJA  
whereTJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and qJA is the junction to ambient  
thermal resistance.  
} Flood all unused areas on all layers with copper. Flooding  
with copper will reduce the temperature rise of power  
components. Connect the copper areas to any DC net  
(VIN, VOUT, GND, or any other DC rail in the system).  
For recommended operating condition specifications of  
the RT8057, the maximum junction temperature is 125°C  
andTA is the ambient temperature. The junction to ambient  
thermal resistance, qJA, is layout dependent. For  
WDFN-6SL 2x2 packages, the thermal resistance, qJA, is  
165°C/W on a standard JEDEC 51-3 single-layer thermal  
test board. The maximum power dissipation at TA = 25°C  
can be calculated by the following formula :  
} Connect the FB pin directly to the feedback resistors.  
The resistive voltage divider must be connectedbetween  
VOUT andGND.  
LX should be connected to inductor by  
wide and short trace. Keep sensitive  
components away from this trace.  
C
OUT  
PD(MAX) = (125°C - 25°C) / (165°C/W) = 0.606W for  
V
OUT  
WDFN-6SL 2x2 package  
L1  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, qJA. For the RT8057 package, the derating  
curve in Figure 2 allows the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
1
2
3
6
5
4
LX  
GND  
VIN  
EN  
C
IN  
NC  
FB  
C1  
R1  
7
V
OUT  
Input capacitor must  
be placed as close to  
R2  
the IC as possible.  
Figure 3. PCB Layout Guide  
0.65  
Single-Layer PCB  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 2. Derating Curve for the RT8057 Package  
www.richtek.com  
10  
DS8057-03 November 2011  
RT8057  
Outline Dimension  
D2  
D
L
E
E2  
SEE DETAIL A  
1
b
2
1
1
2
e
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
A
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.200  
1.900  
1.550  
1.900  
0.950  
0.800  
0.050  
0.250  
0.350  
2.100  
1.650  
2.100  
1.050  
0.028  
0.000  
0.007  
0.008  
0.075  
0.061  
0.075  
0.037  
0.031  
0.002  
0.010  
0.014  
0.083  
0.065  
0.083  
0.041  
D
D2  
E
E2  
e
0.650  
0.026  
0.008  
0.012  
L
0.200  
0.300  
W-Type 6SL DFN 2x2 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,  
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed  
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
DS8057-03 November 2011  
www.richtek.com  
11  

相关型号:

GRM31CR71A106KA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR71A106KA01L

Isolated Switching Regulator
ADI

GRM31CR71A106KA01L

CHIP MONOLITHIC CERAMIC CAPACITOR
MURATA

GRM31CR71A106MA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR71A226KE15

Chip Monolithic Ceramic Capacitor for General
MURATA

GRM31CR71A226KE15#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR71A226KE15L

Ceramic Capacitor, Multilayer, Ceramic, 10V, 10% +Tol, 10% -Tol, X7R, 15% TC, 22uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT
MURATA

GRM31CR71A226ME15

Chip Monolithic Ceramic Capacitors
MURATA

GRM31CR71A226ME15#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR71A226ME15L

Ceramic Capacitor, Multilayer, Ceramic, 10V, 20% +Tol, 20% -Tol, X7R, 15% TC, 22uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT
MURATA

GRM31CR71A475K

Chip Monolithic Ceramic Capacitor 1206 X7R 4.7μF 10V
MURATA

GRM31CR71A475KA01

2.25MHz 1A Synchronous Step-Down Converter
RICHTEK