JMK107BJ475RA [RICHTEK]

Dual High-Efficiency PWM Step-Down DC/DC Converter; 双路高效率PWM降压型DC / DC转换器
JMK107BJ475RA
型号: JMK107BJ475RA
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Dual High-Efficiency PWM Step-Down DC/DC Converter
双路高效率PWM降压型DC / DC转换器

转换器
文件: 总15页 (文件大小:394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8020  
Dual High-Efficiency PWM Step-Down DC/DC Converter  
General Description  
Features  
2.5V to 5.5V Input Range  
The RT8020 is a dual high-efficiency Pulse-Width-  
Modulated (PWM) step-down DC/DC converter. It is  
capable of delivering 1A output current over a wide input  
voltage range from 2.5V to 5.5V, the RT8020 is ideally  
suited for portable electronic devices that are powered  
from 1-cell Li-ion battery or from other power sources within  
the range such as cellular phones, PDAs and other hand-  
held devices.  
Adjustable Output From 0.6V to VIN  
1.2V, 1.3V, 1.8V, 2.5V and 3.3V Fixed/ Adjustable  
Output Voltage  
1A Output Current  
95% Efficiency  
No Schottky Diode Required  
50uA Quiescent Current per Channel  
1.5MHz Fixed Frequency PWM Operation  
Small 12-Lead WDFN Package  
RoHS Compliant and 100% Lead (Pb)-Free  
Two operational modes are available : PWM/Low-Dropout  
auto-switch and shutdown modes. Internal synchronous  
rectifier with low RDS(ON) dramatically reduces conduction  
loss at PWM mode. No external Schottky diode is  
required in practical application.  
Applications  
Mobile Phones  
The RT8020 enters Low-Dropout mode when normal PWM  
cannot provide regulated output voltage by continuously  
turning on the upper PMOS. The RT8020 enter shutdown  
mode and consumes less than 0.1μAwhen ENpin is pulled  
low.  
Personal InformationAppliances  
Wireless and DSL Modems  
MP3 Players  
Portable Instruments  
The switching ripple is easily smoothed-out by small  
package filtering elements due to a fixed operation  
frequency of 1.5MHz. This along with small  
WDFN-12L 3x3 package provides small PCB area  
application. Other features include soft start, lower internal  
reference voltage with 2% accuracy, over temperature  
protection, and over current protection.  
Ordering Information  
RT8020  
Package Type  
QW : WDFN-12L 3x3 (W-Type)  
Lead Plating System  
P : Pb Free  
G : Green (Halogen Free and Pb Free)  
Output Voltage : VOUT1/VOUT2  
Default : Adjustable  
A : 3.3V/1.8V  
Pin Configurations  
B : 3.3V/1.3V  
C : 3.3V/1.2V  
(TOP VIEW)  
D : 2.5V/1.8V  
1
2
3
12  
VIN2  
LX2  
EN2  
NC2  
FB2  
11  
10  
9
8
7
GND  
GND  
13  
Note :  
4
5
6
GND  
FB1  
NC1  
EN1  
LX1  
VIN1  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
WDFN-12L 3x3  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
1
RT8020  
Marking Information  
RT8020APQW  
RT8020CPQW  
C2- : Product Code  
C4- : Product Code  
YMDNN : Date Code  
YMDNN : Date Code  
C2-YM  
C4-YM  
DNN  
DNN  
RT8020AGQW  
RT8020CGQW  
C2= : Product Code  
C4= : Product Code  
YMDNN : Date Code  
YMDNN : Date Code  
C2=YM  
C4=YM  
DNN  
DNN  
RT8020BPQW  
RT8020DPQW  
C3- : Product Code  
C5- : Product Code  
YMDNN : Date Code  
YMDNN : Date Code  
C3-YM  
C5-YM  
DNN  
DNN  
RT8020BGQW  
RT8020DGQW  
C3= : Product Code  
C5=: Product Code  
YMDNN : Date Code  
YMDNN : Date Code  
C3=YM  
C5=YM  
DNN  
DNN  
Typical Application Circuit  
C
4.7µF  
OUT2  
L2  
2.2µH  
V
OUT2  
V
IN2  
RT8020  
1
2
12  
R21  
C21  
VIN2  
LX2  
EN2  
NC2  
FB2  
850k  
22pF  
C
11  
10  
9
IN2  
4.7µF  
3, Exposed Pad (13)  
GND  
FB1  
R12  
4
5
GND  
R22  
8
C
IN1  
NC1  
EN1  
LX1  
4.7µF  
7
6
C11  
22pF  
R11  
850k  
VIN1  
V
IN1  
L1  
2.2µH  
V
OUT1  
C
OUT1  
4.7µF  
Rx1  
Rx2  
V
OUTx  
= V  
×
(
1+  
)
REF  
Figure 1. Adjustable Voltage Regulator  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8020-06 March 2012  
RT8020  
L2  
2.2µH  
V
OUT2  
V
IN2  
RT8020  
C
4.7µF  
OUT2  
1
2
12  
VIN2  
LX2  
EN2  
NC2  
FB2  
C
IN2  
4.7µF  
11  
10  
9
3, Exposed Pad (13)  
4
GND  
FB1  
GND  
8
5
6
C
4.7µF  
IN1  
NC1  
EN1  
LX1  
7
VIN1  
V
IN1  
L1  
2.2µH  
V
OUT1  
C
OUT1  
4.7µF  
VOUTx = 1.2V, 1.3V, 1.8V, 2.5V or 3.3V  
Figure 2. Fixed Voltage Regulator  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
VIN2  
Power Input of Channel 2.  
2
LX2  
Pin for Switching of Channel 2.  
3, 9,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
GND  
Exposed Pad (13)  
4
5, 11  
6
FB1  
Feedback of Channel 1.  
NC1, NC2  
EN1  
No Connection or Connect to V .  
IN  
Chip Enable of Channel 1 (Active High). V  
Power Input of Channel 1.  
V  
EN1  
EN2  
IN1.  
IN2.  
7
VIN1  
LX1  
8
Pin for Switching of Channel 1.  
Feedback of Channel 2.  
10  
12  
FB2  
EN2  
Chip Enable of Channel 2 (Active High). V  
V  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
3
RT8020  
Function Block Diagram  
ENx  
VINx  
RS1  
OSC and  
Shutdown  
Control  
Current Limit  
Detector  
Slope  
Compensation  
Current  
Sense  
PWM  
Comparator  
Control  
Logic  
Driver  
LXx  
Error  
Amplifier  
FBx  
UVLO and  
Power Good  
Detector  
RC  
RS2  
COMP  
V
REF  
GND  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8020-06 March 2012  
RT8020  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage, VIN1, VIN2 ---------------------------------------------------------------------------------- 0.3V to 6.5V  
EN1, FB1, LX1, EN2, FB2 and LX2 Pin Voltage -------------------------------------------------------------- 0.3V to (VIN + 0.3V)  
Power Dissipation, PD @ TA = 25°C  
WDFN-12L 3x3 -------------------------------------------------------------------------------------------------------- 1.667W  
Package Thermal Resistance (Note 2)  
WDFN-12L 3x3, θJA -------------------------------------------------------------------------------------------------- 60°C/W  
WDFN-12L 3x3, θJC -------------------------------------------------------------------------------------------------- 8.2°C/W  
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C  
Junction Temperature ------------------------------------------------------------------------------------------------ 150°C  
Storage Temperature Range --------------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage------------------------------------------------------------------------------------------------- 2.5V to 5.5V  
Junction Temperature Range--------------------------------------------------------------------------------------- 40°C to 125°C  
Ambient Temperature Range--------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 3.6V, VOUT = 2.5V, VREF = 0.6V, L = 2.2uH, CIN = 4.7μF, COUT = 10μF, TA = 25°C, IMAX= 1A unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Channel 1 and Channel 2  
Input Voltage Range  
2.5  
--  
--  
5.5  
--  
V
V
V
IN  
Under Voltage Lock Out  
threshold  
UVLO  
1.8  
Hysteresis  
--  
--  
0.1  
50  
--  
70  
V
μA  
μA  
V
Quiescent Current  
Shutdown Current  
Reference Voltage  
I
I
= 0mA, V = V  
+ 5%  
Q
OUT  
FB  
REF  
EN = GND  
--  
0.1  
0.6  
1
I
SHDN  
For Adjustable Output Voltage  
(Note 6)  
0.588  
0.612  
V
REF  
Adjustable Output Voltage  
Range  
--  
--  
--  
--  
--  
--  
V
V
V
V −ΔV  
IN  
OUT  
REF  
V
0A < I  
= 2.5V to 5.5V, V  
= 1.2V  
= 1.3V  
IN  
OUT  
OUT  
3
%
%
%
%
%
ΔV  
ΔV  
ΔV  
ΔV  
ΔV  
3  
3  
3  
3  
3  
OUT  
OUT  
OUT  
OUT  
OUT  
< 1A  
OUT  
V
= 2.5V to 5.5V, V  
IN  
3
3
3
3
0A < I  
< 1A  
OUT  
Output Voltage  
Fix  
V
= 2.5 to 5.5V, V  
= 1.8V  
IN  
OUT  
Accuracy  
0A < I  
< 1A  
OUT  
V
V
V
V
= V  
+ ΔV to 5.5V  
(Note 5)  
< 1A  
OUT  
IN  
OUT  
= 2.5V, 0A < I  
OUT  
= V  
+ ΔV to 5.5V  
(Note 5)  
< 1A  
OUT  
IN  
OUT  
= 3.3V, 0A < I  
OUT  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
5
RT8020  
Parameter  
Symbol  
ΔV  
Test Conditions  
Min  
Typ  
Max  
Unit  
%
Output Voltage  
Accuracy  
V
0A < I  
= V  
+ ΔV to 5.5V  
(Note 5)  
IN  
OUT  
Adjustable  
3  
--  
3
OUT  
< 1A  
OUT  
FB Input Current  
I
V
= V  
50  
--  
--  
0.38  
0.28  
0.35  
0.25  
1.5  
--  
50  
--  
nA  
Ω
FB  
FB  
IN  
V
V
V
V
= 2.5V  
IN  
IN  
IN  
IN  
R
of P-MOSFET  
R
I
= 200mA  
= 200mA  
DS(ON)  
DS(ON)  
DS(ON)_P OUT  
= 3.6V  
= 2.5V  
= 3.6V  
--  
--  
--  
--  
R
of N-MOSFET  
R
I
Ω
A
V
DS(ON)_N OUT  
--  
--  
P-Channel Current Limit  
I
V
IN  
V
IN  
V
IN  
V
IN  
= 2.5V to 5.5 V  
= 2.5V to 5.5V  
= 2.5V to 5.5V  
1.4  
1.5  
--  
--  
LIM_P  
Logic-High  
Logic-Low  
V
V
IN  
EN_H  
EN_L  
OSC  
EN Input Voltage  
V
--  
0.4  
1.8  
--  
Oscillator Frequency  
f
= 3.6V, I  
= 100mA  
1.2  
--  
1.5  
160  
--  
MHz  
°C  
OUT  
Thermal Shutdown Temperature  
Maximum Duty Cycle  
T
SD  
100  
1  
--  
%
LX Leakage Current  
I
V
IN  
= 3.6V, V = 0V or V = 3.6V  
--  
1
μA  
LX  
LX  
LX  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. ΔV = IOUT x PRDS(ON)  
Note 6. Guarantee by design.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8020-06 March 2012  
RT8020  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.3V  
VIN = 2.5V  
VOUT = 3.3V, L = 4.7μH, COUT = 4.7μF  
VOUT = 1.2V, L = 4.7μH, COUT = 4.7μF  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
Efficiency vs. Output Current  
UVLO Threshold vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
Rising  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.3V  
VIN = 2.5V  
Falling  
VOUT = 1.2V, IOUT = 0A  
VOUT = 1.2V, L = 2.2μH, COUT = 10μF  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
Temperature  
EN Pin Threshold vs. Input Voltage  
EN Pin Threshold vs. Temperature  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Rising  
Falling  
Rising  
Falling  
VOUT = 1.2V, IOUT = 0A  
VIN = 3.6V, VOUT = 1.2V, IOUT = 0A  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
Temperature  
(°C)  
Input Voltage (V)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
7
RT8020  
Output Voltage vs. Temperature  
Output Voltage vs. Loading Current  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.6V, IOUT = 0A  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Loading Current (A)  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Switching Frequency vs. Temperature  
Switching Frequency vs. Input Voltage  
1.6  
1.55  
1.5  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.45  
1.4  
1.35  
1.3  
1.25  
1.2  
VIN = 3.6V, VOUT = 1.2V, IOUT = 300mA  
VIN = 3.6V, VOUT = 1.2V, IOUT = 300mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
(°C)  
Temperature  
Input Voltage (V)  
Output Current Limit vs. Input Voltage  
Output Current Limit vs. Temperature  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
VOUT = 1.2V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.3V  
VOUT = 1.2V @ TA = 25°C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
Input Voltage (V)  
Temperature (°C)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8020-06 March 2012  
RT8020  
Power On from EN  
Power On from EN  
VIN = 3.6V, VOUT = 1.2V, IOUT = 1A  
VIN = 3.6V, VOUT = 1.2V, IOUT = 10mA  
VEN  
VEN  
(2V/Div)  
(2V/Div)  
VOUT  
VOUT  
(1V/Div)  
(1V/Div)  
IIN  
IIN  
(500mA/Div)  
(500mA/Div)  
Time (100μs/Div)  
Time (100μs/Div)  
Power On from VIN  
Power Off from EN  
VIN = 3.6V, VOUT = 1.2V, IOUT = 10mA  
VIN = 3.6V, VOUT = 1.2V, IOUT = 10mA  
VIN  
(2V/Div)  
VEN  
(2V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
ILX  
(1A/Div)  
ILX  
(1A/Div)  
Time (250μs/Div)  
Time (100μs/Div)  
Load Transient Response  
Load Transient Response  
VIN = 3.6V, VOUT = 1.2V, IOUT = 50mA to 1A  
VIN = 3.6V, VOUT = 1.2V, IOUT = 50mA to 0.5A  
VOUT  
(50mV/Div)  
VOUT  
(50mV/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
Time (50μs/Div)  
Time (50μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
9
RT8020  
Load Transient Response  
Load Transient Response  
VIN = 5.0V, VOUT = 1.2V, IOUT = 50mA to 1A  
VIN = 5.0V, VOUT = 1.2V, IOUT = 50mA to 0.5A  
VOUT  
(50mV/Div)  
VOUT  
(50mV/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
Time (50μs/Div)  
Time (50μs/Div)  
Ripple  
Ripple  
VIN = 3.6V, VOUT = 1.2V, IOUT = 1A  
VIN = 5.0V, VOUT = 1.2V, IOUT = 1A  
VOUT  
(10mV/Div)  
VOUT  
(10mV/Div)  
VLX  
VLX  
(2V/Div)  
(2V/Div)  
Time (500ns/Div)  
Time (500ns/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8020-06 March 2012  
RT8020  
Applications Information  
The basic RT8020 application circuit is shown in Typical  
Application Circuit. External component selection is  
determined by the maximum load current and begins with  
the selection of the inductor value and operating frequency  
This results in an abrupt increase in inductor ripple current  
and consequent output voltage ripple.  
Do not allow the core to saturate!  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor. Toroid  
or shielded pot cores in ferrite or permalloy materials are  
small and don't radiate energy but generally cost more  
than powdered iron core inductors with similar  
characteristics. The choice of which style inductor to use  
mainly depend on the price vs. size requirements and  
any radiated field/EMI requirements.  
followed by CIN and COUT  
.
Inductor Selection  
For a given input and output voltage, the inductor value  
and operating frequency determine the ripple current. The  
ripple current ΔIL increases with higher VIN and decreases  
with higher inductance.  
V
f ×L  
V
OUT  
V
IN  
OUT  
ΔI =  
L
× 1−  
CIN and COUT Selection  
Having a lower ripple current reduces the ESR losses in  
the output capacitors and the output voltage ripple. Highest  
efficiency operation is achieved at low frequency with small  
ripple current. This, however, requires a large inductor.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large ripple voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current is given by :  
Areasonable starting point for selecting the ripple current  
is ΔIL = 0.4(IMAX). The largest ripple current occurs at the  
highest VIN. To guarantee that the ripple current stays  
below a specified maximum, the inductor value should be  
chosen according to the following equation :  
VOUT  
V
IN  
IRMS = IOUT(MAX)  
1  
V
VOUT  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is  
commonly used for design because even significant  
deviations do not offer much relief.Note that ripple current  
ratings from capacitor manufacturers are often based on  
only 2000 hours of life which makes it advisable to further  
de-rate the capacitor, or choose a capacitor rated at a  
higher temperature than required. Several capacitors may  
also be paralleled to meet size or height requirements in  
the design.  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
L(MAX)  
Inductor Core Selection  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
afford the core loss found in low cost powdered iron cores,  
forcing the use of more expensive ferrite or permalloy  
cores. Actual core loss is independent of core size for a  
fixed inductor value but it is very dependent on the  
inductance selected. As the inductance increases, core  
losses decrease. However, increased inductance requires  
more turns of wire and therefore copper losses will  
increase.  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response as described in a later section.  
The output ripple, ΔVOUT, is determined by :  
Ferrite designs have very low core losses and are preferred  
at high switching frequencies, so design goals can  
concentrate on copper loss and preventing saturation.  
Ferrite core material saturates hard, which means that  
inductance collapses abruptly when the peak design  
current is exceeded.  
1
ΔV  
ΔI ESR +  
OUT  
L
8fC  
OUT  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
11  
RT8020  
The output ripple is highest at maximum input voltage  
since ΔIL increases with input voltage. Multiple capacitors  
placed in parallel may be needed to meet the ESR and  
RMS current handling requirements.Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density but it is important to only  
use types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long-term reliability. Ceramic capacitors  
have excellent low ESR characteristics but can have a  
high voltage coefficient and audible piezoelectric effects.  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
For adjustable voltage mode, the output voltage is set by  
an external resistive divider according to the following  
equation :  
VOUT = VREF x (1+ R1/R2)  
Where VREF is the internal reference voltage (0.6V typical)  
Efficiency Considerations  
The efficiency of a switching regulator is equal to the output  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as :  
Efficiency = 100% (L1+ L2+ L3+...)  
where L1, L2, etc. are the individual losses as a percentage  
of input power. Although all dissipative elements in the  
circuit produce losses, two main sources usually account  
for most of the losses: VIN quiescent current and I2R  
losses.  
Using Ceramic Input and Output Capacitors  
The VIN quiescent current loss dominates the efficiency  
loss at very low load currents whereas the I2R loss  
dominates the efficiency loss at medium to high load  
currents. In a typical efficiency plot, the efficiency curve  
at very low load currents can be misleading since the  
actual power lost is of no consequence.  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used at the input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
1.The VIN quiescent current oppears due to two  
components : the DC bias current and the gate charge  
currents. The gate charge current results from switching  
the gate capacitance of the internal power MOSFET  
switches. Each time the gate is switched from high to  
low to high again, a packet of charge ΔQ moves from VIN  
to ground.  
The resulting ΔQ/Δt is the current out of VIN that is typically  
larger than the DC bias current. In continuous mode,  
Output Voltage Programming  
The resistive divider allows the FB pin to sense a fraction  
of the output voltage as shown in Figure 3.  
IGATECHG = f(QT + QB)  
V
where QT and QB are the gate charges of the internal top  
and bottom switches. Both the DC bias and gate charge  
losses are proportional to VIN and thus their effects will  
be more pronounced at higher supply voltages.  
OUT  
R1  
FB  
RT8020  
GND  
R2  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW and external inductor RL. In  
continuous mode the average output current flowing  
Figure 3. Setting the Output Voltage  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8020-06 March 2012  
RT8020  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
through inductor L is choppedbetween the main switch  
and the synchronous switch. Thus, the series resistance  
looking into the LX pin is a function of both top and bottom  
MOSFET RDS(ON) and the duty cycle (DC) is shown as  
follows :  
Four-Layer PCB  
RSW = RDS(ON)TOP x DC + RDS(ON)BOT x (1 DC)  
The RDS(ON) for both the top and bottom MOSFETs can be  
obtained from the Typical Performance Characteristics  
curves. Thus, to obtain I2R losses, simply add RSW to RL  
and multiply the result by the square of the average output  
current. Other losses including CIN and COUT ESR  
dissipative losses and inductor core losses generally  
account for less than 2% of the total loss.  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 4. De-rating Curves for RT8020 Package  
Thermal Considerations  
Checking Transient Response  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula :  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to ΔILOAD (ESR), where ESR is the effective series  
resistance of COUT. ΔILOAD also begins to charge or  
discharge COUT generating a feedback error signal used  
by the regulator to return VOUT to its steady-state value.  
During this recovery time, VOUT can be monitored for  
overshoot or ringing that would indicate a stability problem.  
PD(MAX) = ( TJ(MAX) TA ) / θJA  
Where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature and the θJA is the junction to  
ambient thermal resistance. For recommended operating  
conditions specification of RT8020 DC/DC converter,  
where TJ(MAX) is the maximum junction temperature of  
the die and TA is the ambient temperature. The junction  
to ambient thermal resistance θJA is layout dependent.  
For WDFN-12L 3x3 packages, the thermal resistance  
θJA is 60°C/W on the standard JEDEC 51-7 four-layers  
thermal test board. The maximum power dissipation at  
TA = 25°C can be calculated by following formula :  
Layout Considerations  
Follow the PCB layout guidelines for optimal performance  
of RT8020.  
` For the main current paths, keep their traces short and  
wide.  
` Put the input capacitor as close as possible to the device  
pins (VINandGND).  
PD(MAX) = (125°C 25°C) / (60°C/W) = 1.667W for  
` LX node is with high frequency voltage swing and should  
be kept small area. Keep analog components away from  
LX node to prevent stray capacitive noise pick-up.  
WDFN-12L 3x3 packages  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT8020 packages, the Figure 4 of de-  
rating curves allows the designer to see the effect of rising  
ambient temperature on the maximum power allowed.  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT8020.  
` Connect all analog grounds to a command node and  
then connect the command node to the power ground  
behind the output capacitors.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8020-06 March 2012  
www.richtek.com  
13  
RT8020  
Table 1. Recommended Inductors  
Component  
Inductance  
DCR  
(mΩ)  
60  
Current Rating  
(mA)  
Dimensions  
(mm)  
Series  
Supplier  
TAIYO YUDEN  
TAIYO YUDEN  
Sumida  
(μH)  
2.2  
4.7  
2.2  
4.7  
2.2  
4.7  
NR 3015  
NR 3015  
1480  
3 x 3 x 1.5  
120  
75  
1020  
3 x 3 x 1.5  
CDRH2D14  
CDRH2D14  
GTSD32  
1500  
4.5 x 3.2 x 1.55  
4.5 x 3.2 x 1.55  
3.85 x 3.85 x 1.8  
3.85 x 3.85 x 1.8  
Sumida  
135  
58  
1000  
GOTREND  
GOTREND  
1500  
GTSD32  
146  
1100  
Table 2. Recommended Capacitors for C and C  
IN  
OUT  
Component Supplier  
TDK  
Part No.  
Capacitance (μF)  
Case Size  
0603  
C1608JB0J475M  
4.7  
10  
4.7  
10  
4.7  
10  
10  
TDK  
C2012JB0J106M  
0805  
MURATA  
GRM188R60J475KE19  
GRM219R60J106ME19  
JMK107BJ475RA  
JMK107BJ106MA  
JMK212BJ106RD  
0603  
MURATA  
0805  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
0603  
0603  
0805  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8020-06 March 2012  
RT8020  
Outline Dimension  
2
1
2
1
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
2.950  
2.300  
2.950  
1.400  
0.800  
0.050  
0.250  
0.250  
3.050  
2.650  
3.050  
1.750  
0.028  
0.000  
0.007  
0.006  
0.116  
0.091  
0.116  
0.055  
0.031  
0.002  
0.010  
0.010  
0.120  
0.104  
0.120  
0.069  
D
D2  
E
E2  
e
0.450  
0.018  
L
0.350  
0.450  
0.014  
0.018  
W-Type 12L DFN 3x3 Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS8020-06 March 2012  
www.richtek.com  
15  

相关型号:

JMK107BJ475ZA-T

Ceramic Capacitor, Multilayer, Ceramic, 6.3V, 80% +Tol, 20% -Tol, X5R, 15% TC, 4.7uF, Surface Mount, 0603, CHIP
TAIYO YUDEN

JMK107C6105KA-T

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

JMK107C6105MA-T

Capacitor, Ceramic, Chip, General Purpose, 1uF, 6.3V, ±20%, X6S, 0603 (1608 mm), 0.031"T, -55º ~ +105ºC, 7" Reel/4mm pitch
TAIYO YUDEN

JMK107C6475KA-T

Capacitor, Ceramic, Chip, General Purpose, 4.7uF, 6.3V, ±10%, X6S, 0603 (1608 mm), 0.031"T, -55º ~ +105ºC, 7" Reel/4mm pitch
TAIYO YUDEN

JMK107C6475MA-T

Capacitor, Ceramic, Chip, General Purpose, 4.7uF, 6.3V, ±20%, X6S, 0603 (1608 mm), 0.031"T, -55º ~ +105ºC, 7" Reel/4mm pitch
TAIYO YUDEN

JMK107C7225KAHT

Multilayer Ceramic Capacitors (High dielectric type) for Automotive
TAIYO YUDEN

JMK107C7225MAHT

Ceramic Capacitor, Multilayer, Ceramic, 6.3V, 20% +Tol, 20% -Tol, X7S, 22% TC, 2.2uF, Surface Mount, 0603, CHIP, HALOGEN FREE AND ROHS COMPLIANT
TAIYO YUDEN

JMK107F105ZK-B

CAPACITOR, CERAMIC, MULTILAYER, 6.3V, Y5V, 1uF, SURFACE MOUNT, 0603, CHIP
TAIYO YUDEN

JMK107F105ZK-T

CAPACITOR, CERAMIC, MULTILAYER, 6.3V, Y5V, 1uF, SURFACE MOUNT, 0603, CHIP
TAIYO YUDEN

JMK107F225ZA-T

CAP CER 2.2UF 6.3V Y5V 0603
TAIYO YUDEN

JMK107F225ZAST

Ceramic Capacitor, Multilayer, Ceramic, 6.3V, 80% +Tol, 20% -Tol, Y5V, -82/+22% TC, 2.2uF, Surface Mount, 0603, CHIP
TAIYO YUDEN

JMK212AB7105KA-T

Notice for TAIYO YUDEN products
TAIYO YUDEN