RT8010A-25PQW

更新时间:2024-09-18 05:56:47
品牌:RICHTEK
描述:1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter

RT8010A-25PQW 概述

1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 为1.5MHz , 1A ,高效率PWM降压型DC / DC转换器

RT8010A-25PQW 数据手册

通过下载RT8010A-25PQW数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
RT8010/A  
1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter  
General Description  
Features  
+2.5V to +5.5V Input Range  
The RT8010/A is a high-efficiency Pulse-Width-Modulated  
(PWM) step-downDC-DC converter. Capable of delivering  
1A output current over a wide input voltage range from  
2.5V to 5.5V, the RT8010/A is ideally suited for portable  
electronic devices that are powered from 1-cell Li-ion  
battery or from other power sources such as cellular  
phones, PDAs and hand-held devices.  
Output Voltage (Adjustable Output From 0.6V to VIN)  
`RT8010 : 1.0V, 1.2V, 1.5V, 1.6V, 1.8V, 2.5V and 3.3V  
Fixed/Adjustable Output Voltage  
`RT8010A Adjustable Output Voltage Only  
1A Output Current  
95% Efficiency  
No Schottky Diode Required  
Two operating modes are available including : PWM/Low-  
Dropout autoswitch and shut-down modes. The Internal  
synchronous rectifier with low RDS(ON) dramatically reduces  
conduction loss at PWM mode. No external Schottky  
diode is required in practical application.  
1.5MHz Fixed-Frequency PWM Operation  
Small 6-Lead WDFN and 16-Lead WQFN Package  
RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
The RT8010/A enters Low-Dropout mode when normal  
PWM cannot provide regulated output voltage by  
continuously turning on the upper PMOS. RT8010/A enter  
shut-down mode and consumes less than 0.1μA when  
EN pin is pulled low.  
Mobile Phones  
Personal InformationAppliances  
Wireless and DSL Modems  
MP3 Players  
Portable Instruments  
The switching ripple is easily smoothed-out by small  
package filtering elements due to a fixed operating  
frequency of 1.5MHz. This along with small WDFN-6L2x2  
and WQFN-16L 3x3 package provides small PCB area  
application. Other features include soft start, lower internal  
reference voltage with 2% accuracy, over temperature  
protection, and over current protection.  
Ordering Information  
RT8010/A(-  
)
Package Type  
QW : WDFN/WQFN (W-Type)  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Output Voltage  
Default : Adjustable (RT8010/A)  
Fixed (RT8010)  
10 : 1.0V  
Pin Configurations  
(TOP VIEW)  
12 : 1.2V  
16 15 14 13  
15 : 1.5V  
16 : 1.6V  
18 : 1.8V  
25 : 2.5V  
VIN  
VIN  
12  
11  
GND  
GND  
1
2
3
4
10 VIN  
VIN  
GND  
9
FB/VOUT  
1
2
3
6
5
4
NC  
EN  
FB/VOUT  
GND  
33 : 3.3V  
5
6
7
8
VIN  
LX  
WQFN-16L 3x3  
WDFN-6L 2x2  
WDFN-6L 2x2 (RT8010)  
WQFN-16L 3x3 (RT8010A)  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Marking Information  
For marking information, contact our sales representative  
directly or through a RichTek distributor located in your  
area, otherwise visit our website for detail.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS8010/A-02 March 2007  
www.richtek.com  
1
RT8010/A  
Typical Application Circuit  
L
2.2uH  
3
4
V
V
OUT  
IN  
VIN  
LX  
2.5V to 5.5V  
C
IN  
RT8010/A  
4.7uF  
2
1
6
5
EN  
VOUT  
C
OUT  
10uF  
NC  
GND  
Figure 1. Fixed Voltage Regulator  
L
2.2uH  
3
V
4
IN  
V
VIN  
OUT  
LX  
2.5V to 5.5V  
C
IN  
C1  
RT8010/A  
4.7uF  
R1  
R2  
C
OUT  
2
1
6
EN  
NC  
FB  
10uF  
5
GND  
I
R2  
R1  
R2 ⎠  
VOUT = VREF x 1+  
with R2 = 300kΩ to 60kΩ so the IR2 = 2μA to 10μA,  
and (R1 x C1) should be in the range between 3x10-6 and 6x10-6 for component selection.  
Figure 2. Adjustable Voltage Regulator  
Layout Guide  
RT8010/A_ADJ  
RT8010/A_FIX  
Output  
NC  
FB  
6
1
2
3
1
2
3
6
5
4
VOUT  
GND  
LX  
NC  
Output capacitor  
must be near  
RT8010  
capacitor  
must be near  
RT8010/A  
EN  
GND  
LX  
5
4
EN  
L1  
L1  
VIN  
VIN  
R1  
C
OUT  
C
OUT  
LX should be  
connected to  
C
IN  
R2  
C
IN  
Inductor by wide  
and short trace,  
keep sensitive  
compontents away  
from this trace  
LX should be connected  
to Inductor by wide and  
short trace, keep  
sensitive compontents  
away from this trace  
C
must be placed  
IN  
C
must be placed  
IN  
between V and  
DD  
GND as closer as  
possible  
between V and  
DD  
GND as closer as  
possible  
Figure 3  
Layout note:  
1. The distance that CIN connects to VIN is as close as possible (Under 2mm).  
2. COUT should be placed near RT8010/A.  
www.richtek.com  
2
DS8010/A-02 March 2007  
RT8010/A  
Functional Pin Description  
Pin Number  
Pin Name  
Pin Function  
RT8010  
RT8010A  
1,  
6, 8, 16,  
NC  
No Internal Connect (Floating or Connecting to GND).  
Exposed Pad Exposed Pad  
2
3
4
5
6
7
EN  
Chip Enable (Active High).  
9, 10, 11, 12 VIN  
Power Input. (Pin 9 and Pin 10 must be connected with Pin 11)  
Pin for Switching. (Pin 13 must be connected with Pin 14)  
Ground.  
13, 14, 15  
1, 2, 3, 5  
4
LX  
GND  
FB/VOUT  
Feedback/Output Voltage Pin.  
Function Block Diagram  
EN  
VIN  
RS1  
OSC &  
Shutdown  
Control  
Current  
Limit  
Detector  
Slope  
Compensation  
Current  
Sense  
Control  
Logic  
Driver  
LX  
PWM  
Comparator  
FB/VOUT  
Error  
Amplifier  
RC  
UVLO &  
Power Good  
Detector  
RS2  
COMP  
V
REF  
GND  
DS8010/A-02 March 2007  
www.richtek.com  
3
RT8010/A  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage------------------------------------------------------------------------------------------------------ 6.5V  
EN, FB Pin Voltage ------------------------------------------------------------------------------------------------------- 0.3V to VIN  
Power Dissipation, PD @ TA = 25°C  
WDFN-6L 2x2 -------------------------------------------------------------------------------------------------------------- 0.606W  
WQFN-16L 3x3 ------------------------------------------------------------------------------------------------------------ 1.47W  
Package Thermal Resistance (Note 4)  
WDFN-6L 2x2, θJA --------------------------------------------------------------------------------------------------------- 165°C/W  
WDFN-6L 2x2, θJC -------------------------------------------------------------------------------------------------------- 20°C/W  
WQFN-16L 3x3, θJA ------------------------------------------------------------------------------------------------------- 68°C/W  
WQFN-16L 3x3, θJC ------------------------------------------------------------------------------------------------------ 7.5°C/W  
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 3)  
Supply Input Voltage------------------------------------------------------------------------------------------------------ 2.5V to 5.5V  
Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 3.6V, VOUT = 2.5V, VREF = 0.6V, L = 2.2μH, CIN = 4.7μF, COUT = 10μF, TA = 25°C, IMAX = 1A unless otherwise specified)  
Parameter  
Input Voltage Range  
Symbol  
Test Conditions  
Min  
2.5  
--  
Typ  
--  
Max  
5.5  
Units  
V
V
I
IN  
Quiescent Current  
Shutdown Current  
50  
0.1  
0.6  
--  
70  
I
= 0mA, V = V + 5%  
REF  
μA  
μA  
V
Q
OUT  
FB  
EN = GND  
--  
1
I
SHDN  
Reference Voltage  
Adjustable Output Range  
For Adjustable Output Voltage  
(Note 6)  
0.588  
0.612  
V
REF  
OUT  
V
V
V
REF  
V
0.2V  
IN  
V
= 2.5V to 5.5V, V  
= 1.0V  
= 1.2V  
= 1.5V  
= 1.6V  
= 1.8V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
--  
--  
--  
--  
--  
+3  
+3  
+3  
+3  
+3  
%
%
%
%
%
ΔV  
ΔV  
ΔV  
ΔV  
ΔV  
3  
3  
3  
3  
3  
OUT  
OUT  
OUT  
OUT  
OUT  
0A < I  
< 1A  
OUT  
V
IN  
= 2.5V to 5.5V, V  
0A < I  
< 1A  
OUT  
Output Voltage  
Fix  
V
IN  
= 2.5V to 5.5V, V  
Accuracy  
0A < I  
< 1A  
OUT  
V
IN  
= 2.5V to 5.5V, V  
0A < I  
< 1A  
OUT  
V
IN  
= 2.5V to 5.5V, V  
0A < I  
< 1A  
OUT  
To be continued  
www.richtek.com  
4
DS8010/A-02 March 2007  
RT8010/A  
Parameter  
Symbol  
Test Conditions  
Min  
3  
Typ  
--  
Max Units  
V
V
V
= V  
= V  
= V  
+ ΔV to 5.5V  
(Note 5)  
(Note 5)  
(Note 5)  
+3  
+3  
%
%
ΔV  
IN  
IN  
IN  
OUT  
OUT  
OUT  
Output Voltage  
Accuracy  
Fix  
+ ΔV to 5.5V  
+ ΔV to 5.5V  
--  
ΔV  
OUT  
OUT  
3  
Output Voltage  
Accuracy  
Adjustable  
--  
+3  
%
ΔV  
3  
OUT  
0A < I  
< 1A  
OUT  
FB Input Current  
--  
0.28  
0.38  
0.25  
0.35  
1.5  
--  
50  
--  
nA  
I
V
= V  
50  
--  
FB  
FB  
IN  
V
V
V
V
= 3.6V  
IN  
IN  
IN  
IN  
PMOSFET R  
R
I
= 200mA  
Ω
ON  
DS(ON)_P OUT  
--  
--  
= 2.5V  
= 3.6V  
= 2.5V  
--  
--  
NMOSFET R  
R
I
= 200mA  
Ω
A
V
ON  
DS(ON)_N OUT  
--  
--  
P-Channel Current Limit  
1.4  
--  
I
V
IN  
V
IN  
V
IN  
= 2.5V to 5.5 V  
= 2.5V to 5.5V  
= 2.5V to 5.5V  
LIM_P  
EN High-Level Input Voltage  
EN Low-Level Input Voltage  
1.5  
--  
--  
V
V
EN_H  
--  
0.4  
--  
EN_L  
Under Voltage Lock Out threshold UVLO  
Hysteresis  
--  
1.8  
0.1  
1.5  
160  
--  
V
V
--  
--  
Oscillator Frequency  
Thermal Shutdown Temperature  
Max. Duty Cycle  
1.2  
--  
1.8  
--  
MHz  
°C  
%
f
V
V
= 3.6V, I  
= 100mA  
OSC  
IN  
OUT  
T
SD  
100  
1  
--  
LX Leakage Current  
--  
1
= 3.6V, V = 0V or V = 3.6V  
μA  
IN  
LX  
LX  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a high effective four layers thermal conductivity test board of  
JEDEC 51-7 thermal measurement standard. The case point of θJC is on the expose pad for the QFN package.  
Note 5. ΔV = IOUT x PRDS(ON)  
Note 6. Guarantee by design.  
DS8010/A-02 March 2007  
www.richtek.com  
5
RT8010/A  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
70  
80  
VIN = 5.0V  
VIN = 3.3V  
VIN = 2.5V  
60  
50  
40  
30  
20  
10  
VOUT = 1.2V, COUT = 4.7μF, L = 4.7μH  
VOUT = 3.3V, COUT = 4.7μF, L = 4.7μH  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
Efficiency vs. Output Current  
UVLO Voltage vs.Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
Rising  
VIN = 5.0V  
VIN = 3.3V  
VIN = 2.5V  
Falling  
VOUT = 1.2V, IOUT = 0A  
VOUT = 1.2V, COUT = 10μF, L = 2.2μH  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
Temperature  
EN Pin Threshold vs. Input Voltage  
EN Pin Threshold vs. Temperature  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Rising  
Falling  
Rising  
Falling  
VOUT = 1.2V, IOUT = 0A  
VIN = 3.6V, VOUT = 1.2V, IOUT = 0A  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
Temperature  
Input Voltage (V)  
www.richtek.com  
6
DS8010/A-02 March 2007  
RT8010/A  
Output Voltage vs. Temperature  
Output Voltage vs. Load Current  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.6V, IOUT = 0A  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load Current (A)  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature  
(°C)  
Frequency vs. Input Voltage  
Frequency vs. Temperature  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
VIN = 3.6V, VOUT = 1.2V, IOUT = 300mA  
VIN = 3.6V, VOUT = 1.2V, IOUT = 300mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
Temperature  
(°C)  
Input Voltage (V)  
Output Current Limit vs. Input Voltage  
Output Current Limit vs. Temperature  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.3V  
VOUT = 1.2V @ TA = 20°C  
VOUT = 1.2V  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
Temperature  
Input Voltage (V)  
DS8010/A-02 March 2007  
www.richtek.com  
7
RT8010/A  
Power On from EN  
Power On from EN  
VIN = 3.6V, VOUT = 1.2V, IOUT = 10mA  
VIN = 3.6V, VOUT = 1.2V, IOUT = 1A  
VEN  
(2V/Div)  
VEN  
(2V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
IIN  
IIN  
(500mA/Div)  
(500mA/Div)  
Time (100μs/Div)  
Time (100μs/Div)  
Power Off from EN  
Power On from VIN  
VIN = 3.6V, VOUT = 1.2V, ILX = 1A  
VEN = 3V, VOUT = 1.2V, ILX = 1A  
VEN  
(2V/Div)  
VIN  
(2V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
ILX  
(1A/Div)  
ILX  
(1A/Div)  
Time (100μs/Div)  
Time (250μs/Div)  
Load Transient Response  
Load Transient Response  
VIN = 3.6V, VOUT = 1.2V  
VIN = 3.6V, VOUT = 1.2V  
IOUT = 50mA to 0.5A  
IOUT = 50mA to 1A  
VOUT ac  
(50mV/Div)  
VOUT ac  
(50mV/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
Time (50μs/Div)  
Time (50μs/Div)  
www.richtek.com  
8
DS8010/A-02 March 2007  
RT8010/A  
Load Transient Response  
Load Transient Response  
VIN = 5V, VOUT = 1.2V  
IOUT = 50mA to 0.5A  
VIN = 5V, VOUT = 1.2V  
IOUT = 50mA to 1A  
VOUT ac  
(50mV/Div)  
VOUT ac  
(50mV/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
Time (50μs/Div)  
Time (50μs/Div)  
Output Ripple Voltage  
Output Ripple Voltage  
VIN = 3.6V, VOUT = 1.2V  
OUT = 1A  
VIN = 5V, VOUT = 1.2V  
IOUT = 1A  
I
VOUT  
(10mV/Div)  
VOUT  
(10mV/Div)  
VLX  
(2V/Div)  
VLX  
(2V/Div)  
Time (500ns/Div)  
Time (500ns/Div)  
DS8010/A-02 March 2007  
www.richtek.com  
9
RT8010/A  
Applications Information  
current is exceeded. This results in an abrupt increase in  
inductor ripple current and consequent output voltage ripple.  
Do not allow the core to saturate!  
The basic RT8010/Aapplication circuit is shown in Typical  
Application Circuit. External component selection is  
determined by the maximum load current and begins with  
the selection of the inductor value and operating frequency  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
followed by CIN and COUT  
.
Toroid or shielded pot cores in ferrite or permalloy materials  
are small and don't radiate energy but generally cost more  
than powdered iron core inductors with similar  
characteristics. The choice of which style inductor to use  
mainly depends on the price vs size requirements and  
any radiated field/EMI requirements.  
Inductor Selection  
For a given input and output voltage, the inductor value  
and operating frequency determine the ripple current. The  
ripple current ΔIL increases with higher VIN and decreases  
with higher inductance.  
V
f ×L  
V
OUT  
V
IN  
OUT  
ΔI =  
L
× 1−  
CIN and COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large ripple voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current is given by :  
Having a lower ripple current reduces the ESR losses in  
the output capacitors and the output voltage ripple. Highest  
efficiency operation is achieved at low frequency with small  
ripple current. This, however, requires a large inductor.  
Areasonable starting point for selecting the ripple current  
is ΔIL = 0.4(IMAX). The largest ripple current occurs at the  
highest VIN. To guarantee that the ripple current stays  
below a specified maximum, the inductor value should be  
chosen according to the following equation :  
VOUT  
V
IN  
IRMS = IOUT(MAX)  
1  
V
VOUT  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is  
commonly used for design because even significant  
deviations do not offer much relief.Note that ripple current  
ratings from capacitor manufacturers are often based on  
only 2000 hours of life which makes it advisable to further  
derate the capacitor, or choose a capacitor rated at a higher  
temperature than required. Several capacitors may also  
be paralleled to meet size or height requirements in the  
design.  
V
V
OUT  
OUT  
f × ΔIL(MAX)  
L =  
× 1−  
V
IN(MAX)  
Inductor Core Selection  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
afford the core loss found in low cost powdered iron cores,  
forcing the use of more expensive ferrite or mollypermalloy  
cores. Actual core loss is independent of core size for a  
fixed inductor value but it is very dependent on the  
inductance selected. As the inductance increases, core  
losses decrease. Unfortunately, increased inductance  
requires more turns of wire and therefore copper losses  
will increase.  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response as described in a later section.  
The output ripple, ΔVOUT, is determined by :  
Ferrite designs have very low core losses and are preferred  
at high switching frequencies, so design goals can  
concentrate on copper loss and preventing saturation.  
Ferrite core material saturates hard, which means that  
inductance collapses abruptly when the peak design  
1
ΔV  
ΔI ESR +  
OUT  
L
8fC  
OUT  
www.richtek.com  
10  
DS8010/A-02 March 2007  
RT8010/A  
The output ripple is highest at maximum input voltage  
since ΔIL increases with input voltage. Multiple capacitors  
placed in parallel may be needed to meet the ESR and  
RMS current handling requirements.Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density but it is important to only  
use types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long term reliability. Ceramic capacitors  
have excellent low ESR characteristics but can have a  
high voltage coefficient and audible piezoelectric effects.  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
For adjustable voltage mode, the output voltage is set by  
an external resistive divider according to the following  
equation :  
R1  
V
= V  
(1+  
)
OUT  
REF  
R2  
where VREF is the internal reference voltage (0.6V typ.)  
Efficiency Considerations  
The efficiency of a switching regulator is equal to the output  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as :  
Efficiency = 100% (L1+ L2+ L3+ ...)  
where L1, L2, etc. are the individual losses as a percentage  
of input power. Although all dissipative elements in the  
circuit produce losses, two main sources usually account  
for most of the losses : VIN quiescent current and I2R  
losses.  
Using Ceramic Input and Output Capacitors  
The VIN quiescent current loss dominates the efficiency  
loss at very low load currents whereas the I2R loss  
dominates the efficiency loss at medium to high load  
currents. In a typical efficiency plot, the efficiency curve  
at very low load currents can be misleading since the  
actual power lost is of no consequence.  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used at the input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
1. The VIN quiescent current appears due to two factors  
including : the DC bias current as given in the electrical  
characteristics and the internal main switch and  
synchronous switch gate charge currents. The gate charge  
current results from switching the gate capacitance of the  
internal power MOSFET switches. Each time the gate is  
switched from high to low to high again, a packet of charge  
ΔQ moves from VIN to ground.  
Output Voltage Programming  
The resulting ΔQ/Δt is the current out of VIN that is typically  
larger than the DC bias current. In continuous mode,  
The resistive divider allows the FB pin to sense a fraction  
of the output voltage as shown in Figure 4.  
IGATECHG = f(QT+QB)  
V
OUT  
where QT and QB are the gate charges of the internal top  
and bottom switches. Both the DC bias and gate charge  
losses are proportional to VIN and thus their effects will  
be more pronounced at higher supply voltages.  
R1  
FB  
RT8010/A  
GND  
R2  
Figure 4. Setting the Output Voltage  
DS8010/A-02 March 2007  
www.richtek.com  
11  
RT8010/A  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW and external inductor RL. In  
continuous mode, the average output current flowing  
through inductor L is choppedbetween the main switch  
and the synchronous switch. Thus, the series resistance  
looking into the LX pin is a function of both top and bottom  
MOSFET RDS(ON) and the duty cycle (DC) as follows :  
For RT8010/A packages, the Figure 5 of derating curves  
allows the designer to see the effect of rising ambient  
temperature on the maximum power allowed.  
1.6  
Four Layers PCB  
1.4  
1.2  
WQFN-16L 3x3  
1.0  
RSW = RDS(ON)TOP x DC + RDS(ON)BOT x (1DC)  
0.8  
The RDS(ON) for both the top and bottom MOSFETs can be  
obtained from the Typical Performance Characteristics  
curves. Thus, to obtain I2R losses, simply add RSW to RL  
and multiply the result by the square of the average output  
current.  
WDFN-6L 2x2  
0.6  
0.4  
0.2  
0.0  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for less  
than 2% of the total loss.  
0
25  
50  
75  
100  
125  
(°C)  
Ambient Temperature  
Figure 5. Derating Curves for RT8010/APackage  
Thermal Considerations  
Checking Transient Response  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula :  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to ΔILOAD (ESR), where ESR is the effective series  
resistance of COUT. ΔILOAD also begins to charge or  
discharge COUT generating a feedback error signal used  
by the regulator to return VOUT to its steady-state value.  
During this recovery time, VOUT can be monitored for  
overshoot or ringing that would indicate a stability problem.  
PD(MAX) = ( TJ(MAX) - TA ) / θJA  
Where TJ(MAX) is the maximum operation junction  
temperature, TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
For recommended operating conditions specification of  
RT8010/ADC/DC converter, where TJ(MAX) is the maximum  
junction temperature of the die and TA is the maximum  
ambient temperature. The junction to ambient thermal  
resistance θJA is layout dependent. For WDFN-6L 2x2  
packages, the thermal resistance θJA is 165°C/W on the  
standard JEDEC 51-7 four layers thermal test board.  
Layout Considerations  
Follow the PCB layout guidelines for optimal performance  
of RT8010/A.  
` For the main current paths as indicated in bold lines in  
Figure 6, keep their traces short and wide.  
The maximum power dissipation at TA = 25°C can be  
` Put the input capacitor as close as possible to the device  
calculated by following formula :  
pins (VINandGND).  
PD(MAX) = (125°C 25°C) / 165°C/W = 0.606W for  
WDFN-6L 2x2 packages  
`LX node is with high frequency voltage swing and should  
be kept small area. Keep analog components away from  
LX node to prevent stray capacitive noise pick-up.  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA.  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT8010/A.  
www.richtek.com  
12  
DS8010/A-02 March 2007  
RT8010/A  
` Connect all analog grounds to a command node and  
then connect the command node to the power ground  
behind the output capacitors.  
` An example of 2-layer PCB layout is shown in Figure 7  
to Figure 8 for reference.  
V
V
IN  
OUT  
L1  
RT8010/A  
VIN  
3
4
Figure 7. Top Layer  
LX  
C2  
1
R1  
NC  
EN  
6
5
FB/VOUT  
GND  
C3  
2
C1  
R2  
V
IN  
R3  
Figure 6. EVB Schematic  
Figure 8. Bottom Layer  
Table 1. Recommended Inductors  
Inductance  
DCR  
(m)  
Dimensions  
(mm)  
Supplier  
(uH)  
Current Rating (mA)  
Series  
TAIYO YUDEN  
GOTREND  
Sumida  
2.2  
2.2  
2.2  
4.7  
4.7  
4.7  
1480  
1500  
1500  
1000  
1020  
1100  
60  
58  
3.00 x 3.00 x 1.50  
3.85 x 3.85 x 1.80  
NR 3015  
GTSD32  
75  
4.50 x 3.20 x 1.55  
4.50 x 3.20 x 1.55  
3.00 x 3.00 x 1.50  
3.85 x 3.85 x 1.80  
CDRH2D14  
CDRH2D14  
NR 3015  
Sumida  
135  
120  
146  
TAIYO YUDEN  
GOTREND  
GTSD32  
Table 2. Recommended Capacitors for CIN and COUT  
Capacitance  
Supplier  
Package  
Part Number  
(uF)  
TDK  
4.7  
603  
603  
603  
603  
805  
805  
805  
805  
C1608JB0J475M  
MURATA  
4.7  
4.7  
10  
10  
10  
10  
10  
GRM188R60J475KE19  
JMK107BJ475RA  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
JMK107BJ106MA  
C2012JB0J106M  
MURATA  
GRM219R60J106ME19  
GRM219R60J106KE19  
JMK212BJ106RD  
MURATA  
TAIYO YUDEN  
DS8010/A-02 March 2007  
www.richtek.com  
13  
RT8010/A  
Outline Dimension  
D
D2  
L
E
E2  
SEE DETAIL A  
1
b
e
2
1
2
1
A
A3  
A1  
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.200  
1.950  
1.000  
1.950  
0.500  
0.800  
0.050  
0.250  
0.350  
2.050  
1.450  
2.050  
0.850  
0.028  
0.000  
0.007  
0.008  
0.077  
0.039  
0.077  
0.020  
0.031  
0.002  
0.010  
0.014  
0.081  
0.057  
0.081  
0.033  
D
D2  
E
E2  
e
0.650  
0.026  
L
0.300  
0.400  
0.012  
0.016  
W-Type 6L DFN 2x2 Package  
www.richtek.com  
14  
DS8010/A-02 March 2007  
RT8010/A  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
0.800  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
0.028  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
0.031  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 16L QFN 3x3 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS8010/A-02 March 2007  
www.richtek.com  
15  

RT8010A-25PQW 相关器件

型号 制造商 描述 价格 文档
RT8010A-33GQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010A-33PQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010AGQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010APQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010B RICHTEK 1.5MHz, 800mA, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010BGQW RICHTEK 1.5MHz, 800mA, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010C RICHTEK 暂无描述 获取价格
RT8010GQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010PQV RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8010PQW RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格

RT8010A-25PQW 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6