RT8059GJ5

更新时间:2024-09-18 12:04:56
品牌:RICHTEK
描述:

RT8059GJ5 概述

- 12号的铝制车身绘( RAL 7032 )

RT8059GJ5 数据手册

通过下载RT8059GJ5数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
®
RT8059  
1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter  
General Description  
Features  
z Wide Input Voltage from 2.8V to 5.5V  
z Adjustable Output from 0.6V to VIN  
z 1A Output Current  
The RT8059 is a high efficiency Pulse Width Modulated  
(PWM) step-downDC/DC converter, capable of delivering  
1A output current over a wide input voltage range from  
2.8V to 5.5V. The RT8059 is ideally suited for portable  
electronic devices that are powered by 1-cell Li-ion battery  
or by other power sources within the range, such as cellular  
phones, PDAs and handy-terminals.  
z 95% Efficiency  
z No Schottky Diode Required  
z 1.5MHz Fixed Frequency PWM Operation  
z Small TSOT-23-5 Package  
z RoHS Compliant and Halogen Free  
Internal synchronous rectifier with low RDS(ON) dramatically  
reduces conduction loss at PWM mode. No external  
Schottky diode is required in practical applications. The  
RT8059 automatically turns off the synchronous rectifier  
when the inductor current is low and enters discontinuous  
PWM mode. This can increase efficiency in light load  
condition.  
Applations  
z C Card  
z CellularTelephones  
z Personal InformationAppliances  
z Wireless and DSL Modems  
z MP3 Payers  
The RT8059 enters low dropout mode when normal PWM  
cannot provide regulated output voltage by continuously  
turning on the upper P-MOSFET. The RT8059 enters  
shutdown mode and consumes less than 0.1μAwhen the  
EN pin is pulled low.  
z PortablInstruments  
Pin Configurations  
(TOP VIEW)  
FB  
VIN  
The switching ripple can be easily smootd out by small  
package filtering elements due to a fixed operation  
frequency of 1.5MHz. This along with small TSOT-23-5  
package provides small PCB area application. Other  
features include soft-start, lower internal reference voltage  
with 2% accuracy, over temperature protection, and over  
current protecn.  
5
4
2
3
GND LX  
EN  
TSOT-23-5  
Marking Information  
BQ= : Product Code  
Ordering Information  
BQ=DNN  
RT8059  
DNN : Date Code  
Package Type  
J5 : TSOT-23-5  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current  
require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering  
processes.  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8059-04 December 2011  
www.richtek.com  
1
RT8059  
Typical Application Circuit  
L
2.2µH  
4
1
V
3
5
IN  
V
VIN  
RT8059  
OUT  
LX  
2.8V to 5.5V  
C
4.7µF  
IN  
C1  
R1  
R2  
C
OUT  
10µF  
EN  
FB  
GND  
2
I
R2  
R1  
R2  
VOUT = VREF x 1+  
with R2 = 60kΩ to 300kΩ , IR2 = 2μA to 10μA,  
and (R1 x C1) should be in the range between 3x106 and 6x106 for ponent selection.  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
2
3
4
5
EN  
GND  
LX  
Chip Enable (Active High). Do not leve the EN pin floating.  
Ground.  
Switch Node.  
Power Input.  
Feedback Input Pin.  
VIN  
FB  
Function Block Diagram  
VIN  
EN  
R
S1  
OSC &  
Shutdown  
Control  
Current  
Limit  
Detector  
Slope  
Compensation  
Current  
Sense  
Control  
Logic  
Driver  
LX  
PWM  
Comparator  
Error  
FB  
Amplifier  
RC  
Zero  
Detector  
R
S2  
COMP  
UVLO  
V
REF  
GND  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8059-04 December 2011  
RT8059  
Absolute Maximum Ratings (Note 1)  
z VINtoGND -------------------------------------------------------------------------------------------------------- 6.5V  
z LX Pin Switch Voltage ------------------------------------------------------------------------------------------ 0.3V to (PVDD+ 0.3V)  
< 30ns -------------------------------------------------------------------------------------------------------------- 5V to 7.5V  
z EN, FB toGND --------------------------------------------------------------------------------------------------- VIN + 0.6V  
z PowerDissipation, PD @ TA = 25°C  
TSOT-23-5 --------------------------------------------------------------------------------------------------------- 0.392W  
z Package Thermal Resistance (Note 2)  
TSOT-23-5, θJA --------------------------------------------------------------------------------------------------- 255°C/W  
z Junction Temperature Range ---------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.) --------------------------------------------------------------------- 260°C  
z StorageTemperature Range ----------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ---------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------ 2.8V to 5.5V  
z Junction Temperature Range ------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range ---------------------------------------------------------------------------------- 0°C to 85°C  
Electrical Characteristics  
(VIN = 3.6V, VOUT = 2.5V, L = 2.2μH, CIN = 4.7μF, COUT = 10μF, TA = 25°C, unless othere specified)  
Parameter  
Quiescent Current  
Symbol  
Test Conditions  
IOUT = 0mA, VFB = VREF + 5%  
EN = GN
Min  
--  
Typ  
78  
Max  
--  
Unit  
μA  
μA  
V
IQ  
Shutdown Current  
ISHDN  
VREF  
VOUT  
--  
0.1  
0.6  
--  
1
Reference Voltage  
0.588  
VREF  
0.612  
VIN 0.2  
Adjustable Output Range  
(Note 5)  
V
Adjustable Output Voltage  
Accuracy  
V
IN = VOUT + ΔV to 5.5V,  
ΔVOUT  
3  
--  
3
%
0A < IOUT < 1A, (Note 6)  
FB Input Current  
IFB  
VFB = VIN  
50  
--  
--  
50  
--  
nA  
P-MOSFET RON  
RDS(ON)_P  
RDS(ON)_N  
ILM_P  
IOUT = 200mA  
IOUT = 200mA  
VIN = 2.8V to 5.5V  
VIN = 2.8V to 5.5V  
0.28  
0.25  
1.5  
--  
Ω
A
V
N-MOSFET RON  
--  
--  
P-Channel Current Limit  
--  
--  
Logic-High VIH  
1.5  
--  
EN Input Threshold  
Voltage  
Logic-Low  
VIL  
VIN = 2.8V to 5.5V  
--  
--  
--  
--  
0.4  
--  
Under Voltage Lockout Threshold  
2.3  
0.2  
V
V
VUVLO  
Under Voltage Lockout Hysteresis ΔVUVLO  
--  
Oscillator Frequency  
fOSC  
TSD  
IOUT = 100mA  
1.2  
--  
1.5  
150  
--  
1.8  
--  
MHz  
°C  
Thermal Shutdown Temperature  
Max. Duty Cycle  
DMAX  
100  
--  
%
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8059-04 December 2011  
www.richtek.com  
3
RT8059  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a low effective thermal conductivity single-layer test board per JEDEC 51-3.  
Note 3. Devices are ESD sensitive. Handling precaution recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guaranteed by design.  
Note 6. ΔV = IOUT x RDS(ON)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8059-04 December 2011  
RT8059  
Typical Operating Characteristics  
Efficiency vs. Load Current  
Reference Voltage vs. Input Voltage  
100  
0.620  
0.615  
0.610  
0.605  
0.600  
0.595  
0.590  
0.585  
0.5
IOUT = 0.1A  
90  
80  
VIN = 3.3V, VOUT = 2.5V  
VIN = 5.5V, VOUT = 2.5V  
VIN = 3.3V, VOUT = 1.2V  
VIN = 5.5V, VOUT = 1.2V  
70  
60  
50  
40  
30  
20  
10  
0
0.01  
0.1  
1
2.5  
3
3.5  
4
4.5  
5
5.5  
Load Current (A)  
Input Voltage (V)  
Reference Voltage vs. Temperature  
Output Voltage vs. Output Current  
0.620  
1.230  
1.225  
1.22
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
VIN = 3.3V  
VIN = 3.3V, IOUT = 0.1A  
0.615  
0.610  
0.605  
0.600  
0.595  
0.590  
0.585  
0.580  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Frequency vs. Temperature  
Current Limit vs. Temperature  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
VIN = 3.3V, VOUT = 1.2V,  
IOUT = 0.3A  
VIN = 3.3V, VOUT = 1.2V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8059-04 December 2011  
www.richtek.com  
5
RT8059  
Load Transient Response  
Load Transient Response  
VIN = 3.3V, VOUT = 1.2V,  
OUT = 0.1A to 1A  
VIN = 3.3V, VOUT = 1.2V,  
IOUT = 0.5A to 1A  
I
VOUT  
(50mV/Div)  
VOUT  
(50mV/Div)  
IOUT  
IOUT  
(500mA/Div)  
(500mA/Div)  
Time (100μiv)  
Time (100μs/Div)  
Switching  
Switching  
VIN = 3.3V, VOUT = 1.2V,  
IOUT = 0.5A  
VIN = 3.3V, VOUT = 1.2V,  
IOUT = 1A  
VOU
VOUT  
(5mV/Di
(5mV/Div)  
VLX  
VLX  
(2V/Div)  
(2V/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (250ns/Div)  
Time (250ns/Div)  
Power On from EN  
Power Off from EN  
VIN = 3.3V,  
VIN = 3.3V,  
VOUT = 1.2V,  
IOUT = 1A  
VOUT = 1.2V,  
IOUT = 1A  
VEN  
VEN  
(2V/Div)  
(2V/Div)  
VOUT  
VOUT  
(500mV/Div)  
(500mV/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (500μs/Div)  
Time (500μs/Div)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8059-04 December 2011  
RT8059  
Applications Information  
The basic RT8059 application circuit is shown in Typical  
Application Circuit. External component selection is  
determined by the maximum load current and begins with  
the selection of the inductor value and operating frequency  
current is exceeded. This results in an abrupt increase in  
inductor ripple current and consequent output voltage ripple.  
Do not allow the core to saturate!  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
followed by CIN and COUT  
.
Toroid or shielded pot cores in ferrite or permalloy materials  
are small and don't radiate energy but generally cost more  
than powdered iron core inductors with similar  
characteristics. The choice of which style inductor to use  
mainly depends on the price vs size requirements and  
any radiated field/EMI requirements.  
Inductor Selection  
For a given input and output voltage, the inductor value  
and operating frequency determine the ripple current. The  
ripple current ΔIL increases with higher VIN and decreases  
with higher inductance.  
V
f ×L  
VOUT  
V
IN  
OUT ⎤ ⎡  
× 1−  
⎥ ⎢  
ΔIL =  
⎦ ⎣  
CIand COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large rippe voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current iven by :  
Having a lower ripple current reduces the ESR losses in  
the output capacitors and the output voltage ripple. Highest  
efficiency operation is achieved at low frequency with sall  
ripple current. This, however, requires a large inductor.  
Areasonable starting point for selecting the ripple current  
is ΔIL = 0.4(IMAX). The largest ripple current occurs at the  
highest VIN. To guarantee that the ripple current stays  
below a specified maximum, the inductor value should be  
chosen according to the following equation :  
VOUT  
V
IN  
IRMS = IOUT(MAX)  
V
VOUT  
IN  
This formula has a aximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is  
commonly used for design because even significant  
dviations do not result in much difference.Note that ripple  
ent ratings from capacitor manufacturers are often  
based on only 2000 hours of life which makes it advisable  
to further derate the capacitor, or choose a capacitor rated  
at a higher temperature than required. Several capacitors  
may also be paralleled to meet size or height requirements  
in the design.  
V
V
OUT  
OUT  
f × ΔIL(MAX)  
L =  
× 1−  
V
IN(MAX)  
Inductor Core Selection  
Once the value for L is known, the type of inductor can be  
selected. High ciency converters generally cannot afford  
the core loss found in low cost powdeed iron cores, forcing  
the use of more expensive ferrite or mollypermalloy cores.  
Actual core loss is independent of core size for a fixed  
inductor value but it is very dependent on the inductance  
selected. As the inductance increases, core losses  
decrease. Unfortunately, increased inductance requires  
more turns of wire and therefore, results in higher copper  
losses.  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response as described in a later section.  
The output ripple, ΔVOUT, is determined by :  
Ferrite designs have very low core losses and are preferred  
at high switching frequencies, so design goals can  
concentrate on copper loss and preventing saturation.  
Ferrite core material saturates hard, which means  
that inductance collapses abruptly when the peak design  
1
ΔVOUT ΔIL ESR +  
8fCOUT  
where f is the switching frequency and ΔIL is the inductor  
ripple current.  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8059-04 December 2011  
www.richtek.com  
7
RT8059  
The output ripple is highest at maximum input voltage  
since ΔIL increases with input voltage. Multiple capacitors  
placed in parallel may be needed to meet the ESR and  
RMS current handling requirements.Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density but it is important to only  
use types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long term reliability. Ceramic capacitors  
have excellent low ESR characteristics but can have a  
high voltage coefficient and audible piezoelectric effects.  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
For adjustable voltage mode, the output voltage is set by  
an external resistive voltage divider according to the  
following equation :  
R1  
VOUT = VREF(1+  
)
R2  
where VREF is the internal reference voltage (0.6V typ.)  
Checking Transient Response  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to ΔILOAD (ESR), where ESR is the effective series  
resistancof COUT. ΔILOAD also begins to charge or  
dischare COUT generating a feedbacerror signal used  
by e regulator to return VOto its steady-state value.  
During this recovery tim, VOUT can be monitored for  
overshoot or ringing which would indicate a stability  
problem.  
Using Ceramic Input and Output Capacitors  
Thermal onsiderations  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used t the input and  
output. When a ceramic capacitor is useat the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of curthrough the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
For continuous operation, o not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends n the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
wing formula :  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJAis the junction to ambient  
thermal resistance.  
For recommended operating condition specifications of  
the RT8059, the maximum junction temperature is 125°C  
and TA is the ambient temperature. The junction to ambient  
thermal resistance, θJA, is layout dependent. For TSOT-  
23-5 packages, the thermal resistance, θJA, is 255°C/W  
on a standard JEDEC 51-3 single-layer thermal test board.  
The maximum power dissipation at TA = 25°C can be  
calculated by the following formula :  
Output Voltage Setting  
The resistive voltage divider allows the FB pin to sense a  
fraction of the output voltage as shown in Figure 1.  
V
OUT  
R1  
FB  
RT8059  
GND  
PD(MAX) = (125°C 25°C) / (255°C/W) = 0.392W for  
TSOT-23-5 package  
R2  
Figure 1. Setting Output Voltage  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8059-04 December 2011  
RT8059  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. For the RT8059 package, the derating  
curves in Figure 2 allow the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
Layout Considerations  
Follow the PCB layout guidelines for optimal performance  
of the RT8059.  
` Keep the trace of the main current paths as short and  
wide as possible.  
` Place the input capacitor as close as possible to the  
0.42  
Single-Layer PCB  
0.39  
device pins (VINandGND).  
0.36  
0.33  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0.00  
` LX node experiences high frequency voltage swings  
and should be kept in a small area. Keep analog  
components away from the LX node to prevent stray  
capacitive noise pick-up.  
` Place thfeedback components as ose as possible to  
the Fpin.  
` GD and Exposed Pad must be connected to a strong  
ground plane for heat sinking and noise protection.  
0
25  
50  
75  
100  
125  
GND  
V
IN  
V
OUT  
C
OUT  
C
IN  
Ambient Temperature (°C)  
Figure 2.Derating Curves for RT8059 Package  
L
4
2
1
LX  
VIN  
FB  
GND  
EN  
C1  
5
R1  
R2  
V
OUT  
GND  
Figure 3. PCB Layout Guide  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8059-04 December 2011  
www.richtek.com  
9
RT8059  
Outline Dimension  
H
D
L
B
C
A
b
A
e
Dimensions n Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
1.000  
0.100  
1.803  
0.559  
3.000  
3.0
1.041  
0.254  
0.610  
Min  
Max  
A
A1  
B
0.700  
0.000  
1.397  
0300  
2.591  
2.692  
0.838  
0.080  
0.300  
0.028  
0.000  
0.055  
0.012  
0.102  
0.106  
0.033  
0.003  
0.012  
0.9  
0.004  
0.071  
0.022  
0.118  
0.122  
0.041  
0.010  
0.024  
b
C
D
e
H
L
TSOT-23-5 Surface Mount Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
10  
DS8059-04 December 2011  

RT8059GJ5 相关器件

型号 制造商 描述 价格 文档
RT8060 RICHTEK 1.5MHz, 1A High Efficiency Step-Down Converter 获取价格
RT8060A RICHTEK 1.5MHz, 1A High Efficiency Step-Down Converter 获取价格
RT8061A RICHTEK 3A, 1MHz, Synchronous Step-Down Converter 获取价格
RT8062 RICHTEK 2A, 2MHz, Synchronous Step-Down Converter 获取价格
RT8063 RICHTEK 3A, 2MHz, Synchronous Step-Down Converter 获取价格
RT8064 RICHTEK 2A, 2MHz, Synchronous Step-Down Converter 获取价格
RT8064ZQW RICHTEK High Efficiency : Up to 95%, Adjustable Frequency : 200kHz to 2MHz 获取价格
RT8064ZSP RICHTEK 2A, 2MHz, Synchronous Step-Down Converter 获取价格
RT8065 RICHTEK 获取价格
RT8068A RICHTEK 获取价格

RT8059GJ5 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6