RT8167A [RICHTEK]

Dual Single-Phase PWM Controller for CPU Core/GFX Power Supply; 双单相PWM控制器,用于CPU核心/ GFX电源
RT8167A
型号: RT8167A
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Dual Single-Phase PWM Controller for CPU Core/GFX Power Supply
双单相PWM控制器,用于CPU核心/ GFX电源

电压核心转换 控制器
文件: 总40页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8167A  
Dual Single-Phase PWM Controller for CPU Core/GFX  
Power Supply  
General Description  
Features  
z G-NAVPTM (GreenNativeActive Voltage Positioning)  
The RT8167A is a dual single-phase synchronous Buck  
PWM controller with integrated gate drivers, compliant  
with Intel VR12/IMVP7 specification. A serial VID (SVID)  
interface is built-in in the RT8167A to communicate with  
Intel VR12/IMVP7 compliant CPU. The integrated  
differential remote output voltage sensing function and  
built-in high accuracyDAC achieve accurate output voltage  
regulation.  
Topology  
z Dual Output Controller with Two Built-in Gate  
Drivers  
z Serial VID Interface  
z 0.5% DAC Accuracy  
z Differential Remote Output Voltage Sensing  
z Built-in ADC for Platform Programming  
z Diode Emulation Mode (DEM) at Light Load  
Condition  
The RT8167A supports VR12/ IMVP7 compatible power  
management states and VID on-the-fly function. The  
RT8167A operates in two power management states  
including DEM in PS2 and Forced-CCM in PS1/PS0.  
Richtek's proprietaryG-NAVPTM (GreenNativeAVP) makes  
AVP (Active Voltage Positioning) design easier and more  
robust. By utilizing theG-NAVPTM topology,DEM and CCM  
efficiency can be improved.  
z Droop Enable/Disable  
z Fast Transient Response  
z VR12/IMVP7 Compatible Power Management  
States  
z VR Ready Indicator  
z Thermal Throttling Indicator  
z Current Monitor Output  
The RT8167A integrates high accuracy ADC for platform  
setting functions, such as no-load offset or over current  
level. Individual VR ready output signals are provided for  
both CORE VR andGFX VR. The IC also features complete  
fault protection functions, including over voltage, under  
voltage, negative voltage, over current and under voltage  
lockout. The RT8167A is available in a WQFN-48L 6x6  
small foot print package.  
z Switching Frequency up to 1MHz per Phase  
z Protection : OVP, UVP, NVP, OCP, UVLO  
z Small 48-Lead WQFN Package  
z RoHS Compliant and Halogen Free  
Applications  
z VR12 / IMVP7 Intel CPU Core Supply  
z AVP Step-down Converter  
z Notebook/ Netbook/ Desktop Computer CPU Core  
Supply  
Marking Information  
RT8167AGQW : Product Number  
RT8167A  
GQW  
Ordering Information  
RT8167A  
YMDNN : Date Code  
YMDNN  
Package Type  
QW : WQFN-48L 6x6 (W-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current  
requirements of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
1
®
RT8167A  
Pin Configurations  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ISEN1P  
ISEN1N  
COMP  
FB  
RGND  
IMON  
IMONFB  
DRPEN  
OFS  
OFSA  
GFXPS2  
VCC  
ISENAP  
ISENAN  
COMPA  
FBA  
RGNDA  
IMONA  
IMONFBA  
VCLK  
VDIO  
ALERT  
DRPENA  
VRA_READY  
3
4
5
6
GND  
7
8
9
49  
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
WQFN-48L 6x6  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
2
3
4
ISEN1P  
Positive Current Sense Input of CORE VR  
Negative Current Sense Input of CORE VR  
ISEN1N  
COMP  
FB  
CORE VR Compensation. This pin is the output node of the error amplifier.  
CORE VR Feedback. This is the negative input node of the error amplifier.  
Return Ground for CORE VR. This pin is the negative input for differential remote  
voltage sensing.  
5
RGND  
Current Monitor Output of CORE VR. The output voltage VIMON of this pin is  
proportional to the output current. For digital output current reporting, detailed  
VIMON is generated by built-in ADC.  
6
IMON  
This pin is used to externally set the current monitor output gain of CORE VR.  
Connect this pin with one resistor RIMONFB to CORE VCC_SENSE while IMON pin  
is connected to ground with another resistor, RIMON. The current monitor output  
gain can be set by the ratio of these two resistors.  
7
IMONFB  
Droop Enable Mode Setting of CORE VR. An internal 80μA current source is  
connected to the DRPEN pin and flows out of this pin for 10μs. Connect this pin to  
VCC to enable droop function. Connect this pin to GND to disable droop function.  
8
9
DRPEN  
OFS  
Output Voltage No-Load Offset Setting of CORE VR. Connect to a resistive voltage  
divider from VCC to GND to set the pin voltage VOFS for offset setting. Connect this  
pin to GND for no offset setting.  
Output Voltage No-Load Offset Setting of GFX VR. Connect to a resistive voltage  
divider from VCC to GND to set the pin voltage VOFSA for offset setting. Connect this  
pin to GND for no offset setting.  
10  
OFSA  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
2
®
RT8167A  
Pin No.  
Pin Name  
Pin Function  
Forced DEM Enable Setting of GFX VR. Connect to VCC for forced-DEM setting  
and connect to GND for following SVID power state command.  
11  
GFXPS2  
5V Power Supply Input of Controller. Bypass this pin to GND with a 1μF or greater  
12  
13  
VCC  
ceramic capacitor.  
Initial Startup Voltage VINI_GFX Setting of GFX VR. Connect to a resistive voltage  
divider from VCC to GND to set the pin voltage VSETINIA for GFX VR initial startup  
voltage VINI_GFX setting. Connect this pin to GND for 0V VINI_GFX setting.  
SETINIA  
Initial Startup Voltage VINI_CORE Setting of CORE VR. Connect to a resistive  
voltage divider from VCC to GND to set the pin voltage VSETINI for CORE VR initial  
startup voltage VINI_CORE setting. Connect this pin to GND for 0V VINI_CORE setting.  
14  
SETINI  
Maximum Temperature Setting of CORE VR. Connect to a resistive voltage divider  
from VCC to GND to set the pin voltage VTMPMAX for TMPMAX setting.  
15  
16  
TMPMAX  
ICCMAX  
Maximum Current Setting of CORE VR. Connect to a resistive voltage divider from  
VCC to GND to set the pin voltage VICCMAX for ICCMAX setting.  
Maximum Current Setting of GFX VR. Connect to a resistive voltage divider from  
17  
18  
ICCMAXA  
TSEN  
VCC to GND to set the pin voltage VICCMAXA for ICCMAXA setting.  
Thermal Monitor Sense Pin of CORE VR.  
Over Current Protection Setting of CORE VR. Connect to a resistive voltage divider  
from VCC to GND to set the pin voltage VOCSET from 0 to 3.3V for CORE VR over  
current protection threshold.  
19  
20  
21  
OCSET  
TSENA  
OCSETA  
Thermal Monitor Sense Pin of GFX VR.  
Over Current Protection Setting of GFX VR. Connect to a resistive voltage divider  
from VCC to GND to adjust the pin voltage VOCSETA from 0 to 3.3V for GFX VR over  
current protection threshold.  
22  
23  
IBIAS  
Internal bias current setting. Connect a 53.6kΩ resistor from IBIAS pin to GND.  
Thermal Monitor Output (Active Low). Connect a pull high resistor from VRHOT pin  
to 1.05V.  
VRHOT  
Voltage Ready Indicator of CORE VR. Connect a pull high resistor from  
VR_READY pin to 1.05V.  
24  
25  
VR_READY  
Voltage Ready Indicator GFX VR. Connect a pull high resistor from VRA_READY  
pin to 1.05V.  
VRA_READY  
Droop Enable Mode Setting of GFX VR. An internal 80μA current source is  
connected to DRPENA pin and flows out of this pin for 10μs. Connect this pin to  
VCC to enable droop function. Connect this pin to GND to disable droop function.  
26  
DRPENA  
27  
28  
SVID Alert Pin (Active Low). Connect a 75Ω resistor from ALERT pin to 1.05V.  
ALERT  
VDIO  
Controller and CPU Data Transmission Interface. Connecting a 64.9Ω resistor  
between VDIO pin to 1.05V.  
Synchronous Clock from the CPU. Connect a 64.9Ω resistor from VCLK pin to  
1.05V.  
29  
30  
VCLK  
This pin is used to externally set the current monitor output gain of GFX VR.  
Connect this pin with one resistor RIMONFBA to GFX VCC_SENSE while IMON pin  
is connected to ground with another resistor RIMONA. The current monitor output  
gain can be set by the ratio of these two resistors.  
IMONFBA  
Current Monitor Output of GFX VR. The output voltage VIMONA of this pin is  
proportional to the output current. For digital output current reporting, detailed  
VIMONA is generated by built-in ADC.  
31  
IMONA  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
3
RT8167A  
Pin No.  
Pin Name  
RGNDA  
Pin Function  
Return Ground for GFX VR. This pin is the negative input for differential  
remote voltage sensing.  
32  
33  
34  
35  
36  
37  
38  
FBA  
GFX VR Feedback. This is the negative input node of the error amplifier.  
GFX VR Compensation. This pin is the output node of the error amplifier.  
Negative Current Sense Input of GFX VR.  
COMPA  
ISENAN  
ISENAP  
TONSETA  
EN  
Positive Current Sense Input of GFX VR.  
On-Time Setting of GFX VR. Connect this pin to VIN with one resistor.  
Chip Enable (Active High).  
Bootstrap Flying Capacitor Connection for GFX VR. This pin powers the high  
side MOSFET drivers. Connect this pin to PHASEA with an external ceramic  
capacitor.  
39  
40  
41  
BOOTA  
High Side MOSFET Floating Gate Driver Output for GFX VR. Connect this  
pin to the gate of high side MOSFET.  
UGATEA  
PHASEA  
Switching Node Connection for GFX VR. PHASEA is also the zero cross  
detect input for GFX VR. Connect this pin to the high side MOSFET sources  
together with the low side MOSFET drains and the inductor.  
Synchronous-Rectifier Gate Driver Output of GFX VR. Connect this pin to the  
gate of low side MOSFET.  
5V Power Supply of Driver. Bypass this pin to GND with a 1μF or greater  
ceramic capacitor.  
Synchronous-Rectifier Gate Driver Output of CORE VR. Connect this pin to  
the gate of low side MOSFET.  
42  
43  
44  
LGATEA  
PVCC  
LGATE  
Switching Node Connection for CORE VR. PHASE is the internal lower  
supply rail for the UGATE. PHASE is also the zero cross detect input for  
CORE VR. Connect this pin to the high side MOSFET sources together with  
the low side MOSFET drains and the inductor.  
45  
46  
PHASE  
UGATE  
High Side MOSFET Floating Gate Driver Output for CORE VR. Connect this  
pin to the gate of high side MOSFET.  
Bootstrap Flying Capacitor Connection for CORE VR. This pin powers the  
high side MOSFET drivers. Connect this pin to PHASE with an external  
ceramic capacitor.  
47  
48  
BOOT  
TONSET  
On-Time Setting of CORE VR. Connect this pin to VIN with one resistor.  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
49 (Exposed pad) GND  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8167A-00 January 2012  
RT8167A  
Typical Application Circuit  
R2  
130k  
R3  
5.1  
RT8167A  
TONSET  
V
CC  
48  
V
IN  
R1  
2.2  
5V to 25V  
12  
C2  
VCC  
5V  
0.1µF  
C1  
1µF  
R4  
0
47  
46  
BOOT  
Q1  
Q2  
C4  
V
CCP  
UG  
ATE  
10µF  
V
CORE  
L1  
1µH  
R5  
0
C3  
R6  
R7 R8 R9 R10 R11  
75  
0.1µF  
130 130 150 10k 10k  
Optional  
45  
PHASE  
DCR 7.6m  
R12  
C6  
330µF  
/9m  
C26  
330µF  
/9m  
44  
43  
0
29  
28  
27  
25  
24  
23  
LGATE  
PVCC  
R13  
C7  
VCLK  
VDIO  
ALERT  
VRA_READY  
VCLK  
VDIO  
5V  
C8  
R
NTC1  
ALERT  
VRA_READY  
1µF  
4.7k  
R14 3.9k  
1
2
VR_READ  
VR_READ  
Y
Y
ISEN1P  
ISEN1N  
VRHOT  
VRHOT  
R16  
2.4k  
C5  
0.068µF  
Optional  
C25  
VCC  
R15  
4.7k  
C9  
R17 R18 R19 R20 R21 R22  
10k 10k 27k 8.7k 10k 10k  
Optional  
R23  
10k  
R24  
26  
8
21  
19  
13  
14  
0
7
4
DRPENA  
DRPEN  
OCSETA  
OCSET  
SETINIA  
SETINI  
DRPENA  
DRPEN  
OCSETA  
OCSET  
IMONFB  
FB  
C10  
Optional  
Optional  
C12  
Optional  
C11  
SETINIA  
SETINI  
CORE VCC_ SENSE  
3
COMP  
RGND  
V
CORE  
R27  
100  
R26  
10k  
R25  
71k  
5
6
CORE VSS_SENSE  
R28 R29 R30 R31 R32 R33  
NC NC 10k 10k NC NC  
IM  
ON  
IMON  
R34  
100  
C13  
0.1µF  
R35  
620k  
VCC  
R36  
39k  
TONSETA  
R43  
R44  
V
37  
IN  
5V to 25  
R37 R38 R39 R40 R41 R42  
51k 150k 100k NC NC NC  
C14  
15  
16  
17  
10  
9
0.1µF  
TMPMAX  
ICCMAX  
ICCMAXA  
OFSA  
TMPMAX  
ICCMAX  
ICCMAXA  
OFSA  
OFS  
GFXPS2  
R45  
0
39  
40  
BOTTA  
Q3  
C16  
10µF  
UGATEA  
V
GFX  
L2  
2µH  
R46  
0
OFS  
GFXPS2  
C15  
0.1µF  
11  
Optional  
41  
42  
PHASEA  
LGATEA  
DCR 14.6m  
Q4  
R53  
0
C27  
330µF  
/15m  
C19  
330µF  
/15m  
R54  
C17  
R47 R48 R49 R50 R51 R52  
33k 5.1k 1.6k  
0
0
10k  
R
NTCA  
1k  
R55  
36  
35  
11k  
ISENAP  
ISENAN  
R57  
1.2k  
VCC  
C18  
0.1µF  
R
NTC  
TA  
R
10k  
ß = 3380  
R59  
12k  
NTC  
R56  
1k  
T1  
R58  
12k  
10k  
ß = 3380  
C20  
Optional  
R72  
750  
R60  
10k  
R61  
R71  
750  
0
20  
18  
22  
30  
33  
IMONFBA  
FBA  
TSENA  
TSEN  
IBIAS  
C21  
Optional  
Optional  
Optional  
C22  
C23  
SENSE  
GFX VCC_  
R62  
1k  
R64  
R63  
1k  
34  
53.6k  
COMPA  
V
GFX  
R65  
42k  
R67  
100  
R66  
10k  
32  
31  
RGNDA  
IMONA  
GFX VSS_S  
ENSE  
38  
EN  
EN  
IMONA  
R68  
100  
GND  
C24  
0.1µF 180k  
R69  
49 (Exposed P  
ad)  
R70  
1.8M  
Figure 1. Dual Output Application Circuit  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
5
RT8167A  
RT8167A  
TONSET  
VCC  
R1  
2.2  
R2  
130k  
R3  
5.1  
12  
48  
VCC  
V
5V  
IN  
C1  
1µF  
5V to 25  
C2  
0.1µF  
R4 0  
R5 0  
47  
46  
BOOT  
Q1  
V
CCP  
C4  
UGATE  
10µF  
R6  
R7  
R8  
R9  
R10  
75  
L1  
C3  
V
CORE  
1µH  
0.1µF  
130 130 150 10k  
Optional  
45  
PHASE  
29  
28  
27  
VCLK  
VDIO  
ALERT  
VR_READY  
VRHOT  
m
DCR 7.6  
VCLK  
VDIO  
ALERT  
Q2  
5V  
R11 0  
44  
43  
R12  
C7  
C26  
C6  
330µF  
/9m  
LGATE  
PVCC  
330µF  
/9m  
R
NTC1  
4.7k  
24  
23  
C8  
1µF  
VR_READY  
VRHOT  
R13 3.9k  
1
2
ISEN1P  
ISEN1N  
Optional  
C25  
R15  
2.4k  
VCC  
C5  
0.068µF  
R16 R17 R18  
10k 8.7k 10k  
R14  
4.7k  
C9  
8
19  
14  
Optional  
DRPEN  
OCSET  
DRPEN  
OCSET  
SETINI  
R19  
10k  
R20  
0
SETINI  
7
4
IMONFB  
FB  
C10  
Optional  
R27 R28 R29  
Optional  
Optional  
NC  
10k NC  
NSE  
CORE VCC_SE  
C11  
C12  
3
COMP  
V
CORE  
R21  
71k  
R22  
10k  
3
R2  
5
6
100  
SE  
CORE VSS_SEN  
RGND  
IMON  
VCC  
R26  
100k  
IMON  
R30 R31 R32  
51k 150k NC  
R24  
620k  
C13  
0.1µF  
R25  
39k  
15  
16  
TMPMAX  
ICCMAX  
OFS  
TMPMAX  
ICCMAX  
37  
39  
9
TONSETA  
BOOTA  
GND  
OFS  
Floating  
40  
41  
UGATEA  
PHASEA  
Floating  
Floating  
R33 R34 R35  
33k 5.1k  
0
42  
25  
LGATEA  
Floating  
GND  
VRA_READY  
OFSA  
10  
17  
11  
21  
GND  
VCC  
VCC  
GND  
VCC  
GND  
ICCMAXA  
GFXPS2  
OCSETA  
NTC  
10k  
ß = 3380  
R36  
12k  
T1  
26  
36  
30  
33  
34  
18  
22  
DRPENA  
ISENAP  
IMONFBA  
TSEN  
IBIAS  
VCC  
VCC  
Floating  
R39  
750  
FBA  
Floating  
GND  
COMPA  
IMONA  
ISENAN  
R37  
1k  
R38  
53.6k  
31  
35  
VCC  
20  
32  
13  
TSENA  
RGNDA  
SETINIA  
VCC  
GND  
GND  
38  
EN  
EN  
GND  
49 (Exposed Pad)  
Figure 2. Single Output Application Circuit  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8167A-00 January 2012  
RT8167A  
Function Block Diagram  
UVLO  
CORE VR  
GFX VR  
MUX  
ADC  
Current Monitor  
Current Monitor  
SVID XCVR  
Control & Protection Logic  
GFXPS2  
GND  
GFX VR  
VID/OFS control  
GFX VR  
Slew Rate control  
DAC  
RGNDA  
OFSA  
VREFA  
GFX 0LL EN  
OFS Control  
Droop Enabler  
DRPENA  
ERROR  
AMP  
GM  
Slew Rate Control  
+
-
+
-
Offset  
Cancellation  
FBA  
GFX VR CCRCOT  
PWM Generator  
VREFA  
+
-
TONSETA  
BOOTA  
COMPA  
PWM CMP  
GFX 0LL VCS  
/5  
GFX 0LL EN  
ISENAP  
ISENAN  
+
X4.8  
GFX VR OCP  
10  
UGATEA  
PHASEA  
-
Current  
GFX VR  
Protection Signal  
Sense AMP  
Driver logic  
control  
OCSETA  
PVCC  
GFX VR  
OV/UV/NV  
LGATEA  
GFX VR  
Operation Mode  
CORE VR  
VID/OFS Control  
CORE VR  
Slew Rate control  
RGND  
OFS  
DAC  
CORE 0LL EN  
VREF  
Droop Enabler  
DRPEN  
ERROR  
AMP  
OFS Control  
GM  
Slew Rate Control  
+
+
Offset  
Cancellation  
-
FB  
CORE VR  
CCRCOT  
PWM Generator  
-
+
-
VREF  
TONSET  
COMP  
PWM CMP  
/5  
CORE 0LL VCS  
CORE 0LL EN  
BOOT  
ISEN1P  
ISEN1N  
CORE VR  
OCP  
+
UGATE  
PHASE  
X4.8  
10  
-
Current  
CORE VR  
Protection Signal  
Sense AMP  
Driver logic  
control  
PVDD  
OCSET  
CORE VR  
OV/UV/NV  
LGATE  
CORE VR  
Operation Mode  
IBIAS  
2.14V  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
7
RT8167A  
Table 1. IMVP7/VR12 Compliant VID Table  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
H1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
H0  
0
VDAC Voltage  
0.000  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8167A-00 January 2012  
RT8167A  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID3  
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID2  
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
H0  
3
DAC Voltage  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
9
RT8167A  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID4  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID3  
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
H0  
6
DAC Voltage  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
0.670  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
0.765  
0.770  
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8167A-00 January 2012  
RT8167A  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID4  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
H0  
A
B
C
D
E
F
0
DAC Voltage  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
0.830  
0.835  
0.840  
0.845  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
0.885  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
11  
RT8167A  
VID7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID4  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
VID3  
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
VID2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
8
H0  
E
F
0
DAC Voltage  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
1.080  
1.085  
1.090  
1.095  
1.100  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
8
9
9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9
9
A
B
C
D
E
F
0
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8167A-00 January 2012  
RT8167A  
VID7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
H0  
2
DAC Voltage  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
1.205  
1.210  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
1.310  
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
13  
RT8167A  
VID7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID4  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
VID3  
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
VID2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
H1  
D
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
H0  
6
DAC Voltage  
1.315  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
1.435  
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
1.470  
1.475  
1.480  
1.485  
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
F
1
F
2
F
3
F
4
F
5
F
6
F
7
F
8
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8167A-00 January 2012  
RT8167A  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
H1  
F
H0  
9
DAC Voltage  
1.490  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
F
A
1.495  
F
B
1.500  
F
C
D
E
1.505  
F
1.510  
F
1.515  
F
F
1.520  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
15  
RT8167A  
Absolute Maximum Ratings (Note 1)  
z VCC toGND ----------------------------------------------------------------------------------------------- 0.3V to 6.5V  
z PVCC toGND --------------------------------------------------------------------------------------------- 0.3V to 6.5V  
z RGNDx toGND ------------------------------------------------------------------------------------------- 0.3V to 0.3V  
z TONSETx toGND ---------------------------------------------------------------------------------------- 0.3V to 28V  
z Others ------------------------------------------------------------------------------------------------------- 0.3V to (VCC + 0.3V)  
z BOOTx to PHASEx -------------------------------------------------------------------------------------- 0.3V to 6.5V  
z PHASEx to GND  
DC------------------------------------------------------------------------------------------------------------ 0.3V to 28V  
<20ns ------------------------------------------------------------------------------------------------------- 8V to 32V  
z UGATEx to PHASEx  
DC------------------------------------------------------------------------------------------------------------ 0.3V to (BOOTx PHASEx)  
<20ns ------------------------------------------------------------------------------------------------------- 5V to 7.5V  
z LGATEx toGND  
DC------------------------------------------------------------------------------------------------------------ 0.3V to (PVCC 0.3V)  
<20ns ------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
z Power Dissipation, PD @ TA = 25°C  
WQFN48L 6x6 ------------------------------------------------------------------------------------------- 2.857W  
z Package Thermal Resistance (Note 2)  
WQFN48L 6x6, θJA ------------------------------------------------------------------------------------- 35°C/W  
WQFN48L 6x6, θJC ------------------------------------------------------------------------------------- 6°C/W  
z Junction Temperature ------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ----------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Voltage of Controller, VCC -------------------------------------------------------------------- 4.5V to 5.5V  
z Supply Voltage of Gate Driver, VPVCC ---------------------------------------------------------------- 4.5V to 5.5V  
z Battery Input Voltage, VIN ------------------------------------------------------------------------------ 5V to 25V  
z Junction Temperature Range--------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range--------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Input  
Symbol  
Test Conditions  
Min  
Typ Max Unit  
V
/V  
V
= 1.05V, Not Switching  
4.5  
5
5
5.5  
25  
V
V
CC PVCC  
EN  
Input Voltage Range  
V
IN  
Battery Input Voltage  
--  
Supply Current  
I
+ I  
V
EN  
= 1.05V, Not Switching  
--  
--  
12  
20  
--  
mA  
VCC  
PVCC  
(V + PVCC)  
CC  
Supply Current  
(TONSETx)  
I
V
FB  
=1V, V = 12V, R = 100kΩ  
TON  
110  
μA  
TONSETx  
IN  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
16  
DS8167A-00 January 2012  
RT8167A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Shutdown Current  
I
VCC_SHDN  
V
V
= 0V  
= 0V  
--  
--  
5
μA  
EN  
EN  
(PVCC + V  
)
+ I  
CC  
PVCC_SHDN  
Shutdown Current  
(TONSETx)  
I
--  
--  
5
μA  
TONSETx_SHDN  
TON Setting  
TONSETx Voltage  
On-Time  
V
I
= 80μA, V  
= 1V  
= 1V  
0.95  
315  
1.075  
350  
1.2  
0V  
ns  
TONSETx  
RTON  
FBx  
FBx  
t
I
= 80μA, V  
385  
ON  
RTON  
TONSETx Input Current  
Range  
I
V
= 1.1V  
25  
--  
--  
280  
--  
μA  
RTON  
FBx  
Minimum Off-Time  
T
I
350  
ns  
OFF_MIN  
Droop Enable / Disable  
DRPENx Internal  
Current Source  
EN goes high within 10μs  
--  
4.5  
--  
80  
--  
--  
--  
2
μA  
DRPENx  
Detect V  
within 10μs  
Detect V  
, EN goes high  
DRPENx  
Droop Enable Threshold V  
DRPENx  
DRPENx  
V
Droop Disable  
V
, EN goes high  
DRPENx  
--  
Threshold  
within 10μs  
GFX VR Forced DEM  
GFXPS2x Enable  
Threshold  
GFXPS2x Disable  
Threshold  
V
4.3  
--  
--  
--  
--  
V
V
GFXPS  
GFXPS  
V
0.7  
References and System Output Voltage  
VID  
OFS  
Setting = 1.000V~1.520V  
SVID  
0.5  
5  
0
0
0
0
0
0.5  
5
%VID  
mV  
Setting = 0V  
SVID  
VID  
OFS  
Setting = 0.800V~1.000V  
SVID  
Setting = 0V  
SVID  
DAC Accuracy  
(PS0/PS1)  
VID  
OFS  
Setting = 0.500V~0.800V  
SVID  
V
8  
8
FBx  
Setting = 0V  
SVID  
VID  
OFS  
Setting = 0.250V~0.500V  
SVID  
8  
8
Setting = 0V  
SVID  
VID  
OFS  
Setting = 1.100V  
SVID  
10  
10  
Setting =0.640V~0.635V  
SVID  
V
V
V
V
= 0V, V  
= 0V  
INI_GFX  
0
0.3125 0.5125  
INI_CORE  
INI_CORE  
INI_CORE  
INI_CORE  
= 0.9V, V  
= 0.9V 0.7375 0.9375 1.1375  
INI_GFX  
INI_GFX  
SETINIx Voltage  
V
V
V
SETINIx  
= 1V, V  
= 1V  
1.3625 1.5625 1.7625  
INI_GFX  
= 1.1V, V  
= 1.1V 2.6125  
--  
72  
56  
40  
24  
8
5
Offset = 100mV  
Offset = 50mV  
68  
52  
36  
20  
0
--  
60  
44  
28  
12  
--  
External OFSx Voltage  
Offset = 50mV  
Offset = 100mV  
No Offset Voltage  
%V  
OFSx  
CC  
Impedance of OFSx Pin R  
1
--  
MΩ  
OFSx  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
17  
RT8167A  
Parameter  
Symbol  
Test Conditions  
= 53.6kΩ  
IBIAS  
Min  
Typ  
Max  
Unit  
IBIAS Pin Voltage  
V
R
2.09 2.14 2.19  
2.5 3.125 3.75  
V
IBIAS  
SetVID Slow  
SetVID Fast  
Dynamic VID Slew Rate SR  
mV/μs  
DVID  
10  
12.5  
15  
Error Amplifier  
DC Gain  
A
R = 47kΩ (Note5)  
70  
--  
80  
10  
--  
--  
dB  
DC  
L
Gain-Bandwidth Product GBW  
C
C
= 5pF  
(Note5)  
MHz  
LOAD  
= 10pF (Gain = 4, R  
LOAD  
LOAD_COMP  
Slew Rate  
SR  
V
--  
0.5  
--  
5
--  
--  
3.6  
--  
V/μs  
V
COMP  
= 47kΩ, V  
= 0.5V to 3V)  
COMPx  
Output Voltage Range  
R = 47kΩ  
L
COMP  
MAX Source/Sink  
Current  
I
V
= 2V  
COMP  
250  
--  
μA  
COMP  
Impedance of FBx  
R
1
--  
MΩ  
FBx  
Current Sense Amplifier  
Input Offset Voltage  
V
1  
1
--  
--  
--  
1
--  
--  
mV  
MΩ  
MΩ  
OFS_CSA  
ISENxN  
ISENxP  
Impedance of Neg. Input R  
Impedance of Pos. Input  
R
1
Current Sense  
Differential Input Range  
V
V
= 1.1V,  
FBx  
V
50  
--  
100  
mV  
CSDIx  
= V  
V  
CSDIx  
ISENxP ISENxN  
Current Sense DC Gain  
(Loop)  
A
V
V
V
= 1.1V, 30mV < V  
= 1.1V 30mV < V  
< 50mV  
--  
10  
--  
--  
1
V/V  
%
I
FBx  
CSDIx  
V
ISEN  
Linearity  
< 50mV  
1  
ISEN_ACC  
DAC  
ISEN_IN  
Digital Current Monitor  
Current Monitor Output  
Voltage (Droop Enabled)  
V
V
= 1V, V  
= 0.9V,  
FBx  
ISENxN  
V
--  
--  
1.6  
1.6  
--  
--  
V
V
IMONx_ENLL  
= 10k, R  
= 160k  
RIMONFBx  
IMONx  
V
V
R
= VISENxP V  
= 100mV  
CSDIx  
ISENxN  
= 10k,  
Current Monitor Output  
Voltage (Droop Disabled)  
V
V
= 1V, V  
IMONx_DISLL  
IMON  
FBx  
RIMONFBx  
= 80k  
IMONx  
IMON Voltage Range  
Digital IMON LSB  
0
--  
12.94  
30  
3.3  
--  
V
3.3V / 255 = 12.94mV  
--  
mV  
V
V
= 388.3mV, DIOUT [7 : 0] = 30  
= 776.5mV, DIOUT [7 : 0] = 60  
27  
57  
33 Decimal  
63 Decimal  
IMONx  
IMONx  
IMONx  
60  
Digital Code of IMON  
C
t
DIMON  
V
= 1164.7mV, DIOUT [7 : 0] = 90  
87  
--  
90  
93 Decimal  
Update Period of Digital  
Current Monitor  
1600  
--  
μs  
IMON  
Gate Driver  
V
V
BOOTx V  
BOOTx V  
= 5V  
= 0.1V  
PHASEx  
UGATEx  
Upper Driver Source  
R
--  
1
--  
Ω
UGATEx_sr  
Upper Driver Sink  
Lower Driver Source  
Lower Driver Sink  
R
R
R
V
= 0.1V  
UGATEx  
--  
--  
--  
1
1
--  
--  
--  
Ω
Ω
Ω
UGATEx_sk  
LGATEx_sr  
LGATEx_sk  
PVCC = 5V, PVCC V  
= 0.1V  
LGATEx  
V
= 0.1V  
0.5  
LGATEx  
Internal Boot Charging  
Switch On-Resistance  
R
PVCC to BOOTx  
--  
30  
--  
Ω
BOOTx  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
18  
DS8167A-00 January 2012  
RT8167A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Zero Current Detection  
Threshold  
V
V
V
= GND V  
--  
10  
--  
mV  
ZCD_TH  
ZCD_TH  
PHASEx  
Protection  
Under Voltage Lock-out  
Threshold  
Under Voltage Lock-out  
Hysteresis  
Over Voltage Protection  
Threshold  
Under Voltage Protection  
Threshold  
VCC Falling edge  
4.04  
--  
4.24  
100  
--  
--  
V
UVLO  
ΔV  
mV  
mV  
mV  
mV  
UVLO  
Respect to VOUT_MAX  
1μs filter time  
, with  
SVID  
V
V
V
100  
350  
100  
150  
200  
250  
--  
OVP  
V
UVP  
= V  
V  
, 0.8V <  
REFx  
ISENxN  
300  
50  
UVP  
NVP  
V
REFx  
<1.52V, with 3μs filter time  
Negative Voltage  
Protection Threshold  
V
NVP  
= VISENxN GND  
Current Sense Gain for  
Over Current Protection  
V
= 2.4V  
OCSET  
A
--  
48  
--  
V/V  
OC  
V
V  
= 50mV  
ISENxP  
ISENxN  
Logic Inputs  
EN Input  
Threshold  
Voltage  
Logic-High V  
With respect to 1V, 70%  
With respect to 1V, 30%  
0.7  
--  
--  
--  
--  
V
V
IH  
IL  
Logic-Low  
V
0.3  
Leakage Current of EN  
1  
0.65  
--  
--  
--  
--  
1
--  
μA  
V
V
V
With respect to Intel Spec.  
With respect to Intel Spec.  
VCLK,VDIO Input  
Threshold Voltage  
IH  
IL  
0.45  
V
Leakage Current of  
VCLK, VDIO  
I
1  
--  
1
μA  
LEAK_IN  
ALERT  
V
ALERT Low Voltage  
VR Ready  
ALERT  
I
= 4mA  
--  
--  
0.4  
V
ALERT_ SINK  
VRx_READY Low Voltage V  
I
= 4mA  
to V high  
VRx_READY  
--  
--  
0.4  
V
VRx_READY VRx_READY_ SINK  
VRx_READY Delay  
Thermal Throttling  
VRHOT Output Voltage  
t
V
= V  
70  
100  
160  
μs  
VRx_READY  
ISENxN  
BOOT  
V
VRHOT  
I
= 40mA  
--  
0.4  
--  
--  
1
V
VRHOT_SINK  
High Impedance Output  
ALERT, VRx_READY,  
VRHOT  
I
1  
μA  
LEAK_OUT  
Temperature Zone  
TSEN Threshold for  
Tmp_Zone [7] transition  
100°C  
97°C  
94°C  
91°C  
88°C  
--  
--  
--  
--  
--  
1.8725  
1.8175  
1.7625  
1.7075  
1.6525  
--  
--  
--  
--  
--  
V
V
V
V
V
TSEN Threshold for  
Tmp_Zone [6] transition  
TSEN Threshold for  
Tmp_Zone [5] transition  
V
TSENx  
TSEN Threshold for  
Tmp_Zone [4] transition  
TSEN Threshold for  
Tmp_Zone [3] transition  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
19  
RT8167A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
TSEN Threshold for  
Tmp_Zone [2] transition  
85°C  
82°C  
75°C  
--  
1.5975  
--  
V
TSEN Threshold for  
Tmp_Zone [1] transition  
V
--  
1.5425  
--  
V
TSENx  
TSEN Threshold for  
Tmp_Zone [0] transition  
--  
--  
1.4875  
1600  
--  
--  
V
Update Period  
ADC  
t
μs  
TSEN  
Latency  
t
--  
--  
400  
35  
μs  
LAT  
C
V
= 0.637V  
29  
32  
decimal  
ICCMAX1  
ICCMAX2  
ICCMAX  
C
C
C
C
C
C
C
C
V
= 1.2642V  
61  
125  
5
64  
128  
8
67  
131  
11  
decimal  
decimal  
decimal  
decimal  
decimal  
decimal  
decimal  
decimal  
ICCMAX  
Digital Code of ICCMAX  
Digital Code of ICCMAXA  
V
= 2.5186V  
ICCMAX3  
ICCMAXA1  
ICCMAXA2  
ICCMAXA3  
TMPMAX1  
TMPMAX2  
TMPMAX3  
ICCMAX  
V
= 0.1666V  
= 0.3234V  
= 0.637V  
ICCMAXA  
V
13  
29  
82  
97  
122  
16  
19  
ICCMAXA  
V
32  
35  
ICCMAXA  
V
= 1.6758V  
= 1.9698V  
= 2.4598V  
85  
88  
TMPMAX  
Digital Code of TMPMAX  
V
100  
125  
103  
128  
TMPMAX  
V
TMPMAX  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guaranteed by design.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
20  
DS8167A-00 January 2012  
RT8167A  
Typical Operating Characteristics  
CORE VR Power Off from EN  
CORE VR Power On from EN  
VCORE  
(500mV/Div)  
VCORE  
(500mV/Div)  
EN  
(2V/Div)  
EN  
(2V/Div)  
VR_READY  
(2V/Div)  
VR_READY  
(2V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
Boot VID = 1V  
Boot VID = 1V  
Time (100μs/Div)  
Time (100μs/Div)  
CORE VR OCP  
CORE VR OVP and NVP  
VCORE  
VCORE  
(1V/Div)  
(1V/Div)  
ILOAD  
LGATE  
(10A/Div)  
(10V/Div)  
VR_READY  
(1V/Div)  
VR_READY  
(1V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
VID = 1.1V  
VID = 1.1V  
Time (100μs/Div)  
Time (40μs/Div)  
CORE VR Dynamic VID Up  
CORE VR Dynamic VID Down  
VCORE  
VCORE  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 4A  
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 4A  
Time (40μs/Div)  
Time (40μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
21  
RT8167A  
CORE VR Dynamic VID Down  
CORE VR Dynamic VID Up  
VCORE  
VCORE  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 4A  
1.2V to 0.7V, Slew Rate = Fast, ILOAD = 4A  
Time (10μs/Div)  
Time (10μs/Div)  
CORE VR Load Transient  
CORE VR Load Transient  
VCORE  
VCORE  
(20mV/Div)  
(20mV/Div)  
8
8
ILOAD  
ILOAD  
(A/Div)  
(A/Div)  
1
1
VID = 1.1V, ILOAD = 1A to 8A, Slew Time = 150ns  
VID = 1.1V, ILOAD = 8A to 1A, Slew Time = 150ns  
Time (100μs/Div)  
Time (100μs/Div)  
CORE VR Mode Transition  
CORE VR Mode Transition  
VCORE  
VCORE  
(20mV/Div)  
(20mV/Div)  
VCLK  
(1V/Div)  
VCLK  
(1V/Div)  
LGATE  
LGATE  
(10V/Div)  
(10V/Div)  
UGATE  
UGATE  
(20V/Div)  
(20V/Div)  
VID = 1.1V, PS0 to PS2, ILOAD = 0.2A  
VID = 1.1V, PS2 to PS0, ILOAD = 0.2A  
Time (100μs/Div)  
Time (100μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
22  
DS8167A-00 January 2012  
RT8167A  
CORE VR Thermal Monitoring  
CORE VR VREF vs. Temperature  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.9  
1.7  
TSEN  
(V/Div)  
VRHOT  
(500mV/Div)  
TSEN Sweep from 1.7V to 1.9V  
Time (10ms/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
GFX VR Power On from EN  
GFX VR Power Off from EN  
VGFX  
(500mV/Div)  
VGFX  
(500mV/Div)  
EN  
(2V/Div)  
EN  
(2V/Div)  
VRA_READY  
(2V/Div)  
VRA_READY  
(2V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
Boot VID = 1V  
Boot VID = 1V  
Time (100μs/Div)  
Time (100μs/Div)  
GFX VR OCP  
GFX VR OVP and NVP  
VGFX  
VGFX  
(1V/Div)  
(1V/Div)  
VRA_READY  
(1V/Div)  
ILOAD  
(5A/Div)  
LGATEA  
(10V/Div)  
VRA_READY  
(1V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
VID = 1.1V  
Time (100μs/Div)  
Time (40μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
23  
RT8167A  
GFX VR Dynamic VID  
GFX VR Dynamic VID  
VGFX  
VGFX  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 1.25A  
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 1.25A  
Time (40μs/Div)  
Time (40μs/Div)  
GFX VR Dynamic VID  
GFX VR Dynamic VID  
VGFX  
VGFX  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 1.25A  
1.2V to 0.7V, Slew Rate = Fast, ILOAD = 1.25A  
Time (10μs/Div)  
Time (10μs/Div)  
GFX VR Load Transient  
GFX VR Load Transient  
VGFX  
VGFX  
(20mV/Div)  
(20mV/Div)  
4
4
ILOAD  
ILOAD  
(A/Div)  
(A/Div)  
1
1
VID = 1.1V, ILOAD = 1A to 4A, Slew Time = 150ns  
VID = 1.1V, ILOAD = 4A to 1A, Slew Time = 150ns  
Time (100μs/Div)  
Time (100μs/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
24  
DS8167A-00 January 2012  
RT8167A  
GFX VR Mode Transition  
GFX VR Mode Transition  
VGFX  
VGFX  
(20mV/Div)  
(20mV/Div)  
VCLK  
(1V/Div)  
VCLK  
(1V/Div)  
LGATEA  
(10V/Div)  
LGATEA  
(10V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
VID = 1.1V, PS0 to PS2, ILOAD = 0.1A  
VID = 1.1V, PS2 to PS0, ILOAD = 0.1A  
Time (100μs/Div)  
Time (100μs/Div)  
GFX VR Thermal Monitoring  
GFX VR VREF vs. Temperature  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.9  
TSENA  
(V/Div)  
1.7  
VRHOT  
(500mV/Div)  
TSENA Sweep from 1.7V to 1.9V  
Time (10ms/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
25  
RT8167A  
Application Information  
management states and VIDon-the-fly function. The power  
management states includeDEM in PS2/PS3 and Forced-  
CCM in PS1/PS0. The VID on-the-fly function has three  
different slew rates : Fast, Slow andDecay. The RT8167A  
integrates a high accuracy ADC for platform setting  
functions, such as no-load offset and over current level.  
The controller supports both DCR and sense-resistor  
current sensing. The RT8167A provides VR ready output  
signals of both CORE VR and GFX VR. It also features  
complete fault protection functions including over voltage,  
under voltage, negative voltage, over current and under  
voltage lockout. The RT8167A is available in a WQFN-  
48L 6x6 small foot print package.  
The RT8167A is a VR12/IMVP7 compliant, dual single-  
phase synchronous Buck PWM controller for the CPU  
CORE VR and GFX VR. The gate drivers are embedded  
to facilitate PCB design and reduce the total BOM cost. A  
serial VID (SVID) interface is built-in in the RT8167A to  
communicate with Intel VR12/IMVP7 compliant CPU.  
The RT8167AadoptsG-NAVPTM (GreenNativeAVP), which  
is Richtek's proprietary topology derived from finite DC  
gain compensator, making it an easy setting PWM  
controller to meet AVP requirements. The load line can  
be easily programmed by setting the DC gain of the error  
amplifier. The RT8167Ahas fast transient response due to  
theG-NAVPTM commanding variable switching frequency.  
G-NAVPTM topology also represents a high efficiency  
system with green power concept. With G-NAVPTM  
topology, the RT8167Abecomes a green power controller  
with high efficiency under heavy load, light load, and very  
light load conditions. The RT8167A supports mode  
transition function between CCM andDEM. These different  
operating states allow the overall power system to have  
low power loss. By utilizing the G-NAVPTM topology, the  
operating frequency of RT8167A varies with output voltage,  
load and VINto further enhance the efficiency even in CCM.  
Design Tool  
To help users reduce efforts and errors caused by manual  
calculations, a user-friendly design tool is now available  
on request. This design tool calculates all necessary  
design parameters by entering user's requirements.  
Please contact Richtek's representatives for details.  
Serial VID (SVID) Interface  
SVIDis a three-wire serial synchronous interface defined  
by Intel. The three wire bus includes VDIO, VCLK and  
ALERT signals. The master (Intel's VR12/IMVP7 CPU)  
initiates and terminates SVIDtransactions and drives the  
VDIO, VCLK, andALERT during a transaction. The slave  
(RT8167A) receives the SVID transactions and acts  
accordingly.  
The built-in high accuracy DAC converts the SVID code  
ranging from 0.25V to 1.52V with 5mV per step. The  
differential remote output voltage sense and high accuracy  
DAC allow the system to have high output voltage accuracy.  
The RT8167A supports VR12/IMVP7 compatible power  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
26  
DS8167A-00 January 2012  
RT8167A  
Standard Serial VID Command  
Master Payload  
Slave Payload  
Contents  
Code  
00h  
Commands  
Description  
Contents  
not supported  
N/A  
N/A  
N/A  
Set new target VID code, VR jumps to new VID  
target with controlled default “fast” slew rate  
12.5mV/μs.  
Set new target VID code, VR jumps to new VID  
target with controlled default “slow” slew rate  
3.125mV/μs.  
Set new target VID code, VR jumps to new VID  
target, but does not control the slew rate. The  
output voltage decays at a rate proportional to  
the load current  
01h  
02h  
SetVID_Fast  
SetVID_Slow  
VID code  
VID code  
N/A  
N/A  
N/A  
03h  
SetVID_Decay  
VID code  
Byte indicating  
power states  
04h  
05h  
06h  
SetPS  
N/A  
N/A  
N/A  
Set power state  
Pointer of registers  
in data table  
SetRegADR  
SetReg DAT  
Set the pointer of the data register  
Write the contents to the data register  
New data register  
content  
Specified  
Register  
Contents  
Pointer of registers  
in data table  
Slave returns the contents of the specified  
register as the payload  
07h  
GetReg  
08h  
-
not supported  
N/A  
N/A  
N/A  
1Fh  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
27  
RT8167A  
Data and Configuration Register  
Description  
Index Register Name  
Access  
Default  
1Eh  
00h  
01h  
02h  
05h  
Vendor ID  
Vendor ID, default 1Eh.  
RO, Vendor  
RO, Vendor  
RO, Vendor  
RO, Vendor  
Product ID  
Product ID.  
65h  
Product Revision  
Protocol ID  
Product Revision.  
SVID Protocol ID.  
01h  
01h  
Bit mapped register, identifies the SVID VR capabilities  
and which of the optional telemetry register are  
supported.  
06h  
VR_Capability  
RO, Vendor  
81h  
10h  
11h  
Status_1  
Status-2  
Data register containing the status of VR.  
R-M, W-PWM  
R-M, W-PWM  
00h  
00h  
Data register containing the status of transmission.  
Temperature  
Zone  
Data register showing temperature zone that have been  
entered.  
12h  
15h  
R-M, W-PWM  
00h  
Data register showing direct ADC conversion of averaged  
output current.  
Output_Current  
R-M, W-PWM  
R-M, W-PWM  
00h  
00h  
1Ch Status_2_lastread The register contains a copy of the status_2.  
Data register containing the maximum ICC of platform  
21h  
22h  
24h  
ICC_Max  
Temp_Max  
SR-Fast  
supports.  
RO, Platform  
RO, Platform  
RO  
--  
--  
Binary format in Amp, IE 64h = 100A.  
Data register containing the temperature max the platform  
supports.  
Binary format in °C, IE 64h = 100°C  
Only for CORE VR  
Data register containing the capability of fast slew rate the  
platform can sustains. Binary format in mV/μs, IE 0Ah =  
10mV/μs.  
0Ah  
Data register containing the capability of slow slew rate.  
Binary format in mV/μs IE 02h = 2.5mV/μs.  
The register is programmed by the master and sets the  
maximum VID.  
25h  
30h  
SR-Slow  
RO  
02h  
BFh  
VOUT_Max  
RW, Master  
31h  
32h  
33h  
VID Setting  
Power State  
Offset  
Data register containing currently programmed VID.  
Register containing the current programmed power state.  
Set offset in VID steps.  
RW, Master  
RW, Master  
RW, Master  
00h  
00h  
00h  
Bit mapped data register which configures multiple VRs  
behavior on the same bus.  
34h  
35h  
Multi VR Config  
Pointer  
RW, Master  
RW, Master  
00h  
30h  
Scratch pad register for temporary storage of the  
SetRegADR pointer register.  
Notes :  
RO = Read Only  
RW = Read/Write  
R-M = Read by Master  
W-PWM = Write by PWM only  
Vendor = hard coded by VR vendor  
Platform = programmed by platform  
Master = programmed by the master  
PWM = programmed by the VR control IC  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
28  
DS8167A-00 January 2012  
RT8167A  
Power Ready Detection and Power On Reset (POR)  
Current  
Mirror  
During start-up, the RT8167A detects the voltage on the  
2.14V  
voltage input pins : VCC and EN. When VCC > VUVLO  
,
+
-
the RT8167A will recognize the power state of system to  
be ready (POR = high) and wait for enable command at  
EN pin. After POR = high and EN > VENTH, the RT8167A  
will enter start-up sequence for both CORE VR and GFX  
VR. If the voltage on any voltage pin drops below POR  
threshold (POR = low), the RT8167A will enter power down  
sequence and all the functions will be disabled. SVIDwill  
be invalid within 300μs after chip becomes enabled. All  
the protection latches (OVP, OCP, UVP, OTP) will be  
cleared only after POR = low. EN = low will not clear  
these latches.  
IBIAS  
53.6k  
Figure 4. IBIAS Setting  
ICCMAX, ICCMAXA and TMPMAX  
The RT8167Aprovides ICCMAX, ICCMAXAand TMPMAX  
pins for platform users to set the maximum level of output  
current or VR temperature: ICCMAX for CORE VR  
maximum current, ICCMAXA for GFX VR maximum  
current, and TMPMAX for CORE VR maximum  
temperature.  
VCC  
EN  
+
-
POR  
V
V
UVLO  
To set ICCMAX, ICCMAXA and TMPMAX, platform  
designers should use resistive voltage dividers on these  
three pins. The current of the divider should be several  
milli-Amps to avoid noise effect. The three items share  
the same algorithms : theADC divides 5V into 255 levels.  
Therefore, LSB = 5/255 = 19.6mV, which means 19.6mV  
applied to ICCMAX pin equals to 1Asetting. For example,  
if a platform designer wants to set TMPMAX to 120°C, the  
voltage applied to TMPMAX should be 120 x 19.6mV =  
2.352V. The ADC circuit inside these three pins will  
decode the voltage applied and store the maximum current/  
temperature setting into ICC_MAX and Temp_Max  
registers. The ADC monitors and decodes the voltage at  
these three pins only after EN = high. If EN = low, the  
RT8167Awill not take any action even when the VR output  
current or temperature exceeds its maximum setting at  
these ADC pins. The maximum level settings at these  
ADC pins are different from over current protection or over  
temperature protection. That means, these maximum level  
setting pins are only for platform users to define their  
system operating conditions and these messages will only  
be utilized by the CPU.  
+
-
Chip EN  
ENTH  
Figure 3. Power Ready Detection and Power On Reset  
(POR)  
Precise Reference Current Generation  
The RT8167A includes extensive analog circuits inside  
the controller. These analog circuits need very precise  
reference voltage/current to drive these analog devices.  
The RT8167A will auto-generate a 2.14V voltage source  
at IBIAS pin, and a 53.6kΩ resistor is required to be  
connected between IBIAS and analog ground. Through  
this connection, the RT8167A generates a 40μA current  
from IBIAS pin to analog ground and this 40μAcurrent will  
be mirrored inside the RT8167A for internal use. Other  
types of connection or other values of resistance applied  
at the IBIAS pin may cause failure of the RT8167A's analog  
circuits. Thus a 53.6kΩ resistor is the only recommended  
component to be connected to the IBIAS pin. The  
resistance accuracy of this resistor is recommended to  
be at least 1%.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
29  
RT8167A  
V
CC  
VINI_CORE and VINI_GFX Setting  
The initial start up voltage (VINI_CORE, VINI_GFX) of the  
RT8167A can be set by platform users through SETINI  
and SETINIApins. Voltage divider circuit is recommended  
ICCMAX  
A/D  
Converter  
ICCMAXA  
TMPMAX  
to be applied to SETINI and SETINIApins. The VINI_CORE  
/
VINI_GFX relate to SETINI/SETINIA pin voltage setting as  
shown in Figure 6. Recommended voltage setting at SETINI  
and SETINIA pins are also shown in Figure 6.  
Figure 5. ADC Pins Setting  
VCC (5  
V)  
VINI_CORE  
Recommended  
V
= 1.1V  
INI_CORE  
VINI_GFX SETINI/SETINIA Pin Voltage  
V
= 1.1V  
INI_GFX  
5
8
1.1V  
1V  
x VCC3.125V or VCC  
1/2 VCC  
3
x VCC1.875V  
V
= 1V  
= 1V  
8
INI_CORE  
V
INI_GFX  
3
16  
0.9V  
0V  
x VCC0.9375V  
1/4 VCC  
1/8 VCC  
GND  
V
=
0.9V  
INI_CORE  
1
16  
V
= 0.9V  
INI_GFX  
x VCC0.3125V or GND  
V
= 0V  
= 0V  
INI_CORE  
INI_GFX  
V
Figure 6. SETINI and SETINIA Pin Voltage Setting  
Start Up Sequence  
voltage reaches the target voltage, the RT8167Awill send  
out VR_READY signal to indicate the power state of the  
RT8167A is ready. The VR_READY circuit is an open-  
drain structure so a pull-up resistor is recommended for  
connecting to a voltage source.  
The RT8167A utilizes internal soft-start sequence which  
strictly follows Intel VR12/IMVP7 start up sequence  
specifications. After POR = high and EN = high, a 300μs  
delay is needed for the controller to determine whether all  
the power inputs are ready for entering start up sequence.  
If pin voltage of SETINI/SETINIA is zero, the output voltage  
of CORE/GFX VR is programmed to stay at 0V. If pin  
voltage of SETINI/SETINIA is not zero, VR output voltage  
will ramp up to initial boot voltage (VINI_CORE,VINI_GFX) after  
both POR = high and EN = high. After the output voltage  
of CORE/GFX VR reaches target initial boot voltage, the  
controller will keep the output voltage at the initial boot  
voltage and wait for the next SVID commands. After the  
RT8167A receives valid VID code (typically SetVID_Slow  
command), the output voltage will ramp up/down to the  
target voltage with specified slew rate. After the output  
Power Down Sequence  
Similar to the start up sequence, the RT8167A also utilizes  
a soft shutdown mechanism during turn-off. After POR =  
low, the internal reference voltage (positive terminal of  
compensation EA) starts ramping down with 3.125mV/μs  
slew rate, and output voltage will follow the reference  
voltage to 0V. After output voltage drops below 0.2V, the  
RT8167Ashuts down and all functions are disabled. The  
VR_READY will be pulled down immediately after POR =  
low.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
30  
DS8167A-00 January 2012  
RT8167A  
VCC  
POR  
EN  
EN Chip  
(Internal Signal)  
SVID  
Valid  
xx  
XX  
Off  
Off  
300µs  
0.2V  
Off  
V
CORE  
CORE VR  
Operation Mode  
CCM  
CCM  
CCM  
SVID defined  
V
GFX  
0.2V  
Off  
GFX VR  
Operation Mode  
CCM  
SVID defined  
100µs  
VR_READY  
VRA_READY  
100µs  
Figure 7 (a). Power sequence for RT8167A (VINI_CORE = VINI_GFX = 0V)  
VCC  
POR  
EN  
EN Chip  
(Internal Signal)  
300µs  
SVID  
xx  
Valid  
XX  
250µs  
V
INI_CORE  
0.2V  
Off  
V
CORE  
CORE VR  
Operation Mode  
Off  
CCM  
CCM  
SVID defined  
100µs  
VR_READY  
50µs  
V
INI_GFX  
V
GFX  
0.2V  
Off  
GFX VR  
Operation Mode  
Off  
CCM  
SVID defined  
CCM  
100µs  
VRA_READY  
Figure 7 (b). Power sequence for RT8167A (VINI_CORE 0, V  
0V)  
INI_GFX  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
31  
RT8167A  
Disable GFX VR : Before EN = High  
Similar to the valley current mode control with finite  
compensator gain, the high side MOSFET on-time is  
determined by the CCRCOT PWM generator. When load  
current increases, VCS increases, the steady state COMP  
voltage also increases which makes the output voltage  
decrease, thus achieving AVP.  
GFX VR enable or disable is determined by the internal  
circuitry that monitors the ISENAN voltage during start  
up. Before EN= high,GFX VR detects whether the voltage  
of ISENAN is higher than VCC 1Vto disable GFX  
VR. The unused driver pins can be connected to GND or  
left floating.  
Droop Function Enable  
GFX VR Forced-DEM Function Enable : After  
VRA_Ready = High  
The CORE/GFX VR's droop function can be enabled or  
disabled withDRPEN/DRPENApin.After EN = high within  
10μs, the RT8167Awill source 80μAcurrent fromDRPEN/  
DRPENA pin to the external resistor to determine the  
voltage level. If the voltage atDRPEN/DRPENApin is lower  
than 3.5V, then the VR will operate in droop-disabled mode.  
If the voltage is higher than 4V, then the VR will operate in  
droop-enabled mode.  
The GFX VR's forced-DEM function can be enabled or  
disabled with GFXPS2 pin. The RT8167A detects the  
voltage ofGFXPS2 for forced-DEM function. If the voltage  
atGFXPS2 pin is higher than 4.3V, theGFX VR operates  
in forced-DEM. If this voltage is lower than 0.7V, theGFX  
VR follows SVID power state command.  
Droop Setting (with Temperature Compensation)  
Loop Control  
It's very easy to achieve the Active Voltage Positioning  
(AVP) by properly setting the error amplifier gain due to  
the native droop characteristics. The target is to have  
Both CORE and GFX VR adopt Richtek's proprietary G-  
NAVPTM topology. G-NAVPTM is based on the finite-gain  
valley current mode with CCRCOT (Constant Current  
Ripple Constant On Time) topology. The output voltage,  
VCORE or VGFX, will decrease with increasing output load  
current. The control loop consists of PWM modulator with  
power stage, current sense amplifier and error amplifier  
as shown in Figure 8.  
VOUT = VREFx ILOAD x RDROOP  
(1)  
Then solving the switching condition VCOMPx = VCSx in  
Figure 8 yields the desired error amplifier gain as  
A ×R  
R2  
R1  
I
SENSE  
(2)  
A
=
=
V
R
V
IN  
DROOP  
where AI is the internal current sense amplifier gain and  
RSENSE is the current sense resistance. If no external sense  
resistor is present, the DCR of the inductor will act as  
RSENSE. RDROOP is the resistive slope value of the converter  
output and is the desired static output impedance.  
V
OUT  
/V  
High Side  
MOSFET  
UGATEx  
PHASEx  
(V  
)
CORE GFX  
GFX/CORE VR  
CCRCOT  
PWM Generator  
Driver  
Logic  
Control  
L
R
C
LGATEx  
Low Side  
MOSFET  
R
X
C
X
C
CMP  
V
OUT  
ISENxP  
ISENxN  
V
CSx  
+
Ai  
A
> A  
V1  
V2  
-
C
Byp  
C2  
R2  
C1  
R1  
CORE/GFX VR  
COMPx  
FBx  
V
A
A
CC_SENSE  
V2  
V1  
-
EA  
CORE/GFX VR  
RGNDx  
+
0
V
SS_SENSE  
Load Current  
VREFx  
Figure 9. ErrorAmplifierGain (AV) Influence on VOUT  
Accuracy  
Figure 8. Simplified Schematic for Droop and Remote  
Sense in CCM  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
32  
DS8167A-00 January 2012  
RT8167A  
Since the DCR of inductor is temperature dependent, it  
affects the output accuracy in high temperature conditions.  
Temperature compensation is recommended for the  
lossless inductor DCR current sense method. Figure 10  
shows a simple but effective way of compensating the  
temperature variations of the sense resistor using anNTC  
thermistor placed in the feedback path.  
R2 = AV, 25 x (R1b + R1a // RNTC, 25  
)
(7)  
whereAV, 25°C is the error amplifier gain at room temperature  
obtained from (2). R1b can be obtained by substituting  
(7) to (3),  
R1b =  
RSENSE, HOT  
×(R1a //RNTC, HOT ) (R1a//RNTC, COLD  
)
RSENSE, COLD  
C2  
C1  
RSENSE, HOT  
1−  
RSENSE, COLD  
(8)  
R2  
R1a  
NTC  
R1b  
COMPx  
V
CC_SENSE  
FBx  
-
Loop Compensation  
EA  
RGNDx  
V
+
SS_SENSE  
Optimized compensation of the CORE VR allows for best  
possible load step response of the regulator's output. A  
type-I compensator with one pole and one zero is adequate  
for a proper compensation. Figure 10 shows the  
compensation circuit. It was previously mentioned that to  
determine the resistive feedback components of error  
amplifier gain, C1 and C2 must be calculated for the  
compensation. The target is to achieve constant resistive  
output impedance over the widest possible frequency  
range.  
VREFx  
Figure 10. Loop Setting with Temperature Compensation  
Usually, R1a is set to equal RNTC (25°C), while R1b is  
selected to linearize theNTC's temperature characteristic.  
For a given NTC, the design would be to obtain R1b and  
R2 and then C1 and C2. According to (2), to compensate  
the temperature variations of the sense resistor, the error  
amplifier gain (AV) should have the same temperature  
coefficient with RSENSE. Hence  
The pole frequency of the compensator must be set to  
compensate the output capacitor ESR zero :  
A
R
SENSE, HOT  
V, HOT  
(3)  
=
A
R
SENSE, COLD  
V, COLD  
1
(9)  
fP  
=
From (2), we can haveAv at any temperature (T) as  
R2  
2× π× C×RC  
A
=
(4)  
where C is the capacitance of the output capacitor and RC  
is the ESR of the output capacitor. C2 can be calculated  
as follows :  
V, T  
R1a / /R  
+ R1b  
NTC, T  
The standard formula for the resistance ofNTC thermistor  
as a function of temperature is given by :  
C×R  
R2  
C
(10)  
C2 =  
1
1
298  
β
(
) (  
)
{
}
T+273  
(5)  
RNTC, T = RNTC, 25  
e
The zero of compensator has to be placed at half of the  
switching frequency to filter the switching-related noise.  
where RNTC, 25 is the thermistor's nominal resistance at  
room temperature, β (beta) is the thermistor's material  
constant in Kelvins, and T is the thermistor's actual  
temperature in Celsius.  
Such that,  
1
C1 =  
(11)  
R1b + R1a // R  
× π× f  
SW  
(
)
NTC, 25°C  
TON Setting  
TheDCR value at different temperatures can be calculated  
using the equation below :  
High frequency operation optimizes the application by  
trading off efficiency due to higher switching losses with  
smaller component size. This may be acceptable in ultra-  
portable devices where the load currents are lower and  
the controller is powered from a lower voltage supply. Low  
frequency operation offers the best overall efficiency at  
DCRT = DCR25 x [1+0.00393 x (T-25)]  
(6)  
where 0.00393 is the temperature coefficient of copper.  
For a givenNTC thermistor, solving (4) at room temperature  
(25°C) yields  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
33  
RT8167A  
the expense of component size and board space. Figure  
11 shows the on-time setting circuit. Connect a resistor  
(RTONSETx) between VIN and TONSETx to set the on-time  
R
R1  
C1  
TONSETx  
TONSETx  
VREFx  
GFX/CORE  
VR CCRCOT  
PWM  
V
IN  
Generator  
of UGATEx :  
-12  
28×10 ×R  
TONSETx  
(12)  
On-Time  
t
(V  
REFx  
< 1.2V) =  
ONx  
V
IN  
V  
REFx  
Figure 11. On-Time Setting with RC Filter  
where tONx is the UGATEx turn on period, VINis the input  
voltage of converter, and VREFx is the internal reference  
voltage.  
Differential Remote Sense Setting  
The CORE/GFX VR includes differential, remote-sense  
inputs to eliminate the effects of voltage drops along the  
PC board traces, CPU internal power routes and socket  
contacts. The CPU contains on-die sense pins CORE/  
GFX VCC_SENSE and VSS_SENSE. Connect RGNDx to CORE/  
GFX VSS_SENSE. Connect FBx to CORE/GFX VCC_SENSE  
with a resistor to build the negative input path of the error  
amplifier. The precision voltage reference VREFx is referred  
to RGND for accurate remote sensing.  
When VREFx is larger than 1.2V, the equivalent switching  
frequency may be over the maximum design range, making  
it unacceptable. Therefore, the VR implements a pseudo-  
constant-frequency technology to avoid this disadvantage  
of CCRCOT topology. When VREFx is larger than 1.2V,  
the on-time equation will be modified to :  
tONx (VREFx 1.2V)  
23.33×10-12 ×RTONSETx × VREFx  
(13)  
=
VIN VREFx  
Current Sense Setting  
On-time translates roughly to switching frequencies. The  
on-times guaranteed in the Electrical Characteristics are  
influenced by switching delays in external high side  
MOSFET.Also, the dead-time effect increases the effective  
on-time, reducing the switching frequency. It occurs only  
in CCM during dynamic output voltage transitions when  
the inductor current reverses at light or negative load  
currents. With reversed inductor current, PHASEx goes  
high earlier than normal, extending the on-time by a period  
equal to the high side MOSFET rising dead time.  
The current sense topology of the CORE/GFX VR is  
continuous inductor current sensing. Therefore, the  
controller can be less noise sensitive. Low offset amplifiers  
are used for loop control and over current detection. The  
internal current sense amplifier gain (AI) is fixed to be 10.  
The ISENxP and ISENxNdenote the positive and negative  
input of the current sense amplifier.  
Users can either use a current sense resistor or the  
inductor'sDCR for current sensing. Using inductor'sDCR  
allows higher efficiency as shown in Figure 12. To let  
L
DCR  
For better efficiency of the given load range, the maximum  
(15)  
= R × C  
X
X
switching frequency is suggested to be :  
1
fS(MAX)(kHz) =  
×
then the transient performance will be optimum. For  
example, choose L = 0.36μH with 1mΩ DCR and  
CX = 100nF, to yields for RX :  
tON tHSDelay  
VREFx(MAX) +ILOAD(MAX) × RON_LSFET + DCR RDROOP  
⎡ ⎤  
+ILOAD(MAX) × RON_LSFET RON_HSFET  
V
IN(MAX)  
0.36μH  
1m Ω×10 0nF  
R
=
= 3.6kΩ  
X
(16)  
(14)  
where fS(MAX) is the maximum switching frequency, tHS-  
Delay is the turn on delay of high side MOSFET, VREFx(MAX)  
is the maximum application DAC voltage of application,  
VIN(MAX) is the maximum application input voltage,  
ILOAD(MAX) is the maximum load of application, RON_LS-FET  
is the low side MOSFET RDS(ON), RON_HS-FET is the high  
side MOSFET RDS(ON), DCRL is the inductor DCR, and  
RDROOP is the load line setting.  
V
OUT  
(V  
/V  
)
CORE GFX  
L
DCR  
PHASEx  
C
X
R
X
ISENxP  
ISENxN  
+
V
CSx  
A
I
-
C
Byp  
Figure 12. Lossless Inductor Sensing  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
34  
DS8167A-00 January 2012  
RT8167A  
Considering the inductance tolerance, the resistor RX has  
to be tuned on board by examining the transient voltage.  
If the output voltage transient has an initial dip below the  
minimum load line requirement with a slow recovery, RX  
is too small. Vice versa, if the resistance is too large the  
output voltage transient will only have a small initial dip  
and the recovery will be too fast, causing a ring-back.  
After receiving SetPS command, the CORE/GFX VR will  
immediately change to the new operation state. When  
VR receives SetPS command of PS2 operation mode,  
the VR operates as a DEM controller.  
If VR receives dynamic VID change command (SetVID),  
VR will automatically enter PS0 operation mode. After  
output voltage reaches target voltage, VR will stay at PS0  
state and ignore former SetPS command. Only by  
re-sending SetPS command after SetVID command will  
VR be forced into PS2 operation state again.  
Using current-sense resistor in series with the inductor  
can have better accuracy, but the efficiency is a trade-off.  
Considering the equivalent inductance (LESL) of the current  
sense resistor, a RC filter is recommended. The RC filter  
calculation method is similar to the above-mentioned  
inductorDCR sensing method.  
Thermal Monitoring and Temperature Reporting  
CORE/GFX VR provides thermal monitoring function via  
sensing TSEN pin voltage. Through the voltage divider  
resistors R1, R2, R3 and RNTC, the voltage of TSEN will  
be proportional to VR temperature. When VR temperature  
rises, the TSENx voltage also rises. The ADC circuit of  
VR monitors the voltage variation at TSENx pin from 1.47V  
to 1.89V with 55mV resolution, and this voltage is decoded  
into digital format and stored into the Temperature Zone  
register.  
No-Load Offset  
The RT8167Aprovides a no-load offset function which has  
four-level offsets of output voltage for the CORE/GFX VR.  
The no-load offset function is implemented through the  
OFSx pin. Avoltage divider circuit is recommended to be  
applied to OFSx pins. The output offset voltage relation to  
the OFSx pin voltage setting is shown in Figure 13.  
Recommended voltage setting at OFS and OFSA pins  
are also shown in Figure 13.  
V
CC  
VCC (5V)  
R
1
R
NTC  
Offset  
Recommended  
Offset Voltag  
0.64 VCC  
e =100mV  
R
2
Voltage OFS/OFSA Pin Voltage  
TSENx  
100mV 0.8 x VCC4V or VCC  
R
3
50mV  
50mV  
100mV  
0mV  
0.56 x VCC2.8V  
0.4 x VCC2V  
0.24 x VCC1.2V  
GND  
Offset Voltage  
0.48 VCC  
= 50mV  
Offset Voltage  
0.32 VCC  
= -50mV  
Figure 14. Thermal Monitoring Circuit  
Offset Voltage  
0.16 VCC  
= -100mV  
To meet Intel's VR12/IMVP7 specification, platform users  
have to set the TSEN voltage to meet the temperature  
variation of VR from 75% to 100% VR max temperature.  
For example, if the VR max temperature is 100°C, platform  
users have to set the TSEN voltage to be 1.4875V when  
VR temperature reaches 75°C and 1.8725V when VR  
temperature reaches 100°C. Detailed voltage setting  
versus temperature variation is shown in Table 2.  
Thermometer code is implemented in the Temperature  
Zone register.  
Offset Voltage = 0  
GND  
mV  
Figure 13. OFS and OFSA Pins Voltage Setting  
Operation Mode Transition  
The RT8167Asupports operation mode transition function  
in CORE/GFX VR for the SetPS command of Intel's VR12/  
IMVP7 CPU. The default operation mode of the RT8167A's  
CORE/GFX VR is PS0, which is CCM operation. The other  
operation mode is PS2 (DEM operation).  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
35  
RT8167A  
Table 2. Temperature Zone Register  
Current Monitoring and Current Reporting  
Comparator Trip Points  
SVID Temperatures Scaled to maximum =  
Thermal 100%  
Alert Voltage Represents Assert bit  
Minimum Level  
The CORE/GFX VR provides current monitoring function  
via sensing the voltage difference of IMONFBx pin and  
output voltage. Figure 15 shows the current monitoring  
setting principle. The equivalent output current will be  
sensed from IMONFBx pin and mirrored to IMONx pin.  
The resistor connected to IMONx pin determines voltage  
gain of the IMON output.  
VRHOT  
b7  
100%  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
97% 94% 91% 88% 85% 82% 75%  
1.745 1.69 1.635 1.58 1.52 1.47  
1.855V 1.8V  
V
V
V
V
5V  
V
Temperature_Zone  
Register Content  
1111_1111  
TSEN Pin Voltage  
Current Monitor  
VREFx + 2 (V  
0LL EN  
- V  
)
ISENxP  
ISENxN  
1.855 V  
TSEN  
+
-
V
CC_SENSE  
R
1.800 V  
1.745 V  
1.690 V  
1.635 V  
1.580 V  
1.525 V  
1.470 V  
V
1.835  
0111_1111  
TSEN  
TSEN  
TSEN  
TSEN  
TSEN  
TSEN  
TSEN  
1.780  
1.725  
1.670  
1.615  
1.560  
1.505  
0011_1111  
I
IMONFB  
MIrror  
VREFx  
IMONFBx  
IMONx  
0001_1111  
0000_1111  
V
IMON  
0000_0111  
C1  
R
IMON  
0000_0011  
0000_0001  
0000_0000  
< 1.470  
TSEN  
Figure 15. Current Monitor Setting Principle  
The RT8167A supports two temperature reporting,  
VRHOT(hardware reporting) and ALERT(software  
reporting), to fulfill VR12/IMVP7 specification. VRHOT is  
an open-drain structure which sends out active-low VRHOT  
signals. When TSEN voltage rises above 1.855V (100%  
of VR temperature), the VRHOT signal will be set to low.  
When TSEN voltage drops below 1.8V (97% of VR  
temperature), the VRHOT signal will be reset to high. When  
TSEN voltage rises above 1.8V (97% of VR temperature),  
The RT8167A will update the bit1 data from 0 to 1 in the  
Status_1 register and assertALERT. When TSENvoltage  
drops below 1.745V (94% of VR temperature), VR will  
update the bit1 data from 1 to 0 in the Status_1 register  
and assertALERT.  
The voltage of IMONFBx is different when VR operates in  
droop enable mode and droop disable mode :  
Droop enable mode : VIMONFBx = VREFx  
Droop disable mode :  
(17)  
VIMONFBx = VREFx + 2 (VISENxP VISENxN  
)
(18)  
The current monitor indicator VIMON equation is shown as:  
(I  
VCC_SENSE )×RIMON  
RIMONFB  
IMONFBx  
(19)  
V
IMON  
=
where VIMONFBx is the pin voltage of IMONFBx, VCC_SENSE  
is the output voltage of CORE/GFX VR, and RIMON and  
RIMONFB are the current monitor current setting resistors.  
The maximum voltage of current monitoring will be limited  
at 3.3V. Platform designers have to design the RIMON to  
meet the maximum voltage of IMON at full load.  
The temperature reporting function for theGFX VR can be  
disabled by pulling TSENA pin to VCC in case the  
temperature reporting function for theGFX VR is not used  
or the GFX VR is disabled. When the GFX VR's  
temperature reporting function is disabled, the RT8167A  
will reject the SVID command of getting the  
Temperature_Zone register content of the GFX VR.  
However, note that the temperature reporting function for  
the CORE VR is always active. CORE VR's temperature  
reporting function can not be disabled by pulling TSEN  
pin to VCC.  
When VR operates in droop enable mode, find RIMON and  
RIMONFB based on :  
V
R
IMON(MAX)  
IMON  
=
(20)  
R
I
×R  
IMONFB  
(MAX) DROOP  
where VIMON(MAX) is the maximum voltage at full load,  
RDROOP is the load line setting of VR, and IMAX is the full  
load current of VR.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
36  
DS8167A-00 January 2012  
RT8167A  
When VR operate in droop disable mode, RIMON and  
RIMONFB can be obtained according to equation below :  
The current limit is triggered when inductor current  
exceeds the current limit threshold ILIMIT, defined by  
VOCSET. The driver will be forced to turn off UGATE until  
the over current condition is cleared. If the over current  
condition remains valid for 15 PWM cycles, VR will trigger  
OCP latch. Latched OCP forces both UGATE and LGATE  
to go low. When OCP is triggered in one of VRs, the  
other VR will enter into soft shutdown sequence. The OCP  
latch mechanism will be masked when VRx_READY =  
low, which means that only the current limit will be active  
when VOUT is ramping up to initial voltage (or VREFx).  
V
R
IMON(MAX)  
IMON  
=
(21)  
R
I
×R  
× 2  
SENSE  
IMONFB  
(MAX)  
where VIMON(MAX) is the maximum voltage at full load,  
RSENSE is the equivalent resistance of current sense circuit,  
and IMAX is the full load current of VR.  
TheADC circuit of the CORE/GFX VR monitors the voltage  
variation at the IMONpin from 0V to 3.3V, and this voltage  
is decoded into digital format and stored into the  
Output_Current register. The ADC divides 3.3V into 255  
levels, so LSB = 3.3V/255 = 12.941mV. Platform  
designers should design VIMONx to be 3.3V at ICCMAX.  
If inductorDCR is used as the current sense component,  
then temperature compensation is recommended for  
protection under all conditions. Figure 17 shows a typical  
OCP setting with temperature compensation.  
For example, when load current = 0.5 x ICCMAX, VIMON  
1.65V and Output_Current register = 7Fh.  
=
V
CC  
The IMONpin is the output of internal operational amplifier  
and sends out IMON signal. When IMON voltage rises  
above 3.3V (100% of VR output current), the VR will update  
the bit2 data from 0 to 1 in the Status_1 register. The 1 in  
bit2 of Status_1 register will be cleared to 0 only after the  
master (usually Intel's VR12/IMVP7 CPU) executes  
GetReg command to Status_1 register.  
R
OC1a  
NTC  
OC1b  
R
OCSETx  
R
OC2  
Figure 17. OCP Setting with Temperature Compensation  
Over Current Protection  
Usually, ROC1a is selected to be equal to the thermistor's  
nominal resistance at room temperature. Ideally, VOCSET  
is assumed to have the same temperature coefficient as  
RSENSE (InductorDCR) :  
The CORE/GFX VR compares a programmable current  
limit set point to the voltage from the current sense amplifier  
output for Over Current Protection (OCP). The voltage  
applied to OCSETx pin defines the desired peak current  
V
R
SENSE, HOT  
limit threshold ILIMIT  
:
OCSET, HOT  
=
(24)  
V
R
SENSE, COLD  
OCSET, COLD  
VOCSET = 48 x ILIMIT x RSENSE  
(22)  
According to the basic circuit calculation, VOCSET can be  
obtained at any temperature :  
Connect a resistive voltage divider from VCC toGND, with  
the joint of the resistive divider connected to OCSET pin  
as shown in Figure 16. For a given ROC2, then  
ROC2  
VOCSET, T = VCC  
×
ROC1a / /RNTC, T + ROC1b + ROC2  
(25)  
Re-write (24) from (25), to get VOCSET at room temperature  
V
CC  
(23)  
R
= R  
×
OC2  
1  
OC1  
V
OCSET  
V
CC  
R
//R  
+ R  
+ R  
+ R  
+ R  
R
SENSE, HOT  
R
OC1  
OC1a  
NTC, COLD  
OC1b  
OC2  
=
OCSETx  
R
//R  
R
SENSE, COLD  
OC1a  
NTC, HOT  
OC1b  
OC2  
R
OC2  
(26)  
VOCSET, 25  
VCC  
=
ROC2  
Figure 16. OCP Setting without Temperature  
Compensation  
×
(27)  
ROC1a / /RNTC, 25 + ROC1b + ROC2  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
37  
RT8167A  
Solving (26) and (27) yields ROC1b and ROC2  
Under Voltage Lock Out (UVLO)  
ROC2  
=
During normal operation, if the voltage at the VCC pin  
drops below UVLO falling edge threshold, both VR will  
trigger UVLO. The UVLO protection forces all high side  
MOSFETs and low side MOSFETs off to turn off.  
α ×REQU, HOT REQU, COLD + (1− α)×REQU, 25  
VCC  
VOCSET, 25  
×(1− α)  
(28)  
(29)  
ROC1b  
=
(α 1)×R2 + α ×REQU, HOT REQU, COLD  
(1− α)  
Inductor Selection  
The switching frequency and ripple current determine the  
inductor value as follows :  
where  
α =  
V
IN VOUT  
RSENSE, HOT  
DCR25 ×[1+ 0.00393×(THOT 25)]  
LMIN  
=
× tON  
(32)  
=
IRipple(MAX)  
RSENSE, COLD DCR25 ×[1+ 0.00393×(TCOLD 25)]  
(30)  
(31)  
where tON is the UGATE turn on period.  
REQU, T = ROC1a // RNTC, T  
Higher inductance induces less ripple current and hence  
higher efficiency. However, the tradeoff is a slower transient  
response of the power stage to load transients. This might  
increase the need for more output capacitors, thus driving  
up the cost. Find a low-loss inductor having the lowest  
possibleDC resistance that fits in the allotted dimensions.  
The core must be large enough not to be saturated at the  
peak inductor current.  
Over Voltage Protection (OVP)  
The over voltage protection circuit of CORE/GFX VR  
monitors the output voltage via the ISENxN pin. The  
supported maximum operating VID of VR (V(MAX)) is stored  
in the VOUT(MAX) register. Once VISENxN exceeds V(MAX)  
+
200mV, OVP is triggered and latched. VR will try to turn  
on low side MOSFETs and turn off high side MOSFETs to  
protect CPU. When OVP is triggered by the one of the  
VRs, the other VR will enter soft shutdown sequence. A  
10μs delay is used in OVP detection circuit to prevent  
false trigger.  
Output Capacitor Selection  
Output capacitors are used to obtain high bandwidth for  
the output voltage beyond the bandwidth of the converter  
itself. Usually, the CPU manufacturer recommends a  
capacitor configuration. Two different kinds of output  
capacitors can be found, bulk capacitors closely located  
to the inductors and ceramic output capacitors in close  
proximity to the load. Latter ones are for mid-frequency  
decoupling with very small ESR and ESL values while the  
bulk capacitors have to provide enough stored energy to  
overcome the low-frequency bandwidth gap between the  
regulator and the CPU.  
Negative Voltage Protection (NVP)  
During OVP latch state, both CORE/GFX VRs also monitor  
ISENxN pin for negative voltage protection. Since the OVP  
latch will continuously turn on low side MOSFET of VR,  
VR may suffer negative output voltage. Therefore, when  
the voltage of ISENxN drops below 0.05V after triggering  
OVP, VR will turn off low side MOSFETs while high side  
MOSFETs remain off. TheNVP function will be active only  
after OVP is triggered.  
Layout Considerations  
Careful PC board layout is critical to achieving low  
switching losses and clean, stable operation. The  
switching power stage requires particular attention. If  
possible, mount all of the power components on the top  
side of the board with their ground terminals flushed  
against one another. Follow these guidelines for optimum  
PC board layout :  
Under Voltage Protection (UVP)  
Both CORE/GFX VR implement Under Voltage Protection  
(UVP). If ISENxNis less than VREFx by 300mV + VOFFSET  
,
VR will trigger UVP latch. The UVP latch will turn off both  
high side and low side MOSFETs. When UVP is triggered  
by one of the VRs, the other VR will enter into soft  
shutdown sequence. The UVP mechanism is masked  
when VRx_READY = low.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
38  
DS8167A-00 January 2012  
RT8167A  
` Keep the high current paths short, especially at the  
ground terminals.  
` Keep the power traces and load connections short. This  
is essential for high efficiency.  
` When trade-offs in trace lengths must be made, it's  
preferable to allow the inductor charging path to be made  
longer than the discharging path.  
` Place the current sense component close to the  
controller. ISENxP and ISENxNconnections for current  
limit and voltage positioning must be made using Kelvin  
sense connections to guarantee the current sense  
accuracy. The PCB trace from the sense nodes should  
be parallel to the controller.  
` Route high-speed switching nodes away from sensitive  
analog areas (COMPx, FBx, ISENxP, ISENxN, etc...)  
` Special attention should be paid in placing the DCR  
current sensing components. TheDCR current sensing  
capacitor and resistors must be placed close to the  
controller.  
` The capacitor connected to the ISEN1N/ISENANfor noise  
decoupling is optional and it should also be placed close  
to the ISEN1N/ISENAN pin.  
` The NTC thermistor should be placed physically close  
to the inductor for better DCR thermal compensation.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8167A-00 January 2012  
www.richtek.com  
39  
RT8167A  
Outline Dimension  
2
1
2
1
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
5.950  
4.250  
5.950  
4.250  
0.800  
0.050  
0.250  
0.250  
6.050  
4.350  
6.050  
4.350  
0.028  
0.000  
0.007  
0.006  
0.234  
0.167  
0.234  
0.167  
0.031  
0.002  
0.010  
0.010  
0.238  
0.171  
0.238  
0.171  
D
D2  
E
E2  
e
0.400  
0.016  
L
0.350  
0.450  
0.014  
0.018  
W-Type 48L QFN 6x6 Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
40  
DS8167A-00 January 2012  

相关型号:

RT8167AGQW

Dual Single-Phase PWM Controller
RICHTEK

RT8167A_14

Dual Single-Phase PWM Controller
RICHTEK

RT8167B

Dual Single-Phase PWM Controller for CPU and GPU Core Power Supply
RICHTEK

RT8167BGQW

IC CTRLR BUCK PWM VM DL 40WQFN
RICHTEK

RT8170A

暂无描述
RICHTEK

RT8171B

暂无描述
RICHTEK

RT8171C

暂无描述
RICHTEK

RT8172A

暂无描述
RICHTEK

RT8175A

暂无描述
RICHTEK

RT8179B

暂无描述
RICHTEK

RT8199B

暂无描述
RICHTEK

RT82

AUTOMOTIVE BRIDGE RECTIFIERS
LRC