RT8205MGQW

更新时间:2024-09-18 22:07:41
品牌:RICHTEK
描述:High Efficiency, Main Power Supply Controller for Notebook Computer

RT8205MGQW 概述

High Efficiency, Main Power Supply Controller for Notebook Computer

RT8205MGQW 数据手册

通过下载RT8205MGQW数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
RT8205L/M  
High Efficiency, Main Power Supply Controller  
for Notebook Computer  
General Description  
Features  
z Constant On-time Control with 100ns Load Step  
The RT8205L/M is a dual step-down, switch mode power  
supply controller generating logic-supply voltages in  
battery powered systems. It includes two Pulse-Width  
Modulation (PWM) controllers adjustable from 2V to 5.5V,  
and also features fixed 5V/3.3V linear regulators. Each  
linear regulator provides up to 100mA output current with  
automatic linear regulator bootstrapping to the PWM  
outputs. An optional external charge pump can be  
monitored through SECFB (RT8205M). The RT8205L/M  
includes on-board power up sequencing, a power good  
output, internal soft-start, and internal soft-discharge  
output that prevents negative voltage during shutdown.  
Response  
z Wide Input Voltage Range : 6V to 25V  
z Dual Adjustable Outputs from 2V to 5.5V  
z Secondary Feedback Input Maintains Charge Pump  
Voltage (RT8205M)  
z Fixed 3.3V and 5V LDO Output : 100mA  
z 2V Reference Voltage  
z Frequency Selectable via TONSEL Setting  
z 4700ppm/°C RDS(ON) Current Sensing  
z Programmable Current Limit Combined with  
Enable Control  
z Selectable PWM, DEM, or Ultrasonic Mode  
z Internal Soft-Start and Soft-Discharge  
z High Efficiency up to 97%  
The constant on-time PWM control scheme operates  
without sense resistors and provides 100ns response to  
load transient response while maintaining nearly constant  
switching frequency. To eliminate noise in audio  
applications, an ultrasonic mode is included, which  
maintains the switching frequency above 25kHz. Moreover,  
the diode-emulation mode maximizes efficiency for light  
load applications. The RT8205L/M is available in a  
WQFN-24L 4x4 package.  
z 5mW Quiescent Power Dissipation  
z Thermal Shutdown  
z RoHS Compliant and Halogen Free  
Applications  
z Notebook and Sub-Notebook Computers  
z 3-Cell and 4-Cell Li+ Battery-PoweredDevices  
Ordering Information  
RT8205  
Package Type  
QW : WQFN-24L 4x4 (W-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
Pin Function  
L : Default  
M : With SECFB  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
DS8205L/M-05 June 2011  
www.richtek.com  
1
RT8205L/M  
Marking Information  
RT8205LGQW  
RT8205MGQW  
EM= : Product Code  
EN= : Product Code  
YMDNN : Date Code  
YMDNN : Date Code  
EM=YM  
DNN  
EN=YM  
DNN  
RT8205LZQW  
RT8205MZQW  
EM : Product Code  
YMDNN : Date Code  
EN : Product Code  
YMDNN : Date Code  
EM YM  
DNN  
EN YM  
DNN  
Pin Configurations  
(TOP VIEW)  
24 23 22 21 20 19  
24 23 22 21 20 19  
1
2
3
18  
17  
16  
1
18  
17  
16  
ENTRIP1  
FB1  
NC  
VREG5  
VIN  
ENTRIP1  
SECFB  
VREG5  
VIN  
2
3
FB1  
REF  
REF  
GND  
GND  
4
5
6
15  
14  
13  
4
5
6
15  
14  
13  
TONSEL  
FB2  
ENTRIP2  
GND  
SKIPSEL  
EN  
TONSEL  
FB2  
ENTRIP2  
GND  
SKIPSEL  
EN  
25  
25  
7
8
9
10 11 12  
7
8
9 10 11 12  
WQFN-24L 4x4  
RT8205L  
WQFN-24L 4x4  
RT8205M  
www.richtek.com  
2
DS8205L/M-05 June 2011  
RT8205L/M  
Typical Application Circuit  
V
IN  
6V to 25V  
R8  
C
1
RT8205L  
UGATE2  
R10  
0
C13  
10µF  
C12  
10µF  
3.9  
10µF  
Q2  
10  
9
16  
VIN  
BSC119  
C10  
0.1µF  
R
N03S  
0
BOOT2  
BOOT2  
C11  
L2  
R4 0  
0.1µF  
4.7µH  
21  
22  
Q1  
V
OUT2  
UGATE1  
BOOT1  
11  
12  
15  
BSC119  
PHASE2  
LGATE2  
GND  
3.3V  
N03S  
0
R
BOOT1  
Q4  
C17  
220µF  
R11  
C14  
BSC119  
C2  
0.1µF  
N03S  
L1  
6.8µH  
V
OUT1  
5V  
20  
19  
PHASE1  
LGATE1  
7
5
VOUT2  
FB2  
Q3  
BSC119  
N03S  
C3  
220µF  
R5  
C4  
C21  
R14  
6.5k  
R
ILIM1  
150k  
1
C20  
0.1µF  
ENTRIP1  
24  
R15  
10k  
R
150k  
VOUT1  
ILIM2  
C18  
6
R12  
15k  
ENTRIP2  
GND  
2
3
25 (Exposed Pad)  
FB1  
REF  
C19  
0.1µF  
V
REF  
2V  
R13  
10k  
C15  
0.22µF  
17  
VREG5  
5V Always On  
C9  
R6  
100k  
4.7µF  
4
14  
13  
TONSEL  
SKIPSEL  
EN  
ontrol  
Frequency C  
23  
8
PGOOD Indi  
cator  
PGOOD  
VREG3  
ic  
PWM/DEM/Ultrason  
3.3V A  
lways On  
ON  
C16  
4.7µF  
OFF  
V
IN  
6V to 25V  
R8  
3.9  
C
1
RT8205M  
R10  
C13  
10µF  
C12  
10µF  
10µF  
0
Q2  
10  
9
16  
UGATE2  
VIN  
BSC119  
C10  
0.1µF  
R
N03S  
BOOT20  
BOOT2  
C11  
0.1µF  
L2  
R4 0  
4.7µH  
21  
22  
Q1  
BSC119  
N03S  
V
OUT2  
UGATE1  
BOOT1  
11  
12  
15  
PHASE2  
LGATE2  
GND  
3.3V  
0
R
Q4  
BOOT1  
C17  
220µF  
R11  
C14  
BSC119  
C2  
0.1µF  
N03S  
L1  
6.8µH  
V
OUT1  
5V  
20  
19  
PHASE1  
LGATE1  
7
5
VOUT2  
FB2  
Q3  
BSC119  
C3  
R5  
C4  
C21  
R14  
6.5k  
220µF  
N03S  
R
ILIM1  
150k  
C20  
0.1µF  
1
6
ENTRIP1  
24  
2
R15  
10k  
VOUT1  
FB1  
R
ILIM2  
C18  
R12  
15k  
150k  
ENTRIP2  
GND  
25 (Exposed Pad)  
C19  
0.1µF  
C5  
R13  
10k  
D1  
D3  
0.1µF  
C6  
17  
D2  
D4  
VREG5  
5V Always On  
0.1µF  
C9  
4.7µF  
C7  
0.1µF  
R6  
100k  
23  
8
PGOOD  
VREG3  
PGOOD Indicator  
3
.3V Always On  
BAT254  
C8  
R6  
C16  
18  
13  
0.1µF  
SECFB  
4.7µF  
200k  
R7  
39k  
V
3
REF  
CP  
REF  
2V  
C15  
0.22µF  
4
TONSEL  
SKIPSEL  
Frequenc  
y Control  
ON  
EN  
14  
PWM/DEM/Ultra  
sonic  
OFF  
DS8205L/M-05 June 2011  
www.richtek.com  
3
RT8205L/M  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Channel 1 Enable and Current Limit Setting Input. Connect a resistor to GND to  
set the threshold for channel 1 synchronous RDS(ON) sense. The GND PHASE1  
current limit threshold is 1/10th the voltage seen at ENTRIP1 over a 0.515V to 3V  
range. There is an internal 10μA current source from VREG5 to ENTRIP1. Leave  
ENTRIP1 floating or drive it above 4.5V to shutdown channel 1.  
1
ENTRIP1  
SMPS1 Feedback Input. Connect FB1 to a resistive voltage divider from VOUT1  
to GND to adjust output from 2V to 5.5V.  
2
3
FB1  
REF  
2V Reference Output. Bypass to GND with a minimum 0.22μF capacitor. REF  
can source up to 100μA for external loads. Loading REF degrades FBx and  
output accuracy according to the REF load regulation error.  
Frequency Selectable Input for VOUT1/VOUT2 respectively.  
400kHz/500kHz : Connect to VREG5 or VREG3  
300kHz/375kHz : Connect to REF  
200kHz/250kHz : Connect to GND  
SMPS2 Feedback Input. Connect FB2 to a resistive voltage divider from VOUT2  
to GND to adjust output from 2V to 5.5V.  
4
5
TONSEL  
FB2  
Channel 2 Enable and Current Limit Setting Input. Connect a resistor to GND to  
set the threshold for channel 2 synchronous RDS(ON) sense. The GND PHASE2  
current limit threshold is 1/10th the voltage seen at ENTRIP2 over a 0.515V to 3V  
range. There is an internal 10μA current source from VREG5 to ENTRIP2. Leave  
ENTRIP2 floating or drive it above 4.5V to shutdown channel 1.  
6
ENTRIP2  
Bypass Pin for SMPS2. Connect to the SMPS2 output to bypass efficient power  
for VREG3 pin. VOUT2 is also for the SMPS2 output soft-discharge.  
3.3V Linear Regulator Output.  
7
8
VOUT2  
VREG3  
Boost Flying Capacitor Connection for SMPS2. Connect to an external capacitor  
according to the typical application circuits.  
9
BOOT2  
Upper Gate Driver Output for SMPS2. UGATE2 swings between PHASE2 and  
BOOT2.  
10  
UGATE2  
Switch Node for SMPS2. PHASE2 is the internal lower supply rail for the  
11  
PHASE2  
UGATE2 high side gate driver. PHASE2 is also the current sense input for the  
SMPS2.  
Lower Gate Drive Output for SMPS2. LGATE2 swings between GND and  
VREG5.  
12  
13  
LGATE2  
EN  
Master Enable Input. The REF/VREG5/VREG3 are enabled if it is within logic  
high level and disabled if it is less than the logic low level.  
Operation Mode Selectable Input.  
Connect to VREG5 or VREG3 : Ultrasonic Mode  
Connect to REF : DEM Mode  
14  
SKIPSEL  
Connect to GND : PWM Mode  
15,  
Ground for SMPS Controller. The exposed pad must be soldered to a large PCB  
and connected to GND for maximum power dissipation.  
GND  
VIN  
25 (Exposed Pad)  
16  
Supply Input for 5V/3.3V LDO and Feed Forward On Time Circuitry.  
5V Linear Regulator Output. VREG5 is also the supply voltage for the lower gate  
driver and analog supply voltage for the device.  
17  
VREG5  
To be continued  
www.richtek.com  
4
DS8205L/M-05 June 2011  
RT8205L/M  
Pin No.  
Pin Name  
NC  
(RT8205L)  
Pin Function  
No Internal Connection.  
Charge Pump Control Pin. The SECFB is used to monitor the optional external 14V  
charge pump. Connect a resistive voltage divider from the 14V charge pump output to  
GND to detect the output. If SECFB drops below the threshold voltage, LGATE1 will  
provide 33kHz switching frequency for the charge pump. This will refresh the external  
charge pump driven by LGATE1 without over discharging the output voltage.  
18  
SECFB  
(RT8205M)  
19  
20  
21  
22  
23  
24  
LGATE1  
PHASE1  
UGATE1  
BOOT1  
PGOOD  
VOUT1  
Lower Gate Drive Output for SMPS1. LGATE1 swings between GND and VREG5.  
Switch Node for SMPS1. PHASE1 is the internal lower supply rail for the UGATE1 high  
side gate driver. PHASE1 is also the current sense input for the SMPS1.  
Upper Gate Driver Output for SMPS1. UGATE1 swings between PHASE1 and BOOT1.  
Boost Flying Capacitor Connection for SMPS1. Connect to an external capacitor  
according to the typical application circuits.  
Power Good Output for Channel 1 and Channel 2. (Logical AND)  
Bypass Pin for SMPS1. Connect to the SMPS1 output to bypass efficient power for  
VREG5 pin. VOUT1 is also for the SMPS1 output soft-discharge.  
Function Block Diagram  
TONSEL SKIPSEL  
BOOT1  
BOOT2  
UGATE1  
UGATE2  
PHASE2  
PHASE1  
VREG5  
VREG5  
SMPS1  
PWM Buck  
Controller  
SMPS2  
PWM Buck  
Controller  
LGATE1  
LGATE2  
VREG5  
VREG5  
VOUT2  
FB2  
ENTRIP2  
FB1  
ENTRIP1  
PGOOD  
Power-On  
Sequence  
EN  
Clear Fault Latch  
GND  
SW3 Threshold  
SW5 Threshold  
VOUT1  
Thermal  
Shutdown  
VREG3  
VREG5  
VIN  
REF  
VREG3  
VREG5  
REF  
DS8205L/M-05 June 2011  
www.richtek.com  
5
RT8205L/M  
Absolute Maximum Ratings (Note 1)  
z VIN, ENtoGND ----------------------------------------------------------------------------------------------- 0.3V to 30V  
z PHASEx to GND  
DC ---------------------------------------------------------------------------------------------------------------- 0.3V to 30V  
< 20ns----------------------------------------------------------------------------------------------------------- 8V to 38V  
z BOOTx to PHASEx ------------------------------------------------------------------------------------------ 0.3V to 6V  
z ENTRIPx, SKIPSEL, TONSEL, PGOODtoGND ------------------------------------------------------ 0.3V to 6V  
z VREG5, VREG3, FBx , VOUTx, SECFB, REF to GND---------------------------------------------- 0.3V to 6V  
z UGATEx to PHASEx  
DC ---------------------------------------------------------------------------------------------------------------- 0.3V to (VREG5 + 0.3V)  
< 20ns----------------------------------------------------------------------------------------------------------- 5V to 7.5V  
z LGATEx toGND  
DC ---------------------------------------------------------------------------------------------------------------- 0.3V to (VREG5 + 0.3V)  
< 20ns----------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
z PowerDissipation, PD @ TA = 25°C  
WQFN-24L-4x4------------------------------------------------------------------------------------------------ 1.923W  
z Package Thermal Resistance (Note 2)  
WQFN-24L-4x4, θJA ------------------------------------------------------------------------------------------ 52°C/W  
WQFN-24L-4x4, θJC ------------------------------------------------------------------------------------------ 7°C/W  
z Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------ 260°C  
z Junction Temperature ---------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ----------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------- 6V to 25V  
z Junction Temperature Range ------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range ------------------------------------------------------------------------------- 40°C to 85°C  
www.richtek.com  
6
DS8205L/M-05 June 2011  
RT8205L/M  
Electrical Characteristics  
(VIN = 12V, VEN = 5V, VENTRIP1 = VENTRIP2 = 2V, No Load, TA = 25°C, unless otherwise specified)  
Parameter  
Input Supply  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN Standby Current  
I
V
V
= 6V to 25V, ENTRIPx = GND  
= 6V to 25V,  
--  
--  
200  
20  
--  
μA  
μA  
VIN_SBY  
IN  
IN  
VIN Shutdown Supply  
Current  
I
40  
VIN_SHDN  
ENTRIPx = EN = GND  
Both SMPS On, V = 2.1V,  
FBx  
Quiescent Power  
Consumption  
P
VIN  
SKIPSEL = REF, V  
= 5V,  
--  
5
7
mW  
OUT1  
+P  
PVCC  
V
= 3.3V (Note 5)  
OUT2  
SMPS Output and FB Voltage  
DEM Mode  
PWM Mode  
1.975  
--  
2
2
2.025  
--  
(Note 6)  
FBx Voltage  
V
V
FBx  
Ultrasonic Mode  
--  
2.032  
2
--  
SECFB Voltage  
V
V
1.92  
2.08  
V
V
SECFB  
OUTx  
Output Voltage Adjust  
Range  
SMPS1, SMPS2  
2
--  
5.5  
--  
V
OUTx  
Discharge  
V
OUTx  
= 0.5V, V  
= 0V  
10  
45  
mA  
ENTRIPx  
Current  
On-Time  
V
V
V
V
V
= 5.05V (200kHz)  
= 3.33V (250kHz)  
= 5.05V (300kHz)  
= 3.33V (375kHz)  
= 5.05V (400kHz)  
1895 2105 2315  
999 1110 1221  
1227 1403 1579  
OUT1  
OUT2  
OUT1  
OUT2  
OUT1  
TONSEL = GND  
TONSEL = REF  
On-Time Pulse Width  
Minimum Off-Time  
t
ON  
ns  
647  
895  
740  
833  
1052 1209  
TONSEL =  
VREG5  
V
= 3.33V (500kHz)  
475  
200  
22  
555  
300  
33  
635  
400  
--  
OUT2  
t
FBx = 1.9V  
ns  
OFF  
Ultrasonic Mode  
Frequency  
SKIPSEL = VREG5 or VREG3  
kHz  
Soft-Start  
Soft-Start Time  
Current Sense  
t
Internal Soft-Start  
--  
2
--  
ms  
SSx  
ENTRIPx Source  
Current  
ENTRIPx Current  
Temperature  
Coefficient  
I
V
= 0.9V  
9.4  
--  
10  
10.6  
--  
μA  
ENTRIPx  
ENTRIPx  
TC  
In Comparison with 25°C (Note 6)  
4700  
ppm/°C  
IENTRIPx  
ENTRIPx Adjustment  
Range  
Current Limit  
Threshold  
Zero-Current  
Threshold  
V
= I  
x R  
0.515  
180  
--  
--  
200  
3
3
220  
--  
V
ENTRIPx  
ENTRIPx  
ENTRIPx  
GND PHASEx, V  
= 2V  
mV  
mV  
ENTRIPx  
GND PHASEx in DEM  
To be continued  
DS8205L/M-05 June 2011  
www.richtek.com  
7
RT8205L/M  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Internal Regulator and Reference  
VOUT1 = GND, IVREG5 < 100mA  
VOUT1 = GND, 6.5V < VIN < 25V,  
4.8  
5
5
5.2  
4.75  
5.25  
VREG5 Output Voltage  
VREG3 Output Voltage  
VVREG5  
V
I
VREG5 < 100mA  
VOUT1 = GND, 5.5V < VIN < 25V,  
IVREG5 < 50mA  
4.75  
3.2  
5
5.25  
3.46  
3.5  
VOUT2 = GND, IVREG3 < 100mA  
3.33  
3.33  
VOUT2 = GND, 6.5V < VIN < 25V,  
IVREG3 < 100mA  
3.13  
VVREG3  
V
VOUT2 = GND, 5.5V < VIN < 25V,  
IVREG3 < 50mA  
3.13  
3.33  
3.5  
VREG5 Output Current  
VREG3 Output Current  
IVREG5  
IVREG3  
VVREG5 = 4.5V, VOUT1 = GND  
VVREG3 = 3V, VOUT2 = GND  
VOUT1 Rising Edge  
100  
100  
4.6  
4.3  
175  
175  
4.75  
4.4  
250  
250  
4.9  
mA  
mA  
VREG5 Switchover  
Threshold to VOUT1  
VSW5  
V
V
VOUT1 Falling Edge  
4.5  
VOUT2 Rising Edge  
2.975 3.125  
3.25  
VREG3 Switchover  
Threshold to VOUT2  
VSW3  
VOUT2 Falling Edge  
VREGx to VOUTx, 10mA  
No External Load  
2.775 2.875 2.975  
VREGx Switchover Equivalent  
Resistance  
RSWx  
VREF  
--  
1.5  
2
3
Ω
REF Output Voltage  
REF Load Regulation  
1.98  
2.02  
V
0 < ILOAD < 100μA  
--  
5
10  
--  
--  
--  
mV  
REF Sink Current  
REF in Regulation  
μA  
UVLO  
Rising Edge  
Falling Edge  
--  
4.20  
3.9  
4.35  
4.1  
VREG5 Under Voltage  
Lockout Threshold  
V
V
3.7  
VREG3 Under Voltage  
Lockout Threshold  
SMPSx off  
--  
2.5  
--  
Power Good  
PGOOD Detect, FBx Falling Edge  
82  
--  
85  
6
88  
--  
PGOOD Threshold  
%
Hysteresis, Rising Edge with SS  
Delay Time  
PGOOD Propagation Delay  
Falling Edge, 50mV Overdrive  
High State, Forced to 5.5V  
ISINK = 4mA  
--  
--  
--  
10  
--  
--  
1
μs  
μA  
V
PGOOD Leakage Current  
PGOOD Output Low Voltage  
Fault Detection  
--  
0.3  
Over Voltage Protection Trip  
Threshold  
Over Voltage Protection  
Propagation Delay  
Under Voltage Protection Trip  
Threshold  
VFB_OVP  
OVP Detect, FBx Rising Edge  
FBx = 2.35V  
109  
--  
112  
5
116  
--  
%
μs  
VFB_UVP  
UVP Detect, FBx Falling Edge  
49  
--  
52  
5
56  
--  
%
UVP Shutdown Blanking Time tSHDN_UVP From ENTRIPx Enable  
ms  
To be continued  
www.richtek.com  
8
DS8205L/M-05 June 2011  
RT8205L/M  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Thermal Shutdown  
Thermal Shutdown  
TSHDN  
--  
--  
150  
10  
--  
--  
°C  
°C  
Thermal Shutdown  
Hysteresis  
Logic Input  
Low Level (PWM Mode)  
REF Level (DEM Mode)  
--  
--  
--  
0.8  
2.3  
SKIPSEL Input Voltage  
1.8  
V
V
High Level (Ultrasonic Mode)  
Low Level (SMPS Off)  
2.7  
--  
--  
--  
--  
--  
--  
--  
3.3  
3
--  
0.25  
3
ENTRIPx Input Voltage  
VENTRIPx On Level (SMPS On)  
High Level (SMPS Off)  
0.515  
4.5  
1
--  
Logic-High VIH  
Logic-Low VIL  
VEN  
--  
EN Threshold  
Voltage  
V
V
--  
0.4  
4.2  
5
Floating, Default Enable  
VEN = 0.2V, Source  
2.4  
1.5  
--  
EN Voltage  
EN Current  
IEN  
μA  
VEN = 5V, Sink  
3
8
VOUT1 / VOUT2 = 200kHz / 250kHz  
VOUT1 / VOUT2 = 300kHz / 375kHz  
--  
--  
--  
--  
--  
--  
0.8  
2.3  
--  
TONSEL Setting Voltage  
1.8  
2.7  
1  
1  
V
VOUT1 / VOUT2 = 400kHz / 500kHz  
VTONSEL, VSKIPSEL = 0V or 5V  
VSECFB = 0V or 5V  
1
Input Leakage Current  
μA  
1
Internal BOOT Switch  
Internal Boost Switch  
On-Resistance  
VREG5 to BOOTx, 10mA  
--  
40  
80  
Ω
Ω
Power MOSFET Drivers  
UGATEx, High State,  
--  
--  
4
8
4
BOOTx to PHASEx Forced to 5V  
UGATEx, Low State,  
UGATEx On-Resistance  
1.5  
BOOTx to PHASEx Forced to 5V  
LGATEx, High State  
--  
--  
--  
--  
4
8
4
LGATEx On-Resistance  
Dead Time  
Ω
LGATEx, Low State  
LGATEx Rising  
1.5  
30  
40  
--  
--  
ns  
UGATEx Rising  
DS8205L/M-05 June 2011  
www.richtek.com  
9
RT8205L/M  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a high effective four layers thermal conductivity four-layer test  
board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad  
of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. PVIN + PVREG5  
Note 6. Guaranteed by Design.  
www.richtek.com  
10  
DS8205L/M-05 June 2011  
RT8205L/M  
Typical Operating Characteristics  
VOUT1 Efficiency vs. Load Current  
VOUT1 Efficiency vs. Load Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM Mode  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM Mode  
PWM Mode  
PWM Mode  
Ultrasonic Mode  
Ultrasonic Mode  
VIN = 12V, TONSEL = GND,  
VENTRIP1 = 1.5V, ENTRIP2 =GND,  
EN= FLOATING  
VIN = 8V, TONSEL = GND, VENTRIP1 = 1.5V,  
ENTRIP2 =GND, EN= FLOATING  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT1 Efficiency vs. Load Current  
VOUT2 Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM Mode  
DEM Mode  
PWM Mode  
PWM Mode  
Ultrasonic Mode  
Ultrasonic Mode  
VIN = 20V, TONSEL = GND,  
VENTRIP1 = 1.5V, ENTRIP2 =GND,  
EN= FLOATING  
VIN = 8V, TONSEL = GND,  
ENTRIP1 =GND, VENTRIP2 = 1.5V,  
EN= FLOATING  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT2 Efficiency vs. Load Current  
VOUT2 Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM Mode  
DEM Mode  
PWM Mode  
Ultrasonic  
Mode  
PWM Mode  
Ultrasonic Mode  
VIN = 12V, TONSEL = GND,  
ENTRIP1 =GND, VENTRIP2 = 1.5V,  
EN= FLOATING  
VIN = 20V, TONSEL = GND,  
ENTRIP1 =GND, VENTRIP2 = 1.5V,  
EN= FLOATING  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
DS8205L/M-05 June 2011  
www.richtek.com  
11  
RT8205L/M  
VOUT1 Switching Frequency vs. Load Current  
VOUT1 Switching Frequency vs. Load Current  
220  
220  
PWM Mode  
200  
PWM Mode  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
VIN = 8V,  
TONSEL=GND,  
EN= FLOATING,  
VENTRIP1 = 1.5V,  
ENTRIP2=GND  
VIN = 12V,  
TONSEL=GND,  
EN= FLOATING,  
VENTRIP1 = 1.5V,  
ENTRIP2=GND  
60  
60  
Ultrasonic Mode  
Ultrasonic Mode  
DEMMode  
40  
20  
0
40  
20  
0
DEM Mode  
0.01  
0.001  
0.01  
0.1  
1
10  
0.001  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT1 Switching Frequency vs. Load Current  
220  
VOUT2 Switching Frequency vs. Load Current  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
PWM Mode  
200  
180  
160  
140  
120  
100  
80  
PWM Mode  
VIN = 8V,  
VIN = 20V,  
60  
TONSEL=GND,  
EN= FLOATING,  
ENTRIP1 =GND,  
VENTRIP2 = 1.5V  
TONSEL=GND,  
EN= FLOATING,  
VENTRIP1 = 1.5V,  
ENTRIP2=GND  
60  
Ultrasonic Mode  
DEM Mode  
40  
Ultrasonic Mode  
DEM Mode  
40  
20  
20  
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT2 Switching Frequency vs. Load Current  
280  
VOUT2 Switching Frequency vs. Load Current  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
PWM Mode  
PWM Mode  
VIN = 12V,  
VIN = 20V,  
TONSEL=GND,  
EN= FLOATING,  
ENTRIP1 =GND,  
VENTRIP2 = 1.5V  
TONSEL=GND,  
EN= FLOATING,  
ENTRIP1 =GND,  
VENTRIP2 = 1.5V  
60  
60  
Ultrasonic Mode  
DEM Mode  
Ultrasonic Mode  
DEM Mode  
40  
40  
20  
20  
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
www.richtek.com  
12  
DS8205L/M-05 June 2011  
RT8205L/M  
VOUT2 Output Voltage vs. Load Current  
VOUT1 Output Voltage vs. Load Current  
5.090  
5.084  
5.078  
5.072  
5.066  
5.060  
5.054  
5.048  
5.042  
5.036  
5.030  
5.024  
5.018  
5.012  
5.006  
5.000  
3.446  
3.440  
3.434  
3.428  
3.422  
3.416  
3.410  
3.404  
3.398  
3.392  
3.386  
3.380  
VIN = 12V,  
VIN = 12V,  
TONSEL=GND,  
Ultrasonic Mode  
TONSEL=GND,  
EN= FLOATING,  
Ultrasonic Mode  
EN= FLOATING,  
VENTRIP1 = 1.5V,  
ENTRIP2=GND  
ENTRIP2 =GND,  
VENTRIP1 = 1.5V  
PWM Mode  
DEM Mode  
PWM Mode  
DEM Mode  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VREG3 Output Voltage vs. Output Current  
VREG5 Output Voltage vs. Output Current  
5.006  
5.002  
4.998  
4.994  
4.990  
4.986  
4.982  
4.978  
4.974  
4.970  
3.358  
3.354  
3.350  
3.346  
3.342  
3.338  
3.334  
3.330  
VIN = 12V, ENTRIP1 = ENTRIP2 =GND,  
EN= FLOATING, TONSEL=GND  
VIN = 12V, ENTRIP1 = ENTRIP2 =GND,  
EN= FLOATING, TONSEL=GND  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA)  
0
10  
20  
30  
40  
50  
60  
70  
Output Current (mA)  
Reference Voltage vs. Output Current  
Battery Current vs. Input Voltage  
2.0080  
2.0072  
2.0064  
2.0056  
2.0048  
2.0040  
2.0032  
2.0024  
2.0016  
2.0008  
2.0000  
100.0  
10.0  
1.0  
PWM Mode  
Ultrasonic Mode  
DEMMode  
VENTRIP1 = VENTRIP2 = 0.91V,  
TONSEL=GND, EN= FLOATING  
VIN = 12V, ENTRIP1 = ENTRIP2 =GND,  
EN= FLOATING, TONSEL=GND  
0.1  
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
Input Voltage (V)  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (μA)  
DS8205L/M-05 June 2011  
www.richtek.com  
13  
RT8205L/M  
Standby Input Current vs. Input Voltage  
Shutdown Input Current vs. Input Voltage  
250  
249  
248  
247  
246  
245  
244  
243  
242  
241  
240  
22  
20  
18  
16  
14  
12  
10  
8
ENTRIP1 = ENTRIP2 =GND,  
EN= FLOATING, No Load  
ENTRIP1 = ENTRIP2 = EN=GND, No Load  
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
Input Voltage (V)  
7
9
11  
13  
15  
17  
19  
21  
23  
25  
Input Voltage (V)  
VREG5, VREG3 and REF Start Up  
Reference Voltage vs. Temperature  
2.011  
2.008  
2.005  
2.002  
1.999  
1.996  
1.993  
1.990  
1.987  
1.984  
ENTRIP1 = ENTRIP2 =GND, EN= FLOATING  
VREG5  
(5V/Div)  
VREG3  
(2V/Div)  
REF  
(2V/Div)  
EN  
(5V/Div)  
VIN = 12V, ENTRIP1 = ENTRIP2 =GND,  
EN= FLOATING, TONSEL=GND  
VIN = 12V, TONSEL = GND, No Load  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (400μs/Div)  
Temperature (°C)  
VOUT1 Start Up  
VOUT2 Start Up  
VOUT1  
(1V/Div)  
PGOOD  
(5V/Div)  
VOUT2  
(1V/Div)  
PGOOD  
(5V/Div)  
ENTRIP1  
(1V/Div)  
VENTRIP1 = 1.5V, ENTRIP2 =GND,  
EN = FLOATING, VIN = 12V,  
TONSEL=GND, SKIPSEL=GND,  
No Load  
ENTRIP1 =GND, VENTRIP2 = 1.5V,  
EN = FLOATING, VIN = 12V,  
TONSEL=GND, SKIPSEL=GND,  
No Load  
ENTRIP2  
(1V/Div)  
Time (1ms/Div)  
Time (1ms/Div)  
www.richtek.com  
14  
DS8205L/M-05 June 2011  
RT8205L/M  
VOUT1 Delay-Start  
CP Start Up  
VOUT1  
(5V/Div)  
VOUT1  
(2V/Div)  
CP  
(10V/Div)  
VOUT2  
(1V/Div)  
ENTRIP1  
(2V/Div)  
ENTRIP2  
(2V/Div)  
UGATE  
(20V/Div)  
LGATE  
VENTRIP1 = VENTRIP2 = 1.5V, EN = FLOATING,  
VIN = 12V, TONSEL=GND, SKIPSEL= REF,  
No Load  
(10V/Div)  
VIN = 12V, TONSEL = GND,  
EN= FLOATING, SKIPSEL=GND,  
No Load  
Time (2ms/Div)  
Time (2ms/Div)  
VOUT2 Delay-Start  
Power Off from ENTRIP1  
VIN = 12V, TONSEL = GND,  
SKIPSEL=GND,  
EN= FLOATING  
VOUT1  
(2V/Div)  
PGOOD  
(5V/Div)  
ENTRIP1  
(2V/Div)  
VOUT1  
(2V/Div)  
VOUT2  
(1V/Div)  
ENTRIP1  
(2V/Div)  
ENTRIP2  
(2V/Div)  
No Load on VOUT1, VOUT2,  
VREG5, VREG3 and REF  
LGATE1  
(5V/Div)  
VIN = 12V, TONSEL = GND,  
EN= FLOATING, SKIPSEL=GND,  
No Load  
Time (2ms/Div)  
Time (4ms/Div)  
VOUT1 PWM-Mode Load Transient Response  
Power Off from ENTRIP2  
VOUT1_ac  
(50mV/Div)  
VOUT2  
(2V/Div)  
PGOOD  
(5V/Div)  
ENTRIP2  
(2V/Div)  
Inductor  
Current  
(5A/Div)  
UGATE1  
(20V/Div)  
VIN = 12V, TONSEL=GND, SKIPSEL=GND  
LGATE2  
(5V/Div)  
VIN = 12V, TONSEL=GND, SKIPSEL=GND,  
EN= FLOATING, No Load on VOUT1, VOUT2,  
VREG5, VREG3 and REF  
LGATE1  
(5V/Div)  
EN = FLOATING, IOUT1 = 0A to 6A  
Time (4ms/Div)  
Time (20μs/Div)  
DS8205L/M-05 June 2011  
www.richtek.com  
15  
RT8205L/M  
OVP  
VOUT2 PWM-Mode Load Transient Response  
VOUT2_ac  
(50mV/Div)  
Inductor  
Current  
(5A/Div)  
VOUT1  
(2V/Div)  
VOUT2  
(2V/Div)  
PGOOD  
(5V/Div)  
UGATE  
(20V/Div)  
VIN = 12V, TONSEL=GND, SKIPSEL=GND  
LGATE  
VIN = 12V, TONSEL=GND, SKIPSEL= REF,  
EN= FLOATING,No Load  
(5V/Div)  
EN = FLOATING, IOUT2 = 0A to 6A  
Time (20μs/Div)  
Time (4ms/Div)  
UVP  
VIN = 12V,  
TONSEL=GND,  
SKIPSEL=GND,  
EN= FLOATING,  
No Load  
VOUT1  
(2V/Div)  
PGOOD  
(5V/Div)  
UGATE  
(20V/Div)  
LGATE  
(5V/Div)  
Time (100μs/Div)  
www.richtek.com  
16  
DS8205L/M-05 June 2011  
RT8205L/M  
Application Information  
The RT8205L/M is a dual, Mach ResponseTM DRVTM dual  
ramp valley mode synchronous buck controller. The  
controller is designed for low-voltage power supplies for  
notebook computers. Richtek's Mach ResponseTM  
technology is specifically designed for providing 100ns  
instant-onresponse to load steps while maintaining a  
relatively constant operating frequency and inductor  
operating point over a wide range of input voltages. The  
topology circumvents the poor load-transient timing  
problems of fixed-frequency current-mode PWMs while  
avoiding the problems caused by widely varying switching  
frequencies in conventional constant-on-time and constant-  
off-time PWM schemes. The DRVTM mode PWM  
modulator is specifically designed to have better noise  
immunity for such a dual output application. The RT8205L/  
M includes 5V (VREG5) and 3.3V (VREG3) linear  
regulators. VREG5 linear regulator can step down the  
battery voltage to supply both internal circuitry and gate  
drivers. The synchronous-switch gate drivers are directly  
powered from VREG5. When VOUT1 voltage is above  
4.66V, an automatic circuit will switch the power of the  
device from VREG5 linear regulator to VOUT1.  
and output voltage into the on-time one shot timer. The  
high side switch on-time is inversely proportional to the  
input voltage as measured by VIN, and proportional to the  
output voltage. There are two benefits of a constant  
switching frequency. First, the frequency can be selected  
to avoid noise-sensitive regions such as the 455kHz IF  
band. Second, the inductor ripple-current operating point  
remains relatively constant, resulting in easy design  
methodology and predictable output voltage ripple.  
Frequency for the 3V SMPS is set at 1.25 times higher  
than the frequency for 5V SMPS. This is done to prevent  
audio frequency beatingbetween the two sides, which  
switches asynchronously for each side. The frequencies  
are set by the TONSEL pin connection as shown in Table  
1. The on-time is given by :  
tON = K×(VOUT / V )  
IN  
where Kis set by the TONSEL pin connection (Table  
1).  
The on-time guaranteed in the Electrical Characteristics  
table is influenced by switching delays in the external  
high side power MOSFET. Two external factors that  
influence switching frequency accuracy are resistive drops  
in the two conduction loops (including inductor and PC  
board resistance) and the dead time effect. These effects  
are the largest contributors to the change frequency with  
changing load current. The dead time effect increases the  
effective on-time by reducing the switching frequency. It  
occurs only in PWM mode (SKIPSEL = GND) when the  
inductor current reverses at light or negative load currents.  
With reversed inductor current, the inductor's EMF causes  
PHASEx to go high earlier than normal, thus extending  
the on-time by a period equal to the low-to-high dead time.  
For loads above the critical conduction point, the actual  
switching frequency is :  
PWM Operation  
The Mach ResponseTM DRVTM mode controller relies on  
the output filter capacitor's Effective Series Resistance  
(ESR) to act as a current-sense resistor, so the output  
ripple voltage provides the PWM ramp signal. Referring to  
the RT8205L/M's function block diagram, the synchronous  
high side MOSFET will be turned on at the beginning of  
each cycle. After the internal one-shot timer expires, the  
MOSFET will be turned off. The pulse width of this one  
shot is determined by the converter's input voltage and  
the output voltage to keep the frequency fairly constant  
over the input voltage range. Another one-shot sets a  
minimum off-time (300ns typ.). The on-time one-shot will  
be triggered if the error comparator is high, the low side  
switch current is below the current limit threshold, and  
the minimum off-time one-shot has timed out.  
f = (VOUT + VDROP1)/ (tON ×(VIN + VDROP1 VDROP2))  
where VDROP1 is the sum of the parasitic voltage drops in  
the inductor discharge path, which includes the  
synchronous rectifier, inductor, and PC board resistances.  
VDROP2 is the sum of the resistances in the charging path;  
and tON is the on-time.  
PWM Frequency and On-Time Control  
The Mach ResponseTM control architecture runs with  
pseudo constant frequency by feed forwarding the input  
DS8205L/M-05 June 2011  
www.richtek.com  
17  
RT8205L/M  
Table 1. TONSEL Connection and Switching Frequency  
SMPS 1  
TONSEL  
SMPS 1  
Frequency (kHz)  
SMPS 2  
K-Factor (μs)  
SMPS 2  
Frequency (kHz)  
Approximate K-Factor  
Error (%)  
K-Factor (μs)  
GND  
REF  
5
200  
300  
4
250  
375  
±10  
±10  
3.33  
2.67  
VREG5 or  
VREG3  
2.5  
400  
2
500  
±10  
Operation Mode Selection (SKIPSEL)  
(VIN VOUT  
)
ILOAD(SKIP)  
×tON  
2L  
The RT8205L/M supports three operation modes:Diode-  
Emulation Mode, Ultrasonic Mode, and Forced-CCM  
Mode. User can set operation mode via the SKIPSELpin.  
where tON is the On-time.  
The switching waveforms may appear noisy and  
asynchronous when light loading causesDiode-Emulation  
Mode operation. However, this is normal and results in  
high efficiency. Trade offs in PFM noise vs. light load  
efficiency is made by varying the inductor value.Generally,  
low inductor values produce a broader efficiency vs. load  
curve, while higher values result in higher full load efficiency  
(assuming that the coil resistance remains fixed) and less  
output voltage ripple. Penalties for using higher inductor  
values include larger physical size and degraded load  
transient response (especially at low input voltage levels).  
Diode-Emulation Mode (SKIPSEL = REF)  
InDiode-Emulation Mode, the RT8205L/M automatically  
reduces switching frequency at light load conditions to  
maintain high efficiency. This reduction of frequency is  
achieved smoothly.As the output current decreases from  
heavy load condition, the inductor current is also reduced  
and eventually comes to the point when its valley touches  
zero current, which is the boundary between continuous  
conduction and discontinuous conduction modes. By  
emulating the behavior of diodes, the low side MOSFET  
allows only partial negative current when the inductor free  
wheeling current becomes negative. As the load current  
is further decreased, it takes longer and longer to discharge  
the output capacitor to the level that requires the next  
ONcycle. The on-time is kept the same as that in the  
heavy-load condition. In reverse, when the output current  
increases from light load to heavy load, the switching  
frequency increases to the preset value as the inductor  
current reaches the continuous conduction. The transition  
load point to the light load operation as follows (Figure 1) :  
Ultrasonic Mode (SKIPSEL = VREG5 or VREG3)  
The RT8205L/M activates an uniqueDiode-Emulation Mode  
with a minimum switching frequency of 25kHz, called the  
Ultrasonic Mode. The Ultrasonic Mode avoids audio-  
frequency modulation that would otherwise be present  
when a lightly loaded controller automatically skips  
pulses. In Ultrasonic Mode, the high side switch gate driver  
signal is ORed with an internal oscillator (>25kHz). Once  
the internal oscillator is triggered, the controller enters  
constant off-time control. When output voltage reaches  
the setting peak threshold, the controller turns on the low  
side MOSFET until the controller detects that the inductor  
current has dropped below the zero crossing threshold.  
The internal circuitry provides a constant off-time control,  
and it is effective to regulate the output voltage under light  
load condition.  
I
L
Slope = (V -V  
) / L  
OUT  
IN  
I
L, PEAK  
I
= I  
L, PEAK  
/ 2  
Load  
Forced CCM Mode (SKIPSEL = GND)  
The low noise, Forced CCM mode (SKIPSEL = GND)  
disables the zero crossing comparator, which controls  
the low side switch on-time. This causes the low side  
t
0
t
ON  
Figure 1. Boundary Condition of CCM/DEM  
www.richtek.com  
18  
DS8205L/M-05 June 2011  
RT8205L/M  
gate driver waveform to become the complement of the  
high side gate driver waveform. This in turn causes the  
inductor current to reverse at light loads as the PWM loop  
to maintain a duty ratio of VOUT/VIN. The benefit of forced  
CCM mode is to keep the switching frequency fairly  
constant, but it comes at a cost. The no-load battery  
current can be from 10mA to 40mA, depending on the  
external MOSFETs.  
Therefore, the exact current limit characteristic and  
maximum load capability are functions of the sense  
resistance, inductor value, and battery and output voltage.  
I
L
I
I
I
L, peak  
Load  
LIM  
Reference and Linear Regulators (REF, VREGx)  
The 2V reference (REF) is accurate within 1% over the  
entire operating temperature range, making REF useful  
as a precision system reference. Bypass REF to GND  
with a minimum 0.22μF ceramic capacitor. REF can supply  
up to 100μA for external loads. Loading REF reduces the  
VOUTx output voltage slightly because of the reference  
load regulation error.  
t
0
Figure 2. Valley” Current Limit  
The RT8205L/M uses the on resistance of the synchronous  
rectifier as the current sense element and supports  
temperature compensated MOSFET RDS(ON) sensing. The  
RILIMx resistor between the ENTRIPx pin and GND sets  
the current limit threshold. The resistor RILIMx is connected  
to a current source from ENTRIPx, which is typically10μA  
at room temperature. The current source has a 4700ppm/  
°C temperature slope to compensate the temperature  
dependency of the RDS(ON). When the voltage drop across  
the sense resistor or low side MOSFET equals 1/10 the  
voltage across the RILIMx resistor, positive current limit  
will be activated. The high side MOSFET will not be turned  
on until the voltage drop across the MOSFET falls below  
1/10 the voltage across the RILIMx resistor.  
The RT8205L/M includes 5V (VREG5) and 3.3V (VREG3)  
linear regulators. The VREG5 regulator supplies a total of  
100mA for internal and external loads, including the  
MOSFET gate driver and PWM controller. The VREG3  
regulator supplies up to 100mAfor external loads. Bypass  
VREG5 and VREG3 with a minimum 4.7μF ceramic  
capacitor.  
When the 5V main output voltage is above the VREG5  
switchover threshold (4.75V), an internal 1.5Ω P- MOSFET  
switch connects VOUT1 to VREG5, while simultaneously  
shutting down the VREG5 linear regulator. Similarly, when  
the 3.3V main output voltage is above the VREG3  
switchover threshold (3.125V), an internal 1.5Ω  
P-MOSFET switch connects VOUT2 to VREG3, while  
simultaneously shutting down the VREG3 linear regulator.  
It can decrease the power dissipation from the same  
battery, because the converted efficiency of SMPS is  
better than the converted efficiency of the linear regulator.  
Choose a current limit resistor by following equation :  
V
= (RILIMx ×10μA)/10 = IILIMx ×RDS(ON)  
ILIMx  
RILIMx = (IILIMx ×RDS(ON))×10/10μA  
Carefully observe the PC board layout guidelines to  
ensures that noise andDC errors do not corrupt the current  
sense signal at PHASEx andGND. Mount or place the IC  
close to the low side MOSFET.  
Charge Pump (SECFB)  
Current Limit Setting (ENTRIPx)  
The external 14V charge pump is driven by LGATEx (Figure  
3). When LGATEx is low, C1 will be charged by D1 from  
VOUT1. C1 voltage is equal to VOUT1 minus a diode drop.  
When LGATEx transitions to high, the charges from C1  
will transfer to C2 throughD2 and charge it to VLGATEX plus  
VC1. As LGATEx transitions low on the next cycle, C2  
will charge C3 to its voltage minus a diode drop through  
The RT8205L/M has a cycle-by-cycle current limit control.  
The current limit circuit employs an unique Valleycurrent  
sensing algorithm. If the magnitude of the current sense  
signal at PHASEx is above the current limit threshold,  
the PWM is not allowed to initiate a new cycle (Figure 2).  
The actual peak current is greater than the current limit  
threshold by an amount equal to the inductor ripple current.  
DS8205L/M-05 June 2011  
www.richtek.com  
19  
RT8205L/M  
D3. Finally, C3 charges C4 through D4 when LGATEx  
switches to high. So, VCP voltage is :  
The low side driver is designed to drive high current, low  
RDS(ON) N-MOSFET(s). The internal pull down transistor  
that drives LGATEx low is robust, with a 1.5Ω typical on  
resistance.A5V bias voltage is delivered from the VREG5  
supply. The instantaneous drive current is supplied by an  
input capacitor connected between VREG5 andGND.  
VCP = VOUT1+ 2× VLGATEX 4× VD  
where VLGATEX is the peak voltage of LGATEx driver and is  
equal to the VREG5; VD is the forward diode dropped  
across the Schottky.  
For high current applications, some combinations of high  
and low side MOSFETs might be encountered that will  
cause excessive gate drain coupling, which can lead to  
efficiency killing, EMI producing shoot through currents.  
This can be remedied by adding a resistor in series with  
BOOTx, which increases the turn-on time of the high side  
MOSFET without degrading the turn-off time (Figure 4).  
SECFB in the RT8205M is used to monitor the charge  
pump through the resistive divider (Figure 3) to generate  
approximately 14VDC voltage and the clock driver uses  
VOUT1 as its power supply. In the event when SECFB  
drops below its feedback threshold, an ultrasonic pulse  
will occur to refresh the charge pump driven by LGATEx.  
In the event of an overload on charge pump where SECFB  
can not reach more than its feedback threshold, the  
controller will enter the ultrasonic mode. Special care  
should be taken to ensure enough normal ripple voltage  
on each cycle as to prevent charge pump shutdown.  
V
IN  
R
BOOT  
BOOTx  
UGATEx  
PHASEx  
Reducing the charge pump decoupling capacitor and  
placing a small ceramic capacitor(47 pF to 220pF) (CF of  
Figure 3) in parallel with the upper leg of the SECFB  
resistor feedback network (RCP1 of Figure 3) will also  
increase the robustness of the charge pump.  
Figure 4. Reducing the UGATEx Rise Time  
Soft-Start  
SECFB  
R
CP2  
LGATE1  
C1  
The RT8205L/M provides internal soft-start function to  
prevent large inrush current and output voltage overshoot  
when the converter starts up. The soft-start (SS)  
automatically begins once the chip is enabled.During soft-  
start, the voltage is clamped to the ramping of internal  
reference voltage which is compared with FBx signal. The  
typical soft-start duration is 2ms. An unique PWM duty  
limit control that prevents output over voltage during soft-  
start period is designed specifically for FBx floating.  
C
F
R
C3  
CP1  
D2  
D4  
D3  
C2  
CP  
C4  
D1  
V
OUT1  
Figure 3. Charge Pump Circuit Connected to SECFB  
MOSFET Gate Driver (UGATEx, LGATEx)  
The high side driver is designed to drive high current, low  
RDS(ON) N-MOSFET(s). When configured as a floating driver,  
a 5V bias voltage is delivered from the VREG5 supply.  
The average drive current is calculated by the gate charge  
at VGS = 5V times the switching frequency. The  
instantaneous drive current is supplied by the flying  
capacitor between the BOOTx and PHASEx pins. Adead  
time to prevent shoot through is internally generated  
between the high side MOSFET off to, the low side  
MOSFET on, and the low side MOSFET off to the high  
side MOSFET on.  
UVLO Protection  
The RT8205L/M features VREG5 under voltage lockout  
protection (UVLO). When the VREG5 voltage is lower than  
3.9V (typ.) and the VREG3 voltage is lower than 2.5V  
(typ.), both switch power supplies are shut off. This is  
non-latch protection.  
Power Good Output (PGOOD)  
PGOODis an open-drain type output and requires a pull-  
up resistor. PGOOD is actively held low in soft-start,  
www.richtek.com  
20  
DS8205L/M-05 June 2011  
RT8205L/M  
standby, and shutdown. It is released when both output  
voltages are above 91% of the nominal regulation point.  
The PGOOD goes low if either output turns off or is 15%  
below its nominal regulator point.  
supplied from VOUTx, while the input voltage on VIN and  
the drawing current from VREGx are too high. Even if  
VREGx is supplied from VOUTx, large power dissipation  
on automatic switches caused by overloading VREGx,  
which may also result in thermal shutdown.  
Output Over Voltage Protection (OVP)  
Discharge Mode (Soft-Discharge)  
The output voltage can be continuously monitored for over  
voltage. If the output voltage exceeds 12% of its set voltage  
threshold, the over voltage protection is triggered and the  
LGATEx low side gate drivers are forced high. This  
activates the low side MOSFET switch, which rapidly  
discharges the output capacitor and pulls the input voltage  
downward.  
When ENTRIPx is low and a transition to standby or  
shutdown mode occurs, or the output under voltage fault  
latch is set, the output discharge mode will be triggered.  
During discharge mode, the output capacitors' residual  
charge will be discharge toGNDthrough an internal switch.  
Shutdown Mode  
The RT8205L/M is latched once OVP is triggered and can  
only be released by toggling EN, ENTRIPx or cycling VIN.  
There is a 5μs delay built into the over voltage protection  
circuit to prevent false alarm.  
The RT8205L/M SMPS1, SMPS2, VREG3 and VREG5  
have independent enabling control. Drive EN, ENTRIP1  
and ENTRIP2 below the precise input falling edge trip level  
to place the RT8205L/M in its low power shutdown state.  
The RT8205L/M consumes only 20μA of input current while  
in shutdown. When shutdown mode is activated, the  
reference turns off. The accurate 0.4V falling edge threshold  
on the EN pin can be used to detect a specific analog  
voltage level as well as to shutdown the device. Once in  
shutdown, the 1V rising edge threshold activates, providing  
sufficient hysteresis for most applications.  
Note that the latching LGATEx high causes the output  
voltage to dip slightly negative when energy has been  
previously stored in the LC tank circuit. For loads that  
cannot tolerate a negative voltage, place a power Schottky  
diode across the output to act as a reverse polarity clamp.  
If the over voltage condition is caused by a short in the  
high side switch, completely turning on the low side  
MOSFET can create an electrical short between the  
battery andGND, which will blow the fuse and disconnect  
the battery from the output.  
Power Up Sequencing and On/Off Controls  
(ENTRIPx)  
ENTRIP1 and ENTRIP2 control the SMPS power up  
sequencing. When the RT8205L/M is in single channel  
mode, ENTRIP1 or ENTRIP2 enables the respective  
outputs when ENTRIPx voltage rises above 0.515V.  
Output Under Voltage Protection (UVP)  
The output voltage can be continuously monitored for under  
voltage protection. If the output is less than 52% of its set  
voltage threshold, under voltage protection will be triggered,  
and then both UGATEx and LGATEx gate drivers will be  
forced low. The UVP will be ignored for at least 5ms (typ.)  
after start up or a rising edge on ENTRIPx. Toggle ENTRIPx  
or cycle VIN to reset the UVP fault latch and restart the  
controller.  
Since current source form ENTRIPx has 4700ppm/°C  
temperature slope, please make sure that ENTRIPx voltage  
is high enough to enable the respective output in low  
temperature application.  
If ENTRIPx pin becomes higher than the enable threshold  
voltage while another channel is starting up, soft-start is  
postponed until the other channel's soft-start has  
completed. If both ENTRIP1 and ENTRIP2 become higher  
than the enable threshold voltage simultaneously (within  
60μs), both channels will be start up simultaneously. The  
timing diagrams of the power sequence is shown below  
(Figure 5).  
Thermal Protection  
The RT8205L/M features thermal shutdown protection to  
prevent overheat damage to the device. Thermal shutdown  
occurs when the die temperature exceeds 150°C. All  
internal circuitry is inactive during thermal shutdown. The  
RT8205L/M triggers thermal shutdown if VREGx is not  
DS8205L/M-05 June 2011  
www.richtek.com  
21  
RT8205L/M  
< 60µs  
0.515V  
> 60µs  
0.515V  
V
V
ENTRIPx  
V
V
ENTRIPx  
0.515V  
0.515V  
ENTRIPy  
ENTRIPy  
V
V
OUTx  
V
V
OUTx  
OUTy  
2ms  
(b). Delay Start Mode  
OUTy  
(a). Start-Up at the Same Time  
Figure 5. TimeDiagrams of Power Sequence  
Table 2. Operation Mode Truth Table  
Mode  
Condition  
Comment  
Transitions to discharge mode after a VIN POR and after  
REF becomes valid. VREG5, VREG3, and REF remain  
active.  
Power UP VREGX < UVLO threshold  
EN = high, VOUT1 or VOUT2  
enabled  
RUN  
Normal Operation.  
Over Voltage Either output > 111% of the nominal LGATEx is forced high. VREG3, VREG5 and REF active.  
Protection level.  
Exited by VIN POR or by toggling EN, ENTRIPx  
Under  
Either output < 52% of the nominal  
Both UGATEx and LGATEx are forced low and enter  
Voltage  
level after 3ms time out expires and discharge mode. VREG3, VREG5 and REF are active.  
Protection output is enabled  
Exited by VIN POR or by toggling EN, ENTRIPx  
Either SMPS output is still high in  
Discharge either standby mode or shutdown  
mode  
During discharge mode, there is one path to discharge the  
outputs capacitor residual charge. That is output capacitor  
discharge to GND through an internal switch.  
ENTRIPx < startup threshold,  
EN = high.  
Standby  
VREG3, VREG5 and REF are active.  
All circuitry off.  
Shutdown EN = low  
Thermal  
TJ > 150°C  
Shutdown  
All circuitry off. Exit by VIN POR or by toggling EN, ENTRIPx  
www.richtek.com  
22  
DS8205L/M-05 June 2011  
RT8205L/M  
Table 3. Power Up Sequencing  
EN  
(V)  
ENTRIP1  
ENTRIP2  
REF  
Off  
VREG5  
Off  
VREG3  
Off  
SMPS1  
SMPS2  
Off  
Low  
X
X
X
X
Off  
Off  
“>1V”  
=> High  
On  
On  
On  
Off  
“>1V”  
=> High  
Off  
Off  
Off  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
Off  
On  
“>1V”  
=> High  
On  
(after  
ENTRIP2 is  
On without  
60μs)  
On  
(after SMPS2  
is on)  
“>1V”  
=> High  
On  
Off  
On  
On  
On  
On  
Off  
“>1V”  
=> High  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
(after SMPS1  
is on)  
“>1V”  
=> High  
(after ENTRIP1  
is On without  
60μs)  
“>1V”  
=> High  
On  
On  
Output Voltage Setting (FBx)  
Output Inductor Selection  
Connect a resistor voltage divider at the FBxpin between  
VOUTx and GND to adjust the respective output voltage  
between 2V and 5.5V (Figure 6). Refering to Figure 5 as  
an example, choose R2 to be approximately 10kΩ, and  
solve for R1 using the equation :  
The switching frequency (on-time) and operating point (%  
ripple or LIR) determine the inductor value as shown in  
the following equation :  
tON ×(V VOUTx  
)
IN  
L =  
LIR×ILOAD(MAX)  
R1 ⎞  
VOUTx = VFBX × 1+  
where LIR is the ratio of the peak to peak ripple current to  
the average inductor current.  
⎟⎟  
R2  
where VFBX is 2V.  
Find a low loss inductor having the lowest possible DC  
resistance that fits in the allotted dimensions. Ferrite cores  
are often the best choice, although powdered iron is  
inexpensive and can work well at 200kHz. The core must  
be large enough not to saturate at the peak inductor current  
(IPEAK) :  
V
IN  
V
OUTx  
UGATEx  
PHASEx  
LGATEx  
R1  
R2  
VOUTx  
FBx  
IPEAK = ILOAD(MAX) + (LIR / 2)×ILOAD(MAX)  
The calculation above shall serve as a general reference.  
To further improve the transient response, the output  
inductance can be reduced even further. This needs to be  
considered along with the selection of the output capacitor.  
Figure 6. Setting VOUTx with resistor divider  
DS8205L/M-05 June 2011  
www.richtek.com  
23  
RT8205L/M  
Output Capacitor Selection  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ (MAX) and thermal  
resistance, θJA. For the RT8205L/M package, the derating  
curve in Figure 7 allows the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
The capacitor value and ESR determine the amount of  
output voltage ripple and load transient response. Thus,  
the capacitor value must be greater than the largest value  
calculated from below equations :  
VOUTx  
(ΔILOAD)2 ×L×(K  
+ tOFF(MIN)  
)
V
IN  
2.0  
VSAG  
=
Four-Layer PCB  
V
IN VOUTx  
2×COUT × VOUTx × K  
t  
OFF(MIN)  
V
IN  
1.6  
1.2  
0.8  
0.4  
0.0  
(ΔILOAD)2 ×L  
2×COUT × VOUTx  
VSOAR  
=
1
VPP = LIR×ILOAD(MAX) × ESR +  
8×COUT ×f  
where VSAG and VSOAR are the allowable amount of  
undershoot voltage and overshoot voltage in the load  
transient, Vp-p is the output ripple voltage, tOFF(MIN) is the  
minimum off-time, and K is a factor listed in from Table 1.  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 7.Derating Curve for the RT8205L/M Package  
Thermal Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
Layout Considerations  
Layout is very important in high frequency switching  
converter designs, the PCB could radiate excessive noise  
and contribute to the converter instability with improper  
layout. Certain points must be considered before starting  
a layout using the RT8205L/M.  
` Place the filter capacitor close to the IC, within 12 mm  
PD(MAX) = (TJ(MAX) TA) / θJA  
(0.5 inch) if possible.  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJAis the junction to ambient  
thermal resistance.  
` Keep current limit setting network as close as possible  
to the IC. Routing of the network should avoid coupling  
to high voltage switching node.  
For recommended operating condition specifications of  
the RT8205L/M, the maximum junction temperature is  
125°C and TA is the ambient temperature. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
WQFN-24L 4x4 packages, the thermal resistance, θJA, is  
52°C/W on a standard JEDEC 51-7 four-layer thermal test  
board. The maximum power dissipation at TA = 25°C can  
be calculated by the following formula :  
` Connections from the drivers to the respective gate of  
the high side or the low side MOSFET should be as  
short as possible to reduce stray inductance. Use 0.65  
mm (25 mils) or wider trace.  
` All sensitive analog traces and components such as  
VOUTx, FBX, GND, ENTRIPx, PGOOD, and TONSEL  
should be placed away from high voltage switching  
nodes such as PHASEx, LGATEx, UGATEx, or BOOTx  
nodes to avoid coupling. Use internal layer(s) as ground  
plane(s) and shield the feedback trace from power traces  
and components.  
PD(MAX) = (125°C 25°C) / (52°C/W) = 1.923W for  
WQFN-24L 4x4 package  
www.richtek.com  
24  
DS8205L/M-05 June 2011  
RT8205L/M  
` Place the ground terminal of VIN capacitor(s), VOUTx  
capacitor(s), and source of low side MOSFETs as close  
as possible. The PCB trace defined as PHASEx node,  
which connects to source of high side MOSFET, drain  
of low side MOSFET and high voltage side of the  
inductor, should be as short and wide as possible.  
DS8205L/M-05 June 2011  
www.richtek.com  
25  
RT8205L/M  
Outline Dimension  
D2  
SEE DETAIL A  
L
D
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
Pin #1 ID and Tie Bar Mark Options  
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
3.950  
2.300  
3.950  
2.300  
0.800  
0.050  
0.250  
0.300  
4.050  
2.750  
4.050  
2.750  
0.028  
0.000  
0.007  
0.007  
0.156  
0.091  
0.156  
0.091  
0.031  
0.002  
0.010  
0.012  
0.159  
0.108  
0.159  
0.108  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 24L QFN 4x4 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit  
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be  
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
www.richtek.com  
26  
DS8205L/M-05 June 2011  

RT8205MGQW 相关器件

型号 制造商 描述 价格 文档
RT8205MZQW RICHTEK High Efficiency, Main Power Supply Controller for Notebook Computer 获取价格
RT8206A RICHTEK High-Efficiency, Main Power Supply Controllers for Notebook Computers 获取价格
RT8206AGQW RICHTEK High Efficiency, Main Power Supply Controllers for Notebook Computers 获取价格
RT8206B RICHTEK High-Efficiency, Main Power Supply Controllers for Notebook Computers 获取价格
RT8206BGQW RICHTEK High Efficiency, Main Power Supply Controllers for Notebook Computers 获取价格
RT8206L RICHTEK High Efficiency, Main Power Supply Controller for Notebook Computers 获取价格
RT8206M RICHTEK High Efficiency, Main Power Supply Controller for Notebook Computers 获取价格
RT8207 RICHTEK Complete DDRII/DDRIII Memory Power Supply Controller 获取价格
RT8207GQW RICHTEK Complete DDRII/DDRIII Memory Power Supply Controller 获取价格
RT8207K RICHTEK 暂无描述 获取价格

RT8205MGQW 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6