RT8251 [RICHTEK]

5A, 24V, 570kHz Step-Down Converter; 5A , 24V , 570kHz降压转换器
RT8251
型号: RT8251
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

5A, 24V, 570kHz Step-Down Converter
5A , 24V , 570kHz降压转换器

转换器
文件: 总16页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8251  
5A, 24V, 570kHz Step-Down Converter  
General Description  
Features  
z Wide Operating Input Voltage Range : 4.75V to 24V  
z Adjustable Output Voltage Range : 0.8V to 15V  
z Output Current up to 5A  
The RT8251 is a monolithic step-down switch mode  
converter with a built-in internal power MOSFET. It achieves  
5A continuous output current over a wide input supply  
range with excellent load and line regulation. Current mode  
operation provides fast transient response and eases loop  
stabilization.  
z 25μA Low Shutdown Current  
z Internal Power MOSFET : 70mΩ  
z High Efficiency up to 95%  
z 570kHz Fixed Switching Frequency  
z Stable with Low ESR Output Ceramic Capacitors  
z Thermal Shutdown Protection  
The RT8251 provides protection functions such as  
cycle-by-cycle current limiting and thermal shutdown. In  
shutdown mode, the regulator draws 25μA of supply  
current. Programmable soft-start minimizes the inrush  
supply current and the output overshoot at initial startup.  
The RT8251 requires a minimum number of external  
components. The RT8251 is available in WQFN-16L 3x3  
and SOP-8 (Exposed Pad) packages.  
z Cycle-By-Cycle Over Current Protection  
z RoHS Compliant and Halogen Free  
Applications  
z Distributed Power Systems  
z Battery Charger  
z DSL Modems  
Pin Configurations  
z Pre-regulator for Linear Regulators  
(TOP VIEW)  
Ordering Information  
16 15 14 13  
RT8251  
SW  
SW  
12  
11  
VIN  
VIN  
1
2
3
4
Package Type  
QW : WQFN-16L 3x3 (W-Type)  
SP : SOP-8 (Exposed Pad-Option 1)  
GND  
10 SW  
BOOT  
VIN  
17  
9
GND  
5
6
7
8
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Richtek products are :  
WQFN-16L 3x3  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
8
BOOT  
VIN  
SS  
2
3
4
7
6
5
EN  
GND  
SW  
COMP  
FB  
9
GND  
SOP-8 (Exposed Pad)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
1
RT8251  
Marking Information  
RT8251GQW  
RT8251GSP  
GE= : Product Code  
RT8251GSP : Product Number  
YMDNN : Date Code  
RT8251  
GSPYMDNN  
YMDNN : Date Code  
GE=YM  
DNN  
Typical Application Circuit  
1, 2, 3,  
V
15, 16  
9
IN  
VIN  
BOOT  
RT8251  
4.75V to 24V  
C
100nF  
C
BOOT  
L
IN  
4.7µH  
10µF x 2  
V
OUT  
10 to 14  
SW  
7
8
3.3V/5A  
EN  
SS  
Chip Enable  
D
R1  
B540C  
30.9k  
C
5
OUT  
C
SS  
FB  
22µF x 2  
C
C
10nF  
4,  
R
C
R2  
2.2nF  
22k  
10k  
Exposed Pad (17)  
6
GND  
COMP  
C
P
(Open)  
Figure 1. Typical Application Circuit for WQFN-16L 3x3  
1
3
2
7
V
IN  
BOOT  
RT8251  
VIN  
C
4.75V to 24V  
IN  
C
100nF  
BOOT  
10µF x 2  
L
V
OUT  
SW  
Chip Enable  
3.3V/5A  
4.7µH  
D
EN  
SS  
R1  
B540C  
30.9k  
8
C
OUT  
22µF x 2  
5
6
FB  
C
10nF  
SS  
4,  
C
C
R
C
R2  
10k  
2.2nF  
Exposed Pad(9)  
22k  
GND  
COMP  
C
P
NC  
Figure 2. Typical Application Circuit for SOP-8 (Exposed Pad)  
Table 1. Recommended Component Selection  
V
(V)  
R1 (kΩ)  
182  
R2 (kΩ)  
10  
R (kΩ)  
C (nF)  
C
L1 (μH)  
22  
C
(μF)  
OUT  
OUT  
C
15  
51  
43  
39  
30  
22  
16  
13  
13  
1
44  
10  
8
115  
10  
1.2  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
10  
44  
44  
44  
44  
44  
44  
44  
91  
10  
10  
5
52.3  
30.9  
21.5  
12.4  
4.99  
10  
6.8  
4.7  
4.7  
2.2  
2.2  
3.3  
2.5  
1.8  
1.2  
10  
10  
10  
10  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8251-04 February 2013  
RT8251  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
SOP-8  
(Exposed Pad)  
WQFN-16L 3x3  
Power Input. VIN supplies the power to the IC, as well as the  
step-down converter switches. Connect VIN with a 4.75V to 24V  
power source. Connect VIN to GND with a capacitor that the  
capacitance is large enough to eliminate noise on the input to the  
IC.  
1, 2, 3, 15, 16  
2
VIN  
Ground. This pin is the voltage reference for the regulated output  
voltage. For this reason, care must be taken in its layout. This  
4,  
4,  
node should be placed outside of the D1 to C ground path to  
IN  
GND  
17 (Exposed Pad) 9 (Exposed Pad)  
prevent switching current spikes from inducing voltage noise into  
the part. The exposed pad must be soldered to a large PCB and  
connected to GND for maximum power dissipation.  
Feedback Input. An external resistor divider from the output to  
GND, tapped to the FB pin, sets the output voltage.  
5
6
5
6
FB  
Compensation Node. This node is the output of the  
transconductance error amplifier and the input to the current  
comparator. Frequency compensation is done at this node by  
connecting a series R-C to ground.  
COMP  
Enable Input. EN is a digital input that turns the regulator on or  
off. Drive EN higher than 1.4V to turn on the regulator, lower  
than 0.4V to turn it off. For automatic startup, leave EN  
unconnected.  
Soft-Start Control Input. SS controls the soft start period.  
Connect a capacitor (10nF) from SS to GND to set the  
soft-start period. A 10nF capacitor sets the Soft-Start period to  
1ms.  
7
8
7
8
EN  
SS  
Bootstrap. This capacitor C  
is needed to drive the power  
BOOT  
switch’s gate above the supply voltage. It is connected between  
the SW and BS pins to form a floating supply across the power  
9
1
3
BOOT  
SW  
switch driver. The voltage across C  
is about 5V and is  
BOOT  
supplied by the internal +5V supply when the SW pin voltage is  
low.  
Power Switching Output. SW is the switching node that supplies  
power to the output. Connect the output LC filter from SW to the  
output load. Note that a capacitor is required from SW to BOOT  
to power the high-side switch.  
10, 11, 12, 13,  
14  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
3
RT8251  
Function Block Diagram  
VIN  
Current Sense  
V
CC  
Slope Comp  
Internal  
Regulator  
Amplifier  
Oscillator  
570kHz  
VA  
+
-
1µA  
10k  
V
VA  
-
CC  
Foldback  
Control  
BOOT  
SW  
EN  
+
1.1V  
0.4V  
+
-
Shutdown  
Comparator  
Logic  
3V  
+
-
UV  
V
CC  
Comparator  
GND  
Current  
Comparator  
10µA  
0.8V  
+
+
-
EA  
SS  
Gm = 820µA/V  
FB  
COMP  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VIN ------------------------------------------------------------------------------------------0.3V to 26V  
z Switching Voltage, VSW -------------------------------------------------------------------------------------0.3V to (VIN + 0.3V)  
z BOOT Voltage, VBOOT ---------------------------------------------------------------------------------------(VSW 0.3V) to (VSW + 6V)  
z All Other Pins -------------------------------------------------------------------------------------------------0.3V to 6V  
z Power Dissipation, PD @ TA = 25°C  
WQFN-16L 3x3 -----------------------------------------------------------------------------------------------1.471W  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------1.333W  
z Package Thermal Resistance (Note 2)  
WQFN-16L 3x3, θJA ------------------------------------------------------------------------------------------68°C/W  
WQFN-16L 3x3, θJC -----------------------------------------------------------------------------------------7.5°C/W  
SOP-8 (Exposed pad), θJA ---------------------------------------------------------------------------------75°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------15°C/W  
z Junction Temperature ----------------------------------------------------------------------------------------150°C  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------260°C  
z Storage Temperature Range -------------------------------------------------------------------------------65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------2kV  
Recommended Operating Conditions (Note 4)  
z Supply Voltage, VIN ------------------------------------------------------------------------------------------4.75V to 24V  
z Enable Voltage, VEN -----------------------------------------------------------------------------------------0V to 5.5V  
z Junction Temperature Range-------------------------------------------------------------------------------40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------40°C to 85°C  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8251-04 February 2013  
RT8251  
Electrical Characteristics  
(VIN = 12V, TA = 25°C unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
4.75V V 24V  
Min  
Typ  
Max Unit  
Feedback Reference Voltage  
High-Side Switch-On Resistance  
Low-Side Switch-On Resistance  
High-Side Switch Leakage  
Current Limit  
V
0.784  
--  
0.8  
70  
0.816  
--  
V
mΩ  
Ω
FB  
IN  
R
R
DS(ON)1  
DS(ON)2  
--  
15  
--  
V
EN  
= 0V, V  
= 0V  
--  
--  
10  
--  
μA  
SW  
I
Duty = 85%; V  
= 4.8V  
--  
6.8  
4.6  
920  
570  
185  
85  
A
LIM  
BOOTSW  
Current Sense Transconductance  
Error Amplifier Tansconductance  
Oscillator Frequency  
G
CS  
Output Current to V  
--  
--  
A/V  
μA/V  
kHz  
kHz  
%
COMP  
gm  
ΔI = ±10μA  
C
--  
--  
f
420  
--  
720  
--  
SW  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
V
V
= 0V  
FB  
D
MAX  
= 0.7V  
--  
--  
FB  
Minimum On-Time  
t
--  
100  
4.1  
200  
--  
--  
ns  
ON  
UVLO Threshold Rising  
--  
--  
V
UVLO Threshold Hysteresis  
--  
--  
mV  
Logic Low  
EN Input Voltage  
V
V
--  
0.4  
5.5  
--  
IL  
V
Logic High  
1.4  
--  
--  
IH  
Enable Pull Up Current  
Shutdown Current  
Quiescent Current  
Soft-Start Current  
Soft-Start Period  
V
V
= 0V  
= 0V  
1
μA  
μA  
mA  
μA  
ms  
°C  
EN  
I
--  
25  
--  
SHDN  
Q
EN  
EN  
SS  
I
I
V
V
= 2V, V = 1V  
--  
0.8  
10  
1
FB  
= 0V  
--  
--  
SS  
C
= 10nF  
--  
1
--  
SS  
Thermal Shutdown  
T
--  
150  
--  
SD  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
5
RT8251  
Typical Operating Characteristics  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 24V  
VIN = 12V  
90  
80  
VIN = 24V  
70  
60  
50  
40  
30  
20  
10  
VOUT = 3.3V  
VOUT = 5V  
4.5 5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Load Current (A)  
Load Current (A)  
Output Voltag Deviation vs. Load Current  
Output Voltage Deviation vs. Input Voltage  
2
2
1.5  
1
IOUT = 5A  
OUT = 3A  
IOUT = 0A  
VIN = 24V  
1.5  
1
I
VIN = 12V  
VIN = 5V  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
VOUT = 3.3V  
19 21.5 24  
VOUT = 3.3V  
-2  
4
6.5  
9
11.5  
14  
16.5  
0.001  
0.01  
0.1  
1
10  
Input Voltage (V)  
Reference Voltage vs. Temperature  
Load Current (A)  
Quiescent Current vs. Temperature  
0.816  
0.811  
0.806  
0.801  
0.796  
0.791  
0.786  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VIN = 12V  
100 125  
VIN = 12V  
100 125  
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature ( C)  
°
Temperature ( C)  
°
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8251-04 February 2013  
RT8251  
Switching Frequency vs. Temperature  
Switching Frequency vs. Input Voltage  
610  
600  
590  
580  
570  
560  
550  
630  
610  
590  
570  
550  
530  
510  
VIN = 12V  
VIN = 24V  
VOUT = 3.3V, IOUT = 1A  
VOUT = 3.3V, IOUT = 1A  
-50  
-25  
0
25  
50  
75  
100  
125  
4
6.5  
9
11.5  
14  
16.5  
19  
21.5  
24  
Input Voltage (V)  
Temperature ( C)  
°
Output Ripple  
Current Limit vs. Duty Cycle  
9.3  
8.7  
8.1  
7.5  
6.9  
6.3  
5.7  
VOUT  
(10mV/Div)  
VSW  
(10V/Div)  
VIN = 12V  
VOUT = 3.3V  
ISW  
(2A/Div)  
IOUT = 5A  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Time (1μs/Div)  
Duty Cycle (%)  
Load Transient Response  
Load Transient Response  
VIN = 12V, VOUT = 3.3V  
OUT = 0A to 5A  
VIN = 12V, VOUT = 3.3V  
IOUT = 2.5A to 5A  
I
VOUT  
(200mV/Div)  
VOUT  
(200mV/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
Time (100μs/Div)  
Time (100μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
7
RT8251  
Power On from EN  
Power Off from EN  
VEN  
(5V/Div)  
VEN  
(5V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 5A  
VIN = 12V, VOUT = 3.3V, IOUT = 5A  
Time (250μs/Div)  
Time (25μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8251-04 February 2013  
RT8251  
Application Information  
Soft-Start  
The RT8251 is an asynchronous high voltage buck  
converter that can support the input voltage range from  
4.75V to 24V and the output current can be up to 5A.  
The RT8251 contains an external soft-start clamp that  
gradually raises the output voltage. The soft-start timming  
can be set by the external capacitor between SS pin and  
GND. The chip provides a 10μA charge current for the  
external capacitor. If 10nF capacitor is used to set the  
soft-start time, its period will be 1ms (typ.).  
Output Voltage Setting  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 3.  
V
OUT  
Chip Enable Operation  
The EN pin is the chip enable input. Pull the EN pin low  
(<0.4V) will shutdown the device.During shutdown mode,  
the RT8251 quiescent current drops to lower than 25μA.  
Drive the EN pin to high ( >1.4V, < 5.5V) will turn on the  
device again. If the EN pin is open, it will be pulled to high  
by internal circuit. For external timing control (e.g.RC),  
the EN pin can also be externally pulled to High by adding  
a100kΩ or greater resistor from the VIN pin (see Figure 5).  
R1  
FB  
RT8251  
GND  
R2  
Figure 3. Output Voltage Setting  
The output voltage is set by an external resistive divider  
according to the following equation :  
R1  
R2  
VOUT = VFB 1+  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
Where VFB is the feedback reference voltage (0.8V typ.).  
External Bootstrap Diode  
Connect a 100nF low ESR ceramic capacitor between  
the BOOT pin and SW pin. This capacitor provides the  
gate driver voltage for the high side MOSFET.  
V
VOUT  
OUT ⎤ ⎡  
× 1−  
⎥ ⎢  
ΔIL =  
f ×L  
V
IN  
⎦ ⎣  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
highest efficiency operation. However, it requires a large  
inductor to achieve this goal.  
It is recommended to add an external bootstrap diode  
between an external 5V and the BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
cycle is higher than 65%. The bootstrap diode can be a  
low cost one such as 1N4148 or BAT54.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX  
)
The external 5V can be a 5V fixed input from system or a  
5V output of the RT8251.  
will be a reasonable starting point. The largest ripple current  
occurs at the highest VIN. To guarantee that the ripple  
current stays below the specified maximum, the inductor  
value should be chosen according to the following  
equation :  
5V  
⎤ ⎡  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
BOOT  
⎥ ⎢  
L(MAX)  
⎦ ⎣  
100nF  
RT8251  
SW  
The inductor 's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
Figure 4. External Bootstrap Diode  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
9
RT8251  
Table 2. Suggested Inductors for Typical  
Application Circuit  
The output ripple, ΔVOUT , is determined by :  
1
ΔVOUT ≤ ΔIL ESR +  
8fCOUT  
Component  
Supplier  
TDK  
Series  
Dimensions (mm)  
The output ripple will be highest at the maximum input  
SLF10165  
NR10050  
VLF12060  
10.1x10.1x7  
10x9.8x5  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement.Dry tantalum,  
special polymer, aluminum electrolytic and ceramic  
capacitors are all available in surface mount packages.  
Special polymer capacitors offer very low ESR value.  
However, it provides lower capacitance density than other  
types. Although Tantalum capacitors have the highest  
capacitance density, it is important to only use types that  
pass the surge test for use in switching power supplies.  
Aluminum electrolytic capacitors have significantly higher  
ESR. However, it can be used in cost-sensitive applications  
for ripple current rating and long term reliability  
considerations. Ceramic capacitors have excellent low  
ESR characteristics but can have a high voltage coefficient  
and audible piezoelectric effects. The high Q of ceramic  
capacitors with trace inductance can also lead to significant  
ringing.  
TAIYO YUDEN  
TDK  
12x11.7x6  
Diode Selection  
When the power switch turns off, the path for the current  
is through the diode connected between the switch output  
and ground. This forward biased diode must have a  
minimum voltage drop and recovery times. Schottky diode  
is recommended and it should be able to handle those  
current. The reverse voltage rating of the diode should be  
greater than the maximum input voltage, and current rating  
should be greater than the maximum load current. For  
more detail please refer to Table 4.  
CIN and COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
RMS current is given by :  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used at input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
For the input capacitor, two 10μF low ESR ceramic  
capacitors are recommended. For the recommended  
capacitor, please refer to table 3 for more detail.  
Checking Transient Response  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to ΔILOAD (ESR) also begins to charge or discharge  
COUT generating a feedback error signal for the regulator  
The selection of COUT is determined by the required ESR  
to minimize voltage ripple.  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8251-04 February 2013  
RT8251  
to return VOUT to its steady-state value. During this  
recovery time, VOUT can be monitored for overshoot or  
ringing that would indicate a stability problem.  
snubber between SW and GND and make them as close  
as possible to the SW pin (see Figure 5). Another method  
is to add a resistor in series with the bootstrap capacitor,  
CBOOT. But this method will decrease the driving capability  
to the high-side MOSFET. It is strongly recommended to  
reserve the R-C snubber during PCB layout for EMI  
improvement. Moreover, reducing the SW trace area and  
keeping the main power in a small loop will be helpful on  
EMI performance. For detailed PCB layout guide, please  
refer to the section of Layout Consideration.  
EMI Consideration  
Since parasitic inductance and capacitance effects in PCB  
circuitry would cause a spike voltage on the SW pin when  
high-side MOSFET is turned-on/off, this spike voltage on  
SW may impact on EMI performance in the system. In  
order to enhance EMI performance, there are two methods  
to suppress the spike voltage. One is to place an R-C  
R
*
BOOT  
1
3
2
V
IN  
BOOT  
RT8251  
VIN  
4.75V to 24V  
C
IN  
10µF x 2  
C
BOOT  
L
4.7µH  
100nF  
R
*
EN  
V
OUT  
SW  
Chip Enable  
3.3V/5A  
7
EN  
D
R *  
S
B540C  
C
*
EN  
R1  
30.9k  
C
OUT  
22µF x 2  
C *  
S
8
SS  
5
6
FB  
C
SS  
10nF  
4,  
C
C
R
C
R2  
10k  
2.2nF  
Exposed Pad(9)  
22k  
GND  
COMP  
C
P
* : Optional  
NC  
Figure 5. Reference Circuit with Snubber and Enable Timing Control  
Thermal Considerations  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W for  
PSOP-8  
PD(MAX) = (125°C 25°C) / (68°C/W) = 1.471W for  
WQFN  
(min.copper area PCB layout)  
PD(MAX) = (125°C 25°C) / (49°C/W) = 2.04W for  
PSOP-8 (70mm2copper area PCB layout)  
PD(MAX) = (TJ(MAX) TA ) / θJA  
The thermal resistance θJA of SOP-8 (Exposed Pad) is  
determined by the package architecture design and the  
PCB layout design. However, the package architecture  
design had been designed. If possible, it's useful to  
increase thermal performance by the PCB layout copper  
design. The thermal resistance θJA can be decreased by  
adding copper area under the exposed pad of SOP-8  
(Exposed Pad) package.  
Where TJ(MAX) is the maximum operation junction  
temperature , TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
For recommended operating conditions specification of  
RT8251, the maximum junction temperature is 125°C. The  
junction to ambient thermal resistance θJA is layout  
dependent. For PSOP-8 and WQFNpackages, the thermal  
resistance θJA are 75°C/W and 68°C/W on the standard  
JEDEC 51-7 four-layers thermal test board. The maximum  
power dissipation at TA = 25°C can be calculated by  
following formula :  
As shown in Figure 6, the amount of copper area to which  
the SOP-8 (Exposed Pad) is mounted affects thermal  
performance. When mounted to the standard  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
11  
RT8251  
SOP-8 (Exposed Pad) pad (Figure 6a), θJA is 75°C/W.  
Adding copper area of pad under the SOP-8 (Exposed  
Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,  
increasing the copper area of pad to 70mm2 (Figure 6.e)  
reduces the θJA to 49°C/W.  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT8251 packages, the derating curves  
in Figure 7 and Figure 8 allow the designer to see the  
effect of rising ambient temperature on the maximum power  
dissipation allowed.  
(a) Copper Area = (2.3 x 2.3) mm2,θJA = 75°C/W  
2.2  
Four Layer PCB  
2.0  
1.8  
(b) Copper Area = 10mm2,θJA = 64°C/W  
Copper Area  
1.6  
2
70mm  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2
2
2
50mm  
30mm  
10mm  
Min.Layout  
(c) Copper Area = 30mm2 ,θJA = 54°C/W  
0
25  
50  
75  
100  
125  
(°C)  
Ambient Temperature  
Figure 7. Derating Curves for PSOP-8 Package  
1.6  
Four Layer PCB  
1.4  
1.2  
(d) Copper Area = 50mm2 ,θJA = 51°C/W  
1.0  
WQFN-16L 3x3  
0.8  
0.6  
0.4  
0.2  
0.0  
0
15  
30  
45  
60  
75  
90 105 120 135  
(e) Copper Area = 70mm2 ,θJA = 49°C/W  
Ambient Temperature (°C)  
Figure 8.Derating Curves for WQFNPackage  
Figure 6. Themal Resistance vs. CopperArea Layout  
Design  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8251-04 February 2013  
RT8251  
Layout Consideration  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT8251.  
Follow the PCB layout guidelines for optimal performance  
of the RT8251.  
` Connect all analog grounds to a command node and  
then connect the command node to the power ground  
behind the output capacitors.  
` Keep the traces of the main current paths as short and  
wide as possible.  
` Put the input capacitor as close as possible to the device  
` Examples of PCB layout guide are shown in Figure 9  
pins (VINandGND).  
and Figure 10 for reference.  
` LX node is with high frequency voltage swing and should  
be kept at small area. Keep analog components away  
from the LX node to prevent stray capacitive noise pick-  
up.  
Input capacitor must be placed  
as close as to the IC as possible.  
C
OUT  
C
D
S
GND  
C
IN  
R
S
L
VOUT  
16 15 14 13  
SW  
SW  
SW  
VIN  
VIN  
12  
11  
10  
9
1
2
3
4
SW should be connected  
GND  
17  
to inductor by Wide and  
short trace. Keep sensitive  
components away from  
this trace.  
VIN  
C
BOOT  
BOOT  
GND  
5
6
7
8
R1  
R2  
C
SS  
R
C
VOUT  
C
P
C
C
GND  
The feedback components must be connected  
as close to the device as possible.  
Figure 9. PCB Layout Guide for WQFN Package  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
is a registered trademark of Richtek Technology Corporation.  
©
DS8251-04 February 2013  
www.richtek.com  
13  
RT8251  
The feedback components  
must be connected as close  
to the device as possible.  
SW  
V
IN  
GND  
GND  
C
BOOT  
C
SS  
C
Input capacitor must  
be placed as close  
to the IC as possible.  
C
C
IN  
8
7
6
5
BOOT  
VIN  
SS  
2
3
4
R
C
EN  
C
P
GND  
D
SW  
COMP  
FB  
9
C
R1  
S
R
S
GND  
R2  
V
OUT  
L
C
OUT  
V
OUT  
GND  
SW should be connected to inductor by  
wide and short trace. Keep sensitive  
components away from this trace.  
Figure 10. PCB Layout Guide for PSOP-8 Package  
Table 3. Suggested Capacitors for CIN and COUT  
Location Component Supplier Part No.  
Capacitance (μF)  
Case Size  
1210  
MURATA  
TDK  
GRM31ER61E226K  
C4535X5R1E226M  
TMK325BJ226MM  
GRM32ER61C476M  
GRM31CR60J476M  
C3216X5R0J476M  
LMK316BJ476MM  
22  
22  
22  
47  
47  
47  
47  
CIN  
CIN  
1812  
TAIYO YUDEN  
MURATA  
MURATA  
TDK  
1210  
CIN  
1210  
COUT  
COUT  
COUT  
COUT  
1206  
1206  
TAIYO YUDEN  
1206  
Table 4. Suggested Diode  
Component Supplier  
DIODES  
Part No.  
B540C  
V
(V)  
I
(A)  
OUT  
Package  
SMC  
RRM  
40  
5
ON  
MBRS540T3  
40  
5
SMC  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8251-04 February 2013  
RT8251  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
0.800  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
0.028  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
0.031  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 16L QFN 3x3 Package  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8251-04 February 2013  
www.richtek.com  
15  
RT8251  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
16  
DS8251-04 February 2013  

相关型号:

RT8251GQW

IC REG BUCK ADJ 5A 16WQFN
RICHTEK

RT8252A

2A, 23V, 340kHz Synchronous Step-Down Converter
RICHTEK

RT8252B

2A, 23V, 1.2MHz Synchronous Step-Down Converter
RICHTEK

RT8253A

3A, 23V, 340kHz Synchronous Step-Down Converter
RICHTEK

RT8253B

3A, 23V, 1.2MHz Synchronous Step-Down Converter
RICHTEK

RT8256

2A, 22V, 400kHz Step-Down Converter
RICHTEK
RICHTEK

RT8258GE

Wide Operating Input Voltage Range : 4.5V to 24V
RICHTEK
RICHTEK

RT8259GE

1.2A, 24V, 1.4MHz Step-Down Converter
RICHTEK

RT8259GJ6

1.2A, 24V, 1.4MHz Step-Down Converter
RICHTEK

RT8259PE

1.2A, 24V, 1.4MHz Step-Down Converter
RICHTEK