RT9166-27PXL [RICHTEK]

300/600mA, Ultra-Fast Transient Response LDO Regulator;
RT9166-27PXL
型号: RT9166-27PXL
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

300/600mA, Ultra-Fast Transient Response LDO Regulator

文件: 总15页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9166/A  
300/600mA, Ultra-Fast Transient Response LDO Regulator  
General Description  
Features  
z Low Quiescent Current (Typically 220μA)  
z Guaranteed 300/600mA Output Current  
z Low Dropout Voltage : 230/580mV at 300/600mA  
z Wide Operating Voltage Ranges : 3V to 5.5V  
z Ultra-Fast Transient Response  
The RT9166/A series are CMOS low dropout regulators  
optimized for ultra-fast transient response. The devices are  
capable of supplying 300mA or 600mA of output current  
with a dropout voltage of 230mV or 580mV respectively.  
The RT9166/A series are is optimized for CD/DVD-ROM,  
CD/RW or wireless communication supply applications.  
The RT9166/Aregulators are stable with output capacitors  
as low as 1μF. The other features include ultra low dropout  
voltage, high output accuracy, current limiting protection,  
and high ripple rejection ratio.  
z Tight Load and Line Regulation  
z Current Limiting Protection  
z Thermal Shutdown Protection  
z Only Low-ESR Ceramic Capacitor Required for  
Stability  
z Custom Voltage Available  
The devices are available in fixed output voltages range of  
1.2V to 4.5V with 0.1V per step. The RT9166/A regulators  
are available in 3-lead SOT-23, SOT-89, SOT-223, TO-92  
and TO-252 packages.  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z CD/DVD-ROM, CD/RW  
z Wireless LAN Card/Keyboard/Mouse  
z Battery-Powered Equipment  
z XDSL Router  
Ordering Information  
RT9166/A-  
Package Type  
VL : SOT-23-3 (L-Type)  
X : SOT-89  
z PCMCIA Card  
XL : SOT-89 (L-Type)  
G : SOT-223  
Marking Information  
GL : SOT-223 (L-Type)  
Z : TO-92  
L : TO-252  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area, otherwise visit our website for detail.  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer- Pin Configurations  
cial Standard)  
(TOP VIEW)  
VIN  
Output Voltage  
12 : 1.2V  
13 : 1.3V  
:
3
1
2
45 : 4.5V  
1B : 1.25V  
GND  
VOUT  
600mA Output Current  
300mA Output Current  
SOT-23-3 (L-Type) (RT9166)  
Note :  
3
VOUT  
GND  
VIN  
Richtek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
2
1
TO-92 (RT9166/A)  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100%matte tin (Sn) plating.  
DS9166/A-19 April 2008  
www.richtek.com  
1
RT9166/A  
1
2
3
1
2
3
1
3
2
1
2
3
1
2
3
VOUT  
GND  
GND VIN  
(TAB)  
VIN  
(TAB)  
VOUT  
GND  
VOUT  
GND  
VIN  
(TAB)  
VOUT GND  
(TAB)  
VIN  
VOUT  
VIN  
SOT-89 (L-Type)  
SOT-89  
SOT-223  
SOT-223 (L-Type)  
TO-252  
Typical Application Circuit  
RT9166/A  
VIN VOUT  
GND  
V
V
IN  
OUT  
C
C
OUT  
IN  
1uF  
1uF  
Note: To prevent oscillation, a 1μF minimum X7R or X5R dielectric is strongly recommended if ceramics are  
used as input/output capacitors. When using the Y5V dielectric, the minimum value of the input/output  
capacitance that can be used for stable over full operating temperature range is 3.3μF. (see Application  
Information Section for further details)  
Functional Pin Description  
Pin Name  
Pin Function  
VIN  
Supply Input  
VOUT  
GND  
Regulator Output  
Common Ground  
Function Block Diagram  
VIN  
VOUT  
Error  
Amplifier  
Current  
Limiting  
Sensor  
-
Thermal  
Shutdown  
1.2V  
Reference  
GND  
www.richtek.com  
2
DS9166/A-19 April 2008  
RT9166/A  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage-------------------------------------------------------------------------------------------------- 6.5V  
z Power Dissipation, PD @ T = 25°C  
A
SOT-23-3 ---------------------------------------------------------------------------------------------------------------- 0.4W  
SOT-89 ------------------------------------------------------------------------------------------------------------------- 0.571W  
SOT-223 ----------------------------------------------------------------------------------------------------------------- 0.740W  
TO-252 ------------------------------------------------------------------------------------------------------------------- 1.470W  
z Package Thermal Resistance (Note 4)  
SOT-23-3, θJA ----------------------------------------------------------------------------------------------------------- 250°C/W  
SOT-89, θJA ------------------------------------------------------------------------------------------------------------- 175°C/W  
SOT-89, θJC ------------------------------------------------------------------------------------------------------------- 58°C/W  
SOT-223, θJA ------------------------------------------------------------------------------------------------------------ 135°C/W  
SOT-223, θJC ----------------------------------------------------------------------------------------------------------- 15°C/W  
TO-252, θJA ------------------------------------------------------------------------------------------------------------- 68°C/W  
TO-252, θJC ------------------------------------------------------------------------------------------------------------- 7°C/W  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Input Voltage-------------------------------------------------------------------------------------------------- 2.8V to 5.5V  
z Junction Temperature Range---------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range---------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = VOUT + 1V or VIN = 2.8V whichever is greater, CIN = 1μF, COUT = 1μF, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
IOUT = 1mA  
Min  
Typ  
Max Units  
Output Voltage Accuracy  
--  
--  
+3  
--  
%
ΔVOUT  
1  
300  
600  
--  
RT9166  
ILIM  
IQ  
mA  
R
LOAD = 1Ω  
Current Limit  
RT9166A  
--  
--  
Quiescent Current  
Dropout Voltage  
(Note 7)  
(Note 6)  
IOUT = 0mA  
220  
300  
μA  
RT9166  
IOUT = 300mA  
--  
--  
230  
580  
--  
--  
VDROP  
mV  
RT9166A  
I
OUT = 600mA  
VIN = (VOUT + 0.3V) to 5.5V,  
OUT = 1mA  
Line Regulation  
--  
0.2  
--  
%/V  
mV  
ΔVLINE  
I
1mA < IOUT < 300mA  
1mA < IOUT < 600mA  
f = 1kHz, COUT = 1μF  
Load Regulation  
(Note 5)  
RT9166  
--  
--  
15  
30  
35  
55  
--  
ΔVLOAD  
RT9166A  
dB  
°C  
°C  
Power Supply Rejection Rate  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
PSRR  
TSD  
--  
--  
--  
55  
170  
40  
--  
--  
ΔTSD  
DS9166/A-19 April 2008  
www.richtek.com  
3
RT9166/A  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution is recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a single layer low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
Note 5. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for load  
regulation in the load range from 1mA to 300mA and 600mA respectively.  
Note 6. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under  
no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground  
pin current.  
Note 7.The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) 100mV.  
www.richtek.com  
4
DS9166/A-19 April 2008  
RT9166/A  
Typical Operating Characteristics  
Power Supply Rejection Ratio  
Dropout Voltage vs. Load Current  
700  
0
-10  
-20  
-30  
-40  
-50  
-60  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
TJ = 125°C  
600  
500  
TJ = 25°C  
400  
300  
100mA  
TJ = 40°C  
200  
1mA  
100  
0
10  
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
600  
Frequency (Hz)  
Load Current (mA)  
Output Noise  
Region of Stable COUT ESR vs. Load Current  
100.00  
I
LOAD = 100mA  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF to 4.7uF  
10.00  
1.00  
0.10  
0.01  
0.00  
400  
Instable  
200  
0
Stable  
-200  
-400  
Instable  
f = 10Hz to 100KHz  
Time (1ms/DIV)  
0
100  
200  
300  
400  
500  
600  
Load Current (mA)  
Current Limit vs. Input voltage  
Current Limit vs. Input voltage  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
CIN = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33xX  
5.5  
RT9166-33xVL  
5.5  
3
3.5  
4
4.5  
5
3
3.5  
4
4.5  
5
Input voltage (V)  
Input voltage (V)  
DS9166/A-19 April 2008  
www.richtek.com  
5
RT9166/A  
Current Limit vs. Temperature  
Current Limit vs. Temperature  
900  
850  
800  
750  
700  
900  
850  
800  
750  
700  
VIN = 5V  
VIN = 5V  
CIN = 1uF  
CIN = 1uF  
COUT = 1uF  
RL = 0.5Ω  
COUT = 1uF  
RL = 0.5Ω  
RT9166-33xX  
75 100 125  
RT9166-33xVL  
75 100 125  
-40  
-25  
0
25  
50  
-40  
-25  
0
25  
50  
C)  
Temperature  
C)  
Temperature  
Quiescent Current vs. Temperature  
Quiescent Current vs. Temperature  
260  
240  
220  
200  
180  
160  
140  
260  
240  
220  
200  
180  
160  
140  
VIN = 5V  
CIN = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
COUT = 1uF  
RT9166-33xX  
RT9166-33xVL  
75 100 125  
-40  
-40  
-25  
0
25  
50  
-25  
0
25  
50  
75  
100  
125  
C)  
C)  
Temperature  
Temperature  
Temperature Stability  
Temperature Stability  
3.4  
3.35  
3.3  
3.4  
3.35  
3.3  
3.25  
3.2  
3.25  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
VIN = 5V  
CIN = 1uF  
COUT = 1uF  
RT9166-33xX  
RT9166-33xVL  
75 100 125  
3.2  
-40
-25  
0
25  
50  
-40
-25  
0
25  
50  
75  
100  
125  
Temperature  
Temperature  
C)  
C)  
www.richtek.com  
6
DS9166/A-19 April 2008  
RT9166/A  
Load Transient Response  
Load Transient Response  
VIN = 5V, ILOAD = 1 to 150mA  
VIN = 5V, ILOAD = 1 to 150mA  
CIN = COUT = 1uF (Ceramic, X7R)  
CIN = COUT = 1uF (Ceramic, X7R)  
200  
100  
0
200  
100  
0
20  
0
20  
0
-20  
-20  
RT9166-33xX  
RT9166-33xVL  
Time (100us/Div)  
Time (100us/Div)  
Line Transient Response  
VIN = 4 to 5V  
CIN = 1uF  
COUT = 1uF  
5
4
20  
0
-20  
Time (100us/Div)  
DS9166/A-19 April 2008  
www.richtek.com  
7
RT9166/A  
Application Information  
Input-Output (Dropout) Voltage  
Like any low-dropout regulator, the RT9166/A series  
requires input and output decoupling capacitors. These  
capacitors must be correctly selected for good performance  
(see Capacitor Characteristics Section). Please note that  
linear regulators with a low dropout voltage have high  
internal loop gains which require care in guarding against  
oscillation caused by insufficient decoupling capacitance.  
A regulator's minimum input-to-output voltage differential  
(dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this determines the  
useful end-of-life battery voltage. Because the device uses  
a PMOS, its dropout voltage is a function of drain-to-source  
on-resistance, RDS(ON), multiplied by the load current :  
VDROPOUT = VIN - VOUT = RDS(ON) x IOUT  
Input Capacitor  
Current Limit  
An input capacitance of 1μF is required between the  
device input pin and ground directly (the amount of the  
capacitance may be increased without limit). The input  
capacitor MUST be located less than 1 cm from the device  
to assure input stability (see PCB Layout Section).Alower  
ESR capacitor allows the use of less capacitance, while  
higher ESR type (like aluminum electrolytic) require more  
capacitance.  
The RT9166/A monitors and controls the PMOS' gate  
voltage, minimum limiting the output current to 300mA for  
RT9166 and 600mA for RT9166A. The output can be  
shorted to ground for an indefinite period of time without  
damaging the part.  
Short-Circuit Protection  
The device is short circuit protected and in the event of a  
peak over-current condition, the short-circuit control loop  
will rapidly drive the output PMOS pass element off. Once  
the power pass element shuts down, the control loop will  
rapidly cycle the output on and off until the average power  
dissipation causes the thermal shutdown circuit to respond  
to servo the on/off cycling to a lower frequency. Please  
refer to the section on thermal information for power  
dissipation calculations.  
Capacitor types (aluminum, ceramic and tantalum) can be  
mixed in parallel, but the total equivalent input capacitance/  
ESR must be defined as above to stable operation.  
There are no requirements for the ESR on the input  
capacitor, but tolerance and temperature coefficient must  
be considered when selecting the capacitor to ensure the  
capacitance will be 1μF over the entire operating  
temperature range.  
Output Capacitor  
Capacitor Characteristics  
The RT9166/A is designed specifically to work with very  
small ceramic output capacitors. The recommended  
minimum capacitance (temperature characteristics X7R or  
X5R) is 1μF to 4.7μF range with 10mΩ to 50mΩ range  
ceramic capacitor between LDO output and GND for  
transient stability, but it may be increased without limit.  
Higher capacitance values help to improve transient. The  
output capacitor's ESR is critical because it forms a zero  
to provide phase lead which is required for loop stability.  
(When using the Y5V dielectric, the minimum value of the  
input/output capacitance that can be used for stable over  
full operating temperature range is 3.3μF.)  
It is important to note that capacitance tolerance and  
variation with temperature must be taken into consideration  
when selecting a capacitor so that the minimum required  
amount of capacitance is provided over the full operating  
temperature range. In general, a good tantalum capacitor  
will show very little capacitance variation with temperature,  
but a ceramic may not be as good (depending on dielectric  
type).  
Aluminum electrolytics also typically have large  
temperature variation of capacitance value.  
Equally important to consider is a capacitor's ESR change  
with temperature: this is not an issue with ceramics, as  
their ESR is extremely low. However, it is very important in  
Tantalum and aluminum electrolytic capacitors. Both show  
increasing ESR at colder temperatures, but the increase  
No Load Stability  
The device will remain stable and in regulation with no  
external load. This is specially important in CMOS RAM  
keep-alive applications.  
www.richtek.com  
8
DS9166/A-19 April 2008  
RT9166/A  
in aluminum electrolytic capacitors is so severe they may  
not be feasible for some applications.  
Aluminum :  
This capacitor type offers the most capacitance for the  
money. The disadvantages are that they are larger in  
physical size, not widely available in surface mount, and  
have poor AC performance (especially at higher  
frequencies) due to higher ESR and ESL.  
Ceramic :  
For values of capacitance in the 10μF to 100μF range,  
ceramics are usually larger and more costly than tantalums  
but give superior AC performance for by-passing high  
frequency noise because of very low ESR (typically less  
than 10mΩ). However, some dielectric types do not have  
good capacitance characteristics as a function of voltage  
and temperature.  
Compared by size, the ESR of an aluminum electrolytic is  
higher than either Tantalum or ceramic, and it also varies  
greatly with temperature. A typical aluminum electrolytic  
can exhibit an ESR increase of as much as 50X when going  
from 25°C down to -40°C.  
Z5U and Y5V dielectric ceramics have capacitance that  
drops severely with applied voltage. Atypical Z5U or Y5V  
capacitor can lose 60% of its rated capacitance with half of  
the rated voltage applied to it. The Z5U and Y5V also exhibit  
a severe temperature effect, losing more than 50% of  
nominal capacitance at high and low limits of the  
temperature range.  
It should also be noted that many aluminum electrolytics  
only specify impedance at a frequency of 120Hz, which  
indicates they have poor high frequency performance. Only  
aluminum electrolytics that have an impedance specified  
at a higher frequency (between 20kHz and 100kHz) should  
be used for the device. Derating must be applied to the  
manufacturer's ESR specification, since it is typically only  
valid at room temperature.  
X7R and X5R dielectric ceramic capacitors are strongly  
recommended if ceramics are used, as they typically  
maintain a capacitance range within 20% of nominal over  
full operating ratings of temperature and voltage. Of course,  
they are typically larger and more costly than Z5U/Y5U  
types for a given voltage and capacitance.  
Any applications using aluminum electrolytics should be  
thoroughly tested at the lowest ambient operating  
temperature where ESR is maximum.  
Thermal Considerations  
Thermal protection limits power dissipation in RT9166/A.  
When the operation junction temperature exceeds 170°C,  
the OTP circuit starts the thermal shutdown function and  
turns the pass element off. The pass element turn on again  
after the junction temperature cools by 40°C.  
Tantalum :  
Solid tantalum capacitors are recommended for use on  
the output because their typical ESR is very close to the  
ideal value required for loop compensation. They also work  
well as input capacitors if selected to meet the ESR  
requirements previously listed.  
For continuous operation, do not exceed absolute  
maximum operation junction temperature. The power  
dissipation definition in device is :  
Tantalums also have good temperature stability: a good  
quality tantalum will typically show a capacitance value  
that varies less than 10~15% across the full temperature  
range of 125°C to -40°C. ESR will vary only about 2X going  
from the high to low temperature limits.  
PD = (VIN - VOUT) x IOUT + VIN x IQ  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula :  
The increasing ESR at lower temperatures can cause  
oscillations when marginal quality capacitors are used (if  
the ESR of the capacitor is near the upper limit of the  
stability range at room temperature).  
PD (MAX) = ( TJ(MAX) - TA ) / θJA  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TAis the ambient temperature and the  
θJA is the junction to ambient thermal resistance.  
DS9166/A-19 April 2008  
www.richtek.com  
9
RT9166/A  
For recommended operating conditions specification of  
RT9166/A, where TJ(MAX) is the maximum junction  
temperature of the die (125°C) and TA is the operated  
ambient temperature. The junction to ambient thermal  
resistance θJA is layout dependent. For SOT-23-3  
packages, the thermal resistance θJA is 250°C/W on the  
standard JEDEC 51-3 single-layer thermal test board. The  
maximum power dissipation at TA = 25°C can be calculated  
by following formula :  
PCB Layout  
Good board layout practices must be used or instability  
can be induced because of ground loops and voltage drops.  
The input and output capacitors MUST be directly  
connected to the input, output, and ground pins of the  
device using traces which have no other currents flowing  
through them.  
The best way to do this is to layout CIN and COUT near the  
device with short traces to the VIN, VOUT, and ground pins.  
The regulator ground pin should be connected to the  
external circuit ground so that the regulator and its  
capacitors have a single point ground.  
PD (MAX) = ( 125°C 25°C) / 250°C/W = 0.400W for  
SOT-23-3 packages  
PD (MAX) = ( 125°C 25°C) / 175°C/W = 0.571W for  
SOT-89 packages  
It should be noted that stability problems have been seen  
in applications where viasto an internal ground plane  
were used at the ground points of the device and the input  
and output capacitors. This was caused by varying ground  
potentials at these nodes resulting from current flowing  
through the ground plane. Using a single point ground  
technique for the regulator and it’ s capacitors fixed the  
problem. Since high current flows through the traces going  
into VIN and coming from VOUT, Kelvin connect the capacitor  
leads to these pins so there is no voltage drop in series  
with the input and output capacitors.  
PD (MAX) = ( 125°C 25°C) / 135°C/W = 0.740W for  
SOT-223 packages  
PD (MAX) = ( 125°C 25°C) / 68°C/W = 1.470W for  
TO-252 packages  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT9166/A packages, Figure 1 of  
derating curves allows the designer to see the effect of  
rising ambient temperature on the maximum power allowed.  
Optimum performance can only be achieved when the  
device is mounted on a PC board according to the diagram  
below :  
1500  
Single Layer PCB  
1400  
1300  
1200  
1100  
1000  
900  
TO-252  
800  
700  
600  
V
IN  
SOT-223  
500 SOT-89  
400  
SOT-23-3  
300  
200  
100  
0
GND  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
V
OUT  
Figure 1. Derating Curves for RT9166/APackages  
Figure 2. SOT-23-3 Board Layout  
www.richtek.com  
10  
DS9166/A-19 April 2008  
RT9166/A  
Outline Dimension  
H
D
L
C
B
e
b
A
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.356  
2.591  
2.692  
1.803  
0.080  
0.300  
1.295  
0.152  
1.803  
0.508  
2.997  
3.099  
2.007  
0.254  
0.610  
0.035  
0.000  
0.055  
0.014  
0.102  
0.106  
0.071  
0.003  
0.012  
0.051  
0.006  
0.071  
0.020  
0.118  
0.122  
0.079  
0.010  
0.024  
b
C
D
e
H
L
SOT-23-3 Surface Mount Package  
DS9166/A-19 April 2008  
www.richtek.com  
11  
RT9166/A  
D
D1  
A
B
C
C1  
e
e
H
A
b
b
b1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
b
1.397  
0.356  
2.388  
0.406  
3.937  
0.787  
4.394  
1.397  
1.448  
0.356  
1.600  
0.483  
2.591  
0.533  
4.242  
1.194  
4.597  
1.753  
1.549  
0.432  
0.055  
0.014  
0.094  
0.016  
0.155  
0.031  
0.173  
0.055  
0.057  
0.014  
0.063  
0.019  
0.102  
0.021  
0.167  
0.047  
0.181  
0.069  
0.061  
0.017  
B
b1  
C
C1  
D
D1  
e
H
3-Lead SOT-89 Surface Mount Package  
www.richtek.com  
12  
DS9166/A-19 April 2008  
RT9166/A  
D
D1  
H
C
B
L
L1  
e
e
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.071  
0.0047  
0.031  
0.146  
0.287  
0.264  
0.124  
0.093  
0.013  
0.077  
0.013  
A
A1  
b
1.450  
0.020  
0.610  
3.302  
6.706  
6.299  
2.896  
2.261  
0.229  
1.550  
0.800  
1.803  
0.100  
0.787  
3.708  
7.290  
6.706  
3.150  
2.362  
0.330  
1.950  
1.100  
0.057  
0.0008  
0.024  
0.130  
0.264  
0.248  
0.114  
0.089  
0.009  
0.061  
0.009  
B
C
D
D1  
e
H
L
L1  
3-Lead SOT-223 Surface Mount Package  
DS9166/A-19 April 2008  
www.richtek.com  
13  
RT9166/A  
D
U
C
D1  
R
B
T
V
S
E
L1  
L3  
e
b1  
L2  
b
b2  
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
2.388  
2.032  
0.889  
Min  
Max  
0.094  
0.080  
0.035  
0.086  
0.035  
0.020  
A
B
2.184  
0.889  
0.508  
b
b1  
b2  
C
1.016 Ref.  
0.040 Ref.  
0.457  
0.457  
6.350  
5.207  
5.334  
2.108  
9.398  
0.584  
0.584  
6.731  
5.461  
6.223  
2.438  
0.018  
0.018  
0.250  
0.205  
0.210  
0.083  
0.370  
0.023  
0.023  
0.265  
0.215  
0.245  
0.096  
0.410  
D
D1  
E
e
L1  
L2  
L3  
U
10.414  
0.508 Ref.  
0.020 Ref.  
0.025  
0.040  
0.635  
1.016  
3.810 Ref.  
3.048 Ref.  
0.150 Ref.  
0.120 Ref.  
V
R
0.200  
2.500  
0.500  
0.850  
3.400  
0.850  
0.008  
0.098  
0.020  
0.033  
0.134  
0.033  
S
T
3-Lead TO-252 Surface Mount Package  
www.richtek.com  
14  
DS9166/A-19 April 2008  
RT9166/A  
A
D
E
L
b
C
e
D1  
A1  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.125  
0.045  
0.016  
0.016  
0.175  
0.135  
0.170  
0.045  
0.165  
0.054  
0.021  
0.021  
0.205  
0.198  
0.210  
0.055  
A
A1  
b
3.175  
1.143  
0.406  
0.406  
4.445  
3.429  
4.318  
1.143  
4.191  
1.372  
0.533  
0.533  
5.207  
5.029  
5.334  
1.397  
C
D
D1  
E
e
12.700  
3-Lead TO-92 Plastic Package  
0.500  
L
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9166/A-19 April 2008  
www.richtek.com  
15  

相关型号:

RT9166-28C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-28GVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-28GXL

IC REG LINEAR 2.8V 300MA SOT89-3
RICHTEK

RT9166-28P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-28PVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-28PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-29C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-29P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-29PXL

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-30C

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC

RT9166-30GVL

300/600mA, Ultra-Fast Transient Response LDO Regulator
RICHTEK

RT9166-30P

300/600mA, Ultra-Fast Transient Response LDO Regulator
ETC