RT9173PL5 [RICHTEK]

Peak 3A Bus Termination Regulator; 峰值3A总线终端稳压器
RT9173PL5
型号: RT9173PL5
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Peak 3A Bus Termination Regulator
峰值3A总线终端稳压器

稳压器
文件: 总13页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9173/A  
Peak 3A Bus Termination Regulator  
General Description  
Features  
z Support Both DDR 1 (1.25VTT) and DDR 2  
The RT9173/A regulator is designed to convert voltage  
supplies ranging from 1.6V to 6V into a desired output  
voltage which adjusted by two external voltage divider  
resistors. The regulator is capable of sourcing or sinking  
up to 3Aof peak current while regulating an output voltage  
to within 2% (DDR 1) and 3% (DDR 2) or less.  
(0.9VTT) Requirements  
z SOP-8, TO-252-5 and TO-263-5 Packages  
z Capable of Sourcing and Sinking 3A Peak Current  
z Current-limiting Protection  
z Thermal Protection  
z Integrated Power MOSFETs  
The RT9173/A, used in conjunction with series termination  
resistors, provides an excellent voltage source for active  
termination schemes of high speed transmission lines as  
those seen in high speed memory buses and distributed  
backplane designs. The voltage output of the regulator can  
be used as a termination voltage for DDR SDRAM.  
z Generates Termination Voltages for SSTL-2  
z High Accuracy Output Voltage at Full-Load  
z Adjustable VOUT by External Resistors  
z Minimum External Components  
z Shutdown for Standby or Suspend Mode  
Operation with High-impedance Output  
z RoHS Compliant and 100% Lead (Pb)-Free  
Current limits in both sourcing and sinking mode, plus on-  
chip thermal shutdown make the circuit tolerant of the  
output fault conditions.  
Applications  
z DDR Memory Termination  
z Active Termination Buses  
z Supply Splitter  
Ordering Information  
RT9173/A  
Package Type  
M5 : TO-263-5  
L5 : TO-252-5  
S : SOP-8  
Pin Configurations  
(TOP VIEW)  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
5
4
3
2
1
VOUT  
REFEN  
VCNTL (TAB)  
GND  
3A Sink & Source  
1.5A Sink & Source  
VIN  
Note :  
TO-263-5 (RT9173A)  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
5
4
3
2
1
VOUT  
REFEN  
VCNTL (TAB)  
GND  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100%matte tin (Sn) plating.  
VIN  
TO-252-5 (RT9173A)  
8
7
6
5
VIN  
GND  
VCNTL  
VCNTL  
VCNTL  
VCNTL  
2
3
4
REFEN  
VOUT  
SOP-8 (RT9173)  
DS9173/A-18 March 2007  
www.richtek.com  
1
RT9173/A  
Typical Application Circuit  
V
= 3.3V  
= 2.5V  
CNTL  
V
IN  
R
TT  
R
VIN  
VCNTL  
VOUT  
1
C
C
CNTL  
IN  
RT9173/A  
REFEN  
2N7002  
C
C
OUT  
SS  
EN  
GND  
R
2
R
DUMMY  
R1 = R2 = 100kΩ, RTT = 50Ω / 33Ω / 25Ω  
COUT(MIN) = 10μF (Ceramic) + 1000μF under the worst case testing condition  
RDUMMY = 1kΩ as for VOUT discharge when VIN is not present but VCNTL is present  
CSS = 1μF, CIN = 470μF (Low ESR), CCNTL = 47μF  
Test Circuit  
2.5V  
VIN  
3.3V  
VCNTL  
VOUT  
RT9173/A  
V
OUT  
C
1.25V  
REFEN  
V
GND  
OUT  
I
L
Figure 1. Output Voltage Tolerance, ΔVLOAD  
3.3V  
2.5V  
A
VIN  
RT9173/A  
REFEN VOUT  
VCNTL  
1.25V  
V
OUT  
C
1.25V  
0.2V  
0V  
GND  
OUT  
R
L
V
R
and C  
OUT  
L
Time deleay  
Figure 2. Current in Shutdown Mode, ISHDN  
www.richtek.com  
2
DS9173/A-18 March 2007  
RT9173/A  
3.3V  
2.5V  
VIN  
VCNTL  
RT9173/A  
V
OUT  
C
1.25V  
REFEN  
VOUT  
A
V
GND  
OUT  
I
L
Figure 3. Current Limit for High Side, ILIMIT  
Power Supply  
with Current Limit  
2.5V  
3.3V  
A
VIN  
VCNTL  
I
L
RT9173/A  
REFEN VOUT  
V
OUT  
C
1.25V  
V
GND  
OUT  
Figure 4. Current Limit for Low Side, ILIMIT  
3.3V  
2.5V  
VIN  
VCNTL  
VOUT  
RT9173/A  
V
OUT  
C
1.25V  
REFEN  
V
REFEN  
GND  
0.2V  
OUT  
R
L
V
1.25V  
V
OUT  
0V  
V
V
would be low if V  
< 0.2V  
> 0.8V  
OUT  
OUT  
REFEN  
would be high if V  
REFEN  
R
and C  
OUT  
L
Time deleay  
Figure 5. REFEN Pin Shutdown Threshold, VTRIGGER  
DS9173/A-18 March 2007  
www.richtek.com  
3
RT9173/A  
Functional Pin Description  
Pin Name  
VIN  
Pin Function  
Power Input Voltage  
Ground  
GND  
VCNTL  
REFEN  
VOUT  
Gate Drive Voltage  
Reference Voltage Input and Chip Enable  
Output Voltage  
Function Block Diagram  
VCNTL  
VIN  
Current  
Limiting Sensor  
REFEN  
VOUT  
GND  
CNTL  
Thermal  
www.richtek.com  
4
DS9173/A-18 March 2007  
RT9173/A  
Absolute Maximum Ratings  
z Input Voltage------------------------------------------------------------------------------------------------------------ 7V  
z PowerDissipation ----------------------------------------------------------------------------------------------------- Internally Limited  
z ESD Rating ------------------------------------------------------------------------------------------------------------- 2kV  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Power Dissipation, PD @ TA = 25°C  
TO-263-5 ----------------------------------------------------------------------------------------------------------------- 1.923W  
TO-252-5 ----------------------------------------------------------------------------------------------------------------- 1.471W  
SOP-8 -------------------------------------------------------------------------------------------------------------------- 0.625W  
z Package Thermal Resistance (Note 3)  
TO-263-5, θJC ---------------------------------------------------------------------------------------------------------- 7.7°C/W  
TO-252-5, θJC ---------------------------------------------------------------------------------------------------------- 8°C/W  
SOP-8, θJC -------------------------------------------------------------------------------------------------------------- 23.2°C /W  
TO-263-5,θJA ------------------------------------------------------------------------------------------------------------ 52°C/W  
TO-252-5, θJA ----------------------------------------------------------------------------------------------------------- 68°C/W  
SOP-8, θJA -------------------------------------------------------------------------------------------------------------- 160°C/W  
Electrical Characteristics  
(VIN = 2.5V, VCNTL = 3.3V, VREFEN = 1.25V, COUT = 10μF (Ceramic), TA = 25°C, unless otherwise specified.)  
Parameter  
Symbol  
Test Conditions  
Min  
-20  
--  
Typ  
Max Units  
Output Offset Voltage  
V
OS  
IOUT = 0A, Figure 1 (Note 1)  
0
20  
mV  
I : 0A 1.5A, Figure 1  
0.8/1.2 2/3  
0.8/1.2 2/3  
L
Load Regulation (DDR 1/2)  
ΔV  
LOAD  
%
I : 0A -1.5A  
--  
L
V
V
1.6 2.5/1.8  
--  
6
Input Voltage Range (DDR 1/2)  
(Note 2)  
Keep V  
V on operation power  
IN  
CNTL IN  
V
on and power off sequences  
No Load  
--  
--  
--  
3.3  
6.5  
50  
CNTL  
CNTL  
SHDN  
Operating Current of VCNTL  
Current In Shutdown Mode  
Short Circuit Protection  
Current limit  
I
I
10  
90  
mA  
V
< 0.2V, R = 180Ω, Figure 2  
μA  
REFEN  
L
I
Figure 3,4  
3.0  
--  
--  
A
LIMIT  
Over Temperature Protection  
Thermal Shutdown Temperature T  
Thermal Shutdown Hysteresis  
Shutdown Function  
3.3V V  
5V  
125  
--  
150  
50  
--  
--  
°C  
°C  
SD  
CNTL  
Guaranteed by design  
V
Output = High, Figure 5  
Output = Low, Figure 5  
0.8  
--  
--  
--  
--  
TRIGGER  
Shutdown Threshold Trigger  
V
V
0.2  
TRIGGER  
Note 1. VOS offset is the voltage measurement defined as VOUT subtracted from VREFEN  
.
Note 2. For safely operate your system, the 3.3V rail MUST be tied to VCNTL rather than 5V rail, especially for the new part of  
RT9173ACL5.  
Note 3. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board (single Layers,  
1S) of JEDEC 51-3 thermal measurement standard. The case point of θJC is on the on the center of VCTRL pins (Lead  
6 & 7) for SOP-8 packages, the center of heat sink (tab) for TO-252-5 and TO-263-5 packages.  
DS9173/A-18 March 2007  
www.richtek.com  
5
RT9173/A  
Typical Operating Characteristics  
Sourcing Current (Peak) vs. Temperature  
Sinking Current (Peak) vs. Temperature  
8.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
VCNTL = 3.3V  
VCNTL = 3.3V  
VIN = 2.5V  
VIN = 2.5V  
VOUT = 1.25V  
1.0  
0.0  
VOUT = 1.25V  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
Temperature  
(°C)  
Temperature  
(°C)  
Turn-On Threshold vs. Temperature  
Turn-On Threshold vs. Temperature  
700  
650  
600  
550  
500  
450  
400  
700  
650  
600  
550  
500  
450  
400  
VCNTL = 3.3V  
VCNTL = 5.0V  
VIN = 2.5V  
VIN = 2.5V  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80 100 120  
Temperature (°C)  
Temperature  
(°C)  
1.25VTT @ 1.5A Transient Response  
1.25VTT @ 3A Transient Response  
100  
50  
0
100  
50  
0
VIN = 2.5V  
VREFEN  
VCNTL = 3.3V  
Swing Frequency = 1KHz  
VIN = 2.5V  
VREFEN  
VCNTL = 3.3V  
Swing Frequency = 1KHz  
=
=
-50  
-50  
2
1
4
2
0
0
-1  
-2  
-2  
-4  
Time (250us/Div)  
Time (250us/Div)  
www.richtek.com  
6
DS9173/A-18 March 2007  
RT9173/A  
0.9VTT @ 1.5A Transient Response  
0.9VTT @ 3A Transient Response  
100  
50  
0
100  
50  
0
VIN = 1.8V  
VCNTL = 3.3V  
VIN = 1.8V  
VREFEN = 0.9V  
VCNTL = 3.3V  
Swing Frequency = 1KHz  
VREFEN = 0.9V  
Swing Frequency = 1KHz  
-50  
-50  
2
1
4
2
0
0
-1  
-2  
-2  
-4  
Time (250us/Div)  
Time (250us/Div)  
RDS(ON) vs. Temperature  
RDS(ON) vs. Temperature  
0.32  
0.31  
0.30  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.31  
0.30  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
VIN = 0.9V  
VIN = 0.9V  
VIN = 0.85V  
VIN = 0.85V  
VIN = 0.8V  
VIN = 0.8V  
VCNTL = 5.0V  
VCNTL = 3.3V  
VREFEN = 1.0V  
VREFEN = 1.0V  
25 35 45 55 65 75 85 95 105 115 125  
25 35 45 55 65 75 85 95 105 115 125  
Temperature  
(°C)  
Temperature  
(°C)  
Output Short-Circuit Protection  
Output Short-Circuit Protection  
12  
10  
8
12  
10  
8
Sink  
VIN = 2.5V  
CNTL = 3.3V  
Source  
VIN = 2.5V  
CNTL = 3.3V  
V
V
VREFEN = 1.25V  
VREFEN = 1.25V  
6
4
6
4
2
2
0
0
-2  
-4  
-2  
-4  
Force the output shorted to VDDQ  
Time (5ms/Div)  
Force the output shorted to ground  
Time (5ms/Div)  
DS9173/A-18 March 2007  
www.richtek.com  
7
RT9173/A  
Application Information  
Internal Parasitic Diode  
Thermal Consideration  
Avoid forward-bias internal parasitic diode, VOUT to V  
,
RT9173/A regulators have internal thermal limiting circuitry  
designed to protect the device during overload conditions.  
For continued operation, do not exceed absolute maximum  
operation junction temperature 125°C. The power  
dissipation definition in device is :  
L
CNT  
and VOUT to VIN, the VOUT should not be forced some  
voltage respect to ground on this pin while the VCNTL or  
VIN is disappeared.  
Consideration while Designs the Resistance of  
Voltage Divider  
PD = (VIN - VOUT) x IOUT + VIN x IQ  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula :  
Make sure the sinking current capability of pull-downNMOS  
if the lower resistance was chosen so that the voltage on  
VREFEN is below 0.2V.  
In addition, the capacitor and voltage divider form the low-  
pass filter. There are two reasons doing this design; one is  
for output voltage soft-start while another is for noise  
immunity.  
PD(MAX) = ( TJ(MAX) -TA ) /θJA  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TA is the ambient temperature and the  
θJA is the junction to ambient thermal resistance. The  
junction to ambient thermal resistance θJA highly depends  
on IC package, PCB layout, and the rate of surroundings  
airflow. θJA for SOP-8 package is 160°C/W and TO-263-5  
package is 52°C/W on standard JEDEC 51-3 (single layer,  
1S) thermal test board. The maximum power dissipation  
at TA = 25°C can be calculated by following  
How to reduce power dissipation on Notebook PC or  
the dual channel DDR SDRAM application?  
In notebook application, using RichTek's Patent  
"Distributed Bus Terminator Topology" with choosing  
RichTek's product is encouraged.  
Distributed Bus Terminating Topology  
Terminator Resistor  
formula :  
R0  
PD(MAX) = (125°C - 25°C) / (160 °C/W)= 0.625W (SOP-8  
package)  
BUS(0)  
R1  
BUS(1)  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
VOUT  
RT9173/A  
BUS(2)  
PD(MAX) = (125°C- 25°C) / (52 °C/W)= 1.923W (TO- 263-  
5 package )  
BUS(3)  
BUS(4)  
Since the multiple VCTRL pins of the SOP-8 package are  
internally fused and connected to lead frame, it is efficient  
to dissipate the heat by adding cooper area on VCTRL  
footprint. Figure 7 shows the package sectional drawing  
of SOP-8. Every package has several thermal dissipation  
paths, as show in Figure 8, the thermal resistance  
equivalent circuit of SOP-8. The path 2 is the main path of  
thermal flow due to these materials thermal conductivity.  
We define the center of multiple VCTRL pins are the case  
point of the path 2.  
REFEN  
BUS(5)  
BUS(6)  
BUS(7)  
VOUT  
RT9173/A  
BUS(8)  
BUS(9)  
RN  
BUS(N)  
RN+1  
BUS(N+1)  
Figure 6  
www.richtek.com  
8
DS9173/A-18 March 2007  
RT9173/A  
θJA vs. Copper Area  
Molding Compound  
Lead Frame  
100  
90  
80  
70  
60  
50  
40  
30  
Case Point  
Die  
Die Pad  
Ambient  
Molding Compound  
Gold Wire  
SOP-8  
2S2P thermal test board  
Lead Frame  
Die Pad  
0
10 20 30 40 50 60 70 80 90 100  
Copper Area (mm2)  
Figure 9. Thermal Resistance θJA vs. CopperArea of  
Figure 7. The Package SectionDrawing of RT9173/A  
SOP-8 Package  
SOP-8 Packages  
Thermal Resistance vs. Cooper Area  
70  
The thermal resistance θJA of IC package is determined by  
the package design and the PCB design. However, the  
package design has been decided. If possible, it's useful  
to increase thermal performance by the PCB design. The  
thermal resistance can be decreased efficiently by adding  
copper under the main path of thermal flow on the package.  
60  
1S thermal test board  
50  
40  
2S2P thermal test board  
30  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT9173/A package, the Figure 9 and  
the Figure 10 show the thermal resistance θJA vs. copper  
area of SOP-8 and TO-263-5 packages on single layer  
(1S) and 4-layer (2S2P) thermal test board at TA = 25°C,  
PCB copper thickness = 2oz.  
20  
10  
TO-263-5  
0
0
50  
100 150 200 250 300 350 400  
Cooper Area (mm2)  
Figure 10. Thermal Resistance θJA vs. CopperArea of  
TO-263-5 Packages  
R
R
R
PCB  
GOLD-LINE  
LEAD FRAME  
For example, as shown in Figure 9, RT9173/ASOP-8 with  
10mm x 10mm cooper area on 4-layers (2S2P) thermal  
test board at TA = 25°C, we can obtain the lower thermal  
resistance about 45°C/W. The power maximum dissipation  
can be calculated as :  
path 1  
Internally Fused  
R
R
R
R
R
PCB  
DIE  
R
DIE-ATTACH  
DIE-PAD  
LEAD FRAME  
Junction  
Ambient  
path 2  
MOLDING-COMPOUND  
PD(MAX) = (125°C - 25°C) / (45 °C/W) = 2.22W (SOP-8)  
path 3  
As shown in Figure 10, RT9173/A TO-263-5 with  
15mm x 15mm cooper area on 4-layers (2S2P) thermal  
test board at TA = 25°C, we can obtain the lower thermal  
resistance about 29°C/W. The power maximum dissipation  
Figure 8. Thermal Resistance Equivalent Circuit of  
RT9173/ASOP-8 Package  
DS9173/A-18 March 2007  
www.richtek.com  
9
RT9173/A  
can be calculated as :  
PD(MAX) = (125°C - 25°C) / (29°C/W) = 3.45W (TO-263-5)  
Figure 11 and Figure 12 of power dissipation vs. copper  
area allow the designer to see the effect of rising ambient  
temperature on the maximum power allowed.  
Power Dissipation vs. Copper Area  
100  
2S2P thermal test  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
board  
TA = 65°C  
TA = 55°C  
TA = 25°C  
SOP-8  
2.5 3  
0
0.5  
1
1.5  
2
Power Dissipation (W)  
Figure 11. PowerDissipation vs. CopperArea of SOP-8  
Package  
Cooper Area vs. Power Dissipation  
400  
2S2P thermal test  
board  
350  
300  
250  
200  
150  
100  
50  
0
TA = 65°C  
TA = 25°C  
TO-263-5  
3.5 4.5  
TA = 55°C  
0
0.5  
1
1.5  
2
2.5  
3
4
Power Dissipation (W)  
Figure 12. PowerDissipation vs. CopperArea of  
TO-263-5 Package  
www.richtek.com  
10  
DS9173/A-18 March 2007  
RT9173/A  
Outline Dimension  
C
D
U
B
V
E
L1  
L2  
b
e
b2  
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
10.668  
1.676  
9.652  
4.826  
1.397  
Min  
Max  
0.420  
0.066  
0.380  
0.190  
0.055  
D
B
9.652  
1.143  
8.128  
4.064  
1.143  
0.380  
0.045  
0.320  
0.160  
0.045  
E
A
C
U
V
6.223 Ref.  
7.620 Ref.  
0.245 Ref.  
0.300 Ref.  
L1  
L2  
b
14.605  
2.286  
0.660  
0.305  
1.524  
15.875  
2.794  
0.914  
0.584  
1.829  
0.575  
0.090  
0.026  
0.012  
0.060  
0.625  
0.110  
0.036  
0.023  
0.072  
b2  
e
5-Lead TO-263 Plastic Surface Mount Package  
DS9173/A-18 March 2007  
www.richtek.com  
11  
RT9173/A  
E
C2  
R
b3  
L3  
T
V
S
D
H
L
b
P
L2  
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
2.388  
0.889  
5.461  
0.889  
6.223  
6.731  
10.414  
1.780  
Min  
Max  
0.086  
0.015  
0.195  
0.018  
0.210  
0.250  
0.354  
0.020  
0.094  
0.035  
0.215  
0.035  
0.245  
0.265  
0.410  
0.070  
A
b
2.184  
0.381  
4.953  
0.457  
5.334  
6.350  
9.000  
0.508  
b3  
C2  
D
E
H
L
0.020 Ref.  
L2  
L3  
P
0.508 Ref.  
0.035  
0.080  
0.889  
2.032  
1.270 Ref.  
5.200 Ref.  
0.050 Ref.  
0.205 Ref.  
V
R
0.200  
2.500  
0.500  
1.500  
3.400  
0.850  
0.008  
0.098  
0.020  
0.059  
0.134  
0.033  
S
T
5-Lead TO-252 Surface Mount Package  
www.richtek.com  
12  
DS9173/A-18 March 2007  
RT9173/A  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9173/A-18 March 2007  
www.richtek.com  
13  

相关型号:

RT9173PM5

Peak 3A Bus Termination Regulator
RICHTEK

RT9173PS

Peak 3A Bus Termination Regulator
RICHTEK

RT9173_07

Peak 3A Bus Termination Regulator
RICHTEK

RT9174

Triple Linear Regulator Controllers
RICHTEK

RT9174CS

Triple Linear Regulator Controllers
RICHTEK

RT9174GS

Triple Linear Regulator Controllers
RICHTEK

RT9174PS

Triple Linear Regulator Controllers
RICHTEK

RT9174_07

Triple Linear Regulator Controllers
RICHTEK

RT9174_11

Triple Linear Regulator Controllers
RICHTEK

RT9176

1.5A Fixed and Adjustable Low Dropout Positive Voltage Regulators
RICHTEK

RT9176-15GG

1.5A Fixed and Adjustable Low Dropout Positive Voltage Regulators
RICHTEK

RT9176-15GL

1.5A Fixed and Adjustable Low Dropout Positive Voltage Regulators
RICHTEK