RT9183L-12PGF [RICHTEK]

Ultra Low Dropout 1.5A Linear Regulator; 超低压差1.5A线性稳压器
RT9183L-12PGF
型号: RT9183L-12PGF
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Ultra Low Dropout 1.5A Linear Regulator
超低压差1.5A线性稳压器

稳压器
文件: 总16页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9183  
Ultra Low Dropout 1.5A Linear Regulator  
General Description  
Features  
z 330mV Dropout @ 1.5A  
The RT9183 series are high performance linear voltage  
regulators that provide ultra low-dropout voltage, high output  
current with low ground current. It operates from an input  
of 2.3V to 5.5V and provides output current up to 1.5A  
thus is suitable to drive digital circuits requiring low voltage  
at high currents.  
z 380μA Low Ground Pin Current  
z Excellent Line and Load Regulation  
z 0.1μA Quiescent Current in Shutdown Mode  
z Guaranteed 1.5A Output Current  
z Fixed Output Voltages : 1.2V, 1.8V, 2.5V, 3.3V  
z Adjustable Output Voltage from 0.8V to 4.5V  
z Over-Temperature/Over-Current Protection  
z RoHS Compliant and 100% Lead (Pb)-Free  
The RT9183 has superior regulation over variations in line  
and load. Also it provides fast respond to step changes in  
load. Other features include over-current and over-  
temperature protection. The adjustable version has enable  
pin to reduce power consumption in shutdown mode.  
Applications  
z Battery-Powered Equipment  
z Mother Board/Graphic Card  
z Peripheral Cards  
The devices are available in fixed output voltages of 1.2V,  
1.8V, 2.5V, 3.3V and as an adjustable device with a 0.8V  
reference voltage. The RT9183 regulators are available in  
3-lead SOT-223 and TO-263 packages (fixed output only  
for the 3-lead option). Also available are 5-lead TO-263  
and fused SOP-8 packages with two external resistors to  
set the output voltage ranges from 0.8V to 4.5V.  
z PCMCIA Card  
Pin Configurations  
(TOP VIEW)  
Ordering Information  
1
2
3
1
2
3
-
RT9183  
Package Type  
G : SOT-223  
GF : SOT-223 (F-Type)  
S : SOP-8  
GND  
VOUT  
(TAB)  
VIN  
VIN  
GND VOUT  
(TAB)  
SOT-223 (F-Type)  
SOT-223  
M : TO-263  
M5 : TO-263-5  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Output Voltage  
Defauit : Adjustable  
12 : 1.2V  
1
2
3
4
5
1
2
3
18 : 1.8V  
25 : 2.5V  
33 : 3.3V  
ADJ  
VOUT  
GND(TAB)  
EN VIN  
VIN  
GND(TAB)  
VOUT  
H : Chip Enable High  
L : Chip Enable Low  
TO-263-5  
TO-263  
Note :  
EN  
8
7
6
5
GND  
GND  
GND  
GND  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
VIN  
VOUT  
ADJ  
2
3
4
`Suitable for use in SnPb or Pb-free soldering processes.  
`100%matte tin (Sn) plating.  
SOP-8  
DS9183-12 March 2007  
www.richtek.com  
1
RT9183  
Typical Application Circuit  
(SOT-223 & TO-263)  
RT9183  
V
OUT  
2.5V, 1.5A  
VIN  
VOUT  
V
= 3.3V  
IN  
GND  
C
C
OUT  
IN  
10uF  
10uF  
Figure 1. 3.3V to 2.5V Regulator  
(SOP-8 & TO-263-5)  
RT9183  
V
V
VIN  
EN  
VOUT  
IN  
OUT  
R
R
1
C
Enable  
ADJ  
OUT  
GND  
C
10uF  
IN  
C
0.1uF  
10uF  
2
R1  
Note: The value of R2 should be less  
VOUT = 0.8×(1+  
)Volts  
R2  
than 80k to maintain  
regulation.  
Figure 2. Adjustable Operation  
(SOP-8 & TO-263-5)  
RT9183  
V
V
VIN  
VOUT  
ADJ  
OUT  
IN  
C
OUT  
Enable  
EN GND  
C
10uF  
10uF  
C
IN  
0.1uF  
Figure 3. Fixed Operation with SOP-8 and TO-263-5 packages  
www.richtek.com  
2
DS9183-12 March 2007  
RT9183  
Functional Pin Description  
Pin Name  
Pin Function  
Chip Enable Control Input.  
EN  
Note that the device will be in the unstable state if the pin is not connected.  
VIN  
Supply Input  
GND  
VOUT  
Common Ground  
Regulator Output  
The output voltage is set by the internal feedback resistors when this pin  
grounded. If external feedback resistors are applied, the output voltage will be:  
ADJ  
V
OUT  
= 0.8 × (1 + R1 ) Volts  
R2  
Function Block Diagram  
VIN  
Current Limit  
Sensor  
+
-
Error  
Amplifier  
0.8V  
Reference  
-
+
VOUT  
ADJ  
Shutdown  
Logic  
Thermal  
Shutdown  
EN  
-
+
100mV  
Output Mode  
Comparator  
GND  
DS9183-12 March 2007  
www.richtek.com  
3
RT9183  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage------------------------------------------------------------------------------------------------------ 6V  
z Package Thermal Resistance  
SOT-223, θJA ---------------------------------------------------------------------------------------------------------------- 115°C/W  
SOT-223, θJC --------------------------------------------------------------------------------------------------------------- 15°C/W  
SOT-223 (F-Type), θJA ---------------------------------------------------------------------------------------------------- 135°C/W  
SOT-223 (F-Type), θJC ---------------------------------------------------------------------------------------------------- 17°C/W  
SOP-8, θJA ------------------------------------------------------------------------------------------------------------------ 125°C/W  
SOP-8, θJC ------------------------------------------------------------------------------------------------------------------ 20°C/W  
TO-263, θJA ----------------------------------------------------------------------------------------------------------------- 45°C/W  
TO-263, θJC ----------------------------------------------------------------------------------------------------------------- 8°C/W  
z PowerDissipation, PD@TA = 25°C  
SOT-223 --------------------------------------------------------------------------------------------------------------------- 0.87W  
SOT-223 (F-Type) ---------------------------------------------------------------------------------------------------------- 0.74W  
SOP-8 ------------------------------------------------------------------------------------------------------------------------ 0.8W  
TO-263 ----------------------------------------------------------------------------------------------------------------------- 2.22W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 3)  
z Supply Input Voltage------------------------------------------------------------------------------------------------------ 2.3V to 5.5V  
z Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
Electrical Characteristics  
(VIN = VOUT + 0.7V, CIN =COUT = 10μF (Ceramic), TA = 25°C unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
(Fixed Output Voltage)  
ΔV  
I
= 10mA  
2  
0
+2  
%
OUT  
OUT  
Output Voltage Range (Adjustable)  
V
I
0.8  
--  
--  
4.5  
500  
1
V
μA  
μA  
A
OUT_ADJ  
Quiescent Current  
Standby Current  
Current Limit  
(Note 6)  
(Note 7)  
I
= 0mA, Enable  
380  
0.1  
3.2  
110  
Q
OUT  
I
V
= 5.5V, Shutdown  
--  
STBY  
LIM  
IN  
I
2
4.2  
300  
I
= 0.5A  
--  
OUT  
Dropout Voltage  
Line Regulation  
(Note 4)  
V
mV  
DROP  
I
I
= 1.0A  
= 1.5A  
--  
--  
220  
330  
400  
500  
OUT  
OUT  
V
+ 0.7V < V < 5.5V  
OUT  
IN  
ΔV  
--  
0.035  
0.18  
%/V  
LINE  
I
= 10mA  
OUT  
To be continued  
www.richtek.com  
4
DS9183-12 March 2007  
RT9183  
Parameter  
Load Regulation (Note 5)  
Symbol  
Test Conditions  
1mA < I < 1.5A  
Min  
Typ  
Max  
Units  
ΔV  
--  
22  
45  
mV  
LOAD  
OUT  
(Fixed Output Voltage)  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
T
--  
--  
170  
30  
--  
--  
--  
°C  
°C  
SD  
ΔT  
SD  
Logic-Low Voltage  
EN Threshold  
V
V
I
V
IN  
V
IN  
V
IN  
= 5.5V  
--  
0.6  
--  
IL  
IH  
V
Logic-High Voltage  
= 5.5V  
= 5.5V, Enable  
1.8  
--  
--  
Enable Pin Current  
ADJ  
0.1  
1
μA  
EN  
Reference Voltage Tolerance  
Adjust Pin Current  
Adjust Pin Threshold  
V
0.784  
--  
0.8  
10  
0.816  
100  
V
nA  
V
REF  
I
V
ADJ = V  
ADJ  
REF  
V
0.05  
0.1  
0.2  
TH(ADJ)  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These  
are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated  
in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions  
for extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESDsensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) 100mV.  
Note 5. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for  
load regulation in the load range from 10mA to 1.5A.  
Note 6. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT  
under no load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus  
the ground pin current.  
Note 7. Standby current is the input current drawn by a regulator when the output voltage is disabled by a shutdown  
signal (VEN >1.8V ). It is measured with VIN = 5.5V.  
Note 8. θJA is measured in natural convection (still air) at TA = 25°C with the component mounted on a low effective  
thermal conductivity test board of JEDEC 51-3 thermal measurement standard. And the cooper area of PCB  
layout is 4mm x 2.5mm on SOT-223, 14mm x 14mm on TO-263 for thermal measurement.  
DS9183-12 March 2007  
www.richtek.com  
5
RT9183  
Typical Operating Characteristics  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
1.9  
2.6  
2.55  
2.5  
VIN = 5V, RL =  
VIN = 5V, RL =  
CIN = COUT = 10uF (Ceramic,Y5V)  
CIN = COUT = 10uF (Ceramic,Y5V)  
1.85  
1.8  
2.45  
2.4  
1.75  
1.7  
RT9183H-18CS  
75 100 125  
RT9183-25CG  
75 100 125  
-50  
-25  
0
25  
50  
-50  
-25  
0
25  
50  
Temperature (°C)  
Temperature  
(°C)  
Quiescent Current vs. Temperature  
Quiescent Current vs. Temperature  
400  
380  
360  
340  
320  
300  
400  
380  
360  
340  
320  
300  
VIN = 5V, RL =  
VIN = 5V, RL =  
CIN = COUT = 10uF  
(Ceramic,Y5V)  
CIN = COUT = 10uF  
(Ceramic,Y5V)  
RT9183H-18CS  
75 100 125  
RT9183-25CG  
-50  
-25  
0
25  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature  
Temperature  
(°C)  
(°C)  
Current Limit vs. Temperature  
Current Limit vs. Temperature  
4
3.8  
3.6  
3.4  
3.2  
3
4
3.8  
3.6  
3.4  
3.2  
3
VIN = 5V, CIN = COUT = 10uF(Ceramic,Y5V)  
VIN = 5V, CIN = COUT = 10uF(Ceramic,Y5V)  
RT9183L-33CM5  
75 100 125  
RT9183-25CG  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
Temperature  
Temperature  
(°C)  
(°C)  
www.richtek.com  
6
DS9183-12 March 2007  
RT9183  
Dropout Voltage vs. Load Current  
Dropout Voltage vs. Load Current  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
TJ = 125°C  
TJ = 125°C  
TJ = +25°C  
TJ = +25°C  
TJ = -40°C  
TJ = -40°C  
RT9183-25CG  
RT9183L-33CM5  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Load Current (A)  
Load Current (A)  
Dropout Voltage vs. Load Current  
Load Transient Response  
400  
300  
200  
100  
0
RT9183H-CS  
VOUT = 3.3V  
COUT = 47uF/Low ESR, ILOAD = 1mA to 750mA  
T = 125°C  
J
1
0.5  
0
T = 25°C  
J
20  
0
T = -40°C  
J
-20  
RT9183H-18CS  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Time (100us/Div)  
Load Current (A)  
Load Transient Regulation  
Load Transient Response  
RT9183-12CGF  
COUT = 47uF/Low ESR, ILOAD = 1mA to 1.5A  
2
20  
0
1
0
50  
0
500  
0
-50  
RT9183H-18CS  
COUT = 47uF/Low ESR  
ILOAD = 1mA to 750mA  
Time (100us/Div)  
Time (100us/Div)  
DS9183-12 March 2007  
www.richtek.com  
7
RT9183  
Line Transient Response  
Line Transient Regulation  
COUT = 47uF/Low ESR, ILOAD = 100mA  
ILOAD = 100mA  
COUT = 47uF/Low ESR  
5
4
5
4
10  
0
10  
0
-10  
RT9183H-18CS  
RT9183-12CGF  
Time (100us/Div)  
Time (100us/Div)  
EN Pin Shutdown Threshold vs. Temperature  
1.1  
EN Pin Shutdown Response  
CIN = COUT = 10uF (Ceramic,Y5V)  
ILOAD = 100mA, VIN = 5V, T =25°C  
A
1
5
0
VOUT Off to On  
0.9  
2
VOUT On to Off  
0.8  
1
0
RT9183L-33CM5  
0.7  
RT9183H-18CS  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (500us/Div)  
Temperature  
(°C)  
Reference Voltage vs. Temperature  
0.85  
0.83  
0.81  
0.79  
0.77  
0.75  
VIN = 5V,CIN = COUT = 10uF (Electrolysis)  
RT9183H-CS  
-25  
-50  
0
25  
50  
75  
100  
125  
(°C)  
Temperature  
www.richtek.com  
8
DS9183-12 March 2007  
RT9183  
Application Information  
No Load Stability  
Like any low-dropout regulator, the RT9183 series requires  
input and output decoupling capacitors. These capacitors  
must be correctly selected for good performance (see  
Capacitor Characteristics Section). Please note that linear  
regulators with a low dropout voltage have high internal  
loop gains which require care in guarding against  
oscillation caused by insufficient decoupling capacitance.  
The device will remain stable and in regulation with no  
external load. This is specially important in CMOS RAM  
keep-alive applications.  
Input-Output (Dropout) Voltage  
A regulator's minimum input-to-output voltage differential  
(dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this determines the  
useful end-of-life battery voltage. Because the device uses  
a PMOS, its dropout voltage is a function of drain-to-source  
on-resistance, RDS(ON), multiplied by the load current:  
Input Capacitor  
An input capacitance of 10μF is required between the  
device input pin and ground directly (the amount of the  
capacitance may be increased without limit). The input  
capacitor MUST be located less than 1 cm from the device  
to assure input stability (see PCB Layout Section).Alower  
ESR capacitor allows the use of less capacitance, while  
higher ESR type (like aluminum electrolytic) require more  
capacitance.  
VDROPOUT = VIN - VOUT = RDS(ON) × IOUT  
Current Limit  
The RT9183 monitors and controls the PMOS' gate  
voltage, minimum limiting the output current to 2A . The  
output can be shorted to ground for an indefinite period of  
time without damaging the part.  
Capacitor types (aluminum, ceramic and tantalum) can be  
mixed in parallel, but the total equivalent input capacitance/  
ESR must be defined as above to stable operation.  
Short-Circuit Protection  
There are no requirements for the ESR on the input  
capacitor, but tolerance and temperature coefficient must  
be considered when selecting the capacitor to ensure the  
capacitance will be10μF over the entire operating  
temperature range.  
The device is short circuit protected and in the event of a  
peak over-current condition, the short-circuit control loop  
will rapidly drive the output PMOS pass element off. Once  
the power pass element shuts down, the control loop will  
rapidly cycle the output on and off until the average power  
dissipation causes the thermal shutdown circuit to respond  
to servo the on/off cycling to a lower frequency. Please  
refer to the section on thermal information for power  
dissipation calculations.  
Output Capacitor  
The RT9183 is designed specifically to work with very  
small ceramic output capacitors. The recommended  
minimum capacitance (temperature characteristics X7R or  
X5R) are 10μF to 47μF range with 10mΩ to 25mΩ range  
ceramic capacitors between each LDO output andGNDfor  
transient stability, but it may be increased without limit.  
Higher capacitance values help to improve transient.  
Capaacitor Characteristics  
It is important to note that capacitance tolerance and  
variation with temperature must be taken into consideration  
when selecting a capacitor so that the minimum required  
amount of capacitance is provided over the full operating  
temperature range. In general, a good tantalum capacitor  
will show very little capacitance variation with temperature,  
but a ceramic may not be as good (depending on dielectric  
type). Aluminum electrolytics also typically have large  
temperature variation of capacitance value.  
The output capacitor's ESR is critical because it forms a  
zero to provide phase lead which is required for loop  
stability.  
DS9183-12 March 2007  
www.richtek.com  
9
RT9183  
Equally important to consider is a capacitor's ESR change  
with temperature: this is not an issue with ceramics, as  
their ESR is extremely low. However, it is very important  
in tantalum and aluminum electrolytic capacitors. Both  
show increasing ESR at colder temperatures, but the  
increase in aluminum electrolytic capacitors is so severe  
they may not be feasible for some applications.  
The increasing ESR at lower temperatures can cause  
oscillations when marginal quality capacitors are used (if  
the ESR of the capacitor is near the upper limit of the  
stability range at room temperature).  
Aluminum:  
This capacitor type offers the most capacitance for the  
money. The disadvantages are that they are larger in  
physical size, not widely available in surface mount, and  
have poor AC performance (especially at higher  
frequencies) due to higher ESR and ESL.  
Ceramic:  
For values of capacitance in the 10μF to 100μF range,  
ceramics are usually larger and more costly than tantalums  
but give superior AC performance for by-passing high  
frequency noise because of very low ESR (typically less  
than 10mΩ). However, some dielectric types do not have  
good capacitance characteristics as a function of voltage  
and temperature.  
Compared by size, the ESR of an aluminum electrolytic is  
higher than either Tantalum or ceramic, and it also varies  
greatly with temperature. A typical aluminum electrolytic  
can exhibit an ESR increase of as much as 50X when going  
from 25°C down to -40°C.  
Z5U and Y5V dielectric ceramics have capacitance that  
drops severely with applied voltage. Atypical Z5U or Y5V  
capacitor can lose 60% of its rated capacitance with half  
of the rated voltage applied to it. The Z5U and Y5V also  
exhibit a severe temperature effect, losing more than 50%  
of nominal capacitance at high and low limits of the  
temperature range.  
It should also be noted that many aluminum electrolytics  
only specify impedance at a frequency of 120Hz, which  
indicates they have poor high frequency performance. Only  
aluminum electrolytics that have an impedance specified  
at a higher frequency (between 20kHz and 100kHz) should  
be used for the device. Derating must be applied to the  
manufacturer's ESR specification, since it is typically only  
valid at room temperature.  
X7R and X5R dielectric ceramic capacitors are strongly  
recommended if ceramics are used, as they typically  
Any applications using aluminum electrolytics should be  
thoroughly tested at the lowest ambient operating  
temperature where ESR is maximum.  
±
maintain a capacitance range within 20% of nominal  
over full operating ratings of temperature and voltage. Of  
course, they are typically larger and more costly than Z5U/  
Y5U types for a given voltage and capacitance.  
Thermal Considerations  
Thermal protection limits power dissipation in RT9183.  
When the operation junction temperature exceeds 170°C,  
the OTP circuit starts the thermal shutdown function and  
turns the pass element off. The pass element turns on  
again after the junction temperature cools by 30°C.  
Tantalum:  
Solid tantalum capacitors are recommended for use on  
the output because their typical ESR is very close to the  
ideal value required for loop compensation. They also work  
well as input capacitors if selected to meet the ESR  
requirements previously listed.  
For continuous operation, do not exceed absolute  
maximum operation junction temperature 125°C. The  
power dissipation definition in device is:  
Tantalums also have good temperature stability: a good  
quality tantalum will typically show a capacitance value  
that varies less than 10~15% across the full temperature  
range of 125°C to -40°C. ESR will vary only about 2X going  
from the high to low temperature limits.  
PD = (VIN VOUT) x IOUT + VIN x IQ  
www.richtek.com  
10  
DS9183-12 March 2007  
RT9183  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula:  
Good board layout practices must be used or instability  
can be induced because of ground loops and voltage drops.  
The input and output capacitors MUST be directly  
connected to the input, output, and ground pins of the  
device using traces which have no other currents flowing  
through them.  
PD(MAX) = ( TJ(MAX) - TA ) /θJA  
The best way to do this is to layout CIN and COUT near the  
device with short traces to the VIN, VOUT, and ground pins.  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TA is the ambient temperature and  
the θJA is the junction to ambient thermal resistance.  
The regulator ground pin should be connected to the  
external circuit ground so that the regulator and its  
capacitors have asingle point ground” .  
For recommended operating conditions specification of  
RT9183, where TJ(MAX) is the maximum junction  
temperature of the die (125°C) and TA is the maximum  
ambient temperature. The junction to ambient thermal  
resistance (θJA is layout dependent) for SOT-223 package  
is 115°C/W, SOT-223 package (F-Type) is 135°C/W,  
SOP-8 package is 125°C/W, and TO-263 package is  
45°C/W on standard JEDEC 51-3 thermal test board.  
It should be noted that stability problems have been seen  
in applications where “ vias ” to an internal ground plane  
were used at the ground points of the device and the input  
and output capacitors. This was caused by varying ground  
potentials at these nodes resulting from current flowing  
through the ground plane. Using a single point ground  
technique for the regulator and it's capacitors fixed the  
problem. Since high current flows through the traces going  
into VIN and coming from VOUT, Kelvin connect the capacitor  
leads to these pins so there is no voltage drop in series  
with the input and output capacitors.  
The maximum power dissipation depends on operating  
ambient temperature for fixedTJ(MAX) and thermal resistance  
θJA. For RT9183 packages, the Figure 4 of derating curves  
allows the designer to see the effect of rising ambient  
temperature on the maximum power allowed.  
Optimum performance can only be achieved when the  
device is mounted on a PC board according to the diagram  
below:  
PCB Layout  
2400  
TO-263  
2000  
GND  
1600  
1200  
SOT-223  
SOP-8  
800  
+
ADJ  
V
EN  
SOT-223  
400  
(F-Type)  
0
OUT  
0
25  
50  
75  
100  
125  
Ambient temperature (°C)  
+
Figure 4  
GND  
V
IN  
GND  
SOP-8 Board Layout  
DS9183-12 March 2007  
www.richtek.com  
11  
RT9183  
Adjustable Operation  
The adjustable version of the RT9183 has an output voltage  
range of 0.8V to 4.5V. The output voltage is set by the  
ratio of two external resistors as shown in Figure 2. The  
value of R2 should be less than 80k to maintain regulation.  
In critical applications, small voltage drop is caused by  
the resistance (RT) of PC traces between the ground pin of  
the device and the return pin of R2 (See Figure 5 shown on  
next page).Note that the voltage drop across the external  
PC trace will add to the output voltage of the device.  
Optimum regulation will be obtained at the point where  
the return pin of R2 is connected to the ground pin of the  
device directly.  
(SOP-8 & TO-263-5)  
RT9183  
V
VIN  
EN  
VOUT  
V
OUT  
IN  
R
R
1
C
OUT  
Enable  
0.1uF  
ADJ  
GND  
10uF  
C
10uF  
C
IN  
2
R
T
Figure 5. Return Pin of External Resistor Connection  
Referring to Figure 3 the fixed voltage versions for both  
SOP-8 and TO-263-5 packages, the ADJ pin is the input  
to the error amplifier and MUST be tied the ground pin of  
the device directly otherwise it will be in the unstable state  
if the pin voltage more than 0.1V with respect to the ground  
pin itself.  
www.richtek.com  
12  
DS9183-12 March 2007  
RT9183  
Outline Dimension  
D
D1  
H
C
B
L
L1  
e
e
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.071  
0.0047  
0.031  
0.146  
0.287  
0.264  
0.124  
0.093  
0.013  
0.077  
0.013  
A
A1  
b
1.450  
0.020  
0.610  
3.302  
6.706  
6.299  
2.896  
2.261  
0.229  
1.550  
0.800  
1.803  
0.100  
0.787  
3.708  
7.290  
6.706  
3.150  
2.362  
0.330  
1.950  
1.100  
0.057  
0.0008  
0.024  
0.130  
0.264  
0.248  
0.114  
0.089  
0.009  
0.061  
0.009  
B
C
D
D1  
e
H
L
L1  
3-Lead SOT-223 Surface Mount Package  
DS9183-12 March 2007  
www.richtek.com  
13  
RT9183  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
www.richtek.com  
14  
DS9183-12 March 2007  
RT9183  
C
D
U
B
V
E
L1  
b1  
L2  
e
b2  
b
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
4.064  
1.143  
0.660  
1.143  
0.305  
1.143  
9.652  
8.128  
2.286  
14.605  
2.286  
Max  
4.826  
1.676  
0.914  
1.397  
0.584  
1.397  
10.668  
9.652  
2.794  
15.875  
2.794  
Min  
Max  
A
B
0.160  
0.045  
0.026  
0.045  
0.012  
0.045  
0.380  
0.320  
0.090  
0.575  
0.090  
0.190  
0.066  
0.036  
0.055  
0.023  
0.055  
0.420  
0.380  
0.110  
0.625  
0.110  
b
b1  
b2  
C
D
E
e
L1  
L2  
U
6.223 Ref.  
7.620 Ref.  
0.245 Ref.  
0.300 Ref.  
V
3-Lead TO- 263 Surface Mount  
DS9183-12 March 2007  
www.richtek.com  
15  
RT9183  
C
D
U
B
V
E
L1  
L2  
b
e
b2  
A
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
4.064  
1.143  
0.660  
0.305  
1.143  
9.652  
8.128  
1.524  
14.605  
2.286  
Max  
4.826  
1.676  
0.914  
0.584  
1.397  
10.668  
9.652  
1.829  
15.875  
2.794  
Min  
Max  
0.160  
0.045  
0.026  
0.012  
0.045  
0.380  
0.320  
0.060  
0.575  
0.090  
0.190  
0.066  
0.036  
0.023  
0.055  
0.420  
0.380  
0.072  
0.625  
0.110  
A
B
b
b2  
C
D
E
e
L1  
L2  
U
V
6.223 Ref.  
7.620 Ref.  
0.245 Ref.  
0.300 Ref.  
5-Lead TO-263 Plastic Surface Mount Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
16  
DS9183-12 March 2007  

相关型号:

RT9183L-12PM

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-12PM5

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-12PS

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18CG

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18CM

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18CM5

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18CS

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18GG

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18GGF

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18GM

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18GM5

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK

RT9183L-18GS

Ultra Low Dropout 1.5A Linear Regulator
RICHTEK