RT9184 [RICHTEK]

500 MA DUAL LDO REGULATOR; 500毫安双LDO稳压器
RT9184
型号: RT9184
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

500 MA DUAL LDO REGULATOR
500毫安双LDO稳压器

稳压器
文件: 总10页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9184  
500mA Dual LDO Regulator  
General Description  
Features  
The RT9184 is a dual-channel, low noise, and low  
dropout regulator supplying up to 500mA current at  
each channel. The output voltage ranges from 1.5V  
to 3.3V in 100mV increment and 2% accuracy by  
operating from a +2.7V to +6.5V input.  
z Up to 500mA Output Current (Each LDO)  
z Current Limiting and Thermal Protection  
z Short Circuit Protection  
z 650mV Dropout at 500mA Load  
z Two LDOs in Power SOP-8 Package  
The RT9184 uses two internal PMOS as the pass  
device, which consumes 185µA supply current (both  
LDOs on) independent of load current and dropout  
conditions. Other features include a current limiting  
and over temperature protection.  
Pin Configurations  
Part Number  
Pin Configurations  
TOP VIEW  
RT9184CH  
(Plastic PSOP-8)  
1
2
3
4
8
7
6
5
VIN  
VIN  
GND  
GND  
Applications  
GND  
VOUT1  
NC  
z Desktop Computers  
z CD-RW  
VOUT2  
z LCD Monitor  
z Information Appliance  
Typical Application Circuit  
Ordering Information  
RT9184ꢀ ꢀ ꢀ  
V
OUT2  
VOUT1  
VIN  
V
OUT1  
VOUT2  
Package type  
H : PSOP-8  
Operating temperature range  
C : Commercial standard  
RT9184  
GND  
µ
10 F  
µ
10 F  
µ
10 F  
Output voltage  
A : 3.3V (Output1), 1.8V (Output2)  
B : 3.3V (Output1), 2.5V (Output2)  
Other voltage versions please  
contact RichTek for detail.  
DS9184-00 March 2002  
www.richtek-ic.com.tw  
1
RT9184  
Preliminary  
Pin Description  
Pin Name  
Pin Function  
Power Input  
Ground  
VIN  
GND  
VOUT1  
VOUT2  
NC  
Output1 Voltage  
Output2 Voltage  
No Connected  
Function Block Diagram  
Current Limit  
Thermal Protection  
Vref  
Current Limit  
VIN  
_
_
VOUT1  
VOUT2  
GND  
Bias  
www.richtek-ic.com.tw  
DS9184-00 March 2002  
2
Preliminary  
RT9184  
Absolute Maximum Ratings  
z Input Voltage  
7V  
z Package Thermal Resistance  
PSOP-8, θ  
28°C/W  
JC  
z Junction Temperature Range  
z Storage Temperature Range  
z Operating Temperature Range  
z Lead Temperature (Soldering, 10 sec.)  
-40°C ~ 125°C  
-65°C ~ 150°C  
-40°C ~ 85°C  
260°C  
Electrical Characteristics  
(V = 5V, C = C  
= 10µF, typical values at T = 25°C, for each LDO unless otherwise specified.)  
A
IN  
IN  
OUT  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Input Voltage Range  
2.7  
--  
6.5  
V
V
IN  
Output Voltage Accuracy  
-2  
--  
+2  
%
V  
I
= 1mA  
OUT  
MAX  
OUT  
Maximum Output Current  
Current Limit  
Continuous  
= 1Ω  
500  
510  
--  
--  
--  
1000  
260  
--  
mA  
mA  
µA  
I
I
I
--  
R
LIMIT  
G
LOAD  
GND Pin Current (Whole Chip)  
No Load  
I = 500mA  
OUT  
185  
650  
Note  
--  
mV  
Dropout Voltage  
V
DROP  
V
OUT  
= (V  
+0.4V or 2.7V) to 6.5V  
IN  
OUT  
= 1mA  
Line Regulation  
-0.2  
--  
+0.2  
%/V  
V  
LINE  
I
Load Regulation  
-35  
125  
--  
-20  
180  
20  
+5  
--  
mV  
°C  
V  
I
= 1mA to 500mA  
LOAD OUT  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
--  
T
°C  
SD  
100Hz, C  
LOAD  
= 10µF  
OUT  
= 100mA  
Output Voltage AC PSRR  
--  
62  
--  
dB  
I
Note : Dropout voltage definition: V – V  
when V  
is 50mV below the value of V (normal)  
OUT  
IN  
OUT  
OUT  
DS9184-00 March 2002  
www.richtek-ic.com.tw  
3
RT9184  
Preliminary  
Typical Operating Characteristics  
I
= 100mA, V = 5V, C  
= 10µF, and C = 10µF, unless otherwise noted.  
OUT IN  
LOAD  
IN  
Quiescent Current vs. Temp.  
Output Voltage Accuracy vs. Temp.  
200  
180  
160  
140  
120  
100  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
°
Temperature ( C)  
°
Temperature ( C)  
Channel-to-Channel Isolation  
vs. Frequency  
PSRR vs. Frequency  
120  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
I
= 1mA  
LOAD  
R
LOAD  
= 100Ω  
10  
100  
1K  
10K  
100K  
1M  
100  
1K  
10K  
100K  
1M  
Frequency (Hz)  
Frequency (Hz)  
Load Transient Response  
Line Transient Response  
(I  
= 10 to 500mA)  
LOAD  
T
VOUT  
3 >  
T
T
4.5  
3.5  
T
T
T
T
ILOAD  
1 >  
1) Ch 1: 1 Volt 250 us  
500mA  
COUT = 100µF  
3) Ref B: 50 mVolt 250 us  
50µS/Div  
Time  
Time  
www.richtek-ic.com.tw  
DS9184-00 March 2002  
4
Preliminary  
RT9184  
Functional Description  
The RT9184 integrate two low noise, low dropout,  
and low quiescent current linear regulators. Output  
voltages are optional ranging from 1.5V to 3.3V, and  
each channel can supply current up to 500mA.  
Internal P-Channel Pass Transistor  
The RT9184 features double typical 1.3P-channel  
MOSFET pass transistors. It provides several  
advantages over similar designs using PNP pass  
transistors. The P-channel MOSFET requires no  
base drive, which reduces quiescent current  
significantly than PNP-based regulator, which wastes  
considerable current in dropout when the pass  
transistor saturates. They also use high base-drive  
currents under large loads. The RT9184 does not  
suffer from these problems and consume only 185µA  
of quiescent current whether in dropout, light-load, or  
heavy-load applications.  
Current Limit and Thermal Protection  
The RT9184 includes two independent current limit  
structure which monitor and control each pass  
transistor’s gate voltage limiting the guaranteed  
maximum output current to 510mA minimum.  
Thermal-overload protection limits total power  
dissipation in the RT9184. When the junction  
temperature exceeds T = +180°C, the thermal  
J
sensor signals the shutdown logic turning off the pass  
transistor and allowing the IC to cool down. The  
thermal sensor will turn the pass transistor on again  
after the IC’s junction temperature cools by 20°C,  
resulting in a pulsed output during continuous  
thermal-overload conditions. Thermal-overloaded  
protection is designed to protect the RT9184 in the  
event of fault conditions. Do not exceed the absolute  
maximum junction-temperature rating of T = +125°C  
J
for continuous operation. The output can be shorted  
to ground for an indefinite amount of time without  
damaging the part by cooperation of current limit and  
thermal protection.  
DS9184-00 March 2002  
www.richtek-ic.com.tw  
5
RT9184  
Applications Information  
Preliminary  
two components of the output response: a DC shift  
Capacitor Selection and Regulator Stability  
Like any low-dropout regulator, the external  
capacitors used with the RT9184 must be carefully  
selected for regulator stability and performance.  
from the output impedance due to the load current  
change, and the transient response. The DC shift is  
quite small due to the excellent load regulation of the  
IC. Typical output voltage transient spike for a step  
change in the load current from 0mA to 50mA is tens  
mV, depending on the ESR of the output capacitor.  
Increasing the output capacitor’s value and  
decreasing the ESR attenuates the overshoot.  
Using a capacitor whose value is greater than 1µF on  
the RT9184 input and the amount of capacitance can  
be increased without limit. The input capacitor must  
be located a distance of not more than 0.5" from the  
input pin of the IC and returned with a clean analog  
ground. Any good quality ceramic or tantalum can be  
used for this capacitor. The capacitor with larger  
value and lower ESR (equivalent series resistance)  
provides better PSRR and line-transient response.  
Input-Output (Dropout) Voltage  
A
regulator’s minimum input-output voltage  
differential (or dropout voltage) determines the lowest  
usable supply voltage. In battery-powered systems,  
this will determine the useful end-of-life battery  
voltage. Because the RT9184 uses a P-channel  
MOSFET pass transistor, the dropout voltage is a  
The RT9184 is designed specifically to work with low  
ESR ceramic output capacitor in space-saving and  
performance consideration. Using  
a
ceramic  
function of drain-to-source on-resistance [R  
multiplied by the load current.  
]
DS(ON)  
capacitor whose value is at least 1µF on the RT9184  
output ensures the stability. The RT9184 still works  
well with output capacitor of other types due to the  
wide stable ESR range. Output capacitor of larger  
capacitance can reduce noise and improve load-  
transient response, stability, and PSRR. The output  
capacitor should be located not more than 0.5"  
Reverse Current Path  
The power transistor used in the RT9184 has an  
inherent diode connected between each regulator  
input and output (see Fig.1). If the output is forced  
above the input by more than a diode-drop, this diode  
will become forward biased and current will flow from  
from the V  
pin of the RT9184 and returned with a  
OUT  
the V  
terminal to V . This diode will also be  
OUT  
IN  
clean analog ground.  
turned on by abruptly stepping the input voltage to a  
value below the output voltage. To prevent regulator  
mis-operation, a Schottky diode could be used in the  
applications where input/output voltage conditions  
can cause the internal diode to be turned on (see  
Fig.2). As shown, the Schottky diode is connected in  
parallel with the internal parasitic diode and prevents  
it from being turned on by limiting the voltage drop  
across it to about 0.3V < 100mA to prevent damaging  
the part.  
Note that some ceramic dielectrics exhibit large  
capacitance and ESR variation with temperature. It  
may be necessary to use 2.2µF or more to ensure  
stability at temperatures below -10°C in this case.  
Also, tantalum capacitors, 2.2µF or more may be  
needed to maintain capacitance and ESR in the  
stable region for strict application environment.  
Tantalum capacitors maybe suffer failure due to  
surge current when it is connected to a low-  
impedance source of power (like a battery or very  
large capacitor). If a tantalum capacitor is used at the  
input, it must be guaranteed to have a surge current  
rating sufficient for the application by the  
manufacture.  
V
V
IN  
OUT  
Load-Transient Considerations  
The RT9184 load-transient response graphs show  
Fig. 1 V  
Structure of RT9184  
OUT  
www.richtek-ic.com.tw  
DS9184-00 March 2002  
6
Preliminary  
RT9184  
Gold Wire  
Die  
Polymide Tape  
V
V
IN  
OUT  
Exposed Slug  
Leadframe  
Fig. 2 External Schottky Diode to Prevent Internal  
Diode Turning on  
Fig. 3 Power SOP-8 Structure  
Power Dissipation and PCB Layout Note  
The maximum power dissipation of RT9184 depends  
on the thermal resistance from the case to circuit  
board, the temperature difference between the die  
junction and ambient air, and the rate of airflow. The  
power dissipation across the device is  
8
1
7
2
6
3
5
4
P = I  
(V - V  
).  
OUT  
IN  
OUT  
The maximum power dissipation is:  
PMAX = (T - T ) / θ  
Fig. 4 Typical Footprint of RT9184  
J
A
JA  
where TJ - TA is the temperature difference between  
the RT9184 die junction and the ambient  
environment, θJA is the thermal resistance from the  
junction to the ambient environment. The GND pin of  
the RT9184 performs the dual function of providing  
an electrical connection to ground and channeling  
heat away. Connect the GND pin to ground using a  
large pad or ground plane.  
The RT9184 is assembled by power SOP-8 package  
with direct slug solder to PCB (Fig.3). This structure  
offers a low thermal resistance of junction to case  
(θJC) and can dissipate the heat away by proper PCB  
layout (a proper θCA, thermal resistance of case to  
ambient). Because the bottom slug of RT9184 plays  
the role as ground, the footprint in Fig.4 is a typical  
configuration for heat dissipating copper clad.  
Medium power dissipations of up to 2W are easily  
obtainable in practice with this configuration. The  
heat dissipating copper area on the PCB can be  
configured in various shapes and sized depending  
upon the particular application.  
DS9184-00 March 2002  
www.richtek-ic.com.tw  
7
RT9184  
Package Information  
Preliminary  
H
A
Y
M
X
B
J
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.470  
0.330  
1.194  
0.190  
0.050  
5.791  
0.380  
1.830  
1.830  
4.950  
3.988  
1.730  
0.508  
1.346  
0.250  
0.150  
6.198  
1.270  
2.290  
2.290  
0.189  
0.150  
0.058  
0.013  
0.047  
0.007  
0.002  
0.228  
0.015  
0.072  
0.072  
0.195  
0.157  
0.068  
0.020  
0.053  
0.009  
0.006  
0.244  
0.050  
0.090  
0.090  
J
M
X
Y
Power 8–Lead SOP Plastic Package  
www.richtek-ic.com.tw  
DS9184-00 March 2002  
8
Preliminary  
RT9184  
DS9184-00 March 2002  
www.richtek-ic.com.tw  
9
RT9184  
Preliminary  
RICHTEK TECHNOLOGY CORP.  
Headquarter  
RICHTEK TECHNOLOGY CORP.  
Taipei Office (Marketing)  
6F, No. 35, Hsintai Road, Chupei City  
8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City  
Hsinchu, Taiwan, R.O.C.  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5510047 Fax: (8863)5537749  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek-ic.com.tw  
www.richtek-ic.com.tw  
DS9184-00 March 2002  
10  

相关型号:

RT9184A

Dual, Ultra-Fast Transient Response, 500mA LDO Regulator
RICHTEK

RT9184ACH

500 MA DUAL LDO REGULATOR
RICHTEK

RT9184A_11

Dual, Ultra-Fast Transient Response, 500mA LDO Regulator
RICHTEK

RT9184BCH

500 MA DUAL LDO REGULATOR
RICHTEK

RT9185

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185A

SHDN. EN. BP. FTR and POK2
ETC

RT9185AGL5

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185AGM5

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185AGS

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185APL5

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185APM5

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK

RT9185APS

Triple, Ultra-Fast CMOS LDO Regulator
RICHTEK